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Abstract

Counting the number of leaves in plants is important for plant phenotyping, since it
can be used to assess plant growth stages. We propose a learning-based approach for
counting leaves in rosette (model) plants. We relate image-based descriptors learned in
an unsupervised fashion to leaf counts using a supervised regression model. To take ad-
vantage of the circular and coplanar arrangement of leaves and also to introduce scale
and rotation invariance, we learn features in a log-polar representation. Image patches
extracted in this log-polar domain are provided to K-means, which builds a codebook in a
unsupervised manner. Feature codes are obtained by projecting patches on the codebook
using the triangle encoding, introducing both sparsity and specifically designed repre-
sentation. A global, per-plant image descriptor is obtained by pooling local features in
specific regions of the image. Finally, we provide the global descriptors to a support
vector regression framework to estimate the number of leaves in a plant. We evaluate
our method on datasets of the Leaf Counting Challenge (LCC), containing images of
Arabidopsis and tobacco plants. Experimental results show that on average we reduce
absolute counting error by 40% w.r.t. the winner of the 2014 edition of the challenge
–a counting via segmentation method. When compared to state-of-the-art density-based
approaches to counting, on Arabidopsis image data ∼75% less counting errors are ob-
served. Our findings suggest that it is possible to treat leaf counting as a regression
problem, requiring as input only the total leaf count per training image.

1 Introduction
Morphological plant traits such as size, number of leaves, biomass, and shape are influenced
not only by the genes, but also by external environmental factors. However, the interaction
between genes and environmental (and growth) conditions leads to a combinatorial explo-
sion of possible phenotypes, making the understanding of the link between genotype and
phenotype a complex task [18]. Measuring a plant’s visual traits manually is costly and
requires specialized investigations to carry on the analysis. High throughput plant pheno-
typing allows large-scale plant analysis [13, 17, 39], in the hope of reducing the bottleneck

c© 2015. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms. Pages 1.1-1.13

https://dx.doi.org/10.5244/C.29.CVPPP.1

Citation
Citation
{Houle, Govindaraju, and Omholt} 2010

Citation
Citation
{Dhondt, Wuyts, and Inz{é}} 2013

Citation
Citation
{Hartmann, Czauderna, Hoffmann, Stein, and Schreiber} 2011

Citation
Citation
{Walter, Liebisch, and Hund} 2015



2 GIUFFRIDA, MINERVINI, TSAFTARIS: COUNTING LEAVES IN ROSETTE PLANTS

Figure 1: Example images (background was removed) of Arabidopsis taken from the A1
(top), and A2 (middle), datasets respectively, and tobacco taken from A3 (bottom). First and
third columns show the same plant (with leaf center annotations in purple) few days after.
Second and fourth columns show the corresponding log-polar representations.

in matching phenotype to genotype [16]. Automated systems have to incorporate reliable
computer vision techniques to analyze the tremendous amount of data, coming from many
plant specimens involved in typical phenotyping experiments [31, 35].

From a phenotyping point of view, the number of leaves in a plant is related to e.g.
developmental stage [36], growth regulation [6, 38], flowering time [21], and yield potential.
However, counting leaves automatically is a known challenging task [27], due to a plant’s
rapid exponential growth and complexity. Figure 1 shows example images of rosette plants,
i.e., Arabidopsis (top two rows) and young tobacco (bottom row), shown in two different time
points of development. It is readily evident how changes in scale, rotation, and appearance
may challenge state-of-the-art vision-based counting approaches. Even within a plant (as
evident also in the images of Figure 1), leaves vary in size and shape and move around
the plant’s center, thus appearing rotated when imaged over time. Furthermore, leaves may
overlap each other, resulting in major occlusions, which render the counting task challenging
even for a human expert.

In this paper, we aim to count the number of leaves in rosette plants (e.g., Arabidopsis and
young tobacco, see Figure 1) based on top-view images. We adopt a counting by regression
approach through Support Vector Regression (SVR) [11]. Patches extracted from the log-
polar domain [2] are used to learn a dictionary in an unsupervised fashion. Local features
are pooled together in specific regions of the image to build a global descriptor. At test time
given an input image we extract features (projecting on the dictionary), pool responses, and
use the learned regressor to estimate the number of leaves.

