

Framework for Evaluation of

Network-Based Intrusion Detection

System

Owen Lo

Submitted in partial fulfilment of

the requirements of Napier University for the Degree of

Bachelor of Engineering with Honours in Computer

Networks and Distributed Systems

November 2009

Supervisor: Prof William Buchanan

Second Mark: Dr Jamie Graves

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 2

Authorship Declaration

I, Owen Lo, confirm that this dissertation and the work presented in it are my own

achievement.

Where I have consulted the published work of others this is always clearly attributed;

Where I have quoted from the work of others the source is always given. With the

exception of such quotations this dissertation is entirely my own work;

I have acknowledged all main sources of help;

If my research follows on from previous work or is part of a larger collaborative

research project I have made clear exactly what was done by others and what I have

contributed myself;

I have read and understand the penalties associated with Academic Misconduct.

I also confirm that I have obtained informed consent from all people I have involved

in the work in this dissertation following the School's ethical guidelines

Signed:

Date:

Matriculation no: 05002961

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 3

Acknowledgements

I would like to thank Prof Bill Buchanan for giving me the opportunity to carry out

this project along with all the help he has provided me.

I would like to thank Jamie Graves for being my second marker. Additionally, I

would like to thank Lionel Saliou who provided feedback and help during the initial

stages of this project.

Finally, I would like to thank my family for their support.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 4

Data Protection Declaration

Under the 1998 Data Protection Act, The University cannot disclose your grade to an

unauthorised person. However, other students benefit from studying dissertations that

have their grades attached.

Please sign your name below one of the options below to state your preference.

The University may make this dissertation, with indicative grade, available to others.

The University may make this dissertation available to others, but the grade may not

be disclosed.

The University may not make this dissertation available to others.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 5

Contents

AUTHORSHIP DECLARATION 2

ACKNOWLEDGEMENTS 3

DATA PROTECTION DECLARATION 4

ABSTRACT 9

1 INTRODUCTION 10

1.1 Project Overview 10

1.2 Background 10

1.3 Aim and Objectives 11

1.4 Thesis Structure 12

2 LITERATURE REVIEW 13

2.1 Introduction 13

2.2 Information Security 13

2.2.1 Confidentiality, Integrity and Availability 13

2.2.2 Categories of Threats in Information Security 14

2.3 Intrusion Detection System Taxonomy 16

2.3.1 Definition and Purpose of Intrusion Detection Systems 16

2.3.2 IDS Framework and Characteristics 17

2.3.3 Host-Based, Network-Based and Distributed-Based IDS 20

2.3.4 Detection Methods 22

2.4 Network Security Threats 23

2.4.1 Surveillance/Probing 24

2.4.2 User Privilege Gain 24

2.4.3 Viruses, Worms and Trojans 24

2.4.4 Denial of Service Attacks 25

2.5 Methodologies in Evaluating IDSs 25

2.5.1 Black-Box and White-Box Testing 25

2.5.2 Real-time and Offline Evaluation 27

2.5.3 DARPA Evaluation 27

2.5.4 Automated Evaluation 29

2.5.5 LARIAT Evaluation 31

2.5.6 Trident Evaluation 33

2.5.7 Metrics for Evaluation 35

2.6 IDS Testing Related Tools and Programs 37

2.6.1 NIDSbench 37

2.6.2 IDSwakeup 38

2.6.3 Metasploit Framework 38

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 6

2.7 Conclusion 38

3 DESIGN 40

3.1 Introduction 40

3.2 Prototype Framework Overview 40

3.3 Attack and Background Traffic Component Design 42

3.4 Automation Wrapper Design 43

3.5 Evaluation Metrics Component Design 44

3.6 Conclusion 45

4 IMPLEMENTATION 46

4.1 Introduction 46

4.2 GUI Implementation 46

4.3 Shell Process Implementation 47

4.4 Attack Traffic Component Implementation 47

4.4.1 Surveillance/Probing Implementation 48

4.4.2 User Privilege Gain Implementation 49

4.4.3 Malicious Software Implementation 50

4.4.4 Denial of Service Implementation 52

4.5 Background Traffic Component Implementation 53

4.5.1 Tcprep Implementation 55

4.5.2 Tcprewrite Implementation 55

4.5.3 Tcpreplay Implementation 56

4.6 Evaluation Metrics Component Implementation 57

4.6.1 Alarm Retrieval Implementation 58

4.6.2 Baseline Results Implementation 59

4.6.3 Metric Generation Implementation 59

4.7 Conclusion 62

5 EVALUATION 63

5.1 Introduction 63

5.2 Experiment Description 63

5.2.1 Test Bed Description 64

5.2.2 Snort Configuration 65

5.3 Results 67

5.4 Analysis 69

5.5 Conclusion 70

6 CONCLUSION 71

6.1 Introduction 71

6.2 Meeting the Objectives 71

6.2.1 Objective 1 71

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 7

6.2.2 Objective 2 72

6.2.3 Objective 3 72

6.3 Critical Analysis 72

6.4 Reflection 73

6.5 Future Work 74

7 REFERENCES 76

Appendix 1 Initial Project Overview 81

Appendix 2 Week 9 Meeting Report 84

Appendix 3 Time Plan 86

Appendix 4 Diary Sheets 87

Appendix 5 Main.cs Source Code 111

Appendix 6 Class Diagram of Framework 124

List of Tables

Table 2.2.1 – Example of Threats against C.I.A .. 14

Table 2.3.1 – Description of the four components of the CIDF 17

Table 2.5.1 – Definition of Black-Box and White-Box Testing (Sharma et al., 2007)

.. 26

Table 2.5.2 – Taxonomy of MACE attacks (Sommers et al., 2004) 34

Table 2.5.3 – Detection and Resource-Utilization Metrics (Gadelrab & El Kalam

Abou, 2006) ... 36

Table 3.3.1- Attacks Included in Application System ... 43

Table 3.5.1 – Evaluation Metrics Design... 44

Table 4.5.1 – Tcpreplay tool suite ... 54

Table 4.7.1 – Programs Used In Implementation .. 62

Table 5.2.1 – Specifications of Virtual Machines .. 64

List of Figures

Figure 1.2.1 – Security Breaches in UK Businesses (BIS, 2006), (BIS, 2008) 11

Figure 2.3.1 - CIDF interaction method (Ptacek et al., 1998) 18

Figure 2.3.2 - Refined CIDF Model (Powell & Stroud, 2001) 19

Figure 2.3.3 - Characteristics of an IDS (Debar et al., 1999) 20

Figure 2.3.4 – Example of HIDSs on a Network ... 21

Figure 2.3.5 – Example of an NIDS on a Network .. 21

Figure 2.3.6 – Example of DIDSs on a Network ... 22

Figure 2.5.1 – DARPA Evaluation Test bed (Lippman et al., 2000) 28

Figure 2.5.2 – Automated Evaluation Attack System (Massicotte et al., 2006) 30

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 8

Figure 2.5.3 - Steps Carried out in the Automated Evaluation 31

Figure 2.5.4 – Example screenshot of the LARIAT GUI (Rossey et al., 2002) 32

Figure 2.5.5 – Trident Framework (Sommers et al., 2004) ... 33

Figure 2.5.6 - Formula for working out Efficiency and Effectiveness Metric

(Sommers et al., 2005) ... 35

Figure 3.2.1 – Prototype Framework ... 41

Figure 3.2.2 – Abstract Schematic ... 41

Figure 4.2.1 - Screenshot of Framework ... 46

Figure 4.4.1 – Example Configuration of Surveillance/Probing 49

Figure 4.4.2 – Example Configuration of User Privilege Gain Attacks 49

Figure 4.4.3 – Example configuration of Malicious Software Attack 52

Figure 4.4.4 – Example Configuration for Denial of Service Attack 53

Figure 4.5.1 – Background Traffic Playback Process .. 54

Figure 4.5.2 – Example of tcprep Implementation .. 55

Figure 4.5.3 – Example Configuration of the tcprewrite Implementation 56

Figure 4.5.4 – Example of tcpreplay Implementation ... 57

Figure 4.6.1 – Evaluation Metrics Component Diagram ... 57

Figure 4.6.2 – Example of Alarm Retrieval Implementation 58

Figure 4.6.3 – Example of baseline results Implementation .. 59

Figure 4.6.4 – Metric Generation Example ... 60

Figure 5.2.1 – Schematic of Experiment ... 63

Figure 5.2.2 – Diagram of Virtual Network Test Bed ... 65

Figure 5.3.1 - Detection Metrics Generated for 120Mbps Playback 67

Figure 5.3.2 –CPU Utilization and Memory Usage Results .. 68

Figure 5.3.3 – Efficiency and Effectiveness Results ... 68

Figure 5.3.4 – Packet Loss Metric Result .. 69

Figure 6.5.1 – Improvements to Prototype Framework ... 75

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 9

Abstract
There are a multitude of threats now faced in computer networks such as viruses,

worms, trojans, attempted user privilege gain, data stealing and denial of service. As a

first line of defence, firewalls can be used to prevent threats from breaching a

network. Although effective, threats can inevitably find loopholes to overcome a

firewall. As a second line of defence, security systems, such as malicious software

scanners may be put in place to detect a threat inside the network. However, such

security systems cannot necessary detect all known threats, therefore a last line of

defence comes in the form of logging a threat using Intrusion Detection Systems

(Buchanan, 2009, p. 43).

Being the last line of defence, it is vital that IDSs are up to an efficient standard in

detecting threats. Researchers have proposed methodologies for the evaluation of

IDSs but, currently, no widely agreed upon standard exists (Mell, Hu, Lippmann,

Haines, & Zissman, 2003, p. 1). Many different categories of IDSs are available,

including host-based IDS (HIDS), network-based IDS (NIDS) and distributed-based

IDS (DIDS). Attempting to evaluate these different categories of IDSs using a

standard accepted methodology allows for accurate benchmarking of results. This

thesis reviews four existing methodologies and concludes that the most important

aspects in an effective evaluation of IDSs must include realistic attack and

background traffic, ease of automation and meaningful metrics of evaluation.

A prototype framework is proposed which is capable of generating realistic attacks

including surveillance/probing, user privilege gain, malicious software and denial of

service. The framework also has the capability of background traffic generation using

static network data sets. The detection metrics of efficiency, effectiveness and packet

loss are defined along with resource utilisation metrics in the form of CPU utilisation

and memory usage. A GUI developed in Microsoft .NET C# achieves automation of

sending attack and background traffic, along with the generation of detection metrics

from the data logged by the IDS under evaluation.

Using a virtual networking environment, the framework is evaluated against the NIDS

Snort to show the capabilities of the implementation. Mono was used to run the .NET

application in a Linux environment. The results showed that, whilst the NIDS is

highly effective in the detection of attacks (true-positives), its main weakness is the

dropping of network packets at higher CPU utilisations due to high traffic volume. At

around 80Mbps playback volumes of background traffic and above, it was found that

Snort would begin to drop packets. Furthermore, it was also found that the NIDS is

not very efficient as it tends to raise a lot of alerts even when there are no attacks

(false-positives).

The conclusion drawn in this thesis is that the framework is capable of carrying out an

evaluation of an NIDS. However, several limitations to the current framework are also

identified. One of the key limitations is that there is a need for controlled aggregation

of network traffic in this framework so that attack and background traffic can be more

realistically mixed together. Furthermore, the thesis shows that more research is

required in the area of background traffic generation. Although the framework is

capable of generating traffic using state data sets, a more ideal solution would be an

implementation in which allows the user to select certain “profiles” of network traffic.

This would serve the purpose of better reflecting the network environment in which

the IDS will be deployed on.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 10

1 Introduction
1.1 Project Overview

It is stated in the work of Mell, Hu, Lippmann, Haines, & Zissman (2003) that “while

intrusion detection systems are becoming ubiquitous defences in today’s networks,

currently we have no comprehensive and scientifically rigours methodologies to test

the effectiveness of these systems (Mell, et al., 2003, p. 1).” In other words, a

standard accepted methodology is still a requirement in the evaluation of IDSs.

The aim of this project is to produce a prototype framework which is capable of

carrying out an evaluation of an NIDS. The design of the framework is achieved by

attempting to apply the strengths of existing methodologies proposed by researchers

whilst avoiding the limitations as best as possible. The use of meaningful metrics of

evaluation for this framework are also been taken into consideration. The

implementation is carried out using Microsoft .NET C# and ran under a Linux

environment. The framework is then used to evaluate the NIDS Snort in order to

establish the effectiveness of the approach taken.

1.2 Background

Burglar alarms, smoke alarms, fire alarms and closed circuit television all fall under

the category of real life, physical intrusion detection systems (Del Carlo, Lakes,

Illinois, & Practical, 2003, p.4). The purpose of these devices is to monitor specific

threats, and, if the threat occurs, then either produce some form of alert (such as

emitting a high pitched noise in the case of fire and burglar alarms) or log the activity

(in the case of closed circuit television cameras). Examples of threats include fires and

trespassing of property. Consequences of these threats being acted out may result in

theft, damage to property or even worst scenarios. Therefore, it can be clear that such

monitoring devices are highly important in functioning correctly, and perform the task

they are intended to with absolute efficiency. In other words, such devices must

perform to a certain standard.

In order to ensure this standard is met, various organisations set up rules and

guidelines which specify exactly how such devices must perform. One example is the

National Fire Protection Association, which sets out guidelines for fire and smoke

alarms testing. As quoted from Richardson and Moore, the guideline “covers the

application, installation, location, performance, and maintenance of fire alarm systems

and their components (Richardson & Moore, 2000, p. 20).” In other words, this

standard covers the exact testing procedures which must be carried out against an

alarm system and defines the exact metrics which make the device acceptable for use.

With the increasingly rapid evolution of technology, it has been a lot easier for

businesses and organisations to take advantage of local area networks for

interconnecting their information systems together. With this growth, there has been

increasing popularity in the usage and development of the internet as a whole

(Howard, Paridaens, & Gramm, 2001, p. 117). Many computer threats have also

appeared, therefore, a need for digital intrusion detection systems. To emphasise this

point, the statistics provided in an independent survey of UK businesses conducted by

the Department of Business, Innovation and Skills show that in the year 2008, there is

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 11

still a relatively high number of malicious software and hacking attempts affecting

information systems (Figure 1.2.1).

Figure 1.2.1 – Security Breaches in UK Businesses (BIS, 2006), (BIS, 2008)

Although, overall, the survey shows that breaches have been dropping each year,

there is still a significant risk of computer threats at this point in time. To elaborate, a

much more recent example of a security breach is a case which occurred in November

of 2009 when criminals stole over £600,000 from bank accounts by simply installing

a Trojan on host computers (Goodin, 2009, para. 1). Many more similar cases and

examples of such breaches in information security can easily be found by simply

monitoring the news on a daily basis.

Since information security threats have just as serious consequences as fires or

trespassing would one may conclude that there is a definite need for digital IDSs to

monitor and detect such threats if they occur. The issue at this point in time is that

there is no standard method which can be used to assess the effectiveness of these

programs (Mell et al., 2003, p.1). In comparison with the standards applied to testing,

for example, a fire alarm, the methodology in evaluating a digital IDS is sorely

lacking. Thus, it can be seen that it is highly important that exact methodology for

testing and evaluating digital IDSs, one in which sets the standard of evaluation, is an

absolute necessity.

It should be noted that different categories of digital IDSs exist. This includes Host-

Based, Network-Based and Distributed-Based (see Section 2.3.3). The main scope

and main focal point of this project will be on Network-Based IDSs (NIDS) though

the other categories will be touched upon as well.

1.3 Aim and Objectives

The overall aim of this project is to produce a prototype framework which is capable

of carrying out an evaluation of a NIDS. In order to meet this aim, the following three

main objectives must be met:

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 12

1. Review and research the taxonomy of IDSs and existing methodologies for

evaluation including the testing methods applied along with metrics of

evaluation.

2. Design a framework which can be used to evaluate a NIDS based on the

findings of the literature review with justification for design choices made.

3. Implement and evaluate the framework by testing it against an NIDS to see

what results are produced in order to assess the capabilities of the

framework.

1.4 Thesis Structure

This thesis is split into six main chapters. They are described as follows:

 Chapter 1 – Introduction: Provides the project overview and background to

the subject of Intrusion Detection Systems. The key aim and objectives of the

project are also defined along with the thesis structure.

 Chapter 2 – Literature Review: An introduction to information security is

first provided along with a research on the taxonomy of IDSs. The main focal

point of the chapter, an analysis of the existing methodologies used in the

evaluation of IDSs is then reviewed with emphasis on analysing the strengths

and weaknesses of the method. Finally, a conclusion is reached which

provides the driving force behind this project.

 Chapter 3 – Design: Based on the conclusion reached in the literature review,

this chapter proposes a design of a prototype framework which is required for

carrying out an evaluation of an NIDS with justifications as to why the

approach is viable.

 Chapter 4 – Implementation: This chapter documents the steps taken in

creating the framework based on the design from the previous chapter.

Snippets of code along with screenshots are provided to show the many

functions of the implementation.

 Chapter 5 – Evaluation: An evaluation of the prototype framework is

provided in this chapter. Using the framework, an experiment, in the form of a

set of tests, is carried out against the NIDS known as Snort. The experiment is

described along with results produced. An analysis of results is also provided.

 Chapter 6 – Conclusion: A conclusion to how well this project met the initial

aim and objectives originally set out is provided. A self-reflection section is

also provided to discuss some of the difficulties faced and how they were

overcome along with a discussion on project management. Finally, this

chapter ends with a section dedicated to describing some directions in which

future work can be taken in this subject area.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 13

2 Literature Review
2.1 Introduction

This literature review first provides a background to information security (Section

2.2). To understand the basic concepts of IDSs a review of the taxonomy and

characteristics (Section 2.3) of this topic is then carried out. Some of the main

network security threats are then analysed (Section 2.4) in order to understand what

an IDS should be capable of detecting.

The main focal point of the review, methodologies in the evaluation of IDSs, is then

provided (Section 2.5) along with looking at existing programs and tools which allow

for testing of IDSs (Section 2.6). Finally, a conclusion (Section 2.7) is drawn which,

based on the methodologies reviewed, identifies three main requirements for an

effective evaluation of IDSs.

2.2 Information Security

A clear and concise definition of “security” may be found by Whitman and Mattord

(2008), in which they state that it is a form of “protection against adversaries – from

those who would do harm, intentionally or otherwise (Whitmand & Mattord, 2008,

p.8)”. In other words, security is safeguarding against both intentional and

unintentional threats. To simplify this even further, we can consider security as a form

of protection from danger. Security can be applied to many different areas (such as

physical security as an example) but, for the scope of this thesis, the main focus will

be on information security.

Information security can be considered an all encompassing term and consist of the

following components: management of information security, computer & data

security, policies and network security (Whitman & Mattord, 2008, p. 8). In other

words, information security is a combination of all four components and applying

each area in practice. Perhaps the most important concept behind information security

is the key principle of CIA (Confidentiality, Integrity and Availability). This key

principle is described in the section which follows.

2.2.1 Confidentiality, Integrity and Availability

In regards to information security, it is widely accepted that a threat to information

systems will generally affect one or more of either: confidentiality, integrity or

availability of a resource (Whitman & Mattord, 2008, p. 8). Thus, the purpose and

goal in information security is to protect these three key principles. The “resource”

itself can be anything which is deemed important, whether it is a physical entity (such

as paper documents or computer hardware) or a virtual entity (such as a computer

database or source code to a piece of software). Confidentiality is making sure

information is accessible to authorised persons only; integrity is ensuring data is

correct and accurate whilst availability refers to having access to information systems

when required (Cavalli, Mattasoglio, Pinciroli & Spaggiari, 2004, p. 298).

To elaborate further, Table 2.2.1 is shown in which gives examples of a threat being

against a resource and the principle in which would be compromised. The table

provided gives example of three threats. Each of them will compromise one of the

principles in information security. Such threats may be grouped into different

categories and it is the intention of the next section to look into the different types of

threats faced in information security.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 14

Table 2.2.1 – Example of Threats against C.I.A

Resource Threat Compromises

Classified medical record of

a patient.

Gaining unauthorized access to this record and

reading or distributing the information to

others.

Confidentiality

Database which contains

detail of a Bank’s customer.

Breaking into the database, and changing the

data of customer details.

Integrity

A Server hosting a website. Using computer security exploits to bring the

system down.

Availability

2.2.2 Categories of Threats in Information Security

Attempting to provide an exhaustive list of all threats faced by information systems

would be both very time consuming and, perhaps, even impossible due to the sheer

volume that exist (NIST, 2006, p. 21). Ultimately the threats faced by users or

organisations may differ dependant on the environment where the information

systems are contained.

However, at the same time, it is important to establish what some of the main threats

of this subject is. Therefore, the following paragraphs provide categories of well

known threats which are derived from the work of Whitman and Mattord (2008).

Additional references have been cited for clarification on some of the threats shown:

 Human Error: Involves accidents and mistakes which are made by users of

information systems. This may be due to lack of training or inexperience when

using information systems (Whitman & Mattord, 2008, p. 42). In some cases

this threat may involve a user being tricked by social engineering - which

involves exploiting someone through manipulation of their behaviour

(Workman, 2007, p. 316) in order to get them to release confidential

information such as their password to computer systems.

 Trespassing: Involves both intentional and unintentional access to

unauthorized data and information. Although such an act may have been

unintentional, the result is still a loss of confidentiality in information

(Whitman and Mattord, 2008, p. 45). Furthermore, if the act is intentional

there is the possibility of it being industrial espionage which is when

information is gathered from one company and given to a competing company

in order to give them an advantage (NIST, 2006, p. 26). This threat may also

be physical, in that a person walking into an unauthorized area would be an

example of trespassing.

 Theft: Includes both the physical theft of computer systems and equipments

along with the theft of data in the form of information.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 15

 Sabotage: Forms of sabotage may come from employees who damage or

misuse computer equipment (Corsini, 2008, p.8) as well as more serious cases

where company websites are vandalised which results in a loss of reputation

(Whitman & Mattord, 2008, p. 52). The reason behind such sabotage may

include disgruntled employees or simply mischievous acts which were carried

out in boredom.

