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ABSTRACT 

The rationale for the definition of a set of paths referred to as “hyperpath” is that some 

uncertainty (for example waiting time) means that the choice of a specific option is not being 

pre-determined. Rather the  choice process is assumed to occur on two levels. At a “strategic 

level” a passenger defines a set of paths any of which might be potentially optimal, and at “a 

tactic level” a specific path out of these is chosen depending on events occurring en-route. 

This paper discusses that the same concept of hyperpath might also be true for passengers 

already on on-board a transit vehicle. The uncertainty in this case arises from the seat 

availability. The paper extends an earlier version of the frequency-based transit assignment 

model with seat capacity by Schmöcker et al (2009) to describe that passengers choose their 

alighting point depending on whether they have obtained a seat or not. This behaviour is 

compared to the “deterministic” case where passengers have decided their alighting point 

independent of whether they might obtain a seat or not during the journey. 

 

Keywords: Hyperpath, En-Route Decision, Sitting Capacity, Optimism  

INTRODUCTION 

Generally, “hyperpath” is an expression borrowed from graph theory, which in transport 

refers to a set of links that might be attractive from a node. More specifically, in the transit 

literature hyperpaths are usually utilised to describe the common lines problem at bus stops 

or stations. This means that to passengers often a number of lines are attractive, depending 

on, for example, which service arrives next at the bus stop. For instance, if the preferred bus 

mailto:schmoecker@trans.kuciv.kyoto-u.ac.jp
mailto:shimamoto@trans.kuciv.kyoto-u.ac.jp
mailto:kurauchi@gifu-u.ac.jp
mailto:a.fonzone@imperial.ac.uk
mailto:m.g.h.bell@imperial.ac.uk


Seat Capacity and Hyperpath Choice On-Board: Alight or Remain Seated? 
SCHMÖCKER, Jan-Dirk; SHIMAMOTO, Hiroshi; KURAUCHI, Fumitaka  

 

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
2 

has just left the stop when the passenger arrives, it might be faster for him to choose a 

slightly longer route rather than to wait for the next arrival of the preferred line.  

 

The rationale for the definition of a hyperpath is that some uncertainty (in the above example 

waiting time) means that the choice of a specific option is not being pre-determined. Rather 

the  choice process is assumed to occur on two levels. At a “strategic level” a passenger 

defines a set of paths any of which might be potentially optimal, and at “a tactic level” a 

specific path out of these is chosen depending on events occurring en-route. 

 

This paper discusses that the same concept of hyperpath might also be true for passengers 

already on on-board a transit vehicle. The uncertainty in this case arises from the seat 

availability which is known to influence passengers’ travel cost perception.  London 

Underground for example found that passengers perceive the cost for standing in a crush-

loaden train 2.7 the value of the actual travel time (LUL, 1988). The U.K.’s Passenger 

Demand Forecasting Handbook 2001 then reports that this value can even increase 

significantly depending on length of journey as well as journey purpose (ATOC, 2001). 

Similarly, in Tokyo it can be frequently observed that some passengers attach significant 

value to being able to sit. At line terminals passengers frequently do not board the first 

departing train but rather wait for the following service if they are certain to be able to sit, 

especially if this service is already available to board.  

 

It is therefore reasonable to assume that seat availability has an influence on passengers’ 

route choice at the stop as well as when on-board and should hence be considered in 

assignment models. At the station passenger will aim to select less crowded lines and once 

they have obtained a seat on-board, passengers might transfer later than passengers who 

are standing. Previous approaches, whether frequency- or schedule-based, have mainly 

focused on line capacities. In this case obviously on-board choice can be ignored. 

 

There has only been a limited amount of research on modelling the effect of in-vehicle 

congestion. The main complexity for this problem is the consideration of priority rules 

between sitting passengers, passengers on-board and newly boarding passengers. Simple 

crowding cost functions where the cost is depending on the number of passengers have their 

limitations. They do reflect the inconvenience among standing passengers with growing 

congestion but do not consider that sitting passengers will be only to a very limited degree 

affected by the line crowding.  

Paper Structure 

The following section firstly reviews the existing literature on frequency-based transit 

assignment considering congestion effects. Then a frequency-based transit assignment 

model that explicitly considers the likelihood of finding a seat is introduced. In this paper the 

focus is the explicit distinction of the “deterministic” case in which passengers have decided 

their alighting point at the time of boarding and the case where passengers choose their 

alighting point depending on whether they have obtained a seat or not. The network loading 

procedure is omitted for brevity as it has been described in an earlier version of this work 
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presented in Schmöcker et al (2009). This is followed by a fixed point problem formulation of 

the resulting assignment problem. The problem is solved with a solution algorithm that 

embeds the method of successive averages. Finally, the approach is applied to the London 

network and conclusions and areas of further work as well as model applications are pointed 

out. 

LITERATURE REVIEW 

Congested transit assignment has recently attracted significant research attention. Within the 

group of frequency based transit assignment models the capacity constrained assignment 

problem has been addressed by several authors either by using various forms of an effective 

frequency model (see e.g. Cepeda et al (2006) for a recent paper which also summarises 

previous work starting from De Cea and Fernandez (1993)) or by using “fail-to-board 

probabilities” (Kurauchi et al, 2003; Schmöcker et al, 2008). Within the group of schedule-

based assignment models the departure time as well as route choice under consideration of 

congestion have been addressed simultaneously. In particular Tian et al (2007) describe a 

schedule-based transit model that considers congestion effects including seat availability. 

They formulate an equilibrium model for a many-to-one network applicable for the morning 

commute into the city centre of large metropolitan areas. Reducing the model to a many-to-

one network has the advantage that it avoids the problem of standing passengers being able 

to find a seat during the journey through alighting passengers. Using a schedule based 

model allows to model further explicitly the optimal departure time considering schedule 

delays and the generalised travel cost. The paper illustrates that in an equilibrium situation 

some long distance commuters will travel before and some will travel after the peak. Tian et 

al further illustrate that the spread in optimal departure times increases the longer the travel 

distance as the travel costs of standing gain in importance compared to the early or late 

arrival penalties. 

