
CANDEL: Product Line Based Dynamic Context Management for Pervasive

Applications

Zakwan Jaroucheh

School of Computing

Edinburgh Napier University

Scotland, UK

z.jaroucheh@napier.ac.uk

Xiaodong Liu

School of Computing

Edinburgh Napier University

Scotland, UK

x.liu@napier.ac.uk

Sally Smith

School of Computing

Edinburgh Napier University

Scotland, UK

s.smith@napier.ac.uk

Abstract— In pervasive environment, it is essential for

computing applications to be context-aware. However, one of

the major challenges is the establishment of a generic and

dynamic context model. Many different approaches to

modeling the context exist, but an application- and domain-

agnostic context model, that captures various types of context

information and dependency between them, that could be

reused and shared by different applications, and that can be

dynamically changed when a shift in focus occurs, is missing.

Therefore, we are interested in defining a structure for the

dynamic management of context information. This paper

describes our notion of context and proposes distributed

context management architecture that supports the

development of context-aware applications. It presents

CANDEL, a generic context information representation

framework that considers the context as a dynamic product

line composed of context primitives (CPs). Frame based

software product line techniques are used together with OWL

ontology to define CPs and to dynamically generate the current

context model. Further, using Petri-Nets, we also show how

this framework will be used to support the context-aware

adaptive pervasive applications.

Keywords- ontology-based context model; pervasive

applications; software product line; feature model.

I. INTRODUCTION

Pervasive computing introduced the concept of anytime
and anywhere computing. It includes a wide variety of
devices (e.g., mobile phones, PDAs) that are becoming
continuously present in our daily tasks. In this new
paradigm, the focus now is to amplify human activities with
new services that can be adapted to the circumstances in
which they are used [1].

Context-aware systems are part of this dynamic scenario.
These systems use context information to provide relevant
services and information for their users. To ease the
development of such applications it is necessary to decouple
application from context acquisition and representation, and
at the same time provide universal models and mechanisms
to manage context. Thus, generic and dynamically
manageable context models are of interest since they can be
reused by different applications and ease context sharing
between systems [2].

The aim of CANDEL (Context As dyNamic proDuct
Line) is to address the above mentioned challenges to

manage the context information in a domain-independent
way, with particular emphasis on the notion of context. As
part of our approach it is important to build the context
manager upon a generic context model.

As one of the successful research directions in software
engineering, software product line research could contribute
to the context modeling. Commonality and variability
management techniques from software product line can be
applied to handle context variabilities for customization and
adaptation. Therefore, in this paper we explore the synergy
between feature modeling and context modeling.

The key idea applied in CANDEL is to separate the
context ontology management among different components
called Context Proxy Components (CPCs); and to apply the
software product line idea in each CPC to dynamically get a
customized part of the context information it manages. We
propose to look at the whole system context as multiple
product lines supporting several dimensions in the context
space.

On the other hand, feature modeling is a key concept in
product line engineering. Thus, the feature model of the
system context will be considered as a composition of
segmented context features models; each of which models a
part of the whole context. Based on the context feature
model, specific context −member of a product line− can be
constructed by composing features from context information.

The paper is organized as follows: the context-awareness
concept and a new working context definition are presented
in Section II. In Section III, context modeling requirements
are presented. Section IV is a brief introduction to Software
Product Line. In Section V, we present CANDEL, our
conceptual framework, and describe the context management
architecture. The context model as a dynamic product line
idea is introduced in Section VI. In Section VII we show
how CANDEL support pervasive applications using Petri-
Nets. Section VIII briefly report on other context models,
considering their relevant features and comparing them with
CANDEL, and finally the conclusions are drawn.

II. CONTEXT-SENSITIVE APPLICATIONS

Context-sensitive applications are those that consider the
current situation of their users in order to provide services
and information tailored to their needs. An important topic
when dealing with context-aware systems is how to model,
manage, and manipulate the context information. To ease

context representation, context sharing and semantic
interoperability between heterogeneous systems, a formal
and generic context model is needed [3].

