
A Model-driven Approach to Flexible Multi-Level

Customization of SaaS Applications

Zakwan Jaroucheh, Xiaodong Liu, Sally Smith

School of Computing

Edinburgh Napier University, UK

{z.jaroucheh, x.liu, s.smith}@napier.ac.uk

Abstract—Recently, Software as a Service (SaaS) has become a

popular software service mode. Context-awareness and

customizability are important and desirable properties for

providing the same application for different customers. Most of

existing approaches tackle application customization by explicitly

specifying some form of variation points where parts of the

application remain unspecified or are defaulted and can be

customized by each customer to suit its particular needs. This,

however, leads to a mismatch between how the architect or

developer logically views and interprets differences in a SaaS

application family and the actual modeling constructs through

which the logical differences must be expressed. Hence, in order

to capture the variability in SaaS applications in a more logical

and independent way we propose the concept of change fragment

and change primitives. A novel approach to effective

customization of SaaS at levels of control flow and component

framework is proposed and evaluated.

Keywords-context-awareness; SaaS; MDD; SaaS customization

I. INTRODUCTION

SaaS, a new delivery model for software, can be
characterized as software deployed as a hosted service and
accessed over the Internet [2]. Indeed, moving from traditional
“on-premise” software that is deployed and run in a data center
at the customer’s premise, to offering software as a service has
a set of advantages for software customers [5] and requires
software vendors to shift their thinking in business model and
application architecture.

Changing the business model involves shifting the
ownership of the software from the customer to an external
provider, reallocating the responsibility for the management of
the underlying hardware and software infrastructure for that
software from the customer to the provider, and reducing the
cost of providing software services, through specialization and
economy of scale. From an application architect's point of
view, the service provider provides the same application for
several different customers; and thus the software must be built
following the model of a multi-tenant architecture [2].
However, each individual tenant or customer has different
requirements for the same application logic. To achieve this,
the customer will be provided by an application template [5] in
which some parts of the application remain unspecified or are
defaulted and can be customized by each customer to suit their
particular needs.

On the other hand, context-awareness refers to the
capability of an application or a service being aware of its
physical environment or situation (e.g. context) and to respond
proactively and intelligently based on this awareness [1]. We
define the context-aware SaaS application customization as: the
modification of an application behavior as to make it suitable
to the special and unique needs of the customer and her context
considered relevant to that application.

Many different solutions have been proposed by researchers
to the problem of context-aware customization during SaaS
application development and provision. However, two main
issues could be identified in the existing approaches.

Firstly, SaaS application modeling must be flexible enough
to deal with constant changes – both at the business level (e.g.
evolving business rules) and at the technical level (e.g.
contextual information). The flexibility could be provided or
addressed by incorporating variabilities into a system [5]. Most
of the approaches tackle SaaS application customization by
explicitly specifying some form of variation points. These
approaches (e.g. [4][5]) first identify the variation points in the
SaaS application and its associated alternatives (variants) that
specify different implementation of the system. Second, either
at design time or at runtime, they specify variants selection
mechanisms (based on ranking rules, preferences, etc). These
approaches enjoy the inherent power of a software product line
in dealing with variability, automation and consistency.
However, the problem is that, for example, each task in the
application is modeled as a variation point in and of itself, each
governed by its own clause to determine inclusion or exclusion.
This is in contradiction with how the developer or architect
logically views the application variant i.e. in terms of the
features that determine the difference between application
variants in each usage context. Moreover, these approaches are
not scalable enough because of the difficulty in variation
management when the number of variation points increase.

Secondly, SaaS are built following service oriented
architecture (SOA). An application is a composition of services
that is orchestrated by workflows such as the standard Business
Process Execution Language (BPEL). Thanks to SOA, SaaS
applications enjoy the power of programming in the large (i.e.
service orchestration) which is separated from the
programming in the small (i.e. service implementation). Thus, a
deep customization can occur when considering the two basic
levels: that of the individual service and the service

orchestration. The approach presented in this paper therefore
could be applied to the layers of the SaaS application as long as
this layer has been modeled as we will see later.

Motivated by these problems and directives in mind, we
propose an MDD-based approach that introduces the notion of
change fragment and change primitive to capture the variability
in a more logical and independent form. The proposed
approach contributes to a solution to automatically generating a
customized SaaS application based on the relevant context.