 

Sumalee et al (2009) have developed a stochastic transit assignment model that explicitly 

considers the effect of seat availability on route choice as well as departure time choice. 

They consider priorities of on-board passengers over newly boarding passengers and further 

assume that a) passengers who are travelling further and b) passengers who have stood for 

a longer time have a higher motivation in chasing any free seats. Whereas the first 

assumption is intuitive the second assumption might be challenged as standing longer might 

mean that these passengers in fact have a lower motivation to find a seat. The assumption 

further introduces another complexity as “the past” has to be considered in modelling 

travellers’ behaviour at each decision point. The seat allocation is solved by a simulation type 

approach at each station allocating firstly all standing and then, in case seats are still vacant, 

all newly boarding passengers to seats. The model described in Sumalee et al (2009) is 

tested on a small example network, illustrating the effects of limited seat numbers on the 

service performance as well as the overall costs for passengers. Questions remain however, 

whether this model is feasible to be used for transit planning in large scale networks where 

an equilibrium finding approach that includes simulation might turn out to be too 

computationally expensive.  
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Schmöcker et al (2009) propose a simpler model to be used within frequency based 

assignment for transportation planning when on-board congestion is an issue. The approach 

considers the priority rules of already seated passengers as well as the priority of standing 

passengers over newly boarding passengers. It further assumes that all passengers on the 

platform have the same chance of finding a seat when boarding (“mingling” rather than 

FIFO). Similarly, it is assumed that passengers on-board have the same motivation finding a 

seat irrespective of their remaining travel time on this line. The perceived cost of standing is 

however thought to be distance dependent and hence influences route choice. As part of the 

perceived cost it is further considered that at each stop passengers might have the chance to 

find a seat through alighting passengers. An approach with similar assumptions has been 

developed by Leurent (2008). In their model, however, the loading along a line is based on 

route sections which can lead to complex network descriptions for long lines as there are 

arcs from each possible boarding point of the line to each possible alighting point. Each 

combination of boarding and alighting nodes is transformed into links for all possible stand 

and sit combinations. In his approach the mean cost for each route section is derived which 

is then used to find the optimal hyperpath. Leurent and Liu (2009) apply the approach to the 

Paris network and provide further evidence that considering seat availability can indeed have 

a significant effect on line loadings and overall passenger cost. They found that line loads 

change by up to 30% compared to a base case not considering seat availability. 

NETWORK DESCRIPTION AND NOTATION 

In contrast to the Leurent (2008) approach the model proposed here develops a more 

compact network description (at least when there are lines with a large number of stops) 

based on line sections rather than route sections. The model hence also does not rely on the 

mean or variance in costs over route sections. Instead “fail-to-sit” probabilities are introduced 

in order to be able to consider the influence of seat availability on passengers route choice in 

large scale transportation networks. The main idea of the approach is illustrated in Figure 1.   
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Figure 1: Network representation of a single platform 

 

The stop node (Stop) represents the bus stop or platform at which passengers wait for the 

service to arrive.  From each stop node passengers might be able to board several services. 

It is assumed that the common lines problem applies so that the hyperpath minimising 

passengers expected travel cost might contain non-zero boarding probabilities for several 

boarding nodes. Besides the stop node in total 5 nodes and 8 arcs are associated with each 

line. The names of the nodes are self-explanatory. All nodes except those  Stop are 

platform and line specific, i.e. nodes  Sit-Arr, Sit-Dep, Stand-Arr, Stand-Dep, Board can be 

uniquely identified by their platform u and their line l. For simplicity Figure 1 only illustrates all 

nodes and links associated with a single line at one platform.  

 

The S within the arc names stands for success or sitting whereas the F is used to describe 

failing (to sit). The eight arcs types are hence, SS: “keep sitting” (success + success), FF: 

“keep standing”, FS: “previously standing getting a seat”, BS: “board and sit”, BF: “Board and 

stand” and SA: “Sit and alight”, FA: “Stand and alight” and B: “Boarding”. Besides these line 

specific arcs at each stop node there might be a number of further walking arcs for 

passengers transferring to other platforms Tr as well as access arcs Ac and egress arcs Eg 

for passengers starting or ending their journey at this station.The second stop node in Figure 

1 indicates that a second line serves the same platform. The passenger’s choice is therefore 

to decide which line(s) to include in his hyperpath from each stop node. Alternatively the 

passenger might decide to take a walking link.  

 

Note that the network description with the “dual sitting and standing line” allows for a second 

choice not much discussed in the literature but which is a focus of this paper. Depending on 

whether the passenger has obtained a seat he might choose to stay on-board or alight.  This 

choice behaviour might be observed among commuters who can transfer at a number of 

stations. Depending on whether they obtained a seat they might decide to transfer at an 

earlier or later possibility. Alternatively one might assume that passengers determine their 

alighting point independent of whether they obtained a seat or not. It will be discussed in this 
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paper that this assumption is mathematically more convenient as it more likely leads to a 

unique solution. 

Flow independent variables: 

O: Set of origins (with o  O) 

D: Set of destinations (with d  D) 

L: Set of transit lines (with l  L and l(a) denoting the line of arc a)  

seatl: Number of seats on line l 

fl: Frequency of transit line l  

Ul: Set of platforms served by line l (with u  Ul and p(u)l denoting the platform 

of the previous station of line l and u(a) denoting the platform of the head 

node of arc a) 

I: Set of nodes (with i  I) with subsets Sit-Arr, Sit-Dep, Stand-Arr, Stand-Dep, 

Board, Stop  I nodes as illustrated in Fig.1 

A: Set of arcs (with aA and Aih denoting the forward star of node i that are 

included in hyperpath h) with subsets SS, FS, FF, BS, BF, SA, FA, B, S, F, 

Ac, Eg, Tr  A as illustrated in Fig. 1 

ca: Cost of travelling on arc a connecting nodes i and j  

SP: Standing penalty, indicates the increase in perceived cost if standing 

compared to being seated.  

