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ABSTRACT 

The concepts of optimal strategy and hyperpath were introduced in the transport field under the paradigms of 

equilibrium and expected utility theory, which assume perfect rationality. The initial scope for hyperpaths was 

frequency-based transit assignment, but increasingly they are used also for other transport problems, such as 

scheduled-based transit assignment and vehicle routing. Extensions to the original formulation have been 

developed to take into account congestion, the availability of information, and time-dependent networks. 

Psychological research has shown that human rationality is bounded by limitations on computational 

ability. Frequently the issue has been neglected assuming that travellers can learn from experience but recent 

literature shows that this cannot be taken for granted. In particular, humans can evaluate only a reduced number 

of alternatives, so hypothesizing that travellers are able to think in terms of hyperpaths whatever their extension 

may be can give rise to unrealistic assignments.  

This paper presents a behavioural model in which “myopic” travellers can determine hyperpaths only if 

their extension is under a certain threshold. At each node they reroute choosing stochastically a local 

intermediate node according to the cost of the hyperpath to this local destination and an a priori estimate of the 

cost of the remaining trip to the final destination. 

Implementation on a test network demonstrates that the model can generate results that differ 

considerably from those derived from the perfect rationality assumption, and so further work is needed to 

improve its realism and to test it against real world problems. 
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HYPERPATH-BASED ROUTE CHOICE AND ASSIGNMENT 

Most of route choice models, both in traffic and transit assignment, have been derived from Wardrop’s first 

principle [1] under the expected utility paradigm [2]. Deterministic Traveller Equilibrium arises when travellers 

have perfect and identical knowledge of costs or, equivalently, models have no specification and measurement 

errors. Relaxing these hypotheses gives rise to Stochastic Traveller Equilibrium [3, 4]. The concept of 

equilibrium, often taken for granted, has many drawbacks [5]. 

Just postulating expected utility maximization and equilibrium, Spiess and Florian [6] (referred to as 

“S&F” in the following) show that, when routing problems involve common lines and waiting at nodes, 

travellers can reduce expected travel time considering rules like “take whatever attractive line comes first”, 

which take account of en-route events. In [6] the problem of finding the optimal strategy is formulated as a 

linear problem and an elegant Dijkstra-type solution algorithm is given. [7] defines a graph-theoretic framework 

for the S&F problem, introducing the concept of hyperpath and showing that S&F solution is equivalent to an 

all-or-nothing hyperpath assignment. As in [8], a “strategy” can be thought as a mapping which associates each 

node of a network with a set of successors. A “hyperpath” is the combination of a strategy and the probability 

that each link is traversed once the traveller reaches its tail, provided that the strategy induces an acyclic 

subnetwork and there is a single origin-destination pair. [9] gives a sound game-theoretic foundation to S&F 

approach, proving its equivalence to the mixed strategy Nash equilibrium of a game between a transit traveller 

and multiple local demons that can impose the maximum delay on just one of the links exiting each node. 

Hyperpaths have proved to be useful not only in their original context – frequency-based transit 

assignment models (see [10] for a review of the scope) – but also in schedule-based transit assignment [11] and 

traffic models [12, 13]. 

Many extensions of the original S&F model can be found in literature. A first line of research relaxes 

the infinite capacity assumption: [14-16] deal with congestion problems substituting effective for nominal 

frequencies, while [17] and [10] introduce explicitly the fail-to-board probability. 

S&F uses exponential distributions of headways – which makes the mathematical formulation very 

simple – and no information at stops. [18] supports the use of the Erlang function for the headway distribution 

and makes the optimal strategy dynamic, considering that travellers at least know elapsed time since they 

arrived at a stop. [19] develops a model in which en-route information on arrival times is available to travellers 

through countdowns at stops. Authors highlight that headway can have a distribution which does not permit a 

closed form solution for the expected waiting times, making them difficult to calculate. [20] points out that 

alighting strategies – and therefore information available onboard – are as influential as boarding strategies on 

route choice. 

Time adaptive route choice introduced by [21] to minimize expected travel time in Stochastic, Time-

Dependent (STD) networks makes use of particular strategies, in which the next link to traverse from a given 

node depends on the arrival time at the node itself. This kind of strategies, or route policies, can be seen as a 

dynamic version of hyperpaths. [22, 23] make explicitly use of hyperpaths to cope with the STD shortest path 

problem. [24] presents a framework with route policies considering information. [25] proposes a quasi-dynamic 

solution for the assignment of time-dependent flows in capacitated networks.  