We test our approach on image data of Arabidopsis (A1, A2), a known model plant
[28], and tobacco (A3) [32], in the context of the Leaf Counting Challenge (LCC), held in
conjunction with the Computer Vision Problems in Plant Phenotyping (CVPPP 2015) work-
shop.1 Image data provided to challenge participants are accompanied by leaf center annota-
tions for training images and plant segmentation masks for both training and testing images.
Experimental results show that our method outperforms the counting-via-segmentation ap-
proach in [30] for datasets A1 and A3, where more training data is available. On testing
data, we predict the correct number of leaves in 25% of cases and in 57% of the cases the
error is at most±1 leaf. We also compare with two methods from the broad computer vision
literature that aim to count objects by learning densities.

1http://www.plant-phenotyping.org/CVPPP2015
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The contributions of this paper are multi-fold. First, it is the first paper to tackle leaf
counting in a learning framework. Second, operating in the log-polar coordinate system (see
Figure 1) permits us to learn a rotation and scale invariant dictionary in an unsupervised fash-
ion. Third, to learn better features we do not use all possible image patches, but we identify
regions of interest based on a texture heuristic. Finally, we selectively create pooling regions
to obtain descriptors invariant to small local transformation, aiming to learn a regressor with
better generalization capabilities.

The remainder of this paper is organized as follows. Section 2 reviews related work.
Section 3 presents the proposed approach, while Section 4 discusses experimental results.
Section 5 offers concluding remarks.

2 Related Work
The literature of automated methods for counting leaves is limited to counting via leaf seg-
mentation approaches [19, 30]. Specifically, Pape and Klukas [30] faced the problem of leaf
segmentation for the 2014 edition of the CVPPP workshop. After a coarse leaf segmenta-
tion, lines separating overlapping leaves are determined based on split points. In [42], leaf
segmentation and tracking is performed in a fluorescence video sequence of growing Ara-
bidopsis. A set of leaf candidates is generated in a frame based on Chamfer matching, and
each leaf is tracked in the following frames assuming temporal coherence.

In the broad computer vision literature several approaches have been proposed to address
the problem of counting objects within a scene. A first class of approaches is the counting-
by-detection methods [41], which formulate the problem as a detection task. Typical solu-
tions rely on local features, such as histogram of oriented gradients (HOG) [9, 12], local
binary patters [8], or shape [22]. Nevertheless, leaf detection is a challenging task, since leaf
surface is almost featureless and shape information is unreliable under heavy occlusion, as it
can be seen in Figure 1.

Recently, several methods aiming to estimate the density of objects within a scene have
been proposed to address counting applications. Lempitsky and Zisserman [23] minimize a
loss function based on the Maximum Excess over SubArrays (MESA) distance. Similarly,
in [4] density is predicted by per-pixel ridge regression. In [15] random forest regression is
used to estimate density. However, density estimation approaches are challenged by objects
appearing at different scale or overlapping (occlusions). The counting of overlapping objects
is addressed in [3], even though varying object size remains an open issue.

On the other hand, global regression approaches aim to learn a global image represen-
tation to relate it via regression to total object count within a scene. For example, Wang et
al. [40] adopt support vector regression to predict the number of pedestrians in a video frame.
After a coarse foreground segmentation, HOG features are extracted and provided to SVR.
While such approaches could address varying object size and occlusion, spatial information
on object layout cannot be retrieved (which is available with the methods discussed before).