 Software Attacks: Includes all forms of malicious software such as worms,

viruses and trojan horses. In most cases, systems infected with such software

will result in decreased productively from users due to the time and cost

required to clean the infected system (NIST, 2006, p. 27). Furthermore, brute

force attacks - which involve software which tries to guess the password to a

username by attempting all possibilities (Cornsini, 2006, p. 8) - and denial of

service attacks - which attempt to starve the system under attack from all

resources (Ptacek, Newsham & Simpson, 1998, p. 10) which result in a crash -

also fall under this category.

 Technical Hardware Failure: Hardware which contains flaws due to design

errors or lack of maintenance over time may suffer instabilities or even

complete failure. One example of a hardware design flaw is from the Intel

Pentium II CPU which contained a floating point bug which resulted in

calculation errors (Whitman & Mattord, 2008, p. 62) requiring a total recall of

the product hence a great loss in money.

 Technical Software Failure: Programming flaws and errors overlooked during

the design and implementation of software results in vulnerabilities being

exploited or bugs in a programme (NIST, 2006, p. 22). The same may apply if

software is not updated over time.

 Forces of Nature: Natural disasters such as fires, floods, earth quakes and

lightning all pose a threat to information systems. Results from such disasters

may include the worst case scenario of systems being damaged beyond all

repairs. The unpredictability of natural disasters means it can be difficult to

safeguard against such threats (Whitman & Mattord, 2008, p. 59).

Threats such as human error may be reduced through training of users involved in

information systems. The chances of technical hardware and software failing is also

reduced if proper maintenance and upgrade to components and resources as carried

out. However, at the same time, even by applying every safe guard possible, there is

always a small risk of a threat being carried out due to unknown vulnerabilities. This

is especially true in the case of such threats as software attacks and information theft

since no physical evidence may be left behind after the threat occurs therefore users

may be completely unaware an attack took place. The point to be made here is that

threats cannot always be prevented but, they can be detected, stopped as soon as

possible and safeguarded against in the future.

As the first chapter of this thesis has already described, physical detection systems

such as fire alarms or C.C.T.V’s allow for the detection of specific real-life threats

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 16

such as fires or trespassers but, there is no possibility in these devices detecting a

denial of service attack, a rogue virus spreading itself throughout a computer network

or an application suddenly modifying user passwords. Thus, this lead on to the need

for mechanism for the detection of non-physical information system threats which

may be achieved by deploying digital IDSs. The next section of this report will focus

on the taxonomy of this subject.

2.3 Intrusion Detection System Taxonomy

The meaning of taxonomy is in providing a unique label for each entity within a

subject area. The purpose of which is to allow researchers to easily communicate and

group subjects matters together. To elaborate, the work of Almgren, Lundin &

Jonsson (2003) state that having a good taxonomy allows other people to express their

thoughts and ideas in a manner which is universally understood by all others working

on the same research area (Almgren et al., 2003, p. 57).

Unfortunately, a singular and widely agreed upon taxonomy of IDSs does not exist

(Tucker, Furnell, Ghita & Brooke, 2007, p. 88-89). This is due, partly, to the fact that

as you delve deeper into the technical aspects of IDS, it becomes more difficult and

complicated to classify specific elements into a standard category due to ambiguity or

technical complexity.

The purpose of this section is not to provide a comprehensive taxonomy into IDSs –

such an objective is outside the scope of this thesis. Rather, the focus will be in

providing a taxonomy on concepts, terms, and ideas which is widely accepted by

researchers. Although the introduction to this thesis has briefly described the general

purpose of an IDS, this section intends to delve a lot deeper into this subject area.

2.3.1 Definition and Purpose of Intrusion Detection Systems

A standard definition of the term intrusion is described as “the act of intruding or the

state of being intruded; especially: the act of wrongfully entering upon, seizing, or

taking possession of the property of another (Webster-Merriam, 2009).” From this

definition, one may conclude that an intrusion is to enter upon a domain which is

considered restricted, regardless of whether the act is considered intentional or not.

In other words, if we apply the term intrusion to the topic of information security, this

can be considered simply as another form of a threat being acted out (an attack).

Furthermore, it should be noted that an intrusion in this context will threaten to

compromise one or more of the three principles of information security:

confidentiality, integrity and availability (previous discussed in Section 2.2.1). This

idea is backed up in the work of Purcell (2007), in which the author states that IDSs

are a control measure (Purcell, 2007, para. 6) whilst the work by NIST (2006)

reinforces this by stating that the purpose of IDSs is in “identifying attempts to

penetrate a system and gain unauthorized access (NIST, 1996, p. 215).” To describe it

in another way, an IDS can be defined as a control measure of which the purpose is to

detect threats which put information systems at risk.

It is also important to note what is not considered the purpose of an IDS. From the

work of Kazienko and Dorosz (2003), they state that security devices such as network

logging systems, anti-virus detection/protection, vulnerability assessment tools,

firewalls and security/cryptographic systems, although similar to the purpose of IDSs,

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 17

should not be classified under the same category as IDSs (Kazienko & Dorosz, 2003,

para. 3). Such security devices will most likely work together in order to provide for

multiple layers of defence in information security, but the general functionality of

these devices will differ from an IDS.

To provide a summary to this section, the most important point that should be

understood is the fact that all threats, from an Information Security stand point, will

compromise one or more of the three key principle areas which are, to repeat:

confidentiality, integrity and availability. The purpose of IDSs is in detecting threats

which compromise any of these three principles. Devices such as firewalls and

network logging systems may achieve the same goals, but their functionalities will

differ to that of an IDS.

2.3.2 IDS Framework and Characteristics

Many different types of IDSs currently exist, and, as expected, they will function

differently dependant on the design choices taken in implementation. It can be helpful

for users wishing to learn about this subject if a common model exists which acts as a

form of blueprint which relates to all IDSs. The work produced by Porras,

Schnackenberg, Staniford-Chen, Stillman and Wu (1998) recognised this importance,

and the result of the authors work is the Common Intrusion Detection Framework

(CIDF).

In the CIDF, the IDSs are divided into four main components, which are as follows:

event generators (known as “E-boxes”), event analyzers (“A-boxes”), event databases

(“D-boxes”) and response units (“R-boxes”) (Porras et al., 1998, para. 21-26). Table

2.3.1 provides a summary as to what the purposes of each of these components are.

Table 2.3.1 – Description of the four components of the CIDF

Component Name Purpose of Component

Event Generators (E-Boxes) The E-Box is the sensor, which will monitor and

obtain activity (such as network traffic) and

convert the data it sees into the CIDF format so

the other components can interpret it.

Event Analysers (A-Boxes) The A-Box receives data from the E-box and will

analyse it. Method of analysis is dependent on the

design of the IDS.

Event Databases (D-Boxes) The D-Box is simply where the analysed data is

stored.

Response Units (R-Boxes) Based on the analysed data, and, once again, on

the design of the IDS, a response will be carried

out which may include producing an alert (if the

data analysed is considered an intrusion) or the

event is simply logged.

To provide for a better visual representation of how these components interact with

each other, Figure 2.3.1 is presented which comes from the work produced by Ptacek,

et al. (1998). It should be made clear that although the diagram labels one of the

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 18

components as a “Countermeasure (C) Box”, this serves the exact same function as

the Response Units (R-Box) described in the previous table.

Figure 2.3.1 - CIDF interaction method (Ptacek et al., 1998)

From the description and the figure provided, it can be seen that each component

relies upon each other, both directly and indirectly. What can be summarised is that

although different IDSs will carry out the task of intrusion detection using their own

methods, all IDSs will still be similar due to the fact that they are based on the design

of this framework.

However, criticism has been made against the CIDF. One in particular was made in

the technical report produced by the Malicious and Accidental Fault Tolerance for

Internet Applications (MAFTIA) project. In this technical report, Powell and Stroud

(2001) state that the Response Units (R-Boxes) should not be considered a part of the

IDS but rather a separate entity due to the fact that, by definition, the purpose of a IDS

is in detecting intrusion, not responding to it (Powell & Stroud, 2001, p. 28).

Following on from this statement, the authors have attempted to provide their own

refinement to the CIDF which can be seen in Figure 2.3.2. This may be considered a

minor piece of criticism though, since both Porras et al. (1998) and Powell & Stroud

(2001) appear to agree that the response units, regardless of whether or not it is part of

the CIDF, is still a requirement since some form of action must take place if a attack

is detected.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 19

Figure 2.3.2 - Refined CIDF Model (Powell & Stroud, 2001)

Having looked at the basic IDS framework, a review of the main characteristics of an

IDS will be carried out. In the work produced by Debar, Dacier & Wespi (1999), the

authors defines IDSs as having four main characteristics: Detection Method,

Behaviour on Detection, Audit Source Location and Usage Frequency (Figure 2.3.3).

What can be made clear is that each of the three functional characteristics provided in

the figure can be easily linked to one of the components of the CIDF described earlier.

In regards to the three functional characteristics: audit source location refers to how

the IDS goes about obtaining activity and converting it to data the system can

understand (E-Box), the detection method will analyse this data for attacks (A-Box)

and behaviour on detection defines what action will be taken whether or not attacks

are found (R-Box) (Debar et al., 1999, p. 8 - 9).

The usage frequency refers to whether the IDS runs continuously or periodically and

since it is a non-functional characteristic no relation can be made with the CIDF.

However, to provide for a brief description, continuous monitoring simply refers to an

IDS which will monitor for threats without interruption whilst periodic analysis

means the IDS monitors for threats on at certain intervals.

The audit source location, including host, network and distributed based, is described

in greater detail in Section 2.3.3 whilst information on detection methods, which can

be either behaviour or knowledge based, is found in Section 2.3.4.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 20

Figure 2.3.3 - Characteristics of an IDS (Debar et al., 1999)

2.3.3 Host-Based, Network-Based and Distributed-Based IDS

The work by Debar et al. (1999) states that there are three main categories of audit

source locations implemented in IDSs including host-based IDS (HIDS), network-

based IDS (NIDS) (Corsini, 2009, p. 15) and distributed-based IDS (DIDS) described

by Snapp, Brentano, Dias, Goan, Heberlein, Ho, Levitt, Mukherjee, Smaha, Grance,

Teal, & Mansur (1991).

In HIDSs, the internal activities of the computer system in which it resides is

monitored and analysed through the usage of audit data which is provided by the

operating system (Vigna, Robertson & Balzarotti, 2004, p. 21). For example, an HIDS

may monitor the memory usage of programs and produce an alert if the resources

taken up by the program begin to fluctuate in an unexpected manner. Figure 2.3.4

shows an example of the location of various HIDSs residing in some of the

workstations and one of the servers on a network.

In comparison, NIDSs involve looking at both incoming and outgoing network

packets and attempt to find any acts of attacks (Debar et al., 1999, p. 817). In other

words, an NIDSs main task is in the analysis of traffic on a network. For a NIDS to

work, it must be either connected to a span port on a switch or a device such as a

router (Beale, Baker & Esler, 2007, p. 5) in order to capture all traffic on a network.

Furthermore, a network interface card (NIC) is obviously needed. Figure 2.3.5 shows

an example of one single NIDS connected to the switch of a network. The location of

the NIDS allows it to monitor all network traffic activity on this network.

In a DIDS, the techniques of both HIDS and NIDS are used, thus this can be

considered a hybrid form of IDS (Debar et al., 1999, p. 817). DIDS functions by using

multiple IDSs which monitor both the hosts connected to a network, along with the

network activity itself and reports all information captured to a centralized IDS,

known as the DIDS director (Snapp et al., 1991, p. 168). Figure 2.3.6 shows an

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 21

example of the usage of a DIDS on a network. It should be noted that in DIDSs, there

is the possibility of an IDS being both a HIDS and NIDS at the same time (Beale et

al., 2007, p. 8) which is not shown in the figure. The main point to be made is that all

NIDS/HIDS will report to the DIDS director.

Figure 2.3.4 – Example of HIDSs on a Network

Figure 2.3.5 – Example of an NIDS on a Network

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 22

Figure 2.3.6 – Example of DIDSs on a Network

What may be concluded is that there are three main types of IDSs: HIDS, NIDS and

DIDS. The use of the term “IDS” is used to describe intrusion detection systems

generically, whilst if one was to describe a topic in regards to a specific category of

IDS, the acronyms HIDS, NIDS or DIDS will be used instead.

2.3.4 Detection Methods

The work of Debar et al. (1999) states that there two main forms of detection

methods: behaviour based and knowledge based. These are more commonly known as

anomaly detection and misuse detection methods. The purpose of both methods is in

attempting to detect any attacks or intrusions on a system. The main characteristic of

anomaly detection is in looking for any unexpected changes in behaviour of a system

against what is considered “normal” behaviour whilst misuse detection involves

comparing incoming threats against a predefined knowledge base in order to decide

whether the threat is considered an attack or intrusion (Debar et al., 1999, p. 810).

As mentioned in the above paragraph, an anomaly detection method works by

comparing normal behaviour against the current pattern of behaviour in a system. In

order to achieve this task, the main challenge in anomaly detection methods is in

learning what is considered “normal” behaviour. The work by Axelsson (2000)

describes the two main approaches which are used to achieve this goal: self-learning

or programmed anomaly detection. In the self-learning approach, the anomaly

detection system will begin to automatically monitor events, such as live network

traffic, on the environment it has been implemented on and attempt to build

information on what is considered normal behaviour (Axelsson, 2000, p. 5). This is

otherwise known as online learning (Gong, 2003, p. 3). In the programmed approach,

the anomaly system must manually learn what is considered normal behaviour by

having a user or some form of function “teaching” the system through input of

information (Axelsson, 2000, p. 5). This is otherwise known as offline learning, and

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 23

may involve feeding the system a network traffic data set which contains normal

network traffic (Gong, 2003, p. 3). One of the most common methods for building the

behaviour information in both self-learning and programmed anomaly detection

systems is through statistical analysis. This involves measuring the average time it

takes for a task to be carried out, such as the average time taken for a user to invoke a

login to a server, and storing this information as variables (Debar et al., 1999, p. 813).

These variables are then used in comparison against the activities when the anomaly

system is deployed.

Misuse detection methods, in comparison, require that all known threats will be

defined first, and the information regarding these threats to be submitted to the NIDS.

Thus, the NIDS is able to then compare all incoming, or outgoing, activity against all

known threats in its knowledge base and raise an alarm if any activity matches

information in the knowledge base. The information stored in this knowledge base is

usually known as signatures. Misuse detection methods normally requires a user to

manually define all signatures it should detect, therefore only a programmed approach

can be used for this detection method (Axelsson, 2000, p. 6). The process for actually

matching a signature with an attack include simple string matching – which involves

looking for unique key words in network traffic to indentify attacks – to more

complex approaches such as rule-based matching which defines the behaviour of an

attack as a signature (Axellson, 2000, p. 7).

Both anomaly and misuse detection methods have their own advantages and

disadvantages. In terms of misuse detection, this method is very reliable in detecting

attacks so long as the signature has been properly defined in the knowledge base.

Furthermore, since the signature must be predefined, if an alarm is triggered, then we

can easily determine what type of attack was actually detected by the system. The

obvious disadvantage here is that any attack which does not have a predefined

signature will never be detected (Zhengbing, Zhitang and Junqi, 2008, p. 2). The

opposite is true of anomaly detection methods in which new or unknown attacks can

be detected since this approach is based on behaviour rather than predefined

signatures however, the main disadvantage is that the system may not provide in-

depth details such as the type of attack which raised the alarm and whether or not it

was an actual valid attack (Deri, Suin and Maselli, 2003, p. 2).

Finally, as mentioned earlier in this section, when an IDS - using either the anomaly

or misuse method - detects an attack, an alarm will be raised. As described by the

author Beale et al. (2007), the main four types of alarm consist of: true positive, false

positive and false negative (Beale et al., 2007, p. 13). A short summary of each alarm

is described as follows:

 True Positive refers to when an attack has been detected and alerted properly.

 False Negative refers to when an attack takes place but no alarm has been

raised.

 False positive refers to when an alarm is raised but no attack has taken place.

 True Negative which refers to when no attack takes place and no alarm is

raised.

2.4 Network Security Threats

Since the focal point of this thesis is on NIDSs, some network threats will be looked

at in this section. Similar to Section 2.2.2, attempting to compile a comprehensive list

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 24

of threats is an extremely difficult task, therefore, only the most common and well

known network security threats have been included. Theoretically, an IDS should be

capable of detecting all threats which are described here.

2.4.1 Surveillance/Probing

The purpose of surveillance/probing is to gather information on a network (Wagh,

2009, para. 1) such as topology, IP addresses of machines and open network ports.

Although surveillance or probing carried out on a network is not considered harmful

by itself, it is usually a clear indicator that an attack may result in the future

(Buchanan, 2009, p. 50).

Network surveillance and probing can be carried out with many types of utilities and

programs but, perhaps the most popular one used today is known as Nmap (Lyon,

2009). Surveillance and probing carried out on Nmap is usually known as a sweep or

a scan, and many types exist, including: port scan, port sweep and ping sweep. Port

scan, as the name will suggest, is in scanning a network host in order to look for any

open ports whilst port sweep involves scanning multiple hosts within a network with

the same objective in mind. Pingsweeps will attempt to “ping” each host on a network

to see whether it is up.

2.4.2 User Privilege Gain

A user privilege gain attack consists of attempts to obtain access to a users account on

a system. This usually involves the guessing of user name and passwords using

techniques such as brute force dictionary attacks or, in some cases, more sophisticated

methods such as social engineering (Workman, 2007, p. 316) may be used instead to

trick a user into giving out their password.

An example of a program which can carry such attacks is Hydra (THC, 2009) which

is capable of carrying out dictionary attacks (Corsini, 2009, p. 20) on protocols

including Telnet, FTP, SSH and HTTP. In dictionary attacks, a user name and

password list is supplied to the program along with the target. This program will then

attempt to try all combinations of passwords and return a result if one is successful.

Also, related to this threat is user root gains. Once an attacker has managed to gain a

user account via tools such as Hydra, attempts may then be made to gain higher levels

of access such as the administration or root account (Buchannan, 2008, p. 28). Such

an attack being successful could be very dangerous. By having access to the highest

level account, an attacker could inevitably have control over an entire system. In other

words, the attacker would be free to do as he pleased such as deleting critical system

files, browse confidential files or change the password on other user accounts.

2.4.3 Viruses, Worms and Trojans

Viruses, worms and trojans are all considered malicious software. In the work of

NIST (2006, p. 27) the following summary of each of the three types of malicious

software are described:

 Viruses are a piece of code which attaches itself to an application (such as an

.exe file) and is executed when the application is run by the user. Viruses may

carry out malicious actions such as overwriting or deleting system files.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 25

 Worms differ from viruses in that it does not require to be attached to an

application. Instead, it will exist independently and attempt to replicate itself

and propagate throughout a network.

 Trojan horses are disguised as legitimate software, and when executed, will

open up a “backdoor” (such as opening up a port) which allows access to that

machine from outsiders of the network.

2.4.4 Denial of Service Attacks

The main purpose of a Denial of Service (DoS) attack is in using up all available

resources such as CPU and memory (Ptacek et al., 1998, p. 39) on either the target

system or even the NIDS which monitors traffic on the target network. This may

result in the target system crashing, or simply not responding as expected. In the case

of carrying out a DoS attack on an IDS there is the possibility of the system letting

additional attacks slip past undetected as it attempts to recover. One of such program

which will allow for carrying out of DoS attacks is known as Hping3 (Hping3, 2009).

Various methods may be used in order to carry out a DoS attack. The three main types

of attacks consist of TCP floods, ICMP floods and UDP floods (Houle, Weaver, Long

& Thomas, 2001, p. 3). An example of a TCP flood involves sending huge numbers

of request packets (SYN) to a server in order to starve it of all resources, whilst ICMP

may involve simply sending large numbers of pings (echo request packets) to a server

so that it consumes all its resources in attempting to reply. UDP floods function

similar to TCP floods. It is not always necessary for the attacker to send a flood of

traffic to the victim. One such example is the LAND attack, in which a single packet

is crafted that connects a victim’s network socket to itself. Over time, this can cause a

system to lockup.

A variation of a DoS attack, known as a Distributed Denial of Service (DDoS) attack

exists. In DDoS the use of multiple computers to send out requests to a single receiver

is carried out (Kargl, Maier & Weber, 2001, p. 516). DDoS attacks are usually

controlled by one main machine known as the Master program and, when initiated, it

will communicate with all other machines which have a “bot” installed on them to

initiate an attack on a single target.

2.5 Methodologies in Evaluating IDSs

Many evaluation methodologies have been proposed by researchers over the past few

years. The main purpose of this section is in analysing some of the methods used and

attempt to gain some perspective on what may be considered an effective

methodology. To achieve this goal, the first concept which is reviewed is the two

main techniques used in carrying out an evaluation: black-box and white-box testing.

2.5.1 Black-Box and White-Box Testing

Two main techniques may be applied when carrying testing in general: black-box

testing and white-box testing. Table 2.2.1 provides a definition of black-box and

white-box testing which is summarised from the work of Sharma, Kumar, and Grover

(2007).

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 26

Table 2.5.1 – Definition of Black-Box and White-Box Testing (Sharma et al., 2007)

Testing Technique Definition

Black-Box Testing is applied to an entity where the

internal workings are unknown.

White-Box Testing is applied to an entity where the

internal workings are known and are

changeable.

Although the two testing methods are more commonly seen in software engineering

we may still apply such techniques to evaluating IDSs. For example, in the work of

Gadelrab and El Kalam Abou (2006), the author states that there are two main

methods in evaluating IDSs, both of which follow either the principles of black-box

testing or white-box testing. The authors refer to the principles as evaluation by test

(black-box testing) and analytic evaluation (white-box testing) (Gadelrab & El Kalam

Abou, 2006, p. 271).

An example of analytical evaluation is given in the work of Alessandri (2004). The

basis of this approach is in predicting whether or not the design of the IDS will be

able to detect specific attacks (Alessandri, 2004, p. 13). In order to do this, the author

attempts to group attack types into classifications and provide a description to the

system on how each class of attack will behave. By comparing the IDSs design

against certain classes of attack, they propose that their method should predict

whether or not the attack will be effective. This is considered white-box testing due to

the fact that the inner-workings of the IDS must be known in order to carry out the

evaluation effectively (Gadelrab & El Kalam Abou, 2006, p. 271). Although this is a

viable approach, it is more suited to testing IDSs under development since the inner

workings of the IDS must be known before such evaluation may take place

(Alessandri, 2004, p. 44).

