

INVESTIGATING COMMUNICATING SEQUENTIAL
PROCESSES FOR JAVA TO SUPPORT UBIQUITOUS

COMPUTING

KEVIN FRASER CHALMERS

SUBMITTED IN PARTIAL FULFILMENT OF THE
REQUIREMENTS OF NAPIER UNIVERSITY FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY IN COMPUTING

OCTOBER 2008

i

Abstract

Ubiquitous Computing promises to enrich our everyday lives by enabling the

environment to be enhanced via computational elements. These elements are

designed to augment and support our lives, thus allowing us to perform our tasks

and goals. The main facet of Ubiquitous Computing is that computational devices

are embedded in the environment, and interact with users and themselves to

provide novel and unique applications.

Ubiquitous Computing requires an underlying architecture that helps to promote

and control the dynamic properties and structures that the applications require. In

this thesis, the Networking package of Communicating Sequential Processes for Java

(JCSP) is examined to analyse its suitability as the underlying architecture for

Ubiquitous Computing. The reason to use JCSP Networking as a case study is that

one of the proposed models for Ubiquitous Computing, the π-Calculus, has the

potential to have its abstractions implemented within JCSP Networking.

This thesis examines some of the underlying properties of JCSP Networking and

examines them within the context of Ubiquitous Computing. There is also an

examination into the possibility of implementing the mobility constructs of the π-

Calculus and similar mobility models within JCSP Networking. It has been found

that some of the inherent properties of Java and JCSP Networking do cause

limitations, and hence a generalisation of the architecture has been made that

should provide greater suitability of the ideas behind JCSP Networking to support

Ubiquitous Computing. The generalisation has resulted in the creation of a verified

communication protocol that can be applied to any Communicating Process

Architecture.

