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Abstract

A low vitamin D status (determined by 25(OH)D concentration) has been
identified as an association risk factor in the aetiology of numerous chronic
diseases, with older adults identified as generally more deficient than younger
populations. Accumulating data is suggestive that physical activity and
exercise may influence 25(OH)D and vitamin D metabolites downstream in the
complex metabolic pathway. Specifically, exercise has been shown to act as
a direct and indirect stimulus on the intracellular vitamin D receptor (VDR),
which mediates the effects of vitamin D and initiates genomic and non-
genomic signalling responses. The role of physical activity and exercise on
25(0OH)D concentration and VDR expression is not yet recognised in a healthy

human population.

This thesis aimed to establish whether there is a link between physical activity
status and 25(OH)D concentration, and if there is a role of age and exercise
on 25(OH)D concentration and VDR expression (as quantified in circulating

systemic T lymphocytes).

The main results demonstrate that 25(OH)D concentration is not influenced by
age or cardiorespiratory fithess (CRF), however VDR expression declines with
older age and a higher CRF predicts a greater expression of the VDR. It was
found that a single bout of exercise acutely increases VDR expression in
circulating T lymphocytes, with exercise modality appearing to influence the
response. There was a more pronounced response observed following an
endurance compared to a resistance exercise bout. The impact of the
exercise-induced lymphocyte response on the observed changesin T cell VDR

expression was explored, however they appear to be independent.

In conclusion, the findings of this thesis support the notion that exercise could
be used as a short-term strategy to increase cellular VDR expression in a

human population.

Keywords: vitamin D, 25(0OH)D, vitamin D receptor (VDR), physical activity,

exercise, age.
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Chapter 1: Introduction



Vitamin D is the major regulator of calcium homeostasis in the body (Sheikh et
al., 1988) and is critical in the maintenance of bone mineral density (BMD)
(Cauley et al., 2008). As well as this classical role of vitamin D in bone health,
it has become evident that vitamin D exerts many additional effects
contributing to good health functioning via both genomic and non-genomic
pathways. The two main sources of vitamin D: sunlight exposure and dietary
sources, contribute to whole-body vitamin D status (Holick, 2002, 2007). A low
vitamin D level has been identified as a risk factor in the aetiology of numerous
chronic diseases, such as diabetes (Calvo-Romero & Ramiro-Lozano, 2015;
Mauss, Jarczok, Hoffmann, Thomas, & Fischer, 2015; Pittas, Lau, Hu, &
Dawson-Hughes, 2007) and cardiovascular disease (Dobnig et al., 2008; T. J.
Wang et al., 2008), with older adults identified as generally more vitamin D
deficient than younger populations (Jacques et al., 1997; Laird et al., 2014;
Touvier et al., 2015). Although a sufficient vitamin D status is important and
linked to good health, it is through the cellular ligand-dependent receptor,
vitamin D receptor (VDR), which receives the converted active form of vitamin
D (as a ligand), that modulates the main function of vitamin D metabolism
(Haussler, Jurutka, Mizwicki, & Norman, 2011; Haussler et al., 2013). The VDR
is a ligand-inducible transcription factor that effectively alters gene
transcription and thus protein synthesis (Bischoff et al., 2001; R. U. Simpson,
Thomas, & Arnold, 1985). The upregulation or suppression of proteins at a
particular time and in a specific quantity plays a role in the pathophysiology of
diseases and conditions. Therefore, the bioavailability and functional capacity

of the VDR is important when investigating vitamin D metabolism and health.

Scotland can be defined as a vitamin D deficient nation according to outputs
from both large and small scale studies evaluating the vitamin D status of
residents of Scotland (Gallacher et al., 2005; Holick, 2008; Rhein, 2008; Weiss
et al., 2016; Zgaga et al., 2011). Since a low vitamin D status is linked to ill-
health (Autier, Gandini, & Mullie, 2012), strategies are required to address the
issue. However, vitamin D deficiency may not just be a problem at the
circulatory level, but also on a cellular level. Therefore, strategies employed
need to address the main mediators of the vitamin D metabolic pathway in

order to improve efficiency and effectiveness of vitamin D metabolism,



presenting a solution to acquire the health-protective role vitamin D appears to
provide. In addition, vitamin D supplementation, although an easy route to
increase vitamin D status, is costly (around £50 per year per person) if all
residents in Scotland were prescribed them. In addition, recommending
increased sunlight exposure carries health risks itself: skin cancer induced by
ultraviolet (UV) A radiation exposure from the sun (Armstrong & Kricker, 2001;
Brash et al., 1991), and not feasible due to weather and seasonal influence
(Rhodes et al., 2010). Therefore, alternative strategies are required that are

low risk, plausible and low expense.

