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Abstract 

 

This thesis describes research conducted into the measurement of pedestrian 

movement.  It starts with an examination of current pedestrian detection and tracking 

systems, looking at several different technologies including image-processing systems.  

It highlights, as other authors have, that there is still a substantial gap between the 

abilities of existing pedestrian measurement and tracking systems and the requirements 

of users of such systems.   

 

After the review it provides an introduction to human gait and its use as a biometric.  It 

then examines the IRISYS people counter, a low resolution infrared detector, used for 

this research.  The detector‟s advantages and disadvantages are discussed, a detailed 

description of the data produced is provided.  The thesis then describes in detail a 

study establishing that human gait information can be measured by the IRISYS people 

counter.  It examines the use of the detectors in stereo to measure the height of the 

people; however the results are not impressive.  During this investigation the presence 

of oscillations likely to relate to this walking gait is noted in the data.   

 

A second study is carried out confirming that the noted oscillation originates from 

human gait and further data is gathered to enable the development of measurement 

algorithms.  The magnitude of the walking oscillation noted is examined in detail.  It is 

found to be both individualistic and highly correlated to gender.  A gender distribution 

algorithm is presented and evaluated on data captured in two different locations.  

These show very promising results.  Several different methods are described for 

processing the information to extract a measure of cadence.  The cadence is found to 

be individualistic and shows interesting correlations to height and leg length.   

 

This thesis advances the field of pedestrian measurement by conducting pedestrian 

motion studies and developing algorithms for measuring human gait.  
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1 Introduction 

Pedestrian measurement and tracking has become a rich and diverse area of research.  

There are many situations where it is useful to detect, count, measure and track 

pedestrians.  At the time of writing, for most applications, counting and movement 

analysis relies on human observation or supervised systems.  In addition to the time, 

cost and difficulties encountered extracting pedestrian trajectory information; little 

individualistic information has been gathered in real-time unconstrained environments.  

This thesis details studies using ceiling mounted people counters based on a 

pyroelectric array, which provide a trajectory measurement of people who pass under 

them.  It furthers work published by the author et al [1] to examine whether it is 

possible to extract height, cadence and gender information from the trajectory data 

available.  The device used is the IRISYS people counter.   

1.1 Motivation  

Measuring pedestrian motion has several important applications.  The retail and 

marketing sectors are increasingly interested as various advantages can be leveraged 

by accurately studying shop footfall.  If a detailed map of customer movement within 

the environment can be produced, several benefits are available:  For example the 

layout and width of shop isles can be adjusted to optimise customer flow and suitable 

locations identified for products with the highest profit margins.      

 

The behaviour of pedestrians is relevant to several areas, such as the study of 

suspicious movement, or of crowd behaviour in building evacuation.  The presence of 

a human observer can change the behaviour of the people being observed, so a non-

intrusive measurement system has considerable advantages.  The presence of a robust 

automatic system for tracking pedestrians would not only facilitate this type of 

research but also reduce the cost of research.  As Professor Batty [2] points out there is 

still a significant gap between the measurement data required by those modelling 

pedestrian behaviour and what is available.    

 

The security sector has seen an explosion in automated systems in the last two 

decades.  The cost of video surveillance systems has drastically reduced.  This, 

combined with an increased fear of terrorism, has lead to a substantial industry.  At the 
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time of writing, the majority of security systems serve one major purpose: to provide 

evidence of a crime or incident after the event.  Some systems are installed with high 

visibility to act as a psychological deterrent; some are installed discreetly, so as not to 

raise suspicions.  To date, comparatively little proactive real time analysis has been 

successfully performed on data from these systems.  The availability of pro-active 

automatic security and surveillance systems is both highly researched and sought after.   

 

The transport sector has become increasingly interested in detecting the presence and 

motion of pedestrians.  This interest is mainly aimed at increasing safety for 

pedestrians, the most vulnerable transport users.  Developing technology for safer 

pedestrian crossings and automatic braking systems in cars is also receiving increasing 

attention.  

 

All of these sectors show a significant gap between what technology can currently 

offer, and what is required.   Extracting individualistic measures would enable people 

to be tracked more reliably.  Systems are emerging with the potential to track people.  

However, significant complications exist when people leave the field of view or cross 

from one detector or camera to another.  Providing information that can aid this 

matching process or identify the individual without requiring their cooperation would 

provide significant benefit.    

1.2 Research objective 

The objective of the research presented in this thesis is to improve the understanding of 

and progress the field of unobtrusive human motion measurement.   Many systems 

exist to detect the presence and motion of pedestrians.  However most do not provide a 

sufficient quality of information for gait measurement, are not fully automated or are 

unsuitable for real-time use.  Those that are, are generally based on data captured 

under experimental conditions.  This thesis improves the status quo of automatic 

pedestrian motion measurement by conducting significant studies into the motion of 

pedestrians and augmenting this by developing new algorithms for processing 

trajectory data produced by low resolution thermal detectors, the IRISYS people 

counters (detector).   

 

In particular the work explores the following questions: 
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 Can individualistic measures be obtained from the detector, based on human 

gait? 

 If so, how individualistic are the measures in relation to other gait measurement 

research? 

 Are correlations present between the cadence measured and the biometrics of 

height and leg length? 

 Is the gait measure highly correlated to gender? 

 

Prior to this research, comparatively little work has focused on the measurement of 

human gait from a ceiling mounted downward looking view point.  Those that have are 

restricted to clinical gait studies.  By developing methods for measuring human gait 

using the detectors this research aims to establish that it is possible to gather 

individualistic information about people, from an overhead vantage point with 

trajectory information derived from low resolution thermal difference images.    

1.3 Research approach  

Early research by Armitage et al [3] and Daamen [4] has shown that IRISYS people 

counters, a detector based on a 16 by 16 pixel PZT (lead zirconium titanate) array are 

good at measuring pedestrian flow.  The fact that over quarter of million people 

counters have been produced and sold (pers. comm. David Clayson, Managing 

Director, IRISYS, 2007) is testament to their robust ability to measure pedestrian 

motion.  Three key features about the detectors contribute to their success:  Firstly that 

they are ceiling mounted and have a field of view looking straight down, thus they are 

not subject to occlusion.   Secondly, they image in the 8-14 micron infrared spectrum, 

a wavelength emitted by people, thus detecting emitted rather than reflected radiation.  

Finally, they employ a very well developed and mature tracking algorithm to detect 

and track objects in the field of view.   

 

This research furthers earlier work by building on the robust trajectory data provided 

by the detectors and constructing a more detailed analysis of pedestrian motion.  The 

focus of the research is to develop algorithms which do not require individual 

calibration of detectors used but function regardless of detector manufacturing 

variations.  To this end data was collected in three different locations.  The first, a 

significant collaborative study collecting and processing data in real-time, was 
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collected outside the apex cafeteria at Napier University.  The second location was at 

the entrance to Napier University‟s Merchiston Library and finally a dataset was 

collected at the offices of IRISYS (the sensor‟s manufacturer).  

1.4 Contribution to knowledge 

This thesis provides a significant contribution to knowledge in the study of human 

motion measurement, by using trajectory data from the IRISYS people counters to 

measure and analyse human motion.  The first, dataset mentioned above, was collected 

as part of a significant collaborative study, which was acquired and processed in real 

time.  A description of this study is included in the Pedestrian Evacuation Dynamics 

2005 book chapter [1] and peer reviewed TRB conference paper [5], copies included in 

Appendix E.  This study, was then further augmented by data collected at the two 

additional locations mentioned above..  The latter is presented in the main body of this 

thesis. 

 

The latter two datasets are further examined to investigate if any human gait 

information can be obtained. This investigation is intended not only to provide real 

time trajectory analysis, but also to develop algorithms that can provide additional 

information about the pedestrian passing.   A detailed examination is conducted into 

stereo use of the trajectory data with a view to measuring the height of people passing, 

however the results are not impressive.  A further study of the trajectory data shows 

that gait information is available from a single detector.  Algorithms for examining this 

are investigated and a useful gender distribution algorithm is developed.   By 

conducting and reporting this research, a contribution to knowledge in the field of 

transportation and pedestrian measurement is made.  In addition to the main body of 

this thesis, three peer reviewed papers and five conference presentations are included 

in Appendix E. 

1.5 Layout of the thesis 

In addition to this introduction the remainder of this thesis is split into seven chapters.  

Each is described here.   

 

Chapter 2 describes the main literature and background to pedestrian measurement 

technologies.  It starts by examining the most substantial current and recent research 
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projects in the area.  It then studies the different technologies available for pedestrian 

detection, tracking and measurement.   Finally it introduces the fields of human gait 

and stereo vision. 

 

Chapter 3 describes the IRISYS people counter in detail.  A description of the 

technology on which the detector is based is presented.  It then examines the 

responsiveness of the pyroelectric  material used and the problem of barrel distortion.  

An experiment is described which measures the extent of the barrel distortion and a 

method for correcting it is presented. 

 

Chapter 4 examines the use of the IRISYS people counters in stereo.  It presents a 

study into the use of the trajectory data from the detectors for triangulation.  This is 

then examined with respect to the height of the person passing the detectors with a 

view to producing a height measurement system.  The results presented show a notable 

gait (walking) oscillation. 

 

Chapter 5 describes experiments conducted to study the source of the oscillation 

noticed during chapter 4.  This is developed into a system for measuring footstep 

location of a person.  The chapter describes the experiments conducted, data collected 

and algorithm used.  Examination of the results presented shows a correlation between 

the magnitude of the oscillation and the gender of the participant.  

 

Chapter 6 further studies the magnitude of this oscillation observed during chapter 5.  

Experimentation is detailed and significant datasets are presented.  The correlation 

between gender and oscillation magnitude is investigated and a method for 

determining the distribution of genders passing a detector is proposed.  This is further 

examined using data captured at two locations, where the people being measured were 

not actively taking part in the experiments but going about their normal daily business.   

 

Chapter 7 presents further analysis of the data collected with a view to measuring the 

cadence of people as they pass the detectors.  Two different methods of accounting for 

the direction of motion and extracting lateral gait oscillation are presented.  Following 

this three methods for extracting the cadence by processing the data in the Fourier 

domain are investigated and the results detailed.  Results are also presented with 
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respect to the height and leg lengths of the participants.  Chapter, 8 includes a 

summary of the research conducted, conclusions reached and suggestions for future 

work in the field. 
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2 Literature review  

Pedestrian measurement and tracking has become a rich and diverse area of research, 

resulting in substantial effort towards automating motion measurement.  While 

significant advances have been made there is still much room for improvement in those 

fields involving the measurement of pedestrian motion. 

 

This chapter provides a résumé of pedestrian motion measurement research with the 

aim of placing this doctoral study in the context of other research.   It starts with an 

introduction to the significant projects in the field and highlights the different sectors 

that provide motives for this research. Then it provides an overview of the different 

sensor technologies available and methods used, for the measurement of pedestrian 

motion.    This includes an introduction to the different measurement technologies 

available: CCTV, thermal sensors, pressure sensitive mats, beam counters, LADAR 

and traditional human observers.  This is then complemented by a detailed review of 

image processing as it is the area that attracts the most research.   The chapter then 

examines the subject of human gait.  First it describes research that categorically 

establishes human gait can be used as a biometric before reviewing the main research 

into human gait analysis.  This is viewed from the perspective of unobtrusively 

measuring gait for use as an identifiable feature.  Finally the chapter describes the 

basic principle behind stereo vision and highlights some research using stereo depth 

perception to aid pedestrian detection and tracking. 

2.1 Pedestrian motion research 

Several different fields with an interest in the measurement of pedestrian movements 

were introduced in chapter 1.  Such measurement has long received attention from 

those involved with security and surveillance, most of which focuses on CCTV and 

image processing.  In addition there has been interest from the behaviour or market 

research communities, town and event planners and the automotive sector.   This 

section introduces the main focus of pedestrian detection and measurement technology, 

from these areas.   
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2.1.1 The automotive industry  

The automotive sector is mostly concerned with improving road safety by developing 

sensory equipment that can detect pedestrians and force or aid avoiding-action.  For 

example IBEO in Germany is producing sensors for automatic braking systems that 

stop a car when an unavoidable collision is detected.  The LADAR systems produced 

by IBEO are described in several conference papers [6-8].  Chan et al [9] describe the 

available technologies well in their interim report on “Experimental Transit Vehicle 

Platform for Pedestrian Detection”.   Several different image-based systems have and 

are being developed such as those reported by Zhenjiang Li et al [10] and Leibe et al 

[11]. 

2.1.2 Behavioural and market research  

In the field of behavioural research, detailed pedestrian movement information is 

difficult to acquire and much sought after.   Professor Batty presents a model for 

understanding and predicting pedestrian motion “Agent-based Pedestrian Modelling” 

[2].  He highlights that there is a substantial difference between the ability to model 

and hypothesise about individual decisions when in a crowd, and our ability to collect 

accurate path information about the trajectories of pedestrians.  At the time of writing 

Footfall Ltd, part of Experian, provides video analysis (performed by human 

operators), of in-store video footage to establish where customers are most likely to 

spend their time.  Conferences such as PED (Pedestrian Evacuation and Dynamics) 

disseminate information about pedestrian tracking research to inform building design. 

2.1.3 Transport research  

The transport research field provides substantial impetus to improve pedestrian 

tracking for both behavioural and security motivations.  Professor Tyler at University 

College London heads a substantial research lab called PAMELA, which provides a 

facility to research microscopic pedestrian movements. The transport and planning 

group at TUDelft in the Netherlands has hosted two major pedestrian measurement and 

modelling projects at the macroscopic scale.  Dammen published her PhD [4] on a 

substantial part of the study. The PERMEATE project at Napier University examined 

the use of an early version of the IRISYS people counter product to track pedestrian 

motion.  This project attempted to bridge the gap between the microscopic and 
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macroscopic pedestrian measurement fields and is well presented by Kerridge et al in 

[12]. 

2.1.4 Security and surveillance  

The security and surveillance sector provides much impetus for pedestrian detection 

and tracking, with an increasing focus on human gait detection.  The work in this 

sector is almost exclusively based around image processing, due to the prevalence of 

CCTV.  There have been and still are several major research initiatives in the sector 

several of which are introduced here.  The EPSRC funded MEDUSA project [13] aims 

to process video footage to help provide operator assistance in detecting gun crime.  

The CAVIAR project [14], lead by Professor Fischer, aimed to determine and classify 

which vision processing algorithms worked best under different circumstances.  The 

DARPA funded VSAM project [15], provided an automated mechanism for detecting 

and tracking pedestrians around a campus covered by multiple cameras.  A detailed 

summary of the project is available in the final report [16].   The PASSWORDS [17] 

project was an EU funded project focusing on similar aims.  Collins et al describe the 

motivations for their study and mention some other projects in their paper entitled 

“Algorithms for Cooperative Multisensor Surveillance” [18].   

 

This sector has a significant interest in measuring human gait as a biometric which is 

further examined in section 2.4.4 of this thesis. 

2.1.5 Summary 

This section has introduced the background to some of the past and current pedestrian 

measurement research projects.  It highlights the major motivation for research in the 

field and provides an introduction to the pedestrian measurement work.  The research 

is predominantly covered by the automotive, market research, transport and security 

fields.  This introductory overview helps place the work presented in this thesis in the 

context of the work of others.  The next section provides a description of the different 

technologies used to measure pedestrian motion.   

2.2 Different pedestrian motion measurement technologies 

There are several different technologies available for measuring and tracking 

pedestrians, each with its advantages and disadvantages.  This subsection examines 

these technologies.  It starts with an overview of CCTV and image processing systems 
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as these attract by far the most interest.  In addition to the different systems available 

there are several different vantage points to mount sensory equipment, each providing 

different perspectives with different advantages.   

2.2.1 CCTV and visible imaging 

Video collection is an area that has attracted substantial interest over the last decade.  

Several factors have influenced the studies that devote ever increasing resources to this 

area.  Firstly, the massive reduction in cost and increase in camera installations mean 

that there are existing systems for acquiring vast amounts of data.  Secondly, recent 

years have seen several global terrorist attacks that have increased the perceived need 

for pedestrian detection and tracking technology to improve surveillance and security.   

 

For video data to be used to automatically track pedestrians it must be processed to 

detect and track pedestrians.  This processing is a non-trivial task that has attracted 

significant attention from the research communities the world over.  Section 2.3 further 

examines this research. 

2.2.2 Thermal sensors 

As the human body is good at regulating its own temperature, and very few areas of 

the planet have a temperature similar to humans, an ever-present difference exists.  

This, combined with the fact that we are detecting emitted, not reflected radiation, 

makes the measurement of temperature, or infrared images, a good option for detecting 

pedestrians.   

 

There is currently a wide array of infrared sensors available, each aimed at slightly 

different markets.  The most prominent are based on pyroelectric sensors and they 

typically have low resolution, often only one pixel.  There is an extensive range of 

medium and high resolution thermal imaging products based on several different 

underlying technologies.  These come with a variety of different advantages and 

disadvantages, the most notable being cost.  Some systems need to stop imaging for a 

few seconds to re-calibrate for thermal drift.  FLIR systems produce some market 

leading products.  These thermal cameras typically produce resolutions of around 320 

by 240 pixels and as of December 2008 were often priced above £5000.  This type of 

product is most often used by law enforcement agencies and the military for the 
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detection and tracking of people at night.  However, as their cost reduces, they are 

receiving increasing interest from the image processing community [19].  

 

There is a plethora of manufacturers producing thermal sensors that successfully detect 

people.  Manufactures include Pyreos, PerkinElmer and Infratec.  These are most 

commonly used as motion detectors in burglar alarms and automatic light switches.  A 

web search for motion detectors will provide many relevant products.   IRISYS 

produce a series of thermal imaging products based on 16 by 16 pixel pyroelectric 

detectors that often represent a cost effective solution.  The IRISYS people counter 

products are examined further in the next chapter.  IBM developed a similar 

technology which is well described in [20].  To date it has not been developed into a 

commercially available product. 

  

Okuda et al [21] present some interesting work using dual element pyroelectric  

sensors to measure the position and height of pedestrians.  They can successfully 

discriminate between people with markedly different heights, i.e. adults and children.  

However they require a lattice of sensors to be mounted in the detection area.  Fang et 

al [22] present an interesting system for identifying pedestrians passing sensors.  It 

uses a novel approach involving optics to extract a measure of cadence from a single 

IR sensor.  It is mounted at one side of, and at known distance from, the pedestrian 

who must be walking in a straight line.   

2.2.3 Pressure-sensitive mats & surfaces 

Several manufacturers produce pressure-sensitive floor coverings designed to detect 

pedestrians.  Most manufactures produce their products for industrial safety 

applications; the products are used to switch off mechanical machinery whenever a 

pedestrian makes contact with the pressure-sensitive surface.  Tapeswitch Ltd and 

Bircher America Inc, among others, produce a wide array of different products.  These 

systems are generally used to prevent automatic doors on trains and buses from 

trapping passengers as they close.   

2.2.4 Manual counting 

Manual counting and observing is the longest established method of measuring the 

movement of pedestrians.  It has provided much useful information about the number 
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of people that visit a particular location; however it has many drawbacks.  Firstly, it is 

expensive as an individual or individuals must be employed to perform the task. 

Secondly, it is almost impossible to collect much information about the trajectories of 

the passing people.  It is not easy to count a continual flow of people, let alone record 

features such as their height.  Several specialist companies exist to perform manual 

pedestrian counting tasks such as Footfall Ltd (now part of Experian).  Thirdly, the fact 

that a person is performing the counting or observing, can change the way the subjects 

being observed behave.  All these problems limit the effective use of manual counting / 

observing in many situations.  

2.2.5 Beam counters 

Probably the most common automatic people counters, are counters that detect the 

number of times a light beam is interrupted as people pass through the beam.  This 

type of counter is common as it is cheap and simple to install.  However these are not 

accurate, and not suited to locations where more than one person can pass 

simultaneously.    

2.2.6 LADAR 

LADAR (LAser Detection And Ranging) systems are essentially the same in principle 

as Radar; however they use laser light instead of radio waves, giving better angular 

accuracy.   The systems work by emitting pulsed laser light and measuring the time it 

takes for a reflection to be observed; thus, as the speed of light is known, the distance 

to the object causing the reflection can be obtained.  By using precision mounted 

mirrors and reflectors a measure of the laser‟s direction can also be found allowing a 

2D or 3D range image to be built up.  Ishihara discussed the use of ground-based laser 

scanners in the detection of pedestrians [23] and appears to have produced some good 

results.  

 

In general, range information is very useful in tracking pedestrians, as it clearly defines 

location. The differences between the background and the person are therefore more 

substantial.  However there are problems with the use of LADAR in pedestrian 

tracking systems.  Occlusion of one pedestrian by another, presents problems that are 

difficult to mitigate.  Locating the devices can be complex if they only provide 2D 

(single scan line) information.  LADAR systems such as the one used by Hsu et al [24] 
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are not widely available.  2D systems, such as the one produced by IBEO Automobile 

Sensor GmbH, at the time of writing cost in the order of 30000 Euros.  LADAR 

sensors are not going to become truly viable in pedestrian tracking or surveillance 

applications until their cost and availability substantially improve.  Unfortunately, a 

reduction in cost is not likely in the near term due to the high precision needed for 

positioning the optical reflectors and high speed electronics needed for time-of-flight 

detection of light.  

2.2.7 Sensor mounting positions 

Several different technologies have been introduced in section 2.2, many with different 

typical mounting positions.  CCTV cameras are usually mounted side-on, or slightly 

elevated to give a better view of the scene.  This provides a good view of people; 

however it also introduces the complications of occlusion. When good pedestrian 

location is available from CCTV there is still the complex problem of extracting the 

3D coordinates from the 2D video.    Pressure-sensitive mats, generally laid on the 

floor, give a good view point for sensing the presence of pedestrians; however they do 

not have the resolution to produce information other than that of presence or absence.    

The IRISYS people counters look directly down from a ceiling mounting, providing a 

similarly good vantage point.  They do have sufficient resolution to count several 

people in the field of view at the same time.  LADAR is mounted in a variety of 

positions; as it is still experimental as a result of its price, there is no typical mounting.   

Ishihara et al [23] mounted LADAR at ground level as is usual for light beam 

detectors.     

2.2.8 Summary  

This section has introduced the main pedestrian detection and tracking technologies 

and methods.  It has introduced LADAR, CCTV, thermal imaging and manual 

counting as systems for monitoring the movement of pedestrians.  Each is used for a 

variety of applications, market research, behavioural studies, security and surveillance.  

The next section examines research for pedestrian detection and tracking from the 

image processing community. 

2.3 Image processing for pedestrian detection 

The previous sections of this literature review have provided an overview of the 

different technologies available for pedestrian detection and highlighted the different 
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areas that motivate its study.  A brief introduction to some of the larger research 

projects in the area has been presented.  In section 2.2.1 the prevalence of CCTV was 

highlighted, it is however noted that it is not trivial, to process video for pedestrian 

detection and tracking.  This section examines the research in the field of image 

processing for pedestrian detection.  As a topic, it probably attracts the largest research 

interests of any in the image processing community.    

