
A Dynamic Connection Capability for Pervasive

Adaptive Environments Using JCSP

Anna Kosek
1
, Aly Syed

 2
, Jon Kerridge

1
 and Alistair Armitage

1

Abstract. The house, office or warehouse environment is full of

devices that make users’ life and work easier. People nowadays

use personal computers, laptops, Personal Digital Assistants,

mobile phones and many more devices with ease. The

mechanism to connect, enable co-operation and exchange data

between devices will help to use devices’ full capabilities. This

paper investigates the usability of Communicating Sequential

Processes for Java in pervasive systems and the adaptation

possibilities offered by this environment. It focuses on dynamic

connection capabilities. The paper also describes an experiment

that organizes an adapting pervasive environment which uses

dynamic connections for data flow.

1 INTRODUCTION

The number of devices surrounding us increases every day. The

devices that we use have become more complicated and have

more capabilities and functions. A mobile phone is now not only

used to make calls, but also to store and edit files, take photos

and videos, play music, browse the web and much more. Some

of those functions are repeated in many devices. Most of the

devices that we use are autonomous and making them co-operate

with other devices is often difficult and time consuming.

The mechanism to connect devices, make them co-operate

and use each other’s functions in a simple and transparent way

would help to manage a network of devices used every day. The

method of making many computers physically available, but

effectively invisible to the user is called ubiquitous computing

[1] or pervasive computing. The concept was introduced by

Weiser in 1991 and many researchers have been investigating it

since.

Making connections is a crucial capability when considering a

network of devices. Dynamic connection requires device and

service discovery. A device arriving in an unknown network has

to have mechanisms to adapt to the environment and discover

distributed capabilities that can be useful. The same device in a

different location can work differently depending on services

that are available in a particular space.

This paper describes dynamic connection capabilities for

pervasive adaptation using Communicating Sequential Processes

for Java (JCSP) [2]. In Section 2 the background to the research

is provided. In section 3 pervasive software requirements are

presented and compared with JCSP properties. Section 4

describes JCSP channels in more detail. An experiment using

dynamic connections for synchronization is presented and

evaluated in Section 5 of this paper. Conclusions and future

work are stated in Section 6 of the paper.

2 BACKGROUND

The background section of this paper presents the research areas

of pervasive computing, ad-hoc networks and adaptation.

Fundamental concepts of CSP and a simple example of a CSP

based system are also described.

Pervasive (Ubiquitous) Systems

The ubiquitous computing concept is an approach to making

many computers physically available, but effectively invisible to

the user [1]. Devices in the system vary in size, capability and

function, each suited to a different task. The term ‘ubiquitous’

suggests that devices will finally become so pervasive in

everyday objects, that they are hardly noticed [3]. Ubiquitous

computing is also called pervasive computing [4].

Devices in pervasive computing systems are enabled with

communication capability and are designed to be useful in a

single environment such as home or hospital. The idea is to

integrate all the devices that are connected to the network to co-

operate and use each other to achieve an expected performance

and capability. In this system computers are no longer tools but

assist humans in their everyday activities. All the computers in

the environment will not be considered as autonomous but parts

of a larger system that is targeted to users’ needs. Devices in

pervasive system have to be aware of their location and

surroundings. If a computer knows its position, it can adapt its

behavior to the environment [1].

Network Structure

The intelligent environment should work with any set of devices,

and enable collaboration of available devices depending on their

capabilities. In the event of a device failure, the system should

reconfigure itself and continue to work. A central control

workstation or remote control device is not the goal of a

pervasive system. It is likely that a mixed control system will be

required that is neither fully distributed nor fully centralized but

the particular mix of control function needs to be determined and

may vary with the application environment.

The pervasive adaptive environment is often a mix of fixed

and mobile devices. Some devices can stay in the environment

for a long period of time; some can visit a specific space only

briefly. As a central control system is not present, devices in the

network have to monitor the network topology. These kinds of

networks are called ad-hoc networks and defined as a collection

of mobile and fixed devices communicating over wireless links

[5]. A mobile ad-hoc network should be a set of devices that

recognize each other, decide about inter-network connections,

organize a virtual topology, exchange and use resources and

capabilities.