In recent studies it has been reported that mechanical stress, physical activity,
and exercise may influence vitamin D metabolism at the surface and cellular
level (Aly, Abdou, Rashad, & Nassef, 2016; Maimoun et al., 2005; Makanae et
al., 2015; Sun, Cao, Taniguchi, Tanisawa, & Higuchi, 2017). However, there is
limited research in humans, with the majority of studies conducted in murine
models and not translated into the human population. According to The
Scottish Healthy Survey 2016, the physical activity status of Scotland is poor,
with reports that 36 % of the adult population, around 1.6 million people, are
physically inactive (The Scottish Health Survey, 2017). The survey reports also
that men are more likely to meet the recommended physical activity guidelines
compared to women. If exercise is found to beneficially influence vitamin D
metabolism, it could pose as a cost-effective and low risk strategy to combat

the deficiency epidemic in Scotland.

Another concern surrounding vitamin D status and it’s link with health, is the
influence of age, with older populations exhibiting low 25(OH)D concentrations
(Chapuy, Durr, & Chapuy, 1983; Jacques et al.,, 1997) and a reduced
expression of VDR (Bischoff-Ferrari, Borchers, et al., 2004). However, it is
elusive whether 25(0OH)D concentration declines with age independent of
other characteristics and environmental factors. Furthermore, adding to this
concern, ageing is associated with a decline in physical activity levels (Sallis,
2000) and aerobic fitness (Buskirk & Hodgson, 1987; Fitzgerald, Tanaka, Tran,
& Seals, 1997). Interestingly, it has been reported that higher self-reported
physical activity is associated with higher circulating concentrations of vitamin

D (Jacques et al., 1997; Scragg & Camargo, 2008). However, the effect of



cardiorespiratory fitness (CRF) and exercise itself on key vitamin D

metabolites has not yet been investigated in a human population.

The overall aim of this thesis is to investigate the role of physical
activity/exercise and age on vitamin D metabolism: primarily systemic
25(OH)D concentration, identified as vitamin D status, and circulating cellular
VDR expression. The intention is to identify whether exercise could be
proposed and utilised as a strategy to optimise vitamin D metabolism and
potentially improve health.

To realise this aim, the following specific objectives will be addressed:

I.  To evaluate the vitamin D status of older adults in Scotland and
determine whether there is a link with physical activity levels.
II. Investigate whether vitamin D status is influenced by age and
associated with CRF.
[ll.  Determine whether there is a relationship between vitamin D status
and baseline VDR expression, and investigate the role of age and
CRF on VDR expression.
IV.  Explore the effects of an acute bout of exercise on VDR expression,

and identify if this response is influenced by age.



Chapter 2: Literature Review



2.1 Introduction

This literature review will cover the current main research in the areas of
physical activity and exercise on vitamin D status and metabolism, specifically
the vitamin D receptor (VDR), of which the function and activity will be
reviewed. Both murine and human research will be reviewed, with focus on
translation of the investigations into a human population. The role that the
inevitable ageing process has on these areas will also be addressed, with the
influence of age being a main outcome of the thesis.

2.2 Background of vitamin D

Vitamins are organic compounds, primarily obtained through the diet from
dietary food sources or supplements. Vitamin D may not be a vitamin in the
truest sense since it has been classified as a fat-soluble secosteroid hormone
(Vieth, 2004), classically responsible for increasing intestinal absorption of
calcium (Christakos, Dhawan, Porta, Mady, & Seth, 2011). More recently, non-
classic roles of vitamin D have emerged in the prevention of chronic disease,
assisting the immune system, and regulating the endocrine system (Holick &
Chen, 2008). Vitamin D metabolism involves a substantially long and
complicated pathway, exerting its effects via genomic and non-genomic
mechanisms, ultimately affecting health, or more specifically preventing ill
health (Autier, Boniol, Pizot, & Mullie, 2014). Studies have generally
documented that vitamin D plays a crucial role in the development and
maintenance of skeletal and extraskeletal health (Cauley et al., 2008; Holick,
1996; Hossein-nezhad & Holick, 2013; Wacker & Holick, 2013). Vitamin D
deficiency is also linked to the prevalence of cardiovascular disease, diabetes,
and autoimmune diseases (Holick, 2004a, 2004b; Hypponen, Laara,
Reunanen, Jarvelin, & Virtanen, 2001; Hypponen & Power, 2007; Pittas, Lau,
et al., 2007), such as multiple sclerosis (Munger et al., 2004) and Crohn’s

disease (Simmons, Mullighan, Welsh, & Jewell, 2000).