 

The task is usually split up into several different but related stages, each of which is 

discussed below.  Background subtraction, which “is often one of the first tasks in 

machine vision” [25], aims to separate the background of the image from the area of 

interest, the pedestrian.  Optical flow detection provides an alternative method for 

segmenting an image into objects moving at different speeds.  Feature extraction looks 

for pedestrians within images, or attempts to classify objects that have been detected 

by background subtraction of optical flow as pedestrians.   Several algorithms apply a 

different mechanism for tracking the pedestrians after they have been detected than for 

detecting them in the first place such as those presented in [11, 26, 27].  

 

In recent years fusing data from additional sensors (IR and LADAR) with visible video 

has attracted significant interest, this is further discussed in section 2.3.5.  

2.3.1 Background subtraction 

Background subtraction is a technique for identifying areas of interest in video footage, 

it.  It focuses on production of an image or model of the background and finds pixels 

that do not conform to that model or image.  In its simplest form, background 

subtraction takes the current video image and subtracts the previous image, displaying 

all the pixels where the magnitude of the subtraction is greater than a threshold.  This 

will produce an image where only the pixels that have changed are shown.  Toyama et 

al [28] describe the process and complications of background subtraction well.  They 

highlight several particularly difficult situations a background model must adapt to. As 

quoted from [28] these are: 

Moved Objects: A background object can be moved, these objects should not 

be considered part of the foreground forever after. 

Time of Day: Gradual illumination changes alter the appearance of the 

background. 
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Light Switch: Sudden changes in illumination and other scene parameters 

alter the appearance of the background. 

Waving trees: Backgrounds can vacillate (sic), requiring models which can 

represent disjoint sets of pixel values. 

Camouflage: A foreground object’s pixel characteristics may be subsumed by 

the modelled background.   

Bootstrapping: A training period absent of foreground objects is not available 

in some environments. 

Foreground aperture: When a homogenously coloured object moves, change 

in the interior pixels cannot be detected.  Thus, the entire object may not 

appear as foreground. 

Sleeping person: A foreground object that becomes motionless cannot be 

distinguished from a background object that moves and becomes motionless. 

Walking person: Walking person, when an object initially in the background 

moves, both it and the newly revealed parts of the background appear to 

change. 

Shadows: Foreground objects often cast shadows which appear different from 

the modelled background.   

 

The task of background subtraction has been furthered by many researchers, for 

example [25, 29-32].  Several interesting solutions to address some of the issues 

highlighted by Toyama et al are emerging.  Stauffer and Grimson [33]  present a 

solution for formulating a mixture model.  Lee [30] claims that this model has become 

standard for the mixture model approach.  However the solution does not completely 

address all the complications; there are still no universal solutions to the complex 

problem of background subtraction. 

 

Once an image has been split into areas of foreground and background, further 

processing can be carried out to find pedestrians in the foreground.  The most common 

component at this stage is removal of small objects identified such as „salt and pepper‟ 

noise.   
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2.3.2 Optical flow 

Optical flow techniques are based around the idea of looking for patterns of motion in 

image data.  Horn and Schunk [34] provided an easy to understand description of the 

basic principles and description of their seminal optical flow algorithm.  They specify 

optical flow as a series of vectors describing the velocity of each pixel location in the 

image.  The calculation of optical flow can be simple, but only if it is possible to make 

several assumptions about the video sequence, such as affine motion, layering or 

segmentation.  One is however often unable to make these assumptions about video 

footage.  Since the nineteen eighties a substantial amount of work has been carried out 

in the optical flow field and many improvements have been made, such as those 

described by Zitnick et al [35].  Fermuller et al [36] present a substantial paper on the 

Statistics of optical flow, this references several algorithms from different authors. 

2.3.3 Feature detection 

Feature detection algorithms work by looking for features, shapes or appearance 

patterns in images or known foreground regions.  Viola and Jones [37] describe an 

algorithm for finding human faces in static images.  They have advanced the algorithm 

for finding pedestrians from patterns of motion as described in their later work [38].  

This work is claimed to be robust and shows much potential for confirming that an 

area of interest in an image is a pedestrian.  However it requires the person‟s face to be 

present in the image at a sufficient resolution for detection (rather than the back of the 

head).    

 

Images that have been split into areas of interest and disinterest by either optical flow 

or background subtraction are often then classified as human or non-human, as is done 

by Hariatoglu et al [39], Fuentes et al [40] and Selinger et al [41].  This generally 

results in the coordinates of a bounding box describing pedestrian(s) location(s) within 

the image.  List and Fischer [42] present an xml schema for describing this 

information.   While significant advances have and are being made, most algorithms 

tend to be optimised for a particular type of scene.  Further research is still required to 

develop truly universal and unsupervised systems.   
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2.3.4 Tracking  

After images in video sequences have been processed to find pedestrians, often by a 

combination of background subtraction, optical flow and feature detection, the 

pedestrian needs to be tracked into the nearby frames.  The approach to this task varies 

dependent upon algorithms and the specialisation of the task in hand.  The simplest 

trackers look for objects in consecutive frames where the location in the second frame 

is closest to the location in the first.  This approach fails where several pedestrians are 

close by or occluded.   Maadi and Maldague [43] present a paper which first subtracts 

the background, then classifies objects and finally tracks the objects.  The tracker 

employs iterative systems of location predication (for the next frame) and correction 

based on the location of detected objects in the current frame.  Lei et al [44] present a 

more comprehensive system, which uses multiple hypotheses and integrates tracking 

with detection to improve performance.  The main solutions have some form of 

multiple hypothesis tracking.  This introduces resource constraints as to how many 

hypotheses can be continually tracked and how to decide which hypotheses to discard. 

2.3.5 Fusing video with Infrared or LADAR 

Fusing video information with data from other sources such as infrared or LADAR is 

attracting increasing interest.  Not only does it provide a useful additional source of 

information about the scenes, aiding object detection and tracking, but it also allows 

the systems to be used in environments where only using visible imaging would never 

work, for example night vision. 

 

Hsu et al [24] present a system for fusing LADAR with video to more easily detect 

camouflaged objects.  The cost of 3D LADAR is still comparatively high according to  

Siepmann [45] “(>$100,000USD)”, however he presents some interesting work which 

shows potential to reduce the cost of LADAR and increase the frame rate.  This could 

make it more suitable and available for fusing with video in the future.  However at 

present there are military restrictions on 3D LADAR availability.   

 

Fusing visible and infrared images is now also attracting significant attention.  Amin et 

al [46] present a system for using both visible and infrared images to count people.  

The results from the combined system present an improvement over either visible or 

infrared systems taken individually.  Sun et al [47] present a method for augmenting 
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visible and infrared images to make it easier for viewers to find objects of interest.  

Kong et al [48] present a system to aid face detection in varying illuminations by 

fusing visible and IR images.  Their work presented in this area is new and interesting.  

Several unanswered questions remain about the practicalities of fusing data from 

different imaging systems, for example the production of optics required capable of 

focusing the wide range of wavelengths on the relevant sensors. 

2.3.6 Summary 

The research in image processing for pedestrian detection presents several interesting 

questions.  For example how to model background, how to determine if an object is a 

pedestrian and how to track the pedestrian, once located.  This section has introduced 

some of the rich and diverse research in image processing, and highlights the main 

questions in the field.  While there are solutions that work well in certain situations 

there are no complete and autonomous solutions.  The problems associated with 

processing real world CCTV footage to find pedestrians are complex and it is not easy 

to define how far to develop systems.  Should an image processing system be as good 

as a human operator, or better, is it sufficient to only work well when there is a 

constant background?  The CAVIAR project [14] came about to try and analyse the 

available algorithms and determine which algorithm is best in different circumstances.  

This analysis itself is a complex task and several papers have been published on it, for 

example [49, 50].   

 

CCTV based automatic pedestrian detection and tracking systems still generally 

require a substantial amount of expertise to set up or operate.  The systems used by 

Phillips et al [51] required a human operator to draw bounding boxes round the 

pedestrians in the footage.  The systems described and developed by Collins et al [16] 

require a substantial amount of set-up work.  The work of Sarkar et al [52] 

acknowledges the “meticulous” efforts of Stan Janet and Karen Marshall of NIST in 

creating bounding boxes around pedestrians.  While much work is ongoing in the area, 

it is still the case that the current systems are far from deployable in an unsupervised 

of-the-shelf system suitable for human motion measurement.  This position is 

supported by Amin et al [46].   
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2.4 Human gait 

The current Oxford English dictionary definition of gait is “Manner of walking, 

bearing or carriage as one walks”.  This definition allows the topic to include a wide 

range of research, incorporating biomedical, physical and kinematical studies.  This 

section provides a review of the physics of the human body including their relation to 

gait, a review of the current state of gait measurement technology, and its use as a 

biometric. 

2.4.1 Physics of the human body  

The human body is immensely complex in construction and a full description of its 

construct is left for text books such as Physics of the human body [52a].  This 

subsection reviews the main body parts and structure which affect gait.  To present this 

review it is important to define some terminology; much of the difficulty anyone has in 

understanding experts is in understanding the terminology in use, not the ideas.  

Herman [52a] presents a good diagram describing the terminology in use in the 

medical field, shown below.   

 

 

Figure 2-1: Terminology diagram page 2, Herman [52a] 

 

Knowing these terms it is easier to examine existing models of human gait.  However 

it is typically true that medical texts present models that are more complex than is 

appropriate for developing systems which unobtrusively measure human gait. It is 

therefore necessary to reduce the degrees of freedom of this representation to a 



33 

   

manageable number.  This typically involves representing the human body as a limited 

collection of hinged parts, each representing limbs. 

 

The simplest model and most relevant to this thesis is that of leg motion considered as 

a pendulum.  There are several phases to walking which involve each foot being lifted 

off the ground and swung forward to take the body weight so that the other foot can be 

moved.  To conserve energy during walking it is generally accepted that the frequency 

of swing maintained is that which best utilises gravity and is therefore largely 

determined by the simple harmonic pendulum motion.  Figure 2-2, from Herman [52a] 

illustrates this. 

 

 

Figure 2-2: Simple pendulum leg model, page 118, Herman [52a] 

 

In this model leg motion can be thought of as a free pendulum such as a ball on string 

where the period of the gait cycle is determined by Equation 2-1, where: g = 9.8ms
2
 

(acceleration due to gravity), l is the leg length (in meters) and T is the cadence period. 

𝑇 =
2𝜋

 (
𝑔
𝑙

)

 

Equation 2-1: Simple harmonic motion gait period 

 

Herman [52a] further expands this model to account for leg articulation, non-uniform 

distribution of mass within the leg, joint rotation and forced motion.  The model he 

suggests contains more detail than those typically used by researchers who develop 

systems that unobtrusively measure human gait.  Wagg and Nixon [61, 63] present a 

system which seeks to account for hip joint rotation and model both the upper and the 

lower leg position in relation to the torso.  
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Where this model should be expanded is to consider not only the pendulum motion in 

the coronal plane but also in the sagittal plane, namely the impact walking has on 

lateral body motion.  This motion is of particular relevance to chapters 5 and 6.  Figure 

2-3 from Oatis [52b] shown below, illustrate the pelvic body motion required to 

maintain balance while walking.  

 

Figure 2-3: Illustration of hip motion, Oatis, page 860 [52b] 

 

During the walking cycle the person must lift one leg and support their full weight on 

the other; therefore they must move their hip and torso to keep their centre of gravity 

over the leg supporting their weight.  This results in a lateral oscillation at the pelvis 

and upper body.  The nature of this oscillation is complex and affected by several body 

features including hip width.  Mather and Murdoch [86] state that the gait community 

has long accepted that there is more lateral oscillation of the torso (upper body) in 

males and less of the pelvis, whereas the opposite is true for females.   These 

differences between the genders reflect different articulation of the leg bones on the 

pelvis, and differences in the centre of gravity.   

 

Barclay et al. [52c] present several measurements including average hip and shoulder 

widths, summarised overleaf in Table 2-1. These results show that on average males 

have significantly wider shoulders than females, and to a lesser degree that females 

have wider hips than males.    
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Gender Male (cm) Female (cm) 

Average hip width 38.1 38.8 

Average shoulder width 41.8 38.2 

Table 2-1: Summary of data from Barclay et al. [52c] 

 

The ratio of shoulder to hip width is a factor particularly dependent on gender, as 

confirmed by Davis and Gao [52d] on a separate data set.  Further to this the increased 

shoulder width in males and increased hip width in females suggests that the centre of 

gravity is likely to be higher (as a ratio of height) for males than for females.  This 

position is supported by Fullenkamp et al. [52e] who present a more detailed set of 

human dimensions, in their non-gait related study.  Given that the position of the 

centre of gravity in relation to the hip joints is significantly different between genders, 

it is likely that the lateral gait oscillation will show a strong correlation to gender.  This 

variation in centre of gravity (as a proportion of height) appears to support the 

accepted hypothesis that males oscillate their upper body more than their hips and the 

opposite is true for females.         

 

This subsection introduces physics of the human body within the context of gait as far 

as is relevant to this thesis.  It describes the most relevant terminology used in 

medicine to describe different perspectives of a person and follows on to introduce 

simple harmonic pendulum motion which dominates the gait cycle.  The relationship 

between this and lateral (sagittal plane) oscillation during the walking period is 

explored.  This is most relevant to chapters 5 and 6 of this thesis where a new 

measurement system for this lateral oscillation is presented.   

2.4.2 Measurement of human gait  

The measurement of human gait started in 1836 when Wilhelm and Eduard Webber 

brought together their skills to study human stride and motion.  In the many years since 

the Webber brothers started their work the measurement of human gait has changed 

substantially.  Johanson [53] describes well the history of this early work.   

 

The introduction of digital video techniques had the biggest impact on the ability to 

measure human gait.  Since its introduction in the 1970s the technology has improved 
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substantially.  However many of the original problems still exist.  As the availability of 

digital video capture and processing power has increased, the range and quantity of 

research into gait measurement has expanded, examples of which can be found in [54-

56].  There are many different systems in existence each with their own advantages 

and disadvantages.   

 

The best systems for accurately measuring human gait invariably require the 

cooperation of the subject (person being measured).  They also place many constraints 

on the measurement environment. Systems such as those mentioned by Boyd and 

Little [56], require the subject to wear reflective pads or lights on their joints.  Systems 

such as the Liberty system made by Polhemus require the subject to locate sensors at 

various points of their bodies to detect motion and location. Moeslund and Granum 

[57] provide a good review of more than one hundred and thirty different human 

motion studies carried out before 2001.  In the review they present a general taxonomy 

of pedestrian tracking systems in which the tasks are split into four processes: 

initialisation, tracking, pose estimation and recognition.   

 

Initialisation is described as the actions required to ensure a system appropriately 

accounts for the current scene at commencement of operation.  For some systems this 

involves knowing the parameters of the camera.  Many require unobstructed visibility 

of the scene, and/or expert intervention.  It also includes parameter initialisation for 

models of human outline to ensure they are suitable for both the viewpoint and scene.  

Tracking, classified as the task of finding coherent relations between people (or limbs) 

through different frames, is highlighted as a well established research field.  Pose 

estimation, the process of discovering how a human body or individual limbs appear is 

increasingly attracting attention.  Systems are said to vary in complexity and 

resolution, some only collecting limited information such as centre of mass.  Finally, 

recognition, which is often seen as a form of post processing, is highlighted as a 

method of determining or classifying the type of action.  The review proposes that two 

different paradigms exist, recognition by reconstruction, and direct recognition. 

  

In their review, Moeslund and Granum [57] conclude that recent advances in 

technology have significantly increased the study of human motion and gait.  They 

point out that all the solutions reviewed are based on a number of assumptions that 
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make the problem tractable.  They state that the field is at a relatively early stage and 

imply that a truly general system is a long way from becoming available and that there 

is significant room for improvement.  A significant proportion of the current research 

uses video footage for measurement.  This leads to increased effort in the unobtrusive 

measurement of gait that is further examined in sub-section 2.4.4. 

2.4.3 Human Gait as a biometric  

Human gait has long been recognised as a form of biometric identifier.  Green and 

Guan [58] state that, from data published in several sources, there are no average sized 

people.  What is meant by this is that there are no people with average measurements 

for all of their dimensions; we are all different in some way.  As each of our 

dimensions dictate what our gait will be, we will all have slightly different gait, so it is 

reasonable to accept that gait can be used as a form of biometric. 

 

Many different human dimensions can be collected for gait analysis, for example leg 

length, height or more specific data about lower and upper leg length.  Abernethy et al 

[59] provide a good description of human anthropometry.  The more anthropometric 

features we can collect about a subject, the better biometric we can achieve.  Green and 

Guan [58] highlight work that shows only 7% of the population are “average in two 

dimensions”.    

 

This subsection has introduced some work, primarily from the biomedical field, which 

show that human dimensions, and therefore gait, can be used as a biometric identifier.  

Most automatic systems will only attempt to measure a small number of gait features 

and are not therefore likely to lead to a finger print like accuracy but they can still 

provide a significant biometric.  How this biometric changes with time is a question 

that requires further examination.  The next sub section examines the measurement of 

human gait from video.  

2.4.4 Measuring human gait from video 

In the last decade or so significant effort has been expended to try to unobtrusively 

measure human gait from video.  This sub-section examines some of the major work in 

the field.  In order to measure gait it is necessary to first find the pedestrian(s) in video, 

however, as examined earlier in this review, there are complex questions and tradeoffs 
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remaining in that task.  For that reason researchers tend to either restrict the scene to: a 

fronto-parallel view [60], a known background [61], use operators for detection and 

tracking [51], or indeed all of them.   This claim is supported by Sarkar et al [52]. 

 

Sarkar et al [52] present an interesting study and provide a valuable dataset with 

bounding boxes round each pedestrian in the video.  They highlight that several gait 

studies have been conducted and that it is difficult to compare them.  Each dataset and 

accompanying algorithm has requirements or assumptions that significantly limit the 

results of other algorithms on the dataset.  They attempt to bridge this gap by providing 

a more substantial dataset and baseline algorithm, with a view to others improving on 

it.   The baseline algorithm they present works by scaling the image of the pedestrian 

(after production of accurate bounding box) to a known size and then separating the 

pixels that relate to the pedestrian from the background.  The numbers of foreground 

pixels are then counted.  Fewer pixels will relate to the foreground when the person‟s 

legs are close together than when further apart; this produces a harmonic relating to the 

pedestrian‟s gait. 

 

Collins et al [62] present a system for identifying humans, using an algorithm which 

identifies key poses within the gait cycle.  These are then matched to the pedestrian 

silhouette and the width and height used to measure gait.  In fronto-parallel video this 

provides a gait harmonic.  They do not state that they require human assistance to 

identify and track the pedestrian.  However they do note that the algorithm is adversely 

affected by errors in detection and tracking, for example those caused by shadows not 

being correctly removed. 

 

Wagg and Nixon [61, 63] present an interesting and substantial study aiming to  

identify people from video footage by their gait.  This project included a significant 

element of experimentation collecting a database of digital video footage showing 

subjects walking.  They highlight the need to ensure an appropriate camera position 

and scene view.    In the 2004 conference paper the collection of two datasets is 

described.  The first dataset was collected indoors and related to a record of walking 

motion recorded on a short track, with a controlled background and lighting.  The 

second was collected outdoors where the background was not so tightly controlled and 

selected to contain a mix of static and moving objects.  Both datasets were collected 
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specifically to facilitate gait recognition. Therefore, a static fronto-parallel (coronal) 

camera view was used to collect approximately 90 frames of video data for each 

sequence.  The camera used produced 25 frames per second.  Collection of the indoor 

dataset, where a fixed background was provided, is well described in the 2003 sensor 

review article [63].  This dataset included a single high resolution still photograph of 

each subject so that the subject‟s body size could be estimated.   

  

Wagg and Nixon [61] describe in detail the model and system they use to find, 

measure and represent people in video footage.   The first part of their processing 

algorithm applies a Gaussian filter to remove noise; following this it employs a Sobel 

edge detector before applying background subtraction.  This omits all the static 

objects, leaving only the edges belonging to moving objects.  This combination of 

objects is then further processed to determine bulk motion, which is used to enable 

shape position and size estimation for the torso, head, upper and lower legs.  When the 

locations and rotations of each of the above body parts are measured they are then 

further examined with respect to the pre-created model of human gait.  Motion and gait 

cycle extraction are both adversely affected by rotation of the joints and its effect on 

the measurement process is reduced by spline interpolation.   

 

After this processing it was noted that there was still significantly more motion 

information than can be put to use, so the data was further processed to measure 

features which relate to the individual.  These are: lower knee width, gait frequency, 

ankle width, upper knee width and head x-displacement (anterior distance from head to 

torso).  Each of these parameters was then used to inform a stochastic human ID model 

that generates their recognition system.  

  

This paper also presents results detailing the F-statistic from analysis of variance for 

each of the individualistic features described above.  This statistic provides a good 

indication of each measure‟s ability to discriminate between individuals; those with a 

higher F-statistic are more discriminative.  The results show that the most 

discriminative feature is the lower knee width, however there is a slight difference in 

the ranking of gait frequency between the indoor and outdoor data sets.  Gait frequency 

is more important than ankle width in the outdoor datasets suggesting that ankle width 

is significantly harder to measure when the background is more complex.   It is also 
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true that all measures display a markedly lower F-statistic for the outdoor datasets, 

indicating that the model-fitting algorithms used perform less well with moving or 

varied backgrounds.    

 

While, Wagg and Nixon [61] present very promising classification results they note 

that the algorithm used makes several assumptions and required significant processing 

power.  On the computer they used, a frame rate of around 4 fps was achieved. Their 

measurement technique was not tested on different clothing, e.g. baggy trousers or 

skirts, and they note that it is not suited to such clothing.  The nature of the algorithms 

used limits its use to video data where a clear fronto-parallel view of the subject is 

available and the majority of motion in the scene consists of the subject.   

 

BenAbdelkaert et al [64] present a system for identifying individuals based on height 

and stride.  Their parameter extraction system is described in [65] and assumes that the 

camera is calibrated with respect to the ground plane to allow realistic 3D position 

estimation.  It also relies on the person walking in a straight line.  Given these 

assumptions, they extract the height and three gait parameters: stride length, cadence 

and velocity.  Results presented show 49% correct classification on their dataset.  They 

conclude that their system‟s success is strongly linked to “the periodic nature of human 

walking”.  By this they suggest that cadence is a good discriminator.   Bobick and 

Johnson [66] present a similar technique with similar results and constraints. 

