
1 

 

 DYNAMIC ROUTE CHOICE IN A 
CONGESTED TRANSIT NETWORK WITH 
UNCERTAIN CARRIERS’ ARRIVAL TIMES 

Miss Valentina Trozzi, Centre for transport Studies – Imperial College London 

Prof. Michael G.H. Bell, Centre for transport Studies – Imperial College London 

Prof. Guido Gentile, Dipartimento di idraulica trasporti e Strade –Sapienza Universitá 
di Roma 

Dr Achille Fonzone, Centre for transport Studies – Imperial College London  

ABSTRACT 

The purpose of this paper is to investigate the possibility of exploiting the hyperpath 

paradigm within the framework of dynamic assignment to model the route choice in a 

congested transit network, where passengers might encounter queues at transit stops and, 

thus, are not allowed to board the first approaching carrier of the attractive lines. 
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INTRODUCTION 

This paper develops a dynamic route choice model for a congested transit network where 

passengers behave according to a frequency-based approach, because there is a lack of 

information about exact vehicle arrival times at stops or because headways between carriers 

are so short that users perceive no advantage in timing their arrivals at stops with that of 

vehicles. In this case passengers can choose to board any among several competing 

(common (Chriqui and Robillard 1975)) lines in order to reach the destination, depending on 

which is the first available carrier. 

In the static framework, where the relevant model variables, such as travel times and line 

frequencies, are fixed and passengers can always board the first approaching carrier, while 

congestion is limited to discomfort for vehicle overcrowding, the rational travel behaviour was 

firstly studied by Spiess (Spiess 1983; Spiess 1984), Spiess and Florian (Spiess and Florian 

1989) and Nguyen and Pallottino ((Nguyen and Pallottino 1988), (Nguyen and Pallottino 

1989)).  

In the aforementioned works it is recognized that, under some simplifying assumptions about 

passengers’ and carriers’ arrivals (at each stop the headways of all transit lines are 
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statistically independent with given exponential distributions, whose mean is equal to the 

inverse of the frequency (Nguyen and Pallottino 1988) and passengers’ arrivals are 

uniformly distributed (Spiess and Florian 1989)), the most efficient route choice does not 

yield a single shortest path, but an optimal travel strategy, i.e. a set of routing rules that allow 

a passenger to reach his/her destination in the shortest possible time. The strategy is 

chosen before the beginning of the trip and, starting from the origin, involves the iterative 

sequence of: walking to a transit stop or to the destination, selecting the attractive lines to 

board and, for each of them, the stop where to alight. Moreover, based on the above 

definition, (Nguyen and Pallottino 1988; Nguyen and Pallottino 1989) provide a sound graph-

theoretic framework for transit networks, which allows for the static representation of a 

strategies as a hyperpath that connects the origin of the trip to the destination having the 

diversion nodes at stops through waiting hyperarcs, each of which identifies a line set. 

The challenge here is to investigate the possibility of developing a new model for passenger 

route choice within the framework of dynamic assignment by extending the hyperpath 

paradigm to the case where link travel times and transit frequencies vary during the day and 

congestion occurs at transit stops. Our model does not change basic assumption about 

carriers’ and passengers’ arrivals, nonetheless the boarding rule has to be adjusted to suit 

the congested scenario, where passengers cannot board the first attractive line approaching 

the stop, but suffer an over-saturation queuing time until the service(s) become actually 

available to them. 

For the scope of this work, we assume the transit stop layout to be conceived so that 

passengers waiting for different line sets have to queue in one single row until the service 

becomes available to them. In particular, all passengers arriving at the stop join a mixed 

queue, where overtaking is possible only among passengers having different attractive sets, 

while any competition among passengers willing to board an approaching carrier is solved 

applying the FIFO rule (Trozzi, Haji Hosseinloo et al. 2010). The case where passengers 

mingle at the stop is not considered here, however a dynamic stop model capable of 

representing this situation has already been developed (Trozzi, Haji Hosseinloo et al. 2010) 

and can easily be embedded in the route choice model presented in this paper. 

 

 

TRANSIT NETWORK AND HYPERPATHS: NOTATION AND 
FORMULATION 

Basic Notation 

As in (Meschini, Gentile et al. 2007), it is assumed here that the transit network comprises a 

set of lines  and that, together with the pedestrian network, it is represented by an 

hypergraph (Nielsen 2004). Basic definitions and general notation used to describe the 

hypergraph structure and the dynamic network model follow here: 

HG  = )E,N( = hypergraph modeling the topology of the transit-pedestrian network, 

where N is the set of nodes and E is the set of hyperarcs.  