BOUNDED RATIONALITY IN HYPERPATH APPROACH 

A major shortcoming in literature on hyperpaths is the lack of models relaxing the assumption of perfect 

rationality which underpins the approach. 

Utility theory, although largely plausible and simple from a modelling point of view, gives rise to 

models which are more normative than descriptive because it does not take into account important psychological 

factors affecting actual human behaviour [26]. Since the mid 50s, research has been carried out with the aim of 

building more realistic models of decision-making, considering not only the final output but also the reasoning 

process [27]. 

In particular, Simon [28] explains that finite computational ability sets bounds on the rationality of 

intelligent systems. Agents with bounded rationality rely on approximate methods for problem solving and 

“satisfice” instead of searching for optimal solutions. Describing and/or predicting the behaviour of a complex 

adaptive decision maker – such as that usually involved in assignment problems – requires modelling both 

substantive and procedural rationality. 

Rationality in the transport field is a strong assumption, often justified as a consequence of a process of 

learning through repetition (known as “reinforcement”) which should teach travellers their best option. This 

hypothesis is contradicted, on the one hand, by [29] which demonstrates that travellers become neither rational 

nor homogeneous as a consequence of learning, and on the other hand, by [30]. This  emphasizes 1) that not 
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only implicit (reinforcement) but also explicit (belief based) learning is important in route choice, especially 

when travel information plays a role, and 2) that memory, fundamental in learning, decays over time, so recent 

experiences are more influential than old ones. 

If consideration of bounded rationality is a main requirement for every kind of reasonable transport 

model, it is even more necessary when hyperpaths are involved. In fact, in S&F and its extensions travellers are 

assumed to be endowed with a sort of hyper-rationality, which is unrealistic given 1) the increase in the number 

of options to be compared when each node can have more the one successor, 2) the complexity of calculation to 

define the expected waiting times corresponding to a given set of lines, and 3) the amount of information to 

which they should have access. 

Actually humans are rather limited as information processors. A seminal paper by the cognitive 

psychologist Miller [31] shows that for absolute judgment of unidimensional stimuli, the channel capacity – 

“the upper limit on the extent to which the observer can match his responses to the stimuli we give him” – 

ranges between 1.6 and 3.9 with a mean of 2.6 bits of information, equivalent respectively to 3, 15 and 6.1 

(reported as 6.5 in the paper) different categories. The conclusion refers to discrimination of non-numerical 

stimuli and to the limits of short-term memory (for critics of the results concerning memory, see [32]). 

Nevertheless this strengthens the idea that it is unrealistic to consider travellers able to calculate hyperpaths 

whatever their size may be. 

The issue of the depth of analysis in a multistage decision task is dealt with in [33] which finds the 

length of the planning horizon being approximately 2 stages. The numerical value is related to the assumptions 

made in evaluating the results of experiments, nevertheless the paper presents evidence supporting the need for 

models in which travellers have a bounded capability of evaluating alternatives. 

Bounded rationality in route choice is considered in [34], which decomposes decision-making process 

in three stages: Firstly, a mental map of the network is created selecting links on the basis of their probability of 

being recognized. Then alternatives not fitting travellers’ preferences are eliminated. Finally, the actual path is 

selected by comparing the utilities of the remaining routes. The model does not take into account the existence 

of the channel capacity and requires path enumeration. Recognizing the complexity of the path choice process, 

[35] presents a sequential approach in which users reach the destination choosing links one after the after rather 

than choosing them jointly. In the network representation, nodes are anchor-points so at a given node users take 

into account only the immediate successors. The paper does not consider hyperpaths. 

In the following, an assignment method is presented based on a behavioural model called the Locally 

Rational Traveller (LRT) which, considering bounded rationality due to limits of computational capacity and/or 

to incompleteness of information, is conjectured to generate more realistic outputs. The LRT can conceive 

hyperpaths but has a limited planning horizon and so cannot consider complex strategies. The level of rationality 

is defined by computational ability, knowledge of network costs and randomness of perception. Myopic 

rationality imposes a step-by-step route choice process. 

The remainder of the paper is organised as follow. First LRT behaviour is described. Then an 

assignment problem for LRT is formulated and LRT reasoning shown by an example. Subsequently a solution 

algorithm is presented and applied to a test network. Conclusions with indications of future research directions 

close the paper. 

