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Abstract 

The shortest path problem has been widely studied in graph theory and its solutions have been 

largely used in the transport field, both in assignment and vehicle navigation applications. 

Solutions have been proposed under different assumptions concerning the time-dependency 

and the randomness of arc costs. In particular it has been shown that in networks affected by 

not completely predictable events travellers can minimize their expected travel times by 

adopting adaptive strategies, i.e. sets of paths, instead of single routes. The present paper 

focuses on the problem of route guidance in a network in which the travel time on each link 

can assume only two values, corresponding to the free flow situation and to the delayed one. 

Path set selection and route choice are decoupled. The problem of finding the set of the 

potentially optimal paths is solved implicitly by identifying the set of the potentially optimal 

links. Sufficient and necessary conditions for a link to be optimal do not coincide and 

therefore an algorithm is presented which can identify only a subset of all potentially optimal 

links. An approach considering risk aversion is proposed for route choice. 

1. Introduction 

Finding a single or set of minimum paths in networks has applications in a large number of 

disciplines. In transport, for example, finding the shortest path (see Pallottino & Scutellà 1997 

for a critical introduction) is the basis for normative as well as predictive problems such as 

assignment or route guidance. Of particular interest are problems when delays might occur 

that are random and/or time–dependent. Sources of delays are numerous including congestion, 

accidents or network disruptions caused by natural disasters. 

When trips over a transport network are affected by such random or unpredictable en–route 

events, travellers can minimize their expected travel times by adopting adaptive strategies 

instead of single paths. This is proven by Hall (1986) in the case of stochastic time–dependent 
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networks with random link travel times, and by Spiess and Florian (1989) for transit networks 

in which randomness is given by the arrival order of services at stops. 

Schmöcker et al (2009) show that the path set created by the Spiess and Florian approach 

and utilised in Bell (2009) for car navigation can also be derived by a “local demon game” in 

which a traveller fears that at each decision point exactly one “failure” among the options that 

might be attractive occurs. Though in some scenarios, such as waiting for a transit service, 

where one can be certain that within a certain time interval one of the services arrives, this 

might be a reasonable assumption, especially for route guidance this might not be the case. 

Link delays are often correlated so that the likelihood of delay on one route increases rather 

than decreases the likelihood of delays on other also possible attractive routes. Szeto et al 

(2007) and Schmöcker et al (2009) discuss the possibility of multi demon games where the 

traveller is even more pessimistic and fears that several “failures” or “delays” occur. A second 

problem of the Spiess and Florian approach when applied to route guidance in scheduled 

transit networks or for car navigation is that the shortest path, in case the potential delay is not 

occurring, is not necessarily included. Therefore a traveller who is at least to some degree 

optimistic might be mislead to longer routes.  

In the following we hence firstly decouple the problem of path set selection and route 

choice. This is similar to a large set of literature concerning the creation of K–shortest path 

sets under various assumptions of potential delays (see Eppstein 1998 for a general review; 

Nielsen et al 2005 for an application to hyperpaths). In contrast our objective is to find the 

most complete possible set of paths that are potentially optimal given that each link might be 

subject to a delay. We simplify the problem by considering that each link has only the two 

potential states of being delayed or not. In the game theoretic approach this would mean 

modelling as many demons as there are links in the network with a power to cause the link 

specific potential delay. Whether or not the demons strike is however uncertain. As the 

problem turns out to be non–trivial we firstly develop necessary and sufficient conditions for a 

link to be included in the set of optimal paths. Since the sufficient and necessary conditions do 

not coincide we can only identify a subset of paths which are proven that they must be in the 

set of optimal paths. In particular it shown that the shortest and the most reliable path will be 

among this subset. In the final part of this paper we then outline how this set of paths can be 

used for route guidance applications. 

The paper is organized as follows: Section 2 studies some properties of potentially optimal 

links. Section 3 presents an algorithm which finds the most complete set of links which are 

demonstrated potentially optimal by using such properties. Section 4 proposes a criterion to 
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select a specific route from the set of the potentially of optimal links, based on risk aversion. 