In this work, we are interested in developing a context-
aware application development methodology (Software
Engineering perspective); and in particular we are focusing
on context modeling (Knowledge Engineering perspective).

In the literature, there are many definitions for context.
Definitions given by earlier works agree on the key idea that
contexts describe situations. For example Dey [4] confirmed
this by defining context as: “Any information that can be
used to characterize the situation of an entity. An entity is a
person, a place, or a physical or computational object that is
considered relevant to the interaction between a user and an
application, including the user and application themselves.”

This work is based on two other definitions of context.
The first states that in using open-ended phrases such "any
information" and "characterize" the context becomes so
broad that it covers everything [5]. Winograd [5] indicated
also that “something is context because of the way it is used
in interpretation, not due to its inherent properties. The
voltage on the power lines is a context if there is some action
by the user and/or computer whose interpretation is
dependent on it, but otherwise is just part of the
environment.” In this work, we adopt his definition of
context: “context depends on the interpretation of the
operations involved on an entity at a particular time and
space rather than the inherent characteristics of the entity
itself.”

The second indicates that “context is always related to a
focus and that, at a given focus, the context is the
aggregation of three types of knowledge: Contextual
Knowledge (CK), External Knowledge (EK) and
Proceduralized Context (PC)” [6]. The authors in [6] argue
that context should always be considered related to a focus,
which is a step in a task execution, in a problem solving or in
a decision making process. Moreover, the context evolves
dynamically according to the focus, which enables a context-
sensitive system to separate relevant from not relevant
knowledge in order to determine the context.

Fig. 1 illustrates the proposed working definition of the
context. The term context primitive (for short, we will refer
to it as CP) refers to a piece of contextual knowledge such as

entity, entity attribute, relationship between two entities,
their constraints, or inference rules –used to define context
situations and infer new knowledge– that can be used to
define the context. We consider that the context knowledge
is composed of a set of small pieces. Given a focus, a
relevant subset of these pieces, namely context primitives,
will be used to generate the current context. Thus, the
generated context is in alignment with the requirement of
current task.

Several authors mentioned the distinction between data,
information and knowledge e.g. [7]. The raw data “Alice is
located in Kitchen” is represented by composing the
primitives: Entity (Alice), Association (is located in), and
Entity (Kitchen). In the same way we represent “Alice is a
female” as a composition of: Entity (Alice), Attribute
(Gender), DataValue (Female), and Constraints (Male or
Female). Information is a relationship between data with
great dependence on context for its meaning [7]. To
understand the relationship between these raw data and
therefore to conclude meaningful information, these data
should be associated to a context. Here, we consider the
focus is the context under which the data could be
understood and interpreted. For instance, if the focus was to
know the activity of Alice then we may conclude that Alice
is cooking; in this case we use the Rule primitive to infer the
new information “Alice is cooking”. In contrast, if the focus
was just to know the position of Alice then we use the Rule
primitive to transform the data representing the coordinates
of Alice into a meaningful information e.g. in kitchen or
bathroom.

Beyond relation between data there is pattern which has
the potential to represent knowledge. In this respect, based
on the information that “Alice cooks everyday”, we use the
Rule primitives to conclude the knowledge that, for example,
Alice is a housekeeper or Alice likes cooking. In brief, the
focus determines what are the context primitives to be
considered when dynamically compose the current context.

III. CONTEXT MODELING REQUIREMENTS

A context model is needed to define and store context
data in a machine processable form. Ontologies are a very
promising instrument for modeling contextual information
due to their high and formal expressiveness and the
possibilities for applying ontology reasoning techniques [8].
Thus, ontologies will be used in the context model as the
underlying technology.

The development of the proposed context modeling
approach was driven by requirements we collected from the
literature and from our experience in the context
management implementation in pervasive environment.
Besides the context modeling requirements mentioned in [9]:
applicability, comparability, traceability, history and logging,
quality, inference, incompleteness and ambiguity, we also
identify the following requirements when designing an
ontology-based context model:

R1- Context modeling should provide applications
with customized subset of the context information. A
complete ontology-based context model contains every piece
of knowledge to be used for all application scenarios, which

Figure 1. The proposed context working definition.