ii

Contents

ABSTRACT ... I

CONTENTS .. II

LIST OF FIGURES .. XI

LIST OF TABLES .. XVI

ACKNOWLEDGEMENTS .. XVII

DEDICATION .. XVIII

CHAPTER 1 INTRODUCTION ... 1

1.1 MOTIVATION ... 1

1.2 UBIQUITOUS COMPUTING .. 1

1.3 MOBILITY .. 2

1.4 COMMUNICATING SEQUENTIAL PROCESSES FOR JAVA .. 3

1.5 AIMS .. 3

1.5.1 Suitability of JCSP Networking for Ubiquitous Computing ... 3

1.5.2 Practicalities of Mobility ... 4

1.6 CONTRIBUTION ... 4

1.7 THESIS STRUCTURE .. 5

CHAPTER 2 BACKGROUND ... 6

2.1 UBIQUITOUS COMPUTING .. 6

2.1.1 Describing Ubiquitous Computing .. 6

2.1.1.1 Example Scenarios ... 8

2.1.1.2 Location Awareness ... 8

2.1.2 Requirements ... 9

2.1.3 Software Architecture for Ubiquitous Computing .. 12

2.1.4 Hardware for Ubiquitous Computing ... 13

2.2 AGENT ORIENTED SYSTEMS .. 14

2.2.1 Describing Agents ... 15

2.2.1.1 Autonomous Agents .. 16

2.2.2 Modelling Agents ... 16

iii

2.2.3 Summary .. 17

2.3 MOBILITY .. 18

2.3.1 Logical Component Mobility ... 18

2.3.2 Properties and Requirements ... 20

2.3.2.1 Code Mobility ... 20

2.3.3 Mobility Architecture .. 21

2.3.3.1 Object Oriented Architectures ... 22

2.3.4 Formal Modelling of Mobility ... 23

2.4 MOBILE AGENTS ... 24

2.4.1 Using Mobile Agents... 25

2.4.2 Advantages of Mobile Agents .. 26

2.4.3 Problems with Mobile Agents ... 26

2.4.4 Mobile Agent Platforms.. 27

2.4.5 Summary .. 28

2.5 COMMUNICATING PROCESS ARCHITECTURES .. 29

2.5.1 Similarities between CSP and Agent Orientation ... 29

2.5.2 Mobile Processes and Mobile Channels.. 30

2.5.3 Examining the Capabilities of JCSP Networking ... 30

2.6 SUMMARY ... 32

CHAPTER 3 JCSP NETWORKING .. 33

3.1 AIM OF JCSP NETWORKING .. 33

3.2 JCSP NETWORK ARCHITECTURE .. 34

3.2.1 High Level View .. 34

3.3 JCSP NETWORKING FUNCTIONALITY ... 37

3.3.1 JCSP Network Message Hierarchy .. 38

3.4 BRIEF ANALYSIS OF THE CURRENT ARCHITECTURE .. 39

3.4.1 Previous Analysis on JCSP Networking ... 39

3.4.2 Previous Analysis on Other Process Oriented Network Architectures 40

3.4.3 Resource Usage .. 41

3.4.4 Complexity .. 42

3.4.5 Objects Only ... 42

3.5 INITIAL OBSERVATIONS .. 43

CHAPTER 4 ANALYSIS OF CURRENT JCSP NETWORKING... 44

4.1 TEST FRAMEWORK .. 44

4.1.1 PDA Specifications .. 45

4.1.2 PC Specifications ... 45

4.1.3 Network Specifications ... 45

iv

4.1.4 Test Classes ... 45

4.2 EXAMINING THE JAVA VIRTUAL MACHINES .. 48

4.2.1 Java Versions .. 48

4.2.2 Java Grande Object Creation Benchmarks ... 49

4.2.3 Java Grande Object Serialization Benchmarks ... 50

4.2.4 Serialization within Memory... 53

4.2.5 CommsTime .. 55

4.3 EXAMINING THE NETWORK PERFORMANCE .. 55

4.3.1 Simple Ping ... 56

4.3.2 Bandwidth .. 57

4.3.3 Latency ... 60

4.4 EXAMINING JCSP PERFORMANCE .. 62

4.4.1 Simple Ping ... 64

4.4.2 Bandwidth .. 66

4.4.3 Latency ... 69

4.5 TEST OBJECT MESSAGES .. 71

4.5.1 Sending via Object Streams .. 72

4.5.2 Sending via Channels .. 77

4.5.3 Roundtrip .. 80

4.6 EXAMINING JCSP NETWORKING OVERHEAD .. 81

4.7 SUMMARY ... 83

4.7.1 Interoperability ... 83

4.7.2 Performance ... 84

4.7.3 Resource Usage .. 86

4.7.4 System Overhead .. 86

4.7.5 Scalability ... 87

4.7.6 Stability ... 87

4.7.7 Accessibility and Extensibility ... 88

4.7.8 Conclusion .. 88

CHAPTER 5 A NEW ARCHITECTURE AND GENERAL PROTOCOL FOR JCSP NETWORKING 90

5.1 NEW ARCHITECTURE FOR JCSP NETWORKING .. 90

5.1.1 Layered Model .. 90

5.1.2 High Level Model .. 93

5.2 GENERAL PROTOCOL FOR COMMUNICATING PROCESS ARCHITECTURES ... 94

5.2.1 Protocol Definition .. 95

5.2.2 General Nature of the Protocol .. 97

5.3 OPERATION ... 98

v

5.3.1 Virtual Channel ... 98

5.3.2 Basic SEND / ACK Operation ... 99

5.3.3 SEND / REJECT operation .. 101

5.3.4 SEND / LINK_LOST .. 102

5.3.5 Exception Handling ... 103

5.3.6 Channel States .. 103

5.4 DATA INDEPENDENCE .. 105

5.5 SUMMARY ... 106

CHAPTER 6 EXAMINING THE NEW ARCHITECTURE... 107

6.1 EXPECTED CHANNEL PERFORMANCE ... 107

6.2 NEW JCSP NETWORKING PERFORMANCE .. 109

6.2.1 Simple Ping ... 109

6.2.2 Bandwidth .. 110

6.2.3 Latency ... 114

6.3 TEST OBJECT MESSAGES .. 119

6.3.1 Sending ... 119

6.3.2 Roundtrip .. 121

6.4 OVERHEAD OF THE NEW IMPLEMENTATION ... 122

6.5 VERIFYING THE PROTOCOL AND ARCHITECTURE .. 124

6.5.1 SPIN .. 124

6.5.2 Protocol Definition .. 125

6.5.3 Channel ... 126

6.5.3.1 Channel States ... 126

6.5.3.2 Channel Data Structure .. 126

6.5.3.3 Channel Process ... 126

6.5.4 Link Processes ... 128

6.5.5 Application Processes ... 129

6.5.6 Node ... 129

6.5.7 Network Process ... 130

6.5.8 Global Values .. 130

6.5.9 Basic Verification .. 131

6.5.10 Advanced Verification .. 132

6.6 SUMMARY ... 133

6.6.1 Interoperability ... 134

6.6.2 Performance ... 134

6.6.3 Resource Usage .. 136

6.6.4 System Overhead .. 136

6.6.5 Scalability ... 137

vi

6.6.6 Stability ... 137

6.6.7 Accessibility and Extensibility ... 137

6.6.8 Conclusion .. 138

CHAPTER 7 CHANNEL MOBILITY .. 139

7.1 DEFINING CHANNEL END MOBILITY .. 139

7.2 CHANNEL MOBILITY MODELS .. 140

7.2.1 One-to-One Networked Channels ... 141

7.2.2 Centralised Server ... 141

7.2.3 Message Box ... 142

7.2.4 Message Box Server .. 142

7.2.5 Chain ... 143

7.2.6 Reconfiguring Chain ... 143

7.2.7 Mobile IP Model ... 144

7.3 ANALYSING CHANNEL MOBILITY MODELS .. 144

7.3.1 Transmission Time .. 147

7.3.2 Reconfiguration Time ... 148

7.3.3 Reachability .. 150

7.3.4 Strength .. 152

7.4 SUMMARY OF MODEL PROPERTIES ... 153

7.5 CONCLUSIONS .. 155

CHAPTER 8 PROCESS MOBILITY ... 158

8.1 INTRODUCTION ... 158

8.1.1 Defining a Mobile Process .. 159

8.1.2 Transferring a Process .. 160

8.2 RELATED WORK .. 162

8.2.1 Java Based Approaches .. 162