The other method, evaluation by testing, can be considered a black-box testing

technique. The general principle behind this method is that the IDS will be tested

against various attacks, preferably in conjunction with background traffic (Gadelrab

& El Kalam Abou, 2006, p. 271). After testing is completed, the IDS will be

evaluated against certain metrics which are defined by the designer of the test. This is

considered a black-box testing technique due to the fact that during the evaluation

process, we generally don’t care how the IDS will handle the attack, but whether or

not it detects the attack, and how efficiently it does so in regards to the metrics

defined.

It can be summarised that evaluation by testing (black-box testing) provides for a

much more solid basis in terms of evaluation results, since metrics must be defined

and accounted for. In comparison, since the results from analytical evaluation are

simply predictions, the accuracy of the evaluation may be a issue. At the same time,

this does not mean analytic evaluation is irrelevant since this approach will provide

for a far more solid design of an IDS which is still under development.

Since evaluation by testing is more relevant to this literature review, the next few

sections will look at some of the methods which various researchers have used in

evaluating IDSs. Two main categories of evaluation by testing exist: online and

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 27

offline evaluation. The next section provides a brief summary and difference between

these two forms of evaluation.

2.5.2 Real-time and Offline Evaluation

As described by Sommers, Yegneswaran and Barford (2005), offline evaluation

consists of “the use of canonical packet traces for offline tests (Sommers et al., 2005,

p. 1)”. In other words, the basic idea of offline evaluation is in recording network

packets, otherwise known as data sets, and then playing the traces back against the

IDS under evaluation. By comparison, online evaluation involves testing IDSs using

live network traffic which may be generated using traffic load generator (Ranum,

2001, p.6). To summarise, the difference between offline and online evaluation is as

follows:

 Offline evaluation involves playing back data sets to the IDS under evaluation.

These data sets may be captured with packet sniffer programs and then played

back with a tool such as Tcpreplay (Turner & Bing, 2009) which is capable of

playing back network data sets at variable speeds.

 Real-time evaluations does not provide the IDS with data sets, instead live

traffic is used. Tools and software may still be used to generate the traffic but

in this scenario it is live traffic which is being sent through a network rather

than data sets which are being replayed. In other words, the network will

“react” accordingly to the traffic which is sent.

Both methods of evaluation will be covered in the following sections. For

clarification, the DARPA (Section 2.5.3) and the Automated evaluation (Section

2.5.4) are both forms of offline evaluation. Real-time evaluation consists of LARIAT

(Section 2.5.5) and Trident (Section 2.5.6).

2.5.3 DARPA Evaluation

One of the first well known evaluations comes from MIT Lincoln Labs, sponsored by

the Defence Advanced Research Projects Agency (DARPA), known commonly as the

DARPA evaluation. This work is described by Lippmann, Haines, Fried, Korba and

Das (2000). The main goal in the DARPA evaluation was to carry out a non biased

measurement on the performance of various anomaly-based IDSs along with

producing an evaluation data set which could be used by others in testing their IDSs

(McHugh, 2000, p. 267).

 In order to carry out these objectives, Lincoln Lab set up a test network and, through

the use of programs, to emulate a large number of workstations, and scripts, created

synthetic background traffic mixed with attack traffic at certain periods of time

(Brugger & Chow, 2007, p. 1). The traffic is then captured with a packet capture tool

and saved as a data set. This data set could then be played back against the IDS under

evaluation to access its performance. Both inside and outside traffic was captured for

this experiment. The term “inside” refers to network traffic which would be seen

within a local area network (LAN), whilst “outside” would be any traffic outside of

this LAN. A router is used in the experiments to separate the inside and outside

traffic. Figure 2.5.1 has been presented to show the DARPA test bed which was used.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 28

Figure 2.5.1 – DARPA Evaluation Test bed (Lippman et al., 2000)

The data sets used in the DARPA experiment was released to the public in 1998 and

is referred to as the Intrusion Detection Evaluation (IDEVAL) 1998 data set. The

1998 data set contains 7 weeks of training data, used to train the anomaly system, and

two weeks of test data used to test the IDS for detection performance (Brugger &

Chow, 2007, p. 2). In 1999, a second data set was produced by the same group,

known as the IDEVAL 1999 data set, which contained improvements such as

containing stealthier and a wider range of attacks (Brugger & Chow, 2007, p.2). The

1999 data set was made up of two weeks of training data and three weeks of test data

(Lippmann et al., 2000, p. 579).

With the use of static data sets, repeatability in experiments is easily achieved and,

furthermore, the data set is easy to obtain and free to download. Thus, it may seem

that the DARPA method is very well suited for testing IDSs. Unfortunately, both the

data sets, and the way in which the evaluation was carried out has faced a lot of

criticism by researchers.

In regards to the data set, the IP header attributes contained in the synthesized

background traffic including source IP addresses, destination IP addresses, Time To

Live value and TCP options all had a small fixed range (Mahoney, 2003, p. 237).

Real live traffic, in comparison, will generally contain a vast number of different IP

addresses and ranges in their attributes. Therefore, the issue here is that the

background traffic in the DARPA evaluation may not be considered similar or

realistic enough to the type of traffic normally faced by IDSs.

Criticism has also been made against the attack traffic in the DARPA data sets.

During the 1998 DARPA evaluation, four main types of attacks were carried out,

which included: User to root, Remote to Local User, Denial of Service and

Probe/Surveillance whilst the total number of each attack being carried out is in each

of these categories is 114, 34, 99 and 64 respectively (Lippmann et al., 2000, p. 585-

586). The flaw here, as stated by Singaraju, Teo and Zheng (2004) is that these attacks

- 311 in total – were launched over approximately 9 weeks of testing (5 days per

week), therefore the average number of attacks is around 5-6 a day (Singaraju et al.,

2004, p. 2). Thus, distribution of attacks may be considered spread too thin in

comparison with real life scenarios. The 1999 data set contains a similar problem,

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 29

with only 200 attacks over 5 weeks of testing (Lippman et al., 2000, p. 579) - this

results in approximately 8 attacks per day.

Finally, in the work of McHugh (2000), the author states that the presentation of the

evaluation results may not be completely meaningful since only one form of metric is

used to determine the performance of the IDS under test (McHugh, 2000, p. 291).

This metric which was used is known as the Receiver Operating Characteristic (ROC)

curve, which is basically a graphical plot of the number of true positives versus false

positives (Ulvila and Gaffney, 2003, p. 453). The problem with using only this

singular metric, as stated by McHugh (2000), is that although it shows whether a

greater number of true positives or false positives are detected, the ROC curve gives

no clear indication to why the IDS under test will behave in such a way (McHugh,

2000, p. 291).

What can be concluded about the DARPA evaluation is that both attack and

background traffic lack realism in comparison with real-life network traffic along

with the fact that the metric of evaluation used does not give clear indication to the

way the IDS performed, regardless of whether it was good or bad. Finally, though it is

not mentioned in any cited references, it should be noted that it was more than a

decade since the DARPA evaluation, hence newer and more sophisticated attacks may

now exist therefore, the validity of testing IDSs using the DARPA attack data sets

may not be relevant anymore.

2.5.4 Automated Evaluation

Having seen some of the shortcomings of the DARPA evaluation, it is worth looking

at a more recent offline evaluation of IDSs carried out by Massicotte, Gagnon,

Labiche, Briand and Couture (2006). In their work, the author’s main focus was in

providing a more up-to-date attack data set which, similar to the DARPA evaluation,

would be made freely available to the public so that others may use it to carry out

their own testing against IDSs.

The work by Massicotte et al. (2006) consisted of two main elements in which they

termed as the Virtual Network Infrastructure (VNI) and the Intrusion Detection

System Evaluation Framework (IDSEF). The VNI uses scripts and emulation

software to automatically set up a virtual network environment which is used to

generate attack traffic against specified targets within the emulated network topology

(Massicotte et al., 2006, p. 362). The main purpose of the VNI is in generating

attacks on a virtual network and recording the network traffic whilst this take place in

order to save it as a data set to be used in evaluating IDSs. Having acquired a data set,

this can then be provided to the IDSEF in order to test and evaluate the chosen IDS

under test. The VNI uses a layered approach which consists of using programs such as

Metasploit (Metasploit Project, 2009) for the generating exploits whilst manipulation

of packets for evasion/insertion is carried out using tools such as fragroute (Figure

2.5.2). Unfortunately, a complete taxonomy of all attacks carried out was not provided

in this piece of work.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 30

Figure 2.5.2 – Automated Evaluation Attack System (Massicotte et al., 2006)

In order to clarify how this evaluation works, the steps involved in both the setup and

execution of the VNI along with the steps involved in using the IDSEF will be

described. Ten main steps (Figure 2.5.3) are carried out in the automated evaluation.

Steps one to five are summarised from (Massicotte et al., 2006, p. 363) whilst steps

six to ten are summarised from (Massicotte et al., 2006, p. 365) and are as follows:

1. Script Generation - Using what the author’s define as the Vulnerability

Exploitation Program (VEP), script generation involves the user defining the

types of attacks which should be ran along with specifying the target systems

in the virtual network.

2. Virtual Network Setup - This step will setup the virtual network dependant on

the types of attacks and targets which were specified. For example, if the

attack specified was on a web server, then the virtual network that is being

setup would reflect this scenario.

3. Current Attack Script Setup - Involves configuring the attacks that have been

chosen to be executed.

4. Attack Execution - Involves running the specified attack(s) against the chosen

target(s).

5. Tear Down - Involves saving the network traffic which will have been

recorded during attack execution into a data set, along with restoring the

virtual network to its original state. If additional attacks are to be recorded,

then step one to five is repeated, otherwise, the automated evaluation goes to

step six.

6. Data set Selection - Having acquired all required data sets, the IDSEF will

select the relevant attack data sets which should be tested against the IDS

which has been chosen to be evaluated.

7. IDS Evaluator - These attack data sets will then be provided to the IDS under

test.

8. Next Data set Selection - Assuming there is more than one attack data set to be

test against steps six and seven will be repeated until all data sets have been

provided to the IDS.

9. IDS Result Analyser - All alarms raised by the IDS in testing each of the data

sets will be logged here.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 31

10. Report Generation - Finally, a report is generated which shows the types of

alarms logged for each of the data sets that were tested against the IDS.

Figure 2.5.3 - Steps Carried out in the Automated Evaluation

The automated evaluation certainly achieves its main goal, which is of providing a

more up-to-date data set in comparison with the DARPA data set. Furthermore, the

use of virtual machines allows for both ease of automation and repeatability in

experiments. However, one main restriction is can be found in this evaluation method.

As acknowledged by the authors, no background traffic is generated by the VNI, only

attack traffic (Massiotte et al., 2006, p.1). As noted by Mell et al. (2003), background

traffic is essential to evaluating IDSs since without it, the results will only describe

how effective an IDS is in logging true positives with no indication as to what the

false positive alarm ratio would be (Mell et al., 2003, p. 14). In other words, an

evaluation without background traffic will describe how accurate the IDS under test is

in detecting defined attacks, but no information will be provided on the inaccuracy of

the IDS – which is whether or not would log attack free traffic as an attack (known as

a false positive).

2.5.5 LARIAT Evaluation

The Lincoln Adaptable Realtime Information Assurance Testbed (LARIAT) was

designed as a follow up to the 1999 DARPA evaluation (Athanasiades, Abler, Levine,

Owen and Riley, 2003, p. 65) and as described by the authors of this evaluation “two

design goals were established for LARIAT: (1) support real-time evaluations and (2)

create a deployable, configurable and easy-to-use testbed (Rossey, Cunningham,

Fried, Rabek, Lippmann, Haines and Zissman, 2002, p. 2672).”

Emphasis on automation of the evaluation was also made by the designers of

LARIAT. The justification for this is that manual setup and configuration

requirements when testing IDSs can consume a great deal thus, by automating the

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 32

evaluation process as much as possible ease-of-use and simplicity is achieved for the

user carrying out the evaluation (Rossey et al., 2002, p. 2672). In order to achieve this

aim, the LARIAT evaluation is implemented on top of a Java applet named

NetworkDirector (Rossey et al., 2002, p. 2677). This acts as a “wrapper” in which a

GUI interface is built and allows users to interact through the selection of menus and

buttons rather than having to manually input commands (Figure 2.5.4).

Figure 2.5.4 – Example screenshot of the LARIAT GUI (Rossey et al., 2002)

The LARIAT evaluation is achieved through the emulation of network traffic (attack

and background traffic), which is typically seen in a small organisation connected to

the internet (Athanasiades et al., 2003, p. 65). What this means is that an IDS under

evaluation could be placed in between the inside (organisation’s LAN) and outside

(the internet) network and capture traffic from both sides (Corsini, 2009, p. 38). This

is exceptionally effective since it reflects the situation in which most IDSs will be

facing in real life scenarios.

User input is required only in the first stage of the LARIAT evaluation. During this

first stage, a user is required to select the “profile” required for background and attack

traffic (Athanasiades et al., 2003, p. 64). In regards to the selection of background

traffic, this defines the type of environment the evaluation will take place in, along

with types of attack free traffic such as HTTP, Telnet, SSH and FTP which should be

generated (Rossey et al., 2002, p. 2673). The selection of attack traffic profiles

involves a similar process in that the user will select specific attacks which should run

against the IDS under evaluation. Upon selecting background and attack profiles, the

system will automatically configure the emulated network and begin the process of

the testing the IDS under evaluation.

What can be concluded about the LARIAT implementation is that it provides for a

very sophisticated evaluation method for IDSs. Not only does it allow users to specify

both background and attack traffic profiles, the environment in which the IDS under

test is both realistic and in real-time. Unfortunately, there is one major issue LARIAT.

As stated by Athanasiades et al. (2003), the LARIAT evaluation is part of a United

States Government funded project and not available for public use (Athanasiades et

al., 2003, p. 66).

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 33

2.5.6 Trident Evaluation

The main aim of the Trident evaluation is in allowing for variable mix between

benign and attack traffic (Sommers, Yegneswaran and Barford, 2006, p. 1493). In

other words, users may specify certain percentages of attack traffic and background

traffic. As an example, users may specify a test with 10% attack traffic and 90%

benign traffic to see whether the high level of background traffic will have any

detrimental effect in the IDSs ability in detecting attacks.

This is achieved using the Malicious Traffic Composition Environment (MACE),

written in the Python programming language, which is a tool used for generating

attacks on a network (Sommers, Yegneswaran and Barford, 2004, p. 83) and

Harpoon, a background traffic generator use to create TCP packet flows and also

UDP traffic (Sommers & Barford, 2004, p. 68). Both MACE and Harpoon were

developed during separate periods of time but are used in conjunction for the Trident

framework (Figure 2.5.5).

Figure 2.5.5 – Trident Framework (Sommers et al., 2004)

The architecture of MACE consists of four main components: exploit model,

obfuscation model, propagation model and background traffic model. The exploit

model consists of attacks which target specific vulnerabilities in a system, the

obfuscation model is used for insertion/evasion attacks and the propagation model

dictates the range of targets (in the form of IP address) to attack (Sommers et al.,

2004, p. 83). The forth component, background generation, is optional and used for

generating background traffic (in the case of the Trident evaluation, Harpoon is the

program used for this purpose). The exploit and obfuscation components are the two

main models which define the types of attack capable on MACE, and these attacks are

shown in Table 2.5.2.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 34

Table 2.5.2 – Taxonomy of MACE attacks (Sommers et al., 2004)

In the Trident evaluation, the function of MACE is more or less the same in that it is

used to generate exploits. However, along with MACE, the Trident evaluation extends

the attack database by including the ability to also play back 58 of the attacks used in

the DARPA evaluation (Sommers et al., 2006. p. 1493). This is realised in the tool

which the authors have named “attack-replay”, and functions similar to Tcpreplay.

Harpoon, the traffic generation tool, consists of two main features: the ability to (1)

generate packet traffic at the IP flow level through manual configuration and (2)

automatically configure itself to represent the flow of packets in a specific network if

NetFlow data is provided (Sommers & Barford, 2004, p. 68).

In regards to the first feature, an IP flow, as defined by Quittek, Zseby, Claise and

Zander (2004) is a “set of IP packets passing an observation point in the network

during a certain time interval. All packets belonging to a particular flow have a set

of common properties (Quittek et al., 2003, p. 3).” The observation point can be

devices such as switches and routers, and what Harpoon does is create unidirectional

TCP packet flows between these devices to simulate network traffic activity. The

second feature of Harpoon is similar to the first, but, instead of users defining the

UDP and TCP packet flows, Harpoon may extract NetFlow data logs from routers

which would have been previously collected and automatically configure the tool so

that the traffic being generated would reflect the scenario previously seen by the

router (Sommers & Barford, 2004, p. 69).

As mention earlier in this section Harpoon is used for the generation of benign traffic

for the Trident evaluation, but the method used here is a lot more advanced than what

the tool could previously achieve. For the generation of benign traffic, Sommers et al.

(2006) have derived a component named the Automata Generation. This utility first

describes the process involved in an application protocol establishing a connection,

the exchange of data between client and server is then described and finally, the steps

involved in ending the connection is described (Sommers et al., 2006, p. 1492).

Network data sets are fed to this utility and individual packets from the same

application state will be individually extracted and sanitized to normalise the data.

Thus, what results from a large data set will be individual network traces including

HTTP, SMTP, DNS, Telnet, FTP and SSH exchanges. Finally, at this point, each of

these traces can be given to Harpoon to be transmitted on the network. The automata

previously created will be used by Harpoon to play back the traffic.

To summarise the Trident evaluation, the usage of MACE and Harpoon allows for a

fine control between benign and attack traffic along with mixing them in a realistic

manner. However, one main critique should be made against this evaluation method,

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 35

especially in regards to MACE. Although a wide taxonomy of attacks has been

defined, it should be noted that these are attacks have been specifically coded and

crafted for researchers to evaluate IDSs. In other words, what this evaluation may end

up assessing is how effective an IDS is, in detecting attacks generated by MACE but

not attacks from programs found widely on the internet. There is also a minor critique

on the traffic generator, Harpoon. From the work of Corsini (2009), the author states

that Harpoon lacks realism since it always uses the same port number for

communication (Corsini, 2009, p. 37), an attribute which would not occur in real life

network traffic. However, it should be noted that it is unclear whether this problem

exists in the Trident evaluation.

2.5.7 Metrics for Evaluation

The term metrics relates to a form of measurement which is used to assess the

performance of an IDS after it has been put through testing (Ranum, 2001, p. 2).

Many metrics have been suggested, and are used, for the evaluation of IDSs.

In the work of Fink, Chappell, Turner and O'Donoghue (2002) the author attempts to

categorise metrics into three main classes: Logistical, Architectural and Performance

(Fink, et al., 2002, p. 5-6). In terms of logistical metrics, this relates to how easy the

IDS are to setup, maintain and implement into the environment it is intended for.

Architectural metrics relates to what the actual intention of the IDS is such as whether

it is a host-based IDS or network-based IDS along with the method in which it detects

intrusions such as misuse or anomaly detection. In terms of performance metrics, this

includes the interoperability between IDS and firewalls/routers along with observed

false-positive and false-negative ratios.

What should be noted in the metrics defined by Fink et al. (2002) is the fact they

appear much more suited for usage from an administrative and managerial perspective

when it comes to choosing what type of IDS should be implemented in an

organisation or company. Furthermore, as noted by the authors themselves, some of

the metrics defined may be quite difficult to measure (Fink et al., 2002, p. 8). For

example, how does one go about defining a metric which is able to measure the

interoperability between IDSs and firewalls/routers? Furthermore, what type of metric

will allow a tester to measure the ease of setup of an IDS which results in a reliable

score each and every time?

More relevant is the work of Sommers et al., (2005) in which the authors evaluated

IDSs using two main metrics: efficiency and effectiveness. Efficiency is a measure of

false-positives whilst effectiveness is a measure of false-negatives (Corsini, 2009, p.

23). Figure 2.5.6 demonstrates the formulae used to work out each metric. In both

equations, the calculated result closest to 1 is always better.

Efficiency =
TruePositives

AllAlarms

Effectiveness =
TruePositives

AllPositives

Figure 2.5.6 - Formula for working out Efficiency and Effectiveness Metric

(Sommers et al., 2005)

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 36

CPU utilization, memory usage and packet loss are also monitored. In the case of

CPU and packet loss metric, the purpose is to see what relationship either one will

have against variable traffic flows (Sommers et al., 2005, p. 10). The idea of packet

loss being an important metric is further elaborated in the work by Graves, Buchanan,

Saliou and Old (2006). As noted, the omission of packets means less information will

be provided for forensic systems security as a form of evidence logging (Corsini,

2009, p. 23). In other words, if packets are lost by the IDS, there is less evidence of an

attack taking place since no log of the attack may exist.

In a slightly more recent piece of work, similarities on the metrics defined for

evaluating IDSs can be found in the work by Gadelrab and El Kalam Abou (2006) in

comparison with Sommers et al. (2005). In the work of Gadelrab and El Kalam Abou

(2006), the authors attempt to split up evaluation metrics into two categories:

detection related metrics, and resource utilization metrics. Detection related metrics

are used to assess how well particular components of a IDS function, whilst resource

utilization relates to what system impact the IDS will have whilst running – in other

words, performance metrics. Furthermore, the detection related metrics are further

broken down into two subgroups known as macroscopic and microscopic detection

metrics (Gadelrab & El Kalam Abou, 2006, p. 273-274). Macroscopic group relates

to assessing how well the IDS performed in detecting attacks overall, whilst

microscopic relates to assessing how well the IDS performed in detecting individual

attacks. Table 2.5.3 shows the metrics suggested in this work and how they are

calculated.

