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Abstract 

The liver is recognised as a potential target site for nanoparticle (NP) toxicity, as 

NPs have been observed to accumulate within this organ subsequent to 

exposure via injection, inhalation or instillation.  The liver’s unique structure has 

to be taken into consideration when evaluating NP toxicity, as a variety of cell 

types of distinct morphology and function are evident, and potentially affected 

by NP exposure.  Of particular interest are hepatocytes, due to their abundance 

and importance to the maintenance of normal liver function, and macrophages 

due to their role in host defence.   

 

The uptake and intracellular fate of fluorescent polystyrene particles (20nm and 

200nm) by hepatocytes was evaluated (with exposure times of up to 60 

minutes).  Within the studies conducted comparisons of the response of primary 

rat hepatocytes, with C3A and HepG2 hepatocyte cell lines to NP exposure 

were made in order to investigate whether cell lines are a relevant model of 

hepatocyte behaviour.  It was found that the uptake of particles by the primary 

hepatocytes, and both cell lines was size and time dependent.  Specifically, it 

appeared that the internalisation of 200nm particles was limited, occurred at 

later time points (60 minutes), with the majority of particles evident at the cell 

surface.  Polystyrene NPs (20nm) were internalised by cells after a 10 minute 

exposure time, after which NPs compartmentalised either within and/or between 

adjacent cells.  The nature of the NP ‘compartments’, and therefore fate of 

internalised NPs was then investigated to determine if the compartments 

developed as a consequence of the mechanism of uptake, or due to the 

attempted elimination of NPs from cells.  It was found that NPs were not 

contained within early endosomes or lysosomes.  However it was apparent that 

polystyrene NPs were eliminated to a limited extent within the bile canaliculi of 

all cell types, and may accumulate within the mitochondria of cell lines after a 

60 minute exposure, which warrants further investigation. 

 

The impact of the PARTICLE_RISK particle panel [consisting of ultrafine carbon 

black (ufCB), CB, carbon nanotubes (CNTs), C60 (carbon fullerene) QD621 

(positively charged quantum dots) and QD620 (negatively charged quantum 

dots)] on hepatocyte function was then determined.  It was consistently 

observed that QD621 and QD620 were able to elicit the greatest extent of 



 

 

toxicity, evidenced within their ability to deplete cellular GSH, induce 

cytotoxicity, initiate a pro-inflammatory response (indicated by an increase in IL-

8 production) and decrease bile secretion, in the hepatocyte couplet, in vitro 

model.  It was observed that the pattern of response was similar within the cell 

lines and primary cells. 

 

Differentiated monocytic THP-1 cells (to represent the resident liver 

macrophages, Kupffer cells) were exposed to the PARTICLE_RISK particle 

panel to obtain conditioned medium (CM) that was exposed to hepatocytes, in 

order to gain insight into the ability of macrophages to influence NP mediated 

toxicity to hepatocytes.  Firstly, the response of macrophages to particle 

exposure was considered and it was apparent that the toxicity that was 

observed within hepatocytes was paralleled within the response of differentiated 

monocytic cells (THP-1).  Accordingly, QD621 were again proven to have the 

greatest toxic potential, with QD620 able to induce toxicity to a more limited 

extent.  The exposure of hepatocytes to CM potentiated the toxicity observed 

when cells were exposed to particles alone, so that the pattern of response was 

comparable, but the extent of toxicity greater, and evident at earlier time points.  

It was apparent that QDs were able to induce an inflammatory response 

(characterised by TNFα and IL-8 production) within the liver that was primarily 

mediated by macrophages.   