Context Management Architecture

represents all variants in the domain. In reality, not all
context information is needed in all application scenarios [1].
Therefore, an appropriate subset of the complete context
knowledge for a specific situation is enough.

R2- The context modeling should provide consistency
checking mechanism. The context model should define the
range a context value can take, or define a particular co-
existence of values to be impossible; and thus should provide
mechanisms to check the consistency of the context
information instances.

R3- A generic approach to context modeling is
needed. Existing context models vary in context information
they can represent. While some models take the user
situation into account, others model the physical
environment. Thus, a more general approach that captures
various types of context information, dependency between
them and the context history is needed [2, 10], so that
context models can be reused by different applications and
ease context sharing between systems.

R4- Context model should provide context
information in different level of abstraction. It should hide
irrelevant context details and [1] offer a high-level
interpretation of lower-level context details if requested.

R5- Context modeling should be domain and
application-agnostic. The reusability criterion requires that
the context representation should be independent from
application. Instead the application is expected to be context-
dependent. Further, context modeling concepts should be
independent of the domain.

R6- Context modeling should rely on well-accepted
standards for expressing context information. This will
guarantee the interoperability between devices and
applications in the highly-dynamic pervasive environment.

R7- Context modeling should have formal
representation of its syntax and semantics in order to
guarantee the consistency between different representations
of context used by applications, context providers and
service platforms [15]. This may require formally defining a
context metamodel that will be used to produce valid and
consistent context model throughout the system
development, deployment and operation.

R8- The context model should integrate the quality of
context information as the quality of context information
delivered by sensors change over time.

R9- The context model should be dynamic. In order to
reflect the underlying dynamic nature of the pervasive
environment, the context model should cater for addition and
removal of context data sources and address dynamic value
changes of these sources. Further, as will be seen later, it
should change when a shift in focus occurs.

In addition, we identify the context management
framework requirements:

R10- It should be reusable. The context manger should
be lightweight in terms of computational resources and
interfacing requirements to be reused in as many
environments as possible.

R11- It should provide infrastructure to facilitate the
construction, deployment and execution of context-aware
applications. Particularly, support is needed to handle

different sources and types of contextual information,
provided by highly distributed heterogeneous and constantly
changing environments.

IV. SOFTWARE PRODUCT LINE

According to [11] a software product line (SPL) is a set
of software-intensive systems sharing a common, managed
set of features that satisfy specific needs of a particular
market or mission, and that are developed from a common
set of core assets in a prescribed way.

Feature modeling is a domain modeling technique, which
has generated a lot of interest in the software product line
(SPL) community [12]. Modeling product family as a
hierarchy of features their similarities, differences and
relationships among them, feature models can be used for
modeling common and variable requirements of products in
a SPL, scoping SPLs, and product configuration and
derivation.

Commonly there are five types of relations possible in a
feature model [13] (See Table 1). Additional constraints
between features may exist that describe how features
interact with each other e.g. requires and excludes
constraints.

In the following section we explain how we can benefit
from SPL techniques in the context modeling and
management.

V. CONTEXT MODEL CONCEPTUAL FRAMEWORK

Based on the requirements mentioned in Section III, and
inspired by the idea that feature models are views on
ontologies [14], we propose a SPL-based conceptual
metamodel to support context-aware application
development. We feel that there is a strong similarity
between feature modeling and context modeling, both of
which represent concepts in a particular domain and define
how various properties relate among them. Hence, similarly
to feature model, the context is presented as a feature
diagram with other associated information such as
constraints and dependency rules. On the other hand, since
the context information may come from multiple
heterogeneous sources, it is important to think of formalism
and common languages that enable context sharing and
interoperability of these sources in different applications [6].

TABLE I. FEATURE TYPE RELATIONS

And: if F1 is selected, subfeatures (F2,F3) must be part of
any product of the product line

Alternative: if F1 is selected, only one subfeature (F2 or

F3) can be selected in any product in the product line.

Or: if F1 is selected, one or more subfeatures can be

selected as part of any product in the product line.

Mandatory: if F1 is selected, the subfeature is required as

part of any product in the product line.