Devices Types

A pervasive adaptive environment can consist of different types

of devices. Equipment varies from very small devices like

sensors, capable of sending only a precise type of signal or

FPGA’s programmable for specific tasks, to PDA’s and

powerful stationary and mobile computers. Rapid technology

advances affect device configuration, therefore, it is difficult to

pinpoint what constitutes a big or a small device, but for the sake

of argument we define a small device to have 100 MHz

processor and less than 64kB RAM. A medium device is defined

to have 200-400 MHz processor and less than 100MB RAM. A

large device is considered to have more than 400 MHz processor

power and more than 100MB RAM. Some parts of the pervasive

adaptive system can be very simple and be based on primitive

signals, other parts must be powerful enough to run algorithms

associated with learning and analyzing data. Therefore

communication capability must be based on uncomplicated data

structures and acknowledgments, so a wide variety of devices

can communicate.

Adaptation

The ability to adapt is an important requirement for a pervasive

environment. New services, functionalities, interaction

mechanisms or devices can be added to the pervasive system

requiring them to be adapted to the specific characteristics of the

environment [6]. Mobility of devices makes a system’s network

topology even more dynamic. Mobile devices have to be able to

detect change of location and exploit knowledge about their

current situation; this is called location-awareness [7]. All

mobile devices have to detect and react to the environment and

therefore adapt to a new space to improve quality of

communication. On the other hand existing elements from the

system might be adapted to a user’s requirements or changing

conditions in the environment [6]. This characteristic of

pervasive systems is called context-awareness.

Adaptation should be supported by a flexible and dynamic

system. Dynamic communication is a very important capability

for pervasive adaptation. When a mobile device arrives in a new

location communication has to be established. Depending on the

situation and devices present in this environment connections

have to be created or destroyed. The ability to manage

connections between many devices in an intuitive and

transparent way is very useful for pervasive adaptation.

Concurrent Systems

A system is called concurrent when there is more than one

process existing at a time [8]. A concurrent style of

programming enables the creation of a system with processes

working in parallel. One of the key aspects of parallel system

design is that simple processes can be composed into larger

networks. The concurrent style of programming better reflects

the nondeterministic environment surrounding us and can be

used to design and construct pervasive adaptive systems.

CSP

Communicating Sequential Processes (CSP) is a formal language

consisting of mathematical models and methods to construct

component processes to interact with each other by

communication [8] and provides a mathematical notation for

concurrency theory [9].

CSP applications are process-oriented. A system consists of

processes that are sequences of instructions. Processes run

separately and can communicate with other processes using

channels [10]. Processes can work on different processors or

even communicate across different devices. A channel is a point-

to-point connection between two processes [10]. A simple

version of a CSP channel consists of an in-end and an out-end

performing a one-way communication. One process writes to a

channel and the other reads from it. To establish a connection it

is necessary to have at least two processes, one process is

connected to an in-end of the channel and the other process is

connected to the out-end of the channel as is shown in Figure 1.

Figure 1. A simple example of a CSP network diagram.

In Figure 1 a channel is represented by an arrow to show the

direction of communication. If bidirectional communication is

needed an additional channel in the opposite direction should be

added. Channels are unbuffered, so process A writes to the

channel C and waits in an idle state for process B to be ready to

read. In this way channels are unbuffered and communication

occurs only when both processes are ready [10]. This simple

channel is constructed in a way that data sent over it cannot be

lost, provided the underlying message transport layer guarantees

message delivery. In CSP based systems there are no buffers

needed in the channels. Therefore the size of buffers becomes a

property of a device that needs them for its own data handling,

which makes system design simpler and more robust, and makes

it easier to calculate memory needs.

A CSP process can have many channels connected to it. With

the CSP ‘alternative’ programming structure it is possible to

distinguish from which channel communication appeared.

Therefore alternative captures non-deterministic channel

behavior and permits selection between one or more input

communications.

Summary

This section described a basic background of the research area.

The fundamentals of ubiquitous computing, adaptation and ad-

hoc networks have been described. CSP concepts have been

explained as an introduction to Section 3 of this paper. A

pervasive adaptive system presents many challenges and, to

categorize and understand them better, an infrastructure defining

software requirements is needed.

3 INFRASTRUCTURE FOR PERVASIVE

SYSTEMS

Software requirements for pervasive computing were described

in [11]. The software environment appropriate to support

pervasive system must sustain application requirements such as:

Process

A
Channel C

Process

B
Channel C

out-end

Channel C

in-end

mobility and distribution, adaptation, interoperability,

component discovery, development and deployment, scalability

and context awareness [11]. In this section we will describe

those requirements and explain how CSP for Java (JCSP) [2]can

be used to achieve pervasive system goals. JCSP is an

environment allowing the development of Java applications

following CSP principles. Use of Java based language enables

executing processes on any device that can run a Java Virtual

Machine (JVM).