N  = )nii(  ..., 2, 1,  = node set, comprising:  
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CN  = centroid nodes, constituting the origins and destination of the journeys;   

PN  = pedestrian nodes;   

RN  = stop nodes;  

LN  = line nodes;  

WN  = waiting nodes.  

Therefore WNLNRNPNCNN    


iN  = )Ej)(i,j(   ; 


iN  =   Eij,j     

E  = )e,...,e( m1 = hyperarc set  

e  =     eHD,eTL  generic hyperarc, where N)e(TL  and N)e(HD  are 

respectively defined tail and head of the hyperarc. To be noticed that normal arcs are 

a sub-group of hyperarcs for which N)e(HD  , or, equivalently, 1)e(HD ,where 

)e(HD is defined as the cardinality of the hyperarc (Nielsen 2004). For the sake of 

clarity and simplicity, we will henceforth call “arcs” all the hyperarcs for which 

1)e(HD  strictly, and “hyperarcs” only those for which 1)e(HD . 

The hyperarc set E comprises five different subsets, namely:  

PE  = pedestrian arcs;  

LE  = line arcs; 

SE  = support hyperarcs (Trozzi, Haji Hosseinloo et al. 2010), representing all the lines 

serving a stop node. Namely, for the generic support hyperarc   aHD,ia  , 

where RNi is a generic stop node and    iNWNaHD is the set of waiting nodes 

associated to all the lines serving the considered stop. (Trozzi, Haji Hosseinloo et al. 

2010) 

WE  = waiting hyperarcs (Trozzi, Haji Hosseinloo et al. 2010), representing only the 

attractive lines serving the stop node. Namely   cHD,ic   where RNi is a 

generic stop node and    aHDcHD   represents the set of attractive lines serving 

the stop node i for passengers traveling along the hyperpath pH at time  ( )(L*

ip  ). 

Therefore WESEQELEPEE  . 

Moreover, each arc LEe is univocally associated with a line  , and the same is true for 

any branch  j,ib  of the support or waiting hyperarcs. 

pH  = hyperpath connecting a single origin destination pair  s,r . 

rsP  = set of all possible hyperpaths connecting the origin destination pair  s,r :
rs

p PH  . 

Note that, in this dynamic and congested scenario, the branches of the hyperarc (  

Figure 1) not only represent the “average delay due to the fact that the transit service is not 

continuously available over time”, but also the “time spent by users queuing at the stop and 

waiting that the service become actually available to them” (Meschini, Gentile et al. 2007). 

Moreover, we assume that passengers arriving at the stop join a unique, mixed queue 

regardless their particular attractive lines’ set. In this case overtaking is possible among 

passengers having different attractive set; however, any competition among passengers 

willing to board an approaching line is solved applying the FIFO rule(Trozzi, Haji Hosseinloo 

et al. 2010).  
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Figure 1: Representation of a stop in the hypergraph. 

The above notation solely regards the topology of the network, while here after are 

introduced the variables describing the dynamic model. To be noticed that, because the 

analysis is carried out within a dynamic context, these variables are temporal profiles 

(Gentile, Meschini et al. 2004; Gentile 2006). 

)(xij   = aggregated flow entering arc E)j,i(e  at time  ;  

)(tij   = exit time from arc E)j,i(e  for users entering it at time  ;  

)(tij 1
 = entering time in arc E)j,i(e  for users exiting it at time  ;  

)(cij   = travel time of arc E)j,i(e  for users entering it at time. Namely, if the 

arc is entered at time  and the exit time is )(tij  , then )(cij  = )(tij  - ;  

 ij  = mean frequency at time  of the transit line associated with the branch 

)j,i(b  of the hyperarc   eHD,ie  ;  

 ijAK = available capacity of the line associated with the branch )j,i(b  of the hyperarc 

  eHD,ie   at time  ; 

  ije  = expected waiting time at time  of the transit line associated with the branch 

)j,i(b  of the waiting hyperarc   eHD,ie  ; 

  ie  = expected waiting time at the stop node i  and at time , for the waiting hyperarc 

  eHD,ie  associated to the considered stop; 

)(tije   = exit time from the branch )j,i(b  of the waiting hyperarc   WE)e(HD,ie  for 

users entering it at time  ; 

)(tije 1
 = entering time in the branch )j,i(b  of the waiting hyperarc   WE)e(HD,ie  for 

users exiting it at time  ; 

)(ije  = diversion probability, namely the probability of using the branch )j,i(b  of the 

hyperarc   eHD,ie  , conditional on being at node i  at time ;  
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)(
is

p  = probability of using hyperpath pH at time , for users travelling from generic node 

i to destination s ; 

)(g is

p   = actual cost of the hyperpath pH  for users leaving node i  at time  ; 

)(S is    = cost of the minimal hyperpath pH  for users leaving node i  at time  . 