3 Proposed Method
Here we describe a global regression method to count leaves in rosette plants, hereafter
referred to as General Leaf Counting (GLC). We use as input greyscale images I j, ∀ j =
1, . . . ,N, showing a top-view on individual rosette plants. Following the design and require-
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Figure 2: Major steps of the proposed approach.
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(a) Plant mask (b) Skeleton (c) Center detection

Figure 3: Center detection in a complex object. Shown are: (a) plant mask available from
expert annotation (together with classical calculations of a center and proposed); (b) skeleton
obtained from (a) and endpoints as red dots; and (c) most traversed segment, with detected
center marked with a white cross. Part (a) shows that finding the center of mass, as done in
[1] for plants, the result is unreliable. Other approaches suffer the same shortcomings too.
Our approach performed the best since it takes into account a plant’s complex structure.

ments of the challenge and of the CVPPP 2015 dataset (cf. Section 1), we assume as given
expert annotations per each training image: the (i) total number of leaves, and (ii) foreground
segmentation mask providing the location of plant pixels (see Figure 3(a)). For a testing im-
age a foreground mask is also given, so in this work we do not address the problem of plant
segmentation from background.

As Figure 2 illustrates our first step exploits the circular arrangement of leaves by con-
verting the image into the log-polar domain. We then learn a suitable feature representation
from the data by training a dictionary in an unsupervised fashion on image patches extracted
from informative regions. A local descriptor for each patch is computed using the learned
dictionary, employing the triangle encoding [10]. By max-pooling we combine such fea-
ture vectors to obtain a global image descriptor, which we use in a regression framework to
predict the number of leaves. Each step is detailed in the following.

3.1 Log-polar Representation

Rosette plants are characterized by a radial arrangement of leaves around the center of the
plant (i.e., the stem). In order to exploit this structure, we convert an input image I (the
subscript j is omitted for brevity) into the log-polar domain, obtaining a new image denoted
as Ĩ. This conversion not only orients leaves w.r.t. the plant center to appear parallel, but
also ensures the same sampling and final dimensions of Ĩ for any plant size, accounting for
the problem of extracting good descriptors in the presence of large size variability within a
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Figure 4: FG/BG ratio: a sliding window moves rightwards to compute the ratio between the
number of foreground and background (black) pixels within it. Observe that we have local
maxima where leaves are represent even when leaves are overlapping.

training set. The log-polar transformation maps points from the Cartesian (x,y) coordinate
system to the log-polar (ρ,θ) coordinate system [2].

Prior to the transformation, we move the origin to the center of the plant. Since finding
the center of a mass is unreliable in a complex object (see also Figure 3(a)), here we estimate
the position of a plant’s center based on the skeleton obtained from the segmentation mask
(Figure 3(a)) of I given as input. From the skeleton, we detect the endpoints (plotted in red
in Figure 3(b)) and we compute shortest paths along the skeleton connecting each endpoint
to all other ones. Aggregating all shortest paths, we identify the segment that is traversed
more frequently. We select the center of the region containing this segment as the new origin
(x0,y0) (Figure 3(c)).

Coordinates in the log-polar domain are then calculated for each point (x,y) as the log-
arithm of the radius ρ = log

√
(x− x0)2 +(y− y0)2 and azimuth θ = atan2(y− y0,x− x0).

We sample with increments of 1◦ in the angular coordinate θ , thus the transformed image Ĩ is
360 pixels wide, while the radius is adaptively chosen by computing the distance between a
plant’s center and the farthest point in the segmentation mask. (Fixed zero padding is added
in the lower part of the log-polar image to facilitate the patch extraction step.)

3.2 Patch Extraction

To learn a dictionary, instead of extracting densely all possible patches from Ĩ, we focus
on regions that are most informative from a leaf counting perspective. We identify such
regions based on the FG/BG ratio curve, i.e., the ratio between the number of foreground
(FG) pixels and the number of background (BG) pixels. Using a sliding window as high as Ĩ
and of fixed width W , we scan Ĩ to compute the FG/BG ratio (Figure 4). The ratio between
foreground and background pixels will have high value wherever plant pixels are dominant,
even when leaves are overlapping. We detect local maxima in the so-obtained curve, and use
the corresponding (column) locations to define in Ĩ regions of interest of width W ′ centered
on the maxima. From these regions (which may also overlap), we extract S×S sized patches
densely, discarding duplicated patches or patches falling entirely within background. The
patches are then normalized by the L2 norm to reduce photometric variability. We denote
the vectorized patches extracted from a log-polar representation Ĩ as pi of dimension S2×1,
where i = 1, . . . ,P.