LOCALLY RATIONAL TRAVELLER 

Perfect rationality usually assumed in route choice can be relaxed in different ways: for instance, it could be 

called into question whether travellers evaluate options according to their expected utilities, or their attitude to 

think in terms of probabilities (see [36] for a general introduction to these topics). 

Bounded rationality as used here can be thought as a kind of myopia. A short-sighted person cannot see 

distinctly beyond a certain distance and therefore if he needs to go somewhere, he has to rely on exact 

knowledge about what is within the horizon of his distinct vision and on more or less vague information – 

coming from experience or guesswork – on what is further ahead. As the trip unfolds, he can update his route 

choice. 

Analogously, at a certain node of his route, the LRT may be not able to define completely the 

hyperpath (i.e., to define optimal strategies and related probabilities) to his final destination because his mental 

representation capacity is limited (he cannot make the calculations concerning a path with more than a given 

number of changes or he considers only few stages in his decision making) and/or he can access accurate 

information on links only when he gets close to the links themselves (e.g., he can know a given bus schedule 

only when he arrives at a stop or, in STD networks, travel times are so variable that trying to anticipate them is 

worthless when one is far from the links). It seems reasonable to hypothesize that, as a consequence, the LRT 
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strategy is to move towards an intermediate destination closer to the final one and belonging to the boundary of 

his planning horizon. The intermediate destination is chosen combining a precisely calculated cost from the 

current position to the intermediate destination itself and an estimate of the cost of the remaining part of the trip. 

Of course the chosen intermediate destination can be sub-optimal with respect to that of a traveller with 

unbounded rationality. When he reaches the next node, the horizon of nodes and links he can “see distinctly” 

changes and he can amend his route. 

To summarize, LRT considers incomplete strategies of the kind “I need to go from A to B. I’ll go 

towards C, which is on my way, and then I’ll decide how to continue”. 

The rationality of a traveller is defined by the assumptions concerning the criteria according to which 

he evaluates alternative routes, his computational ability, the information he has at his disposal and his tendency 

to stick to the best alternative or, equivalently, to the comprehensiveness of the utility model specification. In 

the LRT model: 

 Expected disutility minimization is assumed, with disutility equal to the sum of the expected 

waiting time at nodes and expected travel time on links. Note that using only expected values in the cost 

function means disregarding travellers’ risk attitude [37]. In the following, “cost” and “expected time” are used 

equivalently. 

 Let the extension of a hyperpath be the maximum number of links which can actually be traversed 

travelling on it. Note that equivalently extension can be defined as the maximum number of nodes which can be 

used going from the origin (included) to the destination (excluded). Travellers are assumed able to determine 

only S&F hyperpaths whose extension is at most equal to a given number of links ME (Maximum Extension), 

i.e. LRTs cannot “see distinctly” nodes and links further than ME links, which define his planning horizon. 

When origin and destination are far away in terms of number of links, this could imply he is not able to compute 

the whole hyperpath from the origin to destination.  

 Travellers know the overall network topology and the expected waiting and travelling times of each 

link which can be included in the hyperpath he is able to determine.. Time-expanded networks and mental maps 

extracted from actual networks can be assigned adopting the LRT approach. Link waiting times can be 

interpreted as proper waiting times, related to service frequencies as in S&F original formulation, but also as 

link delays in case of traffic assignment or vehicle navigation problems [13]. In the following a generic network 

is considered. Furthermore the LRT has got also information about the impedance of each node, i.e. the cost of 

the path from the node to the destination. The impedance is supposed to be known a priori and, in general, is not 

related to the actual link costs. An a priori knowledge of impedances is not such a strong assumption as it may 

appear at a first glance. In fact the impedance could even be simply the number of links in the path from a given 

node to the destination, information which can be easily obtained by maps, although it would have to be 

expressed in time units. 

 Finally, given the approximations in the calculation and the vagueness of part of the input data, it 

does not seem sensible to assume deterministic behaviour in local destination choice. In the following, a logit 

model will be used despite its well-known shortcomings [38] because the different levels of stochasticity in LRT 

choices, with whose effects the present paper deals, can be captured by the dispersion parameter. Alternatives to 

logit which take into account the correlations arising from path overlaps [39] could be considered but are 

beyond the scope of this paper. Finally, note that the random term in the evaluation of the cost of the journey 

through each local destination can be regarded as deriving from impedances, which, being known a priori, in 

general can be not linked or only loosely linked to actual paths to the destination (see, for instance, blind 

impedance below), reducing the significance of actual path overlaps. 