Out(a): The tail node of arc a  

In(a): The head node of arc a  

yod: Demand from origin o to destination d  

Hod: Set of all feasible hyperpaths between OD pair od (with h  Hod) 

Ph:  Set of elementary paths within hyperpath h (with p  Ph) 

gh: Cost of travelling hyperpath h from origin o to destination d 

wih: Expected waiting time at node i when travelling on hyperpath h 

Flow dependent variables: 

xa: Passenger flow on arc a (with 
od

ax denoting the OD specific arc flow) 

vi: Passenger flow vector traversing node i (vid: and destined for d) 

BS

iq : Fail probability to get a seat for newly boarding passengers at node i  

Board 
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FS

iq : Fail probability to get a seat for on-board standing arriving at node i  Stand-

Arr 

spa
i:  Vacant seats at node i after passenger alighted (before new passengers 

boarding) 

spr
i:  Remaining vacant seats at node i (after all passengers boarded)  

zh: Flow on hyperpath h within the set of used hyperpaths to destination d 

ah:  Probability of using arc a when travelling on hyperpath h  

ih:  Probability of traversing node i when travelling on hyperpath h  

ah: Probability of choosing arc a when traveller is at Out(a) and travelling on 

hyperpath h. Similarly, ad denotes the probability of choosing arc a from 

Out(a) and travelling to destination d. Let h and d denote the 

corresponding arc and node transition matrices.  

Note that the above network description ensures that the Markov property holds. This means 

that arc split probabilities only depend on the traveler’s current node position which can be 

expressed as h = d for the shortest hyperpath h from all origins o with the same 

destination d. This important property is utilised in the following to establish priority rules and 

for route choice. 

PRIORITY RULES 

For simplicity the model used here assumes that all passengers wishing to board a service 

are able to do so, meaning that the capacity of standing arcs is not limited. Therefore, once a 

service that is within the set of attractive lines has arrived the passenger only faces 

uncertainty whether it is possible to find a seat. It is assumed that all passengers prefer to sit. 

This is expressed as the path split between successful transferring to the Sit-dep node or 

(unsuccessfully) transferring to the Stand-dep node. The passengers who are already on 

board are assumed to have priority over the newly boarding passengers in two ways: Firstly, 

passengers arriving at a station sitting (Sit-arr) are guaranteed a seat, so that they either 

alight or remain sitting. Secondly, passengers arriving standing (Stand-arr) who do not alight 

are further assumed to have priority over the passengers newly boarding, i.e. these 

passengers have a prior chance to occupy any seat that might become vacant through 

alighting passengers. These priority rules can be expressed as follows: 
 

ulSl xseat     ,  LlUu l    ,   (1) 

ulululul BSFSSSS xxxx        ,  LlUu l    ,   (2) 

 with    
ullupulul FAFFSFS xxqx 

)(
1

 

(3)

 

 

and     
ululul BBSBS xqx  1

 

(4)

  

 
ulullupulululul BBSFAFFSBFFFF xqxxqxxx 

)(
                         ,  LlUu l    ,   (5) 
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 with   FAFFSFF xxqx
lupulul


)(

 

,  LlUu l    ,  (6)

  and  
ululul BBSBF xqx  

 

,  LlUu l    ,  (7)

  

 
 






























otherwise1,min1

  if0

:

)(

)(

ullup

ul

ullup

FAF

SSl

FAF

FS

ul

xx

xseat

xx

q    , LlUu l  ,    (8) 

 


































 





otherwise1,min,0max1

 0 if0

:

ul

ulul

ul

B

FSSSl

B

BS

ul

x

xxseat

x

q  , LlUu l  ,    (9) 

  

Where xa denotes the flow on arc a.. Eq. (1) ensures that the overall seat availability of the 

service is not exceeded. Eq. (2) and (3) describe the flows of the passengers leaving the 

station sitting and standing respectively. To ensure the seat capacity constraints are kept the 

probabilities describing the chance of not getting a seat for those who were already on board 

but are standing and those newly attempting to board – qFS and qBS respectively – need to be 

adjusted. These adjustments are done with Eq. (4) and (5), which imply that 

 FS

ulq is non-zero or all passengers who boarded line l before it arrives at station u have 

found a seat already which means also that there might be seats available for 

passengers boarding the service at this station.  

 
BS

ulq is non-zero or all passengers boarding the service anew at this stop have found a 

seat which means that there might be still empty spaces after the departure of the 

service from current station u. 

 Fail probabilities are by default set to zero when there is no flow, i.e. when all 

passengers alight  
FS

ulq is zero, or, when no one is boarding then 
BS

ulq  is zero. 

 

Note that from the priority rules two useful propositions can be established. 

 

Proposition 1: 
FS

iq > 0   
BS

iq  = 1 

Proof: The proof of this lemma follows directly from the priority rules. If not all passengers 

already on-board can obtain a seat, none of the passengers newly attempting to board will 

be able to obtain a seat. 

 

Proposition 2: 0 <
BS

iq < 1  0qFS

i   

Proof: This proof follows in the same way as Lemma 1. If at least some passengers newly 

boarding can obtain a seat, all of the passengers with higher priority must have obtained a 

seat. 
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ROUTE CHOICE  

Generalised Cost function 

The waiting time at a node is given by (10) which assumes an exponential distribution of the 

vehicle arriving times with the mean being their nominal frequency, but alternative 

assumptions are also possible as discussed in Nökel and Wekeck (2009).  Aih denotes the 

hyperpath specific set of arcs included among the outgoing arcs from node i. 






ihAa

a

ih
f

w
1

hSi
 (10) 

 

Following assumption (10) and Spiess and Florian (1989) the split between lines that are part 

of the optimal hyperpath is given by (11). 

 






ihAa

a

a
ah

f

f


hBa
 (11) 

For boarding nodes as well as all other nodes flow conversation is observed by (12). In 

particular for Stand-Arr nodes this means that the sum of the transition probabilities for 

alighting (FA), keep standing (FF) and sit-down (FS) arcs must add up to 1. 