3.3 Unsupervised Feature Learning

We learn from the data, features tailored to our application in an unsupervised learning fash-
ion, using the patches extracted at the previous step. The patches extracted from available
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(a) Arabidopsis, A1 (b) Arabidopsis, A2 (c) Tobacco, A3

Figure 5: Features learned with K = 50 from patches obtained within the plant(s).

training images are clustered via K-means [14, 37] to learn a representative dictionary (code-
book). K-means is an unsupervised learning algorithm that is able to partition the feature
space into K clusters, providing also a set of K cluster representatives ck, so-called centroids,
examples of which are shown in Figure 5.

All patches pi in Ĩ are represented by a new vector zi using the triangle encoding [10].
We determine the distance δ

(k)
i = ‖pi− ck‖2 to the k-th centroid ck. Let δ̄i be the average

distance between pi and each of the K centroids. The triangle encoding is computed as:

z(k)i = max
{

0, δ̄i−δ
(k)
i

}
, (1)

where the new vector zi has K dimensions. According to a recent study on unsupervised
single-layer feature learning this encoding outperforms classical one-hot encoding [10].

3.4 Regression
When all vectors zi are determined in an image, we use max-pooling to compute a global de-
scriptor which reduces the size of the descriptor and also adds invariance to small local trans-
formations [5, 20]. We partition the log-polar image Ĩ into T non-overlapping equally sized
regions ωt , t = 1, . . . ,T . Each pooling region ωt has the same height as Ĩ and is D = 360/T
pixels wide. For a region ωt we build the max-pooling vector ζζζ t , whose k-th element is ob-
tained as ζ

(k)
t =maxzi∈ωt z(k)i . Finally, we obtain the global descriptor for I j by concatenating

all the corresponding ζζζ t in a new vector x j.
Based on the observations x j, j = 1, . . . ,N, computed from the N training images, and y j

leaf counts, we solve a regression problem to learn from the data a function f that estimates
the number of leaves in an image. Here we use SVR to learn a regressor although other
nonlinear regression frameworks, such as random forests [7], might be used. (Tests showed
no difference between the two.)

SVR shares the same principle of support vector machine [11], but instead of finding
the best separation line maximizing the margin between two classes, SVR finds the best
fitting line that approximates the data, within a tolerance term ε . SVR minimizes the amount
of error outside the ±ε threshold (the so-called SVR tube) [34]. To model the nonlinear
relationship between image descriptors and number of leaves, we adopt a nonlinear SVR
formulation and the radial basis function (RBF) kernel φ(x,y) = exp(−γ‖x− y‖2), where
γ > 0 is a model parameter, to map the data into a high-dimensional feature space [33].

To train the SVR we use the vectors x j as training samples and the corresponding number
of leaves y j in I j as target value. The final estimation provided by the regression is a real
number, which is rounded to the nearest integer.

Once codebooks and regressors are learned, at test time given an image (and its plant
foreground mask) we convert to log-polar domain and patches are extracted, as in Sec-
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tion 3.2. Triangle encodings are computed via the learned dictionary and resulting features
are pooled together, to obtain a global descriptor to provide to the regressor.