 

This sub-section has reviewed the most relevant work in the field of unobtrusive 

measurement of human gait from video footage.  There is much more research ongoing 

in the field, such as the work described by Bregler, Su et al, Xu et al and Yoo et al [55, 

67-69].  Bregler presents a probabilistic computational framework for learning and 

recognising human gait using a Hidden Markov Model.  Su et al present a method for 

extracting gait features from silhouettes without requiring an explicit human body 

model.  Xu et al present a method for applying marginal Fischer Analysis to the 

problem of dimensionality reduction for human gait reduction, a feature receiving 

increasing attention in the research community.  Yoo, et al present work which 

contributed to the algorithms Wagg and Nixon used.   
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This review only describes the most relevant research to this doctoral thesis, there are 

over 150 references mentioned in the review of human motion capture presented by 

Moeslaun and Granum [57].  Their review also includes the tasks of finding and 

tracking pedestrians described in section 2.3.  Several different datasets have been 

produced for gait analysis.  These data sets consist of data from 6 to 122 people, with a 

typical number in the region of 20-25.  

2.5 Stereo vision  

Stereo vision is a topic that has attracted intense theoretical and practical research over 

time, some of which is described in references [70-73].  Most animals have two eyes 

and perform some sort of stereo interpretation to gain distance estimations for objects 

they can see.  This task however is a difficult one, presenting many interesting 

challenges.  This section describes the basic theory of stereo vision for depth 

perception and highlights the currently important topic of stereo correspondence.  It 

also introduces some of the research in using stereo vision to identify and track 

pedestrians.  This section is not an in-depth review but an introduction covering the 

basic principles and highlighting the status quo in the field of stereo vision.  Brown et 

al [74] present a more comprehensive review of the topic.  

2.5.1 Stereo depth perception theory  

The principle behind the measurement of distance from stereo vision is the parallax 

effect.  When the same object is viewed from two different locations it is possible to 

use Pythagoras theorem to ascertain the distance to the object.  Figure 2-4 shows the 

concept in the two dimensional plane with the triangulation drawn on.   
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Figure 2-4: Stereo depth perception 

 

This theorem allows the distance „H‟ to be calculated from the midpoint between 

cameras to the top of the object of interest, in this diagram the pedestrian.  Several 

stereo vision systems work out the distance from one of the cameras (called the 

reference camera) to the object using the same theorem, such as the system developed 

by Videre design Inc.  In order to do this, the angles alpha, beta and distance s in 

Figure 2-4 must be known.  These are found by locating the position of a pixel from 

the first image in the second.    In most stereo vision systems the cameras are mounted 

at a known distance apart leaving the principal question of stereo correspondence, 

which is further described below.  

2.5.2 Stereo correspondence problem 

The theory described in sub-section 2.5.1 works well when it is easy to establish the 

same point in both images.  Without making certain assumptions this is a non-trivial 

task.  In a simple pinpoint image it is easy to establish what the angles are from the x 

and y coordinates of the pixel(s) in each image.  However, this type of image is 

unusual.  Liu et al [75] support this position and describe their work on a new 

technique for concurrent stereo matching.  There is a significant body of work on the 

correspondence problem, for example the research presented by Psarakis et al. and 

Veksler [76, 77] respectively.  Psarakis et al. propose a correspondence solution with 
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sub-pixel accuracy.  Veksler presents a solution utilising dynamic programming on a 

tree.  Brown et al [74, 78] provide two reviews of stereo image processing techniques, 

one from 1992, and one from 2003.  The latter provides a significant focus on 

correspondence issues. 

 

In the 2003 review Brown et al [74] loosely separate correspondence issues into two 

categories, those with local and those with global constraints.  For correspondence 

methods with local constraints the search is limited to a small number of pixels 

surrounding the pixel of interest.  Those with global constraints restrict the search to 

either scan lines or the whole image.  Several local correspondence matching methods 

are introduced, for example: block matching, feature matching and gradient methods. 

Three significant global correspondence approaches are introduced, dynamic 

programming, intrinsic curves and graph cuts.  Correspondence methods with global 

constraints are highlighted as being more computationally complex and attention is 

drawn to the significant problems of occlusion.   

 

The review concludes that, while the questions relating to local correspondence are 

now well understood, those relating to global correspondence are less well understood.  

They indicate that significant effort is being diverted to the areas of global 

correspondence and occlusion and that future work should focus on these areas. 

2.5.3 Stereo vision for pedestrian detection and tracking 

Several researchers have published work utilising stereo depth perception to improve 

pedestrian detection and tracking in video.  This sub-section provides a brief 

introduction to some of this work.  It places the research presented in this thesis in 

context with the work of others, but does not provide a comprehensive review.   

 

Bertozzi et al. [79] present a system for detecting and tracking pedestrians in far 

infrared images using a fronto-parallel stereo view.  They assume that the stereo 

correspondence problem is only local.  Depth perception information is then extracted 

and fed into the detection process, which allows pedestrians to be successfully 

detected, even when they partially occlude each other.  Munoz-Salinas [80] presents a 

system for detecting and tracking people using stereo vision to overcome tracking 

complications found when one person occludes another.  Fujimoto et al [81] presents a 
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system for measuring the distance to pedestrians from moving vehicles using stereo 

vision.  They present some interesting tests in their short paper [81] where they 

successfully detect a pedestrian crossing the road.  The pedestrian is crossing in front 

of the forward looking stereo camera mounted on a moving car.  Detection and 

tracking is achieved at distances below 50m, in good weather.  They note that further 

work is required to make the technology “capable of being used in real-world driving 

environments”.  

2.6 Summary 

This chapter reviews the main relevant literature to pedestrian detection, tracking and 

measurement.  It starts with a description of the major technologies used to detect and 

measure pedestrian motion.  This includes a short discussion of the different mounting 

positions typically used for each technology.  Typically video based gait analysis is 

taken from a fronto-parallel view.  A top down view is used for the IRISYS people 

counters, elevated and oblique views for typical CCTV installations.    The review then 

examines the main research fields investigating and funding pedestrian detection and 

tracking research.  This includes an introduction to some of the recent research projects 

in the area. 

 

The majority of the research into pedestrian measurement takes place in the image 

processing field.  A substantial review of image processing is presented in section 2.3.  

This review highlights the common problems associated with detecting and tracking 

pedestrians.  It also reviews the standard techniques for solving the common problems, 

background subtraction, optical flow, object detection and tracking.  This includes a 

description of some of the current research questions in the field.   

 

The review then moves on to the topic of human gait.  It first provides a brief history 

of the measurement of human gait, then it presents credible evidence that gait is an 

individualistic biometric.  After this introduction to gait the review examines the major 

and current work in the field of measuring human gait as a biometric.    This work 

almost exclusively takes the form of video with image processing to take the 

measurements.  There is significant effort in this field and the work of Wagg et al [61, 

63], BenAbdelkader et al [64, 65], Collins et al [62] and Sarkar et al [52] present some 

of the most significant research in this area.  It is noted that there are still assumptions 
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or interactions that limit the real world use of these human gait recognition systems.  

Generally these are either a restriction on the background or operator interaction for 

detection and tracking; solving these issues still requires further work.  

 

Finally the review provides an introduction to stereo vision, describing the basic 

principles and problems.  It also introduces some of the algorithms developed that use 

stereo depth information to augment the detection and tracking of pedestrians.   
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3 Underlying technology 

This chapter discusses the IRISYS (InfraRed Integrated SYStems Ltd) people counter, 

later referred to as (detector) in detail.  The first section provides a description of the 

detector, its construction and the general theory of operation.  The chapter then 

examines the information available from the detector and the trajectory information 

produced by the target tracker.  This examination demonstrates through data captured 

that barrel distortion exists.   This distortion is investigated and an approximate 

correction algorithm is presented.  It is noted that some of the information presented in 

this chapter is protected by patent.  Agreement was required from IRISYS to gain 

access to the data used during this research.   

3.1 The detector 

The detectors are produced by Infrared Integrated Systems Ltd a UK company based in 

Northamptonshire.  They are mainly marketed for counting the number of pedestrians 

entering and leaving retail locations.  The detectors are based on a low resolution 

thermal difference imager with digital signal processor and algorithm capable of 

tracking pedestrians within the downward looking field of view.   In a typical 

installation, often above a doorway, two different lines are configured to enable 

counting of people entering and leaving the location.  A full description can be found 

in the IRC 1004 product information sheet available from www.irisys.co.uk.   

  

The detectors produce much more information than is generally used in a retail 

environment.  A description of the data produced by the detectors and used in this 

thesis can be found in section 3.2.   The remainder of this section describes the 

detector; starting with an examination of the detector‟s construction.  Then it provides 

a review of several different aspects of the device, including: the communications 

systems, normal retailer usage, pyroelectric detector array and a discussion of the 

digital signal conditioning in the device.  

3.1.1 Detector construction  

The detector described in this section is protected by patents EP 0 853 237 B1 and US 

6,239,433 B1.  Figure 3-1 and Figure 3-2 show the detector from the front and rear 

respectively.  Each detector is supplied with a mounting plate to allow easy installation 

http://www.irisys.co.uk/
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on a ceiling.  The coin shown in Figure 3-1 is a one pound (sterling) coin and is 

present to provide an indication of the scale of the photographs. 

 

Figure 3-1: IRISYS detector technology 

 

Figure 3-2: IRISYS detector photograph, rear 

 

Each detector contains three main components: a germanium lens at the front, directly 

behind it a 256 element pyroelectric array, and a printed circuit board containing the 

digital signal processor and other electronics.  Figure 3-3 shows a diagrammatic 

representation of the detectors, based on observation. The diagram is not an exact 

representation but provides a good indication of the detector‟s construction. 
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Figure 3-3: IRISYS detector diagram 

 

The main sensing components of the detector are the germanium singlet lens and the 

pyroelectric array.  Germanium is chosen for the lens as it has low absorption of EM 

radiation in the IR wavelengths of interest (8-12 microns).   However it has a high 

refractive index, making wide angle lenses difficult to make.  The affect of this is 

reduced with an anti-reflective IR coating.  The coating also provides a harder surface 

for the lens than germanium, which reduces the chance of damage during production 

and transportation.  One disadvantage of the lens and detector construction used is that 

it suffers significantly from aberrations; these are further examined in section 3.4. 

3.1.2 Detector communications  

The detectors come with three different methods of communication.  This section 

provides an overview of each of them.  The simplest is the use of a pair of relays which 

can be configured to switch when a person is counted in or out.  This is generally used 

to interface the devices with existing systems, such as with the marketing of a variation 

of product for tailgate detection in automatic security applications.   

 

The second communications protocol used is the CAN (Controller Area Network) bus; 

this was chosen as it is well suited to long distance two wire communications in noisy 

environments.   It is generally used to connect multiple units together for complex 
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people counting systems, such as wide doorways where multiple units are required, or 

for supermarket queue monitoring solutions. 

 

The third and final protocol used is UART; this provides the most comprehensive 

communications to the device.  It is typically used by engineers installing the devices 

to update configuration setting in the device.  It is also used by the author.  The UART 

communications require a line driver to connect to a standard serial port.  IRISYS 

supply two different types.  The first, a small device which connects to a socket on the 

rear of the device, provides a reliable communications connection and is recommended 

by the author.  The second, shown in Figure 3-4, clips onto the outside of the detector.  

This is more convenient for use by a field engineer who requires to communicate with 

a ceiling mounted device without removing it from its existing communications 

network (e.g. CAN).  However the contacts do not always connect reliably and can 

require adjustment. 

 

Figure 3-4: External serial connector line driver unit 

3.1.3 Pyroelectric array detector 

The 256 element PZT array used is manufactured by IRISYS and consists of a two 

dimensional sixteen by sixteen array.  PZT is a Lead Zirconium Tantalite crystal which 

has positive charge at one side and negative charge at the other.  A layer of crystals can 

be produced polarised, such that a charge will be generated on surface electrodes when 

it changes temperature.  This change can in turn be measured.  A general description of 

the processes, materials and expected charges from thermal sensors can be found in 

[82]. 
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The IRISYS arrays are manufactured in a unique way.  A wafer of PZT is baked into a 

thin ceramic wafer and polished flat.  On the top of this wafer a metal IR absorber is 

laid, which is also used as a common ground electrode.  On the underside of the PZT 

wafer a patterned array of 256 electrodes is arranged.  Figure 3-5 shows a diagram of 

this taken from the patent documents.   

 

Figure 3-5: IRISYS Detector array (from US Patent no 6,239,433, fig 1 page 2) 

 

These electrodes are then bonded to pads or raised bumps on an application-specific 

integrated circuit which contains the electronics necessary to read the varying charge 

generated by the PZT as it changes temperature.  The whole assembly is placed in a 

hermetically sealed package with an IR filter window.   The filter window is specially 

designed to only allow through IR radiation within the frequencies of interest, 8-12 

microns (pers com. Dr N. Johnson, Chief Software Scientist IRISYS, 5th Dec 2007).   

 

This package provides the main sensing component for the detector.  When assembled 

with optics it produces a thermal difference imager.  It is however noted that 

constructing the array from a single large IR absorber and PZT layer leads to 

considerable thermal leakage between pixels.   If a signal is incident on a single pixel, 

some of the charge produced will be measureable on the neighbouring pixels as well.  

This has been confirmed by observation of data produced by several detectors in 

several different locations. 

3.1.4 Digital signal processing 

The signals produced by each pixel in the detector are sampled by a 16 bit a-d 

converter and then further processed.  Each channel suffers from DC drift and a digital 

high pass filter is used to remove this drift.  This high pass filter effectively removes 

any slow change in the signal which is likely to relate to voltage drift in the signal 

read-out electronics, or change in temperature of the device and its surroundings.   
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There appear to be two significant processing algorithms operating.  The first 

processes the image data actually obtained from the sensors to remove noise.  The 

second is to detect and track people by matching ellipses to the hot and cold spots 

noted when people walk under the detectors.  Figure 3-6 shows the measured graph of 

the values received from a mid image pixel in the detector, collected at Napier 

University.  This data was collected by a person walking under the mid pixel of the 

detector, standing still for approx 10s and then walking out of the field of view.  

 

 

Figure 3-6: Graph of IRISYS pyroelectric element intensity 

 

The upward spike in the signal occurring at around 3s represents the pixel warming up 

as the hot person moves into its field of view.  The downward spike at around 15s 

represents the pixel cooling down as the person moves out of the field of view.  Closer 

examination of the beginning of this graph shows that there is some other form of 

signal conditioning occurring.  Figure 3-7 shows an enlarged view of some of the first 

3s of data displayed in Figure 3-6.  It is clear that the intensity drops shortly before it 

rises which is indicative of a filtering or processing system that takes account of the 

value measured at the surrounding pixels.  The nature of this processing is not 

available but it is believed to be linked to a complex form of high pass filtering.  
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Figure 3-7: Magnified view of Figure 3-6 

3.1.5 Elliptical tracker  

The start of this section introduced the detectors marketed as the people counters by 

IRISYS.   The previous sub-sections describe how the detectors work and show that 

they act as a thermal difference imager.  In order to count people it is necessary to 

detect and track people through the field of view.   When viewed from above, people 

look approximately elliptical.  Figure 3-8 demonstrates this by showing a person 

viewed from above with a high resolution IR camera.   The pedestrian detection and 

tracking algorithm applies an elliptical contour tracker to do this.  The exact nature of 

this tracker algorithm is secret and closely guarded by the manufacturers.  This sub-

section describes it in general terms. 

 

 

Figure 3-8: Thermal image of pedestrian viewed from above 
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Figure 3-9 shows image data collected when one person is walking through the 

detector‟s field of view while the detector is mounted at 2.5m, the lowest height 

recommended by the manufactures.   

 

Figure 3-9: IRISYS detector Image, single pedestrian 

 

The grey area represents the background and the bright area indicates the increase in 

temperature, caused by the pedestrian passing the field of view (marked with the red 

arrow).  The dark area following the pedestrian (marked with the blue arrow) is due to 

the sensors measuring change in temperature.  As the pedestrian leaves the field of 

view of a pixel its intensity drops, showing that it is cooling down, before returning to 

its normal background intensity. 

 

This type of image is then processed to look for elliptical shapes applying an unknown 

algorithm to remove false positive detections.  The pixels inside detected elliptical 

shapes are then used to create a weighted centre of detected thermal signal.  This 

provides a sub-pixel accuracy centroid location.  It is believed to be similar to the ACE 

tracking algorithm presented by Cameron [83].  Once detected, the locations of 

pedestrians are tracked through the scene until no trace of them can be detected.  

Figure 3-10 shows a scene viewed by a detector mounted at 3.6m with two pedestrians 

detected and tracked through the field of view. 
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Figure 3-10: Detector image showing two pedestrians detected and tracked 

 

The detectors have a mechanism for noting a connection between two ellipses that 

appear close together to improve the tracker performance.  This is termed a “parent and 

child” relationship and is maintained from frame to frame.  If sufficient distance is 

reached between the ellipses then the detectors remove this association, similarly, if 

the distance between them reduces, then the two ellipses become one.  This parent-

child relationship allows the detector to retain multiple hypotheses about each target 

when it is difficult to establish if a detected entity is one person or two people walking 

close to one another.   

3.1.6 Normal use as a people counter 

The detectors are manufactured and sold as people counters, not as thermal difference 

imagers.  For people counting there is further processing performed on the device to 

follow the tracks of pedestrians produced by the elliptical tracker.  When the devices 

are installed two different count lines are positioned with respect to the thermal 

difference image.  These lines are used to denote the entrance and exit to/from the field 

of view in relation to the environment the devices are placed in.  A count of the 

number of people entering and leaving the premises is produced by counting the 

number of people that cross each line in the prescribed direction.   Two example line 

set-ups are shown in Figure 3-11, which is taken from the product datasheet. 
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Figure 3-11: Possible count line configurations (image from page 2 IRC 1004 datasheet IRISYS) 

 

This sub-section has introduced the normal usage of the detector; there are several 

different bespoke uses of the detector in existence.   An example of this is a variant 

used by Tesco Ltd (at the time of writing the UK‟s largest retailer) to measure the 

queue lengths at its checkouts.  This information is used to maintain a promise made 

by the retailer to their customers that there will typically be only “one person in-front” 

at the queue.   

3.2 Data produced by the detectors 

This section describes the data output by the detectors when using the serial link.  

There are many different configurations for the sensor and it is possible to reprogram 

the on-board DSP (digital signal processor).  However, reprogramming the DSP is not 

covered in this thesis.  Data produced by the detector is formatted into a bespoke 

packet structure described by Sumpter in an IRISYS internal document [84] which was 

kindly made available during this research.  A time stamp packet is used to separate 

data packets into frames, each frame corresponding to a known time.  It has been 

observed that the detector occasionally drops a frame of data.  This typically occurs 

when there are a high number of pedestrians in the field of view.  The cause of the 

detectors dropping these frames is strongly linked to the data rate nearing or breaching 

the maximum capacity of the serial link, 115K baud.   

 

The remainder of this section describes data from two of the packet types available 

from the detector: firstly, array data which contains the thermal difference image, and 

secondly, target data which contains information from the elliptical tracker about 

people being tracked in the scene.   
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3.2.1 Array data 

As mentioned in section 3.1 the detectors produce a sixteen by sixteen pixel thermal 

difference image.  This information is sent in an array data packet containing a 

bespoke compression algorithm which can be uncompressed into two hundred and 

fifty six, signed sixteen bit integers.  Each value represents a pixel with zero being the 

typical background value, negative values representing a cooling pixel, and a positive 

value presenting a warming pixel.  The data can easily be represented as a thermal 

difference image as is shown in Figure 3-12.  The packet format description has not 

been included due to considerations of confidentiality.    

 

Figure 3-12: Array image 

3.2.2 Target data 

As mentioned in section 3.1.5 the detectors match ellipses to hot and cold objects, 

representing pedestrians.  This information is termed target data by Sumpter (Software 

team line manager, IRISYS) in internal communications protocol documentation.  It 

contains a substantial amount of information about each ellipse matched in the field of 

view.  Once the detectors have detected a person (target) they will track it until it 

leaves the field of view or becomes invisible.  There are two causes of targets 

becoming invisible.  Firstly, the pedestrian may stop moving; as the detector only 

detects change in temperature, they will disappear from the detector‟s view.  Secondly, 

the person walks out of the detector‟s field of view.  A target packet is transmitted 

from the detector containing a list of smaller target structures.  Each of these structures 

contains several different bits of information:  

 A unique ID, which is maintained as long as the target remains visible. 

 Location, x and y coordinates with respect to the origin of the thermal 

difference image. 

 Ellipse dimensions, width, height and angle 
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 Direction of motion  

 Status (also called mode) information about the target.   

 

The status information contains a flag that is set when a target appears to be 

disappearing without leaving the field of view.  This is to help detect the known 

problem caused when people stop moving (they become invisible in the difference 

image).  As only the x and y coordinates of the target centroid are used in this research, 

no further explanation of the remainder is provided. 

3.3 Trajectory measurements from the IRISYS detectors 

The accuracy of the trajectory measurements taken by the detectors is a factor that 

requires consideration.  This section examines what is currently known about the 

trajectory measurement and presents experiments to further detail the accuracy of the 

measurement.  A significant study confirming the usefulness of these detectors as 

person trackers is published by Springer [1].  This was written by Kerridge, Keller, the 

author of this thesis and Sumpter.  The book chapter shows very good results can be 

achieved in tracking and counting pedestrians in both controlled and uncontrolled 

environments.  This section further examines the trajectory information on a more 

microscopic scale. 

 

Measuring the accuracy of pedestrian detection and tracking systems is known to be a 

difficult task.  List et al [50] highlight the problem with respect to the image 

processing community in their paper “Performance Evaluating the Evaluator”.  They 

note that most image processing systems assess accuracy by comparison with a known 

ground truth generated by a human observer.  They also note from their own 

evaluation a 5% variation in bounding box sizes in the results from two different 

evaluators examining the same video sequence.  The same problems apply to 

measuring the accuracy of the IRISYS detector.  

 

Trajectory data collected by the detectors is harder to validate than data from video as 

the spatial resolution is significantly lower and sub-pixel accuracy is required.  The 

complications are compounded by the detector only measuring change in temperature.  

Participants can be asked to walk along a known path but as previously discussed there 

is a large amount of variation in human bipedal locomotion.  This makes it very hard 
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to accurately characterise the ability of the detector‟s tracker to follow a pedestrian at a 

microscopic scale.      

 

This section looks at two experiments to help understand the ability of the detectors to 

measure motion accurately.  It is not intended to formally characterise the trajectory‟s 

accuracy but to establish that it is suitable for further examination.   The first examines 

data collected by asking participants to walk under a detector following known paths.  

The second examines the results from the detector tracker when it is used to track a 

small inanimate warm body moving mechanically.  The latter examination removes the 

complications of detecting pedestrian motion and examines more accurately the ability 

of the detector to reliably produce trajectories at sub pixel accuracy.      