Optional: if F1 is selected, the subfeature may or may not
be part of a product in the product line.

Hence, we are interested in investigating mechanisms for
context modeling in a generic manner to support different
applications in a domain-independent way.

A. Motivation Scenario

Alice registers her preferences when booking a room in
the City Hotel. Once she gets into her room, the existent
services use her context and preferences to deliver the
preferable ambiance (e.g. light level, music type and level,
etc). She is interested in reading IT news at night. The news
service is willing to help her in reading the most recent IT
news. After entering the room, she may take her shower. In
this case, the service presumes that she is in “awaked mode”
so it delivers the news to her mobile device. After a while,
she may become sleepy, and the service delivers the news to
the LCD screen or provides it in an auditory form. But if
after entering the room, she had her dinner, and it was night,
this means that she is in “sleepy mode”, and then the TV
switches to his favorite relaxing music channel and the lights
dim.

In the following sections we present the proposed
conceptual framework that supports this scenario.

B. Context Management Architecture

In the proposed approach we consider that context
management is embedded in entities, called Context Proxy
Components (CPCs) (Fig. 2), distributed in the environment,
and publishes its capacity in the form of feature model to a
service directory so that they can be easily located. These
entities include any device or computational entity e.g.
service. We have two kinds of these proxies: proxies
connected to sensors that aggregate their data to provide
services with the physical environment context, and proxies
that provide the non-physical context e.g. computational
entities.

For instance, Fig. 3 shows different context feature
models provided by four CPCs. In Fig. 3, the Place CPC can
provide the location as two features: the coordinates-based
(i.e., longitude and latitude) or block-based which in turn has
three subfeatures: room-, floor- or building-resolution. The
service interested in knowing in which room the person is
located should select the Location feature from the Person

CPC. As the Location is the same as Place (see next section),
the service has to select the subfeatures: Block-based and
Room-resolution.

C. Context Model Interoperability

As other works (e.g. [2, 12]) have mentioned, ontologies
are appropriate tools for representing context information.
Ontologies are thus used to define context elements. On the
other hand, Semantic Web is very promising to enhance the
knowledge sharing; it offers knowledge representation
languages that are both expressive and open which are two
useful features for expressing context. With context models
expressed in OWL DL, a Semantic Web environment can be
built to facilitate context storing, sharing and distribution and
to assist design cooperation.

The CPCs maintain their own context expressed in OWL
ontologies. They may communicate this information to other
CPCs, obeying a simple interface for determining the
information they can provide using the context feature
model. Indeed, in pervasive environment the growth in terms
of the number of CPCs calls for distributing the process of
creating context feature models. Two forms of distribution
can be identified; distribution due to the fact that different
people may be involved in context feature model creation,
and distribution due to defining different context feature
model for different parts of the system. The context
consumer service may communicate with different CPCs to
get a “snapshot” of the context information it needs.

Further, because the context of each CPC cannot be
considered in isolation from the other contexts, there may be
many relationships (dependencies) between the features of
different CPCs. For instance, in Fig. 3, the Role feature in

Figure 2. Context Management Architecture

Figure 3. Context Feature Models

Figure 4. Feature Model Ontology Framework

User FM requires the Current_Activity feature in Activity
FM (Role requires Current_Activity); which means that in
order for the Person CPC to provide the role information it
needs the current activity information from Activity CPC.
Another type of constraint: the feature Location is the same
as Place feature (Location same Place).

Therefore, features-based context modeling approach
faces the challenge: lack of a formal common semantics for
context feature models.

In order to be able to integrate the different context
feature models, we employ ontology-based approach for the
representation of knowledge contained in these models. As
will be seen later, we use ontology to describe the feature
model that will be used as a meta-model for describing
different features models of CPCs (Fig. 4). Thus, every
context feature model is an instance of the feature model
ontology.

Further, to facilitate the development of context-aware
application, it is necessary that applications and supporting
platforms share not only a common feature metamodel but
also a common context metamodel. Therefore, we propose to
integrate the context feature model and context model in the
meta level. The concepts of the conceptual metamodel were
identified and grouped into two different views (Fig. 5): the
context related concepts (white), and the context features
concepts (shaded).