Table 2.5.3 – Detection and Resource-Utilization Metrics (Gadelrab & El Kalam

Abou, 2006)

Detection Related Metrics Definition

 Macroscopic:

Detection Ratio DR = (Number of detected attacks / Total

number of attacks included in data set)

False Alarm Ratio FAR = (Number of generated false alarms /

total number of generated alarms)

 Microscopic:

Detection Ratio per attack Type (Number of Detected attacks of a particular type

/ total number of attacks of this type)

False Alarm Ratio per Attack Type (Number of generated false alarm for particular

attack type / total number of generated false

alarms)

Captured Events / Non Detected

Attacks

Number of undetected attacks whose events are

captured / Total number of undetected attacks

Non Captured Events / Detected

Attacks

Number of attacks who events were not

captured / total number of undetected attacks

Intrusive Events Drop Ratio (Number of non captured intrusive events /

Total number of intrusive events)

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 37

Resource-Utilization Metrics

CPU Utilization Percent of CPU used by IDS

Memory Utilization Percent of memory (RAM) used by IDS

From table presented, we can see that some the metrics defined by Gadelrab and El

Kalam Abou (2006) are quite similar to the ones defined by Sommers et al. (2005).

For example, resource-utilization metrics of CPU and Memory are exactly the same.

However, one noted issue with the detection metrics defined by Gadelrab and El

Kalam Abou (2006) is the Detection Ratio metric. This is the number of detected

attacks divided by total number of attacks included in the data set. In scenarios

whereby a data set of attacks is not used, this metric would be relatively difficult to

calculate since live traffic is unpredictable. However, the work of Gadelrab and El

Kalam Abou (2006) does provide for clearer distinction between the different types of

performance metrics by sub-dividing them into two main categories: Detection

Related Metrics and Resource-Utilization Metrics.

As a summary to this section, what should be apparent is the fact that a quite a large

number of metrics have been defined by various authors for the evaluation of IDSs.

One very good point was made by Ranum (2001) in which he states “Knowing what

not to measure is sometimes a harder problem than known what to measure (Ranum,

2001, p. 3).” To put it another way, the most important factor when it comes to

defining metrics is to ensure that they are relevant and they provide a meaningful

purpose for the testing which will be carried out on an IDS. With this in mind, it is

believed that there is no correct or comprehensive set of metrics which will work for

all forms of evaluation of IDS. Instead, the metrics which are defined is dependent on

the testing, objective and goal of the evaluation.

2.6 IDS Testing Related Tools and Programs

There are existing tools and programs which are designed can be used for carrying out

evaluation of IDSs. These tools and programs generally focus on testing of NIDSs.

Such works include Nidsbench created by Anzen Computing (1999), IDSwakeup

created by Aubert (2002) and the Metasploit framework created by Metasploit Project

(2009).

It must be noted that although these tools and programs may be used to evaluate an

IDS, the actual process of the evaluation along with the metrics of evaluation is

entirely up to the end user. In other words, they do not represent a comprehensive

evaluation methodology of any kind. However, at the same time, it is still worth

providing an analysis in order gain an understanding of some techniques which may

be employed to test IDSs.

2.6.1 NIDSbench

In the work of Anzen Computing (1999), the NIDSbench toolkit is presented with the

purpose of testing NIDSs using two main programs: tcpreplay and fragrouter. Being a

toolkit, users are required to specify and provide their own data sets along with

manual configuration of fragrouter which is used for the purpose of creating

invasion/insertion attacks against an IDS. Due to it being released in 1999, this toolkit

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 38

is exceptionally out of date since the successor to fragrouter, known as fragroute

(Song, 2009), is now actually part of the Tcpreplay package therefore NIDSbench can

be considered redundant.

2.6.2 IDSwakeup

IDSwakeup is a tool created by Aubert (2002) which, using Hping2 (an earlier version

of Hping3), allows for generation of attacks including various types of DoS attacks.

Furthermore, due to the capabilities of Hping2, packet cans be also crafted to mimic

more complex attacks. As an example, a packet may be crafted to mimic a

HTTP_GET command which could be an indication of an attacker attempting to

perform some exploit on a website. The main advantage in the use of this tool is that

the attacks are predefined therefore, users can simply specify the target to invoke

attacks on and IDSwakeup will take care of the commands to run using Hping2 to

create the attacks. The obvious limitation is that the tools purpose is in generation of

attacks therefore no background traffic element exists.

2.6.3 Metasploit Framework

The Metasploit Framework is part of the Metasploit Project (2009). This tool is quite

similar to Trident, described in Section 2.5.6, in that it provides for libraries of attacks

(Sommers et al., 2005, p. 2). One area in which Metasploit could be considered

superior to the attacks generated by Trident is that it is open source therefore it may

be updated and maintained far more frequently. Furthermore, another advantage in the

Metasploit Framework is that a graphical user interface is provided to the user. This

allows for ease of automation for the user, since they do not need to enter commands

manually, when carrying out testing along with ease of use. Of course this framework

is limited to exploit generation only therefore a methodology is still required for

effective evaluation of IDSs.

2.7 Conclusion

This chapter has met the main aim of analysing the methodologies used in evaluating

IDSs along with providing background to subjects related to this topic. Section 2.5.3

reviewed the offline DARPA evaluation which, although provided significant

advances in the research of evaluating NIDSs, is unfortunately flawed due to having a

lack of both realism in network traffic and meaningful evaluation metrics.

In the Automated evaluation, reviewed in Section 2.5.4, emphasis was made on

creating and capturing attack data sets by emulating network topologies through the

usage of virtual machines for offline evaluation of NIDSs. The ease of repeatability in

this evaluation along with automation of tasks are the main advantages, but the lack of

background network traffic means the evaluation does not closely reflect real world

networks.

Section 2.5.5 looks at the real-time evaluation named LARIAT which proves ideal

having both realistic attack and background traffic but, it is not available for public

use. This is amended in the Trident evaluation, Section 2.5.6, in which both attack and

traffic generation tools (MACE and Harpoon) are available to the public as long as (in

the case of MACE) there is a legitimate purpose for using them. However, it was also

demonstrated that Harpoon may not provide for realistic background traffic and the

tool MACE does not provide for surveillance/probing attacks in its taxonomy.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 39

It can be seen that current existing methodologies that are used for evaluation IDSs all

contain some form of shortcoming. Ideally, the LARIAT evaluation may actually

have achieved a solid methodology, yet the limitation here is that it is unavailable for

public use. However, it should be acknowledged that many good points have been

made from the methodologies which have been reviewed. In terms of the DARPA

evaluation, the critique carried out by McHugh (2003) has highlighted the need for

both realistic attack and background traffic. This is again emphasized in the work by

Sommers et al. (2005) during the Trident evaluation. The work carried out by Rossey

et al. (2002) has made a very good point in that an evaluation methodology should be

as automated as much as possible along with providing ease of use through the

implementation of a GUI wrapper. The idea of automation is further backed up in the

Automated evaluation carried out by Massicotte et al. (2006) in which they use scripts

to automate the evaluation process.

It must also be emphasized that the definition of meaningful evaluation metrics is

highly critical. Having the wrong or limited evaluation metrics could easily mean a

flawed evaluation methodology which was shown in the DARPA evaluation by

McHugh (2003). To briefly reiterate from the conclusion of Section 2.5.7, there is no

“correct” metrics, only metrics which have meaningful relevance to the purpose of the

evaluation.

To conclude, if we are to focus specifically on the strengths of each evaluation

methodology, along with taking into consideration the importance of defining the

correct evaluation metrics, it can be summarised that a methodology in evaluating

IDSs must consist of the following requirements:

1. Inclusion of Realistic Attack and Background Network Traffic

2. Ease of Automation

3. Inclusion of Meaningful Metrics for Evaluation

The main aim in this project is to produce a prototype framework which is capable of

carrying out evaluation an NIDS. Based on the conclusion reached in this literature

review, a framework must include all three requirements which have been listed to

provide for an effective evaluation of NIDSs. The next chapter will describe such a

framework along with the design choices required to evaluate an NIDS.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 40

3 Design
3.1 Introduction

The literature concluded that an effective methodology in evaluating IDSs must

consist of the following three main requirements:

1. Inclusion of Realistic Attack and Background Network Traffic

2. Ease of Automation

3. Inclusion of Meaningful Metrics for Evaluation

This chapter outlines the design of a prototype framework which attempts to meet all

three requirements for the evaluation of an NIDS. The proposed framework allows for

a black-box evaluation of the signature-based NIDS known as Snort whilst attempting

to follow the three requirements listed as rigorously as possible.

Snort has been chosen since it is freely obtained and widely supported. Furthermore,

a huge amount of predefined rules are available for download from Sourcefire (2009)

produced by the Sourcefire Vulnerability Research Team (VRT). This makes it a lot

simpler to test against, since there is no need to craft user-defined rules in order to test

for false-positives. The methodologies reviewed in the literature, including works by

Sommers et al. (2004); Sommers et al. (2006) and Massicotte et al. (2006) all

performed testing against Snort. Thus, it can be said that this IDS is perhaps the most

popular choice among researchers making it viable for evaluation in this project.

Section 3.2 provides an overview of the prototype framework, along with a brief

summarisation on design choices made. Furthermore, a schematic of how such the

framework functions is provided. A more detailed description of the design choices is

then described. Section 3.3 looks in-depth at the design for the inclusion of attack and

background network traffic whilst Section 3.4 provides a solution for the ease of

automation. Finally, Section 3.5 defines the metrics for the evaluation. Justification

for the design choices made is provided in each section. Finally, a conclusion to this

chapter is provided in Section 3.6.

3.2 Prototype Framework Overview

As shown in the introduction to this chapter, there is a need for both realistic attack

and background traffic when evaluating an IDS. This is especially true in the case of

evaluating a NIDS, since the whole purpose of such a system is to monitor network

traffic (see Section 2.3.3). The second requirement of automation is also of

importance. Automation allows for ease of use for the user, in terms of configuration,

along with repeatability in experiments. The third requirement, defining the correct

metrics for evaluation, is critical as it allows the user to come to a meaningful

conclusion after evaluation of an IDS is complete.

Based on the three requirements a framework (Figure 3.2.1) is presented along with a

schematic on how it should function (Figure 3.2.2). Three main components are

specified: the attack traffic component, background traffic component and evaluation

metrics component. Furthermore, a GUI element is shown which wraps all these

components into a single application.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 41

Figure 3.2.1 – Prototype Framework

Figure 3.2.2 – Abstract Schematic

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 42

In regards to the attack traffic component, it was decided that the usage of publicly

available programs should and tools would be put to use in order to generate attack

traffic in a real-time manner. It is believed that this will provide for the most realistic

scenario in testing an IDS. Some of the tools which are used for this application were

described in Section 2.4 and include: Nmap, Hydra and Hping3 for the generation of

attack traffic. In the background traffic component, attack free data sets are used to

generate benign traffic. Live background traffic is both difficult to manage and

control in testing environments, therefore, the use of attack free data sets – to be

played back using the tool Tcpreplay – will provide ease of repeatability and

predictable flow of traffic.

For the evaluation metrics component, the categories of Detection and Resource

Utilization metrics, as defined by Gadelrab and El Kalam Abou (2006), will be

monitored. This includes the efficiency, effectiveness, packet loss, CPU utilization

and memory usage metrics which were originally defined by Sommers et al. (2005).

Retrieval of logs produced by the IDS under evaluation and generation of detection

metrics are also part of this framework. Resource-utilisation metrics will be monitored

directly by the user on the IDS host.

Finally, in order to meet the requirement of automation, a Graphical User Interface is

developed which “wraps” the three components previously described together to form

the framework as a whole. Thus, rather than have a user individually program,

configure and run each component independently, a GUI with the relevant options

will be provided as the front end of this application framework so that evaluation of a

IDS may take place through a simple click of a few buttons. The GUI is implemented

in Visual Studio 2008 and the programming language C#.

A broad overview of this prototype framework has been given. The next section will

provide a much more detailed description on the design along with justifications for

the choices made.

3.3 Attack and Background Traffic Component Design

In terms of Attack Traffic component, it has been decided that the use of live attacks

will provide for the most realistic scenario in testing an IDS. The literature review

provided description of the most common network threat which, to briefly reiterate,

include threats of surveillance/probing, user privilege gain, DoS attacks and malicious

software (worms, viruses and Trojan horses).

In each of the techniques, with the exception of malicious software, an example

program has been given which will allow for the generation of live attacks in regards

to that network threat category. Due to the security issues which may arise from using

real malicious software, the tool Hping3 will be used to craft packets which reflect

these threats instead. This packet crafting technique is both similar and influenced by

the implementation carried out in the NIDSWakeup tool. However, the design here

differs in that Hping3 is used for the crafting of malicious software, a feature which

NIDSWakeup does not have.

The Metasploit Framework was considered for generation of attack traffic. However,

it was decided that it was not feasible to implement. Although it is open source, it was

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 43

assessed that the time required to analyse, understand and integrate the code would be

too complex a task given the time available for this project.

Through the use of readily available tools and programs, the most realistic attack

traffic possible can be achieved since it will be generated in real-time. Table 3.3.1

provides a list of attacks which will be part of this framework along with the tools and

programs which are used to generate the actual attacks.

Table 3.3.1- Attacks Included in Application System

Category Tool/Program to be used

Surveillance/Probing Nmap

User Privilege Gain Hydra

Malicious Software Hping3

Denial of Service Hping3

Regarding the Background Traffic Component, achieving realistic and controlled

generation of benign traffic is still very much an open issue. The closest available tool

which will allow for realistic generation of background traffic is found in the work of

Sommers et al. (2005) using Harpoon. Unfortunately, it was dismissed as not being

realistic enough due to using the same port in every connection by Corsini (2009).

Another factor, which should not be considered a limitation but more of a hindrance is

that getting Harpoon to run requires a lot of effort by the end user. NetFlow logs may

be used but in the case of them not being available users must manually create their

own topologies and configurations.

Therefore, due to such factors, it was decided that this framework would use attack

free data sets for playback of background traffic through Tcpreplay instead of

Harpoon. Two main justifications exist for this choice. Firstly, the ease of

repeatability will be achieved in playing back the traffic (since the data set will never

change in each test) and it will also allow for variable playback speeds in order to

assess whether the IDS’s performance in regards to the metrics defined will be

detrimental in the case of high traffic volumes. Of course, the limitation here is that

the only publicly available data set is the ones released by DARPA meaning any

evaluation carried using this framework at this point in time is restricted to the

DARPA data set.

It is acknowledged that the literature review has dismissed the DARPA data set as

being unrealistic. However, with no other option, this is the only choice which

remains. But, what must be made clear here is that this framework is not limited to

only the DARPA data set. As the tool used to generate background traffic is

Tcpreplay, users are free to provide their own data sets to use instead. Furthermore, it

leaves the framework open to extension since it may take advantage of newer more

realistic data sets, if one is ever released, in the future without any need to modify the

design of the framework.

3.4 Automation Wrapper Design

Automation is a highly desirable attribute in evaluation of IDSs as demonstrated by

various methodologies carried out in the literature review including Rossey et al.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 44

(2002) and Massicotte et al. (2006). To justify, consider the example of using

Tcpreplay to playback background traffic. A user must first prepare a cache file of the

data set then rewrite the traffic (which may consist of both IP and MAC addresses

being rewritten) and then finally define the actual playback options. All these tasks

must be carried out in command line which adds to both the difficulty and confusion

in using such a tool.

Thus, in order to meet the requirement of automation, this framework wraps all

programs and functions around a Graphical User Interface. Therefore, rather than

having to enter commands individually, a user may be presented with an application

where they simply need to select the required options under forms and buttons. Once

all configurations have been made, a simple click of a button will allow for generation

of traffic (attack and background) to be sent to the IDS under evaluation.

The use of the programming language C# is used to construct a Windows Form GUI.

As almost all programs which are part of this framework will require a Linux/Unix

environment the application developed in C# will runs using Mono (Mono Project,

2009) which is an open source .NET compatible Common Runtime Language (CLR)

designed for the Linux/Unix/Mac OS X/Solaris/Windows platforms.

3.5 Evaluation Metrics Component Design

As the literature review demonstrated, choosing the right metrics to evaluate an IDS is

critical in order to assess it in a meaningful way. Taking this into consideration, this

framework employs the metrics of efficiency and effectiveness as defined by

Sommers et al. (2005) along with CPU Utilization and Memory usage metrics.

Furthermore, packet loss, described by Graves et al. (2006) is an important metric, as

demonstrated in the literature review, hence its inclusion. If we apply the

categorisation of metrics, as defined by Gadelrab and El Kalam Abou (2006), the

metrics of efficiency, effectiveness and packet loss can be considered Detection

Metrics, whilst CPU and Memory usage can be grouped as Resource Utilisation

Metrics (Table 3.5.1).

Table 3.5.1 – Evaluation Metrics Design

Detection Metrics Description

Efficiency True-Positives / All Alarms

Effectiveness True-Positives / All Positives

Packet Loss The number of packets lost, as reported

by the IDS

Resource Utilisation Metrics

CPU Usage Percentage of CPU used

Memory Usage Percentage of memory used

Implementing the efficiency and effectiveness metrics allows for the monitoring of

both false-positive and false-negative ratios. In other words, we can assess whether

the IDS under evaluation will trigger alerts against benign traffic (false-positives) and

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 45

whether it will miss real attacks (false-negatives). To perform these calculations, a

baseline of expect alarms must first be established. Users will be required to manually

run individual attacks against the IDS to assess what this baseline result will be for

each attack.

Monitoring of packet-loss allows for assessing whether the IDS can successfully

monitor all traffic even in high throughput. The CPU and Memory of the system in

which the IDS resides is also monitored to see whether higher resource utilisation

results in any detrimental effect to the IDS (such as detection of attacks).

For the purpose of automation, this framework allows automated retrieval of logs

produced by the NIDS Snort using a Secure Shell (SSH) connection. All required logs

are copied to the machine in which the framework resides and Detection Metrics are

automatically generated based on the results parsed in these logs.

One limitation in the current design of the framework is that Resource Utilisation

metrics will still need to be monitored manually. This may easily be achieved in

multiple ways. For example, on the Windows operating system, the Windows Task

Manager will provide a user with ample information in regards to both memory and

CPU usage. The same applies for Linux/Unix environments, with tools such as top

and vmstat which generally achieve the same functions as the Windows Task

Manager but is command-line driven.

3.6 Conclusion

The main goal in this chapter is to present a framework for the evaluation of NIDSs

along with a detailing the design choices made which would adhere to the three main

requirements required for a solid methodology in evaluating IDSs. The three

requirements consist of:

1. Inclusion of Realistic Attack and Background Network Traffic

2. Ease of Automation

3. Inclusion of Meaningful Metrics for Evaluation

This chapter provided an overview of the framework along with the schematic on how

it functions. Furthermore, design choices and justifications were made for each of

three components of the framework.

The framework allows for the inclusion of realistic attack traffic generation by

making use of existing programs to carry out live attacks whilst background traffic is

achieved by using Tcpreplay and a user provided data set. The metrics of efficiency,

effectiveness, packet loss, CPU utilisation and memory usage are all part of the design

of this framework which will allow for meaningful comparisons to be made such as

whether higher resource utilisation results in any detrimental effect against detection

of attacks. By wrapping all functions into a GUI application created using Microsoft

.NET C# and running it through Mono, automation of carrying out the evaluation may

be achieved.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 46

4 Implementation
4.1 Introduction

The design of a prototype framework for the evaluation of an NIDS was described in

the previous chapter. This chapter will show how the framework was actually

implemented. Snippets of coding are provided to demonstrate the functions carried

out by the framework. As the previous chapter showed, three main components of the

framework exist including:

 Attack Traffic Component

 Background Traffic Component

 Evaluation Metrics Component

On top of these three components, a GUI has been built which wraps all functions into

a singular application. The purpose of this GUI is to provide automation of carrying

out the evaluation process along with providing ease-of-use. To provide for a brief

overview of the implementation, the next section will first focus on providing a

description of this GUI.

4.2 GUI Implementation

The following figure presents a screenshot of the completed GUI (Figure 4.2.1). As

the figure presented shows, the three main components to this framework include the

attack traffic component, background traffic component and the evaluation metrics

component. Each of the three components is clearly separated with the use of tabs.

Within each component, multiple subcategories exist which are once again separated

by tabs. These subcategories offer the user configuration options along with clearly

marked buttons with purposes including invoking attacks, as the figure shows, or

inputting configuration changes.

Figure 4.2.1 - Screenshot of Framework

To the right hand side of the application, a Bash Output textbox is presented. Bash is

the shell scripting environment used by many Linux distributions (Newham and

Rosenblatt, 1998, p. 4) and the purpose of this textbox is to display any output which

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 47

is redirected from the Bash shell. This allows us to be aware of any information which

is produced when running the application.

As the introduction to this chapter has described, the GUI for this framework is

implemented under Microsoft C# .NET using Visual Studio 2008. Visual Studio 2008

offers a drag-and-drop environment for building a GUI, thus all code is automatically

generated when the GUI is built. Therefore, it does not prove viable to provide the

code behind the GUI since it is all arbitrary.

4.3 Shell Process Implementation

In order to run Bash commands under the C# programming language, a process must

be created to invoke a Bash shell. The code used is a modified version of the

ProcessCaller originally provided by Mayer (2003).

private ProcessCaller processCaller;

public void runBashCommand(string arguments)

{

processCaller = new ProcessCaller(this);

processCaller.FileName = "bash";

processCaller.Arguments = arguments;

 processCaller.StdErrReceived += new

 DataReceivedHandler(writeStreamInfo);

 processCaller.StdOutReceived += new

DataReceivedHandler(writeStreamInfo);

processCaller.Completed += new

EventHandler(processCompletedOrCanceled);

processCaller.Cancelled += new

EventHandler(processCompletedOrCanceled);

this.status.Text = Environment.NewLine;

processCaller.Start();

}

This code will call a new process with the processCaller.FileName set to “bash”.

Any arguments given will be passed to a Bash shell. All output from Bash will then

be redirected to this.status.Text which is the Bash Output textbox described in

Section 4.2. To give an example, the following code will use the process caller and

print “hello world” to the Bash Output textbox. The –c flag is used to read a string

input as a command.

this.runBashCommand("-c ' "+"echo hello world"+" ' ");

4.4 Attack Traffic Component Implementation

In the attack traffic component, four subcategories which are separated by tabs exist.

These subsections are labelled Surveillance/Probing, User Privilege Gain, Malicious

Software and Denial of Service. As Section 3.3 demonstrated, the purpose of each of

these subsections is to invoke a specific category of live attack. The tools used for the

attack traffic component implementation include Nmap, Hydra and Hping3.