3.3.1 Pedestrian walking test   

This experiment confirms that correct and repeatable trajectories can be measured from 

a single person as they walk through the field of view.  The path they followed on the 

way out was separated by 50cm from the path they followed on the return.  For this 

experiment the detectors were mounted at a height of 2.95m.  Three different 

participants each walked along this trajectory repeating their walk three times. Figure 

3-13, Figure 3-14 and Figure 3-15 show the measured trajectory plots from each of the 

participants.  Each repetition of a walk is displayed in a different colour to highlight 

the level of consistency in the trajectory measurements. 

 

Figure 3-13: Person A walking along two 

straight lines 

 

Figure 3-14: Person B walking along two 

straight lines 
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Figure 3-15: Person C walking along two straight lines 

 

It is clear from the above figures that a notable difference is present between the two 

lines followed by all three participants.  This is shown by the difference in location of 

the red/blue trajectories and the yellow/green trajectories.  In Figure 3-15 distinct 

differences exist in all trajectories plotted.  It is also possible to see a similar series of 

trajectories in Figure 3-13 and Figure 3-14 although the grouping within red/blue and 

yellow/green are considerably closer together.   

 

This small number of trajectory plots is interesting and demonstrates that, as published 

by Armitage et al [3] and Kerridge et al [12], the detectors can track pedestrian 

motion.  The data also confirms that the detectors can successfully discriminate 

between paths separated by 50cm and implies that much higher tracking accuracy is 

possible.  Figure 3-15 shows that repetitions of a straight line walk collected from a 

single person can be measured slightly differently.  However it is not clear if this is 

due to difference in the trajectory walked or the measurement technique used. 

3.3.2 Sub pixel accuracy experiment 

Sub-section 3.3.1 presented a short data capture illustrating the trajectory 

measurements taken from people as they walk along a known path.  This sub-section 

presents a short experiment examining the ability of the detector to track trajectories at 

much higher spatial accuracy.  This is achieved by using an inanimate thermal emitter 

moving along a model train track, an accurately repeatable trajectory.  By using this 

experiment we can eliminate the chicken and egg problem of not knowing how 
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accurate the detectors are and not knowing the location of the pedestrian.  The emitter 

will move along a known straight line, “the track”.  As the emitter is inanimate and 

small it also eliminates any uncertainly over which part of a person the detector is 

tracking.   

 

For this experiment the detector was mounted 1.5m above the ground with a model 

train track running in a straight line along the ground within the detector‟s field of 

view.   A height of 1.5m is chosen as it is approximately the height from a typical 

ceiling mounted detector to a pedestrian‟s head.  At this height the size of each pixel is 

approximately 8cm squared.  The model train carried a small bottle (200ml) of warm 

water, which acted as an emitter of dimensions smaller than a single pixel.  The 

experiment was then repeated with the model train track moved 5cm to the left of its 

original position creating a second trajectory for comparison.  This set-up establishes if 

it is possible for the detector to discriminate between trajectories that are separated by 

less than one pixel distance.  

 

Figure 3-16: Model train trajectories separated by 5cm 

 

Figure 3-16, shows four trajectories collected using the model train set up.  Two 

trajectories are presented from each track location.  The yellow and blue are from 

location one and the red and green are from location two.   On the left of the image it is 
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clear that the trajectories from different track locations are separated.  However they 

appear to converge to the right of the image.  The data demonstrates that a detectable 

difference is present when the trajectories followed are separated by 5cm, which shows 

that sub pixel tracking of small objects is possible.  However it is clear that there are 

some artefacts affecting the trajectory measurements, particularly at the edges.  

Examination of this data and the data presented in sub-section 3.3.1 shows that a slight 

curve in all trajectories measured is present.  This curve is believed to relate to barrel 

distortion which is common in wide angle optical assemblies such as that present in the 

detectors quoted 60
o
 field of view. 

 

Communications with the manufacturer also confirmed that there are known 

inaccuracies in trajectories at the edges of the field of view.   Several things effect the 

trajectory measurements at the edges of the field of view, two of which are:  the tracker 

will start to track a person when they are partly occluded, thus the weighted centroid 

location will contain error, and the detectors use a different algorithm for initialising 

the tracking of targets from that they use to follow them after initialisation. 

3.4 Detector distortion 

Observations from early work show that all the detectors suffer from varying degrees 

of distortion, and that the most notable form of distortion is barrel distortion.  This 

section examines the distortions present and develops a correction algorithm for some 

of the distortions noted.   

 

All optics suffer from some degree of aberration that make it difficult to properly focus 

an image on a detector array.  This is due to the focal distance of a singlet lens being 

dependent on both the radii of curvature and the refractive index of the lens material, 

the latter of which varies with wavelength.  The detectors are sensitive to a wide band 

of IR wavelengths (much wider than the visible spectrum); this makes it very difficult 

to accurately focus an image on a detector array.  This artefact compounds the thermal 

crosstalk present in a pyroelectric array produced from a single piece of ceramic. 

  

Barrel distortion is also significant in the detectors.  It is a well known phenomenon 

and particularly common in wide-angled optics, Klein and Furtak [85] describe it on 

page 241.  It causes the image passing through the lens to have magnification varying 
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with distance from the optical axis of the lens.  This leads to an image being formed on 

the detector that is distorted.   At the edges of the field of view a single pixel will cover 

a larger area than at the centre of the optical axis.  Figure 3-17 illustrates an expected 

coverage area for a detector with barrel distortion.  

 

Figure 3-17: Illustration of object area viewed with barrel distortion 

 

The IRISYS detectors are particularly susceptible to this type of distortion, in addition 

to other aberrations.  In order to make use of the data from the detectors for studying 

motion accurately, corrections must be made to the data to account for barrel 

distortion.  Figure 3-18 shows an illustration of several paths that could be measured 

by the detectors.   

 

Figure 3-18: Illustration of pedestrian trajectory showing barrel distortion 

 

It is clear from Figure 3-18 that the paths appear curved.  However, the subjects this 

illustration is based on would be mostly walking along a corridor in straight lines.  The 

apparent curvature is mostly the result of barrel distortion.   
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It is possible to produce a formula that corrects for barrel distortion.  This work is 

derived from that presented by Klein and Furtrak [85].  It is based on three 

assumptions: Firstly, that the object distance is large (and therefore considered infinite) 

when compared to the distance between the pyroelectric array and lens, secondly that 

the magnification increases with the square of the distance from the optical axis.  

Finally, that the optical axis is centred on the image array.   

 

Equation 3-1 shows a formula that corrects for distortions based on these assumptions.  

To use this formula it is necessary to find the distortion coefficient, alpha, for the 

optics in use.    
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Where: 

'y = the corrected y location  

'x = the corrected x location 

 = the lens distortion coefficient  

Equation 3-1: barrel distortion correction 

 

The next sub-section presents an experiment to collect data and calculate the most 

appropriate value for the detectors, as described below.  

3.4.1 Barrel distortion experiment   

Measurement of the barrel distortion is not as simple for the detectors as it would have 

been for a visual camera.  As the detector is a thermal difference imager any source 

must continue moving (or appear to continue moving) to be detected.   An 

experimental detector mounting was assembled to collect data, shown in Figure 3-19.  

This raised the detector approximately 1.5m above the ground, more than 150 times 

the distance from lens to pyroelectric array.  
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Figure 3-19: Barrel distortion experiment photograph 

 

A cup of tea was used as the thermal emitter and a cardboard shutter was moved in-

between the detector and emitter to create the thermal change necessary to detect the 

emitter.  The complications caused by thermal crosstalk between pixels are minimised 

by using the elliptical tracker to locate the centre of the object to sub pixel accuracy.   

 

The emitter was placed on the ground and moved until its location measured by the 

sub-pixel location from the detector was in the centre of a series of pixels.  The actual 

location was then marked on the floor.   This was then repeated for five different 

locations and the distance between the pairs of points was measured.  Table 3-1 shows 

the measurements taken.   

 

 

Table 3-1: Distance between pixel coordinates 
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3.4.2 Calculation of alpha 

Given the values in Table 3-1 it is possible to use regression to calculate the best fit 

value for alpha in Equation 3-1.  A macro was written to recursively test different 

values of alpha to find the optimum for the data collected.   The test of fitness used 

first adjusts the x, y coordinates using Equation 3-1.  Secondly, Pythagoras Theorem, 

is used to calculate the distances between all five points measured in adjusted pixel 

units.  This set of distances is then compared to the known separation distances to 

produce a fitness value.  The fitness used is the coefficient of determination from least 

squares linear regression.   The macro repeated the calculations storing the value for 

alpha with the coefficient of determination closest to one.  The value of alpha giving 

the best result is 0.005662. 

3.4.3 Detector distortion conclusions  

Figure 3-20 and Figure 3-21 show the blue and yellow trajectory plots from the train 

experiment results presented earlier in Figure 3-16.  The data collected from the model 

train experiment was collected using a different detector from that used for the barrel 

distortion experiment.  The red plot presents the trajectory before barrel distortion 

correction and the green presents the trajectory after correction.  These results are 

known to have originated from a target moving in a straight line.   

 

 

Figure 3-20: Yellow train data before and 

after distortion correction 

 

Figure 3-21: Blue train data before and after 

distortion correction 
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The plots show that curvature is removed from the trajectories; however the lack of 

straight line in the corrected trajectories suggests that the distortion correction 

algorithm is over correcting in this case.   It is difficult to produce a general measure of 

detector distortion without repeating the distortion experiments for each detector in 

use.  The motivation for using the detectors is that they are readily deployable in real 

world situations.  For this reason the usefulness of the distortion correction on a larger 

scale is confirmed by Expert analysis of live trajectory data.  This analysis has been 

performed by honours project students Graham Wilkinson and Stewart Pavitt of 

Napier University.  They found the correction algorithm to provide a generally good 

estimation for the distortion present in the data they observed and collected.  It is 

however noted that the best value of alpha varies from detector to detector.  As there 

are several factors affecting distortion between different detectors of the same type, 

such as differences in lens aberrations and in detector construction, no further 

examination of the exact distortions is conducted.  This experimentation is not 

intended as a quantitative measurement of distortion but to provide a reasonable 

approximation for use later on in this thesis and in other work.    

3.5 Summary 

This chapter examines the IRISYS people counter (detector) product in detail.  It 

presents a significant body of information about the construction of the detector.  It 

then examines the information available from the detector.  This examination 

highlights that there is a robust and unknown tracker algorithm running on the detector 

which detects and tracks elliptical shapes representing pedestrians as they walk past 

the detector.   The tracker provides a trajectory measurement with sub pixel accuracy.  

It is believed to have similarities to the ACE algorithm presented by Cameron [83]; 

however exact details are unavailable.     

 

The ability of the tracker to collect trajectory data is examined with two different 

experiments.  The first demonstrates that it is possible to collect different trajectories 

from people walking along two lines separated by 50cm.  The second demonstrates 

that a much higher accuracy can be obtained using an inanimate thermal emitter.  It is 

possible to see a clear difference in the trajectories when the paths followed are 

separated by 5cm.  It is clear from the data collected that there is distortion in the 

trajectories measured by the detectors.  This is examined in data from one detector and 
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an approximation is developed to correct for this distortion.  While this approximation 

is sufficient for most pedestrian tracking applications (for example the studies 

presented in [1, 5]), it is further addressed in chapters 6 and 7. 

 

It is noted that the distortion varies from one detector to another.   The motivation for 

using the detectors is their ability to produce trajectory measurements with minimal set 

up and characterisation so no further characterisation is attempted.     The next chapter 

examines the use of the detectors in stereo. 
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4 Stereo experiments  

Several researchers have used stereo vision to aid detection and tracking of pedestrians 

in visible image processing systems, for example [79-81].  Brown et al [74] states that 

the problems of global stereo correspondence are still not well understood.  While the 

problems of matching a single point in stereo images are well understood if the point 

can be assumed to be close in both images, they are not when that assumption cannot 

be made.  A significant advantage could be gained by obtaining displacement 

information for the scene.  The IRISYS detectors are downward-facing; therefore 

displacement information should correspond to the height of the pedestrian.  If 

obtained reliably, this information could readily be used in security or human 

identification applications. 

 

The IRISYS detectors have several disadvantages and some advantages over visible 

imagers when considered for stereo use.  Section 3.4 highlights and investigates optical 

distortions and aberrations in the detector.  These effects can have an impact on the 

location of a detected thermal image so it may be hard or impossible to use the stereo 

parallax effect to measure height.  Section 3.1.5 introduces the elliptical tracker used to 

obtain the trajectory information.  The exact implementation of the tracker is unknown 

and may have an adverse affect on stereo use of the detector trajectory information.   

The main advantage of using the detectors over standard stereo vision techniques, is 

the potential solution to global correspondence problems highlighted by Brown et al 

[74].  This problem can be overcome as people are easily noticeable in the field of 

view and the background is less complicated than in visible imaging.        

 

This chapter investigates the use of ceiling mounted detector trajectory measurements 

in stereo for measuring the height of passing pedestrians.   More specifically, it 

investigates if any useful measure of height for a passing pedestrian can be obtained 

using the generalised distortion correction algorithm described in chapter 3.  It 

examines data from detector pairs with different distances of separation to investigate 

which proves the most appropriate.     
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4.1 Stereo theory depth perception theory 

Stereo imaging and depth perception theory is introduced in section 2.5 of the 

literature review.  The theory of using the differences in location of the objects to gain 

depth perception is based on the triangulation as shown in Figure 4-1.  As the detectors 

have low resolution it will be necessary to use sub-pixel accuracy information for this.  

Psarakis et al [76] present a paper on stereo correlation with sub-pixel accuracy 

showing that it is possible to leverage some advantage with sub-pixel location.  

However, it is far from clear that it will work with the detectors‟ trajectory data.  This 

section examines the theory necessary to calculate displacement information from the 

detector trajectories. 

 

Figure 4-1: Stereo depth perception 

   

The trajectory measurements are presented as Cartesian Coordinates, which require to 

be converted into angles.  This is a simple process, providing we know the field of 

view for the detector and make some assumptions.  According to the manufacturers the 

detectors are supplied with a 60
o
 field of view.   The assumptions we require to make 

are that: the trajectory measurements are a fair representation of the pedestrian‟s head, 

and the Cartesian measurements are taken when the pedestrian passes under a virtual 

line between the detectors.  The first assumption may or may not be true; the exact 

nature of the tracker algorithm is unknown, therefore it is not possible to confirm that 

this assumption holds.  The results presented later should go some way to answering 

this question.  The second assumption may be addressed by only using the x 
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coordinate when the pedestrian is under the virtual line between the detectors, as 

described by the measured y coordinate.     

     

Equation 4-1 describes how to convert the Cartesian x coordinates from the detectors 

into the left and right angles measured in radians, as required to calculate the distance 

from the ceiling to the pedestrian.  This is based on the aforementioned assumptions 

and derived from Figure 4-1.    
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Equation 4-1: Angle calculation formula 

 

For all the calculations, the x and y coordinates obtained from the detectors are 

corrected for barrel distortion, shifted and scaled to be in the range of 0 to 25, with the 

centre point of the detectors‟ field of view at x=12.5, y=12.5; these are later referred to 

as adjusted pixel units.   

 

The values of alpha and beta allow calculation of the distance from the detectors using 

triangulation to resolve stereo parallax effect described in Section 2.5.1 and shown in 

Equation 4-2:  The variable Angle denotes the angle of view for the detector in the 

horizontal plain.  

 

 sin))./)/(sin((sin dh   

Where d is the separation distance of the detectors and h is the distance from the ceiling to the person‟s 

head measured in adjusted pixel units. 

 

Equation 4-2: Distance calculation 

 

4.1.1 Stereo correspondence  

Stereo correspondence is a well known problem when extracting depth information 

from stereo vision. According to Brown et al [74] the solutions to local 

correspondence are well understood but those of global correspondence are not.  In 

chapter 3 it is noted that there are substantial optical aberrations and thermal crosstalk 

in the detector array.  Furthermore, it is noted that these aberrations vary from detector 

to detector.  The time-consuming task of quantifying the aberrations of each detector 
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individually is not warranted.  Given that the exact tracker algorithm is unknown it is 

unclear if doing so would produce sufficient trajectory measurement accuracy to yield 

useful results.  For these reasons the approach chosen is to use a large distance of 

separation, when compared to those typically used in stereo vision systems.  By using 

a large angle, an error such as that caused by previously noted aberrations will have a 

proportionally lower effect on the result. 

  

This approach will introduce some additional complications and place a much heavier 

weighting on the assumption that the measured trajectory follows the head of the 

participant.   Further, it assumes that the weighted centroid of the tracker corresponds 

to a similar part of the head irrespective of view-point, a major global stereo 

correspondence problem.   

4.2 Experimental set up  

The entrance to the Library at Napier University‟s Merchiston campus was chosen as 

the experimental location.  The entrance is a wide and open hall with a flat carpeted 

floor and no obstructions limit the movement of people within the measurement area. 

To help examine what the most appropriate separation distance is, three different 

detectors are mounted in the ceiling in a straight line.  This provides three different 

stereo pairs, each with different separation distances.  The participants were asked to 

repeat the walks under the detectors several times providing more data so that 

measurement noise can be reduced by averaging.  

 

Figure 4-2 shows the detectors in the ceiling of the entrance to the university library.  

Detectors one and two were one hundred and twenty cm apart, detectors two and three 

were sixty cm apart.  This allowed the construction of stereo pairs where the separation 

was either sixty, one hundred and twenty or one hundred and eighty cm.  The detectors 

were mounted at 3.85 m above the floor. 
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Figure 4-2: Picture of library entrance 

 

Seventeen participants were asked to walk under the detectors.  Their heights were also 

measured with a tape at the same time.  None of the participants had any obvious 

walking abnormalities.  This data was complimented by data from another inanimate 

thermal emitter (a hot water bottle) that was dragged along the floor using a long 

tether.   

4.3 Results 

This section presents the results from the experiments.  It starts by examining the 

calculated height with the actual height of the participants.  It then examines the 

distance calculated from the detectors to the participant as they walk through the field 

of view.   Finally, it examines the data from the thermal emitter. 

4.3.1 Calculated v actual height of participants 

Using the Equation 4-2 and the field of view angle of  
60

 2
= 43𝑜 , the distance between 

the ceiling and each participant was calculated as they walked under the detectors.  

This was then subtracted from the known height of the detectors (385cm) to produce 

the calculated height.  To reduce noise the Cartesian coordinates (both x and y) were 

subjected to a low pass filter as described in Equation 3-1.  
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Equation 4-3: Low pass filter 
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Figure 4-3, Figure 4-4 and Figure 4-5 show plots of the calculated height v actual 

height of the participants, using the detectors separated by 60, 120 and 180cm 

respectively.  To remove any biasing from the participants that provided a larger 

number of readings, three values are plotted for each: max, min and mean measured 

(by triangulation) height with respect to actual height.  

 

 

Figure 4-3: Measured v actual, detectors separated by 60cm 

 

 

 

Figure 4-4: Measured v actual, detectors separated by 120cm 
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Figure 4-5: Measured v actual, detectors separated by 180cm 

 

Figure 4-3 shows the data from the detector pairs separated by 60cm.  This data has a 

wide spread between max and min values, later referred to as grouping.  This indicates 

that the height measure obtained for an individual is not repeatable and consistent.  The 

grouping improves when data from the detector pairs with larger separation distances 

is examined.  It is clear that the data with the best grouping is from the detector pair 

separated by 180cm.  This indicates that the larger separation distances provide more 

consistent measurement results.   

 

These results (Figure 4-3, Figure 4-4 Figure 4-5) show that there is a significant 

variation in the measure obtained.  Assuming that the relationship between calculated 

and actual height is linear, it can be quantified by using least squares linear regression.  

Figure 4-6 shows the same data plotted in Figure 4-5, but this time plotted with a trend 

line fitted to the mean readings using the least squares method. 
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Figure 4-6: Calculated v actual, 180cm separation with trend line 

 

Figure 4-6 shows that there is a general relationship between the calculated heights and 

the actual heights of the participants.  Table 4-1 shows the gradients and coefficients of 

determination (also known as r
2
) for trend lines fitted to all three sets of data using the 

least squares method. 

 

 

Table 4-1: Trend line data 

 

The data from the detector pairs separated by 180cm is correlated in a statistical sense.  

However a correlation of 0.501 is not sufficient to suggest that an average measure 

could be used to determine the height of a person.   Given that this result proves 

disappointing, a further examination of the data collected is conducted in the next sub-

section.  

4.3.2 Calculated distance v time 

This subsection presents the calculated distance from the ceiling to the pedestrian with 

respect to time.  As the participant walks past the detectors the actual distance from the 

detectors to head varies due to gait and location.  Typical recordings from three of the 

experiment‟s participants are examined.   The data is plotted with respect to time from 

each of the detector pairs as the participants moved through the detection area.  As 

Detector separation 180cm 120cm 60cm

Gradient 1.634 1.648 1.889

Coefficient of determination 0.501 0.256 0.290
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each participant walks under the detector the distance from their head to the detector 

will change, both with location and gait.  To help represent the change due to location 

the expected distance is also plotted.  This is calculated from the measured y 

coordinate and known height of the participant using Equation 4-4 with the angle of 

43
o
. 

  ))tan(/5.12/()5.12(tan2/cos/ 1 Angleyabshd    

Where d is the expected distance, h is the known height of the pedestrian and y is the measured y 

coordinate. 

 

Equation 4-4: Expected distance 

 

 

Figure 4-7: Graph of calculated height v time, person 1 

 

 

Figure 4-8: Graph of calculated height v time, person 2 
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Figure 4-9: Graph of calculated height v time, person 3 

 

The data presented in the above figures show several interesting facts about the data 

and method used.  Firstly, the data from the detectors separated by 60cm shows an 

oscillation at a frequency consistent with human bipedal locomotion, approximately 

(1.5Hz).  Examination of the remaining data indicates that this is present in most of the 

data collected.  Secondly, the results from the detectors with spacing of 120 and 180 

cm, generally produced larger calculated distances than the measurements from the 

detectors separated by 60cm.   Thirdly, the results typically show a curve similar to 

that found in the expected distance.  It is not so prominent in Figure 4-9 as it is in 

Figure 4-7 or Figure 4-8. 

4.3.3 Data from thermal emitter  

During the experimentation data was collected using an inanimate thermal emitter (a 

hot water bottle) moved along the floor at ground level.  The possible complications 

caused by each detector having a different perspective of the participant (an example 

of a global correspondence issue) are effectively eliminated with this experiment as the 

hot water bottle is flat.  In addition any variations caused by the inherent non-

uniformity of human posture are also not present in this data.  Figure 4-10 shows a 

similar plot as presented in Figure 4-7, but with data from the hot water bottle.    
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Figure 4-10: Graph of calculated height v time, hot water bottle 

 

As noticed in the data collected from participants, the data from the detector pair 

separated by 60cm shows less consistency in measurement.  There is also a lack of the 

expected curve in the distance data.   

 

Table 4-2 shows the height measurement calculated from six repetitions of data 

capture from the hot water bottle.  The height measurements were calculated using 

Equation 4-2 and the standard deviation for the measurements from each detector pair 

is appended to Table 4-2. 