 

Hyperpath formulation 

When carriers’ arrivals are perceived as uncertain by users and several routes are available 

to reach the destination from transit stops, it is assumed that passengers choose the best 

strategy to reach their destination rather than selecting a single path. According to Spiess 

(Spiess 1983; Spiess 1984), travel strategies consist in a set of rules, defined before the 

beginning of the journey, that are iteratively applied as the trip unfolds. Such strategies are 

graphically represented (Nguyen and Pallottino 1988; Nguyen and Pallottino 1989) as 

hyperpaths connecting the origin to the destination of the trip, where possible diversions are 

represented through hyperarcs exiting from stop nodes.  

Therefore, because finding the best time-dependent strategy means, from a graphic point of 

view, finding the shortest (minimal) dynamic hyperpath, it is necessary here to provide a 

complete and formal definition of the dynamic hyperpath’s structure and cost. 

For the sake of clarity and simplicity, we will refer to a single rspair, thus the notation 

relative to the origin and destination considered will be disregarded. 

Definition. 

A subgraph    pppp ,E,NH   where EE,NN pp   and      ijep   a real value 

vector of dimension  1pE  is a dynamic hyperpath connecting origin pCNr  and 

destination pCNs , if: 

1. pH is acyclic with at least one arc; 

2. node r has no predecessors and node s has no successors; 

3. for every node  s,rNi p  there is a hyperpath from r to s traversing i , and if node 

pRi then it has at most one immediate successor; 

4. the characteristic vector   p satisfies the conditions:  

 

  0

1








ije

j ije
 (1) 

and the value of its component depends on the time  they are evaluated; 

5. travel times )(cij  and traversing times   i associated to arcs   pEj,i   and nodes 

pNi depend on the entering time  they are evaluated. 
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In the static context, it is shown that the total travel time of the generic hyperpath pH can be 

computed by explicitly taking into account all the elemental paths   which form it (Nguyen 

and Pallottino 1988; Nguyen and Pallottino 1989). Therefore, if pQ is the set of such paths, 

 is the probability of choosing the elemental path  , and  is its total travel time, the travel 

time associated to hyperpath is pH : 





pQ

pg


  . (2)  

On the other hand,  can be expresses as the summation of travel and waiting times on the 

path’s arcs and nodes: 

 




pp Ri

ii

Ej,i

ijij 'c   , (3)  

where ij equals 1 if arc belongs to path  and 0 otherwise, and i' equals 1 if path  

traverses node and 0 otherwise. Thus the following expression of the hyperpath’s total travel 

time can be obtained: 

 
 
  













p ppQ Ri

ii

Ej,i

ijijp 'cg


  . (4)  

However, in a congested network, as it is the case we are considering, travel times depend 

on the time the arc is entered. Consequently, it can happen the same node is traversed by 

different paths at different times and the travel cost associated to it has different values. 

Hence, the above definition of hyperpath’s total travel times does not apply to the dynamic 

scenario.  

Nevertheless, by extending to the dynamic context the recursive formula given in (Nguyen 

and Pallottino 1988; Nguyen and Pallottino 1989), we obtain a sequential definition of the 

dynamic hyperpath’s travel time structure. Moreover, the equation allows for obtaining the 

result avoiding path enumeration, thus decreasing the computational burden. 

Definition. 

The total travel time of the dynamic hyperpath pH connecting r to s and entered at time is 

sequentially defined in reverse topological (and chronological) order as: 

 
 

















p)e(iHD

s)e(HD

pie

pij

js

pij

is

p

RNi,)(tg)(

RNi,)(tg)(c

ri,

)(g

 if   

 if                

 if                                           0



  (5)a 

 

  



















 )()(

)()()()(

)()(

0

)(







ipip Lj

ije
js
pijeije

Lj

ije

ij
js
pij

is
p

tg

tgcg , (5)b 

where: 
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1. )()()( ije

)(Lj

ijeie

ip




 


 is the total expected waiting (and queuing) time at 

stop i associated with the waiting hyperarc   WE)e(HD,ie  ;  

2.  )(tg )e(iHD

s)e(HD

p  is the remaining cost of the hyperpath, once boarded one of the 

attractive line at stop node i . 

Note that the above formulation of hyperpaths’ travel times structure and computation is 

independent of specific values given to the conditional probabilities   ije and the functional 

form of the waiting cost   ie . These variables are specified by the stop model and depend 

on the particular stochastic model adopted for the passenger and the transit carrier arrivals 

at the stop node, and for the passengers’ boarding mechanism. 