The rest of the paper is structured as follows: Section II
describes the rationale behind the proposed approach. Section
III presents the proposed approach for the SaaS application
customization. In Section IV, we describe how to instantiate a
SaaS application. In section V we present the proof-of-concept
prototype; and in section VI we illustrate the proposed
approach by giving a simple example of an event advisor. The
related work and concluding remarks end the paper.

II. THE RATIONALE OF THE PROPOSED APPROACH

In the context of SaaS applications, the SaaS developer has
to include not only business process in a process language
(such as BPEL), but also business rules, polices, constraints, as

well as customization mechanisms. Obviously, mixing process
with business rules and customization issues weaken the
modularity of the system. Typically, according the separation
of concern principle, the SaaS application developer has to
focus on the core application business logic and then define
separately the customization and business rules, and weave
them to the core application.

Therefore, modularization and separation of concerns are
the driving principles of our approach to target the SaaS
application customization. We propose a model-driven
development (MDD) approach for developing such
applications. MDD emphasizes using models to capture the
application knowledge that are independently of any
underlying computing infrastructure, e.g. middleware,
programming languages operating systems etc; which will ease
the reuse, adaptation, and evolution of applications.

As the number of services involved in a SaaS application
grows, the complexity of developing and maintaining these
applications also increases. One of the successful approaches to
managing this complexity is to represent the application by
different architectural views [8]. Examples of these views are
orchestration view, control flow view, and component view
(see Fig. 1). The idea is to give the developer the possibility of
applying the necessary change fragments in each view and then
the automated tool verifies the integrity of the changes and

Figure 2. The proposed framework

Figure 3. Deriving the change meta-model

Figure 1. Leveled views of SaaS application

generates the customized application variant artifacts
accordingly. This modelling respects the separation of concern
principle so that we will have multiple views of the systems;
each view will model a specific concern.

In this paper we focus on the control flow view; however
the proposed approach could be extended to the other views. In
addition, the approach aims to tackle context-aware
customization without interfering with the core functionality of
the application.

III. THE PROPOSED APPROACH

Typically, the developer first focuses on the functional
(business logic) aspect of the SaaS application which will yield
a basic model of the system. Then, he defines the change set
and the different possible context scenarios. "Weaving" a group
of correspondent change fragments with the basic model will
yield a new SaaS application instance.

The proposed conceptual model is structured in four main
sections that address, respectively, the modeling of the control
flow, context information, change set and the weaving model
that links between change model and context model (Fig. 2).

 During runtime, the customer and environmental context
will be gathered when the SaaS application is invoked by the
customer. The Context Analysis module evaluates all context
constraints of the context model. Using the constraints
elements evaluated to “true” and the weaving model we are
able to determine the relevant change fragments (See Section
IV) and the order in which they should be applied to the basic
control flow model.

The customization process determines -according to the
mapping between the change fragments and context elements-
the set of change fragments to be applied to the application
instance. The model composer combines the set of change
fragments to the control flow model and verifies the integrity of
the system. The result is a new control flow model which
corresponds to the current context. All these operations are
fulfilled in the model level. Thus, the resulting process model
has to be translated to concrete artifacts e.g. BPEL. Now it is
the role of the infrastructure to create a new instance
corresponding to the new control flow model which satisfies
the user requirements and context. This transformation from
the model to the code is achieved using one of the model-to-
text transformation tools.

The most interesting aspect of the proposed approach is that
the relevant characteristics of the different concerns (context,
change, application logic) will be abstracted in models and
made observable to the application developers. Moreover, she
will be able to do any type of change to the application model.
In this way, developers will be able to manage customizability
to a greater degree of flexibility.

A. Context Model

As in previous work [3], the main construct for

representing context knowledge is the ContextPrimitive

which represents the base context constructs (primitives):

entity classes, entity attributes and entities associations. Also,

we presented an approach for context-aware software

development based on a flexible product line based context

model which significantly enhances reusability of context

information by providing context variability constructs to

satisfy different application needs.

In addition, we introduce here the context-dependent

constraint construct which allows us to specify conditions that

must hold to introduce some kind of context-aware

customization by specifying the change fragments (CFs) that

should be applied to the basic model as described in the next

sections. The Object Constraint Language OCL language is

leveraged to express the constraint expression.