 

 

Table 4-2: Height measurements from hot water bottle 

 

These results show several things about the height measurement method.   Firstly it is 

clear that the distance measurements are not sufficiently consistent to act as a useful 

height measurement.  Given that the hot water bottle used to generate the 

measurements is essentially a two dimensional inanimate object, the standard deviation 

of these results provides an indication of the measurement technique‟s lack of 

consistency.  In theory, the main unknown global correspondence issue in this system 

Detector seperation 180cm 120 cm 60cm

Reading 1 329.4 349.2 402.1

Reading 2 353.2 348.2 505.5

Reading 3 314.5 334.1 385.5

Reading 4 335.7 344 453.4

Reading 5 368.5 360.1 570.7

Reading 6 366.7 354.4 588.2

Standard devation 21.7 8.9 85
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(that of view-point differences for object) should be minimal or non-existent.  The high 

standard deviation for distance measurements from the detectors separated by 60cm 

indicates that some other unknown factor is strongly influencing the measure in that 

pair.   The standard deviations for the detector pairs separated by 120 and 180 cm are 

in-keeping with the expectations based on the results presented in the sub-pixel 

accuracy trajectories presented in section 3.3.2.   An error of 5cm at a height of 1.5m 

as is present in the work described in section 3.3.2 equates to an angular error of 1.9
o
.  

As there are two detectors used for triangulation, this error must be doubled to 3.8
o
 

which provides a height difference of approx 25cm with a detector separation of 

180cm and approx 20cm with a detector separation of 120cm.    

4.4 Conclusions  

This chapter presents experiments and results examining the use of the detectors‟ 

trajectory measurements in stereo pairs for non intrusive pedestrian height 

measurement.  The experiments are designed to replicate as closely as possible a 

typical installation for the IRISYS people counter so as to maintain the applied focus 

of this research.  The data collected shows unimpressive results for the measurement of 

height using the target centroid.  Several factors are assumed to affect this but the lack 

of repeatable measurements in the data from the hot water bottle effectively eliminates 

the technique‟s use as a system for measuring the height of passing pedestrians. 

 

The data collected from the detectors separated by 180cm presents a correlation 

between the average height measurement and that of the participants, indicating that 

height plays a significant part in the measure obtained and that the larger distance of 

stereo separation has helped.  However the data is not strongly correlated and 

significant variation in multiple measurements obtained from individuals, exist.  There 

are several factors affecting the measurement distance from ceiling to object and 

significant further work would be required to properly understand the reasons for the 

technique‟s failings.  The exact nature of optical aberrations for each individual 

detector would need to be further examined; use of the tracker algorithm in the 

detectors would require to be changed to a publicly available algorithm so its impact 

on the measure could be quantified.    Both of the aforementioned investigations are 

out with the scope of this thesis which builds on an established people tracking system 
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that seeks to develop new algorthiums which can be deployed without significant 

calibration requirements. 

 

The data presented in section 4.3.1 shows a slight correlation between the calculated 

height measurement and actual height of the participants.  This indicates that there is 

some height information in the measure but this information is dwarfed by other 

factors.  The data presented in section 4.3.3 highlights that even with an inanimate two 

dimensional object; the technique is not capable of producing a consistent height 

measurement.  At best the measurements are accurate to within ±10cm.  However this 

result is not replicated on data from people.  

 

The results presented in this chapter have ruled out the use of the detectors‟ trajectory 

measurements for accurate stereo depth perception.    
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5 Stride measurement experiment 

During the experiments presented in chapters 3, and 4, an oscillation of walking 

frequency was noticed in several of the trajectories collected.  This oscillation was 

believed to originate from human gait but the data presented is not conclusive.  This 

chapter further investigates the source of this oscillation and attempts to correlate it to 

bipedal locomotion of human walking.  It describes the experiments conducted, and 

results collected, to further examine the source of this oscillation.  First it describes the 

experimental design and data collection.  Then it describes the background to the 

analysis performed, the results, and conclusions from the experiments.   

5.1 Experiment design and data collection 

The experiments were conducted in the same location used for the stereo depth 

perception experiments, the entrance to the university library.  As with the experiments 

discussed in section 4.2, three detectors were located in the ceiling.  This provided 

three sets of data from each pedestrian walk, allowing some replication of the results.   

The questions these experiments are designed to answer are: 

 What is the source of oscillation noted in previous data? 

 Are the detectors sensitive enough to measure the location of the footsteps 

taken by a pedestrian in the field of view? 

5.1.1 Design 

For this series of experiments, eight markers were placed on the floor separated by 

55cm.  The markers were placed in a straight line, starting and finishing outside the 

detectors‟ field of view.  Figure 5-1 illustrates the experimental set up.  This diagram 

shows all of the detectors and their expected field of view.  It also shows eight markers 

depicting the expected position of the pedestrian‟s footsteps.  The connecting line and 

arrow describe the participant‟s direction of motion. 
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Figure 5-1: Experiment diagram 

 

This setup in many respects emulates the “drunk test” used by some police forces to 

test coordination of drivers. 

5.1.2 Data collection 

As with the experiments described in chapter 4 the data was collected and recorded for 

off-line analysis.  Each participant was asked to walk, placing their foot as close to the 

floor markers as possible.  As the participants started walking a note was taken of 

which foot they placed on the first marker.  The experiment was conducted in one day 

during which seven people took part.  All but one of the participants was different 

from those that took part in the stereo experiments described in chapter 4.   

5.2 Accounting for direction of motion 

The results collected during this experiment come from an environment where the 

pedestrian motion is controlled.  As this would not be the case in a real world situation, 
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further analysis is required to put the motion in perspective.  This section describes the 

method used for this research. 

 

When attempting to measure the location of footsteps and analyse the left to right 

motion of pedestrians with respect to the direction of travel, it is necessary to know the 

direction of travel.   The simplest method of establishing this is to perform linear 

regression to fit a straight line to the points recorded.  After a best fit line has been 

found, the distance from each point to the line can be calculated, thus providing a 

relative left to right swing for the subject.  Figure 5-2 shows an example trajectory 

with the best fit line drawn.  

 

Figure 5-2: Walking trajectory with best fit line 

 

This method works well.  However it makes the assumption that the pedestrian is 

moving in a straight line.   In real world situations this is not always the case.  

However, it can be relied on for all the data collected from the experiments conducted 

during this and the previous study.  Appendix C describes the linear regression method 

used to establish the best fit line and its parametric description.   

5.3 Results  

This section presents the results in two different formats.  Firstly, the trajectories 

measured are plotted graphically, showing both multiple recordings from a single 

participant and single recordings from several participants. Secondly; the left to right 
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oscillations of the participants are shown after accounting for the direction of travel as 

described in section 5.3.3.    

 

A low pass filter is mentioned several times in this thesis.  This term relates to a filter 

described by Equation 5-1, where v is the one dimensional array of data and i is the 

index of the array. 

424

11   iii
i

vvv
v

 

Equation 5-1: Low pass filter 

 

5.3.1 Single participant  

The results presented here show recordings of trajectories taken from four participants.  

The data from each participant is presented in different figures.  Each figure shows 

several coloured trajectories.  Each coloured line represents the measurement from a 

repetition of the experiment.  The circles in the figures represent the start of the 

trajectory.  This information is presented to enable the measurement error noted in 

section 3.3 to be observed.  Before presentation, both the x and y coordinates are 

processed through a low pass filter.  

 

Figure 5-3 shows four trajectories collected from a male participant, measured from 

two detectors.  They walked placing their feet on the floor markers, starting on the left 

foot and passed the detectors several times.  Figure 5-4 shows trajectories from several 

passes under a single detector.  This was from a male participant, who started on the 

right foot.  The trajectory from each pass is represented by a coloured plot.  Both of the 

figures show clear correlations in the measured trajectories and expected oscillations.   
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Figure 5-3: Participant A, two 

detectors 

 

Figure 5-4: Participant B, single detector

 

Figure 5-4 shows five trajectories that almost identically follow each other.  As each 

trajectory was collected at different times, the result shows that the participant‟s walk 

is remarkably similar when controlled by requesting that the participant place their feet 

on the floor marks.  Figure 5-3 shows a similar correlation from four separate walks, it 

also shows data collected from two different detectors.  The track on the left clearly 

follows the track on the right, thus showing that the detectors are recording the same 

motion.  The vast majority of results confirmed this hypothesis although not all were 

as clear. Figure 5-5 shows the trajectories from a male participant where the detector to 

detector correlation is present but less clear.  Figure 5-6 shows the trajectories from a 

female participant, a similar correlation is present but it is harder to see.  It should be 

noted that there is considerably less oscillation in the trajectories of the female 

participants. 
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Figure 5-5: Participant C, three 

detectors 

 

Figure 5-6: Participant D, three detectors

5.3.2 Multiple participants 

This subsection presents the trajectories from several participants‟ walks while 

following the floor marks.   The results are presented in a similar way to the 

trajectories in section 5.3.1.  However each colour in this series represents a different 

participant.   

 

Figure 5-7 shows the trajectories from three different male participants, Figure 5-8 

shows the trajectories from three different female participants. 

  

 

Figure 5-7: Trajectories 3 male 

participants 

 

Figure 5-8: Trajectories 3 female 

participants 
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It is clear from Figure 5-7 that there is a correlation in the location of the left to right 

swing from one person to another.  Figure 5-8 also shows a strong correlation; 

however the trajectories are so close, that it is hard to distinguish between them.    

These results confirm that the source of the previously noted oscillations is gait 

motion.  It also re-affirms the finding from section 5.3.1 that the oscillation noticed in 

female participants was significantly less than that of male participants.    

5.3.3 Left to right swing  

This sub-section presents the results when viewed with respect to the participant‟s 

direction of motion.  The Cartesian coordinates are converted to distances from the 

best fit line as described in Equation 5-2.  These distances are filtered with a low pass 

filter and then graphically plotted with respect to time.   

 

     ryxd   sin.cos.  

Equation 5-2: Distance from line 

 

The results ignore the measurements taken from detector zero, shown red in Figure 

5-1.  When the results from that detector were examined a significant amount of error 

was found due to the measurements being taken from close to the edge of the 

detector‟s field of view.  They are also colour-coded to coincide with Figure 5-1 so the 

data can be related to the detector that collected it. 

 

Figure 5-9 and Figure 5-10 show typical plots from a male participant‟s walk as 

recorded by the detectors.   
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Figure 5-9: Participant A (male), distance v time 

 

 

Figure 5-10: Participant B (male), distance v time 

 

Firstly it is clear from the results that there is a distinct left to right oscillation, as found 

in sections 5.3.1 and 5.3.2.  There is also synchronicity with respect to time between 

the measurements of left to right swing from each detector.  As expected, the majority 

of the data shows reduced synchronicity at the start and end of the plots.  This is likely 

to be caused by the reduction in accuracy of the tracker as people enter and leave the 

field of view. 
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Figure 5-11 and Figure 5-12 show typical plots from two different female participants.  

It should be noted that the scale used in these figures is in the range of -0.5 to 0.5.  

This is different from the -1 to 1 scale used for the male participants, and enables the 

oscillation to be more easily seen.  The data has connecting lines drawn to help clarify 

the presentation of results.  

 

 

Figure 5-11: Participant D (female), distance v time 

 

 

Figure 5-12: Participant E (female), distance v time 

 

The data presented from the female participants shows some synchronicity, however 

the magnitude of the oscillation is significantly less.   The error of measurement is 
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beginning to introduce some disparity in the synchronicity.  Visual inspection of the 

data presented in Figure 5-12 shows marked synchronicity after 1500ms.  However the 

oscillation just before 1000ms shows a lack of synchronicity.    

5.4 Further analysis  

This section further examines the results collected during the stride experiments.  It 

starts by quantifying the synchronicity in left to right oscillation measured by two 

different detectors.  After this it examines the magnitude of the oscillations of the 

different participants.  Finally, it counts the number of footsteps each participant took 

in the field of view. 

5.4.1 Quantifying left to right swing synchronisation  

Sub-section 5.3.3 presented the left to right swing data for the participants with respect 

to time.  It shows that there is a distinct and clear synchronisation in the measured 

swing for the male participants.  It also shows that the magnitude of the female swing 

is lower and that the measurement error has an increased effect on this data.  This sub-

section quantifies the synchronisation by finding correlations in extrema as defined 

below. 

 

Table 5-1 details the extent of the synchronisation in the data collected during this 

experiment.   It counts the number of major direction changes referred to as extrema 

that are synchronised and unsynchronised.   An extremum is defined as a local 

maximum or minimum within plus or minus 250ms.  An extremum is defined as 

synchronised if found in data from both detectors within 200ms, provided both 

changes are in the same direction.  These synchronised extrema are later referred to as 

correlated points.  An uncorrelated point is defined as an extremum occurring either, 

more than 200ms apart, in the opposite direction or in data from only one detector.  

Counting the number of correlated points was performed automatically by the software 

developed. 

 

The data at the edge of the detector‟s field of view is ignored as it is prone to error.  All 

points with an x or y coordinate above 21 or below 4 corrected pixel units, fall into this 

category.    Although it varies from trajectory to trajectory, this generally results in 

approximately the first and last half second of data being ignored.  
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Table 5-1: Left to right swing correlations 

 

The results presented in this table show that 80% of the 140 footsteps measured show 

correlations.  The results also confirm the earlier finding that the extent of the 

correlation is lower in the female participants than the male.  85% of the male 

participants‟ footsteps were correlated whereas only 72% of the female footsteps were 

correlated.     

Participant Gender Walk No Correlated Uncorrelated 

A M 1 4 0

A M 2 4 0

A M 3 3 0

A M 4 2 1

A M 5 3 0

A M 6 2 2

A M 7 2 1

A M 8 3 0

B M 1 3 1

B M 2 3 1

B M 3 3 0

B M 4 3 1

B M 5 3 0

B M 6 3 0

B M 7 3 0

B M 8 4 0

C M 1 4 0

C M 2 2 2

C M 3 4 1

C M 4 3 2

C M 5 4 0

C M 6 4 0

D F 1 1 4

D F 2 1 0

D F 3 2 1

D F 4 3 1

D F 5 2 0

E F 1 4 1

E F 2 5 0

E F 3 1 0

E F 4 2 1

F F 1 3 1

F F 2 1 0

F F 3 3 2

F F 4 1 0

F F 5 3 2

F F 6 2 0

G F 1 4 1

G F 2 1 1

G F 3 2 1

G F 4 2 0
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5.4.2 Quantifying the magnitude of walking oscillations  

Sub-section 5.3.2 noted that the magnitude of left to right oscillation was significantly 

lower in female participants.  This sub-section further examines these magnitudes.  To 

quantify the magnitude of the left to right oscillations, the standard deviation from 

each walk‟s best fit line is examined.  This is referred to as the oscillation magnitude.   

Table 5-2 shows the average oscillation magnitude from each participant and the 

standard deviation from the mean for each participant. 

 

 

Table 5-2: Oscillation magnitudes 

 

These results show the same phenomenon noted in section 5.3.2.  The female 

participants generally had lower oscillation magnitudes than the male participants.  

Although there are a substantial number of different walks past the detectors there are 

only seven participants.   It is not therefore possible to draw definitive conclusions 

regarding the measurement of gender from this data.  Chapter 6 further develops the 

oscillation magnitude as a measure and examines its relationship to gender.   

5.4.3 Counting footsteps  

Sub section 5.4.1 describes a method for extracting the locations of footsteps and 

correlates them from one sensor to the other.  The data shows good correlation in the 

measurement of extrema as previously defined.  These extrema correspond to the time 

the pedestrian placed their foot on the floor.  Table 5-3 shows the number of footsteps 

and the number of extrema counted each time participant A walked passed the 

detectors.  It shows the direction of travel, the number of footsteps calculated and the 

number of footsteps counted.   The direction of travel indicates whether the 

participants were placing their feet on the floor markers. In the forward direction they 

were placing the feet on the markers and they were not in the backward direction.  The 

Participant Gender 

Average oscillation  

magnitude  
Standard deviation  

from the mean 

A M 0.319 0.133 
B M 0.430 0.257 
C M 0.301 0.151 
D F 0.234 0.159 
E F 0.260 0.138 
F F 0.269 0.149 
G F 0.192 0.083 
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counted number of footsteps was manually established by viewing the left to right 

swing data and counting any major changes in direction. 

 

 

Table 5-3: Participants A footstep counts 

 

As expected, the number of footsteps counted in the left to right swing data is five, in 

9/10
ths

 of the forward motion walks.  As the participant walked by placing their feet on 

the floor markers, the number of footsteps should be the same in all data in the forward 

direction.  When the data from all participants is examined 48 of the 58 forward 

direction walks showed five footsteps.  Half of the forward direction walks not 

showing five footsteps came from one female participant.    This confirms that the 

number of footsteps in the detector‟s field of view can normally be counted using this 

technique.     

 

The number of extrema calculated using the automated algorithm shows a close 

similarity to that counted manually, but it is not identical.  There are two factors that 

cause the differences.  Firstly, it is possible for a person viewing the data to better 

distinguish between valid and invalid extrema at the edge of the field of view.  The 

automatic counting algorithm makes no attempt to consider this data.   Secondly, the 

person counting the footsteps can identify major changes of direction that are not 

extrema.  This demonstrates the potential for improving the algorithm for detection of 

footsteps from the data.  Chapter 7 further examines different algorithms for extracting 

the number of footsteps and cadence from the data. 

Sensor No Walk No Direction

Calculated no 

extrema

Counted no 

footsteps 

1 1 f 4 4

2 1 f 5 5

1 2 f 3 5

2 2 f 5 5

1 3 f 4 5

2 3 f 5 5

1 4 f 4 5

2 4 f 3 5

1 5 f 4 5

2 5 f 4 5

1 6 b 1 2

2 6 b 3 4

1 7 b 2 4

2 7 b 7 7
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5.5 Conclusions  

The experiments detailed in this chapter set out to establish the answers to two 

questions.  Firstly; what is the source of a previously noticed oscillation?  Secondly; is 

it possible to measure the locations of individual footsteps?   The results presented 

show that the source of the oscillation is the left to right swing of human gait and that 

it is normally possible to measure the location of a person‟s footsteps using IRISYS 

people counters.   This is a new discovery that the manufacturers were unaware of 

(pers com David Clayson, Managing Director, IRISYS Aug 2006).  

 

Sections 5.3.1 and 5.3.2 graphically presents typical trajectories measured during the 

experiments.  They show an obvious oscillation in the participant‟s motion.  The 

change in direction noticed in the data correlate in location to the floor mark that the 

participants were asked to place their feet on.  This applies to both multiple 

measurements of a single person and to measurements from different people.  The 

footstep locations are similar for both multiple recordings from each participant and 

recordings from multiple participants.  The data demonstrates that there is clear and 

measurable oscillation and that it originates from gait motion.  Chapters 6 and 7 further 

develop algorithms for measuring and utilising this gait information. 

 

Section 5.3.3 presented a sample of the left to right gait motion with respect to time.  It 

shows the data as measured simultaneously from two detectors.  This confirms that it 

is possible to extract the left to right gait motion from pedestrians.  This data is further 

analysed in section 5.4 to establish the accuracy of the footstep measurement 

technique.  It found that in more than 80% of measurements it was possible to find the 

location of a pedestrian‟s footstep.  It is further noted that it may be possible to 

improve the automatic algorithm used for extracting footstep locations. 

 

It was noted that the magnitude of the left to right gait motion from female participants 

was lower than that from male participants.  While the data presented in this chapter is 

inconclusive, it tends to support the view that the trajectory centroid is heavily 

weighted towards the head and upper body of the participant.  Mather & Murdoch 

made the following statement: “Studies of human locomotion have found that male and 

female walkers differ in terms of lateral body sway, with males tending to swing their 

shoulders from side to side more, and females tending to swing their hips more than 
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their shoulders.” [86].  Chapter 6 further examines the oscillation magnitude and tests 

its relationship to gender.  
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6 Oscillation magnitude measure 

Chapter 5 described the development of an algorithm to measure the magnitude of left 

to right oscillation as pedestrians pass the detector.  This chapter further examines this 

measure and its potential uses.  The results presented in section 5.4.2 suggest that the 

female participants had noticeably lower left to right oscillation magnitude than the 

male participants, as might be expected given the assumption that the tracker mostly 

follows the head and upper body motion.  The ability to automatically measure the 

gender of a pedestrian is of significant interest to market researchers.  If the measure is 

found to be individualistic, it could provide a useful input for human identification 

system.  This chapter investigates whether it is possible to use this information for both 

gender detection and discrimination between individuals.   

 

Firstly the measure is examined to determine if the gender of an individual can be 

established and if not, whether the information can be used to help inform a human 

identification system or establish an accurate measure of proportions of male and 

females passing the detectors.  The experiments conducted, results analysed, and the 

development and validation of a gender distribution algorithm are presented here. 

6.1 Calculating the measure 

Calculating the oscillation magnitude measure is a two stage process.  First the general 

direction of travel is ascertained by fitting an equation.  Then the standard deviation of 

distance from the measured trajectory to the fitted equation is calculated.   

 

During chapter 3 barrel distortion found in the detectors was examined and a 

correction algorithm was proposed.  It is noted that this algorithm, while providing a 

generally good solution, is imperfect as distortion is inconsistent from detector to 

detector.  To limit the effect of this, the algorithm proposed fits a polynomial to the 

trajectory data allowing an easy representation of the general measured motion of the 

pedestrian.  Given that some trajectories have only three footsteps in the meaningful 

field of view, a second order polynomial is selected to reduce the chances of over 

fitting.  Before finding the polynomial, linear regression is performed on the data as 

described in appendix C and the gradient of this line is used to decide whether 



97 

   

Equation 6-1 or Equation 6-2 is best suited to minimise the error of fitting to two 

dimensional data, with error in both dimensions. 

 

𝑦 = 𝑎𝑥2 +  𝑏𝑥 +  𝑐 

Equation 6-1: Rotation of Polynomial 1 

 

𝑥 = 𝑎𝑦2 +  𝑏𝑦 + 𝑐 

Equation 6-2: Rotation of Polynomial 2 

 

The distance of each point from this polynomial is then calculated (for Equation 6-1 

the y distance, for Equation 6-2 the x distance) the root mean square of these values is 

calculated to provide an oscillation magnitude measure.  This provides a good measure 

of the magnitude of left to right swing of the pedestrian, providing they do not sharply 

change direction while inside the field of view.  

6.2 Experimentation 

Two different sets of experimental data were collected to develop and validate the 

gender detection algorithm.  The first was collected at Napier University‟s Merchiston 

Library.  The second was collected at Infrared Integrated Systems (IRISYS) office in 

Swan Valley, Northampton.  At these two locations, two different sets of data are 

collected, providing four datasets; firstly, choreographed data where participants were 

asked to walk under the detector and secondly data capture sessions were arranged in 

the environment‟s normal every day usage.  The first capture style provides predictable 

data which can easily be used to develop the algorithm.  The second provides valuable 

real world datasets, to help validate the algorithm developed.  