 

 

THE STOP MODEL AND THE ATTRACTIVE SET 

The stop model 

Given a generic node pRNi  and a time , the stop model yields the probability )(
s

ije   of 

using each branch of the associated waiting hyperarc (or, equivalently, the boarding 

probability for each attractive line of the transit stop). Moreover, it evaluates the expected 

waiting cost of any single attractive line   ije , as well as the total waiting 

cost   ie associated with the stop. 

In the static case, where: 

- no information is provided at the stop on actual waiting times and on the available 

capacities of arriving carriers; 

- the vehicle arrivals of different lines at the stop are statistically independent, and 

the same is true for the passenger arrivals with respect to vehicle arrivals; 

- the headway probability distribution between two successive vehicles of the same 

line and hence the waiting time for a passenger randomly arriving at the stop are 

exponential, i.e. memoryless; 

it is convenient to board the first attractive carrier that arrives the stop, instead of keep 

waiting (Spiess 1983; Spiess 1984). 

On the other hand, if passengers have to queue until the service becomes actually available 

to them, the model has to be adjusted to represent the dynamic queue, which depends also 

on the layout of the stop and on the information eventually provided to passengers. 
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At this regard, we will show in the following only the results obtained for a stop served by a 

bunch of attractive lines, where passengers queue (therefore the FIFO rule is respected) to 

board the first available carrier.1  

In this case, the passenger who arrives first at the stop is the first to board. Hence, if )(xij   

is the aggregated flow associated with the branch )j,i(b  of the waiting hyperarc 

  WE)e(HD,ie   at time , the )(xij  -th queuing passenger will have to wait for the 

)(kij  -th arrival, when the service will be truly available to him. An exact formula for 

obtaining )(kij   should require the computation of the actual available capacity for the first 

)(kij  carriers of the considered line reaching the stop (Meschini, Gentile et al. 2007). 

However, we assume here the temporal profile of the available capacity for the first 

approaching carrier is known and has the same value for all the first )(kij  carrier arrivals. 

Therefore )(kij   is equal to:  














)(AK

)(x
INT)(k

ij

ij

ij



 1

 (6) 

where INT[x] is the first integer not smaller than x. 

Because headways are independently and equally distributed according to an exponential 

distribution of known parameter  ij , then the waiting time before the )(kij  -th arrival is 

distributed according to a Gamma ),(  , whit parameters )(kij    and   ij/1 . 

   



















otherwise                                                              0

0 if           ,
]1[

]1[

,

w
!)(k

)(kw
e

),w(f ij

ijw)(k

ij

ij

ijij










 (7) 

where w  is the stochastic variable representing the waiting time. 

In this case, the internal coefficient of the corresponding hyperarc (the so-called boarding 

probability) is equal to: 

 

dw),w(F),w(f)(
j\)e(HDh

hijije  





0

 

, (8) 

where Fh(w, τ) is the complement of the cdf for the branch b=(i, j) of the waiting hyperarc  

e =(i, HD(e)). 

While the expected waiting time associated to the considered line at the stop node i and the 

total expected waiting time for the same transit stop are respectively equal to: 

                                                        
1 For those who are interested in a complete discussion of the stop model, with a comparison between the case 

where passengers queue or mingle at the transit stop, we refer them to [6] and [Kurauchi, F., M. G. H. Bell, et al. 
(2003). "Capacity Constrained Transit Assignment with Common Lines." Journal of Mathematical Modelling and 
Algorithms 2(4): 309-327. 
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 

dwF),w(fw)(
j\)e(HDh

hijije  


 








0

 

 (9) 

)()()( ije

)e(HDj

ijeie   


 (10) 

 

The attractive set determination 

In general, the above expressions of the diversion probabilities and expected waiting times 

can be applied to any subset
 iNL , however, only a specific subset 

 iNL is associated 

with the minimum travel time to destination. 

More specifically, the set of waiting nodes comprised in the head of the waiting hyperarc is 

defined attractive and is indicated as )(L*

ip  . Also, each node of the set is associated with an 

attractive line. Therefore, )(L*

ip  is associated with all and only the attractive lines of stop i  

at time , for users travelling along the hyperpath pH . 

Recalling the definition of attractive set given in (Nguyen and Pallottino 1988), we can write:

  

  

  































)(Lj

ije

js

pijeije

)(Lj

ije
N)(L

)(Lj

ije

js

pijeije

)(Lj

ije

i

*

ip

ipip
iip

*
ip

*
ip

)(tg)()()(

)(tg)()()(

:N)(L












min

 

 (11) 

Consequently, in order to determine )(L*

ip  , it is in general necessary to compute 

 )(L,g ip

is

p  for all the possible subsets of


iN . However, it is counter-intuitive to exclude a 

line from )(L*

ip  if it has a shorter remaining travel time than any other attractive one at the 

time . Therefore, at least for the static case, it is possible to solve (Chriqui and Robillard 

1975; Nguyen and Pallottino 1988; Spiess and Florian 1989) the combinatorial problem 

described above through a greedy approach. Namely, the lines are processed in ascending 

order of their remaining travel time and the progressive calculation of the values 

of  )(L, ipije  ,  )(L, ipije   and  )(L,g ip

is

p  is stopped as soon as the addiction of the 

subsequent line increases the value of  )(L,g ip

is

p  . 