4 Results and Discussion
In this section, we evaluate our leaf counting approach on image data showing rosette plants.
First, we discuss experimental settings and evaluation criteria. Next, we present results ob-
tained on training and testing datasets, comparing also to a variant of the proposed method
aimed to learn better representations for the central part of a plant. We compare with a
counting via segmentation method [30] and recent density based methods [4, 23].
Image data: We use three datasets, namely A1, A2, and A3, consisting of images show-
ing top views on individual plants provided by the LCC CVPPP 2015 challenge organizers
[25, 32]. Images in A1 and A2 (approximately 500× 500 pixels) are from Arabidopsis
thaliana plant subjects, but in A1 are only from wild types (Col-0), while in A2 are also
from four different mutant lines (plant identity is unknown in the images). A3 (2448×2048
pixels) shows young tobacco plants (Nicotiana tabacum). Each image in the training dataset
is provided with a foreground segmentation mask (i.e., plant vs. background), leaf center
annotations, number of leaves. Training sets include 128, 31, and 27 images for A1, A2,
and A3, respectively. Testing sets include 33, 9, and 56 images for A1, A2, and A3, re-
spectively, and corresponding plant foreground masks, but number of leaves are unknown.
Testing results are evaluated by the organizers.
Choice of parameters: We use only the green channel of the original RGB images for com-
putational simplicity. Alternatively we could opt for an illumination invariant transform such
as the HSV (Hue, Saturation, Value), or color transforms with class separation properties to
obtain one or more channels [26]. For each dataset we repeat the learning process sepa-
rately. Parameters are found via cross-validation on the training set, and are the same for
all datasets. We set W = 20◦ (see Section 3.2), since smaller values would result in a noisy
FG/BG ratio curve, while larger ones would provide coarse results. In the patch extraction
phase, we use S = 15 and W ′ = 40◦. K-means learns K = 50 centroids, using the K-means++
initialization criterion [29]. We observe that large values of K lead to a coherent codebook
with redundant clusters. Max-pooling is performed using T = 5 non-overlapping regions in
the log-polar image. Prior to the regression we normalize the global descriptors by subtract-
ing the mean and dividing by the standard deviation (computed on all x j vectors). For SVR,
we use γ = 1/(T K), where T K is the dimension of x j, and loss parameter ε = 0.001.
Learning separately inner and outer areas, the IOLC variant: In rosette plants young
leaves tend to grow from the center out and as such less mature leaves are closer to the
center. Such leaves are small, they heavily overlap, and due to low resolution are usually
missed by many algorithms. To evaluate how the proposed method (GLC), outlined in Sec-
tion 3, performs in this case, and to show that we can still learn appropriate codebooks, we
compare it also with a variant of the proposed method, which learns separate dictionaries
according to leaf location. This variant, termed here Inner-Outer Leaf Counting (IOLC),
relies on leaf center’s coordinates to learn separately the inner part of the plant, namely the
top-most in log-polar representation, and the lower part, namely the bottom-most in Ĩ. To
separate the upper part from the lower one in a deterministic fashion, the log-polar image is
scanned horizontally from the top downward (i.e., from the center outwards). The separation
line between the two parts is found at the vertical position where the first background pixel
(from the plant mask) is found. The IOLC learns two different codebooks for the two parts
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CountDiff
[mean(SD)]

AbsCountDiff
[mean(SD)]

Percent
Agreement [%] MSE

IOLC GLC IOLC GLC IOLC GLC IOLC GLC

A1 -0.11(1.04) -0.13(0.88) 0.73(0.75) 0.48(0.74) 40.6 77.3 1.09 0.78
A2 -0.35(2.18) -0.48(2.20) 1.45(1.65) 1.39(1.76) 41.9 74.2 4.74 4.94
A3 -0.30(1.10) 0.19(0.92) 0.67(0.92) 0.48(0.80) 51.9 92.6 1.26 0.85

All -0.18(1.31) -0.14(1.21) 0.84(1.01) 0.63(1.04) 42.5 79.0 1.73 1.48

Table 1: Training results of our proposed method (IOLC and GLC versions).

CountDiff
[mean(SD)]

AbsCountDiff
[mean(SD)]

Percent
Agreement [%] MSE

IOLC GLC IOLC GLC IOLC GLC IOLC GLC

A1+ 0.00(0.72) -0.02(0.76) 0.39(0.60) 0.41(0.65) 66.4 82.8 0.52 0.58
A2+ -0.16(1.42) -0.29(1.32) 0.87(1.12) 0.74(1.12) 48.4 77.4 1.97 1.77
A3+ 0.07(0.83) 0.07(0.62) 0.52(0.64) 0.30(0.54) 55.6 88.8 0.66 0.37