6.2.1 Data collected at Napier University library 

The data collection installation at Napier University‟s Merchiston campus library, 

described in Section 4.2 (stereo experiments), was used to collect data.   In this 

installation the detectors were mounted at a height of 3.85m.  For the first dataset five 

females and three males were asked to repeatedly walk under the detectors at separate 

times and measurements were taken.  This provided seventy two recordings of males 

and forty eight of females.  This dataset was combined with data collected at the same 

location, as described during chapters 4 and 5.  The resulting dataset contains 166 

recordings collected from eleven males and 166 recordings collected from eleven 
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females.  Data collected from ten of the females and nine of the males can be linked to 

the individual.  The genders of the people producing the remaining readings are known 

but which reading relates to which individual is not.  This dataset is later termed 

choreographed data as all the people were knowingly participating in the experiment. 

 

In addition, data was recorded in the library‟s normal usage, over thirty minutes.    An 

observer counted the numbers of males and females passing the detectors, and the time 

of any people passing whom the detectors failed to track.   During this time sixty one 

people passed the detector of whom twenty four were female, thirty six male and one 

who was not properly tracked.  Tracking problems are common to all automatic people 

tracking equipment.  Each person was recorded by two different detectors providing 

120 measurements.  This dataset is referred to as validation data.    

 

The choreographed and validation datasets were collected using more than one 

detector.  In chapters 3 and 4 it was noted that some difference existed between the 

detectors.  However it is unclear what, if any, effect these differences will have on the 

oscillation magnitude measure.  Section 6.3 of this chapter further examines this point. 

6.2.2 Data collected at IRISYS 

The data collection at IRISYS took place in a narrow corridor running down the centre 

of an open plan office.  A single detector was located 3.2 meters above the ground, 

with the corridor running down the centre of the detector‟s field of view.  For 

collection of the choreographed data, ten different participants, five male and five 

female, took part.  Each participant was asked to repeatedly walk under the detector, 

providing at least ten measurements from each person.   This is later referred to as 

choreographed data. 

 

To validate the algorithm developed using this data, a full day of data capture was 

performed in the same location.  A video camera was installed with a good view of the 

measurement location so that gender of each person walking by could be ascertained 

during analysis.  The people passing by were doing so in the course of their normal 

daily work routine.  While there was clear signage indicating that recording was taking 

place, several people did not notice it.  They were therefore unaware that 

measurements were being taken.   
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6.3 Factors affecting the oscillation magnitude measure 

During chapter 4 some variance between detectors was noted, particularly in 

connection to barrel distortion.  While fitting a polynomial should overcome the 

majority of barrel distortion present, there may be other factors providing variance 

from one detector to another.  This section investigates what, if any, difference can be 

found in the oscillation magnitude obtained from each of the three detectors used at 

Napier University.  This is not intended to show that there is no variance in the 

trajectory measurement between different products from the same detector model, but 

that oscillation magnitude measure is not affected.  It then examines whether the 

location of the participant within the field of view has an impact on the oscillation 

magnitude measure.   

6.3.1 Examining the differences between detectors 

This sub-section, explores if there is significant variance in the oscillation magnitude 

between detectors.  To do this, measurements from five people are analysed using 

single factor analyses of variance with 95% confidence.  This effectively shows 

whether there is a significant difference between the measures from the individual 

detectors.  The data is taken from the choreographed dataset collected at Napier 

University.  Table 6-1 shows the analysis of variance results of from six of the 

participants, the data used can be found appendix D.  

 

 

Table 6-1: Detector variance results 

 

This table shows that in the data from six people, no variance is attributable to the 

detector that captured the data.  To further support the hypothesis that the measure is 

not dependent on the detector, single factor analysis of variance was performed on data 

from all the participants, grouped by detector.  This demonstrated that no variance 

existed between detectors when analysed to 95% confidence.  Failing to show that a 

Gender Person

Degrees of freedom 

within groups

Variance 

detected 

M A 18 No

M B 24 No

M C 18 No

F J 18 No

F K 27 No

F R 18 No
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significant variance exists does not prove (in a statistical sense) that there is not one; it 

does however provide a very compelling argument to support the hypothesis.  For 

these reasons, the assertion is made that the measure is not affected by the detector 

from which it originates. 

6.3.2 Examining path taken  

This sub-section examines what effect the location of the trajectory, within in the field 

of view, has on the measure obtained.    Figure 6-1 shows trajectories of four passes by 

person A, all taken near the centre of the field of view.  Figure 6-2 shows the 

trajectories of two different passes near the edge of the field of view.  For this analysis, 

that dataset collected at Napier University is used. 

 

 

Figure 6-1: Sample trajectories from centre 

field of view 

 

Figure 6-2: Sample trajectories near edge of 

field of view 

 

When the data is examined it is clear that a significantly larger oscillation is noted at 

the edge of the field of view.  Three factors are believed to contribute to this edge 

effect.  The first of these is barrel distortion, which was investigated in section 3.4 of 

this thesis.  Secondly, when a person is walking at the edge of the field of view some, 

but not all, of the person is out with the field of view.  This could significantly affect 

the tracker‟s centroid location and therefore the measure.  Thirdly, the view of a person 

at the edge of the field of view will be different from that in the centre.  In the centre, a 

complete top down view is achieved; at the edge of the field of view much more of the 

side of the person will be visible.  The barrel distortion is unlikely to have a significant 

effect on the oscillation magnitude measure due to fitting a second order polynomial to 
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account for direction of motion.  However, the differing view point and partial 

occlusion will almost certainly impact the measure.  For these reasons, trajectory 

measurements where the centre of the trajectory is less than 4 or greater than 21 after 

correction for barrel distortion are excluded from the trajectory data for calculating the 

oscillation magnitude measure. 

6.3.3 Summary 

This section has examined the oscillation magnitude measure with a view to 

determining if there is any difference in the measurement between detectors.  No 

variation has been found.  Based on this is it the author‟s opinion that the oscillation 

magnitude measure is not significantly affected by detector variation.  A difference has 

been noted in the measure when the trajectory tracks the edge of the field of view.  

This confirms the findings in chapter 5 and a system for excluding measures likely to 

be adversely affected is proposed. 

6.4 Choreographed data results 

The introduction to this chapter presents two major questions.  Firstly, can the 

oscillation magnitude be used to determine the gender of people passing under the 

detector?  Secondly, can this measure be used to determine the distribution of male and 

females that pass under the detector?  This section examines the results from the 

choreographed data, with a view to answering the above questions.   

6.4.1 Data collected at Napier University  

The full results from the choreographed experiment are shown in Table 13-1 in 

appendix D.  Table 6-2 shows a summary of the data collected from the nineteen 

participants. 
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Table 6-2: Summary of Oscillation magnitudes from Napier Data 

 

It is possible to establish whether the oscillation magnitude measure is linked to the 

individual by performing single factor analysis of variance.  The results presented in 

Table 6-3 shows the results from this analysis when performed to a confidence interval 

of 0.01 (99%).  

 

Table 6-3: Analysis of variance, Napier data oscillation magnitudes 

 

This result establishes that the measure stems from an individualistic factor and can 

therefore contribute to the identification of an individual.  However the variances 

shown in Table 6-2 and Table 6-3 demonstrate that there is significant overlap between 

individuals.  The value of SS within groups is higher than between groups, indicating 

that the variance in the measure of oscillation magnitude from a single person is higher 

than the variance of the mean between groups. Therefore while the oscillation 

magnitude can contribute to identification, it alone will not be sufficient to identify an 

individual.   

Groups Count Sum Average Variance

Person A (male) 14 1.438 0.103 0.007

Person B (male) 14 1.211 0.087 0.022

Person C (male) 14 1.279 0.091 0.006

Person D (male) 14 1.039 0.074 0.006

Person E (male) 14 1.476 0.105 0.005

Person F (male) 14 1.336 0.095 0.005

Person G (male) 14 2.876 0.205 0.043

Person H (male) 14 1.217 0.087 0.009

Person I (male) 14 2.338 0.167 0.016

Person J (female) 14 0.506 0.036 0.001

Person K (female) 14 0.658 0.047 0.002

Person L (female) 14 0.685 0.049 0.003

Person M (female) 14 0.603 0.043 0.001

Person N (female) 14 0.544 0.039 0.001

Person O (female) 14 0.447 0.032 0.001

Person P (female) 14 0.426 0.030 0.001

Person Q (female) 14 0.549 0.039 0.002

Person R (female) 14 0.971 0.069 0.005

Person S (female) 14 1.039 0.074 0.011
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To clarify the relationship between the measure and gender, the data is split into two 

groups, male and female.  On examination of this data we can see that a noticeable 

difference exists in the means of each gender.  Table 6-4 shows the results of a two 

sample t-test assuming unequal variance with a confidence interval of 0.01.   

 

 

Table 6-4: Gender t-test results, Napier Data, oscillation magnitude 

 

The value of t Stat is larger than that of t Critical thus demonstrating to 99% certainty 

that the difference in the mean readings from male and females is not random.  The 

corollary of this is that the oscillation magnitude provides a significant indication of 

the gender of the participant.  Figure 6-3 shows a histogram of the data from the 

Napier dataset, containing 166 reading for both males and females.  

 

Figure 6-3: Histogram of Napier gender data 
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6.4.2 Data collected at IRISYS 

The full results from this experiment are shown in appendix D.  Table 6-5 shows a 

summary of this data.  It should be noted that none of the participants in this data set 

took part in the experiments at Napier University.  This data does not include any 

measures considered to be erroneous, as described in section 6.3, as none of the 

measurements taken in this location were near the edge of the field of view. 

 

 

Table 6-5: Average of IRISYS results 

 

It is possible to show whether the oscillation magnitude is linked to the individual in 

this data by performing single factor analysis of variance.  The results presented in 

Table 6-6 show to a 99% confidence that the results found stem from an individualistic 

factor. 

 

 

Table 6-6: Analysis of variance for IRISYS results 

 

The variances shown in Table 6-5 and Table 6-6 demonstrate that there is significant 

overlap in the data between individuals as is found in the results from the Napier 

dataset.  This shows that, while the measure is influenced by the individual, it is not 

possible to identify the individual solely by this measure.  By splitting the data into 

two different groups, male and female, we can see that a more significant difference 

SUMMARY

Groups Count Sum Average Variance

Person A (male) 10 0.7607 0.0761 0.000310

Person B (male) 10 0.3140 0.0314 0.000113

Person C (male) 10 0.2674 0.0267 0.000119

Person D (male) 10 0.3452 0.0345 0.000675

Person E (male) 10 0.2912 0.0291 0.000510

Person F (female) 10 0.2438 0.0244 0.000109

Person G (female) 10 0.1296 0.0130 0.000052

Person H (female) 10 0.1051 0.0105 0.000048

Person I (female) 10 0.3399 0.0340 0.000125

Person J (female) 10 0.0824 0.0082 0.000013
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exists in the means of each group.  Table 6-7 shows the results of a two sample t-test 

assuming unequal variance with a confidence of 99%.   

 

 

Table 6-7: Gender T-Test results, IRISYS Data 

 

This analysis proves that we can be 99% sure that the difference in the means between 

males and females, is not random.  Figure 6-4 shows a histogram of the data from male 

and female participants.    

 

 

Figure 6-4: Oscillation magnitude gender histogram IRISYS Data 

 

This histogram shows graphically the difference in the measure between the genders.  

This is slightly easier to see when the histogram data is filtered (using Equation 4-3) 

and plotted as a line graph as shown in Figure 6-5.  It should be noted that the filtering 

applied assumes that there is a finite linear distribution of noise in the measure.  

Male Female

Mean 0.0396 0.0180

Variance 0.0007 0.0002

Observations 50 50

Hypothesized Mean Difference 0

df 71.0

t Stat 5.3095

P(T<=t) one-tail 0

t Critical one-tail 2.3800

P(T<=t) two-tail 0

t Critical two-tail 2.6469
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Figure 6-5: Filtered line graph representation of Histogram IRISYS Data 

 

The results presented in this sub-section confirm those in the Napier Data.  It is noted 

that the absolute values in this dataset differ from those in the Napier dataset.  The 

author believes that the different mounting heights of the detector largely account for 

this difference.  

6.4.3 Summary  

This section has presented the results and analyses from the two different 

choreographed datasets, the first collected at Napier University, the second collected at 

IRISYS.  Based on these results it is clear that the oscillation magnitude measure 

developed is strongly influenced by the individual to which it relates.  There is 

however significant overlap and variance in the measure.  This effectively rules out the 

use of this measure as a sole identifiable feature; however it could be used as an input 

to a stochastic human gait ID model such as that proposed by Wagg and Nixon [61].  

A significant difference in the absolute measures from the two different experimental 

locations is noted; this is believed to originate for the varying mounting height.  As 

there is only data from two different mounting heights it is not possible to accurately 

quantify the relationship between the mounting height and the measure of oscillation 

magnitude. 

 

The results of the t-tests on both the IRISYS and Napier Data show with 99% certainty 

that gender plays a significant part in the measure.  Therefore it is fair to conclude that 

0

5

10

15

20

25

0.010.030.050.070.090.110.130.150.17

C
o

u
n

t

Bin (0.01)

Frequency (male)

Frequency (female)



107 

   

a measurable quantity, highly correlated to gender exists, in this data.  There is overlap 

in the measure, so it is not possible to establish the gender of an individual pedestrian.  

There is however sufficient information to establish the distribution of genders in a 

population, purely from the oscillation magnitude measure.  The next section proceeds 

to test this point, and to investigate the accuracy of the measure‟s ability to correctly 

determine the distribution of genders in validation datasets. 

6.5 Gender validation results  

The choreographed results have shown that the oscillation magnitude measure 

developed is influenced slightly by the individual and strongly by the gender of the 

participant.    In theory, establishing the distribution of genders in any population 

should be simple.  The mean oscillation magnitude from any population should lie 

between the means for males and females.  Further, the ratio between the two means 

for the male and female should be equivalent to the ratios of each gender in the 

population.  Equation 6-3 shows this calculation. 

 















mfmm

mfo
male 100%

 

Equation 6-3: Gender distribution equation 

 

This is based on the assumption that the people taking part in this experiment are a fair 

representation of any population being examined; i.e. that should the data collection 

exercise be repeated with a different group of individuals the same mean measure 

would be found for each gender.    It is also assumed; that the fact the subjects were 

taking part in the experiment did not affect the oscillation magnitude measure obtained 

an assumption also made by Nixon et al [63].  Establishing the first assumption is 

beyond the scope of this thesis.  This section examines the data collected from the 

validation exercises with a view to clarifying the second assumption and further 

validating the measure‟s usefulness in determining gender distributions. 

6.5.1 Napier data gender distribution validation results 

Section 6.2.1 described the data collection process at Napier University.  The second 

set of validation data was collected as people used the library during the course of their 

normal activity.  While there was clear signage indicating that data was being 

Where  o = mean oscillation magnitude from population 

   mm = mean measure from male only data  

    mf = mean measure from female only data 
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collected, most people did not notice it.   Therefore they were not generally aware the 

measurements were being taken.   

 

The space in the library where the measurements took place is a large open entrance 

lobby, shown previously in Figure 4-2.  While people were generally walking past the 

measurement area, there was no obstruction limiting the direction or motion of the 

people.  They could enter and leave the area from any edge of the field of view.  Most 

however travelled into or out of the library from top edge to bottom edge or vice-versa, 

walking broadly in a straight line.  

 

Fourteen of the one hundred and twenty measurements were considered to contain 

insufficient data as they related to trajectories that broadly followed the edge of the 

field of view.  These were removed from the data leaving 106 useful measurements.  

Table 6-8 shows the mean of the oscillation magnitude measure from the validation 

dataset and the percentage of males this corresponds to as calculated using Equation 

6-3 and the mean for males and females from Table 6-4.  The full sets of results are 

included in appendix D. 

 

 

Table 6-8: Napier validation dataset result 

 

It is clear from this result that the mean measurement is greater than that expected for 

only male participants and the gender distribution algorithm is not yielding a correct 

result in this dataset.  Further examination of the data shows that there several readings 

where the oscillation magnitude measure is significantly higher than would normally 

be expected from the data.  This is due to the trajectory taken by the person not being 

well modelled by the second order polynomial fitted, to account for the direction of 

motion.  It is not possible to control the trajectory an individual passing the sensor 

takes in the Napier library entrance; therefore it is necessary to eliminate any readings 

where the result is likely to be misleading.  This is achieved by removing any readings 

where the oscillation magnitude measure is greater than three standard deviations 

above the mean for male participants in the choreographed dataset, shown in Table 

6-9. 

Mean %Males 

0.127 118.471
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Table 6-9: Napier male choreographed dataset summary 

 

By applying this selection criteria 8 of the 106 readings (7.5%) were deemed to be 

erroneous and were removed, leaving a recalculated result shown in Table 6-10. 

 

 

Table 6-10: gender distribution results 

 

Given that the actual number of males was 60% and that 22 of the 120 readings were 

discounted, this result, showing 68% males, demonstrated good potential for use of the 

oscillation magnitude measure as a system for discerning distribution of genders in the 

population.  The next section further examines the gender distribution algorithm on the 

IRISYS validation dataset.  

6.5.2 IRISYS gender distribution validation results  

Section 6.2.2 introduced the data captured at IRISYS to validate the results.  This was 

captured by placing the detector over a corridor in an open plan office.  The corridor 

was approximately one metre wide.  A video camera recorded people passing so their 

gender could be established when the data was analysed.  Many of the people walking 

past did not notice that they were being recorded.  Some of these people had taken part 

in the choreographed experiments at the same location but they accounted for the 

minority of the data collected.  The corridor at the time of recording was used by 

approximately 30 different people; some contributed to multiple readings some only 

passed once. 

 

Figure 6-4 shows a histogram of the oscillation magnitude readings from the validation 

data capture at IRISYS, the full dataset is shown in appendix D.  By viewing the video 

footage of the data it is possible to ascertain the gender of each individual.  There were 

62 measurements taken, fifty nine from males and three from females.  The pattern 

shown in this data is very similar to the values found from the males in the IRISYS 

choreographed dataset.   

Stdev 0.114

Mean 0.115

Mean+3*Stdev 0.458

Mean %Males 

0.094 68
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Figure 6-6: Histogram of IRISYS Validation data 

 

The histogram shows that the distribution follows the expected result, based on the 

choreographed data collection.  It is noted that this data does not exhibit any extreme 

(greater 3 standard deviations above the male mean) readings as were found in the 

validation data collected at Napier.  This is likely to be influenced by the layout of the 

corridor where that data collection took place.  The corridor was narrow at 

approximately one meter wide, which constrains the trajectory to a straight line. Table 

6-11 shows the mean measure obtained and results from the gender distribution 

Equation 6-3.  The values for all male and all female used in the gender distribution 

equation are taken from Table 6-7.   

 

 

Table 6-11: Gender distribution results IRISYS 

 

This result shows that in the dataset of 62 people the gender distribution has been 

measured as 80% where as the actual proportion of males in the data is 95%.  This 

result indicates that there is some merit in the algorithm, it is however possible that the 

fitting of a second order polynomial over fits the trajectory data, reducing the quality 

of the measure.   To understand this better, the analysis is repeated constraining the 

value of a=0 (the squared term) in Equation 6-1 or Equation 6-2.  The IRISYS dataset 

was captured at a considerably lower height than the Napier dataset; therefore fewer 

data points are available for each trajectory.  This, combined with the knowledge that 

Mean % Male

0.035 80
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the data capture area was narrow, straight and running close to the centre of the 

detectors optical axis, suggests that better results might be obtained if a straight line is 

fitted instead of a second order polynomial.   Table 6-7 shows the mean results from 

all measurement in the choreographed dataset, calculated by fitting the straight line to 

the data.  This consisted of all 100 readings, 50 for male and 50 for female.   As with 

the analysis described in section 6.4.2 a student t-test was conducted on the data to a 

confidence interval of 99% confirming that the difference in the means is statistically 

significant. 

 

Table 6-12: Mean results IRISYS choreographed data straight line fit 

 

Table 6-13 shows the mean straight line measurement and the proportion of males and 

females in the dataset calculated using Equation 6-3 and the gender mean values from 

Table 6-12. 

 

Table 6-13: Straight line fit validation dataset results IRISYS dataset 

 

This shows a very impressive results considering that the data actually consisted of 59 

males out of 62 people.  The improvement in the result presented in Table 6-13 over 

the results presented in Table 6-11 suggest that fitting a second order polynomial is in 

this instance over fits the data.  The same is not the case with the Napier dataset.  

Fitting a straight line is better when the data collection is constrained to people 

walking in a narrow corridor, following a path known to have minimal optical 

distortion (near the centre of the optical axis and not crossing the field of view 

diagonally) and with a low mounting height. 

6.6 Conclusions 

This chapter has presented a study into the extraction of a measure of oscillation 

magnitude measure based on the findings of chapter 5 and its relationship to the gender 

of the person from whom it originated.  It presents the experiments conducted, both at 

Napier University and IRISYS.  Each experiment consisted of gathering two different 

datasets, a choreographed set and a validation data set.  The choreographed datasets 

were generated by arranging for a group of individuals to repeatedly walk under the 

Femal Male

0.030 0.051

Mean %Male

0.048 87
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detector so a known set of measurements could be taken.  The validation datasets were 

collected when the measurement area was being used in its normal every day use.  At 

Napier an observer noted the gender of the people passing by.  At IRISYS the data 

capture also recorded video so the gender of the individual could be determined during 

analysis.  

 

The choreographed datasets are analysed using both analysis of variance and Student t-

test.  While the absolute values from Napier and IRISYS differ, both show the same 

trends, namely that the oscillation magnitude is both individualistic and highly 

correlated to the participant‟s gender.  The difference in absolute measures is believed 

to originate primarily from differing mounting heights of the detectors.  

 

Analysis of variance of both choreographed datasets show to 99% certainty that the 

measure is linked to the individual.  There is significant variance and overlap in the 

measure which means that the measure cannot be solely relied on as a form of 

identification.  However, it could be used to inform a stochastic human ID model, such 

as a hidden Markov model.  Wagg and Nixon [61] produced several different 

identifying features from their video based human gait analyses; in addition they 

performed analysis of variance and found that both cadence and parameters relating to 

head displacement from body were most significant.  To provide an indication of how 

significant each measure is likely to be Wagg and Nixon present two tables in their 

paper showing the F- Statistic for each measure extracted.  The F statistic from 

analysis of variance conducted on the Napier choreographed dataset is 3.89 and the 

IRISYS data is 17.85.  These are significantly lower than the worst of the measures 

used by Wagg and Nixon which was 34.92 from the outdoor dataset.  From this 

analysis the results suggest that the measures extracted by Wagg and Nixon were more 

individualistically discriminative that the oscillation magnitude developed in this 

research, however the imager perspectives were significantly different. 