 

1
ihAa

ah 




 (12) 

As in Nguyen and Pallentino (1988) let the probability of choosing any particular path p of a 

hyperpath h, p, be denoted as 





h

ap

Aa

ahp




, hPp
. (13) 

with ap equal to 1 if arc a is an element of path p and 0 otherwise. It follows therefore that 

1
 hPp

p

 (14) 

Further ih is defined as the “probability of traversing node i when travelling hyperpath h” and 

εip is equal to 1 if node i is an element of path p and 0 otherwise so that 

 





hPp

pipih 

, hIi
 (15) 

ah is defined as the probability of using arc a when travelling hyperpath h, so that 
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



hPp

papah 

, hAa
 (16) 

Using the definitions for ih and ah, the notation of the generalised cost for travelling on 

hyperpath gh can be described as: 

 





hhh Fa

aah

Sa

aah

Stopi

ihihh cSPcwg 

 (17) 

 

Costs occur at the stop nodes Stoph that are part of the hyperpath as well as on sitting line 

arcs Sh and standing line arcs Fh. In (10) wih is hence the expected waiting time at boarding 

node i and ca the travel time on sitting and standing links. Standing is further penalised by 

the factor SP. A standing penalty SP > 1 means that the probability of getting a seat is one 

factor in passengers’ route choice and hence needs to be reflected in the search for the 

optimal hyperpath. Note that SP < 1 is unreasonable as it would imply that people are more 

willing to stand than to get a seat and that SP = 1 indicates the same perceived cost for 

travelling standing or sitting which implies that finding a seat is not a factor for route choice.  

ih and ah represent the probabilities of traversing node i and link a respectively when 

travelling on hyperpath h. 
 

Kurauchi et al (2003) show that for a cost function with the same first two cost elements as in 

(17) plus a nonlinear third term depending on capacity constraints the node costs are 

separable as in (18). Since (17) is identical except that the third term is replaced by a linear 

cost function similar to the second term the proof can be easily repeated and is omitted for 

brevity. The applicability of the Bellmann principle is also the basis for the hyperpath search 

described in the following. 
 

 
 

 







































otherwise

Boardmin

DepStand

DepSit

*

*

h

Aa

a

Aa

*

ha

AA

*

ha

*

ha

h

j

*

*

j

i
*

j

j

i

g

iif
f

gf1

iifgcSP

iifgc

d,if0

g

 (18) 

Finding the optimal path set  

The following algorithm determines the optimal hyperpath for a passenger travelling to 

destination d from all origins considering fail probabilities qFS and qBS. The cost gi hence 

denotes the cost of a node i to destination d and at termination the cost gi is equivalent to 

gh(id) under current flow conditions.  

 

The path costs are calculated taking into account the chance of having to stand initially as 

well as the probabilities to find a seat at subsequent stations. In other words, moving 
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upstream from the destination, the node costs at Board as well as Stand-Arr node are 

updated taking into account the given fail probabilities. This search continues until the origin 

is reached. Finally, Step 5 is added which forces passengers to add the standing path to their 

set of paths if the parallel sitting arc is part of their hyperpath.  

 

Algorithm 1: Hyperpath Set Determination  
(Input: Network description, link costs, SP, qBS , qFS) 

 
For each d  o with Xod > 0 

 
Step 1 (Initialisation) 

 

Set:  M1 :=A, M2:=  , M3:= ; 

  gi :=,  dIi  , gd:=0; 

     
 

Step 2 (Finding a node of minimum cost from the destination) 

 Find a* such that  )(* *

1

minarg aIn

a
Ma

gca 


; 

 Set  M1:=M1-{a
*}, M2:=M2 +{a*}; 

 
 

Step 3 (Updating node labels) 

 if   StopaOut *
 and   BoardaIn *

 then 

Find a set of arcs, such that 

 

 

 













*

*

2
*

)(

)(

1

min:

Aa

al

Aa

aIn

al

MAA

aOut

f

gf

g
i

;  2MAa i  ,  

if 
*Aa  then   Set M2:=M2-{a}, M3:=M3+{a}; 

 

 else if   BoardaOut *
   

if      















*u

**

*u*

1)( aa
depSit

BS

aOut

BS

aOut

depStand
aOut gqqgg  then 

 

        















*u

**

*u*

1:)( aa
depSit

BS

aOut

BS

aOut

depStand
aOut gqqgg  

  else 
   Set M2:=M2-{a

*}, M3:=M3+{a*}; 

 else if   arrStandaOut *
  and StopaIn )( *

 

if      















*u

**

*u*

1)( aa
depSit

FS

aOut

FS

aOut

depStand
aOut gqqgg  then 

        















*u

**

*u*

1:)( aa
depSit

FS

aOut

FS

aOut

depStand
aOut gqqgg  

  else 
   Set M2:=M2-{a

*}, M3:=M3+{a*}; 

 
 else 
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  if )()( *

*

* aIn

a

aOut gcg   then 

   )()( *

*

*

: aIn

a

aOut gcg   

  else 
   Set M2:=M2-{a

*}, M3:=M3+{a*}; 

 
 
Step 4 (Iteration, Termination of Arc Search Loop) 

 Repeat (2) to (4) until M1= 
 
Step 5 (Add BF and FF arcs to hyperpath) 

BFMa  3  

 Find a’  BS with platform u(a’) = u(a) and line l(a’) = l(a)  

if a’ M2 then 
Set M2:=M2+{a}, M3:=M3-{a

*};  

FFMa  3  

 Find a’  FS with platform u(a’) = u(a) and line l(a’) = l(a)  

if a’ M2 then 
Set M2:=M2+{a}, M3:=M3-{a

*};  

Transition Probabilities 

Once the set of optimal links has been determined, the optimal hyperpath for each OD pair 

can be determined. The split among paths is defined in (11) and the split among the sitting 

and standing lines considers the fail probabilities in order to observe the priority rules. 