All+ -0.01(0.89) -0.05(0.87) 0.49(0.74) 0.45(0.74) 61.8 82.8 0.78 0.75

Table 2: Training results of our proposed method (IOLC and GLC versions) using the aug-
mented dataset.

respectively. In this case, max-pooling regions are T = 2 in the upper part and T = 5 in the
lower one. Finally, two separate SVRs are trained, where the target values y j are chosen
according to the number of annotations (leaves) inside the respective areas. The results of
the two SVRs are added and then rounded.
Evaluation metrics: We evaluate leaf count accuracy using metrics provided in the LCC: (i)
CountDiff, average difference between algorithmic estimation of the count and ground truth,
reported as mean and standard deviation (SD), (ii) AbsCountDiff, average of absolute count
errors, and reported as mean (SD) (iii) MSE, mean squared error, and (iv) PercentAgreement,
indicating in how many cases the algorithmic estimation agrees with ground truth. For all
metrics, except PercentAgreement, values close to 0 are better. We also measure goodness
of fit of the regression using the R2 coefficient of determination (with R2 = 1 being the best).
Implementation details: We implement our algorithm in Matlab. For training, due to the
large size of the datasets, we run the experiments on a CentOS 6.6 server with 4 CPUs Intel
Xeon E7540 (6 cores with hyper-threading) and 64 GB of RAM. Although not necessary for
testing (since the process is simpler), we use the same computational setup. Overall, we find
that it takes approximately 20 secs per image for training, out of which 80% is spent to learn
the features, and less than 0.5 secs to train the regressor. On the other hand testing (i.e.,
predicting the number of leaves in an unseen image) takes less than 3 secs per image, since
at test time we only need to extract the patches, obtain the encoding on the learned features,
and apply the regressor to estimate the count. At test time memory use is significantly lower,
since as we extract a patch its encoding (on the codebook) can be obtained directly.

4.1 Experimental Results

Training Results

Comparing GLC and IOLC: In Table 1 we report the training error for GLC and compare
it to the IOLC variant of the proposed method. Overall, GLC obtains better performance,
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CountDiff
[mean(SD)]

AbsCountDiff
[mean(SD)]

Percent
Agreement [%] MSE

GLC Ref. [30] GLC Ref. [30] GLC Ref. [30] GLC Ref. [30]

A1 -0.79(1.54) -1.8(1.8) 1.27(1.15) 2.2(1.3) 27.3 - 2.91 -
A2 -2.44(2.88) -1.0(1.5) 2.44(2.88) 1.2(1.3) 44.4 - 13.33 -
A3 -0.04(1.93) -2.0(3.2) 1.36(1.37) 2.8(2.5) 19.6 - 3.68 -

All -0.51(2.02) -1.9(2.7) 1.43(1.51) 2.4(2.1) 24.5 - 4.31 -

Table 3: Results for the testing set of our proposed GLC method with regressor(s) and fea-
tures learned on the augmented dataset. For comparison the findings of Pape and Klukas
[30] on the same testing set are shown (values for only two metrics were available).

reaching almost 80% agreement with the ground truth (PercentAgreement), indicating that
features collected in the entire log-polar representation give satisfactory information to pre-
dict even leaves at the center of the plant. Also, with GLC we observe a better fit to the
training data (R2 is 0.83, 0.77, and 0.86 for A1, A2, and A3, respectively) w.r.t. IOLC (R2

is 0.70, 0.78, and 0.75 for A1, A2, and A3, respectively). Thus, GLC a method that requires
only the number of leaves to train (an easier annotation problem) w.r.t. IOLC which needs
the leaf centers, shows preferable behavior.