We import the concepts of features from FODA (Feature
Oriented Domain Analysis) [15]. FODA appeals to us
because features are essential abstractions that both context
consumer and provider understand. Thus, the main concept
in the feature description language FODA is the feature
itself. Here a feature is a set of context primitives that is
relevant to some stakeholder from a specific “focus” point of
view. Fig. 5 depicts the proposed conceptual metamodel.

The main construct for representing context knowledge is
the ContextPrimitive which represents the base context
constructs (primitives) mentioned above: entity classes,
entity attributes, entities associations, and rules.

 Entity class: represents a group of entities (e.g. users,
places, devices, etc) sharing some properties.

 Attribute class: represents entities attributes e.g.
position, temperature, etc.

 Association class: represents a relationship between one
entity and either another entity or an attribute.

 Rule class: two types of rules could be identified: (i)
Consistency rules provide mechanism for context
consistency by specifying conditions that must be hold
in the context information. For example, consistency
rule could specify that if the person is cooking, she
must be in the kitchen. (ii) Inference rules used to
generate new context information after reasoning on the
existing one. For example, an inference rule could
conclude that a person is sleeping if the light is off and
the time is night.

Further modeling constructs are axioms that add
additional facts about the entities and attributes. These are:
specialization and equivalence relationships that may be
specified between two entity classes, two attribute classes, or
two association classes.

D. Modeling Constructs on the Metamodel Layer

For the formal specification of the conceptual
metamodel, we have leveraged the existing ontology
language OWL DL [16] to represent the knowledge
contained in the conceptual model for a number of reasons.
First, in OWL (and description logics), conceptual entities
are organized as classes in hierarchies. Individual entities are
grouped under classes and are called instances of the classes.
Classes and individuals can be related by properties. OWL
has constructs to define set relations including subclass,
equivalence, intersection, union, etc. This facilitates the
transition from the proposed conceptual view of the model to
the ontological view of the model. Second, OWL is the
W3C standard for Semantic Web which eases the exchange
of context models between context consumer and providers.
Third, the reasoning capabilities of OWL DL are of crucial

Figure 5. The Conceptual Meta-Model

importance to context-aware applications for
context knowledge representation and reasoning. The
Description Language (DL) reasoners are used, on one hand
to infer knowledge using rules implemented in the Semantic
Web Rule Language SWRL [17], and on the second hand to
ensure model consistency.

In the following we briefly explain the OWL constructs
used for ontology-based conceptual model representation.

a) Conceptual Model Ontology Class Constructs
We have defined the following class constructs:

 ContextPrimitive is the main ontology construct which
is the super-class of other context constructs.

 Entity, Attribute, Association, DataValue, LiteralType:
are OWL classes representing EntityClass,
AttributeClass, AssociationClass, DataValueClass, and
LiteralType respectively.

 Feature: is the main ontology construct representing the
context Feature.

 Focus: represents the Focus concept.

b) Conceptual Model Ontology Property Constructs

 Feature_to_Feature_Relationship (FFR) property which
has the Feature class as both domain and range.

 Feature_to_Feature_Dependency (FFD) property which
has the Feature class as both domain and range.

 isRelevantTo object property corresponds to
isRelevantTo property. It has the Focus class as a
domain and Feature class as range.

 hasContextPrimitive object property corresponds to
hasContextPrimitive property. It has the Feature class as
a domain and ContextPrimitive class as range.

 hasDomainEntity and hasRangeEntity object properties
have the AssociationClass as domain and Entity class as
range, which represent the relationships between
entities.

 hasRangeAttribute object property has the
AssociationClass as domain and AttributeClass as range,
which represents the entity’s attribute.

 timestamp datatype property represents the time of
assigning a relationship between two entities or
assigning an attributes value to an entity. It has an
AssociationClass as domain. It can be used when
considering the context history.

c) Conceptual Model Ontology Axioms
We define also And, Alternative, Mandatory, Or, Option, and
Selection as sub-properties of FFR. We define also Requires
and Excludes as subPropertyOf FFD representing the
Implication and Exclusion dependencies respectively.