8.2.2 Generic Approaches .. 164

8.2.3 CSP Based Approaches ... 165

8.3 OBSERVABLY STRONGLY MOBILE PROCESSES .. 167

8.3.1 Simple Process Migration ... 168

8.3.2 Parallelised Process Migration ... 170

8.3.2.1 Processes Ending Parallelised .. 170

8.3.2.2 Processes Beginning Parallelised ... 171

8.3.3 Connected Mobiles ... 172

8.3.4 Example – Numbers Process ... 173

8.3.5 Limitations .. 175

8.4 IMPLEMENTATION ... 176

vii

8.4.1 NumbersInt Process in JCSP .. 176

8.4.2 MobileNumbersInt Process ... 178

8.4.3 Java Serialization to Help Migration... 183

8.4.4 Implementation Limitations ... 183

8.5 SUMMARY ... 187

CHAPTER 9 CONCLUSIONS AND FUTURE WORK ... 189

9.1 SUITABILITY OF JCSP NETWORKING FOR UBIQUITOUS COMPUTING .. 189

9.1.1 Problems with the Current Implementation ... 190

9.1.1.1 Interoperability .. 190

9.1.1.2 Performance .. 191

9.1.1.3 Resource Usage .. 192

9.1.1.4 System Overhead ... 193

9.1.1.5 Scalability ... 193

9.1.1.6 Stability .. 194

9.1.1.7 Accessibility and Extensibility .. 194

9.1.1.8 Usage of Java Serialization ... 195

9.1.1.9 Usage of Java ... 195

9.1.1.10 Lack of Communication Protocol ... 196

9.1.2 Overcoming the Problems in JCSP Networking ... 196

9.1.2.1 Reduced Architecture .. 196

9.1.2.2 Removal of Reliance on Serialization ... 197

9.1.2.3 Abstraction of Data Encoding .. 197

9.1.2.4 Communication Protocol ... 197

9.1.2.5 Performance .. 198

9.1.2.6 Verified Model ... 198

9.2 MOBILITY .. 198

9.2.1 Advantages of Communicating Process Architecture Mobility 199

9.2.2 Channel Mobility .. 200

9.2.3 Process Mobility ... 200

9.3 SUMMARY ... 201

9.4 FUTURE WORK ... 202

REFERENCES ... 207

APPENDIX A SERIALIZATION IN JAVA .. 220

A.1 SERIALIZATION COMPONENTS ... 220

A.2 SERIALIZATION FUNCTIONALITY ... 221

A.3 BYTE ARRAY .. 224

A.4 CHANNELMESSAGE.DATA .. 225

A.5 CHANNELMESSAGE.ACK .. 225

viii

A.6 INTEGER ARRAY ... 225

A.7 TESTOBJECT .. 226

A.8 TESTOBJECT2 AND TESTOBJECT3 .. 226

A.9 TESTOBJECT4 AND TESTOBJECT5 .. 226

APPENDIX B TEST OBJECT CLASS DEFINITIONS .. 228

B.1 TESTOBJECT .. 228

B.2 TESTOBJECT2 .. 228

B.3 TESTOBJECT3 .. 229

B.4 TESTOBJECT4 .. 229

B.5 TESTOBJECT5 .. 230

APPENDIX C PERFORMANCE CHARACTERISATION DATA .. 231

C.1 JAVA GRANDE BENCHMARK ARITHMETIC OPERATIONS ... 231

C.2 OBJECT CREATION TIME ... 231

C.3 ARRAY CREATION TIME .. 232

C.4 SERIALIZATION.. 233

C.5 MULTITHREADED BENCHMARKS... 234

C.5.1 Fork / Join Time .. 234

C.5.2 Thread Synchronisation Time ... 235

C.6 JCSP SPECIFIC TEST RESULTS .. 235

C.6.1 CommsTime .. 235

C.6.2 Stressed Alternative .. 237

APPENDIX D EXPERIMENTATION RESULTS .. 238

D.1 SERIALIZATION OF TEST OBJECTS ... 238

D.1.1 Java Grande Serialization Benchmarks ... 238

D.1.2 Serialization into Memory .. 240

D.2 NETWORK PERFORMANCE ... 241

D.2.1 Send and Receive .. 241

D.2.2 New Send and Receive .. 243

D.2.3 Roundtrip .. 245

D.2.4 New Roundtrip .. 247

D.3 TEST OBJECT COMMUNICATION .. 249

D.3.1 Sending ... 249

D.3.1.1 Object Streams .. 249

D.3.1.2 Networked Channels ... 250

D.3.1.3 New Networked Channels ... 253

D.3.2 Receiving .. 255

ix

D.3.2.1 Object Streams .. 255

D.3.2.2 Networked Channels ... 256

D.3.2.3 New Networked Channels ... 258

D.3.3 Roundtrip .. 259

D.3.3.1 Object Streams .. 259

D.3.3.2 Networked Channels ... 261

D.3.3.3 New Networked Channels ... 264

APPENDIX E NETWORK PROTOCOL DEFINITION ... 268

E.1 CHANNEL MESSAGES ... 268

E.2 BARRIER MESSAGES .. 268

E.3 CONNECTION MESSAGES .. 269

E.4 MISCELLANEOUS MESSAGES ... 270

APPENDIX F SPIN MODEL OF NEW JCSP NETWORK ARCHITECTURE 271

APPENDIX G CHANNEL MOBILITY MODELS ... 287

G.1 ONE-TO-ONE NETWORKED CHANNEL .. 287

G.2 CENTRALISED SERVER .. 289

G.3 MESSAGE BOX ... 291

G.4 MESSAGE BOX SERVER .. 292

G.5 CHAIN .. 292

G.6 RECONFIGURING CHAIN ... 294

G.7 MOBILE IP MODEL ... 296

G.7.1 Sending a New Input Channel End .. 297

G.7.2 Sending the Complement Output End .. 299

G.7.3 Sending a New Output End ... 300

G.7.4 Sending the Complement Input End ... 302

G.7.5 Protocol Messages.. 303

APPENDIX H NUMBERS AND MOBILE NUMBERS PROCESSES .. 304

H.1 IDENTITYINT .. 304

H.1.1 Normal .. 304

H.1.2 Mobile... 304

H.2 PREFIXINT ... 306

H.2.1 Normal .. 306

H.2.2 Mobile... 306

H.3 SUCCESSORINT .. 307

H.3.1 Normal .. 307

H.3.2 Mobile... 308

x

H.4 PROCESSWRITEINT ... 309

H.4.1 Normal .. 309

H.4.2 Mobile... 309

H.5 DELTA2INT ... 311

H.5.1 Normal .. 311

H.5.2 Mobile and CheckFinished .. 311

H.6 NUMBERSINT .. 313

H.6.1 Normal .. 313

H.6.2 Mobile... 314

APPENDIX I PUBLISHED WORK ... 316

xi

List of Figures

FIGURE 1: CURRENT JCSP NETWORKING ARCHITECTURE .. 34

FIGURE 2: NETWORKED CHANNEL .. 37

FIGURE 3: JCSP NETWORK MESSAGE HIERARCHY ... 39

FIGURE 4: PC TEST OBJECT CREATION TIMES ... 50

FIGURE 5: PDA TEST OBJECT CREATION TIMES ... 50

FIGURE 6: PC JAVA GRANDE TEST OBJECT SERIALIZATION ... 51

FIGURE 7: PDA JAVA GRANDE TEST OBJECT SERIALIZATION .. 52

FIGURE 8: PC AGAINST PDA TESTOBJECT4 JAVA GRANDE (DE)SERIALIZATION BENCHMARK 52

FIGURE 9: PC MEMORY TEST OBJECT SERIALIZATION ... 53

FIGURE 10: PDA MEMORY TEST OBJECT SERIALIZATION .. 54

FIGURE 11: PC AGAINST PDA TESTOBJECT4 MEMORY (DE)SERIALIZATION BENCHMARK 55

FIGURE 12: SIMPLE PING TEST .. 57

FIGURE 13: SEND AND RECEIVE BENCHMARK ... 58

FIGURE 14: PDA BANDWIDTH .. 59

FIGURE 15: PC BANDWIDTH ... 60

FIGURE 16: ROUNDTRIP PDA TO PC .. 61

FIGURE 17: ROUNDTRIP PC TO PDA .. 62

FIGURE 18: JCSP NETWORK CHANNEL PING TEST ... 65

FIGURE 19: JCSP NETWORK CHANNEL SEND AND RECEIVE BENCHMARK ... 67

FIGURE 20: PDA CHANNEL BANDWIDTH ... 68

FIGURE 21: PC CHANNEL BANDWIDTH ... 69

FIGURE 22: CHANNEL ROUNDTRIP PDA TO PC ... 70