Within each subsection, a checkbox with the text “Enabled” is provided. If this

checkbox is checked, then the attack is considered active and will be invoked once the

“Invoke Attack(s)” button is pressed, otherwise, the attack is not carried out.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 48

private void runAttackBtn_Click(object sender, EventArgs e)

{

if (surprobChkBox.Checked == true)

{

 ...

 this.runBashCommand("-c ' " + nmap_ping + " ' ");

 this.runBashCommand("-c ' " + nmap_syn + " ' ");

 this.runBashCommand("-c ' " + nmap_udp + " ' ");

}

if (usrGainChkBox.Checked == true)

 {

 ...

 this.runBashCommand("-c ' " + hydraTelnetCommand + " ' ");

 this.runBashCommand("-c ' " + hydraFTPCommand + " ' ");

}

if (dosChkBox.Checked == true)

{

 ...

 this.runBashCommand("-c ' " + Hping3_ping + " ' ");

 this.runBashCommand("-c ' " + Hping3_SYN + " ' ");

 this.runBashCommand("-c ' " + Hping3_LAND + " ' ");

 }

if (malsoftwareChkBox.Checked == true)

{

 ...

 this.runBashCommand("-c ' " + qaz + " ' ");

 this.runBashCommand("-c ' " + sober + " ' ");

 this.runBashCommand("-c ' " + deepthroat + " ' ");

 this.runBashCommand("-c ' " + waledac + " ' ");

 }

4.4.1 Surveillance/Probing Implementation

The Surveillance/Probing subcategory is implemented using Nmap. Users are able to

carry out a default port scan. Upon enabling the attack, entering the IP address of the

attack target the command textboxes will automatically update itself to reflect the

bash command which will be carried out upon pressing the “Invoke Attack(s)” button.

The code implemented is shown as follows:

private void nmapTarget_TextChanged(object sender, EventArgs e)

 {

 ...

 nmapScanCommandBox.Text = "nmap " + target;

 }

Optionally, if the command presented in the command box is not desirable this can be

simply edited. The target is a string variable, and will contain an IP address. An

example of Nmap configured to carry out a scan on the network 192.168.1.0/24 is

shown in Figure 4.4.1.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 49

Figure 4.4.1 – Example Configuration of Surveillance/Probing

The string presented in each of the Command boxes will be read and parsed to a bash

shell once the “Invoke Attack(s)” button is pressed. If a certain scan is not checked,

then its’ command box will default to empty hence no attack will be ran in that type

of attack. This idea is applied for each of the other three attacks also.

4.4.2 User Privilege Gain Implementation

The tool Hydra is used in order to create user privilege gain attacks. Hydra allows for

a dictionary brute force attack on multiple protocols, including Telnet, HTTP, FTP,

SSH as examples. This application has implemented Telnet and FTP brute force

attacks only. Users are free to edit the command box to invoke attacks on other

protocols.

An example configuration of Hydra which invokes a dictionary attack against target

192.168.1.1 using the password file “password.txt” and be carried out on both the

Telnet and FTP protocol is shown (Figure 4.4.2). It should be noted that the

password.txt file must be provided manually. This should contain a list of all phrases

which Hydra should attempt to use as a password against the target.

Figure 4.4.2 – Example Configuration of User Privilege Gain Attacks

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 50

The target IP address, username and a text file containing a list of passwords is

required to carry out a brute force dictionary attack. Upon selecting which protocols

the attack should be carried out against the Command Box will once again

automatically update itself to reflect the bash command which will be used.

private void hydraTelnet_CheckedChanged(object sender, EventArgs e)

{

...

if (hydraTelnet.Checked == true)

 {

 this.hydraTelnetCommandBox.Text = "hydra -l " + username

 + " -P " + passwordList + " " + target + " telnet";

 }

else

this.hydraTelnetCommandBox.Text = null;

}

private void hydraFTP_CheckedChanged(object sender, EventArgs e)

{

...

if (hydraFTP.Checked == true)

 {

 this.hydraFTPCommandBox.Text = "hydra -l " + username + " -P

 " + passwordList + " " + target + " ftp";

 }

else

 this.hydraFTPCommandBox.Text = null;

}

4.4.3 Malicious Software Implementation

Malicious software consists of worms, viruses and Trojan horses. The issue with

implementing this category of attack is that there is a great security risk if actual

malicious software was used in testing the IDS. Therefore, instead of using real

worms or viruses, this category of attack is achieved by packet crafting through

Hping3.

Malicious software can be identified via their propagation signatures (Buchannan,

2009, p. 50) therefore, packets can be crafted using Hping3 that carry out, and

contain, the same patterns that a malicious software would have. Four types of

malicious software attacks are implemented for this application. This includes Qaz

Worm, Waledac Virus, Sober Virus and Deepthroat Trojan. The code used to craft

such software, via Hping3, is shown as follows:

private void qaz_CheckedChanged(object sender, EventArgs e)

{

 ...

 if (qaz.Checked == true)

 {

 this.qazCommandBox.Text = "Hping33 -I eth0 -A " + target + "

 –p 139 -e 'qazwsx.hsq' -c 1";

 }

 else

 this.qazCommandBox.Text = null;

}

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 51

private void waledac_CheckedChanged(object sender, EventArgs e)

{

 ...

 if (waledac.Checked == true)

 {

 this.waledacCommandBox.Text = "Hping33 -I eth0 " + target

 + " -p 80 -e 'X-request-kind-code:' -c 1";

 }

 else

 this.waledacCommandBox.Text = null;

}

private void sober_CheckedChanged(object sender, EventArgs e)

{

 ...

 if (sober.Checked == true)

 {

 this.soberCommandBox.Text = "Hping33 -I eth0 –S "

 + target + "-p 37 –e '.exe' -c 1";

 }

 else

 this.soberCommandBox.Text = null;

 }

private void deepthroat_CheckedChanged(object sender, EventArgs e)

{

 ...

 if (deepthroat.Checked == true)

 {

 this.deepthroatCommandBox.Text = "Hping33 -I eth0 -2

 "+target+ " -p 3150 -e '00' -c 1";

 }

 else

 this.deepthroatCommandBox.Text = null;

 }

In the crafting of the Qaz virus, Waledac worm and Deepthroat Trojan, the text which

follows the –e flag contains the unique signature of that specific attack. Furthermore,

the the tcp flag (-S for SYN flag) and ports (-p flag) which each of these

malicious attacks would attempt to connect to is predefined. In the Deepthroat Trojan,

the -2 flag specifies a packet to be sent in UDP mode. Additionally, it should be

noted that in each of the predefined attacks, the default output interface used is eth0,

specified via the –I flag. This is the default interface alias provided in most Linux

distributions. Of course, if that does not apply the editing the command box to reflect

the machines network interface alias is possible.

To provide for an example, Figure 4.4.3 shows three of four malicious attacks being

configured to be run against 192.168.1.1.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 52

Figure 4.4.3 – Example configuration of Malicious Software Attack

4.4.4 Denial of Service Implementation

Hping3 is once again used for the implementation of Denial of Service attacks. Three

main kinds of DoS attacks implemented include SYN flood, PING flood and LAND

attack. As with the previous attack implementations, once a user selects the attack

target (and a spoofed IP address in the case of a SYN flood using the –a flag) and the

type of DoS attack to invoke, the Command box will automatically update itself to

reflect the Bash command which will be ran.

private void synflood_CheckedChanged(object sender, EventArgs e)

{

 ...

if (synflood.Checked == true)

 {

 this.Hping3CommandBox.Text = "Hping33 -I eth0 -a " + spoof +

 " -S " + target + " -p 22 -i u1000 -c 1000";

 }

 else

 this.hydraFTPCommandBox.Text = null;

}

private void pingflood_CheckedChanged(object sender, EventArgs e)

{

...

if (pingflood.Checked == true)

 {

 this.Hping3CommandBox.Text = "Hping3 -I eth0 -1 -i u1000 " +

 target + " -c 1000";

 }

 else

 this.Hping3PingCommandBox.Text = null;

}

private void landattack_CheckedChanged(object sender, EventArgs e)

{

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 53

...

if (landattack.Checked == true)

 {

 this.Hping3CommandBox.Text = "Hping3 -S -a" + target + " -p

 21 " + target + "c -1";

 }

 else

 this.Hping3LANDCommandBox.Text = null;

}

In both SYN and PING floods, the default number of request packets sent is 1000 (-c

1000), at a rate of 1000 microseconds (-i u1000). Although an infinite amount of

packets may be sent, this creates difficulty in evaluating an IDS in a meaningful way,

especially in calculating the efficiency and effectiveness metrics defined by Sommers

et al. (2005).

Figure 4.4.4 provides an example configuration of Hping33. The configuration shown

will carry out all three DoS attacks against target 192.168.1.1. A spoofed source IP

address is required to avoid TCP reset packets from being sent back to the attacker in

the case of the SYN flood.

Figure 4.4.4 – Example Configuration for Denial of Service Attack

4.5 Background Traffic Component Implementation

The background traffic component of this framework is implemented using

Tcpreplay. Tcpreplay is a suite of tools, and consists of tcprep, tcprewrite, tcpreplay,

tcpreplay-edit and tcpbridge (Turner & Bing, 2009). A brief summary of the purpose

of each tool is provided in the table which follows (Table 4.5.1). A detailed tutorial on

the usage of Tcpreplay can also be found in the work of Corsini (2009) in which some

practical examples are given (Corsini, 2009, p. 73 – 79).

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 54

Table 4.5.1 – Tcpreplay tool suite

Tool Description

tcpprep Parses a pcap file (the data set to be used)

and establishes a client/server

relationship between each of the packets.

A cache file is produced which is

required for the other tools in Tcpreplay.

tcprewrite Rewrites TCP/IP and Layer 2 information

on the pcap file provided so that it may

be routed correctly through a router or

switch.

tcpreplay Replays the pcap file on the network. The

speed of playback may be configured.

tcpreplay-edit Provides the functionality of tcprewrite

and tcpreplay as one single command.

tcpbridge Allows for the bridging of two network

interfaces.

In regards to this prototype framework’s implementation, the three tools used include:

tcpprep, tcprewrite and tcpreplay. These are subcategorised by tabs and labelled

“Preparation”, “Rewrite Traffic” and “Traffic Playback” respectively in the

application. Figure 4.5.1 provides a representation of the process involved in

background traffic playback.

Figure 4.5.1 – Background Traffic Playback Process

Under the “Preparation” tab, tcpprep is used to create a cache file of the pcap file to

be played back. The IP and MAC addresses are then rewritten so that the data set may

be routed correctly using tcprewrite under the “Rewrite Traffic” tab. Finally “Traffic

Playback” invokes tcpreplay in order to playback the background traffic. This process

is represented in. A detailed description on how Tcpreplay was implemented for this

application is described next.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 55

4.5.1 Tcprep Implementation

As the previous section demonstrated, the purpose of tcprep is in the prepation of a

cache file of the data set which is to be played back. This cache file is relatively small,

and simply provides information differentiating between client and server packets.

The cache file is required for both tcprewrite and tcpreplay. To create a cache file in

this application system, the user specifies the location of the data set to be used and

the output directory of the cache file which is to be produced (Figure 4.5.2). Upon

clicking the “Create Cache File” button, the following code is invoked:

private void createCacheBtn_Click(object sender, EventArgs e)

{

...

this.runBashCommand("-c ' " + "tcpprep " + "-a bridge " + "-i "

+ input_file + " -o " + output_file + " ' ");

}

The code shown above uses the -a bridge flag, which simply means it will take a

input_file (the data set), and divide it into a client server relationship and output this

information as a cache file. The output_file is both the directory in which the file is

saved to along with the name of the file.

Figure 4.5.2 – Example of tcprep Implementation

4.5.2 Tcprewrite Implementation

The second subcategory within the background traffic playback component is

tcprewrite. The purpose of this tool is to parse a data set and rewrite both MAC and IP

addresses. This process will produce a rewritten data set so that traffic will flow

successfully through devices including routers, firewalls and switches. The cache file

(as produced in Section 4.5.1) is also required so that tcprewrite knows which packets

are the client and which packets are the server when rewriting the pcap file. The code

to rewrite a pcap file is shown as follows:

private void rewrite_btn_Click(object sender, EventArgs e)

{

...

this.runBashCommand("-c ' " + "tcprewrite " + "--enet-dmac=" +

dserverMAC + "," + dclientMAC + " --enet-smac=" + sserverMAC + "," +

sclientMAC + " -e " + serverIP + serverSubnet + ":" + clientIP +

clientSubnet + " -C -c " + tcprewritePREP + " -i " + tcprewritePCAP +

" -o " + outputdirectory + " ' ");

}

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 56

The code shown above takes a input pcap file and rewrites it based on the TCP/IP and

Layer 2 information provided (IP and MAC addresses). As an example, Figure 4.5.3

provides a screenshot of the tcprewrite implementation. In the figure provided, the

data set known as data set.pcap will be rewritten as rewritten.pcap. The client of this

data set will have the source MAC address of 11:11:11:11:11:11 and the server will

have the source MAC address of 22:22:22:22:22:22. All clients will be assigned an IP

address within the range of 10.0.20.65 - 10.0.20.126 whilst server IP addresses will be

within the range of 10.0.10.65 - 10.0.10.126.

Figure 4.5.3 – Example Configuration of the tcprewrite Implementation

4.5.3 Tcpreplay Implementation

Tcpreplay forms the third and last subcategory of the traffic playback component. It is

at this stage that playback of the data set will occur. A user specifies a data set and

cache file (created from Sections 4.5.2and Section 4.5.1respectively) along with the

output interface for client traffic, and server traffic. Finally, the speed of playback is

defined based on packets per second along with have many times the data set should

be played back. The code implementing tcpreplay is as follows:

private void bgtrafficBtn_Click(object sender, EventArgs e)

{

...

this.runBashCommand("-c ' " + "tcpreplay " + "-l " + loop + " -p " +

speed + " -i " + intCA + " -I " + intUA + " -c " + cacheLocation + "

" + datasetLocation + " ' ");

}

As before, an example is given (Figure 4.5.4). In this example, the data set

rewritten.pcap will be played back using the cache file prep.cache. All server traffic

will be played out of interface eth0 whilst client traffic is played out of eth1. A

playback speed of 2500 packets per second is specified. It will only be played back

once on the network, as Loop 1 specifies.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 57

Figure 4.5.4 – Example of tcpreplay Implementation

4.6 Evaluation Metrics Component Implementation

Similar to the background traffic component, the implementation of the evaluation

metrics component of this framework consists of three subcategories separated once

again by tabs. They are named “Alarm Retrieval”, “Baseline Results” and “Metric

Generation”. Figure 4.6.1 is provided to provide a diagrammatic representation of the

processes involved in evaluation metrics component.

Figure 4.6.1 – Evaluation Metrics Component Diagram

The first subcategory, alarm retrieval, invokes a SSH connection on the system in

which the IDS is running on. Alarms and log files are then copied over to the system

in which the application resides. The baseline results subcategory is required in order

to establish what the expected alarms in each attack should be. The manual input of

the expected alarms for each category of attack is required. The metric generation

subcategory is then used to analyse the log files retrieved. Based on the baseline

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 58

results provided, calculation of efficiency and effectiveness metrics is carried out. The

metric generation process also returns the result of any packet loss as reported by the

IDS.

For this application, as mentioned in the introduction of Chapter 3, the intention is to

test it against the signature-based IDS Snort. Thus, the evaluation metrics component

has been coded to tailor specifically for this IDS. However, with a few modifications

to the code, the component can easily be applied to any other IDS. A detailed report

on how each of the three subcategories (alarm retrieval, baseline results and report

generation) is implemented follows.

4.6.1 Alarm Retrieval Implementation

Alarm retrieval performs the function of copying alarms and log files produced by the

IDS after running the attack/background traffic components. The user is required to

specify a username and IP address/name of the machine in which the IDS resides on.

Furthermore, the location (directory path and name of file) of the alarms and logs file

is required. Upon clicking the “Retrieve Log” button, a SSH connection is invoked

and the log and alarms file is copied over to the machine in which the application is

running on. The code carried out is as follows:

private void btnRetrieveLogs_Click(object sender, EventArgs e)

{

this.runBashCommand("-c ' " + "scp " + username + "@" + target

+ ":" + remotedirectoryAlarm + filenameAlarm + " " +

localdirectory + " ' ");

this.runBashCommand("-c ' " + "scp " + username + "@" + target

+ ":" + remotedirectoryStatistics + filenameStatistics + " " +

 localdirectory + " ' ");

this.runBashCommand("-c ' " + "echo Log has been retrieved" + "

' ");

}

Figure 4.6.2 provides an example of the alarm retrieval implementation. In this

example, the application will connect to test@192.168.1.118 and copy over alarm.ids

and stats.log from the directory /home/test/logs/ and save it to /home/user/ids_results/

directory on the local machine.

Figure 4.6.2 – Example of Alarm Retrieval Implementation

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 59

4.6.2 Baseline Results Implementation

The purpose of the baseline results subcategory is to provide information on expected

alarms for the generation of effectiveness and efficiency metrics. Figure 4.6.3

provides a screen shot of what the baseline result subcategory looks like.

Figure 4.6.3 – Example of baseline results Implementation

As the figure presented shows, each of the four categories of attacks implemented for

this application are present. To establish a baseline, all attacks which are to be

evaluated against the IDS must be manually ran against the IDS first – one after the

other. During this initial baseline test, no background traffic should exist.

Running a single attack, with no background traffic, should put very little stress on the

IDS. It is expected at this point that the IDS will detect the attack successfully.

However, since we are performing black-box testing, we don’t know how many

alarms the IDS may log for each individual attack; thus we establish a baseline of

expected alarms. After inputting the expected alarms for each attack, the information

can then be used in metric generation (see next section) to calculate the metrics of

efficiency and effectiveness.

Very little code is required for this part of the implementation, with the exception of

converting the input of expected alarms into an integer variable. This is required in

order to perform the calculations of metrics in the report generation subcategory

since, by default, the input of expected alarms will be read as a string variable. The

code used is as follows:

int dosBaselineAlarm_int = int.Parse(this.dosBaselineAlarms.Text);

int malsoftwareBaselineAlarms_int =

int.Parse(this.malsoftwareBaselineAlarms.Text);

int usrPrivBaselineAlarms_int =

int.Parse(this.usrPrivBaselineAlarms.Text);

int survBaselineAlarms_int = int.Parse(this.survBaselineAlarms.Text);

4.6.3 Metric Generation Implementation

It is within this subcategory of the evaluation component in which the efficiency,

effectiveness and packet loss metrics are generated based on the log files produced by

the IDS after testing. These log files are known as the alarm log and statistics log,

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 60

both of which are produced by Snort. As described in Section 4.6.1, the alarm

retrieval process will take care of acquiring these logs.

Assuming the files have been retrieved successfully, we simply provide the location

of the files. Upon clicking the “Calculate” button, the alarm.ids and statistics.log file

is parsed, and based on the information provided efficiency, effectiveness and packet

loss metrics are produced automatically as shown in Figure 4.6.4.

Figure 4.6.4 – Metric Generation Example

 In this example, the IDS under test logged 11 TruePositives. Since AllPositives (the

input from baseline results) and AllAlarms raised were both 11, we have an efficiency

and effectiveness of 1. The statistics log provided contained no packet loss, thus the

figure shown reflects this.

In regards to the code, three methods are invoked when the “Calculate” button is

pressed which include: findAllAlarmsDetected(), findPacketLoss(), and

calculateMetrics(). The formulas for calculation of efficiency and effectiveness, as

described by Sommers et al. (2005), is presented once more for ease of reference

when attempting to understand the code which has been written:

Efficiency =
TruePositives

AllAlarms

Effectiveness =
TruePositives

AllPositives

The purpose of the findAllAlarmsDetected() method is to perform a simple regular

expression match on the statitics file, in order to find the total alarms raised by the

IDS under test (AllAlarms). This is achieved using the StreamReader process in C#

as the code below shows.

public void findAllAlarmsDetected()

{

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 61

...

StreamReader streamReader = new StreamReader(statisticslog);

string fileContent = streamReader.ReadToEnd();

Match match = Regex.Match(fileContent, @"ALERTS: (\d+)");

if (match.Success)

 {

 string capture = match.Groups[1].Captures[0].Value;

 allAlarms.Text = capture;

 }

}

The findPocketLoss() method is very similar, except, instead of matching characters

after “ALERTS” we perform a match against characters after “DROPPED” which

will be a numeric value of packets lost as reported by the IDS.

The calculateMetrics() method is used to perform the calculations required for

efficiency and effectiveness metrics. Similar to the previous two methods, the

StreamReader process is used, this time to parse the alarms file. A count of alarms

raised by each attack is carried out and stored as individual variables using a regular

expression. This is achieved since each time Snort logs an alert, the alert will contain

a message describing what the alert logged was. We use a regular expression to count

how many times certain “messages” show up in the alerts file, hence can calculate

how many times Snort logged each attack.

string alarmfile = alarmLog.Text;

StreamReader sr = new StreamReader(alarmfile);

string text = sr.ReadToEnd();

sr.Close();

Regex r1 = new Regex(@"\b" + "Portscan" + @"\b",

RegexOptions.IgnoreCase);

MatchCollection mc1 = r1.Matches(text);

..

Regex r10 = new Regex(@"\b" + "LAND Attack Detected" + @"\b",

RegexOptions.IgnoreCase);

MatchCollection mc10 = r10.Matches(text);

double nmap_alarm_count=mc1.Count;

..

double Hping3Land_alarm_count=mc10.Count;

 The total amount of detected attacks (TruePositives) is then calculated by simply

adding up the total attacks logged by the IDS. The total number of expected attacks

(AllPositives) is calculated in the same way by adding up all expected alarms based

on the information provided in the Baseline Results subcategory. Finally, the

calculation of efficiency and effectiveness metric will occur. The code which carried

out this task is as follows:

double effectivness = total_detected_alarms / total_expected_alarms;

effectivenessDouble.Text = effectivness.ToString();

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 62

double efficiency = total_detected_alarms / all_alarms_count;

efficiencyDouble.Text = efficiency.ToString();

4.7 Conclusion

Using Microsoft C# along with Mono, each of the three components of the framework

has been successfully produced. A list of all programs used in this implementation

along with their purpose is provided in Table 4.7.1.