The properties Requires and Excludes are defined as
mutual exclusive properties.

Specialization and Equivalence relationships -mentioned
above- that may be specified between two entity classes, two
attribute classes, or two association classes, are realized as
OWL subClassOf and equivalentClass axioms respectively.

d) Conceptual Model Ontology Rules
Here, we mean by rules the derivative rules define by the

system developer in order to infer context knowledge or
define context situations. We implement the rules described

by the metaclass Rule in the proposed conceptual model in
SWRL. SWRL is an expressive OWL-based rule language.
SWRL allows users to write rules that can be expressed in
terms of OWL concepts to provide more powerful deductive
reasoning capabilities than OWL alone. The SWRL
metamodel defines Rule as a subclass of OntologyElement
[18]. Thus, we represent the metaclass Rule as a Rule class
in SWRL metamodel.

VI. CONTEXT AS A DYNAMIC PRODUCT LINE

As we have already mentioned the context evolves
dynamically according to the focus and that context is a set
of contextual elements that are assembled and instantiated
according to the focus. In this section, due to space
limitation, we briefly explain how the context manager can
build the context model given a set of features.

The idea is as follows: starting from the context model,
we manage the underlying context knowledge using the
techniques of how commonalities and variabilities are
handled in a product line. Using this knowledge we build a
context product line, in which customized context product
could be build given the context features different services
are interested in.

One of the effective ways to deal with handling variants
is to use the XVCL variability mechanism [19] that supports
automated customization and assembly of product line
assets. Using XVCL, we develop product line ontology
assets (meta-ontologies) as a set of x-frames that incorporate
both context defaults and variants. X-frames represent the
context knowledge in the form of product line assets.
Specific context, members of a product line, can be
constructed by composing these meta-ontologies. More
details about XVCL are in [19].

For each CPC, we develop the context product line
architecture based on the context ontology architecture.
Using XVCL, we design generic components as x-frames
that incorporate both context defaults and variants. The
resulting x-frames are meta-components (meta-ontologies),
from which concrete components are constructed during the
process of producing a specific context product using the
reusable assets.

Figure 6. Association between the focus and the context primitives

VII. A PETRI-NET BASED APPROACH FOR CONTEXT-

AWARE ADAPTIVE APPLICATIONS

Following Dey’s context definition, situation is a central
notion describing context. Dey [4] defines situation as a
“description of the states of relevant entities”. We call a
specified set of contextual information acquired during one
instance of time a situation; and a specified secession of
situations is called a behavior.

Based on motivation scenario (Section V.A), Fig. 6
shows that different set of context features are selected by
two different tasks (different focuses). Therefore, music
control service selects context features different from those
selected by the lights and windows controlling service.

To develop a context-aware adaptive applications, and to
represent the relation between “focus” and different context-
sensitive behaviors for a system’s adaptation we use
Predicate/Transition nets (PrT nets) [20], a kind of widely
used high-level Petri nets, to model context situations and
behaviors. The rationale behind this approach is that PrT nets
are suitable for dealing with logic and rules as well as in
dealing with temporal aspects. In particular, we propose
using a special kind of PrT, the rule nets, to model the
situations. The adaptation actions are triggered when the
acquired context information corresponds to a specified
situation or the history of context information corresponds to
a specified behavior.

In this approach we benefit from expressiveness power of
Petri Net to model the behavior; that is the succession of
situations. According to the motivation scenario already
mentioned, Fig. 7 (a) illustrates modeling two situations: the
guest is taking rest in living room, and the guest is nervous
while in bed room. In this respect, the application sends to
the correspondent CPCs the feature list it is interested in. In
this case, the application expresses its interest in the Role,
Room-resolution, and Posture features from Person,
Location and Activity CPCs respectively by sending the

feature ids with the corresponding parameters via the CPC
interface. Fig. 7 (b) illustrates modeling different scenarios
of the guest behaviors. It illustrates how to model the
transition between situations.