By contrast, in the dynamic scenario the only exact method of finding )(L*

ip  requires the 

enumeration of all the possible combination of lines serving the considered stop. In fact, the 

first step of a greedy procedure should require the sorting of nodes pi Ri:Nj  
 in an 

increasing order of 
js

pg : 
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       i

sj

p

sj

p

sj

p Nn,g...gg n         21  , (12) 

but for each line corresponding to the generic node pi Ri:Nj  
the time at which 

js

pg is 

computed actually depends on which other node pi Ri:Nj  
are included in the set of 

attractive waiting nodes )(L*

ip   or, equivalently, in the head of the waiting hyperarc 

  WE)e(HD,ie  . 

In order to overcome the computational complexity rising from the exact solution of problem 

(11), a heuristic methods for the determination of )(L*

ip  is proposed and discussed in the 

following paragraph. 

 

Heuristic method for the attractive set determination 

Because the lines cannot be exactly ordered in increasing order of remaining total travel time 

when the set of attractive lines is not known yet, it is suggested the value is computed for 

every line as if it were the only attractive one, namely: 

       ijij

sj

pjij

sj

pjij

sj

p Nn,)(tg~...)(tg~)(tg~
nn

n         
22

2

11

1  , (13) 

where )(t
kk jij
 is the exit time from the waiting hyperarc formed by the only branch 

)j,i(b k , for users entering it at time  , and the g~ symbol reminds that the remaining total 

travel time computed here is approximated by considering only one potential attractive line at 

a time.  

Furthermore, in the dynamic scenario congestion does not allow to consider waiting time at 

transit stops as exponentially distributed, but in the stop model it has been shown such times 

are distributed according to an Erlang pdf. Albeit the basic assumption allowing for adopting 

the greedy approach is not respected, the heuristic method proposed in the following 

performs the determination of the attractive set by adding one line at a time. 

Heuristic method for determining the attractive set.   

For computational reasons, the greedy approach is exploited for the update of )(L*

ip  , even 

if it doesn’t assure the minimum value     is

pip

is

p S)(L,g  is selected. 

(1) Initialization 

Sort  the nodes 
 iNj in increasing order of g~ :  

       ijij

sj

pjij

sj

pjij

sj

p Nn,)(tg~...)(tg~)(tg~
nn

n         
22

2

11

1  . 

Set  )(L*

ip  := 1j   

)(S is

p  :=  )(tg~)(
jij

sj

ji


11

1

1
  

k := 2 
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(2) Updating )(L*

ip    

while ( nk  )and     is

pjij

sj
S)(tg~ k 

11
do:  

)e(HD :=  k

*

ip j)(L  , where   WE)e(HD,ie   is the waiting hyperarc;  

)(S is  :=       



)e(HDj

eij)j(j

s)j(

eij)j(jeijie

k

kkk

k

kkkk
)(ttS)(tc)(  



  

)(L*

ip  := )(L*

ip   kj  

k := k +1 

 

 

ROUTE CHOICE MODEL 

If all transit passengers can be assumed to be rational decision makers, they will travel only 

along shortest hyperpaths connecting r  to s  at the departing at time . This assumption is 

formally stated by dynamic Wardrop’s first principle, as formulated in (Gentile, Meschini et al. 

2004) and (Gentile 2006), that we extend here to the dynamic hyperpath choice: 

 if the hyperpath 
rsPp  is used at time , namely )(p  >0, then )(g rs

p  ≤ )(S rs   

 on the other hand, if (sub)hyperpath 
rsPp  is not used at time , then its actual 

cost is bigger than the minimum one 

This condition can be formally expressed by: 

)(S rs  =min rsrs

p Pp:)(g    (14) 

    0 )(S)(g rsrs

pp   (15) 

Subject to:  

 

  0

1



 





p

Pp prs

 (16) 

To be noticed here that, if there is more than one shortest hyperpath connecting the origin-

destination pair, the characteristic vector   p  solving the system (14) (16) is not unique.  