The aim of the project is to produce a prototype framework which is capable of

evaluation of an NIDS. Having shown the implementation in this chapter, this aim is

now partially met since a framework has been successfully produced. However, in

order to fulfil the project aim completely, an evaluation of an NIDS, using this

implemented framework must take place to show its’ capabilities. The next chapter

provides details of this evaluation.

Table 4.7.1 – Programs Used In Implementation

Program Version Purpose

Microsoft C# .NET Visual

Studio 2008

3.5 Primary IDE used for implementing the

actual application.

Monodevelop/Mono 1.0 Secondary IDE used to troubleshoot and

run the application from a Linux

environment.

Nmap 4.62 Implementation of Surveillance/Probing

Attacks.

Hydra 5.4 Implementation of User Privilege

Attacks.

Hping3 3.0.0-alpha-2 Implementation of DoS and Malicious

Software Attacks.

Tcpreplay 3.3.1 (build

2033)

Implementation for Background Traffic

generation.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 63

5 Evaluation
5.1 Introduction

This chapter will outline the evaluation carried out on the NIDS Snort using the

framework which has been implemented. The description for this set of experiment,

along with test bed and configuration parameters, is provided in Section 5.2. The

results and conclusion to the experiment is discussed in Section 5.3 and Section 5.4.

A conclusion is provided in Section 5.5.

5.2 Experiment Description

The Attack Traffic Component of the framework is capable of carrying out

surveillance/probing, user privilege gain, malicious software and DoS attacks. In each

test scenario of this experiment, each and every single attack that the framework is

capable of carrying out will be invoked against a target machine. Background traffic

will run in conjunction with the attacks using the Background Traffic Component.

The Monday Week 1 1998 DARPA data set (M. L. Laboratory, 1998) is used in the

playback of background traffic.

As stated by Peisert and Bishop (2007), an experiment which is considered

scientifically correct will only ever contain one variation (Peisert and Bishop, 2007, p.

142). In this case, the only variation we apply to each instance of running the

experiment will be the playback speed of background traffic. By carrying out the

experiment in this way, we can assess whether the volume of traffic on the network

will have any detrimental effects to Snort’s detection abilities. Thus, a dynamic

evaluation of the NIDS is achieved. Figure 5.2.1 below shows a schematic of how the

experiment will take place.

Figure 5.2.1 – Schematic of Experiment

As described in the Chapter 4, the NIDS known as Snort will be used for this

evaluation. Since Snort is a signature-based IDS, rules are required for the detection

of attacks. The VRT certified rules from Sourcefire (2009) are used. Furthermore,

individual rules are crafted manually to detect each attack which the application is

capable of (see Section 5.2.2). This allows us to monitor both the detection metrics of

efficiency and effectiveness which is part of the Evaluation Metrics Component of the

framework.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 64

A baseline of expected alarms was first established in order to allow for metric

generation later on. The experiment was then run a total of six times. In each test, a

variation of the playback speed of background traffic was applied whilst every other

element remained the same. The six variations of playback speed were: 20Mbps,

40Mbps, 60Mbps 80 Mbps, 100 Mbps and 120Mbps. A limit of 120Mbps playback

speed was reached as it was discovered during testing that this was as fast as

Tcpreplay was reliably capable of sending out traffic on the virtual environment (see

Section 5.2.1 for test bed description). The play speed which were logged is as

reported by Tcpreplay.

In each instance of a test, Snort was first started, before background and attack traffic

was invoked on the network using the framework. To monitor the memory usage and

CPU utilization of the machine in which Snort resides, the top command in Linux was

used. This command was run in batch mode, which allows the information to be

written to a file. The –b flag tells top to run in batch mode, whilst –p is the process

ID to monitor (which in this case should be the process ID of Snort). An example of

this command is shown as follows:

$ top –b –p 5118 >> resourceUtil_metrics

After all traffic is sent through the network, Snort is stopped and retrieval of metrics

takes place using the Evaluation Metrics component of the framework. These results

are logged before a new instance of the test is carried out with a different playback

speed.

5.2.1 Test Bed Description

Virtual machines are used to create a private virtual network in order to conduct the

experiment. The software VMware (version 6.0.2) (VMWare, 2009) has been used for

this purpose. Three virtual machines are required: one machine to run the application,

one machine to run Snort and one machine to act as the target of attacks. All three

machines are running the Xubuntu Distribution of Linux using kernel 2.6.27. The

three machines are connected to a virtual switch which is created from VMWare. The

specifications for the three machines are presented in Table 5.2.1. Figure 5.2.2

presents a high level diagram of the virtual network.

Table 5.2.1 – Specifications of Virtual Machines

Machine Name Operating System CPU (shared) Memory

VM 1
Xubuntu

Kernel: 2.6.27
Intel Core2 Quad

Q6600 @ 2.40 GHz

512 MB

VM 2
Xubuntu

Kernel: 2.6.27
Intel Core2 Quad

Q6600 @ 2.40 GHz

512 MB

VM 3
Xubuntu

Kernel: 2.6.27
Intel Core2 Quad

Q6600 @ 2.40 GHz

256 MB

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 65

Figure 5.2.2 – Diagram of Virtual Network Test Bed

As the figure above shows, the framework resides in VM 1. This virtual machine will

generate background traffic, along with sending all attacks to VM 3, whilst VM 2 is

configured to run Snort and monitor all network traffic seen in this virtual

environment. VM 3, the target machine, is configured to accept both Telnet and FTP

connections in order to realistically allow for VM 1 to generate attacks on it. After

each test is ran with a variation in background traffic playback speed, VM 1 will

retrieve the logs produced by Snort and parse them automatically using the Evaluation

Metrics Component.

In carrying out the experiments through a virtual environment, the ability to ensure no

unexpected traffic will be seen on the network achieved. Furthermore, a greater

control over experiments is possible since the three machines form a private virtual

network. However, it is acknowledged that one major limitation in carrying out the

experiments in this environment is that it may not accurately reflect a real-life

network. Unfortunately, due to time limitations, testing using real-life equipment in a

laboratory setting was unable to be achieved.

5.2.2 Snort Configuration

Snort Version 2.7.0 (Build 35) is used for this evaluation. As described previously,

along with the VRT rule set provided by Sourcefire, some custom rules need to be

implemented to detect each of the attacks which the application carries out. The

following is a comprehensive list of all custom rules which were created to detect

each attack the application is capable of:

Raise alert if more than 3 connections are made to Telnet in 1

second

seconds.

alert tcp $HOME_NET 23 -> any any (msg:" Telnet Bruteforce Attack

Detected"; flow: from_server,established; content:"Password";

nocase; threshold: type threshold, track by_src, count 3, seconds 1;

sid:001;)

Raise alert if more than 3 connections are made to FTP in 1 second

seconds.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 66

alert tcp any any -> $HOME_NET 21 (msg:"FTP Bruteforce Attack

Detected"; flow: to_server,established; content:"PASS"; threshold:

type threshold, track by_src, count 3, seconds 1; sid:002;)

Raise alert if packet contains ACK flag, destination port is 139

and contains content: “|71 61 7a 77 73 78 2e 68 73 71|”

alert tcp any any -> any 139 (msg:"QAZ Worm Detected"; flags:A;

content:"|71 61 7a 77 73 78 2e 68 73 71|"; sid:003;)

Raise alert if packet destination port is 80 and contains the

content: “X-Request-Kind-Code:” (note:|3A| is hex)

alert tcp $HOME_NET any -> any 80 (msg:"Waledac Virus Detected";

flow:to_server; content:"X-Request-Kind-Code|3A|"; nocase;

reference:url,blogs.technet.com/mmpc/archive/2009/04/14/wheres-

waledac.aspx; sid:004;)

Raise alert if a SYN flag is sent to port 37

alert tcp any any -> any 37 (msg:"Sober Virus Detected";

flow:stateless; flags:S,12; content:".exe"; threshold:type limit,

track by_src, count 1, seconds 60; sid:005;)

Raise alert if a UDP packet attempts connection to port 3150 with

content “00”.

alert udp any any -> $HOME_NET 3150 (msg:"Deepthroat Trojan

Detected"; flow:to_server; content:"00"; depth:2; metadata:policy

security-ips drop; reference:mcafee,98574; reference:nessus,10053;

classtype:trojan-activity; sid:006;)

Raise alert if more than 5 ICMP are sent in 1 second with same

src/dst IP

alert icmp any any -> $HOME_NET any (msg:"Ping Flood Detected"; flow:

stateless; threshold: type threshold, track by_src, count 5, seconds

1; sid:007;)

Raise alert if more than 5 SYNS are sent in 1 second on port 22

alert tcp any any -> $HOME_NET 22 (msg:"Syn Flood Detected"; flow:

stateless; flags:S,12; threshold: type threshold, track by_src, count

5, seconds 1; sid:008;)

Raise alert if SYN flag attempts to connect a socket to itself

alert tcp any any -> any 22 (msg:"LAND attack Detected"; flags:S;

sameip; sid:009;)

For the detection of surveillance/probing attacks, which are carried out using Nmap,

Snort has an in-built pre-processor called sfportscan which will detect any attack in

this category, thus, there is not a need to create a custom rule for this type of attack.

The configuration for sfportscan is as follows:

preprocessor sfportscan: proto { all } \

 memcap { 10000000 } \

 sense_level { low }

The following command was used to run Snort:

snort –i eth0 –l snort_logs/ -c /etc/snort/snort.conf 2> stats.log

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 67

The configuration file in /etc/snort/snort.conf contains Snort’s configuration

along with a reference to the rules to be used. The 2> command redirects the output

of Snort once it stops running in order to save the statistics Snort reports to a file

named stats.log. This report contains details of packet loss and all alarms logged

which is used parsed by the evaluation metrics component.

 scan_type { all }

5.3 Results

Each test run was carried out by invoking attack and background traffic as described

in Section 5.2. After a test run finished running, the Evaluation Metrics component

was used to automate the retrieval of logs from the IDS. These files were then

automatically parsed by this component and the detection metrics of efficiency,

effectiveness and packet loss were reported and made a note of. One example of the

Evaluation Metrics Component generating these statistics is presented in Figure 5.3.1

in which the logs retrieved were from the 120Mbps playback.

Figure 5.3.1 - Detection Metrics Generated for 120Mbps Playback

Along with the making a note of the detection metrics, the resource utilisation metrics

of CPU Utilisation and Memory usage are also logged. As noted in Section 5.2, the

capabilities of the prototype framework does not allow for automated retrieval of

resource utilisation metrics thus, these results had to be obtain by manually reading

the file which was produced by the top command. Having acquired all data required

for each of the six tests, the results are compiled into bar charts.

Firstly, Figure 5.3.2 shows CPU utilization and Memory usage in comparison with the

different playback speeds. Figure 5.3.3 then shows Efficiency and Effectiveness

metrics in comparison with the different playback speeds whilst Figure 5.3.4 shows

the packet loss metric. A detailed analysis of the results is provided in the next

section.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 68

 Figure 5.3.2 –CPU Utilization and Memory Usage Results

Figure 5.3.3 – Efficiency and Effectiveness Results

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 69

Figure 5.3.4 – Packet Loss Metric Result

5.4 Analysis

This evaluation has shown that the framework is capable of generating both attack

and background traffic. In regards to background traffic, variable playback speeds

was achieved which meant a comparison between the resource utilisation metrics and

detection metrics could be achieved. Furthermore, it is demonstrated that the

Evaluation Metrics component allows for quick and efficient retrieval of logs

produced by the IDS thus results of experimentation could be easily acquired.

The results presented in the previous section shows clearly that there is a direct

relation between the increase in traffic and the CPU Utilisation of Snort. At around

40% utilization and above, it appears apparent that Snort will begin to drop packets,

as the Packet Loss figure demonstrates. Additionally, there is a relatively high

increase in the packets loss once CPU Utilization increases to approximately 70% and

above. However, slightly unexpected is that Snort uses the same amount of memory

even at the highest playback speed. However, this is not considered a limitation since

it shows Snort is quite resourceful in its use of memory even in high volumes of

network traffic.

In regards to detection metrics, Figure 5.3.3 shows that Snort is highly effective in the

detection of attacks. All but one test instance reported an Effectiveness metric of 1,

meaning all attacks were detected successfully. However, the one exception was that

during the playback speed of 80Mbps Snort failed to log one attack. In this instance,

Snort had reported a packet loss of 13 (Figure 5.4.1). In investigating this result, it

was discovered that Snort had dropped an attack packet along with a few arbitrary

background traffic packets. Thus, this highlights the absolute importance of an IDS

having 100% effectiveness at all times.

However, the results produced in Figure 5.3.3 in regards to the efficiency metric does

raise some questions. In each test run, approximately 30% of alerts raised were false-

positives. Very little variation of these results were found, and upon running a test in

which only background traffic was generated, it was found that the VRT rule set used

would raise false-positive alerts due to the background traffic used (which, in this

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 70

case, was the DARPA 1998 data set). As the purpose of this experiment was to

conduct a black-box evaluation using the application implemented, without a greater

degree of analysis on both the detection mechanisms used by Snort, individual

analysis of the VRT rule set and the behaviour of traffic in the data set, it cannot be

said for certain whether it is Snort or the data set used which is at fault at this point in

time.

5.5 Conclusion

The results produced from this framework have shown that Snort is highly effective in

the detection of attacks. It has also highlighted the fact that Snort’s greatest weakness

may be due to packet loss. With an exceptional increase in traffic volume, Snort will

utilize a greater degree of CPU Utilization. After reaching around 40% and above,

packet loss occurs and, in instances such as this experiment has shown, there is the

possibility of an attack evading Snort due to the IDS dropping the packet.

Although it has been shown in this Chapter that the prototype framework is capable of

providing an evaluation against the NIDS Snort, there is a certain limitation to the

experiment carried out which must be acknowledged. The main issue which may

provide for unreliable results is the use of a virtual network environment. Although it

may be justified that having a virtual network environment provides for control of

experimentation, since all three machines share the same computer system, there may

also be underlying factors which skewer the results of the evaluation carried out by

the framework which are not apparent. Unfortunately, although preferable, a live

laboratory for carrying out this evaluation could not be achieved due to time

constraints.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 71

6 Conclusion
6.1 Introduction

The main aim of this project was to produce a framework which is capable of carrying

out an evaluation of an NIDS. Snort was chosen as the NIDS to evaluate against. The

results in the previous chapter have shown that this framework is capable of carrying

out an evaluation against Snort therefore meeting the project aim.

This chapter will discuss how the objectives of the project were met (Section 6.2)

along with providing a critique of the prototype framework (Section 6.3). A reflection

(Section 6.4) on overcoming some of the main difficulties, along with how the project

was managed is discussed and, finally, some proposed future work in regards to this

project’s topic is looked at (Section 6.5).

6.2 Meeting the Objectives

The first chapter outlined three main objectives which were:

1. Review and research the taxonomy of IDSs and existing methodologies for

evaluation including the testing methods applied along with metrics of

evaluation.

2. Design a framework which can be used to evaluate a NIDS based on the

findings of the literature review with justification for design choices made.

3. Implement and evaluate the framework by testing it against an NIDS to see

what results are produced in order to assess the capabilities of the

framework.

An analysis on how each of the three objectives was met is provided in Section 6.2.1

6.2.2 and 6.2.3 for objectives 1, 2 and 3 respectively.

6.2.1 Objective 1

The first objective was met by providing a comprehensive literature review in the area

of IDS for this project. The taxonomy of IDSs was provided covering multiple

subjects including detection methods, the common IDS framework and categories of

IDSs. Four main methodologies were also reviewed, two offline evaluation methods

and two real-time evaluation methods. Additionally, a review was carried out on the

types of metrics that are used in IDS evaluation.

From the literature review, it was summarised that current existing methodologies all

have their own strengths and weaknesses whilst there is no “correct” metric of

measurement only metrics which would provide meaningful results. Therefore, based

on the methodologies and evaluation metrics reviewed it was concluded that a solid

methodology for evaluation of IDS consisted of three main requirements:

1. Inclusion of Realistic Attack and Background Network Traffic

2. Ease of Automation

3. Inclusion of Meaningful Metrics for Evaluation

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 72

Based on this conclusion, a design could then be established in which attempted to

meet all three requirements. In other words, by successfully meeting the objective of

carrying out research and review on the subject of IDSs, this helped to create three

focused issues which needed to be addressed in the design stage of the framework.

6.2.2 Objective 2

The second objective was met by specifying a design of a framework that consisted of

three main components: attack traffic component, background traffic component and

evaluation metrics component. Furthermore, a GUI was proposed which “wrapped”

the three components into a single application which allowed for ease-of-use and

automation of functions. In specifying this design, each of the three requirements for

a methodology in the evaluation of IDSs - which were concluded in the literature

review - would be met.

It was justified in the design that the use of existing programs and tools would allow

for the most realistic live attacks possible. The design also stated the use of both

detection metrics and resource utilisation metrics in order to provide for meaningful

evaluation.

The only limitation to the second objective of this project, designing a framework for

evaluation of an NIDS, was attempting to meet the requirement of realistic

background traffic as no tool or program is available which allowed for the generation

of realistic background traffic. Therefore, it was proposed that Tcpreplay tool, along

with the DARPA data set, be used instead. This design choice was justified since it

allows for ease-of-repeatability and control of playback speed of traffic. Furthermore,

it also means background traffic generation is not limited to specific protocols as long

as another data set can be provided.

6.2.3 Objective 3

The third objective was met through implementation of the framework then using it to

carry out an evaluation of Snort. Due to having a relatively concise design, the

implementation stage was achieved quite smoothly. The main issue was finding a

method to invoke the Bash shell from application, but this was resolved with the help

of ProcessCaller code provided by Mayer (2003). The results concluded that the

framework was capable of carrying out high volume playback of traffic which stresses

Snort to the point of dropping packets. This allows for the conclusion that the

framework shows that there is a detrimental effect against CPU Utilisation and Packet

Loss. Furthermore, it has also shown that even a loss in a very few number of packets

may result in Snort missing an attack.

6.3 Critical Analysis

Having shown that both the aim and objectives of this project have been met, this

section will provide a critique on the prototype framework. The strengths and

weakness of the framework, in comparison with methodologies reviewed in the

literature chapter is the key subject of this discussion.

It must first be acknowledged that there are a few limitations with this framework. To

most extents, although attack traffic and background traffic was implemented as

specified in the design it is felt that realism of traffic playback is still lacking mainly

due to the fact that there is no control over aggregation of attack and background

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 73

traffic. In comparison with works including Rossey et al. (2002) and Sommers et al.

(2006), it may be stated that these methodologies are currently more ideal since they

allow for controlled mixtures of benign and attack traffic playback. This is a

capability in which the framework does not currently provide. Furthermore, with no

other option but the DARPA data set, it must be acknowledged that the background

traffic produced may not accurately reflect real life networks.

Another limitation in this framework is the total number of predefined attacks it is

capable of generating. To emphasise, the work of Massicotte et al. (2006) uses the

Metasploit Framework which allows for a huge number of different attacks and

exploits which can be also extended through modules. Furthermore, using fragroute

enables traffic manipulation techniques which furthers the number of attacks possible.

The same type of techniques is used by Sommers et al. (2006) in the Trident

evaluation. Although the number attacks possible by MACE is only 21 (Sommers et

al., 2006, p. 7) this is still significantly higher than what this framework is capable of.

However, at the same time, there are strengths to this framework which are not found

in existing methodologies. This strength is found in the Evaluation Metrics

component which takes a relatively original approach to carry the generation of

detection metrics. Although the metrics defined come from various sources of

previous work, there does not appear to have been attempts in the past to simplify this

process as has been achieved in this framework since it allows for automated retrieval

and generation of detection metrics.

Another strength in this framework is in the implementation of a GUI which wraps all

existing tools into one single application. Providing a menu based system allows for

ease of use in carrying out an evaluation especially in regards to playing back

attack/background traffic. The GUI also provides further automation in that users may

select predefined attacks rather than having to manually enter the commands through

a Bash shell. The closest comparison to an existing methodology which achieves

similar goals is the LARIAT evaluation carried out by Rossey et al. (2002). However,

this framework differs is that the code is made open and publicly available for anyone

to make modifications and extensions to, rather than being restricted to governmental

use only.

6.4 Reflection

Upon starting research into the subject area of IDSs, it was discovered that this topic

was vastly more complex than initially expected. A great deal confusion was met

when attempting to understand articles and papers written about this topic. The

greatest obstacle in the research for this project was trying to understand the

methodologies employed by researchers in the evaluation of IDSs since these articles

and papers were highly technical. However, over time, the more topics that were read

the greater the understanding that was developed which allowed for analysation of

articles which previously had little meaning. Overcoming of this difficulty also

allowed for achieving the first objective in this projective, which was to provide

research and review into the subject area of IDSs.

Another area of difficulty faced was the design stage. There was always doubt as to

whether the framework design was effective enough for evaluating an NIDS. This

issue was overcome by carrying out multiple repetitions in design and testing. To

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 74

elaborate, a design was first established then tested. Based on the results of testing,

refinements were made. Finally, the prototype framework which this project discusses

was achieved.

Making emphasis in the design allowed for ease of implementation. However, one

issue which required to be overcome was trying to understand and get Tcpreplay work

during the implementation stage. The main problem faced was that in the playback of

network traffic, only some traffic would be played back (for example, the client side

traffic only) rather than the entire data set. It was discovered over time that this was

due to errors made in rewriting the data set and after having gained some knowledge

on the principles of routing network traffic this issue was overcome.

Project management is the last area of discussion in this section. It is felt that the

project has been successfully managed from start to finish. A time plan was created in

the form of a gantt chart at the start of this project and attempts were made to meet

this schedule. However, it must be acknowledged that there was some deviation in

this time plan due to other commitments but attempts were made to ensure work was

carried out on the project if it began to fall behind schedule. Furthermore, although

the time plan was not met completely as expected, every effort was made to have

weekly meetings with the supervisor in regards to the project so that a focused

workload could be maintained. The time plan is presented in Appendix 3 whilst the

meeting diary sheets are found in Appendix 4.

6.5 Future Work

At this point, more research into the evaluation of IDSs is still essential. Although the

framework presented in project has achieved some fundamental rquirements in testing

of NIDSs, a great deal of work in this area of research is still both possible and, more

importantly, necessary.