Mobility and Distribution

Mobility and distribution are a natural requirement for a

pervasive system. A pervasive environment is highly mobile, as

users and devices can change their location; it is required for

software to be mobile and distributed. Mechanisms associated

with this requirement should be deployed in software and

transparently for component developers [11]. Mobility should be

achieved without thinking about synchronization or data

migration [11]. Software for pervasive systems should have

those mechanisms already deployed.

Π-calculus, a calculus for communicating systems, is a model

for ubiquitous computing that proposed formal mobility

constructs [12]. JCSP, following π-calculus model, offers

mobility of processes, channels and code [13-15]. Process

mobility enables creating processes and sending them over a

channel. A mobile process can be connected and run in parallel

with different processes on the node it was sent to. Mobility of

channels enables sending channels with processes without a need

of recreating the connection, therefore the input or output end of

the channel changes its location [14]. Code mobility enables

sending appropriate Java classes that are used by mobile process

but are not present in a new location. Mobility in JCSP is

presented and fully explained in the papers [13-15].

Adaptation

Adaptation in a pervasive environment is not only the ability to

react to a changing environment but also to users’ intents and

needs. The pervasive infrastructure should apply adaptation to

individual software components [11]. Depending on situation,

some bindings should be reconfigured by adding, removing or

replacing components [11]. Those processes can be reconfigured

depending on adaptation techniques.

One of the main advantages of CSP system design is that

simple processes can be composed into larger networks [10]. In

computer science this approach is called separation of concerns

[16], where concerns can represent features or functionalities of

the system. In this design approach functionalities are

implemented separately and composed into a larger architecture.

As components of the system with different functionalities are

implemented separately, the system can be more easily

reconfigured by reordering and reconnecting processes, or by

adding and removing processes. This type of adaptation is also

supported by JSCP mobile processes and channels by moving

components of the system between different devices.

Interoperability

A pervasive infrastructure is required to integrate diversity of

components programmed using different languages into an

infrastructure that can successfully interact and cooperate [11].

Integration of different components is a very difficult task and

has been researched in Component-Based Software Engineering

[17]. The ability to unify the connection mechanism would be

very useful when considering a network of different components.

JCSP is equipped with network capabilities using the

Communicating Process Architectures Universal Network

Protocol (CPAUNP) to communicate between processes [18].

The protocol enables communication independent from the data

being sent, and work towards a standardized mechanism for

connecting various CPA based network architectures is in

progress [18]. In particular, the protocol enables communication

between Java and non-Java based devices and the simpler

devices do not have to implement a complete parallel

environment.

Component Discovery

A component and service discovery framework is used to

organize dynamic client-server applications [19]. There are

many approaches to component and service discovery [19-22].

One approach is to have a centralized repository that keeps track

of all the devices and services available in the network. Any

member of the network can register itself with a repository. For

example JINI is a Java-based environment [21] that provides a

set of application programming interfaces and network protocols

for service discovery [22] and is supported by a local repository

Central JINI Lookup Service. This approach is suitable for wired

networks where there are always at least one device remaining in

the network making the repository available for new devices

[20]. In ad-hoc networks, the topology is dynamic and devices

have to perform their tasks with any set of equipment. There is

no central control and assuming that the repository is always

available would only make an ad-hoc network less flexible. A

device that performs service discovery would have to find a

repository server every time it visits some network. Typical

devices in ad-hoc networks can have small memory capabilities,

storing information about all needed resource servers would be

difficult.

Use of a distributed approach is a solution that would better

fit ad-hoc network characteristics. Konark is a service discovery

and delivery protocol developed in University of Florida [20]

that enables integration of ad-hoc network of devices using a

distributed peer-to-peer mechanism that enables devices to

advertise and discover services available in the network. Service

discovery is based on Web Server mechanisms using SOAP

messages; therefore all the devices are using a small version of a

HTTP server [20]. This distributed approach is more suitable for

ad-hoc networks, but still unsuitable for devices with small

memory capabilities.

In JCSP, component discovery can be performed in a simpler

way. For a device and service discovery the most important issue

is establishing connection. In JCSP to create a connection

between two nodes only the IP address and port number are

required, therefore device discovery amounts to finding those

two properties. This can be performed using simple, low level

sockets and broadcast capability for a local network. This is

explained in Section 5 of this paper. When this information is

available, the next stage to perform service discovery is to

exchange information about capabilities and functions deployed

in devices. This approach relies on the dynamic connection

capabilities in JCSP, which are the main focus of this paper and

described in Section 4 and 5.

Development and Deployment

Components in pervasive systems are required to adapt to

changing environmental conditions that requires the ability to

redeploy and adapt at a runtime, without restarting devices or

installing new versions of components. Rapid development using

multi-agent systems can be a solution to reconfiguration

problems [11]. An agent is a physical or virtual unit that can

identify its environment and communicate; an agent is

autonomous and has the ability to accomplish tasks and achieve

its goals [23].