Augmenting the training set: The datasets used here provide a limited amount of training
images, which could penalize learning-based approaches. To explore this we train our algo-
rithm by varying the size of training data, whereas the remaining training part is used as a
validation set. We find that the MSE in the training set reaches a plateau when we learn using
32 to 64 images, whereas the MSE in the validation set improves by ∼20%. This motivated
us to augment the dataset by shifting the log-polar image, performing the full learning proce-
dure on the augmented dataset. We apply 3 rightward circular shifts for every training image,
obtaining a 4-fold increase of each training set. The shift displacement is D/4, where D is
the pooling region size (see Section 3.4). In Table 2 we report the training error using the
augmented datasets. Comparing Tables 1 to 2 we observe that training with the augmented
datasets leads to a considerable improvement in all cases, both for GLC and IOLC. Since
GLC is simpler and more robust in the following only GLC is reported.

Comparison with density-based counting methods: Our global regression GLC does not
use leaf center annotations. To compare our performance with methods that do use such
topological information, we adapt also two density-based methods to our application [4, 23].
The approach of Lempitsky and Zisserman [23], is used to learn a density function based
on leaf center annotations on the A1 training dataset (similar arguments for A2 and A3
hold but are omitted for brevity). We extract from the green color channel, dense SIFT [24]
descriptors with bin size of 15, and use K-means to create a codebook of K = 800 to represent
the data. We learn the pixel-level density function using L1 regularization in the optimization
objective. We find lower performance compared to GLC, obtaining CountDiff = 0.82(1.97)
and AbsCountDiff = 1.59(1.42) (cf. Tables 1 to 2). We test also Arteta et al. [4], extracting
again dense patches. The best result we obtain on the A1 dataset is CountDiff = -0.5(10.5)
and AbsCountDiff = 7.3(7.4), confirming that our approach is outperforming state-of-the-art
density-based object counting methods, and reaffirming conclusions of ours and others [4]
that such methods are unable to accommodate object size variability within the same scene.
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Testing Results

To estimate leaf counts on the images in the testing set we use dictionaries and SVR models
learned on the augmented training sets. We submitted estimated counts to the organizers
only for GLC. We report in Table 3 the testing results of the proposed GLC, together with
the counting-via-segmentation method proposed by Pape and Klukas [30], the winners of
the previous leaf segmentation challenge. Our method outperforms the approach in [30]. In
particular, we improve significantly the accuracy on A1 and A3 datasets. Overall, number of
leaves predicted by our method is off by at most ±1 leaf in 57% of the cases.

The A2 dataset contains several mutants and some subjects exhibit dwarfism, appearing
very small in the images. When such images, or images with many small young leaves in
the center, are transformed into the log-polar domain, the effect of interpolation introduces
artifacts causing performance loss. Albeit the A3 dataset includes very young (and relatively
small) plants, the effects discussed before are compensated by increased image resolution.
In fact, training and testing error in A1 and A3 are similar, even if the A3 dataset contains the
least amount of training images. This motivates future investigations of specialized features
for regions close to the center.

5 Conclusions
In this paper, we aim to count leaves in images of rosette plants –a challenging vision prob-
lem due to variability in terms of size, appearance, and rotation of leaves. We proposed a
machine learning-based approach to estimate the number of leaves from top-view images.
We compute global features for each image, using local patches extracted from the log-polar
domain, which accounts for rotation and scale variability. We relate global features to leaf
count with supervised regression.

Using standardized datasets in the context of the Leaf Counting Challenge, of the CVPPP
2015 workshop, our method outperforms previous state-of-the-art methods [30] on the same
data. We also compared with state-of-the-art methods for counting via density estimation,
showing that our learning framework outperforms the methods in [4, 23] in dataset we tested
(A1). We also found that augmenting the training set, by circularly shifting the log-polar
representations, increases performance.

Our approach is simple to train. It requires input images and a foreground/background
segmentation (which for plants is easier to obtain than other applications). In terms of anno-
tation it requires only a total leaf (object) count per image. This is much easier than centers
or bounding boxes required for density or detection based methods. Our experiments show
that with adequate training data, at testing time for an unseen image satisfactory accuracy
in counting is obtained within a few seconds (per image), opening the road to automated
and reliable leaf count estimation in high throughput phenotyping applications. Integrating
such learning-based approaches to centralized cloud based analysis frameworks such as the
one available at http://www.phenotiki.com would increase even more the reach of
automated high throughput phenotyping [27].
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