PROBLEM FORMULATION 

Notation 

Given a transportation network represented as a directed graph G, consisting of a set of nodes I and a set of links 

A, define 

 

tta Expected travel time of a∈A 

wta Expected waiting times for a∈A 

o, d Origin, final destination 

i Current node 

Ai
+ Set of links departing from i 

Ai
− Set of links leading to i 
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ME Extension of the hyperpaths LRT is able to determine 

LDi Set of local destinations for node i i.e. nodes for which the shortest path from i is made up 

of ME links and from which at least one path to d exists 

hc
i→j

 Cost of the S&F hyperpath from i to j∈LDi 

icj
d

 Cost of travelling from j∈LDi to d (impedance) as known a priori by the LRT  

tcj
i,d

 Total expected cost of travelling to d through j∈LDi for the LRT at node i 

εj
d Error term in the perception of the expected cost of travelling to d through j∈LDi 

α Dispersion parameter of the logit model 

wt
i,d

 Expected waiting time at node i for the LRT heading to d 

wti→j Expected waiting time at node i for LRT going to j∈LDi i.e. waiting time at i in S&F 

hyperpath from i to j 

TC(o, d) Total expected cost of the trip from o to d 

pr
j
i,d Probability of choosing j∈LDi at node i for the LRT travelling to d 

pr
a
i→j Probability of using link a∈Ai

+for the LRT choosing j∈LDi i.e. link probability of a in S&F 

hyperpath from i to j 

V(o, d) Flow from o to d 

v
i
(o, d) Flow from o to d passing through node i 

va o, d  Flow from o to d using link a∈Ai
+ 

 

For the sake of simplicity in the following the case of a single od pair is considered and references to o 

and d are omitted in the notation. 

Route choice 

At node i the LRT:  

 Identifies all the local destinations 

 For each local destination, calculates the cost of trip up to the final destination passing through it. 

This cost is equal to the cost of the hyperpath from i to the intermediate destination plus the impedance of the 

intermediate destination 

 Chooses according to a perceived cost, including error terms supposed i.i.d. with Gumbel 

distribution  

This behaviour is equivalent to the optimization problem 

 

Argmax
j∈LDi

Pr tcj
i + εj

i ≤ tck
i +εk

i      ∀𝑘∈LDi    

 

Which, given the assumption about εj, implies  

 

pr
j
i=

e
-α∙tcj

i

 e
-α∙tck

i

k∈LDi

           j∈LDi  

 

Where 

 

tck
i =hc

i→k
+ic

k
          k∈LDi  

Assignment 

The LRT moves towards a local destination j just following the related S&F hyperpath because it minimises 

expected cost and he can “see” it clearly. This means that LRTs leaving from the current node i to the local 

destination j split among links going out of i according to the link probabilities in the S&F hyperpath from i to j 

(e.g., in transit assignment once LRT has chosen the stop towards which he heads, he waits for the first service 

in the set of attractive lines to arrive at that stop). Each link can be used to reach more than one local destination; 

the flow on a link is the sum of the flows generated on that link by each local destination. 

The flow passing from a node is the sum of the flows using the links entering the node. Note that, as an 

effect of rerouting at each node, if j is more than one link far from i, not all LRTs going from i to j necessarily 

arrive to j (as explained in the example below for the case of passengers heading to m). 
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In formulas, 

 

va= vi∙pr
j
i∙pr

a
i→j

j∈LDi
          a∈Ai

+  

 

vi=  
 va

a∈Ai
-        i∈I∖ o 

V                  i=o

   

Cost 

Travellers heading for different local destinations experience different waiting times at node i; the waiting time 

for each local destination is equal to the expected waiting time in the corresponding S&F hyperpath. The 

waiting time at node i, different from d, is the weighted average of the waiting times of the different local 

destinations with weights equal to the probabilities of each local destination to be chosen; the waiting time 

corresponding to the final destination is 0. 