Conclusions summarize the paper and delineate further research. 

2. Properties of the Potentially Optimal Links 

Define the following notation 

G(N, A) Directed, acyclic graph with nodes N and arcs A 
I Node ∈ N 
R, S Origin, destination 
i Arc ∈ A 
H(i), T(i) Head node, tail node of link i 
FS(A) Forward star of node A 
ci, di Uncongested cost, potential additional cost on link i 

χi Actual cost on link i =   
Χ  Vector of actual links costs denoting the current network condition 
πAB Path from A to B 
πAB,i Path from A to B using link i 
pAB,i Optimal path from A to B using link i 
pΓAB Optimal path from A to B when all links are not congested 
pΗAB Optimal path from A to B when all links are congested 
τAB,π Cost of path π from A to B 
tAB Cost of the optimal path from A to B 
tAB,i Cost of the optimal path from A to B using link i 
tΓAB Cost of the optimal path from A to B when all links are not congested 
tΗAB Cost of the optimal path from A to B when all links are congested 
 

For simplicity, for paths between nodes A and B, B is omitted in case it coincides with S. 

DEFINITION 1: πA is potentially optimal  ∃ at least one Χ for which πA is the minimum 

cost path from A to S. 

DEFINITION 2: i is potentially optimal  pH(i),i is potentially optimal. 

 

LEMMA 1: If A and B are connected, tAB ≥ tΓA – tΓB. 

Proof: 1) If χk = ck ∀ k ∈ pΓAB, given that each subpath of an optimal path is the optimal path 

between the two extreme nodes, tAB = tΓA – tΓB. 2) Assume that ∃| k ∈ pΓAB ∋’ χk = ck + dk [1]. 

tAB,k = tAT(k) + χk + tH(k)B = (tΓA – tΓT(k)) + ck + dk + (tΓH(k) – tΓB) ≥ (tΓA – tΓT(k)) + ck + (tΓH(k) – tΓB) ≥ 

(tΓA – tΓT(k)) + (tΓT(k) – tΓH(k)) + (tΓH(k) – tΓB) = tΓA – tΓB. If [1] holds for more than one k ∈ pΓAB, 

the thesis can be easily verified by iterating the same mechanism of proof used for the case of 

a single k.  QED 
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LEMMA 2: Let B ∈ pΗAB, NC ⊆ A, and NCAB = {k ∈ NC⏐∃ a path from A to B including k}. 

 ⇒ tAB ≥ tΗA – tΗB – . 

Proof: Let τcon
AB,π be the cost of πAB when all links are congested. τcon

AB,π = 

Given that each subpath of an optimal path is the optimal path between the 

two extreme nodes, τcon
AB,π =  ≥ tΗA – tΗB. ⇒ τAB,π 

=  +  =  +  = τcon
AB,π – 

  tΗA – tΗB –  ≥ tΗA – tΗB –  ∀ πAB ⇒ tAB = 

min{τAB,π} ≥ tΗA – tΗB – .   QED 

 

COROLLARY 1: Let B ∈ pΗAB, NC ⊆ A, and NCAB = {k ∈ NC⏐∃ a path from A to B including 

k}.  ⇒ tAB ≥ max{tΓA – tΓB, tΗA – tΗB – }. 

Proof: The thesis follows immediately from lemmas 1 and 2. QED 

 

THEOREM 1: Let j ∈ FS(T(i)), I = pΗH(j) ∩ pΓH(i), and tH(j)I
inf = max{tΓH(j) – tΓI, tΗH(j) – tΗI – 

}. If 

, ci ≤ cj + dj + tH(j)I
inf – (tΓH(i) – tΓI) ⇒ tT(i),i ≤ tT(i),j. 