The two primary sources of vitamin D are dietary intake, ideally contributing to
approximately 20 % of total intake (although in very minimal doses), and direct

ultraviolet (UV) B radiation exposure from sunlight, optimally contributing the

6



other 80 % (Holick, 2002). There are two main forms of vitamin D:
ergocalciferol (vitamin D2) and cholecalciferol (vitamin D3), which should not
be used interchangeably as they do not have equal nutritional values. Both
forms contribute to a person’s vitamin D status, identified as plasma or serum
25(0OH)D concentration, determining whether a person is vitamin D deficient
or sufficient (Dawson-Hughes et al., 2005). Vitamin D- is derived from plants
and thus is consumed through the diet in relatively small quantities, whereas
vitamin D3 can be obtained from a variety of exogenous sources, such as oily
fish, eggs, and green leafy vegetables, and produced endogenously by the
exposure of skin to UV rays (G. Jones, Strugnell, & DelLuca, 1998). There is
evidence that supplementation with vitamin Dz is more effective at increasing
overall vitamin D status than D> (Nimitphong, Saetung, Chanprasertyotin,
Chailurkit, & Ongphiphadhanakul, 2013; Trang et al., 1998). Through the
metabolic pathway, vitamin D> needs to be converted to vitamin D3z in order to
be further metabolised into calcidiol (25-hydroxy-vitamin D or 25(0OH)D) and
thus it is usually 25(OH)D (both forms combined) or 25(OH)D3 concentration
that is reported in the majority of research studies. However, vitamin D status
is not only determined by the input but also the efficiency of storing and
releasing 25(OH)D. Many cell types, such as skeletal muscle cells and fat cells
(Abboud et al., 2014; Abboud et al., 2013), have been reported to uptake
25(0OH)D for storage. However, the release of the protein hormone is
dependent on the cell type: adipose tissue cells sequester and store 25(0OH)D
(Wortsman, Matsuoka, Chen, Lu, & Holick, 2000), whereas skeletal muscle
cells store but also readily release 25(0OH)D (Abboud et al., 2013) to contribute
to circulating 25(OH)D concentration when required. It is suggested that this is
due to the strong lipophilic properties of 25(OH)D. Compared to other
constituents of blood, 25(OH)D has a relatively long half-life that varies
between 15-45 days (Abboud et al., 2013; Zehnder et al., 2001; Zerwekh,
2008), although its residence is remarkably longer than its binding protein,
vitamin D binding protein (DBP), which is 1-3 days. Therefore, the
maintenance of vitamin D status may be attributed to more than just UV

exposure, dietary intake, and lifestyle influences.



The concentration of total systemic 25(OH)D3 has been identified as the most
reliant biomarker when determining the overall vitamin D status of a person in
both a clinical and research capacity (Holick, 2009). However, an observed
elevation in 25(OH)D3s does not necessarily reflect the efficiency or success of
the metabolic pathway as a whole. Despite reported links between vitamin D
status and health conditions, there is minimal proof of concept that vitamin D
induced-health benefits are gained if the only metabolite that is measured and
reported is 25(OH)Ds. Plasma or serum 25(OH)D may not be representative
of vitamin D status, but a critical intermediary in the utilisation of vitamin D by
the body, since the action is mediated by intracellular metabolites and
receptors towards the end of the pathway. In addition, the current marker to
determine vitamin D status does not take into account the distribution of
25(0OH)Ds in other stores as opposed to plasma or serum: fat cells, muscle
cells and various other tissues (Heaney, Horst, Cullen, & Armas, 2009).
Circulating 25(OH)D concentration may not be a reliable indicator of whole
body vitamin D status, and therefore it is important to consider all key
metabolites involved in the entire metabolic pathway when determining a
person’s vitamin D status and their capacity to effectively utilise 25(OH)D at a

cellular level.