VIII. RELATED WORK

Different ontologies have been proposed in the literature
to model domain specific context information (e.g. [2]) or
generic models reusable in different domains (e.g. [10, 21])
but all with certain drawbacks in genericity and/or
dynamicity.

CONON [21] is composed of an upper context ontology,
which defines the basic concepts of context and must be
extended by the developer to achieve a domain specific
context model. The interest of these approaches is being able
to extend ontologies. However, whenever one agree on using
a particular ontology, the model is bound to the assertions
made therein including the ones that potentially contradict
the semantics to be modeled. In contrast, in CANDEL,
system developers have the flexibility to specify the context
and its structure according to the application/domain.

CoOL [22] is an ontology-based Aspect-Scale-Context
(ASC) model that supports for interoperability. Each aspect
aggregates one or more scales, and each scale aggregates one
or more context information. The context model of
CANDEL is more expressive than ASC model. The Feature
concept can aggregate an arbitrary number of context
primitives which are more generic than the context
information. Further, the mapping restriction between Scales
could be expressed in more generic way as the relationship
and dependency between Features.

The Context Broker Architecture (CoBrA) is a broker-
centric agent architecture that provides knowledge sharing,
context reasoning, and privacy protection [2]. It is domain-
specific and only covers contexts in campus space; it has no
explicit support for modeling general contexts in
heterogeneous environments.

Figure 7. Petri-Nets based context situations and behaviours modelling

In [23] the authors proposed a modelling technique for
context information based on a modelling concept that
embraces four abstraction layers from meta-metamodel and
metamodel to model and instance layer. This enables the
construction of restricted ontologies that comply with OWL
DL and can be used to define context models. However, they
did not mention how to dynamically generate a customized
subset of the context information depending on the
application needs nor did they mention how the application
can acquire the context information in different levels of
abstractions.

Context-Oriented Model approach [6] proposes the
explicit separation of generic context concepts from specific
concepts of an application domain. Their work is similar to
ours; however, they did not consider the distribution aspect
of the context management.

IX. CONCLUSION AND FUTURE WORK

In this paper we first presented a set of requirements that
context modeling and context management should meet. A
generic conceptual metamodel (CANDEL) was introduced.
It provides a domain-agnostic formal representation of
contextual information which promotes interoperability
between applications e.g. context remembrance.

CANDEL integrates the context primitive (CP)
specifications with the product line concepts that enable the
dynamic context manipulation when focus changes. In
CANDEL, based on software product line techniques, a
specific context −member of a product line− can be
dynamically constructed by composing features from context
primitives. In fact, having different views of the same
context information and at different levels of abstraction is
one of the motivations in CANDEL to address the genericity
issue. Furthermore, we discussed how the adaptation of the
application to context is driven by the Petri net
representation of the context situations and behaviors.

The development of the proposed metamodel was the
first step towards a model-driven approach for the
development of context-aware adaptive applications. OWL,
XVCL, Java and Semantic Web technologies are used in
implementing the context manager prototype and interfacing
protocol between CPCs themselves and between CPCs and
context consumers. Further, we aim to refine the proposed
conceptual metamodel and extend it to support the self-
adaptive process-oriented context-aware applications by
introducing the change set primitives concepts.

REFERENCES

[1] T. Pederson, C. Ardito, P. Bottoni, and M. F. Costabile, "A General-
purpose Context Modeling Architecture for Adaptive Mobile
Services," presented at Proceedings of the ER 2008 Workshops
(Cmlsa, Ecdm, Fp-Uml, M2as, Rigim, Secogis, Wism) on Advances
in Conceptual Modeling: Challenges and Opportunities, Barcelona,
Spain, 2008.

[2] H. Chen, T. Finin, and A. Joshi, "An Ontology for Context-Aware
Pervasive Computing Environments," The Knowledge Engineering
Review, vol. 18, pp. 197-207, 2004.

[3] T. Gu, H. Pung, and D. Q. Zhang, "A service-oriented middleware for
building context-aware services," Journal of Network and Computer
Applications, vol. 28, pp. 1-18, 2005.

[4] A. K. Dey, "Understanding and Using Context," Personal and
Ubiquitous Computing, vol. 5, pp. 4-7, 2001.