Many improvements can be made for future work in regards to the prototype

framework. One of the first improvements could be the inclusion of more attack

scenarios. In the implementation, only four threat categories exist and the attacks

which are possible are miniscule compared to real-life as the critique in Section 6.3

has mentioned. Furthermore, the predefined attacks are hard coded into the source

code during this implementation. Although this approach works as the attack may stay

be edited via the command box provided, in retrospect, it is felt having separate files

which describes each attack (eg. an XML configuration file of each attack) would

have been a better solution since it allows users to better customise their own attacks.

A major extension to this framework is the possibility of providing a layered approach

to the attack and background traffic generation components. As an example,

Fragroute could be employed on top of existing attacks in order to manipulate packets

to carry out evasion/insertion attacks. Also of importance would be an aggregation

component which allows for control over the mixture of background/attack traffic

which is generated. Although the implementation performs aggregation at the network

interface level a greater degree of control over the mixture of attack/background

traffic is more ideal. An abstract example of this improved framework is presented in

Figure 6.5.1.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 75

Another area of work works which is highly important for evaluation of IDSs is an in-

depth research into the generation of background network traffic. As the literature

review in this project has demonstrated, background traffic generation is still lacking

in many areas including both realism and control. It would be an ideal scenario if

some form of implementation exists which allows for the control of highly realistic

generation of benign traffic. The work of Rossey et al. (2002) achieves this goal to

some extent but it is not available for public use.

To provide for an example, if an open-source implementation exists which allows a

user to select specific traffic “profiles” which caters for all the different types of

protocols such as 70% TCP traffic, 20% Telnet traffic and 10% SSH traffic this would

allow an evaluation to take place on a test bed which reflects the different

environments an IDS was employed on. Furthermore, being open-source would allow

it to be modified and improved to cater for any network protocol which is omitted.

Figure 6.5.1 – Improvements to Prototype Framework

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 76

7 References

Alessandri, D. (2004), Attack-Class-Based Analysis of Intrusion Detection Systems,

Master's thesis, University of Newcastle upon Tyne, Newcastle, UK.

Almgren, M., Lundin, E. & Jonsson, B. E. (2003), Consolidation and evaluation of ids

taxonomies, Proceedings of the eighth Nordic Workshop on Secure IT systems

NordSec 2003, Gjovik, Norway, 56-70.

Anzen Computing. (1999), NIDSBench, Retrieved 1 November, 2009, from

http://packetstormsecurity.nl/UNIX/IDS/nidsbench/nidsbench.html

Athanasiades, N., Abler, R., Levine, J., Owen, H. & Riley, G. (2003), Intrusion

detection testing and benchmarking methodologies', Proceedings of First IEEE

International Workshop on Information Assurance, 2003. IWIAS 2003. 63-72.

Aubert, S. (2002), HSC – Tools – IDSWakeup, Retrieved 1 November, 2009, from

http://www.hsc.fr/ressources/outils/idswakeup/index.html.en

Axelsson, S. (1999), Research in Intrusion Detection Systems: A Survey, Technical

report, Department of Computer Engineering, Chalmers University of Technology,

Sweden, 1-85.

Beale, J., Baker, A. & Esler, J. (2007), Snort IDS and IPS Toolkit, Burlington:

Syngress Publishing.

BIS. (2006), Information Security Breaches Survey 2006, Technical report,

Department for Business, Innovation and Skills. Retrieved 5 October, 2009, from

http://www.berr.gov.uk/files/file28343.pdf

BIS. (2008), Information Security Breaches Survey 2008, Technical report,

Department for Business, Innovation and Skills. Retrieved 5 October, 2009, from

http://www.berr.gov.uk/files/file45714.pdf

Brugger, S. & Chow, J. (2007), An assessment of the DARPA IDS Evaluation Data

set using Snort, Technical report, Department of Electrical Engineering and

Computer Sciences, University of California, Berkeley.

Buchanan, W. (2009), Security and Forensics Computing, Edinburgh Napier

University, Edinburgh, UK.

Cavalli, E., Mattasoglio, A. Pinciroli, F. & Spaggiari, P. (2004), Information security

concepts and practices: the case of a provincial multi-specialty hospital, International

Journal of Medical Informatics 73(3), 297-303.

Corsini, J. (2009), Analysis and Evaluation of Network Intrusion Detection Methods

to Uncover Data Theft, Master's thesis, Edinburgh Napier University, Edinburgh, UK.

Debar, H., Dacier, M. & Wespi, A. (1999), Towards a taxonomy of intrusion

detection systems, Computer Network 31(9), 805-822.

Del Carlo, C., Lakes, S., Illinois, C. & Practical, G. (2003), Intrusion detection

evasion: How attackers get past the burglar alarm [White paper], Retrieved 30 March,

2009 from

http://www.sans.org/reading_room/whitepapers/detection/intrusion_detection_evasion

_how_attackers_get_past_the_burglar_alarm_1284?show=1284.php&cat=detection

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 77

Deri, L., Suin, S. & Maselli, G. (2003), Design and Implementation of an Anomaly

Detection System: an Empirical Approach, Proceedings of Terena Networking

Conference.

Fink, G., O'Donoghue, K. F., Chappell, B. L. & Turner, T. G. (2002), A Metrics-

Based Approach to Intrusion Detection System Evaluation for Distributed Real-Time

Systems, IPDPS '02: Proceedings of the 16th International Parallel and Distributed

Processing Symposium, IEEE Computer Society, Washington, DC, USA.

Gadelrab, M. S. & El Kalam A. A. (2006), Testing Intrusion Detection Systems: An

Engineered Approach, Proceedings of the 10th IASTED International Conference

SOFTWARE ENGINEERING AND APPLICATIONS, Dallas, TX, USA, 270-275.

Gong, F. (2003), Deciphering Detection Techniques: Part II Anomaly-Based Intrusion

Detection [White Paper], McAfee Security , McAfee Security White Paper, Retrieved

July 8, 2009, from

http://www.mcafee.com/us/local_content/white_papers/wp_ddt_anomaly.pdf

Goodin, D. (2009), Gang Sentenced for UK bank trojan, Retrieved November 17,

2009 from http://www.theregister.co.uk/2009/11/16/bank_trojan_gang_sentenced/

Graves, J., Buchanan, W., Saliou, L. & Old, J. (2006), Performance Analysis of

Network Based Forensic Systems for In-line and Out-of-line Detection and Logging,

Proceedings of the 5th European Conference on i-Warfare and Security (ECIW),

Academic Conferences Limited.

Houle, K., Weaver, G., Long, N. & Thomas, R. (2001), Trends in denial of service

attack technology, CERT Coordination Center , Technical report, Carnegie Mellon

University's Computer Emergency Response Team Coordination Center.

Howard, B., Paridaens, O. & Gamm, B. (2001), Information security: threats and

protection mechanisms, Alcatel Telecommunications Review, 2
nd

 Quarter, 117-121.

Hping3. (2009), [Computer Software], Retrieved February 15, 2009, from

http://www.Hping3.org/

Kargl, F., Maier, J. & Weber, M. (2001), Protecting web servers from distributed

denial of service attacks, WWW '01: Proceedings of the 10th international conference

on World Wide Web, ACM, New York, NY, USA, 514-524.

Kazienko, P. & Dorosz, P. (2003), Intrusion Detection Systems (IDS) Part I -

(network intrusions; attack symptoms; IDS tasks; and IDS architecture), Retrieved

April 20, 2009 from

http://www.windowsecurity.com/articles/Intrusion_Detection_Systems_IDS_Part_I__

network_intrusions_attack_symptoms_IDS_tasks_and_IDS_architecture.html.

Lippmann, R., Haines, J. W., Fried, D. J., Korba, J. & Das, K. (2000), The 1999

DARPA off-line intrusion detection evaluation, Computer Networks 34(4), 579 - 595.

Lyon, G. (2009) Nmap [Computer Software], Retrieved February 18, 2009, from

http://nmap.org/

Massicotte, F., Gagnon, F., Labiche, Y., Briand, L. & Couture, M. (2006), Automatic

evaluation of intrusion detection systems. ACSAC'06: Proceedings of the 22
nd

 Annual

Computer Security Applications Conference, Washington, DC, USA, 361-370.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 78

Mayer, M. (2003), CodeProject: Launching a process and displaying its standard

output. Free source code and programming help, Retrieved May 2, 2009, from

http://www.codeproject.com/KB/threads/launchprocess.aspx?msg=2927207

McHugh, J. (2000), Testing intrusion detection systems: a critique of the 1998 and

1999 DARPA intrusion detection system evaluations as performed by Lincoln

Laboratory, ACM Transactions on Information and System Security 3(4), 262-294.

Mell, P., Hu, V., Lippmann, R., Haines, J. & Zissman, M. (2003), An overview of

issues in testing intrusion detection systems, National Institute of Standards and

Technology ITL , Technical report, NIST IR 7007, Gaithersberg, MD.

Merriam-Webster. (2009). Merriam-Webster Online Dictionary, Retrieved September

1, 2009, from http://www.merriam-webster.com/dictionary/security.

Metasploit Project. (2009), The Metasploit Framework, Retrieved 1 November, 2009

from http://www.metasploit.com/framework/

M.L Laboratory. (1998), MIT Lincoln Laboratory: Information Systems Technology,

Retrieved April 8, 2009, from

http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/1998/training/

week1/monday.tar

Mono Project. (2009), Mono Project [Computer Software], Retrieved April 29, 2009,

from http://www.mono-project.com/Main_Page

Newham, C. & Rosenblatt (1998), Learning the Bash Shell, O'Reilly & Associates,

Inc., Sebastopol, CA, USA.

Newson, A. (2005), Network threats and vulnerability scanners, Network Security

2005(12), 13-15.

NIST. (2006), An introduction to computer security: the NIST handbook, National

Institue of Standards and Technology, Ed. U.S Department of Commerce, 2006.

Peisert, S. & Bishop, M. (2007), How to Design Computer Security Experiments,

International Federation for Information Processing Publications- IFIP 237, 141 -

148.

Powell, D. & Stroud, R. (2001), MAFTIA: Conceptual Model and Architecture.

Project MAFTIA IST-1999-11583 deliverable D2, Technical report, University of

Newcastle upon Tyne, Newcastle, UK.

Porras, P., Schnackenberg, D., Staniford-Chen, S., Stillman, M. & Wu, F. (1998), The

common intrusion detection framework architecture, Retrieved July 31, 2009, from

http://gost.isi.edu/cidf/drafts/architecture.txt.

Purcell, J. (2007), Security Control Types and Operational Security [White paper],

Retrieved March 29, 2009 from

http://www.giac.org/resources/whitepaper/operations/207.php.

Ptacek, T., Newsham, T. & Simpson, H. (1998), Insertion, evasion, and denial of

service: Eluding network intrusion detection, Technical report, Secure Networks, Inc.,

Calgary Alberta, Canada, Suite 330, 1201 5th Street S.W, T2R-0Y6.

Quittek, J., Zseby, T., Claise, B. & Zander, S. (2004), Requirements for IP Flow

Information Export (IPFIX), Internet Engineering Task Force, Retrieved September

23, 2009 from http://tools.ietf.org/pdf/rfc3917.pdf

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 79

Rossey, L. M., Cunningham, R. K., Fried, D. J., Rabek, J. C., Lippmann, R. P.,

Haines, J. W. & Zissman, M. A. (2001), LARIAT: Lincoln Adaptable Real-time

Information Assurance Testbed, Submitted for publication, IEEE Proc. Aerospace

Conference, p. 2671-2682.

Ranum, M. (2001), Experiences benchmarking intrusion detection systems, NFR

Security White Paper, Retrieved April 2, 2009, from

http://www.bandwidthco.com/whitepapers/compforensics/ids/Benchmarking%20IDS.

pdf

Richardson, L. & Moore, W. (2002), National Fire Alarm Code Handbook,

Minneapolis, MN: National Fire Protection Association.

Sharma, A., Kumar, R. & Grover, P. S. (2007), A Critical Survey of Reusability

Aspects for Component-Based Systems, Vol. 21, Proceedings of the World Academy

of Science, Engineering and Technology, 35-39.

Singaraju, G., Teo, L. & Zheng, Y. (2004), A Testbed for Quantitative Assessment of

Intrusion Detection Systems using Fuzzy Logic, IWIA '04: Proceedings of the Second

IEEE International Information Assurance Workshop (IWIA'04), IEEE Computer

Society, Washington, DC, USA.

Snapp, S., Brentano, J., Dias, G., Goan, T., Heberlein, L., Ho, C., Levitt, K.,

Mukherjee, B., Smaha, S., Grance, T., Teal, D. & Mansur, D. (1991), DIDS

(distributed intrusion detection system)-motivation, architecture, and an early

application, Proceedings of the 14th National Computer Security Conference, 167-

176.

Sommers, J. & Barford, P. (2004), Self-configuring network traffic generation, IMC

'04: Proceedings of the 4th ACM SIGCOMM conference on Internet measurement,

ACM, New York, NY, USA, pp. 68-81.

Sommers, J., Yegneswaran, V. & Barford, P. (2004), A framework for malicious

workload generation, Proceedings of the 4th ACM SIGCOMM conference on Internet

measurement, ACM New York, NY, USA, 82-87.

Sommers, J., Yegneswaran, V. & Barford, P. (2005), Toward Comprehensive Traffic

Generation for Online IDS Evaluation, Technical report, Department of Computer

Science, University of Wisconsin, Madison.

Sommers, J., Yegneswaran, V. & Barford, P. (2006), Recent Advances in Network

Intrusion Detection Systems Tuning, CISS '06: Proceedings of the 40th IEEE

Conference on Information Sciences and System, Princeston, NJ, USA, 1490-1495.

Song, D. (2009), Fragroute [Computer Software], Retrieved February 20, 2009, from

http://monkey.org/~dugsong/fragroute/

Sourcefire. (2009), Snort [Computer Software], Retrieved February 10, 2009, from

http://www.snort.org/

THC. (2009), Hydra [Computer Software], Retrieved September 27, 2009, from

http://www.thc.org/thc-hydra/

Tucker, C., Furnell, S., Ghita, B. & Brooke, P. (2007), A new taxonomy for

comparing intrusion detection systems, Internet Research 17(1), 88-98.

Turner, A. & Bing, M. (2009), Tcpreplay Tool [Computer Software], Retrieved

February 9, 2009, from http://tcpreplay.sourceforge.net/

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 80

Vigna, G., Robertson, W. & Balzarotti, D. (2004), Testing network-based intrusion

detection signatures using mutant exploits, Proceedings of the 11th ACM conference

on Computer and communications security', ACM New York, NY, USA, 21-30.

VMWare. (2009), VMWare [Computer Software], Retrieved February 29, 2009, from

http://www.vmware.com/

Wagh, A. (2009), Purpose of Scanning the Network: Stealth Attacks, Hackers

Enigma, Retrieved 20, September 2009 from

http://www.hackersenigma.com/network-security/purpose-of-scanning-the-network-

stealth-attacks-2/.

Whitman, M. & Mattord, H. (2008), Principles of information security, Canada:

Course Technology.

Workman, M. (2007), Gaining Access with Social Engineering: An Empirical Study

of the Threat. Information Systems Security, 16(6), 315-331. Retrieved September 6,

2009, from ABI/INFORM Global.

Zhengbing, H., Zhitang, L. & Junqi, W. (2008), A novel Network Intrusion Detection

System (NIDS) based on signatures search of data mining, Proceedings of the 1st

international conference on Forensic applications and techniques in

telecommunications, information, and multimedia and workshop, ICST (Institute for

Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST,

Brussels, Belgium, Belgium

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 81

Appendix 1 Initial Project Overview

Title: Dynamic Performance Evaluation of Intrusion Detection Systems

(IDS)

Overview of Project Content and Milestones

The main evaluation focus in this project will be on signature-based IDS such as

“Snort”. This project aims to provide an evaluation on the performance of signature-

based IDS in relation to the actual true-positive rate under various network conditions

and activity through experimentation.

Project milestones are as follows:

 To research the existing technology and the main motivations behind the need

for IDS

 To research and understand any existing methods which are used to carry out

dynamic evaluation of IDSs.

 Research and design a range of experiments which will prove viable in testing

the IDSs in terms of their performance in handling and detecting different

types of network traffic activity and threats.

 Implement the experiments by creating or using existing traffic playback tools

which will make it possible to carry out such experiments on the Intrusion

Detection System

 Undertake research and implement the necessary methods in carrying out

performance metric evaluation for actually evaluating how well the IDS

performed after testing it with the implemented tools. Such performance

metric includes: CPU utilisation, bandwidth usage and memory usage.

 To provide an evaluation of true-positive alarms registered on an IDS based on

various different traffic loads, for example: how many true-positives are

registered on various types of network traffic based on high traffic load,

medium traffic load and low traffic load.

 Reflect on the test results based on expected results and produce overall

conclusion.

The Main Deliverable(s)

An implementation of a range of experiments which will test IDSs for true-positive

alarms in relation to variable network traffic conditions. Such tests and the evaluation

it produces will be integrated as an automated utility.

The results of such experiments and the implementation itself will be detailed in the

final report.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 82

The Target Audience for the Deliverable(s)

The target audience will consist of researchers interested in the performance

evaluation of IDS along with users who wish to either carry out their own testing on

IDS or are interested in the results of such an evaluation. Specifically, such users will

include people working or have interest within the security and computer networks

field.

The Work to be Undertaken

This work will firstly involve the investigation into the current performance within

IDS in general and methods which are used to test them. It will also look at any

existing methods used to evaluate an IDS.

Design and implement tools which will allow for the testing of IDSs under various

network conditions.

Such an implemented tool should also analyse the performance metric involved and

come to a conclusion as to how effective the IDS is in detecting true-positives in

relation to the number of intrusions actually sent.

Additional Information / Knowledge Required

Acquire in-depth knowledge of Ds.

Understand performance metrics and how they are evaluated.

Understand and successfully implement tools which will allow for the evaluation of

IDS.

Information Sources that Provide a Context for the Project

Journals, articles and papers relating to the topic of IDS and computer networks in

general will all be relevant. Some sample papers which have already been looked at

for background reading, and prove relevant to this project are as follows:

 Graves, J., Buchanan, W. J., Saliou, L., & Old, J. (2006). Performance

Analysis of Network Based Forensic System for In-line and Out-of-line

Detection and Logging. European Conference on Information Warfare and

Security.

 McHugh, J. (2000). Testing Intrusion Detection Systems: A Critique of the

1998 and 1999 DARPA Intrusion Detection System Evaluations as Performed

by Lincoln Laboratory. ACM Transactions on Information and System

Security , 3 (4), 262–294.

 Paulauskas, N., & Skudutis, J. (2008). Investigation of the Intrusion Detection

System "Snort" Performance. Electronics and Electrical Engineering , 7 (87).

 Sommers, J., Yegneswaran, V., & Barford, P. (2005). Toward Comprehensive

Traffic Generation. UW Technical Report , 1-12.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 83

Additional sources of information Information from the various websites which relate

the tools and software to be used for this project will also provide a good context for

learning and understanding.

The Importance of the Project

In terms of computer networking, the whole purpose of an IDS is to detect any traffic

which has been deemed dangerous or simply undesired. Such unwanted traffic should,

in theory, always be detected by the IDS. It is considered of great importance that an

IDS will always raise an alarm whenever unwanted network activity passes through

the network since this is the job of the IDS. However, in practice, this is not always

the case due to the shortcomings of the IDS.

Thus, the importance of this project is to evaluate such IDS by designing and

implementing tests so that we are able to come to a conclusion as to how successful

an IDS is when it comes to detecting unwanted network traffic under various

conditions.

The Key Challenge(s) to be Overcome

The main key challenge will be in deciding what the exact nature of the tool to be

implemented for testing the IDS will be.

Another challenge will involve deciding what types of experiments will actually be

carried out for this project.

Understanding and successfully implementing a method for performance metric

generation will be another key challenge.

Lastly, acquiring in-depth knowledge in how IDS work will be another key challenge.