 

Analysis of the choreographed data sets, using an un-paired t-test assuming unequal 

variance, shows to 99% certainty that the difference in the means from each gender is 

not random.   Given the accepted position [86] that the lateral oscillation of the upper 

body in human locomotion is typically smaller in women than in men, this research 

establishes that a measure of upper body oscillation can be obtained from the IRISYS 
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detector trajectory data.  Further, this research establishes that it is possible to 

automatically obtain a measure that is both individualistic and highly correlated to 

gender.  Given the statistical significance of the differences in the mean readings for 

males and females, determining the distributions of gender in a population, is possible.  

A gender distribution algorithm is developed and tested on two datasets, with 

promising results.   

 

This chapter has examined the oscillation magnitude measure and found that it can be 

used as in input to a human gait model.  Further, a gender distribution algorithm has 

been developed based on the choreographed dataset.   
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7 Cadence measurement algorithms  

The results presented in chapters 5 and 6 shows that some human gait information is 

available from the IRISYS detectors.  Many other researchers have examined stride 

and cadence looking for individualistic features, including Winter [87], 

BenAbdelkader et al [88] and Wagg & Nixon [61].  As others have presented 

successful results using cadence measures, this chapter examines whether useful 

cadence measures can be obtained from the trajectory information. 

 

BenAbdelkader et al [65] present a system for estimating three stride parameters from 

video footage: velocity, cadence and stride length.  According to Winter [87] the stride 

length of a person is dependent on several factors such as stature, age, weight, gender 

and walking speed.  Winter noted that the walking stride distance of an individual is 

directly proportional to their speed.  This essentially indicates that out of the three 

features BenAbdelkader detected, only cadence is significant for human identification.   

 

This chapter first investigates the algorithms used to account for direction of motion.  

Following on from this it examines the measurement of cadence using a discrete 

Fourier transform of the lateral motion data extracted from the trajectory, after 

accounting for direction of motion.  Three different measures are extracted from the 

Fourier view of the data, the most significant harmonic (cadence), a filtered average 

cadence and finally an average of all harmonics present.    

7.1 Accounting for direction of motion 

The work presented in chapter 5 provided a method for extracting the location of 

footsteps using extrema, after accounting for direction of motion, by fitting a straight 

line to the trajectory data.  This was found to be successful in 80% of footsteps from a 

limited and controlled dataset; the regression used to fit the straight line is described in 

appendix C.  Chapter 3 investigated barrel distortion found in detectors and noted that 

the distortion varied from detector to detector.  In Chapter 6 a second order polynomial 

is fitted to trajectory data to account for direction of motion, thus eliminating any 

problems caused by inaccurate barrel distortion correction, as described in section 6.1.  

This section examines the two different methods of accounting for direction of motion 

with a view to selecting the most relevant for extracting a stride measurement.   
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Figure 7-1 shows a trajectory plot from the Napier dataset; the red line depicts the 

trajectory data from a subject before correcting for barrel distortion (as described in 

chapter 3) and the green line, after correction for barrel distortion.   

 

 

Figure 7-1: Trajectory plot 

 

To the human eye it appears that the green line is a good correction for barrel 

distortion.  However there is still slight uncorrected distortion.  The barrel distortion 

correction algorithm presented in chapter 3, was aimed at a general solution suitable 

for measuring pedestrian motion such as is presented in [1] but not for detailed 

analysis of the Napier dataset.  Figure 7-2 shows plots of the lateral distances from 

both the straight line and second order polynomial, plotted in the time domain, from 

this same trajectory. 
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Figure 7-2: lateral distance from direction of motion fit 

 

Figure 7-2 shows that the distance from the second order polynomial, better presents 

the lateral gait oscillation this research attempts to measure than the distance from the 

straight line.  The results of the IRISYS gender validation dataset presented in section 

6.5.2 found that, for the purpose of ascertaining gender distribution, fitting a second 

order polynomial produces a less accurate result due to over-fitting the data.   Further 

analysis of the IRISYS data set demonstrates that as the mounting height decrease, the 

number of data points also decrease.  This in part explains why the advantage gained 

by fitting a second order polynomial on the Napier data set is not present in the 

IRISYS dataset.   

 

The remainder of the chapter describes a method for extracting cadence using a 

discreet Fourier transform and examines this data with respect to the individual and 

their biometrics.    

7.2 Measuring cadence in the Fourier domain  

This analysis extracts the most significant harmonic from the data available using a 

discrete Fourier transform on the time series lateral motion data extracted as described 

in section 7.1 (such the blue plot shown in Figure 7-2).  Before converting the data into 

the Fourier domain two different process steps are taken.  First an algorithm processes 

the data checking if any frames of data are missing.  Missing frames are rare but they 

do occasionally occur.  Where they are found linear interpolation is used to ensure that 

the time series data represents discreet samples.  Secondly, a window is applied to the 
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data to limit edge or out of phase effects in the Fourier domain.  The windowing used 

is a Hann window as described Blackman et al. [89].   

7.2.1 Results 

This sub-section presents a summary of the results of the cadence measure as described 

above.  The values of cadence are expressed as the period of cadence, in milliseconds.  

This is taken as the point with the highest magnitude in the Fourier domain.  Table 7-1 

summarises the cadence measurement results from the Napier dataset.  The full table 

of results is included in appendix D, Table 14-1.  It is noted that only data from 17 of 

the participants is examined as biometric data is not available for the other 4 

participants.    

 

 

Table 7-1: Cadence results summary, Napier dataset 

 

Single factor analysis of variance is performed on the data assuming unequal variance 

with a confidence interval of 0.05. Table 7-2 presents a summary of this analysis.  

 

 

Table 7-2: ANOVA cadence result, Napier dataset 

Groups Count Sum Average Variance

Person A 14 6233 445 11833

Person B 14 8531 609 32938

Person C 14 6504 465 12094

Person D 14 8398 600 10385

Person E 14 7518 537 23853

Person F 14 7248 518 18340

Person G 14 7809 558 44684

Person H 14 7939 567 30285

Person I 14 9549 682 37488

Person J 14 8691 621 51760

Person K 14 9306 665 42470

Person L 14 9254 661 39324

Person M 14 8279 591 18751

Person N 14 7960 569 24663

Person O 14 8293 592 43009

Person P 14 8929 638 51033

Person Q 14 8722 623 13622

Source of Variation SS df MS F P-value F crit

Between Groups 982489 16 61406 2.0609 0.0110 1.6894

Within Groups 6584921 221 29796

Total 7567410 237
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As the value of F is greater than the value of F-critical, this analysis establishes to 

better than 95% certainty that the cadence measure extracted is individualistic.   

However it is clear that there is significant measurement variance in the data.  The F 

statistic of 2.06 is very low, indicating that the cadence measure extracted in this 

research has lower discriminating ability than the oscillation magnitude measure 

described in chapter 6.  

 

Further analysis of the Fourier domain data was conducted to improve this result.  

Firstly, a measure calculated using a weighted sum of magnitudes in the Fourier 

domain for cadence periods greater than 333ms and less than 1500ms.  This is later 

referred to as filtered Fourier cadence.  The lower time period is selected as it is a 

good measure of the fastest step rate the author could maintain for 10 seconds.  The 

larger of the two figures is taken as a round number (approx 50ms), slightly above the 

slow gait figure used by West and Scafetta [90].  A set of points, D (magnitude and 

harmonic index) is constructed in this range.  The range is chosen as a wide but 

reasonable estimate of likely walking harmonics.  Equation 7-1 shows the filtering 

calculation applied to this set.  Inspiration for its derivation is obtained from the sub-

pixel accuracy centroid calculations used by Cameron et al and Li et al [83, 91].  The 

second method, later referred to as weighted Fourier cadence, uses the same equation.  

However the set D consists of all magnitude data in the Fourier domain.   
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Equation 7-1: Harmonic filtering equation 

     

The results of both the filtered and weighted Fourier cadence can be found in 

Appendix D, Table 14-3 and Table 14-4 respectively.  The results and single factor 

analysis of variance performed to a confidence of 95% show a similar response to that 

for the Fourier peak cadence measure, namely that the measure is individualistic.   

Table 7-3 shows the F-statistics of the three different methods of extracting the 

cadence measure from the Fourier domain.  

 

f          is cadence harmonic in milliseconds 

D        is the set of magnitudes in the Fourier domain 

n         is the number of elements in D  

index  is the harmonic index in the Fourier domain 

S         is the number of sample in the Fourier domain 
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Table 7-3: Cadence F- Statistics 

 

This presents a surprising result in that the weighted cadence measure, which includes 

all the high frequency noise, shows a larger F Statistic than either of the other two 

measures.  This indicates that the weighted Fourier cadence measure is better at 

discriminating individuals than either the peak or the filtered measure.  This result in 

turn poses interesting questions:  Is the weighted measure a better indication of 

cadence than the Fourier peak or is it merely better at discriminating individuals, and 

can the same affect be found in video data?  Perhaps these are interesting topics for 

future study. 

7.2.2 Summary 

This section has presented three methods for extracting a measure of cadence from 

participants.  Analysis of the results shows to 95% certainty that the measure is 

individualistic.  However all three have a low F statistic which indicates that its ability 

to aid the identification of individuals is low.  Wagg, Nixon et al [61, 63] produced a 

significantly higher F statistic for the cadence measure they extracted from video 

footage indicating a significantly higher level of accuracy (approximately 100 times 

more discriminative).  However they had several advantages over the trajectory data 

from the IRISYS detectors.  They were viewing participants from a fronto-parallel 

view, which provides an image of leg motion. While this provides a significant 

advantage for gait extraction, it requires participants to walk in single file, a 

disadvantage the system presented here does not have.    

7.3 Relating cadence to biometric features  

This section examines the cadence measure described in section 7.1 with respect to 

height, inside and outside leg length of the participants from the Napier dataset.  The 

peak cadence measure is used as it is unclear if the more discriminative weighted 

measure actually relates to cadence; the less discriminative filtered measure is 

considered less likely to accurately represent cadence.  As there is significant noise in 

cadence measure the average peak cadence measure is taken from 14 different passes 

F-Statistic 

Peak Fourier Cadence 2.06

Weighted Fourier Cadence 2.62

Filterd Fourier Cadence 1.88
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of the detector for each participant.  Figure 7-3, Figure 7-4 and Figure 7-5 respectively 

show plots of this cadence measure in relation to height, inside and outside leg length.  

Each plot has a linear trend line plotted using least squares regression; the equation and 

coefficients of determination (r
2
) for the trend lines are also shown.  Table 14-2 in 

Appendix D shows the actual results. 

 

 

Figure 7-3: Cadence v Height 

 

 

Figure 7-4: Cadence v Inside Leg Length 
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Figure 7-5: Cadence v outside leg length 

 

The results presented here show some interesting features, although it is noted that the 

correlations are very loose.  The slopes of the regression line are opposite for the 

outside and inside leg lengths, implying that the hip size (difference between inside 

and outside leg lengths) has more of an impact on the measure than any other feature.  

Figure 7-6 shows a plot of this.   

 

 

Figure 7-6: Cadence v hip size results 

 

Given the looseness of the correlations it is not possible to draw definitive conclusions 

about this relationship.  This poses an interesting topic suitable for further analysis, 

perhaps within the field of clinical gait analysis.   
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7.4 Summary  

This chapter has examined the measurement of cadence using a discrete Fourier 

transform on distance from a second order polynomial equation fit to trajectory data.  

This provides a measure of lateral gait oscillation of the participant as they pass under 

the measurement area.  Three methods are examined for extracting a measure from the 

Fourier domain.   The first extracts the dominant frequency, that with the largest 

magnitude, and is considered to be the most likely to represent cadence.  The second 

takes a weighting of all frequencies present within the range expected for walking gait; 

this attempts to filter out high frequency noise from the data.  The third takes a 

weighted measure for all frequencies present.  

 

The results presented show that, taking a weighted sum of all frequencies in the 

Fourier domain, provides a measure that is more individualistic than the most 

significant harmonic.   This is not to suggest that this is a more accurate measure of 

cadence than the harmonic with the highest magnitude.   

 

The contribution of the cadence measures described to discriminate between 

individuals is shown to be minimal, as indicated by the significantly lower F-statistic 

than that reported by Wagg and Nixon [61] in their measure of cadence.  Most other 

researchers use different camera viewpoints (fronto-parallel).  This enables leg motion 

to be visible, thus simplifying the gait measurement task, but it introduces the 

complication of occlusion.  Significantly higher special resolution and lower crosstalk 

found in visible imagers makes it significantly easier to make accurate location (and 

therefore cadence) measurements.  However infrared images are considerably better 

for separating people from background and therefore more suited for use in off-the-

shelf people tracking products.    
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8 Conclusions 

The research reported in this thesis develops the state of the art in pedestrian 

measurement techniques using the IRISYS people counters trajectory data.  The 

IRISYS people counters are based around a relatively inexpensive infrared detector 

array, with tracker algorithm producing trajectory measurements.  This chapter 

summarises the research conducted and conclusions reached.  It reflects on the work 

conducted and compares it to the work of others.  Finally, some future work is 

suggested, highlighting some potentially interesting questions. 

8.1 Summary 

In the first chapter of this thesis, the principal sectors showing interest in the 

measurement of pedestrian motion are introduced.  The second chapter describes the 

main research, literature and background to the field.  It then examines different 

pedestrian measurement and detection technologies.  A significant gap is noticed 

between what is currently required and what is currently available.  A brief 

introduction is then provided to the fields of stereo vision and human gait.  The third 

chapter describes the detector in detail.  It then presents an experiment investigating 

the barrel distortion found in the detector and proposes a general solution.  The 

solution is deemed acceptable for general trajectory measurements, such as the studies 

presented in [1, 5]; however it is noted that there is variation between detectors.  

 

Four principal studies are then presented.  The first develops and demonstrates that 

pedestrian trajectory data can be collected and processed in real-time using the IRISYS 

detectors, details of which are included in Appendix E.  The second, an original study, 

attempts to build on the first and uses detectors in stereo pairs to test if the trajectory 

data produced is sufficient for stereo triangulation height measurement of pedestrians.  

During this study an interesting phenomenon was noticed, that an oscillation exists 

which is consistent with cadence.  This in turn led to the second study, an examination 

of the cause of this oscillation.  This second study demonstrates that the location of an 

individual‟s footstep can generally be found in the data.  It also shows that there is a 

link between the magnitude of lateral walking oscillation and gender of the participant.  

A further study is conducted to clarify the link between this oscillation magnitude and 
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gender.  The final study investigates the development of a measure of walking 

cadence.   

8.1.1 Use of IRISYS people counters in stereo  

Chapter 4 describes the experiments conducted examining the use of the IRISYS 

people counters in stereo.   It presents a study testing if the trajectory data can be used 

to measure the height of pedestrians using triangulation without requiring the detailed 

calibration of each sensor.  Other researchers e.g. Psarakis et al [76] have used stereo 

imaging with sub-pixel accuracy; however at the start of the study it was unclear if the 

trajectory data provided by the IRISYS detector would be suitable.   

 

It was noted during the research that there was  an oscillation that appeared to originate 

from walking gait.  The results show that it is not possible to use the trajectory data 

alone for accurate triangulation.  It may however, be possible to use the image data for 

stereo triangulation.  It is the author‟s opinion that should further study be conducted, 

it would be better to use an imager or detector with higher resolution and better spatial 

characterisation than the IRISYS detectors. 

8.1.2 Stride measurement 

Chapter 5 described an experiment to investigate the source of oscillations noted in the 

stereo experiment‟s dataset.   This was done by placing markers on the floor under the 

detectors and asking 7 different people to walk under the detectors several times 

placing their feet on the floor markers.  The data collected demonstrates that it is 

possible to see a similar oscillation in the data from all participants.  It also shows that 

the results were consistent when the data from repeated walks was examined.  This 

demonstrates that the oscillation noted during the stereo experiments originates from 

human gait and is not an artefact of the measurement technique.   

 

The chapter then examined the left to right swing with respect to time.  This 

highlighted some interesting facts.  Firstly a significant synchronisation was found in 

the measurements of extrema in data collected simultaneously from two different 

detectors.  This adds weight to the fact that an oscillation exists in the measurement 

that is related to human motion.  Secondly, the number of changes in left to right 

direction can generally be counted automatically.  As the measurement relates to gait 
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motion, these correspond indirectly but consistently to the location and time of the 

pedestrian‟s footsteps.   

 

The result establishes that measurable gait information is present in the data collected; 

however, it is unclear what impact the constraints placed on the participant‟s motion 

during the experimentation have on the gait measurements.  This in turn lead to two 

further studies collecting data without constraining the pedestrian‟s motion, the first 

exploring the magnitude of oscillation relationship to gender, and the second 

measuring and examining cadence. 

8.1.3 Oscillation magnitude 

Chapter 6 investigates the observation made during chapter 5, that the oscillation 

magnitude present in the trajectory data is linked to gender.  During chapter 5 the 

motion of participants was constrained to placing their feet on floor markers.  This 

constraint is removed from the data collected and analysed for oscillation magnitude to 

ensure that the result is unbiased.  The participants were all asked to walk as normally 

as possible from a point on one side of the measurement area to a point on the other 

side; the data collected is later referred to as choreographed.   

 

A second set of data was collected at the offices of IRISYS in a narrow corridor.  

While this certainly does not constrain the measurements to the same extent as asking 

participants to place their feet on locations marked on the floor, it does ensure that they 

walk in a straight line.  At both of the data capture locations two data sets are acquired; 

the second consists of unsupervised capture of trajectory data from subjects moving 

through the measurement area during their normal daily activities.   

 

A method of extracting the magnitude of lateral oscillation by fitting a second order 

polynomial to the data is proposed. Analysis of variance performed on the oscillation 

measure from the choreographed data shows that the measure is linked to the 

individual.  However the F-Statistic, a measure of the relationship of variation within 

and between groups, is not as high as that presented by Wagg and Nixon [61] in their 

fronto-parralel video gait analysis.   This indicates that the technique is not likely to be 

as good at discriminating individuals.  However, while the IRISYS trajectory data 

largely represents lateral upper body oscillation, Wagg and Nixon were examining 
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oscillation primarily of leg motion.  It is not surprising that an order of magnitude 

difference exists in the F statistic. During typical walking, the difference in separation 

between legs parallel and legs apart is likely to be of the order 50cm; the lateral upper 

body oscillation of a male is likely to be of the order 5cm.   

 

The oscillation magnitude is also analysed with respect to gender and in both datasets 

there is shown to be a significant difference in the means for male and female 

participants.  This establishes in principle that the measure can be used to determine 

the distribution of genders in a population.  This in turn is investigated with the 

validation data captured from both locations.  The results from the IRISYS capture 

produce a distribution that is 8% away from the actual distribution.   

 

The data collected at Napier University was found to include 22 readings out of 120 

where people changed direction within the field of view.  For these it was not therefore 

possible to extract a useful measure of the oscillation magnitude.  It is likely that this 

would adversely affect the results of a gender distribution algorithm, though, assuming 

that this is a good indication of the proportion of people who will change direction 

within the field of view, the algorithm would have an error bar of ±18%.  The results 

presented are still fairly promising with the distribution 10% away from the actual 

result.  As the size of any datasets analysed by the gender distribution algorithm 

increase, the probability of the error being as high as 18% reduce significantly.  With 

larger samples it is likely that the proportions of males and females who generate 

unusable readings more accurately represent the proportions of males and females in 

the dataset, thus eliminating the cause of error.     

 

The work presented has shown that meaningful information relating to the individual 

can be found from the oscillation magnitude.  It has shown that there is a strong link 

between this measure and the gender of the person.  A method for establishing gender 

distribution from people passing the detectors has been proposed and produces 

meaningful results.    

8.1.4 Cadence measurement algorithms  

Following from the discovery detailed in chapter 5 that stride can normally be 

measured.  The findings of Winter [87] show that the stride length of an individual is 
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proportional to their speed so an investigation into the measurement of cadence is 

presented.  Chapter 7 starts by accounting for the direction of motion.  During the 

study of the oscillation magnitude in chapter 6 it is noted that, fitting a second order 

polynomial to the IRISYS dataset, appears to over-model the actual trajectory.   A 

further investigation is then carried out on the Napier dataset, using three different 

methods to extract cadence from the Fourier domain.    

 

These algorithms attempt to replicate the successes of other authors eg [61, 63, 64] in 

measuring cadence, using IRISYS trajectory data instead of video footage. in video 

footage on data from the IRISYS detectors.  The first algorithm examines the most 

significant harmonic in the Fourier domain and is expected to be the best indicator of 

cadence.  The second algorithm examines a weighted sum of all harmonics within the 

periods expected for walking gait.   The third and final algorithm examines a weighted 

sum of all different harmonics.  The last proves to be the most individualistic measure, 

the one with the highest F statistic. However, it is likely that the first is a better 

indication of actual walking cadence.  Analysis of variance shows to 95% confidence 

that all three measures are individualistic, however the F statistics, are low.  This 

indicates that the variance within groups is significant and that it is likely to limit the 

measure to a minor component in a human ID system.     

 

The results presented are disappointing, considering that, in the data examined in 

chapter 5, 80% of footsteps could be measured, and that most of those that could not, 

were linked to a small number of individuals.   However, several issues contribute to 

this difference: the data examined in chapter 5 is acquired from people who are not 

walking in their normal manner and they are placing their feet on marked locations.  

This is compounded by the fact that a typical trajectory contains only 4 footsteps.  

Therefore, only two complete gait cycles are available to contribute to the measure, an 

insufficient number to obtain a consistent measure of cadence. 

8.2 Reflection 

The research presented in this thesis and Appendix has advanced the state of the art in 

measuring pedestrian motion.  The peer-reviewed papers presented in Appendix E 

demonstrate that significant pedestrian trajectory measurement can be obtained using 

the IRISYS people counters.  Further advances are made by a detailed study of the 
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trajectory data providing an understanding of what can and cannot be achieved from 

the data.  This includes the development of a gender distribution algorithm which 

allows the proportions of male and female passing under the detector to be determined.    

8.2.1 Research questions answered  

The research presented in this thesis set out to improve the automatic unobtrusive 

measurement of human gait by examining the data from the IRISYS people counter.  

This thesis has presented a substantial study into the trajectory information available 

and examined it with respect to the biometrics of participants.  It has found several 

interesting correlations and presented methods for obtaining measures of cadence and 

oscillation magnitude.  Analysis of variance establishes that the measures both of 

cadence and oscillation magnitude are individualistic. However, their use in Human 

Identification is limited to a small potential contribution from a probabilistic or 

stochastic model, such as a hidden Markov model.  The derivation of such a model is 

not warranted solely from the trajectory data produced by the detector but would 

benefit from it, if other non-perfect human identification features were also available.     

 

Further examination of the oscillation magnitude shows a high correlation with gender.  

The assertion is made that the measure extracted, largely relates to upper body lateral 

gait oscillation, which has long been accepted by the biomechanics field [86] as having 

a strong link to gender.   This research has shown that an indication of gender 

distributions can be obtained.  The application of this theory is demonstrated on data 

captured in two different locations, with considerable success.  It is noted that the 

height at which the sensors are mounted has an impact on the datasets acquired, and 

the algorithm developed is only intended for use with the equipment mounted at the 

heights specified.    