2.3 Vitamin D metabolism

2.3.1 The vitamin D pathway

Classified as an active hormone in the body, 25(OH)D is metabolised from the
active pre-cursor 7-dehydrocholesterol located within the epidermis of the skin
(Kumar, 1984). The basic vitamin D metabolic pathway is shown in Figure 1.
Upon photo-activation by UVB rays from direct sunlight exposure, 7-
dehydrocholesterol undergoes photo-conversion into vitamin D. This is
dissimilar to oral ingestion, whereby the ingested supplement or dietary source
of vitamin D is absorbed through the intestinal wall. The vitamin D from either
source then circulates in the blood bound to the DBP, its carrier protein, then
undergoes two consecutive hydroxylation reactions, the first in the liver and

the second in the kidney (Girgis, Clifton-Bligh, Hamrick, Holick, & Gunton,



2013; Kitson & Roberts, 2012). The DBP is the primary vitamin D carrier
protein, binding 80-95 % of total 25(OH)D, with the remaining 25(OH)D bound
to albumin, and less than 1 % of total circulating 25(OH)D in the free form
(Bikle et al., 1986). The first step in the bioactivation of vitamin D is by the
hydroxylation of carbon 25, which occurs primarily in the liver by 25-
hydroxylases, specific cytochrome P450 enzymes such as CYP27A (sterol 27-
hydroxylase), converting vitamin D to 25-hydroxyvitamin Dz (25(OH)Ds3). This
is then further metabolised by CYP27B1 (1a-hydroxylase) in the kidney to the
bioactive form of vitamin D: 1,25-hydroxyvitamin Dz (1,25(OH)2Ds). This active
form is then secreted into the bloodstream for systemic delivery to the target
tissue/cells. Although, the kidney is not unique in its ability to convert 25(OH)D3
to 1,25(0OH)2Ds, as numerous cells and tissues have demonstrated the
capacity for local metabolism of vitamin D.
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Figure 1 Vitamin D metabolic pathway adapted from Girgis et al. (2013) and
Kitson and Roberts (2012).



2.3.2 The vitamin D receptor (VDR)

Located in the cytoplasm and nucleus of many cells, the VDR is a ligand-
inducible transcription factor (Klopot, Hance, Peleg, Barsony, & Fleet, 2007),
that was first discovered in 1974 by Brumbaugh and Haussler in animal
intestines (Brumbaugh & Haussler, 1974). The target genes of VDR play a key
role in cellular metabolism, bone health, mediating inflammation and muscle
protein synthesis (Carlberg & Seuter, 2009). It has been reported that target
genes of the VDR are associated with an individual’s vitamin D status, whereby
changes of their messenger ribonucleic acid (MRNA) expression significantly
correlates with alterations of 25(OH)Ds levels (Vukic et al., 2015). Although,
the metabolic pathway is closely linked and dependent upon the bioavailability
of specific metabolites, vitamin D functions through the cellular action of the
VDR. It is suggested that 1,25(OH)2Ds acts via the VDR to have a direct effect
on enzymatic activity, establishing the main control mechanism for vitamin D
metabolism (Tiosano, Weisman, & Hochberg, 2001). The VDR has been found
to regulate the expression of more than 900 genes involved in numerous
physiological functions and pathological conditions, with more than 36 types of
human tissue identified to express the VDR, including skeletal muscle
(Norman, 2008). The primary role of VDR is to induce mRNA transcription and
thus regulate protein synthesis (Bischoff et al., 2001; R. U. Simpson et al.,
1985).

The intracellular pathway of vitamin D metabolites is displayed in Figure 2.
The circulating unbound 1,25(OH)2D3 crosses the cellular membrane of the
target cell and subsequently binds to the cytoplasmic or nuclear VDR with high
affinity (Pike, Meyer, & Bishop, 2012). The ligand 1,25(OH).Ds promotes
heterodimerisation of VDR with retinoid X receptor (RXR), a nuclear receptor
that is activated by 9-cis retinoic acid, a metabolically active form of vitamin A.
Ligand binding to VDR may induce translocation of the complex to the nucleus
(MacDonald et al., 1993). The VDR-RXR complex subsequently binds with
high affinity to vitamin D response elements (VDRE) in the promoter region of
target genes on the deoxyribonucleic acid (DNA) strand (Haussler et al., 1998).
It is this binding mechanism that leads to the genomic activity of vitamin D.