FIGURE 23: VARIANCE BETWEEN ACTUAL AND EXPECTED CHANNEL ROUNDTRIP RESULTS 70

FIGURE 24: PC SENDING TEST OBJECTS VIA OBJECT STREAMS ... 72

FIGURE 25: CLEANED PC SENDING TEST OBJECTS VIA OBJECT STREAMS .. 74

FIGURE 26: PDA SENDING TEST OBJECTS VIA OBJECT STREAM .. 75

FIGURE 27: PDA SENDING INTS ... 76

FIGURE 28: SENDING AND RECEIVING TESTOBJECT4 VIA OBJECT STREAMS .. 77

FIGURE 29: PC SENDING TESTOBJECT4 VIA NETWORKED CHANNELS .. 78

FIGURE 30: PDA SENDING TESTOBJECT4 VIA NETWORKED CHANNELS.. 79

FIGURE 31: PC TO PDA ROUNDTRIP TESTOBJECT4 ... 80

xii

FIGURE 32: PDA RECEIVING TESTOBJECT4 .. 81

FIGURE 33: PDA COMMSTIME STRESSED NETWORK ... 82

FIGURE 34: NETWORKED CHANNEL ROUNDTRIP WITH COMMSTIME... 83

FIGURE 35: BASIC LAYERED ARCHITECTURE .. 90

FIGURE 36: DETAILED LAYERED ARCHITECTURE ... 91

FIGURE 37: HIGH LEVEL ARCHITECTURAL MODEL .. 94

FIGURE 38: LAYERED VIRTUAL CHANNEL ... 98

FIGURE 39: NEW NETWORKED CHANNEL .. 99

FIGURE 40: REJECT CHANNEL OPERATION ... 101

FIGURE 41: CHANNEL STATE TRANSITION .. 104

FIGURE 42: SIMPLE PING NEW NETWORK CHANNEL .. 109

FIGURE 43: NEW NETWORK CHANNEL SEND AND RECEIVE BENCHMARK ... 111

FIGURE 44: PDA NEW SYNCHRONOUS CHANNEL BANDWIDTH .. 112

FIGURE 45: PDA NEW ASYNCHRONOUS CHANNEL BANDWIDTH .. 112

FIGURE 46: PC NEW SYNCHRONOUS CHANNEL BANDWIDTH... 113

FIGURE 47: PC NEW ASYNCHRONOUS CHANNEL BANDWIDTH ... 114

FIGURE 48: PDA SYNCHRONOUS SERIALIZATION CHANNEL ROUNDTRIP .. 115

FIGURE 49: PDA ASYNCHRONOUS SERIALIZATION CHANNEL ROUNDTRIP .. 116

FIGURE 50: PDA SYNCHRONOUS RAW CHANNEL ROUNDTRIP ... 117

FIGURE 51: PDA ASYNCHRONOUS RAW CHANNEL ROUNDTRIP ... 117

FIGURE 52: PDA RECEIVING ASYNCHRONOUS RAW CHANNEL ROUNDTRIP .. 118

FIGURE 53: HIGH PRIORITY VS. NORMAL PRIORITY LINK ... 119

FIGURE 54: PC SENDING TESTOBJECT4 VIA NEW NETWORKED CHANNEL .. 120

FIGURE 55: PDA SENDING TESTOBJECT4 VIA NEW NETWORKED CHANNEL ... 121

FIGURE 56: PC TO PDA TESTOBJECT4 SYNCHRONOUS ROUNDTRIP VIA NEW NETWORKED CHANNEL 122

FIGURE 57: PDA COMMSTIME NEW STRESSED NETWORK ... 123

FIGURE 58: NEW NETWORKED CHANNEL ROUNDTRIP WITH COMMSTIME ... 123

FIGURE 59: NETCHANNELOUTPUT PROCESS .. 127

FIGURE 60: NETCHANNELINPUT PROCESS ... 128

FIGURE 61: LINKTX PROCESS ... 128

FIGURE 62: LINKRX PROCESS .. 128

FIGURE 63: LINK PROCESS .. 129

FIGURE 64: INPUTNODE PROCESS .. 129

FIGURE 65: OUTPUTNODE PROCESS ... 130

FIGURE 66: SIMPLE JCSP NETWORKING MODEL ... 130

FIGURE 67: CHANNEL MOBILITY .. 140

FIGURE 68: DOMAIN TREE .. 145

FIGURE 69: PROCESS BRANCH MOBILITY ... 161

xiii

FIGURE 70: ALTINGBARRIER SAMPLE PROCESS NETWORK .. 184

FIGURE 71: SERIALIZED INTEGER OBJECT ... 223

FIGURE 72: SERIALIZED BYTE ARRAY ... 224

FIGURE 73: SERIALIZED CHANNELMESSAGE.DATA ... 225

FIGURE 74: SERIALIZED CHANNELMESSAGE.ACK ... 225

FIGURE 75: SERIALIZED INTEGER ARRAY .. 225

FIGURE 76: SERIALIZED TESTOBJECT ... 226

FIGURE 77: SERIALIZED TESTOBJECT2 AND TESTOBJECT3 ... 226

FIGURE 78: SERIALIZED TESTOBJECT4 AND TESTOBJECT5 ... 227

FIGURE 79: ARITHMETIC BENCHMARK RESULTS .. 231

FIGURE 80: OBJECT CREATION BENCHMARK RESULTS .. 232

FIGURE 81: ARRAY CREATION BENCHMARK RESULTS ... 233

FIGURE 82: SERIALIZATION BENCHMARK RESULTS ... 234

FIGURE 83: FORK / JOIN BENCHMARK RESULTS .. 234

FIGURE 84: SYNCHRONISATION BENCHMARK RESULTS ... 235

FIGURE 85: COMMSTIME BENCHMARK RESULTS ... 236

FIGURE 86: STRESSED ALT BENCHMARK RESULTS .. 237

FIGURE 87: PC JAVA GRANDE SERIALIZATION TIME ... 238

FIGURE 88: PC JAVA GRANDE DESERIALIZATION TIME ... 239

FIGURE 89: PDA JAVA GRANDE SERIALIZATION TIME .. 239

FIGURE 90: PDA JAVA GRANDE DESERIALIZATION TIME ... 239

FIGURE 91: PC MEMORY SERIALIZATION TIME ... 240

FIGURE 92: PC MEMORY DESERIALIZATION TIME ... 240

FIGURE 93: PDA MEMORY SERIALIZATION TIME .. 241

FIGURE 94: PDA MEMORY DESERIALIZATION TIME ... 241

FIGURE 95: PC SENDING DATA .. 242

FIGURE 96: PC RECEIVING DATA ... 242

FIGURE 97: PDA SENDING DATA ... 243

FIGURE 98: PDA RECEIVING DATA ... 243

FIGURE 99: PC SENDING DATA NEW JCSP .. 244

FIGURE 100: PC RECEIVING DATA NEW JCSP .. 244

FIGURE 101: PDA SENDING DATA NEW JCSP ... 245

FIGURE 102: PDA RECEIVING DATA NEW JCSP ... 245

FIGURE 103: PC TIME PC TO PDA ROUNDTRIP DATA ... 246

FIGURE 104: PC TIME PDA TO PC ROUNDTRIP DATA ... 246

FIGURE 105: PDA TIME PDA TO PC ROUNDTRIP DATA ... 247

FIGURE 106: PDA TIME PC TO PDA ROUNDTRIP DATA ... 247

FIGURE 107: PC TIME PC TO PDA NEW JCSP ROUNDTRIP DATA .. 248

xiv

FIGURE 108: PC TIME PDA TO PC NEW JCSP ROUNDTRIP DATA .. 248

FIGURE 109: PDA TIME PDA TO PC NEW JCSP ROUNDTRIP DATA ... 249

FIGURE 110: PDA TIME PC TO PDA NEW JCSP ROUNDTRIP DATA ... 249

FIGURE 111: PC SENDING TESTOBJECT VIA OBJECT STREAMS ... 250

FIGURE 112: PDA SENDING TESTOBJECT VIA OBJECT STREAMS... 250

FIGURE 113: EXPECTED PC SENDING TESTOBJECT VIA SYNCHRONOUS NETWORKED CHANNELS 251

FIGURE 114: PC SENDING TESTOBJECT VIA SYNCHRONOUS NETWORKED CHANNELS ... 251

FIGURE 115: PC SENDING TESTOBJECT VIA ASYNCHRONOUS NETWORKED CHANNELS ... 251

FIGURE 116: EXPECTED PDA SENDING TESTOBJECT VIA SYNCHRONOUS NETWORKED CHANNELS 252

FIGURE 117: PDA SENDING TESTOBJECT VIA SYNCHRONOUS NETWORKED CHANNELS .. 252

FIGURE 118: PDA SENDING TESTOBJECT VIA ASYNCHRONOUS NETWORKED CHANNELS 252

FIGURE 119: EXPECTED PC SENDING TESTOBJECT VIA NEW SYNCHRONOUS NETWORKED CHANNELS 253

FIGURE 120: PC SENDING TESTOBJECT VIA NEW SYNCHRONOUS NETWORKED CHANNELS 253

FIGURE 121: PC SENDING TESTOBJECT VIA NEW ASYNCHRONOUS NETWORKED CHANNELS 254

FIGURE 122: EXPECTED PDA SENDING TESTOBJECT VIA NEW SYNCHRONOUS NETWORKED CHANNELS 254

FIGURE 123: PDA SENDING TESTOBJECT VIA NEW SYNCHRONOUS NETWORKED CHANNELS 254