In a static context, the shortest hyperpath search can be easily performed backward from the 

destination because the concatenation property holds true, namely any sub-hyperpath of a 

minimal hyperpath is itself minimal. Therefore, the deterministic route choice is solved 

through a recursive local search by applying generalized Bellman’s equations (Nguyen and 

Pallottino 1988; Nguyen and Pallottino 1989). However, it is known from literature records 

that, the concatenation property can be exploited in the dynamic shortest paths selection 

only when the FIFO rule is respected, i.e. for a generic path  connecting r to s it is always 

true that:  
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)(T)'(T'     

and the same applies to any generic arc of the considered path. 

Thus, for the scope of our work, we have to prove that the FIFO rule allows to apply the 

dynamic generalized Bellman’s equation for the shortest dynamic hyperpath search. 

Preposition. 

If
rsPp is a shortest hyperpath from r to s for users departing at time , then the sub-

hyperpath 1p  from r to any intermediate node i is itself the shortest for users travelling 

from r to i  and departing at time , and the sub-hyperpath 2p  from any intermediate 

node i to s  is itself the shortest for users travelling from i to s  and departing at time )(Tp 1 . 

Proof. 

If by contradiction there is a hyperpath
riPq that is faster than 1p  for users departing at 

time , then they can travel along q and arrive at the intermediate node i at 

time )(T)(T pq  1 . However, for the FIFO rule     )(T)(TT)(TT pppqp   122 . 

Therefore, q is not the fastest path to arrive in i when departing from r  at time , which 

contradicts the first hypothesis. 

Proposition. 

This dynamic version of the concatenation property referring to the departure times, allows 

us to prove that the following dynamic generalized Bellman’s equation, where the temporal 

point of view is the exit time from the node, is equivalent to the problem expressed by 

equation (14) . 

 

 

, if si                         

(17)a 

, if pRNi                  

(17)b 

 

, if pRNi                  (17)c 

 

Proof. 

Equation (17)b is valid for pRNi and can be proved ad in (Gentile, Meschini et al. 2004). 

Consequently, the only part of the dynamic generalized Bellman equation that needs to be 

proved is equation (17)c. 

In general, all the hyperpaths belonging to the set 
isP can always be partitioned on the basis 

of their first (hyper)arc. In our case, because node pRNi , the hyperpath is partitioned on 

the basis of its first waiting hyperarc, allowing for re-writing equation as(14): 

  

  




































 
 









)( )(
)( * *

*
)()()()(min

)()(min

0

)(

 






ip ip
iip

i

Lj Lj

ije
js

ijeijeije
NL

ij
js

ij
Nj

is

tS

tStS
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 is

e

is

p

is Pp),a(HD)e(HD:)(g)(S   min , (18) 

where: 

   iN)e(HD,WE)e(HD,ie  

   iN)a(HD,SE)a(HD,ia  

is

eP is a subset of hyperpaths belonging to 
isP that begin with the waiting hyperarc e . 

As the hyperpaths in 
is

eP coincide with hyperpaths in
jsP but for the waiting hyperarc e , and 

given the definition of dynamic hyperpath’s cost (5), it is possible to write: 

 


























 



)(Lj

)e(iHD

s)e(HD

pijeije
)(LPp

is

*
ip

*
ip

s)eHD
)(tg)()()(S




 minmin
9

 (19) 

But, recalling equation (5)b, and because the associativity holds for minimization, the right 

part of the equation becomes: 

  


























 
 


)(Lj )(Lj

)e(iHD

s)e(HD

pijeijeije
Pp)(L *

ip
*
ip

s)eHD*
ip

)(tg)()()(
 




9
minmin  (20) 

 

Moreover, because 




)(*

)()(





ipLj

ijeije is common to all the terms of the inner minimization, 

on the basis of equation (14), we obtain: 

  












  
 

 

)(Lj )(Lj

ije

js

ijeijeije
N)(L

is

*
ip

*
ip

i
*
ip

)(tS)()()()(S
 


 min  (21) 

 

 

FORMULATION OF THE DYNAMIC SHORTEST PATH 
ALGORITHM 

Given the proofs above, we can now develop the following recursive procedure to find the 

shortest dynamic hyperpath, for every departure time/arrival. 

The analysis period  Θ0, is here divided into M time intervals  Mm ,...,,...,,  10
, with 

0 = 

0 and 
M = 0. The period between two successive intervals is called temporal layer (Chabini 

1998; Gentile, Meschini et al. 2004). Moreover, the generic time profile, such as the line 

frequency or the available capacity, is given here through a piece-wise linear function 

defined by the values taken at such instants, for example we have: 

  m

ijij   ,  mm , 1 , M,...,m 1 .                      (22) 

On the other hand, we assume that outside the analysis period, namely  Θ,0 , the network 

behaves as if it were is static and all the travel variables stays equal 
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In order to find the shortest dynamic hyperpath all the nodes are visited, in any topological 

order, starting from the last temporal layer to the value assumed for 0  . 