 

wti=  
 pr

j
i∙wti→j

j∈LDi
          i∈I∖ d 

      0                           i=d

   

 

The expected total cost is the sum of the expected waiting times at nodes and the expected travelling 

times on links. The former kind of cost is the sum of the waiting times at each node weighted by the flows 

passing through each node. The expected travelling time is calculated analogously. At the end 

 

TC= vi∙wtii∈I +  va∙ttaaϵA   

Example of LRT reasoning 

The following example can help understanding the behaviour of a LRT. Suppose that the traveller is at node i of 

the network in FIGURE 1(a) and ME = 2.  

The nodes which can be reached from i with a shortest (single) path of 2 links are k, m, n and p. As 

there is no path from p to d, LRT does not include it among local destinations. Therefore LDi = {k, m, n}. If ME 

was greater than the number of links needed to reach the furthest node(s) from i, LDi would be made up of these 

furthest node(s). 

LRT can determine S&F hyperpaths from i to each node in LDi, which can be, for instance, those 

represented by thick dark red lines in FIGURE 1(b-d). These can actually include more than one path as in (b) or 

degenerate in single path as in (c) and (d). Note that n can be reached from i also following the paths i→j→k→n 

and i→l→k→n including more than 2 links (FIGURE 1(d)) but LRT cannot calculate hyperpaths of such an 

extension so he does not take into account the 3 links routes. To represent this exclusion in the algorithm, the 

hyperpath to a given local destination is determined considering a fictitious network in which links leading into 

other local destinations – e.g. (j,k) and (l,k) in FIGURE 1(d) – are eliminated. 

To choose the local destination towards which he moves, the LRT takes into account the sum of the 

cost of the hyperpath to a given local destination plus the cost, known a priori, of the journey from the local 

destination to d (shaded red lines in figure). Note that, in general, having made no assumption regarding the 

latter kind of information, it is not assured that it is related to the optimal solution. In particular Bellman’s 

principle of optimality can be violated, e.g it could happen that ick < icn. 

Passengers leading to a given local destination split between links going out from i according to the 

link probabilities in the S&F hyperpath, e.g. in FIGURE 1 all passengers moving from i towards m will use link 

(i,j) whereas those going towards k split among (i,j) and (i,l) with a probability depending on link waiting times. 

Link (i,j) is used in more than one hyperpath so the flow on it will be equal to the sum of the flows deriving 

from each of them. 

LRT reroutes at each node because the horizon of his distinct vision changes: this implies that, for 

instance, people who in i decide to move in the direction of m, once they arrived in j, choose among q¸ r, s and t 

(local destinations from j) and only those who head for q will actually reach m. 
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(a) 

  

(b) 

 

(c) 

 

(d) 

 

FIGURE 1  Example of LRT reasoning at a generic node. 

ALGORITHM 

The following algorithm performs an assignment consistent with LRT’s behaviour. 

 

Step Function Operations 

0 Problem definition Input 

 Network: G(I,A), tta, wta 

 Trip: o, d 

 User: ME, icj
d,α 

1 Initialization  I ← I∖{k ∈ I for which there is no path to the final destination} 

 IME = {k ∈ I at least ME links afar from the final destination} 

 IR = {k ∈ 𝐼 reached by the LRT}← {o} 

2 Horizon definition  If IME∩IR=∅ 

ME←ME-1  

If ME = 0 

Go to step 4 

Otherwise 

Update IME 

Go to step 2 

Otherwise 

Go to step 3 

3 Route choice Select i∈IME∩IR 

 Determine the set of local destinations [LDi] 

 For each local destination j∈LDi 

 Build the fictitious network Gj⊆G eliminating from G all links 

leading into other local destinations of i 

 Determine the hyperpath Hi→j⊆Gj from i to j [hc
i→j

 and pr
a
i→j] 

 Calculate the total cost of reaching the final destination from i 

passing through j [tcj
i] 

l

k

j

p

n

m

s

r

q t

i

d

l

k

j

i

d

j m

i

d

l

k

j

ni

d
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Step Function Operations 

 Distribute travellers among j∈LDi following a logit model with −tcj
i as 

utility [pr
j
i] 

 Add US = {successors of i included in at a least one hyperpath ℋ𝑖→𝑗 } to 

the set of reached nodes: IR←IR∪US 

 IR←IR∖ i  
 Go to step 2 

4 Assignment Calculate link flows [va] using a Markov chain approach with a transition 

probability matrix made up of pr
j
i 

5 Cost calculation Calculate the total cost of the trip [TC] 

TEST NETWORK 

Network 

In order to explore the sensitivity of LRT assignment to assumptions about rationality and to evaluate the 

differences with S&F approach, a 9x9 grid network with unidirectional links between nodes has been analysed. 