FIGURE 124: PDA SENDING TESTOBJECT VIA NEW ASYNCHRONOUS NETWORKED CHANNELS 255

FIGURE 125: PC RECEIVING TESTOBJECT VIA OBJECT STREAMS ... 255

FIGURE 126: PDA RECEIVING TESTOBJECT VIA OBJECT STREAMS .. 256

FIGURE 127: PC RECEIVING TESTOBJECT VIA SYNCHRONOUS NETWORKED CHANNELS ... 256

FIGURE 128: PC RECEIVING TESTOBJECT VIA ASYNCHRONOUS NETWORKED CHANNELS 257

FIGURE 129: PDA RECEIVING TESTOBJECT VIA SYNCHRONOUS NETWORKED CHANNELS 257

FIGURE 130: PDA RECEIVING TESTOBJECT VIA ASYNCHRONOUS NETWORKED CHANNELS 257

FIGURE 131: PC RECEIVING TESTOBJECT VIA SYNCHRONOUS NEW NETWORKED CHANNELS 258

FIGURE 132: PC RECEIVING TESTOBJECT VIA ASYNCHRONOUS NEW NETWORKED CHANNELS 258

FIGURE 133: PDA RECEIVING TESTOBJECT VIA SYNCHRONOUS NEW NETWORKED CHANNELS 259

FIGURE 134: PDA RECEIVING TESTOBJECT VIA ASYNCHRONOUS NEW NETWORKED CHANNELS 259

FIGURE 135: PC TIME PC TO PDA TESTOBJECT ROUNDTRIP VIA OBJECT STREAMS ... 260

FIGURE 136: PC TIME PDA TO PC TESTOBJECT ROUNDTRIP VIA OBJECT STREAMS ... 260

FIGURE 137: PDA TIME PDA TO PC TESTOBJECT ROUNDTRIP VIA OBJECT STREAMS .. 260

FIGURE 138: PDA TIME PC TO PDA TESTOBJECT ROUNDTRIP VIA OBJECT STREAMS .. 261

FIGURE 139: PC TIME PC TO PDA TESTOBJECT ROUNDTRIP VIA SYNCHRONOUS NETWORKED CHANNELS 261

FIGURE 140: PC TIME PC TO PDA TESTOBJECT ROUNDTRIP VIA ASYNCHRONOUS NETWORKED CHANNELS 262

FIGURE 141: PC TIME PDA TO PC TESTOBJECT ROUNDTRIP VIA SYNCHRONOUS NETWORKED CHANNELS 262

FIGURE 142: PC TIME PDA TO PC TESTOBJECT ROUNDTRIP VIA ASYNCHRONOUS NETWORKED CHANNELS 262

FIGURE 143: PDA TIME PDA TO PC TESTOBJECT ROUNDTRIP VIA SYNCHRONOUS NETWORKED CHANNELS 263

FIGURE 144: PDA TIME PDA TO PC TESTOBJECT ROUNDTRIP VIA ASYNCHRONOUS NETWORKED CHANNELS 263

FIGURE 145: PDA TIME PC TO PDA TESTOBJECT ROUNDTRIP VIA SYNCHRONOUS NETWORKED CHANNELS 264

xv

FIGURE 146: PDA TIME PC TO PDA TESTOBJECT ROUNDTRIP VIA ASYNCHRONOUS NETWORKED CHANNELS 264

FIGURE 147: PC TIME PC TO PDA TESTOBJECT ROUNDTRIP VIA SYNCHRONOUS NEW NETWORKED CHANNELS 265

FIGURE 148: PC TIME PC TO PDA TESTOBJECT ROUNDTRIP VIA ASYNCHRONOUS NEW NETWORKED CHANNELS 265

FIGURE 149: PC TIME PDA TO PC TESTOBJECT ROUNDTRIP VIA SYNCHRONOUS NEW NETWORKED CHANNELS 265

FIGURE 150: PC TIME PDA TO PC TESTOBJECT ROUNDTRIP VIA ASYNCHRONOUS NEW NETWORKED CHANNELS 266

FIGURE 151: PDA TIME PDA TO PC TESTOBJECT ROUNDTRIP VIA SYNCHRONOUS NEW NETWORKED CHANNELS 266

FIGURE 152: PDA TIME PDA TO PC TESTOBJECT ROUNDTRIP VIA ASYNCHRONOUS NEW NETWORKED CHANNELS .. 267

FIGURE 153: PDA TIME PC TO PDA TESTOBJECT ROUNDTRIP VIA SYNCHRONOUS NEW NETWORKED CHANNELS 267

FIGURE 154: PDA TIME PC TO PDA TESTOBJECT ROUNDTRIP VIA ASYNCHRONOUS NEW NETWORKED CHANNELS .. 267

FIGURE 155: ONE-TO-ONE NETWORKED CHANNEL MOBILITY MODEL STATE DIAGRAM 287

FIGURE 156: SEQUENCE DIAGRAM FOR ONE-TO-ONE NETWORKED CHANNEL MOBILITY MODEL 288

FIGURE 157: CENTRALISED SERVER MOBILITY MODEL STATE DIAGRAM .. 289

FIGURE 158: SEQUENCE DIAGRAM FOR CENTRALISED SERVER MOBILITY MODEL .. 290

FIGURE 159: SEQUENCE DIAGRAM FOR MESSAGE BOX MOBILITY MODEL ... 291

FIGURE 160: CHAIN MOBILITY MODEL STATE DIAGRAM .. 293

FIGURE 161: SEQUENCE DIAGRAM FOR CHAIN MOBILITY MODEL .. 294

FIGURE 162: SEQUENCE DIAGRAM FOR RECONFIGURING CHAIN MOBILITY MODEL ... 295

FIGURE 163: SIMPLE DOMAIN TREE ... 296

xvi

List of Tables

TABLE 1: TEST OBJECT SIZES ... 47

TABLE 2: TEST OBJECT REFERENCE COUNT AGAINST UNIQUE OBJECT COUNT ... 47

TABLE 3: COMMUNICATION PROPERTIES ... 63

TABLE 4: NET CHANNEL OVERHEAD .. 65

TABLE 5: OBJECT SIZES AT PEAKS ... 73

TABLE 6: OBJECT SIZES AT STEPS .. 74

TABLE 7: NEW NET CHANNEL OVERHEAD .. 108

TABLE 8: SPIN VERIFICATION RESULTS .. 133

TABLE 9: SUMMARY OF MOBILE CHANNEL MODELS .. 153

TABLE 10: COMMSTIME FOR MOBILES ... 186

TABLE 11: SUSPENDING NUMBERS PROCESSES ... 186

TABLE 12: SERIALIZATION CONTROL SIGNALS AND FLAGS ... 222

TABLE 13: JAVA DATA TYPE SIGNATURES ... 224

TABLE 14: INITIAL CHANNEL DESTINATION TABLE .. 297

xvii

Acknowledgements

I would like to thank my two supervisors, Jon Kerridge and Imed Romdhani, for

providing the necessary skills and assistance to complete this work. I would also like

to thank the School of Computing at Napier University for financing my studies.

xviii

Dedication

For Tracy. Look, all finished now.

Chapter 1 Introduction

Computers are everywhere. From mobile phones and watches, to corporate

databases and industrial control systems, every day we interact with more and

more computational devices in our daily lives. In one morning, between awaking

and arriving at the office it is possible to interact with a plethora of computational

devices in one form or another. Alarm clock, shower, radio, TV, MP3 player, mobile

phone, bank machine, laptop. This is but a small list of devices with which we may

interact with inside the first few hours of the day. But what does this mean for the

world at large, and where are we going within this new technological age? Enter

the era of Ubiquitous Computing.

1.1 Motivation

This motivation for this research came about from initial work within JCSP

(Communicating Sequential Processes for Java) Networking to incorporate code

mobility and thus lead to distributed mobile processes within JCSP [1]. By enabling

code mobility within JCSP Networking in an easier and more concise manner, it

became possible to investigate mobile agent scenarios with JCSP Networking [2],

and likewise Ubiquitous Computing scenarios [3]. The ability to augment

functionality and have dynamic architectural topologies in a distributed

environment is an enabling factor of Ubiquitous Computing, and thus investigating

JCSP Networking within the context of Ubiquitous Computing becomes interesting.