The interpretation of agent ideas in JCSP is presented in

paper[24]. The mobile agent, based on the actor model [25], is a

unit that is able to move around the network, connect to some or

all of the nodes and perform some pre-defined tasks. A JCSP

mobile agent is a specialization of the mobile process [24]

described earlier in this paper. JCSP is a framework that can

offer capabilities for rapid development using an interpretation

of multi-agent systems.

Scalability

The number of devices and users in a pervasive environment is

not limited. Therefore the number of interactions increases and

also the number of devices increases. As a result scalability is a

problem for pervasive systems [4].

CSP usability for a complex emergent system was described

in [26]. The study was to model artificial blood platelets using

CSP concepts. This software technology scales to millions of

processes per processor [26], which shows that CSP based

systems are capable of dealing with scalability trivially. Since in

CSP processes offering some services are composed using

channels into a system that offers a natural separation of

concerns at the level of services. Another advantage is that

composing new system using existing components becomes

easier and maintenance requires less effort.

Scalability also depends on device capabilities, and hence a

limitation of the pervasive system. In dynamic adaptive

pervasive system the number of threads can vary depending on a

situation. A JCSP system controlling LEGO NXT robot was

presented in paper [27]. In JVM a process is represented as a

thread. Due to JVM and device capabilities limitation the

number of simple threads was restricted to 90. The number of

threads on a JVM is limited by the memory used for a thread

[27]. As a result of this, if the system runs on a limited device,

only limited operations can be done.

Context Awareness

Another pervasive software requirement is context awareness.

Transparency of the application can be achieved by enabling a

pervasive system to make decisions based upon context taken

from environment and user inputs [11].

A context aware system has to take into consideration many

signals from different sensors and services providing information

[11]. As the nature of the environment is nondeterministic,

components from the pervasive system have to be able to make

nondeterministic choice between received signals.

In JCSP a nondeterministic choice is performed by alternating

upon channel inputs. JCSP based systems can wait for many

inputs and trigger actions according to signal received. The

concurrent nature of a system based on channels and processes

simplifies sending and receiving signals.

Context awareness is also associated with adapting to

changing environmental conditions. The topology of the

environment is also dynamic because of mobility of devices.

Pervasive devices should recognize changes in the environment

and adapt to it. The JCSP dynamic connection capability is a

main subject of this work.

Another important issue when considering pervasive and

mobile environment is energy management. Most of mobile

devices are battery charged and saving energy when device is

not in use would be an advantage.

CSP based processes are designed to stay in idle state when

they wait for a communication from other processes and use no

CPU power. Only a communication from particular channel,

which process waits for, can wake it up. This way many

processes in CSP based system wait for a communication form a

channel or a set of channels in a state that consumes less energy

than programs that would continuously send signals to sender to

check its availability.

Summary

The JCSP features, described in this section, are useful when

constructing a pervasive system. Mobility and distribution are

supported by mobility of channels, processes and code.

Adaptation techniques can be applied with ease by reconfiguring

a JCSP system by reordering and reconnecting processes.

Interoperability may be achieved by using the Communicating

Process Architectures Universal Network Protocol (CPAUNP)

between different CSP based components. Development and

deployment can be accomplished by using JCSP dynamic

connection capabilities and mobility of components. Scalability

was shown on an example of a CSP based system presented in

[26]. Context awareness by adapting to environmental conditions

can be resolved using JCSP dynamic connections, which is the

main focus of this paper and described in the following sections.

4. JCSP CONNECTIONS

JCSP offers local and network channels. Local channels are used

to connect processes working in one device, so are executed in

one JVM. This kind of channel is based on CSP principles.

Network channels are used for communication between nodes on

a network. JCSP connections can be divided into two categories:

static and dynamic. This section introduces JCSP network

channels and dynamic connection capabilities.

JCSP Network Channels

Network channels enable communication between two network

nodes. Communication that uses network channels is based on

CPAUNP that was developed and verified at Napier

University[28]. To establish connection between two nodes only

an IP address and port number of the remote node are required.

Managing the connection is easier if it is possible to check the

state of the channel. The JCSP networking package enables this

at the application or user process level. If the connection is lost

the process trying to send data is informed, so new connections

between processes can be established. If the connection was

already established, the process trying to create it again is

informed by the mechanisms embedded in the network

architecture.

Dynamic JCSP

The JCSP package [29] enables dynamic creation of the basic

components of CSP based systems: processes and channels.