The network has 170 links and from each node it is possible to move only towards east and south (FIGURE 2). 

Expected travel and waiting times (namely tta and wta) on each link have been randomly extracted from uniform 

distributions with supports respectively 5⋅k; 20⋅k  and  2.5⋅k; 10⋅k  minutes, where k is the number of links 

which make up the longest path (in terms of number of links) between the head and the tail nodes of the link 

(e.g., the supports for the extraction of travel and waiting times for link (1,19) have been respectively [10,40] e 

[5,20] because the longest path between nodes 1 and 19 consists of 2 links, (1,10) and (10,19)). The top-left and 

the bottom-right corner nodes have been assumed respectively as the origin and the destination of a demand 

equal to 1. 

The S&F algorithm finds a hyperpath made up of 51 nodes and 76 links, with an expected cost of 

221.82 min, whereas the single shortest path is made up of 14 nodes and links and it has an expected cost of 

235.35 min. 

 

(a) 

 

(b) 

 

FIGURE 2  Test network – structure (a) and link features (b). 

LRT characteristics 

The test has been carried out implementing LRT model with 

 ME ranging from 1 to 10 (the minimum number of links for which the destination enters the set of the 

local destinations of every other node). 

 Three different types of impedance with different contents of information  

 Hyperpath: impedance equal to the cost of the hyperpath from the local to the final destination  

 

1 10

 

  

19 28 37 46 55 64 73 

2 11 20 29 38 47 56 65 74 

3 12 21 30 39 48 57 66 75 

4 13 22 31 40 49 58 67 76 

5 14 23 32 41 50 59 68 77 

6 15 24 33 42 51 60 69 78 

7 

 

16 25 34 43 52 61 70 79 

8 17 26 35 44 53 62 71 80 

9 18 27 36 45 54 63 72 81 
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 Average: impedance equal to the cost of the shortest path from the local to the final destination, 

calculated by a traveller who does not know the actual travel and waiting expected times of each 

link but only their average value over the whole network, namely 14.67 and 7.85 min. 

 Blind, impedance equal to 0, i.e. the LRT doesn’t have clues on the network beyond his distinct 

vision and so he chooses by taking into consideration only the costs of the hyperpaths from the 

current node to its local destinations. 

 Three values for the dispersion parameter α of the logit model: 0.01, 0.1 and 1. In the case the 

dispersion of LRTs among different local destinations is assumed linked to different perceptions of 

impedances, α can be interpreted as an indicator of the reliance of LRT on information about 

impedances: the higher α, the more LRT considers reliable the information he knows about impedance, 

the less he tends to choose local destination different from the optimal one. When blind impedance is 

assumed, this interpretation becomes meaningfulness – because LRT has no information at all – and 

the randomness of choices is to be considered due to the incompleteness of the utility specification. 

Results 

Indicators 

The results of the assignment with different values of model parameters have been evaluated and compared 

using the following indicators 

 

DiffLink Links used in S&F but not in LRT and vice versa ⁄total number of links 

EuDist Euclidean distance between S&F and LRT vectors of flows 

ExpectedCost Total expected cost of the trip (TC) 

MaxLinDif Highest (in absolute value) difference between flows on the same link in S&F and 

LRT solutions  

Costs 

Be ME      the value of ME for which the final destination belongs to the set of local destinations of the origin; in 

the network under analysis, ME    = 6. As a general trend (FIGURE 3(a)), for ME ≤ ME      , as ME increases, 

ExpectedCost of the trip gets closer to S&F one. ExpectedCost is constant for all ME > ME    . In the present case, 

LRT and S&F costs are never identical but other tests have shown that they can actually be undistinguishable 

even for 𝑀𝐸 < 𝑀𝐸       . 
The effect of the content of information of impedance depends on randomness of choices: when choice 

is highly random (α = 0.01), the kind of impedance does not really matter; relative differences increase (i.e., the 

lines representing different cost types tend to be separated) with increasing α. Interestingly for α=1 and ME=2, 

LRT with blind information has an expected cost lower than that of LRT who knows average impedances. 

 

(a1) 

 

(b1) 

  

(a2) (b2) 

TRB 2010 Annual Meeting CD-ROM Paper revised from original submittal.