When the computation is performed, the values of )(t),(c),(t),(),(),( ijijijeieijeije   

and )(S is  are known for any time  and for any node i , allowing for finding the shortest 

dynamic hyperpath for every departure time (Chabini 1998). 

The following example explains how the procedure works. 

 
Figure 2: Example network. 

Example.  

For the scope of the example, we consider the simple network depicted in Figure 2 and the 

analysis period [08:00, 08:20], where each layer lasts only one minute. 

We assume, the temporal profiles of frequencies and travel times are known and the number 

of the first available carrier, for any line, has already been computed according to equation 

(6). The tables Error! Reference source not found. show the data given:  

Table Ia: Temporal profiles for the travel variables needed. 

 08:00 08:01 08:02 08:03 08:04 08:05 08:06 08:07 08:08 08:09 

c1s(τ) 5 5 5 5 5 6 6 6 6 6 

c2s(τ) 3 3 3 3 3 4 4 4 4 4 

c3s(τ) 7 7 7 7 7 7 7 7 7 7 

kr1(τ) 2 2 2 2 2 1 1 1 1 1 

kr2(τ) 3 3 3 3 3 2 2 2 2 2 

kr3(τ) 1 1 1 1 1 1 1 1 1 1 

φr1(τ) 0.5 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

φr2(τ) 0.33 0.33 0.33 0.33 0.33 0.25 0.25 0.25 0.25 0.25 

φr3(τ) 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 

 

Table Ib: Temporal profiles for the travel variables needed. 

 08:10 08:11 08:12 08:13 08:14 08:15 08:16 08:17 08:18 08:19 

c1s(τ) 7 7 7 7 7 7 7 7 7 7 

c2s(τ) 4 4 4 4 4 5 5 5 5 5 

Deleted: below
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c3s(τ) 8 8 8 8 8 9 9 9 9 9 

kr1(τ) 1 1 1 1 1 1 1 1 1 1 

kr2(τ) 2 2 2 2 2 2 2 2 2 2 

kr3(τ) 1 1 1 1 1 1 1 1 1 1 

φr1(τ) 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 

φr2(τ) 0.33 0.33 0.33 0.33 0.33 0.20 0.20 0.20 0.20 0.20 

φr3(τ) 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 

 

Iteration 1: time layer 08:19. 

(1): Initialization 

Set: Sss(08:19) = 0 

             Sis(08:19) = ∞ si   

(2): Update labels for non-stop nodes, in any topologic order.  

If:   )(tS)(c)(SRNi ij

js

ij

is     and  

Then:  )(tS)(c:)(S ij

js

ij

is    

S1s(08:19) = 7 

S2s(08:19) = 5 

S2s(08:19) = 9 

(3):- Update labels for stop nodes, in any topologic order  

(3.1): Heuristic greedy initialization  

Compute: )(
kk jrj
 , 

   )(t
kk jrj
  

    )(tg~
kk

k

jij

sj   

).(
r

1908
11

 = 3, ).(t
r

1908
11

= 08.22,  22081 .g~ s
= 7  

).(
r

1908
22

 = 10, ).(t
r

1908
22

= 08.29,  29082 .g~ s
= 5  

).(
r

1908
33

 = 15, ).(t
r

1908
33

= 08.34,  34083 .g~ s
= 9 

Rank: jk in increasing order of  )(tg~
kk

k

jij

sj    

j1 = node 2  

j2 = node 1  

j3 = node 3  

Set:  1908.L*

rp := j1 = node 2  

 1908.S rs
:=    29081908 1

11
.g~. sj

jrj
 = 15  

k :=2  

(3.2): Heuristic Greedy Update of  1908.L*

rp   

k ≤ 3  

 22081 .g~ s
 <  1908.S rs

  

Then do:   
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Set:  )e(HD :=    21908 j.L*

rp    

Compute:  
krj   

 
krj   

  re   

 sjkS  

 rsS   

 1908
1

.rj = 0.140625  

 1908
2

.rj = 0.859375  

 1908
1

.rj = 0.527344 

 1908
2

.rj = 2.05078125 

 1908.re = 1.836547887 

 19081 .S
sj

= 5 

 21082 .S
sj

= 7 

 1908.S rs
= 8.555297887 

Set:  1908.L*

rp :=    21908 j.L*

rp   

k := k + 1 

end. 

k ≤ 3  

 34083 .g~ s
 >  1908.S rs

  