 

Algorithm 2: Arc Split Determination (Input: Line frequencies, M2, q
BS

 , q
FS

) 

 

For each d  o with yod
 
> 0 

 

2Ma  set  a =0, 

 2Ma , 

if   StopaOut   then 

   



2

)()(

MAa

alalah

i

ff   

  else if   BoardaOut   then 

   
 





 


otherwise

)(if

)(aOut

BS

aOut

ah
q

depSitaInq1
  

  else if    ArrStandaOut   then 

   
 





 


otherwise

)(if

)(aOut

FS

aOut

ah
q

depSitaInq1
    

  else 

   1ah ;  
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Note that for a single hyperpath at arrival nodes either the alighting links or the remain on 

board links (SS arc from Sit-Arr and {FS, FF} arcs from Stand-Arr) are attractive.  In the 

equilibrium solution presented in the following, however, several hyperpaths might be 

attractive, so that the split between alighting and remaining on board is not binary anymore. 

Further, if the passenger’s choice of transfer point is assumed to possibly depend on having 

obtained a seat or not, this means that a standing passenger possibly prefers to alight earlier 

whereas a sitting passenger prefers to alight later. To assume the opposite, i.e. that a 

traveler decides his alighting point at the time of boarding requires that (19) is fulfilled. In the 

hyperpath search this “predetermined alighting” might be introduced by the adjustment to the 

arc split probabilities described in Algorithm 3. This guarantees that both standing and sitting 

passengers alight with a probability ζ. This probability might be interpreted as conditional 

pessimism or risk-aversion, in case the shortest route differs between sitting and standing 

passengers. The pessimistic passenger with ζ = 1 had decided to alight from this station 

when boarding (following the shortest hyperpath from the Stand-Arr node), whereas the 

optimistic passenger with ζ = 0 had decided to remain on board (following the shortest 

hyperpath from the Sit-Arr node).  

 

Ensuring (19) through Algorithm 3 allows establishing Proposition 3. The following section 

will then utilise this proposition to establish proofs on the convergence. 

 

hSAhFA ulul
 

  

HhLlUu l    ,  ,  (19) 

 

Algorithm 3: Pre-determined alighting adjustment (Input: FA, SA, SS, ζ) 
 

HhLlUu l    ,  ,

 01 hSAhFA ulul
   and   if  

 

 hFAul

 

 

 hSAul

 

 

 1hSSul
 

 

Proposition 3: If (19) is fulfilled, then, for a given set of hyperpaths, the demand for a line at 

each station is independent of the fail probabilities. 

  

Proof: The boarding demand Bul is determined by the arc split at stop nodes which are fixed 

according to (11) and independent of fail probabilities. Further, the incoming arc flows at stop 

nodes from walking arcs are determined by the transition probabilities in Algorithm 2 and 

independent of fail probabilities. Finally, Eq. (19) implies that the demand at stop nodes from 

alighting passengers is independent of the proportion of passengers that are sitting or 

standing. In conclusion, the sum of the incoming (and outgoing) demand at stop nodes and 

hence for lines is independent of qFS and qBS. Qed. 
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NETWORK LOADING AND DUE SOLUTION 

The arc split probabilities can be converted into network flows by the simple method in 

Spiess and Florian (1989) where the demand is loaded from its origin in the order of 

decreasing link costs plus node potentials. Though the method is feasible it is 

computationally expensive as it requires a loop over all OD pairs.  Kurauchi et al (2003) or 

Schmöcker et al (2008) utilise instead the Markov property of the network to assign demand, 

which is the approach also utilised in this research. As this approach has been published and 

is not focus of this paper, for brevity only the complementary slackness conditions that must 

apply at the equilibrium are  given: 

Network Equilibrium Conditions 

Let H* be defined as the set of optimal hyperpaths to destination d. Firstly, the user 

equilibrium implies that for all destinations H* is empty or the cost difference g' between the 

used hyperpaths h and all other (unused) hyperpaths h’  H is zero (Wardrop principle). This 

can be expressed with (27) where the cost difference g' is defined as in (28) and zh
* is the 

flow on the hyperpath h in the set of optimal hyperpaths H*. The cost of the minimum cost 

hyperpath in H*
od is denoted as min

odg . The problem becomes a fixed point problem as route 

costs depend on the failure probabilities, which themselves depend on the route flows which 

in turn depend on route costs. For simplicity only in the first line of (27) the functional 

dependencies of qBS and qFS are denoted.  

 

  0),(),,(, *****'*  seatsxqseatsxqz
FSBS

hh gz ,  

  0qqzg
FSBS 

***' ,, , odHh Dd Oo  (20) 

 

  min***'
,, odhh ggg FSBS
qqz , odHh Dd Oo  (21) 

 

Secondly, for each boarding point of each line it must be true that either qi
FS (the fail-to-sit 

probability for passengers already on-board) is zero or all seats must be filled before any 

newly boarding passengers can attempt to find a seat. Thirdly, qi
BS (the fail-to-sit probability 

for newly boarding passengers) must be zero or there must be no spaces left when the 

vehicle is leaving the stop. These latter two complementary slackness conditions are 

expressed with (29) for stand-arrival nodes (Stand-Arr) and (31) for boarding nodes (Board); 

spa denotes the available seats after passengers have alighted and before new passengers 

are boarding and spr denotes the seats remaining empty after the service has left the 

platform.  

 

   0
***
 FSaFS

qzspq ,   0qzsp
FSa 

**, , 10 
*
 FS

iqi  (22) 

with  

ulul FSSSl

a xxseatssp ul , LlUu l  ,  (23) 
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   0
***
 SrS

qzspq
BB ,   0qzsp

Sr 
**, B , 10 

*
 BS

iqi  (24) 

 
with  

ulsitl

r xseatssp ul , LlUu l  ,  (25) 

 

In summary, the assignment has to find (z*,qFS*,qBS*) such that (20), (22) and (24) are 

fulfilled. The existence of a solution to this fixed point problem is guaranteed as any demand 

exceeding the seat capacity can be simply assigned to the uncapacitated standing arcs with 

non-zero failures to sit. However, Leurent (2008) show that in general multiple solutions to 

the assignment problem might exist that fulfill (20). Uniqueness can only be guaranteed for 

specific cases. Firstly, for SP = 1 uniqueness is guaranteed as only a single hyperpath for 

each OD pair will be used. Secondly, for very large SP multiple solutions become less likely. 