Dynamic Channel Creation

In JCSP dynamic channels can be created if they are needed to

establish a new connection between two processes. Both local

and network channels can be dynamically created. The number

of dynamic channels on a node can be large, with this number of

connections it is possible to dedicate one connection to one task

or type of signal (e.g. turn on/off a light). This way we can

establish many connections from one node or process to another.

Therefore control over many functions in the device can be

performed using simple non-deterministic alternation on channel

inputs. Dynamic channel creation is a very useful capability

when establishing a connection between devices that know very

little about each other. The connection will help devices to

explore each other’s potential.

Dynamic Processes Creation

JCSP libraries enable dynamic creation of an instance of a

process that can be activated and connected to a network node

using dynamic channels. A new process can be initialized with

some data, then perform a defined task working concurrently

with processes on the node. The process can be disconnected and

destroyed when its task is finished. JCSP also enables

dynamically created processes to be mobile[13], which makes

JCSP based systems even more dynamic.

Verified Model

Concurrent systems can cause many problems, and it is

necessary to have a good understanding how they behave and

how to accommodate non-determinism and avoid livelock and

deadlock during the design stage of the system [10], especially

with systems that have dynamic topology. A tool for software

verification would be useful for testing purposes and improve

software reliability.

Spin is an open-source software tool that can be used for

formal verification of concurrent and distributed software

systems [30]. Spin can be used both as a simulator or verification

tool. Spin model is a logic model checker, and accepts a

specification language called Promela (Process Meta-Language).

Spin is similar to JCSP model, so processes and channels are

included. Importantly, Spin incorporates a concept of mobility in

its design that makes its use more appropriate for the mobile

distributed systems that will occur in pervasive adaptive systems.

Moreover a Spin model can verify a system as a whole,

including dynamic and static sections. This capability is useful

when checking if a system with dynamic topology is deadlock

and livelock free.

Summary

A pervasive adaptive environment can be built using

components of a system working concurrently. Therefore a CSP

model can be used when building a pervasive adaptive system.

As deadlock and livelock can be avoided by design and the

software can be verified using a Spin model, the advantages of

the CSP model can be used when designing and implementing a

pervasive adaptive system. Every device from the system can

run processes communicating with processes on different

devices. Processes on one device can be grouped in sets and

cooperate. Every process can be responsible for different device

capabilities, communication or synchronization with different

devices.

5 DYNAMIC CONNECTIONS EXPERIMENT

This section presents an experiment with dynamic connections

for synchronization using a JCSP based system. Synchronization

on connection is an important issue when considering

connections between devices. CSP processes can be dedicated to

controlling the quality of communication between processes.

Those additional processes will exclusively manage only one

connection between devices.

The devices in this experiment are placed in different rooms.

These devices have various capabilities and different types of

communication links: wired or wireless. The experiment is to

enable communication between devices from different rooms.

These tasks can be achieved using the CSP concepts and

functions that JCSP offers. Priority and scheduling on channels

can be accomplished by using guards and timers.

Aim of the Experiment

The aim of this experiment is to create a set of processes

working on different machines performing: device and service

discovery, synchronization on connection and dynamic creation

of exclusive channels for data flow.

Method

Tasks of the system are to discover existing devices in rooms,

create connections to perform service discovery and send

commands between devices. Moreover the system is designed to

create exclusive connections between devices for data flow.

There are devices from the system that are created to enable

communication between rooms.

Description of the system

The experiment will be carried out with two rooms and three

types of devices. Rooms have different sets of devices. There are

three types of devices: A, B and C shown on Figure 2.

Device type A is a device that needs to send some type of

data. The device can connect to devices from Room 1 including

device type B. Device type A has no knowledge about services

offered in other rooms, but can recognize that device type B

from its room can provide useful information about devices in

other rooms.

Figure 2. System design datagram.

Devices of type B are present in both rooms. A type B device

is aware of devices and their capabilities in the same room as

themselves and can also connect with other type B devices.

Device type B performs an information service about devices

outside its own room, and on request can find specific devices

and arrange exclusive connections between devices. Device type

Room 2Room 1

B1

A C2

B2

C1

B is not a repository; devices from the system can connect to

other devices from the room without asking device type B. Every

device has its own device discovery capability, but connection

outside the room is performed using device type B. Therefore

device type B is another capability of the system, extending the

connection scope, but communication inside of the room can

occur without it.

Device type C is able to receive streams of data, and has

specific channel inputs for processing particular types of data. In

this experiment there are devices of type C in both rooms. Their

capabilities are different, so depending on the data type to be

sent, one of them will be used.