B. Change Set Model

Customizing SaaS applications usually involves adding,
dropping and replacing tasks in the application. For instance, in
component model this involves adding, dropping and replacing
components. In this respect, and in order to achieve deep

Figure 4. The change set meta-model

Figure 5. Change metamodel generation script

create OUT : ChangeMM from IN1 : ControlFlowMM, IN2 :

MinimalChangeMM;

helper def: changeableElement: MinimalChangeMM!EClass =

MinimalChangeMM!EClass.allInstances()->select(i | i.name =

'ChangeableElement');

rule copyChangeEvolutionMM {

 from s : MinimalChangeMM!EClass

 to t: ChangeMM!EClass (

 name <- s.name,

 interface <- s.interface,

 eSuperTypes <- s.eSuperTypes,

 eStructuralFeatures <- Sequence {s.eStructuralFeatures}

 ...

)

}

rule generateChangeMMElements {

 from s : ControlFlowMM!EClass (s.name <> 'Process' and not

s.abstract)

 to t: ChangeMM!EClass (

 name <- s.name,

 interface <- s.interface,

 eSuperTypes <- s.eSuperTypes,

 eStructuralFeatures <- Sequence {s.eStructuralFeatures}

 ...

),

 added_element: ChangeMM!EClass (

 name <- 'Added' + s.name,

 eSuperTypes <- Sequence {t, thisModule.changeableElement}

),

 changed_element: ChangeMM!EClass (

 name <- 'Changed' + s.name,

 eSuperTypes <- Sequence {t, thisModule.changeableElement}

),

 deleted_element: ChangeMM!EClass (

 name <- 'Deleted' + s.name,

 eSuperTypes <- thisModule.changeableElement

)

}

change ability, we propose to add for each component X three
classes: AddedX, DeletedX, and ChangedX describing the
difference between the basic component model and the
respective variant model (Fig. 3). Other change types can be
mapped to variations and combinations of these ones. For
instance to achieve the plugin and plugout capability a
combination of DeletedX and AddedX could be used. In the
same manner, for each class Y in control flow metamodel we
add three classes AddedY, DeletedY, and ChangedY. The change
set metamodel (Fig. 4) consists of a ChangeStrategy class that
contains one or more ChangeFragments. The ChangeFragment
in turn consolidates related ChangePrimitives (a set of
elements of type ChangeableElement) into a single conceptual
variation. Our approach promotes CFs to be first-class entities
consisting of closely-related additions, deletions and changes
performed on the basic model. Dependencies are used to
describe relations between CFs in order to constrain their use.
The relations supported are as follows: dependency (Require),
compatibility (Exclude), execution order constraint (Follow),
and hierarchy (SubSet). Further, the CF concept is used to
specify the application customization during runtime namely
the customization strategy. But, what about the evolution of the
customization strategy? This is the role of the change strategy
concept. An example of strategy evolution is that the business
owner may choose to apply a different customization strategy
during the Christmas days and later to return to the basic
strategy. To this end, the change strategy could also be linked
to a specific context constraint.

The change set metamodel of each view could be
automatically generated from the model of that view. One
possible approach is to use the ATL transformation language

1

as in the script of Fig. 5.

On the other hand, in order to link the context model and
change set model, and because in the MDD world everything

1
 ATL Language http://www.eclipse.org/m2m/atl/

should be a model, the mapping between the context
constraints and the CFs will be represented by a weaving
model. This mapping will be used as information for driving
the model transformation.

IV. SAAS APPLICATION INSTANTIATION

The selection of a SaaS application variant in a particular
context should be done automatically. Therefore the application
context in which this selection takes place has to be considered.
It is important to distinguish here between two type of changes:
i) permanent change witch lead to change of the SaaS
application specification (structure and behavior) due for
instance to the business rules or application logic, and ii)
instance-level change which affect only the current application
instance. We generate the customized control flow model by
applying a number of CFs and their related change primitives
to the corresponding basic model as follows: i) Select the CFs
whose context constraints associated with it evaluate to “true”,
ii) Check CFs relations to ensure model consistency, iii) Apply
the CFs to the basic model, and iv) Check for consistency to
avoid any deadlock or data inconsistency in the resultant
application variant. A consistency check is necessary and it is
considered for our future work.

The proposed approach is flexible enough to accommodate
the “permanent changes” that are due to changes of the
regulation or the business rules by assigning them to a context
constraint always evaluated to true. One of the advantages of
this approach is that the change in the SaaS application
specification can be easily documented.