Proof: tT(i),k = tI + tT(k)I,i
 = tI + tH(k)I + χk ∀ k ∈ FS(Ti).  ⇒ tT(i),i = 

ci + tH(i) = ci + tΓH(i), tT(i),j = cj + dj + tH(j)I + tΓI. From lemma 2, tT(i),j = cj + dj + tH(j)I + tΓI ≥ cj + dj 

+ tH(j)I
inf + tΓI. Therefore ci ≤ cj + dj + tH(j)I

inf – (tΓH(i) – tΓI) ⇒ tT(i),i = ci + tΓH(i) ≤ cj + dj + tH(j)I
inf – 

(tΓH(i) – tΓI) + tΓH(i) = cj + dj + tH(j)I
inf + tΓI ≤ tT(i),j.  QED 
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THEOREM 2: Let j ∈ FS(T(i)). tT(i),i ≤ tT(i),j ⇒ ci ≤ cj + dj + tΗH(j) – tΓH(i). 

Proof: tT(i),j = χj + tH(j) ≤ cj + dj + tH(j) ≤ cj + dj + tΗH(j). But tT(i),i = χi + tH(i) ≥ ci + tH(i) ≥ ci + 

tΓH(i). Therefore tT(i),i ≤ tT(i),j ⇒ ci + tΓH(i) ≤ tT(i),i ≤ cj + dj + tΗH(j) ⇔ ci ≤ cj + dj + tΗH(j) – tΓH(i).QED 

 

LEMMA 3 (sufficient condition for potential optimality): Let tH(j)
inf = max{tΓH(j), tΗH(j) – 

}. ci ≤ cj + dj + tH(j)I
inf – tΓH(i) ∀ j ∈ FS(T(i)) ⇒ i is potentially optimal. 

Proof: Given j ∈ FS(T(i)), the conclusion of theorem 1 holds for every I = pΗH(j) ∩ pΓH(i), in 

particular for S. Consider Χ ∋’ . By applying theorem 1 and 

noting that when I = S, tΓI = tΗI = 0, it turns out that ci ≤ cj + dj + tH(j)
inf – tΓH(i) = cj + dj + tΓH(j)S

inf 

– (tΓH(i) – tΓS) ⇒ tT(i),i ≤ tT(i),j ∀ j ∈ FS(T(i)) ⇒ ∃ at least one Χ for which tT(i),i ≤ tT(i),j ∀ j ∈ 

FS(T(i))  i is potentially optimal.  QED 

 

COROLLARY 2 (inclusion of pΓA among potentially optimal paths): The hypothesis of lemma 

3 holds for i ∈ pΓT(i). 

Proof: For a generic Χ, tT(i),j = χi + tH(i),j. i ∈ pΓT(i) ⇔ tT(i),i ≤ tT(i),j ∀ j ∈ FS(T(i)) when χk = ck 

∀ k ⇔ ci + tΓH(i) ≤ cj + tΓH(j) ≤ cj + dj + tΓH(j) ⇔ ci ≤ cj + dj + tΓH(j) – tΓH(i) ≤ cj + dj + max{tΓH(j), 

tΗH(j) – } – tΓH(i) ∀ j ∈ FS(T(i)). QED 

 

COROLLARY 3 (non inclusion of pΗA among potentially optimal paths): The hypothesis of 

lemma 3 might not hold for i ∈ pΗT(i). 

Proof: If we find a feasible case in which i ∈ pΗT(i) and the conclusion of lemma 3 doesn’t 

hold for i, the corollary is proved. i ∈ pΗT(i) ⇒ ci + di + tΗH(i) ≤ cj + dj + tΗH(j) ⇔ ci ≤ cj + dj + 

tΗH(j) – di – tΗH(i) ∀ j ∈ FS(T(i)). The conclusion of lemma 3 doesn’t hold for i ⇔ ∃ m ∈ 

FS(T(i)) ∋’ ci > cm + dm + max{tΓH(m), tΗH(m) – } – tΓH(i). Therefore for each of such 
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m’s, it is necessary that cm + dm + max{tΓH(m), tΗH(m) – } – tΓH(i) < ci ≤ cm + dm + 

tΗH(m) – di – tΗH(i), which is possible if max{tΓH(m), tΗH(m) – } – tΓH(i) < tΗH(m) – di – 

tΗH(i) [1] holds. [1] is feasible, in fact 1) If tΓH(m) ≥ tΗH(m) – , [1] ⇔ tΓH(m) – tΓH(i) < 

tΗH(m) – di – tΗH(i) ⇔ di < (tΗH(m) – tΓH(m)) – (tΗH(i) – tΓH(i)), which is feasible when (tΗH(m) – tΓH(m)) 