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 84

Appendix 2 Week 9 Meeting Report

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 85

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 86

5/2
15/2

25/2
7/3

17/3
27/3

6/4
16/4

26/4
6/5

16/5
26/5

5/6
15/6

25/6
5/7

15/7
25/7

4/8
14/8

24/8
3/9

13/9
23/9

3/10
13/10

23/10
2/11

12/11
22/11

Project Registration

Initial Project Overview

Week 4 Meeting

Literature Research

Literature Review

Complete Literature Review

Week 9 Meeting

Design Prototype of Tools used …

Creation of Basic Tools

Test and Evaluate Tools

Refine Tools if Necessary

Implement a working prototype

Test & Evaluate Prototype

Finalise Design and Methodology

Begin Implementation Stage 1

Evaluate and Test Stage 1

Begin Implementation Stage 2

Evaluate and Test Stage 2

Begin Implementation Stage 3

Complete Implementation

Evaluation

Write Report

Poster Session

Appendix 3 Time Plan

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 87

Appendix 4 Diary Sheets

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 88

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 89

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 90

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 91

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 92

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 93

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 94

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 95

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 96

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 97

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 98

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 99

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 100

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 101

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 102

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 103

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 104

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 105

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 106

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 107

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 108

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 109

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 110

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 111

Appendix 5 Main.cs Source Code

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.IO;

using System.Windows.Forms;

using System.Collections;

using System.Diagnostics;

using System.Text.RegularExpressions;

namespace ProcessCaller

{

 public partial class Main : Form

 {

 public Main()

 {

 InitializeComponent();

 }

 private void Main_Load(object sender, EventArgs e)

 {

 }

 private ProcessCaller processCaller;

 public void runBashCommand(string arguments)

 {

 processCaller = new ProcessCaller(this);

 processCaller.FileName = "bash";

 processCaller.Arguments = arguments;

 processCaller.StdErrReceived += new

DataReceivedHandler(writeStreamInfo);

 processCaller.StdOutReceived += new

DataReceivedHandler(writeStreamInfo);

 processCaller.Completed += new

EventHandler(processCompletedOrCanceled);

 processCaller.Cancelled += new

EventHandler(processCompletedOrCanceled);

 this.status.Text = Environment.NewLine;

 processCaller.Start();

 }

 private void writeStreamInfo(object sender,

DataReceivedEventArgs e)

 {

 this.status.AppendText(e.Text + Environment.NewLine);

 if (status.TextLength >= status.MaxLength)

status.Clear();

 }

 private void processCompletedOrCanceled(object sender,

EventArgs e)

 {

 this.Cursor = Cursors.Default;

 }

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 112

 private void tcpprepBrowseBtn_Click(object sender, EventArgs

e)

 {

 BrowseBtnDialog.Filter = ".pcap .dump Files|*.pcap|All

Files|*.*";

 BrowseBtnDialog.InitialDirectory = @"C:\";

 if (BrowseBtnDialog.ShowDialog() == DialogResult.OK)

 {

 String sFileName = BrowseBtnDialog.FileName;

 tcpprepInputTxtBox.Text = sFileName;

 }

 else

 {

 MessageBox.Show("Please select a dataset");

 }

 }

 private void tcpprepOutputBrowseBtn_Click(object sender,

EventArgs e)

 {

 if (OpenFolderDialog.ShowDialog() == DialogResult.OK)

 {

 String sFileName = OpenFolderDialog.SelectedPath;

 tcpprepOutputTxtBox.Text = sFileName;

 }

 else

 {

 MessageBox.Show("Output Directory is required");

 }

 }

 private void createCacheBtn_Click(object sender, EventArgs e)

 {

 string output_directory = tcpprepOutputTxtBox.Text;

 string input_file = tcpprepInputTxtBox.Text;

 this.runBashCommand("-c ' " + "tcpprep " + "-a bridge " +

"-i " + input_file + " -o " + output_directory + " ' ");

 }

 private void tcpreplaydatasetBrowse_Click(object sender,

EventArgs e)

 {

 BrowseBtnDialog.Filter = ".pcap .dump Files|*.pcap|All

Files|*.*";

 BrowseBtnDialog.InitialDirectory = @"C:\";

 if (BrowseBtnDialog.ShowDialog() == DialogResult.OK)

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 113

 {

 String sFileName = BrowseBtnDialog.FileName;

 tcpreplayDatasetInputTxtBox.Text = sFileName;

 }

 }

 private void status_TextChanged(object sender, EventArgs e)

 {

 }

 private void tcpreplaycaheBrowse_Click(object sender,

EventArgs e)

 {

 BrowseBtnDialog.Filter = ".cache File|*.cache|All

Files|*.*";

 BrowseBtnDialog.InitialDirectory = @"C:\";

 if (BrowseBtnDialog.ShowDialog() == DialogResult.OK)

 {

 String sFileName = BrowseBtnDialog.FileName;

 tcpreplayCacheInputTxtBox.Text = sFileName;

 }

 }

 private void bgtrafficBtn_Click(object sender, EventArgs e)

 {

 this.runBashCommand(" -c ' " + tcpreplayCommandBox.Text +

" ' ");

 }

 private void checkBox1_CheckedChanged(object sender,

EventArgs e)

 {

 if (surprobChkBox.Checked == true)

 {

 nmapGroup.Enabled = true;

 }

 else

 if (surprobChkBox.Checked == false)

 {

 nmapGroup.Enabled = false;

 this.nmapTarget.Text = null;

 this.nmapScanCommandBox.Text = null;

 }

 }

 private void hpingChkBox_CheckedChanged(object sender,

EventArgs e)

 {

 if (dosChkBox.Checked == true)

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 114

 {

 hpingGroup.Enabled = true;

 }

 else

 if (dosChkBox.Checked == false)

 {

 hpingGroup.Enabled = false;

 this.hpingPingCommandBox.Text = "";

 this.hpingTarget.Text = "";

 }

 }

 private void runAttackBtn_Click(object sender, EventArgs e)

 {

 if (surprobChkBox.Checked == true)

 {

 string nmap_scan = this.nmapScanCommandBox.Text;

 this.runBashCommand("-c ' " + nmap_scan + " ' ");

 }

 if (dosChkBox.Checked == true)

 {

 string hping_ping = this.hpingPingCommandBox.Text;

 string hping_SYN = this.hpingSYNCommandBox.Text;

 string hping_LAND = this.hpingLANDCommandBox.Text;

 this.runBashCommand("-c ' " + hping_ping + " ' ");

 this.runBashCommand("-c ' " + hping_SYN + " ' ");

 this.runBashCommand("-c ' " + hping_LAND + " ' ");

 }

 if (malsoftwareChkBox.Checked == true)

 {

 string qaz = this.qazCommandBox.Text;

 string sober = this.soberCommandBox.Text;

 string deepthroat = this.deepthroatCommandBox.Text;

 string waledac = this.waledacCommandBox.Text;

 this.runBashCommand("-c ' " + qaz + " ' ");

 this.runBashCommand("-c ' " + sober + " ' ");

 this.runBashCommand("-c ' " + deepthroat + " ' ");

 this.runBashCommand("-c ' " + waledac + " ' ");

 }

 if (usrGainChkBox.Checked == true)

 {

 string hydraTelnetCommand =

this.hydraTelnetCommandBox.Text;

 string hydraFTPCommand =

this.hydraFTPCommandBox.Text;

 this.runBashCommand("-c ' " + hydraTelnetCommand + "

' ");

 this.runBashCommand("-c ' " + hydraFTPCommand + " '

");

 }

 }

 private void exitToolStripMenuItem_Click(object sender,

EventArgs e)

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 115

 {

 Application.Exit();

 }

 private void btnRetrieveLogs_Click(object sender, EventArgs

e)

 {

 String username = this.sshUsername.Text;

 String target = this.sshTargetIP.Text;

 String remotedirectoryAlarm =

this.sshRemoteDirectoryAlarm.Text;

 String remotedirectoryStatistics =

this.sshRemoteDirectoryStatistics.Text;

 String filenameAlarm = this.sshFileNameAlarm.Text;

 String filenameStatistics =

this.sshFileNameStatistics.Text;

 String localdirectory = this.sshLocalDirectory.Text;

 this.runBashCommand("-c ' " + "scp " + username + "@" +

target + ":" + remotedirectoryAlarm + filenameAlarm + " " +

localdirectory + " ' ");

 this.runBashCommand("-c ' " + "scp " + username + "@" +

target + ":" + remotedirectoryStatistics + filenameStatistics + " " +

localdirectory + " ' ");

 this.runBashCommand("-c ' " + "echo Log has been

retrieved" + " ' ");

 }

 private void alarmfileBrowseBtn_Click(object sender,

EventArgs e)

 {

 string alarmFile = this.sshFileNameAlarm.Text;

 if (OpenFolderDialog.ShowDialog() == DialogResult.OK)

 {

 String sFileName = OpenFolderDialog.SelectedPath;

 sshLocalDirectory.Text = sFileName;

 }

 else

 {

 MessageBox.Show("Output Directory is required");

 }

 }

 private void alarmfileBrowseBtn2_Click(object sender,

EventArgs e)

 {

 BrowseBtnDialog.Filter = ".ids File|*.ids|All Files|*.*";

 BrowseBtnDialog.InitialDirectory = @"C:\";

 if (BrowseBtnDialog.ShowDialog() == DialogResult.OK)

 {

 String sFileName = BrowseBtnDialog.FileName;

 alarmLog.Text = sFileName;

 }

 }

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 116

 private void statisticslogBrowserBtn_Click(object sender,

EventArgs e)

 {

 BrowseBtnDialog.Filter = ".log|*.log| All Files|*.*";

 BrowseBtnDialog.InitialDirectory = @"C:\";

 if (BrowseBtnDialog.ShowDialog() == DialogResult.OK)

 {

 String sFileName = BrowseBtnDialog.FileName;

 statisticsLog.Text = sFileName;

 }

 }

 private void hydraChkBox_CheckedChanged(object sender,

EventArgs e)

 {

 if (usrGainChkBox.Checked == true)

 {

 hydraGroup.Enabled = true;

 }

 else

 if (usrGainChkBox.Checked == false)

 {

 hydraGroup.Enabled = false;

 this.hydraTelnetCommandBox.Text = "";

 this.hydraTarget.Text = "";

 this.hydraUsername.Text = "";

 }

 }

 private void hydraBrowseButton_Click(object sender, EventArgs

e)

 {

 BrowseBtnDialog.Filter = ".txt |*.txt| All Files|*.*";

 BrowseBtnDialog.InitialDirectory = @"C:\";

 if (BrowseBtnDialog.ShowDialog() == DialogResult.OK)

 {

 String sFileName = BrowseBtnDialog.FileName;

 hydraPassList.Text = sFileName;

 }

 else

 {

 MessageBox.Show("Please select a dataset");

 }

 }

private void effectivenessCalculateBtn_Click(object sender, EventArgs

e)

 {

 findAllAlarmsDetected();

 findPacketLoss();

 calculateMetrics();

 }

 public void findAllAlarmsDetected()

 {

 string statisticslog = statisticsLog.Text;

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 117

 StreamReader streamReader = new

StreamReader(statisticslog);

 string fileContent = streamReader.ReadToEnd();

 Match match = Regex.Match(fileContent, @"ALERTS: (\d+)");

 if (match.Success)

 {

 string capture = match.Groups[1].Captures[0].Value;

 allAlarms.Text = capture;

 }

 }

 public void findPacketLoss()

 {

 // opens the statistics file and reads to end

 string statisticsfile = statisticsLog.Text;

 StreamReader streamReader = new

StreamReader(statisticsfile);

 string fileContent = streamReader.ReadToEnd();

 Match match = Regex.Match(fileContent, @"Dropped:

(\d+)");

 if (match.Success)

 {

 string capture = match.Groups[1].Captures[0].Value;

 packetLoss.Text = capture;

 }

 }

 public void calculateMetrics()

 {

 string alarmfile = alarmLog.Text;

 StreamReader sr = new StreamReader(alarmfile); //make

sure this filepath exists

 string text = sr.ReadToEnd();

 sr.Close();

 Regex r1 = new Regex(@"\b" + "Portscan" + @"\b",

RegexOptions.IgnoreCase);

 MatchCollection mc1 = r1.Matches(text);

 Regex r2 = new Regex(@"\b" + "Telnet Bruteforce Attack

Detected" + @"\b", RegexOptions.IgnoreCase);

 MatchCollection mc2 = r2.Matches(text);

 Regex r3 = new Regex(@"\b" + "FTP Bruteforce Attack

Detected" + @"\b", RegexOptions.IgnoreCase);

 MatchCollection mc3 = r3.Matches(text);

 Regex r4 = new Regex(@"\b" + "QAZ Worm Detected" + @"\b",

RegexOptions.IgnoreCase);

 MatchCollection mc4 = r4.Matches(text);

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 118

 Regex r5 = new Regex(@"\b" + "Waledac Virus Detected" +

@"\b", RegexOptions.IgnoreCase);

 MatchCollection mc5 = r5.Matches(text);

 Regex r6 = new Regex(@"\b" + "Sober Virus Detected" +

@"\b", RegexOptions.IgnoreCase);

 MatchCollection mc6 = r6.Matches(text);

 Regex r7 = new Regex(@"\b" + "Deepthroat Trojan Detected"

+ @"\b", RegexOptions.IgnoreCase);

 MatchCollection mc7 = r7.Matches(text);

 Regex r8 = new Regex(@"\b" + "Ping Flood Detected" +

@"\b", RegexOptions.IgnoreCase);

 MatchCollection mc8 = r8.Matches(text);

 Regex r9 = new Regex(@"\b" + "SYN Flood Detected" +

@"\b", RegexOptions.IgnoreCase);

 MatchCollection mc9 = r9.Matches(text);

 Regex r10 = new Regex(@"\b" + "LAND Attack Detected" +

@"\b", RegexOptions.IgnoreCase);

 MatchCollection mc10 = r10.Matches(text);

 double nmap_alarm_count = mc1.Count;

 double hydraTelnet_alarm_count = mc2.Count;

 double hydraFTP_alarm_count = mc3.Count;

 double qaz_alarm_count = mc4.Count;

 double waledac_alarm_count = mc5.Count;

 double sober_alarm_count = mc6.Count;

 double deepthroat_alarm_count = mc7.Count;

 double hpingPing_alarm_count = mc8.Count;

 double hpingSyn_alarm_count = mc9.Count;

 double hpingLand_alarm_count = mc10.Count;

 // parse all alarms as a double

 double all_alarms_count =

double.Parse(this.allAlarms.Text);

 // Parse baseline input numbers into double

 int dosBaselineAlarm_int =

int.Parse(this.dosBaselineAlarms.Text);

 int malsoftwareBaselineAlarms_int =

int.Parse(this.malsoftwareBaselineAlarms.Text);

 int usrPrivBaselineAlarms_int =

int.Parse(this.usrPrivBaselineAlarms.Text);

 int survBaselineAlarms_int =

int.Parse(this.survBaselineAlarms.Text);

 // Count the total number of detected alarms

 double total_detected_alarms = nmap_alarm_count +

hydraTelnet_alarm_count + hydraFTP_alarm_count + qaz_alarm_count +

sober_alarm_count + deepthroat_alarm_count + waledac_alarm_count +

hpingLand_alarm_count + hpingSyn_alarm_count + hpingPing_alarm_count;

 truePositives.Text = total_detected_alarms.ToString();

 double total_expected_alarms = survBaselineAlarms_int +

usrPrivBaselineAlarms_int + malsoftwareBaselineAlarms_int +

dosBaselineAlarm_int;

 allPositives.Text = total_expected_alarms.ToString();

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 119

 double effectivness = total_detected_alarms /

total_expected_alarms;

 effectivenessDouble.Text =

effectivness.ToString();

 double efficiency = total_detected_alarms /

all_alarms_count;

 efficiencyDouble.Text = efficiency.ToString();

 }

 private void generateReportBtn_Click(object sender, EventArgs

e)

 {

 String truePositives = this.truePositives.Text;

 String allAlarms = this.allAlarms.Text;

 String allPositives = this.allAlarms.Text;

 String packetLoss = this.packetLoss.Text;

 string report = "True Positives logged by IDS: " +

truePositives + " out of " + allAlarms + "Total Alarms Logged by IDS"

+ allAlarms + "";

 System.IO.StreamWriter file = new

System.IO.StreamWriter("c:\\Users\\newo\\Desktop\\IDS_Evaluation_Util

ity\\report.txt");

 file.WriteLine(report);

 file.Close();

 }

 private void rewrite_btn_Click(object sender, EventArgs e)

 {

 string dserverMAC = this.dserverMAC.Text;

 string dclientMAC = this.dclientMAC.Text;

 string sserverMAC = this.sserverMAC.Text;

 string sclientMAC = this.sclientMAC.Text;

 string serverIP = this.serverIP.Text;

 string serverSubnet = this.serverSubnet.Text;

 string clientIP = this.clientIP.Text;

 string clientSubnet = this.clientSubnet.Text;

 string tcprewritePCAP = this.tcprewritePCAP.Text;

 string tcprewritePREP = this.tcprewritePREP.Text;

 string outputdirectory =

this.tcprewriteOutputDirectory.Text;

 this.runBashCommand("-c ' " + "tcprewrite " + "--enet-

dmac=" + dserverMAC +

 "," + dclientMAC + " --enet-smac=" +

sserverMAC + "," + sclientMAC + " -e " + serverIP + serverSubnet +

":" + clientIP + clientSubnet + " -C -c " + tcprewritePREP + " -i " +

tcprewritePCAP + " -o " + outputdirectory + " ' ");

 }

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 120

 private void hydraTelnet_CheckedChanged(object sender,

EventArgs e)

 {

 string target = this.hydraTarget.Text;

 string username = this.hydraUsername.Text;

 string passwordList = this.hydraPassList.Text;

 if (hydraTelnet.Checked == true)

 {

 this.hydraTelnetCommandBox.Text = "hydra -l " +

username + " -P " + passwordList + " " + target + " telnet";

 }

 else

 this.hydraTelnetCommandBox.Text = null;

 }

 private void hydraFTP_CheckedChanged(object sender, EventArgs

e)

 {

 string target = this.hydraTarget.Text;

 string username = this.hydraUsername.Text;

 string passwordList = this.hydraPassList.Text;

 if (hydraFTP.Checked == true)

 {

 this.hydraFTPCommandBox.Text = "hydra -l " + username + "

-P " + passwordList + " " + target + " ftp";

 }

 else

 this.hydraFTPCommandBox.Text = null;

 }

 private void pingflood_CheckedChanged(object sender,

EventArgs e)

 {

 string target = this.hpingTarget.Text;

 if (pingflood.Checked == true)

 {

 this.hpingPingCommandBox.Text = "hping3 -I eth0 -1 -i

u1000 " + target + " -c 1000";

 }

 else

 this.hpingPingCommandBox.Text = null;

 }

 private void landattack_CheckedChanged(object sender,

EventArgs e)

 {

 string target = this.hpingTarget.Text;

 if (landattack.Checked == true)

 {

 this.hpingLANDCommandBox.Text = "hping3 -S -a " +

target + " -p 21 " + target;

 }

 else

 this.hpingLANDCommandBox.Text = null;

 }

 private void synflood_CheckedChanged(object sender, EventArgs

e)

 {

 string spoof = this.hpingSpoof.Text;

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 121

 string target = this.hpingTarget.Text;

 if (synflood.Checked == true)

 {

 this.hpingSYNCommandBox.Text = "hping3 -I eth0 -a " +

spoof + " -S " + target + " -p 22 -i u1000 -c 1000";

 }

 else

 this.hpingSYNCommandBox.Text = null;

 }

 private void qaz_CheckedChanged(object sender, EventArgs e)

 {

 string target = this.malsoftwareTarget.Text;

 if (qaz.Checked == true)

 {

 this.qazCommandBox.Text = "hping3 -I eth0 -A " +

target + " -p 139 -e 'qazwsx.hsq' -c 1";

 }

 else

 this.qazCommandBox.Text = null;

 }

 private void waledac_CheckedChanged(object sender, EventArgs

e)

 {

 string target = this.malsoftwareTarget.Text;

 if (waledac.Checked == true)

 {

 this.waledacCommandBox.Text = "hping3 -I eth0 " +

target + " -p 80 -e 'X-request-kind-code:' -c 1";

 }

 else

 this.waledacCommandBox.Text = null;

 }

 private void sober_CheckedChanged(object sender, EventArgs e)

 {

 string target = this.malsoftwareTarget.Text;

 if (sober.Checked == true)

 {

 this.soberCommandBox.Text = "hping3 -I eth0 -S "

+target+ " -p 37 -e '.exe' -c 1";

 }

 else

 this.soberCommandBox.Text = null;

 }

 private void malsoftwareChkBox_CheckedChanged(object sender,

EventArgs e)

 {

 if (malsoftwareChkBox.Checked == true)

 {

 malsoftwareGroup.Enabled = true;

 }

 else

 if (malsoftwareChkBox.Checked == false)

 {

 malsoftwareGroup.Enabled = false;

 this.qazCommandBox.Text = "";

 this.malsoftwareTarget.Text = "";

 }

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 122

 }

 private void deepthroat_CheckedChanged(object sender,

EventArgs e)

 {

 string target = this.malsoftwareTarget.Text;

 if (deepthroat.Checked == true)

 {

 this.deepthroatCommandBox.Text = "hping3 -I eth0 -2

"+target+ " -p 3150 -e '00' -c 1";

 }

 else

 this.deepthroatCommandBox.Text = null;

 }

 private void updateTcpreplayboxBtn_Click(object sender,

EventArgs e)

 {

 string loop = this.tcpreplayLoop.Text;

 string speed = this.tcpreplaySpeed.Text;

 string intCA = this.intCA.Text;

 string intUA = this.intUA.Text;

 string cacheLocation =

this.tcpreplayCacheInputTxtBox.Text;

 string datasetLocation =

this.tcpreplayDatasetInputTxtBox.Text;

 tcpreplayCommandBox.Text = ("tcpreplay " + "-l " + loop +

" -p " + speed + " -i " + intCA + " -I " + intUA + " -c " +

cacheLocation + " " + datasetLocation);

 }

 private void nmapTarget_TextChanged(object sender, EventArgs

e)

 {

 string target = this.nmapTarget.Text;

 nmapScanCommandBox.Text = "nmap " + target;

 }

 private void browsetcprewritePCAP_Click(object sender,

EventArgs e)

 {

 BrowseBtnDialog.Filter = ".pcap .dump Files|*.pcap|All

Files|*.*";

 BrowseBtnDialog.InitialDirectory = @"C:\";

 if (BrowseBtnDialog.ShowDialog() == DialogResult.OK)

 {

 String sFileName = BrowseBtnDialog.FileName;

 tcprewritePCAP.Text = sFileName;

 }

 }

 private void browsetcprewritePREP_Click(object sender,

EventArgs e)

 {

 BrowseBtnDialog.Filter = ".cache File|*.cache|All

Files|*.*";

 BrowseBtnDialog.InitialDirectory = @"C:\";

 if (BrowseBtnDialog.ShowDialog() == DialogResult.OK)

 {

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 123

 String sFileName = BrowseBtnDialog.FileName;

 tcprewritePREP.Text = sFileName;

 }

 }

 private void tcpprepOutput_Click(object sender, EventArgs e)

 {

 if (OpenFolderDialog.ShowDialog() == DialogResult.OK)

 {

 String sFileName = OpenFolderDialog.SelectedPath;

 tcprewriteOutputDirectory.Text = sFileName;

 }

 else

 {

 MessageBox.Show("Output Directory is required");

 }

 }

 private void btnRetrieveLogs_Click_1(object sender, EventArgs

e)

 {

 String username = this.sshUsername.Text;

 String target = this.sshTargetIP.Text;

 String remotedirectoryAlarm =

this.sshRemoteDirectoryAlarm.Text;

 String remotedirectoryStatistics =

this.sshRemoteDirectoryStatistics.Text;

 String filenameAlarm = this.sshFileNameAlarm.Text;

 String filenameStatistics =

this.sshFileNameStatistics.Text;

 String localdirectory = this.sshLocalDirectory.Text;

 this.runBashCommand("-c ' " + "scp " + username + "@" +

target + ":" + remotedirectoryAlarm + filenameAlarm + " " +

localdirectory + " ' ");

 this.runBashCommand("-c ' " + "scp " + username + "@" +

target + ":" + remotedirectoryStatistics + filenameStatistics + " " +

localdirectory + " ' ");

 this.runBashCommand("-c ' " + "echo Log has been

retrieved" + " ' ");

 }

 }

}

05002961 SOC10101

O. Lo - BEng (Hons) Computer Networks & Distributed Systems 124

Appendix 6 Class Diagram of Framework