Figure 3. Connections established using a discovery service.

All the devices from the system can recognize the presence of

different devices. A device discovery service is present in every

device and provides information about all of the existing devices

(Figure 3). Devices as shown in Figure 3 are divided into levels.

Levels are used to manage initial connections between devices.

Devices from level 1 can only connect other devices from the

same room and have to request connection with devices from

level above. This way device from lower level requests a

connection with devices from one level above, and that manages

the order of communication and reduces number of requests sent

during the initialization stage. In Level 2 there are type B

devices with high priority, that recognize devices from its own

room and other devices from Level 2. In Level 1 there are

devices type A and C that have only knowledge about devices in

their own room and store this knowledge as a local repository.

The system consists of processes running concurrently on

different devices communicating over TCP/IP links. Every

device is equipped with main process responsible for key system

decision making procedure and set of device discovery and

information processes: Discovery Server and Discovery Client

connected in an internal network (Figure 4).

Figure 4. Devices internal network.

The network of processes in a device is initialized with

localization and device capability data. The main process is

responsible for establishing initial connections between the

device and others, managing signals and data received by the

device, send and receive commands. Moreover main processes

in devices type B are responsible for dynamic creation of an

instance of a process that can be connected to the network of

processes already existing on the device, to manage exclusive

connection between devices type A and C. The device discovery

and information processes are responsible for informing other

devices about their existence and receive information about other

devices.

Network diagram

Let’s consider a scenario that device A wants to send a particular

type of data for processing to device C2. Device A first searches

its own repository in order to find a suitable device. If an

appropriate device is not present the device asks device B1 to

provide a channel input, of a particular type, for sending data.

Device B1 searches its repository and asks device B2 to fulfill a

request. B2 checks the capabilities of devices in Room 2 and

finds that device C2 is available to perform a request (Figure 5).

Figure 5. System design datagram.

Device B2 sends a request to device C2 for a channel input

and asks it to be ready for input data. Next it creates a new

process D2 (Figure 5) that will be exclusively responsible for a

connection between B1 and C2. Device B1 also dynamically

creates a process D1 so device A can connect to device C2.

When an exclusive connection is ready B1 sends directions for

device A to send data (Figure 5). When processes D1 and D2

finish passing data they are disconnected and destroyed.

In the system devices A and C2 can communicate although

they are in different rooms. Devices B1 and B2 are responsible

for initiating connections not maintaining them. When an

exclusive connection is established processes D1 and D2 are

responsible for it, devices B1 and B2 can perform different tasks

and respond to requests from different devices.

Figure 6. Exclusive connection management.

Device

Main

Process

Discovery

Server

Discovery

Client

D

Device

Main

Process

Discovery

Server

Discovery

Client

Room 2 Room 1

A C2 C1

B1

D1

B2

D2

Room 2Room 1

B1

A C2

B2

C1

Level 2

Level 1

In the device internal network process D is connected to the

main process (Figure 6). The exclusive connection initialized by

the main process is now managed by dynamically created

process D.

The device discovery capability is present in every device. As

shown in Figure 6 there are two processes in every device

responsible for finding new devices and recognizing that a

device is no longer in use. Process DiscoveryClient sends an

UDP (User Datagram Protocol) packet with information about

itself to a broadcast address. DiscoveryServer process creates

socket and waits for a communication. When communication

occurs DiscoveryServer remembers the IP address of the sender

and, if it’s a new device, stores it in a local list. Processes run in

parallel and every device can simultaneously send and receive

packets.

Equipment and Libraries

Devices from the presented system are connected to an ad-hoc

network and run Java scripts, communicating over TCP/IP

network provided by a wireless router. Every device is a

Personal Digital Assistant (PDA) Dell Axim X5 with

Microsoft® Pocket PC operating system, processor Intel®

PXA255/400MHz, RAM capacity of 64MB and IBM J9 Java

Virtual Machine. Devices used in the system are in medium size,

as it was defined for the purpose of this paper. The reason to use

those machines is to show that the system can be run on devices

with limited memory capabilities.

The Personal Digital Assistants used in the experiment have

Standard Java 2 Platform Micro Edition (J2Me) 1.3 libraries.

Resulting system

The system consists of application classes with code and only

limited additional JCSP libraries. The size will be a sum of those

two sizes and is presented in Table 1.

Application classes: 48.5 KB

Additional JCSP libraries: 628.0 KB

Total: 676.5 KB

Table1. Size of the system

There are many packages in JCSP libraries, available at [2],

the system only uses three of them: jcsp.lang, jcsp.net2 and

jcsp.util. The size of those libraries can be reduced, to separate

classes that are used in the application. The JCSP Robot Edition

(JCSPre) is a set of classes collected to support the system that

controls LEGO NXT Robots [27]. The size of the jcsp.lang

package was reduced from 223 KB to 20KB.