 

When considering the results from all experiments it is evident that some of the 

particles contained within the PARTICLE_RISK panel were more capable of 

eliciting toxicity within the liver, and that their toxicity can be ranked in the 

following order: QD621>QD620>CNT=ufCB=C60>CB. 
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viewed within the supplementary DVD.  
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Abbreviations 
α   alpha 

AFM  atomic force microscopy 

ARE   antioxidant response element 

ATP   adenosine triphosphate 

ß   beta 

BSA   bovine serum albumin 

BSP   bromosulphophthalein 

C60   carbon fullerene 

Ca   calcium 

CaCl2   calcium chloride 

CB   carbon black 

CCl4   carbon tetrachloride 

CdSe   cadmium selenide 

CdTe   cadmium telluride 

CM   conditioned medium  

CME   clathrin mediated endocytosis  

CNT   carbon nanotube 

CO2   carbon dioxide 

COPD   chronic obstructive pulmonary disease 

CLF   cholyl lysyl fluorescein 

CVA   canalicular vacuole accumulation 

CYP450 cytochrome P450 

dH2O   distilled water 

DCFH   dichlorofluorescin  

DCFH-DA 2,7-dichlorofluorescein diacetate 

DLS  dynamic light scattering  

DNA   deoxyribonucleic acid 

DEP   diesel exhaust particles 

DPPC  dipalmitoylphosphatidylcholine 

DTT  dithiothreitol 

ECV   endosomal carrier vesicle 

EDTA   ethylenediaminetetraacetic acid 

EEA-1   early endosome antigen 1 

ELISA   enzyme linked immunosorbant assay 

EM  electron microscopy 

ER   endoplasmic reticulum 

FCS   fetal calf serum 

FFF  field flow fractionation 



 

 

Abbreviations (continued) 

GIT   gastroIntestinal tract 

H2SO4   sulphuric acid 

HBSS   hanks balanced salt solution 

HO-1   heme oxygenase 

Hr   hour 

HPLC-MS  high performance liquid chromatography  

HRP   horse radish peroxidise 

ICP-MS  inductively coupled plasma mass spectroscopy  

i.t   intra-tracheal 

i.v.  intravenous 

IRHC   isolated rat hepatocyte couplet 

IL   interleukin 

LCD   liquid crystal display 

LAMP-1  lysosome associated protein 1 

M   molar 

m   metre 

MEM  minimum essential medium 

mins   minutes 

ml   millilitre 

mM   millimolar 

mRNA   messenger ribonucleic acid 

MTT   2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl- 2H-tetrazolium bromide 

MgCl2   magnesium chloride 

MWCNTS  multi walled carbon nanotubes 

MRP2   multridrug resistant protein 2 

mm   millimetre 

NaCl   sodium chloride 

NaOH  sodium hydroxide 

Na/K ATPase sodium/potassium pump 

NADH   β-nicotinamide adenine dinucleotide 

NF- kß  nuclear factor kappa beta  

NADPH  nicotinamide adenine dinucleotide phosphate 

NEM  N-Ethylmaleimide 

nm   nanometre 

NP   nanoparticle 

NO   nitric oxide 

OPT   o-phthaldialdehyde  

PAH  polycyclic aromatic hydrocarbons 



 

 

Abbreviations (continued) 

PBS   phosphate buffered saline 

PEG   polyethylene glycol  

Pen/Strep  penicillin streptomycin 

PM   plasma membrane 

PMA   phorbyl myristate acetate 

POC-R  perfusion, open and closed cultivation 

P-gp   p-glycoprotein 

QD   quantum dot 

RBC   red blood cell 

RES   reticuloendothelial system 

ROS   reactive oxygen species 

SA   surface area 

SARs  structure activity relationships 

SEM   scanning electron microscopy 

Strep-PE  streptavadin phycoerythrin 

SWCNTS  single walled carbon nanotubes 

TEM   transmission electron microscopy 

TNF   tumour necrosis factor  

TiO2   titanium dioxide 

UV   ultraviolet 

UVR   ultraviolet radiation 

ufCB   ultrafine carbon black 

w/o   without 

ZnS   zinc sulphide 

4HNE   4 hydroxynoneal 

8-O-H-G  8hydroxyguanosine 

µg  microgram  

µl   microlitre 
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