8.2.2 Comparison of results with the work of others 

The task of measuring and processing pedestrian trajectories in real-time in 

unsupervised environments is a significant one.  The collaborative work presented in 

the author‟s papers [1, 5] copies included in appendix E is an advance over work 

previously reported in the field.  Most pedestrian trajectory measurement systems are 

based on processing CCTV or visible video footage. The studies of  Philips et al. [51] 

and Kukla et al. [92] required human assistance to find and track the pedestrian in the 
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video sequence.  Some studies, such as that carried out by Wagg and Nixon [61], did 

not require human intervention.  However, their success rate dropped significantly 

when used outside the laboratory environment.  Their motion detection method would 

almost certainly suffer further when applied to real world data without constraints, 

such as camera housings not being washed, or participants wearing different clothing.   

While new systems are emerging which show potential, such as those considered by 

Greene-Roesel et al [93], at the time of writing none have rivalled the work presented 

in this thesis.  This work is furthered by a much more detailed examination of the 

trajectory data available from the IRISYS people counters.   

 

Obtaining identifiable biometrics based on human gait is a significant and emerging 

field in itself.  Most attention has been given to extracting gait features from video 

footage, due to its availability.  This is however fraught with difficulty; the task of just 

finding the pedestrian in video footage still poses a challenge.  The people counter 

used during this study is ideally suited to installations where little or no maintenance is 

required.  Currently hundreds of thousands of them are commercially deployed as 

people counters.  Most are installed in indoor retail environments; there is however an 

outdoor model.  

 

Lee and Grimson [54] present a study of gait analysis for recognition and classification 

using video.  Their work is also subject to data collection requirements similar to those 

imposed by Wagg and Nixon.  Again Lee and Grimson found that good classification 

results (better than 80% correct) can be obtained in a laboratory environment.  They 

highlighted that much better results can be found if an average gait measure is taken 

over a longer time frame.  The results presented in this thesis relating to Human 

Identification are clearly not on a par with side-on video gait analysis such as 

presented by Lee [30], but they were not ever likely to be; overhead gait analysis has 

significantly less information to utilise, but avoids the problems associated with a 

fronto-parallel view and image processing.    In addition to this, other authors 

attempting gait analysis for human identification see refs. [54, 61, 64, 65] typically 

observe the subjects for longer than is practical with the IRISYS people counters (> 

4s).  The model presented by West and Scafetta [90], suggests that even longer may be 

necessary; however this almost certainly depends on the data collection environment 

and circumstance.  
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Very little published work exists describing the study of human gait from above.   It is 

a field that has not previously attracted much attention, due to side-on video being 

much more easily available and containing more gait information.  Most of the studies 

that have, are detailed studies of kinematics in the biomedical field which captured 

data from multiple view points to better understand bipedal locomotion.   This study 

demonstrates that it is possible to measure human gait from above using a very low 

resolution device (16 x 16 pixels) and the gait information collected can significantly 

aid the determination of gender.  

8.2.3 Critical reflection of research    

During chapter 4, studies on the use of the detectors in stereo are conducted. Data is 

collected and an algorithm is produced to measure the height of the pedestrian.  The 

chapter concludes that it is not possible to accurately measure the height of the 

participants using the technique presented.  Furthermore, the detector in its current 

form is probably not suitable for accurate stereo depth perception.  While it is clear 

from the results that it is not possible to measure an individual‟s height accurately, it 

may be possible to gain an individualistic measure.  The chapter examines the 

coefficients of correlation for trend lines fitted to the data when plotted with respect to 

height.   

 

The oscillation noticed during the stereo chapter is further examined in chapter 5.  By 

taking multiple recordings of the same walk it is possible to correlate the extrema 

found in the data.    This provides a very compelling argument to support the 

hypothesis that the location of footsteps can normally be measured using this 

technology.  The magnitude of the left to right oscillation is examined with respect to 

gender and the individual.  This measure is found to be both individualistic and highly 

correlated to gender.  A gender distribution algorithm is developed, based on data 

collected from participants, but it is dependent on the participants being truly 

representative of the population.  However, this is an assumption that generally has to 

be made in any similar human gait analysis work.  It is noted that this algorithm is best 

suited to locations where people passing the detectors do not generally change 

direction within the field of view, which is approx 3m by 3m. 
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Chapter 7 further investigates the trajectory data and presents methods for extracting 

cadence.  The results presented show results with little ability to discriminate between 

individuals.  It is felt likely that a combination of the size of field of view and 

downward looking view point of the IRISYS people counters limit the ability to 

produce a good measure of cadence.  It is not possible from this research to say if the 

measures of cadence extracted well represent the actual cadence of the participants, 

however it certainly is correlated to it.  This point requires further clarification if the 

cadence measure developed were to be used for studies of biomechanics where 

accurate results are required.   

8.3 Future work 

During the course of the research several interesting discoveries have been made.   

Measures have been developed for oscillation magnitude and cadence.  Both are shown 

to be individualistic, however they are not sufficiently discriminatory to identify an 

individual.  This section suggests future work based on this research that could 

improve the measures obtained.  It suggests work to further develop the gender 

distribution algorithm established in this thesis, to an algorithm invariant to detector 

mounting height.  Secondly, it suggests alternative approaches for capturing data, 

throughout the duration of this research; several companies have been actively 

attempting to reduce the cost of thermal imagining components and systems. 

8.3.1 Developing a mounting height invariant gender distribution 

algorithm 

Chapter 6 investigates the oscillation magnitude measure.  It presents research that 

established a measure of gender can be extracted from the trajectory data produced by 

the IRISYS people counters.  Section 6.5 describes an algorithm for measuring the 

distribution of genders passing the detectors based on this measure.  The algorithm 

works relatively well in both locations in which it is trialled.  However it is noted that 

the algorithm requires to be tuned to the mounting height of the detectors.   This 

dependence could almost certainly be modelled by collecting data at several different 

mounting heights.    The relationship between mounting height and absolute values for 

mean measurement of males and females could then be established and an equation 

fitted to model it.  Should this be done it is recommended that further validation 

exercises be conducted to confirm the algorithm function.   
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8.3.2 Using high resolution thermal or visible video from above 

This thesis demonstrates that it is possible to extract individualistic measures for 

people using the ceiling-mounted IRISYS people counters.  The results show that there 

is significant noise in the data and it is therefore not possible to rely solely on this data 

for identification of individuals.  It would be interesting to examine further, similar 

gait detection techniques on trajectory data collected from downward looking devices 

which cover larger areas.  The algorithm for measuring cadence presented in chapter 7 

should work better if longer trajectories (>4s), based on the upper body motion are 

analysed.  This could be developed from either visible imaging devices or thermal 

imaging devices.   In the author‟s opinion, thermal cameras would be likely to provide 

a more robust tracking solution.  However visible video cameras are cheaper and 

typically have higher spatial resolution.  If available, it would be worthwhile to attempt 

a similar analysis of high resolution aerial or satellite footage.   

8.4 Summary  

The research presented in this thesis has developed the state of the art in pedestrian 

measurement technology.  It has described considerable research demonstrating how 

detailed pedestrian trajectory data can be acquired in real-time.  In addition to this it 

has developed new algorithms for measuring human gait from the IRISYS people 

counters.  In turn this demonstrates that it is possible to extract individualistic 

measures relating to walking gait from a thermal detector where each pixel covers a 

square with approximately 25cm
 
sides.  A measure of the lateral walking oscillation is 

developed and results establishing that it has a very high correlation to gender are 

presented.  
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10 Appendix A - Software developed  

A significant software system has been developed to read and interpret the data 

available from the IRISYS in house software.   This appendix provides an introduction 

to the software system developed to help find patterns in the data. 

 

In order to achieve the above goals the software performed several different tasks.  

Firstly it provides a mechanism for reading the file format produced by the IRISYS in-

house recording software used for data capture.  Secondly it provided a mechanism for 

editing the files to remove measured trajectories from the data files.   This was added 

to allow the removal of data originating from passers by not taking part in the 

experiments.   The software saves the edited reads file produced by IRISYS in-house 

testing tool and process the data into a collection of trajectories.  It is possible to save 

(and re-open) these in xml.    Thirdly, it provided a graphical display of the trajectories 

and left to right swing data to help visualise any useful data.   

 

Figure 10-1: Screen shot, main screen 

Figure 10-1 shows a screen shot the application‟s main screen.  The menu provides 

access to the application‟s open and save facilities.  When files have been loaded each 
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target appears in the list box at the left of the application.  Some information about the 

target is also displayed in the features text box below the list of targets.  What 

information is displayed there depends on which of the analysis buttons have been 

pressed.  Each of the buttons along the bottom performs two actions.  First it processes 

the data in a prescribed way, second it displays the processed data in the gray display 

area and writes the data values to a comma separated values (csv) file.   

 

In the example shown the blue data is the distance from the best fit line, when filtering 

is done only after fitting the line.  The green data is the distance from the line when the 

data is filtered both before and after fitting the lines.  The red data is after performing a 

discreet Fourier transform on the data.   

 

Figure 10-2 shows a second screen used for deleting unwanted trajectory and stereo 

analysis.  When a target is selected it is drawn in one of the three boxes (which one 

depends on which detector recorded it). 

 

Figure 10-2: Second screen shot 
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11 Appendix B - Questionnaire used 

Human gait/ signature analysis experiments 

 

The purpose of this experiment is to establish if stereo pairs of the IRISYS people 

counters can be used to obtain a signature or indication of the people passing under 

them.  The experiment will take approximately 10 min and will require you to walk as 

normally as possible under our sensors several times, and complete this form. 

 

By filling out this form you are consenting to the information you provide being used 

for research purposes.  Your personal information will be treated with confidentially.  

 

I ask that you provide the following information, or if you are unsure of it that you 

allow me to measure it.  All personal data will be stored in a secure location and 

anonymised before dissemination. 

 

Name:         

Gender:        

Weight: (Kg  <50[   ]   50-60[  ]   58-68[  ]   66-76[  ]   74-84[   ]   82-92[   ]  >92[  ] ) 

Height:       

Age: (<18[  ]   16-26[  ]   24-34[  ]   32-42[  ]   40-50[  ]   48-58[  ]   56-66[  ]  >66[  ] )  

Inside leg measurement:      

Floor to hip measurement:                

Do you have a physical condition that may affect your walk (e.g. a limp): (YES/NO) 

Tick this box if you do not consent to me measuring your movement in the future 

without explicitly asking your consent.  

 

Thank you for your time helping with this research.  

Tim Chamberlain 

Research Student 

School of Computing 

Napier University  

 

File Name & Path:        
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12 Appendix C - Linear regression used 

This appendix details the linear regression method used for this project.  It starts with 

the parametric description of a straight line (r, theta) and follows on to describe the 

regression technique. 

12.1.1 The parametric description of a straight line 

The standard mathematical technique of expressing a straight line is to use the equation 

y= ax + b where a and b respectively describe the slope and intersection with the y 

axis.   This equation is theoretically able to represent any straight line except one with 

infinite gradient.  Due to this exception it is more appropriate to use the parametric 

description of a line, which can describe any possible straight line.  This consists of 

describing the line by the angle and length of its normal shown in Figure 12-1.  The 

parametric description of a line is well explained by Fischer at al [94]. 

 

Figure 12-1: Parametric description of a straight line 

12.1.2 Best fit linear regression 

There are well established methods for finding best fit lines such as the Least Squares 

Method developed in the late 1700‟s.    Sadly the least squares method is only 

appropriate for data where there is error in only one dimension.  The data we have 

contains error in both the x and y dimensions, so the least squares method is not 

appropriate.    Sequential regression must be performed to find the best fit line for the 

data. 

 

theta

r
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The method used to establish how well the line fits the data is to sum the shortest 

distances from each point to the line.  Equation 3-1 shows how the sum of shortest 

distances from an array of points (x, y) to the line (r, theta) is calculated.  The smaller 

the value of f, the better the line fits the data. 

     

n

ryxabs

f

ni

i

ii








1

0

sin.cos. 

 

Equation 12-1: Line fit equation 

 

If the value of theta is known, it is possible to calculate the best value of r for the 

corresponding data by summing the distance as shown in Equation 12-2.  

    





1

0

sin.cos.
ni

i

ii yxr   

Equation 12-2: Value of r for known theta 

 

The value of theta is unknown.  It is therefore necessary to try a range of values of 

theta and find the one which provides the best fit.  This provides an algorithm with a 

computation time linearly proportional to the number of data points multiplied by the 

number of different values of theta used. 
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13 Appendix D – Oscillation Magnitude Results 

 

 

 

Table 13-1: Oscillation Magnitudes 

from choreographed data collected at 

Napier 

 

 

 

 

 

Table 13-2: Oscillation magnitudes from 

Choreographed data collected at IRISYS 
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Table 13-3: Person A (male), 

Oscillation magnitude choreographed, 

Napier 

 

 

Table 13-4: Person B (male), 

Oscillation magnitude choreographed, 

Napier 

 

 

Table 13-5: Person C (male), 

Oscillation magnitude choreographed, 

Napier 

 

 

 

 

Table 13-6: Person J (female), 

Oscillation magnitude choreographed, 

Napier 

 

 

Table 13-7: Person K (female), Oscillation 

magnitude choreographed, Napier 

 

 

Table 13-8: Person R (female), Oscillation 

magnitude choreographed, Napier 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Detector 0 Detector 1 Detector 2

0.3399 0.0362 0.0958

0.0900 0.0291 0.0854

0.1272 0.0320 0.1439

0.0580 0.0211 0.0962

0.1288 0.0135 0.0269

0.2535 0.0298 0.0965

Detector 0 Detector 1 Detector 2

0.2060 0.0600 0.0577

0.1099 0.0509 0.0420

0.2074 0.0267 0.0615

0.0347 0.0675 0.0362

0.1814 0.0334 0.0765

0.0275 0.0640 0.0400

0.2027 0.4055 0.0379

0.0722 0.0529 0.0280

Detector 0 Detector 1 Detector 2

0.0180 0.0228 0.0350

0.0223 0.0591 0.0452

0.0614 0.0286 0.0688

0.0787 0.0444 0.1060

0.5900 0.0306 0.0582

0.1452 0.0354 0.0544

Detector 0 Detector 1 Detector 2

0.0252 0.0168 0.0402

0.0240 0.0231 0.0813

0.0534 0.0328 0.0858

0.0347 0.0063 0.0427

0.0262 0.0207 0.0566

0.0524 0.0596 0.3602

Detector 0 Detector 1 Detector 2

0.0131 0.0207 0.0611

0.0499 0.0136 0.0456

0.0222 0.0063 0.0338

0.0216 0.0529 0.1393

0.0098 0.0486 0.0746

0.0320 0.0300 0.1893

0.0228 0.0469 0.0627

0.0391 0.0853 0.1898

0.0083 0.0453 0.1316

Detector 0 Detector 1 Detector 2

0.0453 0.0075 0.0293

0.0385 0.0565 0.2711

0.0303 0.0167 0.0062

0.0171 0.1415 0.3333

0.0374 0.0081 0.0067

0.0075 0.1150 0.2131

Table 13-9: Gender conformation data 
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14 Appendix D (cont) - Cadence Results 

 

Table 14-1: Cadence results Napier dataset (ms) 

 

 

Table 14-2: Cadence v height and leg length 

 

 

Table 14-3: Filtered Fourier cadence results (ms) 

 

 

Table 14-4 Weighted Fourier cadence results (ms) 

 

Person A Person B Person C Person D Person E Person F Person G Person H Person I Person J Person K Person L Person M Person N Person O Person P Person Q

525 570 495 565 860 572 694 440 705 652 405 720 804 550 604 814 790

348 942 473 594 480 456 414 617 626 454 270 622 585 450 420 381 517

366 493 260 645 770 497 728 500 727 810 866 260 280 880 847 480 570

312 450 577 520 720 586 754 882 822 980 840 696 607 472 594 682 737

365 520 364 640 520 498 368 788 720 566 705 558 750 531 805 984 566

323 942 438 572 396 805 402 470 634 520 480 585 474 590 771 637 592

409 550 466 518 615 471 506 630 1080 908 465 950 697 665 318 800 637

685 500 480 860 516 490 444 424 891 220 490 797 645 523 420 922 694

440 506 390 540 447 300 441 622 278 540 712 570 468 256 345 518 383

453 475 430 616 382 445 920 454 700 510 900 550 507 617 555 950 574

453 503 615 515 531 762 685 452 797 582 813 994 650 574 450 293 562

420 496 312 535 540 352 365 232 496 378 890 900 485 412 977 440 840

526 900 591 762 385 489 228 668 501 574 660 545 684 630 433 592 660

608 684 613 516 356 525 860 760 572 997 810 507 643 810 754 436 600

Measure Person A Person B Person C Person D Person E Person F Person G Person H Person I Person J Person K Person L Person M Person N Person O Person P Person Q

Average cadence measure (ms) 445.2143 609.3571 464.5714 599.8571 537 517.7143 557.7857 567.0714 682.0714 620.7857 664.7143 661 591.3571 568.5714 592.3571 637.7857 623

Height (cm) 186 165 183 185 178 183 173 180 179 174 178 167 168 168 155 160 173

Inside Leg Length (cm) 92 86 82 90 83 83 75 79 92 76 90 82 77 83 73 81 80

Out Side leg length (cm) 111 94 109 100 120 106 97 102 99 90 104 96 94 104 91 96 97

Hip Size (outside-inside) (cm) 19 8 27 10 37 23 22 23 7 14 14 14 17 21 18 15 17

Person A Person B Person C Person D Person E Person F Person G Person H Person I Person J Person K Person L Person M Person N Person O Person P Person Q

616 604 629 605 617 601 543 564 631 632 608 597 589 626 556 602 621

464 589 589 623 530 549 553 571 638 530 542 631 678 612 541 573 554

602 567 634 645 616 615 584 657 675 637 611 539 667 596 721 644 668

587 570 533 648 578 576 625 664 547 676 604 701 637 643 600 572 670

523 610 764 618 687 546 574 579 584 577 633 636 691 573 623 528 712

632 603 595 712 623 569 671 605 645 525 724 586 559 610 528 553 574

586 601 613 598 644 596 625 666 616 610 622 575 605 650 629 691 637

590 564 613 638 551 523 598 633 605 634 612 670 727 661 608 628 569

486 593 611 596 580 610 601 609 577 663 593 647 551 569 598 601 639

569 576 498 643 635 566 611 531 597 613 554 623 549 611 633 605 580

536 611 616 631 674 561 669 660 582 557 693 626 625 637 627 591 691

541 611 589 567 569 605 624 549 682 712 612 583 615 560 646 641 629

575 574 576 605 625 538 670 599 602 625 604 617 622 600 619 590 559

608 582 635 620 554 628 583 649 677 665 580 661 612 519 726 612 632

Person A Person B Person C Person D Person E Person F Person G Person H Person I Person J Person K Person L Person M Person N Person O Person P Person Q

345 303 274 306 278 284 256 282 276 259 246 410 265 291 282 286 257

229 281 231 301 226 312 274 302 310 222 165 331 262 180 238 237 210

264 275 311 353 278 281 297 264 395 303 270 263 234 235 328 203 295

256 290 209 335 239 258 278 221 254 343 304 370 319 288 296 235 252

233 328 287 307 299 321 201 262 263 258 329 286 244 266 292 219 269

360 300 248 310 261 269 208 244 337 265 321 272 281 234 208 215 308

250 293 289 273 307 266 313 274 355 288 296 210 296 256 276 247 236

282 327 299 381 237 308 263 340 313 391 304 348 298 281 320 284 230

190 346 214 354 314 317 277 357 241 281 224 189 286 303 297 291 307

253 315 200 244 297 261 296 299 362 295 248 304 287 347 239 236 234

222 287 249 303 359 258 340 305 287 251 321 254 308 253 256 240 216

243 275 231 309 291 319 371 296 280 313 311 280 254 290 303 376 310

296 309 261 307 274 296 287 279 276 282 282 283 271 237 279 260 239

216 261 273 328 238 355 283 284 269 339 263 411 286 190 297 270 329
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15 Appendix E –Published Work  

This appendix contains copy of publications and presentations produced from research 

presented in this thesis. 

15.1  Peer reviewed papers

15.1.1  “PED 2005” (2007), book chapter  

J. Kerridge, S. Keller, T. Chamberlain and N. Sumpter (2007), Collecting pedestrian 

trajectory data in real-time, Pedestrian evacuation and dynamics 2005, pages 27-39, 

Springer, Berlin Heidelberg, ISBN 978-3-540-47062-5 

15.1.2  ITS World congress (2006), conference paper 

T. Chamberlain, A. Armitage, M. Rutter, T.D. Binnie (2006), Pedestrian sensing with 

feature extraction: Proceedings of the ITS world congress cd-rom, London, October 

10
th

 2006 

15.1.3  TRB annual meeting (2005), conference paper 

J. Kerridge, S. Keller, T. Chamberlain, N. Sumpter, (2005), Collecting processing and 

calculating pedestrian flow data in real-time, Proceedings of 84th Annual Meeting of 

Transportation Research Board, Washington D.C.   

15.2  Conference presentations & papers 

15.2.1  CMPS(2007), workshop presentation  

T. Chamberlain, S. Clayton, Prof J. Kerridge, Dr A. Armitage, Dr M. Rutter, Dr T. D. 

Binnie, Dr N. Urquhart, (2007), Using low cost Infrared Sensors for data capture, 

Workshop on calibration of microscopic pedestrian movement simulations, Dec 13-

14
th

,Arsenal Research, Vienna 

15.2.2  UTSG (2006), conference paper 

T. Chamberlain, A. Armitage, M. Rutter, T.D. Binnie (2006), Working towards 

identifiable feature extraction from pedestrians’ gait, Proceedings of 38th Annual 

UTSG Conference, Trinity College, Dublin 
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15.2.3  Napier Faculty of Computing & Engineering conference (2005), 

conference paper 

T. Chamberlain, A. Armitage, M. Rutter, T.D. Binnie (2005), The use of thermal 

detectors in establishing ground truth in the evaluation of video pedestrian tracking 

algorithms, Faculty of Engineering & Computing Postgraduate Research Conference, 

Napier University 

15.2.4  UTSG (2005), conference paper 

A. Armitage, D. Binnie, T. Chamberlain, M. Nilsson and M. Rutter (2005), Tracking 

pedestrians using visible & infrared systems, Proceedings of 37th Annual UTSG 

Conference, University of the West of England, Bristol 

15.2.5  PREP (2004), conference paper 

T. Chamberlain, A. Armitage, M. Rutter, T. D. Binnie, (2004) Using Low-Resolution 

Thermal Sensors in Stereo To Measure Pedestrian Movement, PREP,  University of 

Hertfordshire, poster proceedings p251 