> (tΗH(i) – tΓH(i)) (otherwise di should be negative). 2) tΓH(m) < tΗH(m) – , [1] ⇔ tΗH(m) – 

 – tΓH(i) < tΗH(m) – di – tΗH(i) ⇔ di <  – (tΗH(i) – tΓH(i)), which is feasible 

when  > (tΗHi – tΓHi).  QED 

 

LEMMA 4 (necessary condition for potential optimality): i is potentially optimal ⇒ ci ≤ cj + 

dj + tΗH(j) – tΓH(i) ∀ j ∈ FS(T(i)). 

Proof: i is potentially optimal ∃ at least one Χ for which tT(i),i ≤ tT(i),j ∀ j ∈ FS(T(i)). For 

such a Χ, from theorem 2 it follows that tT(i),i ≤ tT(i),j ⇒ ci ≤ cj + dj + tΗH(j) – tΓH(i) ∀ j ∈ FS(T(i)). 

 QED 

3.  An Algorithm to Find the Proven Potentially Optimal Links 

The algorithm described below finds the most complete set of links potentially optimal 

when one travels from R to S, which can be deduced by the properties stated in the previous 

paragraph. Such a set of proven potentially optimal links (referred to as APPOL in the 

following) is made up of links which lemma 3 allows classifying as potentially optimal for 

sure, plus the links of pΗR which violate the condition in lemma 3. Other links for which the 

necessary condition of potential optimality (lemma 4) is valid but the sufficient not, are not 

included in the set provided by the algorithm (unless they are part of pΗR). 
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1 tΓI, tΗI ← +∞, I∈N\{S}; tΓS, tΗS ← 0 
2 sdI

1 ← –∞, I∈N  
3 aΓI

2 ← ∅, I∈N\{S} 
4 At 3 ← A, APPOL ← ∅ 
5 Nt

4 ← {R} 
6 While At ≠ ∅ 
7  Find i ∈ At with minimum tΓH(i) + ci 
8   At ← At \ {i} 
9  If tΓT(i) > tΓH(i) + ci 
10   tΓT(i) ← tΓH(i) + ci 
11   aΓT(i) ← i 
12   APPOL ← APPOL + {i} 
13 At ← A 
14 While At ≠ ∅ 
15  Find i ∈ At with minimum tΗH(i) + ci + di 
16  At ← At \ {i} 
17  If tΗT(i) > tΗH(i) + ci + di 
18   tΗT(i) ← tΗH(i) + ci + di 
19   If i ∉ APPOL 
20    APPOL ← APPOL + {i} 
21 While Nt ≠ {S} 
22  Select T(i) ∈ Nt 
23  Nt ← Nt \ {T(i)} 
24   For each k ∈ FS(T(i)) 
25    If k ∉ APPOL 
26     polk

5 = 1 
27     For each j ∈ FS(T(i)) \ {k} 
28      If ck ≤ cj + dj + tΗH(j) – tΓH(k) 
29       If sdH(k) = –∞ 
30        NN6 ← H(j) 
31        sdH(k) = 0 
32        While NN ≠ S 
33         nl ← aΓNN 
34         sdk← sdk + dnl 
35         NN ← Hnl 

36       tinf ← max{tΓH(j), tΗH(j) – sdk} 
37       If ck > cj + dj + tinf – tΓH(k) 
38        polk = 0 
39      Else 
40       polk = 0 
41   If polk = 1 

                                                           

1 sdi =  
2 aΓ

I = link which follows node I along pΓ
I 

3 At = set of links to be examined 
4 Nt = set of nodes which are potentially optimal and whose forward star has not yet been examined 
5 polk = 1 if k is potentially optimal, 0 otherwise 
6 NN = Next node on pΓ

H(i) 
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42    APPOL ← APPOL + {k} 
43    Nt ← Nt + {H(k)} 

 

LINES 1–5: Initialization. 