Devices in the system have different capabilities and perform

various sets of tasks. Sizes of particular sets of classes for

different devices are presented in Table 2.

Device

type:

Application

classes:

Additional

JCSP libraries:

Total:

A 21.7 KB 628.0 KB 649.7 KB

B 24.4 KB 628.0 KB 652.4 KB

C 19.6 KB 628.0 KB 647.6 KB

Table 2. Size of the system on particular devices

The static size of the system on a particular device is no more

than 700 KB (Table 2), assuming the presence of Standard

JavaMe 1.3 libraries. The system is small in size, although it

operates at a high level of abstraction. As the system is dynamic

and adapts to a particular situation and changes in environment,

the size of the system at runtime is larger than its static size.

Summary

We present a concept in which, the idea of a system is based on

simple routing techniques. All devices from a proposed system

have information about other devices’ availability and can

connect within a room with other devices. Only when a device

with required capabilities is not present in the room, or a device

cannot be directly connected, a device type B is used to help to

create a dynamic connection between devices. This kind of

connection will be virtual and devices on both sides will not be

aware that it is not direct.

The system presented in this experiment dynamically creates

a network of devices in rooms that discover other devices,

connect appropriate ones, perform service discovery and creates

dynamic connections to perform some tasks using available

devices. The system has no central control and devices have

different capabilities and can perform different tasks. Adaptation

technique is designed to connect appropriate devices and enable

creation of exclusive connections between devices for data flow.

Device type B adapts to a request from devices type A by

creating a mobile processes to manage requested connection

type.

The system is small in size, but does operate at a high level of

abstraction and organizes a dynamic adaptive pervasive

environment. It performs device and service discovery, creates

dynamic connections, supports sending commands between

devices and manages an exclusive connection for data flow.

6 CONCLUSION AND FURTHER WORK

Pervasive adaptive computing creates new challenges for

software development. This paper introduces JCSP dynamic

connection capabilities and explores its usability for pervasive

adaptation. We have described the infrastructure for software

development in pervasive systems and useful JCSP capabilities

have been presented.

Scalability in a CSP based system was demonstrated by a

system modeling artificial blood platelets [26]. Mobility and

distribution are supported by JCSP through mobility of channels,

processes and code. Adaptation can be achieved by

reconfiguring a JCSP system that allows adding, removing,

reordering and reconnecting processes. Interoperability can be

achieved using CPAUNP protocol between different CSP

components not necessarily Java based. Readapting to changing

environment at runtime can be accomplished by using JCSP

dynamic connection capabilities and mobility of components.

The experiment of a simple pervasive adaptive environment

was presented. The application dynamically creates a network of

devices in rooms that discover other devices, connect appropriate

ones, perform service discovery and create dynamic connections

to perform data flow using available devices.

JCSP may not be the answer to all the challenges in pervasive

adaptive computing, but some of it features might be useful. The

system built using JCSP concepts is small in size and is

appropriate for devices with small memory capacity. In CSP

based systems simple processes can be composed into larger

networks. As the system can be verified using the Spin model it

is appropriate also for large scale architectures consisting of

small devices.

 Interoperability is still an unsolved problem, but research in

this area is in progress. JCSP advantages can be used in some

parts of a pervasive system. The ability to create a system

consisting of various types of components, implemented in

different languages would be useful.

The size of the system presented in the experiment is

measured in a static way, but the actual size of it at the runtime

has not been calculated. The size of the system is crucial when

considering using devices with vary small memory capabilities,

so experiments to measure the runtime system size have to be

performed.

ACKNOWLEDGMENT

This work is based on jcsp.net2 package with the

Communicating Process Architectures Universal Network

Protocol developed by Chalmers [28] at Napier University.

REFERENCES

[1] M. Weiser, The Computer for the 21st Century, Scientific

American, 1991, pp. 66-75.

[2] P.H. Welch, P.D. Austin, The JCSP Home Page.

http://www.cs.ukc.ac.uk/projects/ofa/jcsp/, 1999.

[3] G. Coulouris, J. Dollimore, T. Kindberg, Distributed Systems:

Concepts and Design, Pearson Education, 2005.

[4] M. Satyanarayanan, Pervasive Computing: Vision and Challenges,

IEEE personal communications, 2001, pp. 10-17.