1.2 Ubiquitous Computing

Ubiquitous Computing is a research area concerned with not only the vast number

of computational devices in the environment, but also with how they can be made

to interact with one another. The introduction of this research field is generally

attributed to Weiser [4], although the origins are in 1988 at the Xerox Palo Alto

Chapter 1: Introduction 2

Research Centre (PARC) [5]. At this time, an interactive whiteboard was developed

which encouraged Weiser to look at how people interact with computationally

enabled physical objects. This led to various scales of devices being developed,

ranging from the whiteboard sized to early handheld computers and tags such as

PARCTAB [6]. Simultaneously, early location aware systems were being developed

[7] and the amalgamation of these ideas lead to Ubiquitous Computing.

The main aim of Ubiquitous Computing is to connect the real world with the

computational, and also interlink the computational on a scale never before seen.

For example, a door may be made to open (or not) automatically as a person

approaches it. This is a simple example, but underlines the key idea of physical and

computational merging. The connection of numerous varied devices comes into

play when it is considered how the door knows who to open for. Sensors could be

scattered around the environment and their readings sent to a centralised system

which identifies the person and their intent and sends a message to the door

accordingly. Another approach would be the use of a tag carried by the person

which the door itself detects and acts upon accordingly.

1.3 Mobility

Dynamic interactions enable Ubiquitous Computing environments, due to the

requirement of adaption within Ubiquitous Computing [8, 9]. Mobility is a key

factor when considering dynamic interactions, both mobility of devices and logical

mobility of the individual components of an application. This thesis focuses on the

latter form of mobility.

Software, or logical, mobility requires runtime transfer of components between

devices. Formal mobility models, and in particular the π-Calculus [10], have been

proposed as enabling reasoning of Ubiquitous Computing applications [11]. The π-

Calculus incorporates name passing within a process calculus, which enables

dynamic topologies of interacting processes by allowing channel connections to be

migrated between components. Channel mobility enables process mobility, and

thus the mobility of channels and processes in a suitable software framework can

be seen as enabling Ubiquitous Computing environments.

Chapter 1: Introduction 3

There are frameworks available that allow development of channel and process

mobility models, such as occam-π [12] and JCSP [13, 14]. Both are based on

another process oriented model – Communicating Sequential Processes [15, 16].

Work on JCSP has enabled simpler usage of the mobility features [1, 17], and the

ubiquitous availability of Java – being available on a multitude of devices –

encourages exploration of JCSP in a Ubiquitous Computing context.

1.4 Communicating Sequential Processes for Java

Enabling distributed mobility of channels and processes is difficult [17]. JCSP

Networking allows construction of distributed channel and process models, and the

inclusion of the mobility extensions enable basic channel and process mobility. By

providing mechanisms to transparently create virtual networked channels across

communication mechanisms, JCSP Networking provides a good initial platform to

base an investigation into Ubiquitous Computing.

1.5 Aims

The aim of this thesis is to examine JCSP Networking within the context of

Ubiquitous Computing. For this, there are two main research questions:

 Is the current implementation of JCSP Networking a suitable framework for

the development of Ubiquitous Computing systems?

 What are the practicalities of implementing the mobility abstractions of the

π-Calculus within JCSP Networking?

These two questions can be broken into further objectives.

1.5.1 Suitability of JCSP Networking for Ubiquitous Computing

To examine the suitability of JCSP Networking for Ubiquitous Computing, a number

of properties of interest must be discovered, and experiments conducted to

examine whether these properties are suitably supported in JCSP Networking. If

these properties are not supported, then the problems with JCSP Networking that

limit usage within Ubiquitous Computing must be discovered. Furthermore, an

investigation into whether these problems can be overcome is also required.

Chapter 1: Introduction 4

1.5.2 Practicalities of Mobility

To examine mobility, there are three points to consider. Firstly, what are the

advantages of taking such an approach to mobility in comparison to standard logical

mobility models such as object-orientation? Secondly, can a suitable channel

mobility model be developed that enables the type of dynamic interactions

required by Ubiquitous Computing? Finally, can process mobility be enabled in such

a manner that allows components to move freely through an environment such as

Ubiquitous Computing?

1.6 Contribution

The work presented within this thesis contributes in a number of areas. Firstly, an

examination of the current implementation of JCSP Networking within a resource

constrained environment has been undertaken and various properties of the

architecture calculated to provide expected performance of the underlying

communication mechanism. The underlying messaging mechanism has been

examined and layout and structure of sent messages extrapolated.

This thesis also describes a new implementation of JCSP Networking that overcomes

the problems of the current implementation of JCSP Networking when considering

Ubiquitous Computing scenarios. This new architecture is a reduced and refined

version of the existing architecture. Importantly, a new protocol is proposed and

developed that promotes inter-operability between different communicating

process architecture frameworks. The new implementation is also examined by

repeating the experiments performed on the original implementation, and thus

showing improvements within the new implementation of JCSP Networking. The

protocol has had a SPIN model created to verify its operation.

Certain properties of the original and new architecture are also examined against

properties that are of interest to Ubiquitous Computing scenarios, which enables

examination of the suitability of JCSP Networking for Ubiquitous Computing

applications.

Chapter 1: Introduction 5

An analysis of different approaches to connection mobility in the context of

practical distributed channel mobility is also presented. Seven different models of

channel mobility are examined against properties of interest, allowing

categorisation of the different models. This categorisation allows closer

examination of the possible suitability of the different connection mobility models

when considering the dynamic requirements of Ubiquitous Computing.

Finally, a method to transform JCSP processes into strongly mobile processes is also

presented. This method allows active process networks to effectively be paused

and subsequently resumed at a new location. The ability to pause process networks

in this manner is novel, and builds upon existing approaches to capturing process

network state.

1.7 Thesis Structure

This thesis takes the following structure. In Chapter 2 an investigation into the

objectives is presented. Chapter 3 presents the current implementation of JCSP

Networking and Chapter 4 analyses the current implementation by performing

experiments within a suitably resource constrained environment. Chapter 5

proposes a new implementation of JCSP Networking to overcome highlighted

problems, and Chapter 6 examines this new implementation by repeating the

experiments conducted on the original implementation. Chapter 7 investigates

possible channel mobility models, highlighting strengths and weaknesses of each

and reflects these features back into the context of Ubiquitous Computing. Chapter

8 reviews techniques that have been proposed to permit process mobility, and then

proposes an approach that may help processes exhibit the strong mobility aspired

to by mobile agent systems, which are another proposed approach to Ubiquitous

Computing. Finally, in Chapter 9 conclusions are drawn and future work proposed.

Chapter 2 Background

In this chapter, an investigation into Ubiquitous Computing is presented.

Requirements and challenges are presented, and in particular software architecture

properties are examined. Mobility, one of the key factors of Ubiquitous Computing,

is also examined in depth. Finally, background information into Communicating

Process Architectures is presented, focusing on JCSP and linking properties of Java

to Ubiquitous Computing requirements.

2.1 Ubiquitous Computing

Historically, Ubiquitous Computing is attributed to Weiser [4, 5], the original focus

being on computational devices of different scales being embedded within the

environment. Ubiquitous Computing is also sometimes referred to as Pervasive

Computing [18], although there are differences which shall be highlighted presently.

First, general descriptions of Ubiquitous Computing are presented.