Once bound, VDR is then positioned such that it may recruit co-regulatory RNA
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polymerase Il transcriptional machinery to the target site to induce or suppress
transcription of target genes (Girgis et al.,, 2013). These data imply a
mechanism by which the VDR-RXR complex expresses promotor specificity
permitting differential effects on numerous vitamin D related genes (J. Zhang
et al., 2011). This ultimately induces translation of MRNA leading to de novo
protein synthesis. Thus, vitamin D action depends on the delivery or metabolic
production of sufficient concentrations of the 1,25(OH).D3 ligand to the target
cell, and adequate intracellular expression of VDR and RXR proteins (Haussler
et al., 2013).

©  125(0H),D;
DBP  VITAMIN D BINDING PROTEIN

I & VDR | RXR ) w77

Proteins

Figure 2 Intracellular vitamin D metabolic pathway adapted from Pike et al.
(2012).

As with all members of the super family of steroid/thyroid hormone/retinoid
nuclear receptors, the VDR is comprised of two well-conserved core domains,

the ligand-binding domain, and the DNA-binding domain (Orlov, Rochel,
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Moras, & Klaholz, 2012). The structure of the VDR is shown in Figure 3. The
hinge region connecting the two active domains allows for flexibility within the
structure of the receptor, allowing the receptor to bind to various DNA response
elements in the DNA strand. The intricacies of the VDR structure have been
well discussed and outlined by Haussler et al. (1998).

. AF-2 domain
AF-1 domain . . (Ligand independent
(Ligand independent Hinge domain transactivation domain)
transactivation domain) Rotational flexibility Coactivator binding
N —( )— C
DNA binding domain Ligand binding domain

Heterodimerisation 1,25(0H),D; binding
Heterodimerisation with RXR
Nuclear localisation
Phosphorylation

Figure 3 Structure of the VDR adapted from Orlov et al. (2012).

The positive interaction between VDR and RXR on the promotor region on a
DNA strand is cyclic in nature with regards to the kinetics of receptor
association (C. Zhang et al., 2003). The receptor action correlates with timely
recruitment of many co-regulators, such as VDRESs and the basic elements of
the transcriptional machinery required for gene transcription. Following
treatment with 1,25(0OH).Ds, binding of the VDR-RXR dimer complex has been
assessed over 15 minute (min) intervals for a period of 3 hours (h) and also
over longer term exposures up to 24 h (Kim, Shevde, & Pike, 2005). It
appeared that VDR binding activity increased following 1,25(OH)2D3
stimulation, with a peak at 45-60 min and a second wave at 135 min. Treatment
with 1,25(0OH).Ds also induced strong VDR and modest RXR protein
upregulation, with the increase maintained to the 24 h time point. These
findings support the idea that localisation of the VDR-RXR complex to the
promotor region is ligand-dependent requiring the bioavailability of
1,25(0OH)2Ds (Pike & Meyer, 2010).

In numerous health conditions it is imperative that the functional products of a

gene, primarily proteins, are consistently or intermittently expressed at a
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specific concentration, for example: sufficient release of insulin to
downregulate elevated glucose levels in order to achieve euglycaemia and
prevent the onset of chronic hyperglycaemia: the initial pathophysiological
event in the development of diabetes (Kahn, 2003). Vitamin D metabolism,
specifically the VDR has been reported to regulate or induce gene expression,
therefore altering protein synthesis (Haussler et al., 1998; Pike & Meyer,
2010).

2.3.3 Regulation of active vitamin D

In plasma and serum, the majority of 25(OH)D3 is bound to the DBP (85-90
%), with a small minority (10-15 %) bound to albumin, and less than 1 % of
25(0OH)Ds3 circulating in the free form (Bikle, Siiteri, Ryzen, & Haddad, 1985;
Chun et al., 2014). However, since the affinity of albumin to 25(OH)D is weaker
than that of DBP to 25(OH)D, when bound to albumin the 25(OH)D becomes
a bioavailable form, which also includes free circulating 25(OH)D (Bikle et al.,
1986). Although DBP may not be directly associated with the risk of vitamin D-
induced disease or health complications, the protein indirectly modulates
circulating free and bioavailable 25(OH)D concentration, ultimately delivering
the ligand 1,25(0OH).Ds to the target cell and VDR. Thus the concentration of
bioavailable 25(OH)D depends on both the total 25(OH)D and levels of DBP
and albumin. Although total 25(OH)D is recognised as the biomarker of vitamin
D status (Chun et al., 2014), free or bioavailable 25(OH)D may be more
relevant to determine vitamin D deficiency and the association with health

complications (C. Li et al., 2017).