This is because with increasing SP the relative importance of standing in the generalized 

cost function increases. Therefore, only that split of hyperpaths on which passengers 

experience least standing and other hyperpath combinations are less likely to be attractive. 

Further, the following section shows that for each set of hyperpaths used a unique solution 

exists that fulfills (22) and (24). 

Correction algorithm and solution uniqueness 

To fulfill conditions (22) and (24) for a given set of hyperpaths for each OD pair an iterative 

procedure is developed (Algorithm 4). In Step 1 of the first iteration the transition probabilities 

of all arcs are obtained. In Step 1 of subsequent iterations it is sufficient to update only the 

transition probabilities for the arcs that have a boarding node (Board) or a Stand Arrival node 

(Stand-Arr) as outgoing nodes. 

 

Algorithm 4: Correction of  fail probabilities (Input: Network description, Ah, q
BS

 , q
FS

) 

 
Repeat Steps 1 to 3 until qFS and qBS cease to change 

Step 1: Obtain transition probabilities (Alg. 2 and 3)  d (Ah, q
FS, qBS) 

Step 2: Network loading (as in Section 6.1)  x (d) 

Step 3: Update fail probabilities (with Eqs. 8 and 9)  qBS(x,seats), qFS(x,seats) 

 

Proposition 4: The correction algorithm (Alg. 4) finds a unique solution for a given set of 

hyperpaths that fulfills the capacity constraints (22) and (24) in case (19) is fulfilled (pre-

determined alighting).  

 

Proof: Since Ah is assumed to be fixed a unique solution is obtained if qBS as well as qFS are 

unique. The uniqueness of qFS follows from Lemma 1 and that of qBS from Lemma 2. 

 

Lemma 1: The fail to sit probabilities qFS are unique for a given set of hyperpaths if (19) is 

fulfilled.  
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Proof: Suppose the fail-to-sit probabilities for passengers already on board are not unique, 

i.e. suppose that there are two values 'FS

iq > FS

iq  > 0. This implies that x’FF = xFF + δ and x’FS 

= xFS – δ. Further, x’BS = xBS = 0 according to Proposition 1 and hence also x’FS = xFS since the 

boarding demand xBS + xFS must be constant according to Proposition 3. Since 'FS

iq > 0 

means that the capacity constraints must be fulfilled this implies further that (1) must be an 

equality.  Therefore (2) implies that x’SS = xSS – δ. This leads to a contradiction as  Proposition 

3 and (13) imply that the total demand for passengers continuing to travel on the line at a 

station is constant, i.e. x’Sp(u)l + x’Fp(u)l = xSp(u)l + xFp(u)l. However, x’SS  + x’FF  + x’FS  = (xSS  + δ) + 

(xFF  + δ) + (xFS – δ) > xSS  + xFS  + xBS. 

The proof for 'FS

iq < FS

iq  can be derived in the same way leading to x’SS  + x’FF  + x’FS  = (xSS  - 

δ) + (xFF  - δ) + (xFS + δ) < xSS  + xFS  + xBS. Finally FS

iq = 0 for all stations implies that no 

capacity constraints are active, so that any  'FS

iq > 0  implies that passengers are standing 

though seats are available which contradicts the definition of the fail probabilities in (8). Qed. 

 

Lemma 2: The fail to sit probabilities qBS are unique for a given set of hyperpaths if (19) is 

fulfilled.  

 

Proof: Suppose the fail-to-sit probabilities for passengers newly boarding are not unique, i.e. 

suppose that there are two values 'BS

iq > BS

iq . This implies that x’BS = xBS - δ and x’BF = xBF + 

δ. Since less passengers obtain a seat this must mean that more passengers of the already 

on-board standing passengers are able to sit. This means that 'FS

iq < FS

iq which leads to a 

contradiction according to Lemma 1. Alternatively, if no on-board passengers are standing, 

this leads to a direct contradiction of the capacity constraints and the definition of the of the 

fail probabilities in (9). The proof for 'BS

iq > 
BS

iq  can be derived in the same way leading to 

'FS

iq > 
FS

iq and a contradiction according to Lemma 1. Qed. 

 

Proposition 5: If uniqueness is guaranteed, the solution of the correction algorithm is found in 

a maximum of 2n - 3 iterations where n is the number of stations of the longest line in the 

network. 

 

Proof: In the first iteration of the correction algorithm the final value for 
BS

iq of the starting 

node i of the line can be found as both seats and demand 
iBx  are unique and 

iSSx as well as 

iFSx must be zero. This means that in Step 2 of the second iteration the final values for 
iSx , 

iFx as well as 
1iSSx are found where i+1 is the downstream station of i. Therefore in Step 3 of 

the second iteration the final value 
FS

iq 1 is found. Hence in the third iteration the final value for 

BS

iq 1 are found and so on until the end of the line. Since 
BS

iq ,
FS

nq and 
BS

nq  are all necessarily 

zero the unique solution can be found in a maximum of  2n - 3 iterations. Qed. 

 

Note that in practice the correction algorithm terminates much faster. Whenever the final 

value of a node at any location on the line is found in subsequent iteration also the fail-to-

board probability of the downstream node can be finalized. Therefore, especially in networks 
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with low level of congestion with large numbers of nodes having zero fail-probability, often 

final values of several line sections are found within the same iteration. Therefore, though in 

Step 2 network loading can be computationally expensive, the above correction algorithm is 

in most cases faster than sequential loading of each line similar to Leurent (2008) which 

would be an alternative way to ensure the capacity constraints. 

Solution algorithm for a DUE Solution 

 

From (22) follows that a gap function to assess the distance of a solution to an equilibrium 

solution is 

 

  minmaxmax odh
Hhod

ggG
od


  

(26)
 

 

Assessing (26) is however not suitable for large scale problems as it would require 

calculation of costs on each hyperpath used.  In analogy to Cepeda et al (2006) a feasible 

gap function based on destination specific arc flows can be derived. Cepeda et al`s proof is 

based on the Bellmann property of node cost separability as in (18). If at all nodes, costs on 

all outgoing arcs that are part of the set of optimal hyperpaths plus node costs of the 

downstream nodes are equal then equilibrium conditions are fulfilled. According to (17) and 

considering the network in Figure 1 this condition is trivial for all nodes in the model proposed 

here except for stop nodes, since either all outgoing arcs carry no cost or there is only one 

outgoing arc which hence must be part of all hyperpaths.  This leaves a proof for the stop 

nodes at which the split between optimal hyperpaths occurs. Whereas in the Cepeda et al 

(2006) problem the frequencies of lines are dependent on line flows, frequencies are 

assumed constant here which reduces the complexity. In analogy to Section 3.2 in Cepeda 

et al (2006) following theorem can be posed and proven:  

 

Eq. (27) must hold for all feasible flows and the inequality will become an equality at 

equilibrium. 