[5] T. Winograd, "Architectures for Context," Human-Computer
Interaction, vol. 16, pp. 401-419, 2001.

[6] V. Viera, P. Brézillon, A. C. Salgado, and P. Tedesco, "A Context-
Oriented Model for Domain-Independent Context Management,"
Revue d'intelligence artificielle, vol. 22, pp. 609-627, 2008.

[7] G. Bellinger, "Knowledge Management - Emerging Perspectives," In:
http://www.systemsthinking.org/kmgmt/kmgmt.htm, 2004, Access in
August 2009.

[8] J. Euzenat, J. Pierson, and F. Ramparany, "Dynamic context
management for pervasive applications," The Knowledge
Engineering Review, vol. 23, pp. 21-49, 2008.

[9] R. Krummenacher, H. Lausen, T. Strang, and J. Kopecky, "Analyzing
the Modeling of Context with Ontologies," presented at International
Workshop on Context-Awareness for Self-Managing Systems
(Devices, Applications and Networks) - CASEMANS 2007 - as part
of Pervasive 2007, Toronto, Canada, 2007.

[10] T. Chaari, D. Ejigu, F. Laforest, and V.-M. Scuturici, "A
comprehensive approach to model and use context for adapting
applications in pervasive environments," Journal of Systems and
Software, vol. 80, pp. 1973-1992, 2007.

[11] L. M. Northrop, "SEI's software product line tenets," IEEE Software,
vol. 19, pp. 32-40, 2002.

[12] Z. Lamia Abo, K. Frederic, and T. Olga De, "Applying semantic web
technology to feature modeling," in Proceedings of the 2009 ACM
symposium on Applied Computing. Honolulu, Hawaii: ACM, 2009.

[13] H. H. Wang, Y. F. Li, J. Sun, H. Zhang, and J. Pan, "Verifying feature
models using OWL," Web Semant., vol. 5, pp. 117-129, 2007.

[14] C. Krzysztof, K. Chang Hwan Peter, and K. Karl Trygve, "Feature
Models are Views on Ontologies," in Proceedings of the 10th
International on Software Product Line Conference: IEEE Computer
Society, 2006.

[15] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, "Feature-oriented domain analysis (FODA) feasibility
study," in Distribution. Pittsburgh, PA: CARNEGIE-MELLON
UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST,
1990.

[16] C. Bock, A. Fokoue, P. Haase, R. Hoekstra, I. Horrocks, A.
Ruttenberg, U. Sattler, and M. Smith, "OWL 2 Web Ontology
Language: Structural Specification and Functional-Style Syntax,"
2008.

[17] "SWRL: A Semantic Web Rule Language Combining OWL and
RuleML", W3C Member Submission 21 May 2004
<http://www.daml.org/2003/11/swrl/>.

[18] S. Brockmans and P. Haase, "A Metamodel and UML Profile for
Rule-extended OWL DL Ontologies– A Complete Reference.,"
Lecture Notes in Computer Science, 2006.

[19] H. Zhang and S. Jarzabek, "An XVCL-based Approach to Software
Product Line Development," presented at Int. Conf. on Software
Engineering and Knowledge, SEKE’03, 2003.

[20] H. J. Genrich, "Predicate/Transition Nets," presented at Advances in
Petri nets 1986.

[21] X. H. Wang, T. Gu, D. Q. Zhang, and H. K. Pung, "Ontology Based
Context Modeling and Reasoning using OWL," presented at
Proceedings of the Second IEEE Annual Conference on Pervasive
Computing and Communications Workshops, 2004.

[22] T. Strang, C. Linnhoff-Popien, and K. Frank, "CoOL: Context
Ontology Language to enable Contextual Interoperability," Lecture
Notes in Computer Science, vol. 2893, pp. 236-247, 2003.

[23] F. Fuchs, I. Hochstatter, M. Krause, and M. Berger, "A Metamodel
Approach to Context Information" presented at Third IEEE
International Conference on Pervasive Computing and
Communications Workshops, 2005.

http://www.daml.org/2003/11/swrl/%3e.