V. PROTOTYPE ARCHITECTURE

We have developed a Java application for the SaaS
application variant generation. The Eclipse Modeling
Framework (EMF) was used to model the aforementioned
models. In this prototype we consider both the control flow
view model and component model of the SaaS application.

Figure 6. The prototype architecture

http://www.eclipse.org/m2m/atl/

Having specified these models, the developed application
generates a context-aware customized control flow model or
new plug-in/plug-out component model based on customer
request (Fig. 6). The customer request for the SaaS application
is intercepted by the Proxy service which in turn triggers the
Context Analysis module which evaluates all context
constraints of the context model. The Model Composer module
applies only those CFs relevant in the SaaS application usage
context to the basic control flow model and component model.
The resultant control flow model and component model are
automatically transformed, using a set of transformation rules,
to generate the executable specification of the target platform
i.e. BPEL, or component framework. They will be dynamically
deployed to the execution engine; and the customer request is
then transferred to the new deployed and personalized process.

VI. CASE STUDY

To demonstrate the approach a small case study is done,
namely, the Event Advisor application. This application
provides the conference attendee (the customer) with a
personalized suggestion for the conference events (i.e. paper,
poster, and industrial demo presentations) according to the
customer preferences and context. We consider a generic
service application that customers can access through a
wireless connection using their own portable devices. Fig. 7
depicts a part of the static structure of this application. This
application could be enhanced by automatically filling in the
ClientType parameter, using for this purpose information
provided by the context infrastructure. Being a research-
oriented customer means that she is not interested in getting
suggestions for the industrial demos. Therefore there is a need
to change the process structure so that the activity that invokes
the IndustrialDemo is deleted.

Fig. 8 shows a simple example of the context model that
contains two entities: Alice and Bob. The association elements
assign the attributes to the entities so that Alice has an attribute
ClientType whose value is ResearchOriented whereas Bob’s
ClientType is IndustrialOriented. The context constraint
named CustomerIsResearchOriented is an example of the
constraints having OCL-based parameterized expression. It

contains a variable named $CustomerName whose value is
extracted either from the customer request information or from
any other data source. In either case the above-mentioned
proxy service is responsible for assigning the variable value.

Fig. 9 shows a sample of the change fragments cf1 that
regroups different change primitives that should be applied
when the customer type is research oriented. The weaving
model (Fig. 10) contains one link element that links between
the context constraint named CustomerIsResearchOriented
and the CF named cf1. Finally, the developed prototype will
generate the customized process which contains only the
suggestions for paper and poster presentation events.

VII. OVERHEAD EVALUATION

In this experiment, the cost of generating the customized
control flow model is evaluated in terms of response time using
a Pentium4 PC with RAM of 3GB. For this purpose we use an
example of a control flow model consisting of twenty activities.
In each experiment we increment the number of change
primitives to be applied to the basic model and measure the
time required to derive the BPEL artifact and to deploy the new

Figure 7. Event advisor application

Figure 8. The context model

<ctxt:ContextModel xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:ctxt="http://napier.ac.uk/context">

 <associations name="Alice_attributes"

entities="//@entities.0" attributes="//@attributes.0"/>

 <associations name="Bob_attributes" entities="//@entities.1"

attributes="//@attributes.1"/>

 <entities name="Alice"/>

 <entities name="Bob"/>

 <attributes name="ClientType" value="ResearchOriented"/>

 <attributes name="ClientType" value="IndustrialOriented"/>

 <contextconstraints expression="associations->select(a |

a.entities->exists(e | e.name='$CustomerName') and

a.attributes->exists(a1 |a1.name = 'ClientType' and

a1.value='ResearchOriented'))"

name="CustomerIsResearchOriented"/>

 ...

</ctxt:ContextModel>

Figure 9. The change strategy model

<cs:ChangeStrategy xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:cs="http://napier.ac.uk/cs">

<changeFragments name="cf1">

 <children xsi:type="cs:DeletedSequence"

updatedElement="SequenceC"/>

 <children xsi:type="cs:DeletedCopy"

updatedElement="DemosSuggestion"/>

 <children xsi:type="cs:ChangedCopy"

updatedElement="SuggestionResponse">

 <to variable="..." part="suggestionsData"/><from

literal="..."/>

 </children>

</changeFragments>

</cs:ChangeStrategy>

Figure 10. The weaving model

<weaving:WeavingModel xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:weaving="http://napier.ac.uk/weaving">

 <links name="l1"

contextConstraintName="CustomerIsIndustrialOriented"

changeFragmentName="cf1"/>

</weaving:WeavingModel>

process into the BPEL engine. Fig. 11 shows that the overhead
is negligible. For 10 change primitives the overhead is around
200ms. For 60 change primitives the overhead is just less than
0.5s which still acceptable in SaaS kind of applications.