Aia

d

a

i

al

d

a

Aa
Aia

d

a

aIn xg
f

x
xg

i
)(

)( max  Stop  (27) 

 

The general proof for flow dependent frequencies can now be simplified as follows: In (11) 

flows at stop nodes are split according to frequency, hence  







 

'

)'(

)(

ah

ha

al

al

h

d

a
f

f
zx  (28) 

Since the shortest arc will be an arc which belongs to every used optimal strategy, it follows 

for the second term in (27) that the maximum will be 









a 

'

)'()(

max
h

ha

al

h

al

d

a

Aa f

z

f

x

i

 (29) 

And therefore (27) can be restated as 
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
 






iid Aa

d

a

i

Hh

ha

al

alaj

h xg
f

1fg
z

)(

)()(
 (30) 

 

At equilibrium this becomes an equality since the left hand side of (30) is simply the sum over 

the node costs of the downstream nodes plus the waiting time (10) which completes the 

proof. From this theorem it follows directly that minimization of a gap function based on 

network flows leads to equilibrium conditions. 

 

The cost of a hyperpath in (17) is determined by flow independent costs ca, wih and SP as 

well as the flow dependent probability of finding a seat which are determined by qBS and qFS. 

Minimising the gap function means hence to find the set of optimal qBS and qFS or, 

equivalently, arc split probabilities at boarding and stand-arrival nodes. For an iterative 

solution algorithm that ensures convergence to (at least locally optimal) equilibrium flows, the 

variation in fail probabilities between iterations k and k-1 can hence approximately describe 

the distance to an equilibrium solution. In summary, an even simpler approximate gap 

function can be described as: 

 

        




 









1kFS

i

kFS

i
i

1kBS

i

kBS

i
i

qqqqG
ArrStandBoard

max,maxmax
 

(31) 

 

A general procedure to solve fixed point problems is the Method of Successive Averages 

(MSA) applied in the following with the correction algorithm embedded to update the sitting 

probabilities according to the line flows. In each MSA the shortest hyperpath is found for 

each destination as discussed in Section 5. In the embedded correction algorithm (Algorithm 

4) the averaged flows from this and previous iterations are then taken into account to find fail 

probabilities that fulfill the latter two constraints of the complementary slackness conditions 

(22) and (24) of the equilibrium problem. Only the split between hyperpaths found needs to 

be averaged which are determined by the arc split at boarding nodes as well alighting 

probabilities. Note that the correction algorithm itself does not include an MSA like averaging 

as the iteration counter m is only updated in the main MSA loop. The arc splits between 

sitting and standing arcs are updated in each iteration as in Algorithm 4. All other arcs are 

either part of the hyperpath or not, which corresponds to binary arc split probabilities.  

 

The process is repeated until convergence. To explore a possible variety in local optima the 

below MSA should be repeated with different initial values for  kBS
q and  kFS

q .  

 

Solution algorithm (Input: Network description, SP, ζ) 
 

Initialisation 

Iteration counter m   = 0 

Fail probabilities Set
BS

iq  iBoard  and 
FS

iq  iStand-Arr  by random number  

  between 0 and 1.  
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Arc splits m

dπ  = 0 d 

 

Repeat until G <  

Update iteration counter m  m+1 

Hyperpath search (Alg. 1) Ah (q
BS, qFS, link costs c, SP) 

Obtain transition probabilities (Alg. 2) aux

dπ  (Ah, q
BS, qFS) 

Predetermine alighting prob. (Alg. 3) Adjust aux

dπ if  required  

Add arcs to hyperpath 
m

daπ , 1 if 
aux

daπ , =1   

 (sitting and standing arcs)  a S, F 

Average path splits 
m

daπ , ( 
1m

daπ


, + (m-1) *
aux

daπ , ) / m    

 (boarding, alighting and walking arcs)  a B, FA, SA, SS, Ac, Tr, Eg 

                

Repeat until qFS and qBS cease to change  (Embedded Alg. 4, Correction algorithm) 

  

Update board and sit proportion 
m

daπ ,  
aux

daπ ,      

  a BS, BF 

Update stand and sit down proportion  
m

daπ ,   m

dFA

aux

da alau
π1π ,, )()(

     

  a FS,FF 

Network loading (as in 6.1) x (
m

dπ ) 

Update fail probabilities (Eqs. 8 and 9) qBS (x, seats);  qFS (x, seats) 

 

LONDON CASE STUDY 

In order to illustrate the feasibility of the concept to be applied to larger networks the model 

has been applied to the inner part of the London Underground network as shown in Figure 4, 

which includes 74 stations and 11 lines. Different branches of District and Northern lines 

have been modeled as different lines; the resulting network consisting of 14 transit lines 

(corresponding to 28 oriented lines) and 297 transit arcs. With the network description as in 

Figure 1 this results in a total of 1751 nodes and 3233 arcs being created. 
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Figure 4: London Underground network modeled (taken and adjusted from Transport for London) 

 

The model has been run for demand and supply of transit services in the morning peak hours 

(7 – 10 am) with data on run times, walking times between platforms and demand data 

obtained from Transport for London. All demand and supply data correspond to timetables 

and observations made in 2001. In the OD matrix 2,830 non-zero elements generate a total 

of 636,904 trips for the 3hour period. 