After repeating the procedure above, for all the temporal layers in reverse chronological 

order, we obtain the result  

Table IIa: Results obtained for all the time layers of analysis 

 08:00 08:01 08:02 08:03 08:04 08:05 08:06 08:07 08:08 08:09 

 sg~1
 6 6 6 6 6 6 6 6 7 7 

 sg~ 2
 4 4 4 4 4 4 4 4 4 5 

 sg~ 3
 8 8 9 9 9 7 7 7 9 9 

πrj1(τ) 0.18 0.18 0.18 0.18 0.18 0.11 0.11 0.11 0.11 0.11 

πrj2(τ) 0.82 0.82 0.82 0.82 0.82 0.89 0.89 0.89 0.89 0.89 

θrj1(τ) 0.78 0.78 0.78 0.78 0.78 0.3 0.3 0.3 0.3 0.3 

θrj2(τ) 2.73 2.73 2.73 2.73 2.73 1.48 1.48 1.48 1.48 1.48 

θre(τ) 2.38 2.38 2.38 2.38 2.38 1.35 1.35 1.35 1.35 1.35 

 *

rpL  j1, j2 j1, j2 j1, j2 j1, j2 j1, j2 j1, j2 j1, j2 j1, j2 j1, j2 j1, j2 

 rsS  7.02 7.02 7.3 7.3 7.3 7.13 7.13 7.13 7.13 8.02 

 

Table IIb: Results obtained for all the time layers of analysis 

 08:10 08:11 08:12 08:13 08:14 08:15 08:16 08:17 08:18 08:19 

 sg~1
 7 7 7 7 7 7 7 7 7 7 
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 sg~ 2
 5 5 5 5 5 5 5 5 5 5 

 sg~ 3
 9 9 9 9 9 9 9 9 9 9 

πrj1(τ) 0.25 0.25 0.25 0.25 0.25 0.14 0.14 0.14 0.14 0.14 

πrj2(τ) 0.75 0.75 0.75 0.75 0.75 0.86 0.86 0.86 0.86 0.86 

θrj1(τ) 0.75 0.75 0.75 0.75 0.75 0.53 0.53 0.53 0.53 0.53 

θrj2(τ) 1.5 1.5 1.5 1.5 1.5 2.05 2.05 2.05 2.05 2.05 

θre(τ) 1.31 1.31 1.31 1.31 1.31 1.84 1.84 1.84 1.84 1.84 

 *

rpL  
j1, j2 j1, j2 j1, j2 j1, j2 j1, j2 j1, j2 j1, j2 j1, j2 j1, j2 j1, j2 

 rsS  7.56 7.56 7.56 7.56 7.56 8.56 8.56 8.56 8.56 8.56 

 

Given the results listed in the tables above, it is now possible to compute the dynamic 

shortest hyperpath for any departure time. Indeed, for any , we can retrieve: the lines 

included in the attractive set of any stop node, the internal coefficient of the waiting hyperarc, 

the remaining travel time towards the destination 

For instance, for the departure time  =08.02 

 
 

 

CONCLUSIONS 

The main achievement of this paper has been the development of a new route choice model 

in a congested transit network, where passengers might encounter queues at transit stops 

and, thus, are not allowed to board the first approaching carrier of the attractive lines.  

Moreover, if no information about exact vehicle arrival times at stops is assumed, or if 

headways between carriers are so short that users perceive no advantage in timing their 

arrivals at stops with that of vehicles, then users can choose to board any among several 

competing (common (Chriqui and Robillard 1975)) lines in order to reach the destination, 

depending on which is the first available carrier. 

πr2(08.02)=18% 

πr1(08.02)=82% 

S
2r

(θr1(08.02))=3 

S
1r

(θr2(08.02))=5 
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In this framework, it has been proved for the static case that the best travel behaviour 

(Spiess 1983; Spiess 1984) does not simply require the selection of the shortest path 

leading to the destination, but the selection of the best travel strategy. 

Therefore, in this work we have tried to seek implications of extending the travel strategy 

approach to the dynamic context, verifying also how the definition of the hyperpath and its 

cost structure change when congestion occurs. 

It has been shown that the only way to define hyperpath’s cost is through a recursive formula 

(dynamic generalized Bellman equation) that works backwards in reverse topological order. 

Such formula can be applied also in this case because, as we have demonstrated, the 

concatenation property holds for the shortest dynamic hyperpath as for the static one. 

On the other hand, the time-dependency of travel variables does not allow relying on the 

greedy approach to select attractive lines, if not as a heuristic method. 

Future developments of our research, therefore, include: a comparison, in terms of algorithm 

complexity e precision, between the heuristic greedy and the exact approach for determining 

attractive lines at transit stops; an investigation of how should the route choice change if the 

networks include also (reliable) services for which headways are deterministically known; a 

development of a dynamic transit assignment. 
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