VIII. RELATED WORK

One of the most successful research directions in the field
of software engineering and particularly in software reuse was
the software product line SPL (e.g. [6]). Variation points are
one of the key concepts in SPL to express variability. However,
as aforementioned capturing the application variability using
the change fragments and primitives is more intuitive and
logical from the developer point of view.

In [5] the authors present an approach that allows the
generation of customization processes out of variability
descriptors. The proposed approach is different in the way it
presents the variation points and variants. It regroups the
different variants into more abstract and meaningful constructs
to ease the adjustments of the basic application.

Similar to the proposed approach, Provop [7] provides a
flexible solution for managing process variants following an
operational approach to configure the process variant out of a
basic process. This is achieved by applying a set of well-
defined change operations to it. However, the proposed
approach deviates from Provop in that it uses the MDD
approach and defines the CFs as change model elements not as
change operations.

VxBPEL [4] is an adaptation language that is able to
capture variability in processes developed in the BPEL
language. VxBPEL provides the possibility to capture variation
points, variants and realization relations between these
variation points. Unlike the proposed approach, VxBPEL
works on the code level and the variants are mixed with the
process business logic which may add complexity to the
process developer task. Further, unlike the proposed generative
approach, VxBPEL is specific to BPEL language.

IX. CONCLUSION

The challenge for the SaaS architect is to ensure that the
task of configuring applications is simple and easy for the
customers, without incurring extra development or operation
costs for each configuration. Therefore, we have described a
MDD approach for managing and automatic generating
customized SaaS application variants. Based on logically-
viewed well-defined CFs and change primitive constructs; on
the ability to regroup CFs in reusable components; and on the
ability to regroup these components in a constrained way,
necessary adjustments of the basic application can be correctly
and easily realized when creating or configuring an application
variant. The proposed approach may provide the possibility of
“plugging” more easily within the same basic application
different customization strategies tailored for different
contexts. Future work includes providing the developer with
verification tools to verify the change fragments composition
regarding the application consistency and integrity at design
time. This will give the developer the flexibility to define
profound changes to the SaaS applications in different views.

REFERENCES

[1] M. Baldauf, S. Dustdar, and F. Rosenberg, "A survey on

context-aware systems," Int. J. Ad Hoc and Ubiquitous

Computing, vol. 2, 2007.

[2] F. Chong and G. Carraro. "Architecture Strategies for Catching

the Long Tail". MSDN Library, Microsoft Corporation, April,

2006.

[3] Z. Jaroucheh, X. Liu, and S. Smith, "CANDEL: Product Line

Based Dynamic Context Management for Pervasive

Applications," Int. Conference on Complex, Intelligent and

Software Intensive Systems, 2010.
[4] M. Koning, C. Sun, M. Sinnema, and P. Avgeriou, "VxBPEL:

Supporting variability for Web services in BPEL," Information

and Software Technology, vol. 51, 2009, pp. 258-269.

[5] R. Mietzner and F. Leymann, "Generation of BPEL

Customization Processes for SaaS Applications from Variability

Descriptors," 2008 IEEE International Conference on Services

Computing, 2008.

[6] K. Pohl, G. Bockle, and F. van der Linden. "Software Product

Line Engineering: Foundations, Principles, and Techniques".

Springer, 2005.

[7] M. Reichert, S. Rechtenbach, A. Hallerbach, and T. Bauer,

"Extending a Business Process Modeling Tool with Process

Configuration Facilities: The Provop Demonstrator," BPM'09

Demonstration Track, Business Process Management

Conference, Germany, 2009.

[8] H. Tran, U. Zdun, and S. Dustdar, "View-based and Model-

driven Approach for Reducing the Development Complexity in

Process-Driven SOA," Int. Conference BPSC'07, 2007, pp. 105-

124.

Figure 11. The overhead evaluation