2.1.1 Describing Ubiquitous Computing

Numerous descriptions of Ubiquitous Computing exist, partially from the differing

contexts that the description may come from. Ubiquitous Computing can be

considered the availability of computational resources wherever we go [19], an

extension of the mobile computing paradigm of all the time anywhere, to

everywhere at all times with any device [20]. A common theme is the

disappearance of technology into the background [21, 22], which allows focusing on

the task at hand rather than the technology itself [23]. The general notion is that it

moves computing forward to many devices to many users [21], a natural

progression from the many users to one device mainframe era, through the one to

one relationship of the PC era and the step through the Internet era of hybrid one

to one and many to one relationships.

Chapter 2: Background 7

Ubiquitous Computing can also be considered as Everyday Computing [24],

occurring within our everyday lives without our knowledge. This leads to the

natural progression of Pervasive Computing, which focuses more on smart spaces

and ambient intelligence [25]. In fact, Pervasive Computing can be thought of as

the application of Ubiquitous Computing ideas, as Pervasive Computing extends the

focus from small devices, network protocols and power consumption towards

remote data access, smart spaces and context awareness [26].

However, the terms Ubiquitous Computing and Pervasive Computing are often

interchanged, Pervasive Computing sometimes being referred to as research into

mobile connected ubiquitous devices [27], or environments requiring little user

interaction [28]. For this reason, Pervasive Computing ideas must also be

considered when discussing Ubiquitous Computing, due to the tight coupling of the

research areas.

Pervasive Computing is not only considered the outcome and application of

Ubiquitous Computing ideas. It is also considered the natural evolution of

distributed computing through mobile computing [18], and thus is considered an

extension of distributed computing with devices augmenting the environment [29].

There is also the argument that it emerged from requirements for coping with

heterogeneous mobile devices requiring interconnection, while abstracting from

the technology required for interconnection [30].

It would appear that Ubiquitous Computing therefore comes from a number of

different areas, but is particularly focused on mobile and distributed systems

interacting with embedded computational infrastructure. There is also focus on the

user being only lightly engaged in the computational environment, although users

are an integral part of the Ubiquitous Computing infrastructure [11]. These

descriptions are very vague however, and some more concrete examples are

necessary to fully appreciate some of the ideas behind Ubiquitous / Pervasive

Computing.

Chapter 2: Background 8

2.1.1.1 Example Scenarios

Examples of Ubiquitous / Pervasive Computing applications generally focus on

augmenting existing everyday tasks with computing technology. Satyanarayanan

[31] describes a scenario where the application determines that the current

network infrastructure cannot support transferral of user files prior to a flight

departing, and therefore finds nearby infrastructure that can support the transferral

in time. Another scenario describes editing a presentation at a workstation and

then taking the work onto a mobile device and editing using voice commands.

Cheng [32] describes a similar scenario where a user reviewing images on a

handheld device is automatically given higher resolution and colour depth when

better network bandwidth is available.

Banavar [23] describes a scenario where someone attending a meeting

automatically switches to video conferencing on a mobile device when they leave

early, and the video feed transferring to a screen in a car from the device when the

car is entered.

A common field of interest is healthcare [33, 34]. Accessing patient records

electronically on mobile devices in a secure manner is foreseen as a goal, so much

so that it is seen as a foothill project in the Grand Challenge in Ubiquitous

Computing Research [35].

These scenarios and example applications help illustrate the application areas

where Ubiquitous / Pervasive Computing is aimed at. From the scenarios it also

becomes apparent that the current context of the user plays a key role in deciding

how an application should behave. In particular, location and the services provided

in a location are paramount.

2.1.1.2 Location Awareness

Location awareness appears to be one of the driving factors behind Ubiquitous /

Pervasive Computing, particularly from the business point of view [36]. Location

allows discovery of nearby services [37-39], although determining which service to

Chapter 2: Background 9

use and the protocol to discover nearby services are ongoing research problems

[25, 40].

The interest in location can be directly related to the notion of Pervasive Computing

smart spaces. A smart space is merely a location that provides services to users,

and thus the services provided are Location Based Services [36, 37]. The focus on

locality is important when considering some of the other requirements of

Ubiquitous / Pervasive Computing.

2.1.2 Requirements

Weiser’s initial view of Ubiquitous Computing requirements focussed primarily on

low power and wireless hardware components [41], with network protocols to

permit access to media. Weiser does state that Ubiquitous Computing reaches

further than normal mobile computing, and incorporates autonomous agent ideas.

The notion of small lower powered devices is continued further to incorporating

thin clients and thin servers populating the environment [21], which provide only

minimal capabilities as standard, and are designed to be augmented during

operations. This implies a deal of adaption within the computational environment.

A number of authors have tried to list the requirements for Ubiquitous Computing.

Banavar [23] states that dynamic tasks, device heterogeneity, constrained resources

and social computing are the main requirements. Kindberg [42] focuses on

requirements from different aspects of Ubiquitous Computing, mainly looking at

software challenges. Again, resource constraints, heterogeneous devices and

adaption are seen as key requirements, along with scalability, robustness and

service discovery. Robustness is also a key concern stated by Sousa [43].

Niemela [26] lists interoperability, heterogeneity, mobility, security, adaptability,

autonomy and scalability as requirements. Mobility in this sense is more than

simple device mobility however, and requires mobility of software components

between devices also. Software mobility allows dynamic binding of components,

and thus promotes adaption. This idea is repeated by Lindberg [44], who states

that handling heterogeneity and the dynamic nature of users, services and

environments is a key challenge to overcome.

Chapter 2: Background 10

The Grand Challenge in Ubiquitous Computing Research [35] approaches Ubiquitous

Computing Science, stating that focus should be on system and software

architectures, mobility, context awareness, language design, protocol design, and

support tools and verification of these factors. In particular, a communication

infrastructure beyond standard TCP/IP protocols is called for. Milner continues the

modelling and scientific argument [11], discussing whether the inherent complexity

and scale of Ubiquitous Computing can be modelled, and what this implies for

engineering such applications. Sufficient models of abstraction are required to

enable understanding of the underlying architectures.

da Costa [20] lists scalability, heterogeneity, dependability, security, integration,

invisibility of the underlying infrastructure, and context awareness and

management as requirements, stating that a sufficient middleware is required to

support these features. Many of these requirements can be attributed from

existing computing fields. Heterogeneity, scalability, dependability and security can

be attributed to distributed computing, and spontaneous interoperation, mobility,

and context awareness and management can be attributed to mobile computing.

These ideas fit into the idea of Pervasive Computing extending distributed and

mobile computing.

Examining requirements for Pervasive Computing repeats the common notion of

extending distributed and mobile computing. Satyanarayanan [31] lists remote

communication, fault tolerance and high availability from distributed systems, and

mobile networking, adaptive applications and location sensitivity from mobile

computing as requirements. These ideas are extended with Pervasive Computing

requiring smart spaces and invisibility of the environmental architecture.

Henricksen [8] states that Pervasive Computing requires examination of four key

areas: devices, software components, users and user interfaces. Of these four,

devices require heterogeneous support and mobility, and software components

require mobility, adaption, interoperability, scalability and component discovery

and deployment. Henricksen focuses further on middleware [45], stating that

support is required for heterogeneity, mobility, scalability, and fault tolerance.

Chapter 2: Background 11

Cardoso [29] adds Quality of Service (QoS) requirements also, due largely to the

scale and user interaction requirements.