[5] C. Elliott, B. Heile, Self-Organizing, Self-Healing Wireless

Networks, Aerospace Conference Proceedings, IEEE, 2000, pp.

355-362.

[6] A. Rashid, G. Kortuem, Adaptation as an aspect in pervasive

computing, OOPSLA 2004 Workshop on Building Software for

Pervasive Computing, Vancouver, British Columbia, Canada,

2004.

[7] R.H. Katz, Adaptation and mobility in wireless information

systems, IEEE Communications Magazine 40, 2002, pp. 102-114.

[8] A.W. Roscoe, C.A.R. Hoare, R. Bird, The Theory and Practice of

Concurrency, Prentice Hall PTR, Upper Saddle River, NJ, USA,

1997.

[9] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall

International Series in Computer Science, 1985.

[10] J. Kerridge, Lecture Notes and Forthcoming Text Book, Private

Communication, Napier University, Edinburgh, 2007.

[11] K. Henricksen, J. Indulska, A. Rakotonirainy, Infrastructure for

Pervasive Computing: Challenges, Workshop on Pervasive

Computing INFORMATIK 01, Vienna, 2001.

[12] R. Milner, J. Parrow, D. Walker, A Calculus of Mobile Processes,

Part I, Information and Computation 100, 1992, pp. 1-40.

[13] K. Chalmers, J. Kerridge, jcsp.mobile: A Package Enabling Mobile

Processes and Channels, Communicating Process Architectures,

2005.

[14] K. Chalmers, J. Kerridge, I. Romdhani, Mobility in JCSP: New

Mobile Channel and Mobile Process Models, Communicating

Process Architectures, 2005.

[15] J. Kerridge, K. Chalmers, Ubiquitous Access to Site Specific

Services by Mobile Devices: the Process View, Communicating

Process Architectures, 2006.

[16] H. Ossher, P. Tarr, Using multidimensional separation of concerns

to (re)shape evolving software, Communications of the ACM

44(2001) pp. 43-50.

[17] G.T. Heineman, W.T. Councill, Component-Based Software

Engineering: Putting the Pieces Together, Addison-Wesley

Professional, 2001.

[18] K. Chalmers, J. Kerridge, I. Romdhani, A Critique of JCSP

Networking, in: I. Press, (Ed), Communicating Process

Architectures, 2008.

[19] G.R.I. Golden, M. Spencer, Service and Device Discovery,

McGraw-Hill Professional, 2002.

[20] S. Helal, N. Desai, V. Verma, L. Choonhwa, Konark - A Service

Discovery and Delivery Protocol for Ad-Hoc Networks, Wireless

Communications and Networking, 2003. WCNC 2003. 2003 IEEE,

2003.

[21] R. Singh, P. Bhargava, S. Kain, State of the art smart spaces:

application models and software infrastructure, Ubiquity 7, 2006,

pp. 2-9.

[22] R. Gupta, S. Talwar, D.P. Agrawal, Jini Home Networking: A Step

toward Pervasive Computing, IEEE Computer Society 5, 2002, pp.

34-40.

[23] J. Ferber, Multi-Agent System: An Introduction to Distributed

Artificial Intelligence, Harlow: Addison Wesley Longman, 1999.

[24] J. Kerridge, J.O. Haschke, K. Chalmers, Mobile Agents and

Processes using Communicating Process Architectures,

Communicating Process Architectures, 2008.

[25] G. Agha, C. Hewitt, Concurrent programming using actors:

Exploiting large-scale parallelism Foundations of Software

Technology and Theoretical Computer Science 206/1985, Springer

Berlin / Heidelberg, 1985.

[26] P.H. Welch, F.R.M. Barnes, F.A.C. Polack, Communicating

Complex Systems, 11th IEEE International Conference on

Engineering of Complex Computer Systems (ICECCS'06), 2006.

[27] J. Kerridge, A. Panayotopoulos, P. Lismore, JCSPre: the Robot

Edition to Control LEGO NXT Robots, Communicating Processes

Architectures, York, UK, 2008.

[28] K. Chalmers, Investigating Communicating Sequential Processes

for Java to Support Ubiquitous Computing, Napier University,

2008.

[29] P.H. Welch, J.R. Aldous, J. Foster, CSP Networking for Java

(JCSP.net), in: P.M.A. Sloot, C.J.K. Tan, J.J. Dongarra, A.G.

Hoekstra, (Eds), International Conference Computational Science -

ICCS 2330, Springer Berlin / Heilderberg, Amsterdam, The

Netherlands, 2002, pp. 695-708.

[30] G.J. Holzmann, The SPIN Model Checker: Primer and Reference

Manual, Addison-Wesley, 2003.