LINES 6–13: Search for tΓR and add all i ∈ pΓR to APPOL, even though corollary 2 guarantees 

that lines 21–43 perform the latter operation if line 25 is eliminated. The adopted solution 

allows avoiding operations in lines 26–43 if the link has been already classified as potentially 

optimal by lines 6–13. 

LINES 14–20: Search for tΗR and add to APPOL all i ∈ pΗR which do not already belong to it. 

This is necessary to ensure that all i ∈ pΗR are classified as potentially optimal, because 

corollary warns that lines 21–43 might not include some i ∈ pΗR in APPOL. 

LINES 21–43: Add to APPOL all links for which the sufficient condition stated in lemma 3 

holds, and which have not yet been classified as potentially optimal. 

Lines 22-43: Potential optimality of the links belonging to the forward star of T(i) is 

evaluated. 

LINES 22 and 43: The algorithm evaluates the potential optimality of an arc only if at least 

one potential optimal path exists between the origin R and its tail node. 

LINE 28 AND 39-40: Stops checking whether a link is potentially optimal if it violates the 

necessary condition expressed in lemma 4. 

LINES 29–35: Calculate  if it is still unknown. 

LINES 37–38: If condition in lemma 3 is violated for at least one j ∈ FS(T(i)), link i cannot 

be classified as potentially optimal for sure and so it is not included in APPOL. 

 

The example in figure 1 allows understanding  how the algorithm works. Links 2, 3, 4, 5, 6, 

8 and 9 (thicker in the figure) are classified as surely potentially optimal. The red path from 1 

to 5 is the optimal one when all links are not congested, whereas the green one is optimal if all 

links are congested. Eliminating links 3 and 6 would nott affect tΓ and tΗ of any node (while 

link 9 is crucial for node 3) but they are included in the set of the proven potentially optimal 

links because they are backup links: link 3 is optimal when links 2, 4, 5, 6 are congested, 

whereas link 6 has to be used when 5 is congested.  Link 7 is not included among the 

potentially optimal because it violates the necessary condition, in fact even when links 8 and 9 

are congested the path 3→4→5 is faster (the concerning travel time is 16 in the worst case) 

than 3→5 (whose travel time is at least 18). The algorithm failed in including link 1 – which is 
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optimal if links 2, 3, 4 and 9 are congested – in APPOL because it does not comply with the 

sufficient condition, in particular the inequality in the hypothesis of lemma 3 does not hold for 

link 4. 

 

 

FIGURE 1: Example network 

4.  Route Choice for Navigation Assistance 

Navigation assistance usually provides users with a single or a small set of routes whereas 

the set of proven potentially optimal links can implicitly contain a large number of alternative 

paths. The route selection problem can be dealt be with by considering risk aversion. 

At each node T(i), the optimistic or risk–prone traveller expects all the downstream arcs not 

to be congested and so he will choose pΓT(i). The following theorem proves that this is 

equivalent to select link i for which ci = pΓT(i) – pΓH(i) or, equivalently, i ∈ FS(T(i)) ∋’ ci + pΓH(i) 

= min{ck + pΓH(k)⏐k ∈ FS(T(i))}. 

 

THEOREM 3: i ∈ pΓT(i) ⇔ ci = tΓT(i) – tΓH(i) 

Proof: 1) The implication “⇒” is a trivial consequence of the definitions of pΓ and tΓ. 2) As 

to “⇐”, suppose it doesn’t hold, i.e. ci = tΓT(i) – tΓH(i) [1] but ∃ j ∈ FS(T(i)), j ≠ i ∋’ j ∈ pΓT(i).  j 

∈ pΓT(i) ⇔ cj + tΓH(j) < ck + tΓH(k) ∀ k ∈ FS(T(i)), k≠j. But from the first part of the proof, j ∈ 

1 5 

4 

3 

2 1 (21,1) 

2 (10,13) 

3 (14,6) 

4 (13,7) 

5 (5,15) 

6 (6,15) 

7 (18,4) 

8 (5,6) 