 

The hyperpath search for this network size is still very fast requiring less than a second. A 

single iteration of the correction algorithm including assignment requires around 1min on an 

Intel® Core™ Duo CPU with 2.99 GHz, 1.93 GB RAM. Simulations have been carried out 

with SP equal to 1, 2, 3 and 5. Initialisation with random seeds has been tested and the 

model has further been run with and without predetermined alighting. For low SP the 

alighting behaviour assumption does not make a significant difference in the convergence 

behaviour but for SP=5 no solution to the correction algorithm can be found in case the 

adjustment of Algorithm 3 is omitted. This is because of the above discussed effect that for 

large SP the correction itself influences demand at stop nodes preventing convergence.  The 

following figures therefore show the results assuming predetermined alighting, with ζ as 

indicated. 

 

Convergence of destination specific arc flows and the approximate gap measure (31) for 

SP=2 is illustrated in Figure 5. It appears that depending on the initialization of the fail 

probabilities the MSA converges to slightly different solutions, though the differences are not 

significant. For SP = 3 on 10 arcs (out of 596 sitting and standing arcs) the difference 

between flows is above 100 passengers. On all these links this is, however, less than 3% of 

the total flow. For SP = 2 the difference on all links is less than 100 passengers. Figure 6 
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illustrates the convergence behaviour of the correction algorithm. The longest line in the 

network is the circle line with 28 stations, so that according to Proposition 5 at most 53 

correction algorithms are required. The figure shows that this condition is fulfilled. Increasing 

ζ also leads to a slight increase in the average number of correction algorithms per MSA. 

This is because with more pessimism the total number of boardings and alightings increases.  

 

 
Figure 5: Convergence of the MSA (SP= 2, ζ=0.5) 

 

 
Figure 6: Number of correction algorithms needed per MSA iteration for different SP 

 

Figure 7 illustrates the overall congestion in the London network. In all modeled scenarios at 

least 155 out of the 298 arcs are crowded, i.e. all seats are taken. Interestingly with higher 

SP the total number of congested links is increasing rather than decreasing, illustrating the 

priority effects as well as that a large number of passenger do not have attractive options to 

avoid crowded lines. Therefore also the calculation time increases for higher SP as more 

iterations for the correction algorithm are needed within each MSA to fulfill equilibrium 

conditions (Figure 7). The most congested line sections can be found on the Victoria line as 

well as the Central line which corresponds to observations. In particular some sections of the 

fast Victoria Line loose passengers with higher SP as some transfer to slower but less 

crowded alternatives (e.g. Victoria Line section between Euston and Warren Street: 45974 

passengers for SP1 and 41446 passengers in SP2). The effect of ζ on the number of 
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congested arcs is minimal, though the loads on single arcs varies by up to 7800 passengers 

for SP=5, comparing solutions of ζ=0 and ζ=1. 

 

 
Figure 7: Number of arcs with fail probability > 0 (ζ = 0.5) 

SUMMARY AND APPLICATIONS 

This paper proposes an equilibrium transit assignment approach that explicitly considers seat 

availability and the resulting priority rules for on-board and newly boarding passengers. The 

network is represented as a sitting and a standing line with standing passengers being able 

to “upgrade” at each station to the “sitting line” because of seated passengers alighting. 

Though this approach requires a large number of nodes and arcs for the network description 

a solution to the hyperpath search and user equilibrium assignment problem is presented 

that is feasible to be applied to large networks.  

 

Besides a general desire to sit expressed as “standing penalty” in the generalised cost, the 

approach further allows to distinguish passengers with and without predetermined alighting 

point decisions. Those without predetermined alighting point might transfer later if they have 

obtained a seat than those not having obtained a seat. To model the behaviour of those with 

predetermined alighting point a second parameter ζ, referred to as coefficient of optimism, is 

introduced. The higher ζ, the more passengers expect to obtain a seat and follow the 

shortest route suggested under these “optimistic conditions”. The assumption of en-route 

alighting point decisions might be more realistic, at least for passengers who are familiar with 

the network and its various transfer options. In the proposed model, it is however also shown 

that only under predetermined alighting conditions, convergence can be proven.  

 

The approach has been tested with an application to the inner part of the London 

Underground network. When the importance of being able to travel seated increases (higher 

SP) passengers tend to split among more lines resulting in rather different equilibrium 

solutions. Our results hence confirm the importance of considering standing penalties for 

transit assignment problems. It is also found that ζ can have a significant influence on the 

line split. 
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The approach presented here using “fail-to-sit probabilities” clearly has similarities to 

previous work by the same authors on fail-to-board probabilities to consider capacity 

constraints. A straightforward extension of this work is therefore to include “fail-to sit” as well 

as “fail-to-board” probabilities in the same model. In this way the total capacity as well as the 

seat capacity of lines can be considered. Further, one could add a BPR type function for the 

costs on standing links in order to reflect the increasing inconvenience by standing in 

crowded trains or buses. Schmöcker et al (2008) extend the fail-to-board approach to 

consider dynamic effects. The same ideas can also be transferred to the approach presented 

in this paper to consider the changing availability of seats during the day. The main 

complexity of the Schmöcker et al (2008) approach is how to reassign passengers who have 

to wait at the platform for the next service because of insufficient total service capacity. In the 

seat capacity model “failed passengers” can be simply assigned to the standing links, hence 

avoiding  these problems. 

 

The model can be used in several ways. Firstly, a direct application is for transport planning 

purposes to better understand the influence of providing more seats either through service 

frequency variations or through changed vehicle configurations. Further, the effect of turning 

vehicles short or, mainly for bus services, changing the route of services will have an effect 

on the equilibrium as in particular passengers from the new terminals will have an increased 

chance to obtain a seat. Secondly, the model could be used to provide customers with 

information about the “average” seat availability from stops. For some passengers groups 

this information might be a decision criterion before deciding on a particular route. Whereas 

passengers at bus stops expect information about loads of the next arriving service, a static 

model as presented here could be used at the journey planning stage. Information could be 

given, for example, when passengers are selecting their route via a “journey planner” 

webpage. Currently often expected travel times, number of interchanges and walking times 

between platforms are given as information to choose between different route options. 

Adding information on the probability of finding a seat, especially at the boarding point, could 

be a useful addition. 
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