Achille Fonzone, Michael G. H. Bell  11 

   

(a3) 

 

(b3) 

 

FIGURE 3  Expected costs (a) and distance between LRT and S&F solutions (b). 

Link flows 

Within the same network, EuDist is as an indicator of the global dissimilarity between the solutions provided by 

the different models. It’s not possible to recognize a common pattern in the variation of EuDist with ME 

(FIGURE 3(b)). In general the difference between LRT and S&F assignments increases with α because LRTs 

spread over fewer links. For low values of ME, blind impedance solution is more similar to S&F than average 

impedance one. 

As a general trend, when ME increases, LRT tends to use the same links as S&F, even if average 

impedances show some exceptions. For α<1, DiffLink never falls under 40% and the differences between 

different kinds of impedance are small, if any (FIGURE 4(a)). 

It’s noteworthy that the maximum difference between flows assigned to the same link by LRT and 

S&F can be even equal to 1, i.e. there are links used by the entire demand in one model and not used at all in the 

other (FIGURE 4(b)). 
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FIGURE 4  Link usage – links used in only one of the two models (a) and maximum flow difference on the 

same link (b). 
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CONCLUSIONS 

Given the limitations human beings have as information processors, considering “hyper-rational” travellers can 

bring about unrealistic assignments, at least when travellers’ choices are not assisted by ITS tools. A 

behavioural model has been developed and tested of “myopic” travellers, whose local rationality is defined by 

the maximum extension of hyperpaths they are able to determine (ME), by the knowledge they have on node 

impedances and by the level of stochasticity (α) of their choices. In route choice a stochastic distribution is 

pursued among a set of local destinations rather than among hyperpaths leading to the final destination and 

rerouting at each node is considered. The latter feature is reasonable in case of traffic assignment. It could be not 

always appropriate in a static transit assignment but it is justified in a dynamic one where new information can 

change travellers’ perception of travel and waiting time of links and/or of nodes ahead. 

 

Sensitivity of results to the degree of rationality and differences with S&F assignment have been tested 

with a 9x9 grid network, with an average number of exiting links per node equal to 2.1 and a single OD pair. 

As to costs, the more travellers become rational – higher computational ability, better information on 

local destination impedances, smaller stochasticity of choices – the more LRT and S&F assignments tend to 

become similar. The loss caused by a lack of rationality, measured as the percentage difference between S&F 

and LRT cost, generally decreases with ME and the influence of the kind of impedance increases with α. When 

α is ≥ 0.1, the loss is always <25% and tends to drop under 10% for low-medium values of ME. This can be 

interpreted as a lack of incentives for travellers to enhance their hyperpath 

The distance between S&F and LRT assignments in terms of link flows doesn’t show a regular trend 

when ME increases, whereas it increases with α. In some cases the impedance type has an unexpected effect, 

LRT solution being closer to S&F’s when travellers have no idea on the cost of the journey from local 

destinations to the final one (blind impedances) than when they rely on average costs (average impedances). It 

is noteworthy that some links which are crucial – because they are used by the whole demand – in the solution 

given by one model of rationality (S&F or LRT) are not used at all when the other approach is applied. 

To summarize, from the experiment it turns out that, depending on the assumed level of rationality, 

S&F and LRT can have similar solution costs. In these cases travellers are not offered incentives towards full 

rationality. In the same cases, flows brought about by the two approaches can be significantly different and so, if 

it turns out that current models actually overestimated rationality, we risk having results which do not actually 

fit reality. 

 

This conclusion confirms the importance of exploring the effects of local rationality in hyperpath 

assignment to see whether and in what cases it can be more realistic than perfect rationality. Three main 

research directions can be identified: 

 Route choice model: The substitution of expected time minimization with more realistic decision 

criteria has to be evaluated, also to consider risk attitude. The issue of the stochastic model according to which 

travellers split among local destinations deserves particular attention. 

 Behavioural characteristics: Behavioural as well as psychological research is needed to verify the 

assumptions about LRT way of reasoning – in other words, whether routing can be represented as a multistage 

decision process – and to determine the values of factors defining the level of rationality. 

 Implementation: LRT assignment has to be tested with different trial networks to explore its 

sensitivity to topology. Finally, LRT has to be compared to other hyperpath assignment models applying them 

to real world networks. 
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