9 (4,1) 

[tΓ=5, tΗ=11] 

[tΓ=9, tΗ=16] 

[tΓ=5, tΗ=20] 

[tΓ=0, tΗ=0] [tΓ=15, tΗ=31] 
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pΓT(i) ⇒ cj = tΓT(i) – tΓH(j). Therefore i ∈ FS(T(i)) ⇒ cj + tΓH(j) = tΓT(i) – tΓH(j) + tΓH(j) = tΓT(i) < ci + 

tΓH(i) which contradicts [1]. As the contradiction comes out as a consequence of assuming that 

the implication “⇐” is not true, it follows that the implication “⇐” must hold.  QED 

 

Analogously the pessimistic or risk–averse traveller, being afraid of finding congestion on 

all the potentially optimal links to the destination, will opt for pΓT(i), i.e. he will pick link i for 

which ci + di = pH
T(i) – pH

H(i) or, equivalently, i ∈ FS(T(i)) ∋’ ci + di + pΗH(i) = min{ck + dk + 

pΗH(k)⏐k ∈ FS(T(i))}. Intermediate levels of aversion to risk could be represented by 

introducing a parameter α ∈ [0,1] such that the traveller chooses i ∈ FS(T(i)) which minimize 

the cost function 

 α * (ck + dk + pΗH(k)) + (1 – α) * (ck + pΓH(k)), k ∈ FS(T(i)) (4.1) 

A highly risk–averse driver with α → 1 will hence choose the safest route pΗTi whereas an 

optimistic driver with α → 0 will choose the shortest path pΓTi. Drivers with medium level of 

risk–aversion might choose paths from the set of optimal paths that are neither the shortest nor 

the safest but satisfy both criteria to some degree. 

Note that α * (ck + dk + pΗH(k)) + (1 – α) * (ck + pΓH(k)) = (ck + pΓH(k)) + α * (pΗH(k) + dk – 

pΓH(k)). (pΗH(k) + dk – pΗH(k)) is the difference between the cost of the path using link k at T(i) 

when all downstream links from T(i) are congested and when they are all not congested. In 

other words, it is the maximum regret the traveller can experience selecting link k. This means 

that adopting minimization function (4.1) as a route choice criterion is equivalent to extract 

paths taking into account both (optimistic) travel time and (maximum) regret (Loomes & 

Sugden, 1982), and considering the latter at most as important as the former. 

Finally, it is worth noting that α could be related also to the network condition, in the sense 

that if the traveller has experienced congestion on most of the links he has travelled so far (and 

the conditions of different links are not independent) then it can be assumed that his risk 

aversion or his pessimism tends to increase. 

5.  Conclusions 

Properties have been studied of potentially optimal links in a network in which each arc is 

characterized by two possible travel times, corresponding to the non congested and the 

congested condition. A potentially optimal link is a link which is included in the optimal path 

from its tail node to the destination for at least one combination of costs. An algorithm has 

been presented to find the set of links which such properties allow classifying definitely as 
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potentially optimal when travelling between an OD pair. Finally a criterion to select a single 

route within the set of proven potentially optimal links has been proposed, considering risk 

aversion. 

Sufficient and necessary conditions of potential optimality do not coincide. Further research 

should aim to find a condition of sufficiency larger than that identified in the paper. A feasible 

approach could be combining conditions for optimality when only two links are examined 

(theorem 1) in a way different from what lemma 3 does. 

A static network has been studied in the paper. The properties of potentially optimal links 

have to be extended to the dynamic case, in which ci can be interpreted as the free flow travel 

time and assumed constant while di changes over time. 

When potentially optimal paths are investigated in the context of navigation assistance, the 

speed of the algorithm to identify APPOL becomes crucial. The complexity of the proposed 

algorithm needs to be analysed, in the search for faster solutions for both the static and the 

dynamic case. 

The proposed route choice cost function has to be implemented in real world network 

examples to test the acceptability of paths suggested. Alternative combinations of travel time 

and regret can be considered. 

Finally applications of the concept of potentially optimal links in assignment problems 

should be explored. 
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