There is an optimal level of 1,25(0OH).Ds, which requires a mechanism to
promote or attenuate its activity. This physiologically active metabolite has a
relatively shorter half-life (4-15 h) (Zehnder et al., 2001) than 25(0OH)Ds (15
days) (K. S. Jones et al., 2014). Although sufficient delivery of the ligand to
target cells is required to have vitamin D-induced cellular transcriptional
actions, a high potency of 1,25(OH)2Ds may have toxic effects. The efficacy of
tissues expressing VDR positive cells to metabolise vitamin D and exert its

biological effects will be dependent upon the ability of the cell to internalise the
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1,25(0OH).Ds-DBP complex. Cells express membrane-bound proteins that
facilitate the uptake of the complex to the cytoplasm. For example, skeletal
muscle tissue cells express megalin, which has been identified to play a role
in mediating endocytosis of the 1,25(0OH)2Ds ligand (Abboud et al., 2013).

A feedback regulation by 1,25(OH).Ds has been identified, which mediates the
circulating levels of 24-hydroxylase and CYP27B1, limiting an unnecessarily
high abundance of the enzymes and thus strives to maintain optimal levels of
the ligand. The protein 24-hydroxylase (encoded by the CYP24Al gene)
initiates the degradation of 25(OH)Ds and 1,25(OH)2D3 at the C-24 position to
produce 24,25(0OH).Ds and 1,24,25(0OH)2Ds, respective. Thus 24-hydroxylase
works alongside CYP27B1 to control the systemic concentration of the non-
active and active forms (Dusso, Brown, & Slatopolsky, 2005; Ohyama,
Noshiro, & Okuda, 1991). It has been shown that 1,25(OH).D3 does not
regulate CYP27B1 mRNA or protein expression, suggesting that 1,25(0OH).D3
levels are controlled via 24-hydroylase-induced degradation of 1,25(OH).D3
(Xie et al., 2002). Thus the 1,25(OH).Ds feedback mechanism relies on
1,25(0OH)2Ds catabolism rather than inhibition of 1,25(OH).Ds production. For
vitamin D metabolism to operate effectively, all the components and co-
regulators must be orchestrated optimally. Therefore when investigating key
components of the vitamin D metabolic pathway, consideration must be paid
to the impact of metabolites and their potential mediating effect on protein

expression and availability.

2.3.4 Physiological roles of the ligand-VDR complex

Vitamin D is not only known for its classic role in bone health and calcium
regulation, but also in other non-genomic and genomic actions, such as cell
proliferation and differentiation, as well as inducing and supressing gene
transcription and mRNA translation leading to the synthesis and secretion of a
variety of proteins. Since the VDR is identified as the controlling mechanisms
of such actions, it is important to consider what ultimate outcome these VDR-

induced actions have with regards to therapeutic use in human health.
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2.3.4.1 Calcium regulation and bone health

A primary function of the vitamin D endocrine system is to maintain calcium
homeostasis, with intestinal calcium absorption dependent on the availability
of vitamin D metabolites: 1,25(OH)2D3z and VDR (Sheikh et al., 1988). Intestinal
calcium absorption efficiency has also been found to be attributed to a fall in
circulating 1,25(OH)2D3 concentration, as well as intestinal resistance to the
action of 1,25(0OH).Ds3 (Pattanaungkul et al., 2000). 1,25(OH)2Ds is reported as
the major hormone actively involved in the absorption of calcium from the small
intestine and reabsorption in the kidney and bone. On a cellular level,
1,25(0OH)2Ds and VDR induce the expression of membrane calcium channels
thus facilitating calcium entry into the cell, with VDR expression necessary for
normal calcium homeostasis (Christakos et al., 2011; Christakos, Dhawan,
Verstuyf, Verlinden, & Carmeliet, 2016). The ligand and receptor also exert
control in the intestine on calcium binding once calcium enters the cell, and
preventing cellular calcium concentrations from reaching toxicity (Christakos,
2012). If calcium homeostasis cannot be achieved through absorption from th