Cheng [32] considers the minimal human oversight requirements of Pervasive

Computing spaces in relation to the dynamic requirements of user movement and

changing resources such as bandwidth and service availability, and thus fault

tolerance is a major consideration. Saha [18] repeats the call for a suitable

middleware to interface between the hardware and applications within the

environment, and also support the heterogeneous nature of these interactions.

However, Edwards [46] states that total inter-operability between components and

devices is not possible, due to the inability to predict future requirements and

standards. Thus, limited interoperability is required and sensible extensions built

upon it.

From the brief overview of requirements for Ubiquitous Computing and Pervasive

Computing architectures, it can be seen that there are a number of common

themes. In particular, the following properties seem to be of interest:

 Interoperability – to support heterogeneous devices and software

components.

 Performance – to support Quality of Service and scalability, although a strict

requirement on performance is not in itself a requirement.

 Scalability – due to the large number of device interactions envisioned.

 Stability – robustness and fault tolerance.

 Adaptability – the ability to adapt to different operating conditions.

 Mobility – to help support adaptability, both device and software mobility is

a consideration.

Another common argument is the requirement of a software middleware to

support these properties. Therefore, an analysis of software architecture

properties is also required.

Chapter 2: Background 12

2.1.3 Software Architecture for Ubiquitous Computing

Proposals for Ubiquitous / Pervasive Computing software architectures generally

focus on component oriented architectures. Garlan discusses the Aura framework

[47], repeating the calls for mobility, adaptability and resource awareness within

software components. The Aura framework works on the idea of tasks which follow

users throughout the environment, tasks themselves being made of various

components. The idea of tasks following users returns to the fundamental ideas

behind Ubiquitous / Pervasive Computing. Garlan also calls for refocusing of

software from monolithic enterprise applications to dynamic components, and

states that a rethinking of how components are specified and implemented is

required. A foreseen challenge is deciding on the types of interactions between low

level infrastructure and the upper application task layer. Edwards [46] states that

this interoperation layer must be minimal, and provide few fixed parameters,

allowing the user / developer the ability to join devices together in sensible

manners. However, Henricksen [45] approaches the problem by creating a

transparent communication layer that is similar to CORBA, and allows various

frameworks to create the required connections between components

automatically.

Sousa returns to the Aura framework [43], calling for a rethinking towards activity

oriented computing, which supports the notion of tasks being important. This

requires dynamic reconfiguration of software architecture to support user needs,

which relates to software mobility. A main argument is that application models

aimed at Ubiquitous / Pervasive Computing do not consider that user tasks are

generally defined at runtime, and therefore packaging for all user requirements at

design time is bound to fail. The ability to suspend and resume existing tasks is

simply not enough to support Ubiquitous Computing. da Costa [20] complements

the inability to package all possibility at design time by arguing that a common API

within a single framework will not support heterogeneity due to the lack of a

common framework that can operate on all devices.

Hoareau [48] argues on implementing strict hierarchical component architectures

with well defined interfaces connecting the components together. By conforming

Chapter 2: Background 13

to these requirements, applications can be made to adapt based on architectural

rules built within an Architectural Description Language (ADL) and observed

environmental resources.

A common approach to coping with autonomy and the idea of smart spaces in

Pervasive Computing is to apply agent oriented architectures to Ubiquitous /

Pervasive Computing. Zambonelli [49] promotes the usage of agents in Ubiquitous

Computing applications, but does also warn of some dangers. Niemela [26] also

supports agents as suitable prototypes for Ubiquitous Computing, and Jung [50]

considers Ubiquitous Computing as a multi-agent system which is targeted at

everyday life. This is also supported by the Grand Challenge in Ubiquitous

Computing Research [35], where agents are considered the base platform to build

Ubiquitous Computing systems upon. Molina [51] argues that multi-agent systems

are becoming more relevant in Pervasive Computing environments, particularly as

they provide an interface between users and the environment.

Another common viewpoint on software architecture is the requirement of mobile

software architectures. For example, Henricksen [8] argues on transparent mobility

supported by the underlying software architecture, and Cardoso [29] believes

mobile agents support the adaption, performance and scalability requirements of

Pervasive Computing applications. Milner [11] argues that modelling of Ubiquitous

Computing applications should also be supported by formal mobility models,

particularly due to the inherent mobility of users, devices and software

components. Mobility of software is considered especially difficult to deal with, due

to the lack of physical constraints placed on software mobility.

From a software architecture view point, it can be seen that agents are considered

an interesting area for Ubiquitous Computing, coupled with mobile and dynamic

architectures. These two facets shall be examined in greater detail in Sections 2.2

and 2.3 respectively. First a brief analysis of hardware requirements is presented.

2.1.4 Hardware for Ubiquitous Computing

Weiser’s initial description of Ubiquitous Computing hardware [41] focussed on

three different sizes of device – the tab, the pad, and the board. The tab can be

Chapter 2: Background 14

considered a small, pocket sized device, similar to the Active Badge system

developed by Want [7], which enabled tracking of a badge wearer via infra-red

sensors, and the PARCTAB device described by Schilit [6], which provided services

that augmented a small handheld device. Pad sized devices were envisioned as

small scrap computers – similar to pieces of paper or notepads – and board sized

devices covered such items as electronic whiteboards.

Modern viewpoints on Ubiquitous / Pervasive Computing hardware focus largely on

small scale devices with wireless connectivity. Hartwig [52] has argued on

augmenting the environment with small wireless servers that provide services for

users as a viable model, whereas Want [53] considers a small personal wireless

server with no user interface as a more viable option. Cardoso [29] merely states

that mobile devices are essential for Pervasive Computing, and Moors [54]

integrates wireless technology with the service and adaption ideas to control how

mobile devices behave based on locations determined by wireless beacons. For

example, a phone can be made to go into silent mode when a beacon signals that

the user is within a cinema.

Thus, modern Ubiquitous Computing hardware seems to focus on small mobile

devices that are wireless enabled. The smart phone is seen as the first real world

Ubiquitous Computing device [55], and mobile telephony and SMS text messaging

are considered the first real world Ubiquitous Computing applications. Relating this

to the software architectural considerations, any proposed framework should at

least initially be examined within the context of wireless enabled mobile devices.

2.2 Agent Oriented Systems

The term agent within software is an often overused term based on the field of

computing that is examining agent properties. Tokoro [56] takes a viewpoint where

agents are concurrent objects that are autonomous so that they can perform tasks.

The agent is considered capable of reacting to incoming events and reacting

accordingly. Lange [57] also takes an object view point of software agents, stating

that they are autonomous, reactive and goal driven. Iglesias [58] considers objects

and agents similar due to both relying on message passing communication.

Chapter 2: Background 15

The combination of object ideas and concurrency come together in the description

provided by Bauer [59, 60], where agents are considered more akin to active

objects, with autonomy, reactivity (responds to events) and pro-activity (generates

events) being the fundamental differences between standard objects and agents, or

adding the ability for an object to autonomously say go and no when

communicating with other computational entities. This idea is cemented by

Wooldridge [61], who states that “objects do it for free; agents do it because they

want to.”

2.2.1 Describing Agents

Agents have a strong background in artificial intelligence. Nwana [62] distinguishes

agent types based on three properties – the ability to learn, the ability to cooperate,

and the ability to be autonomous. Depending on these capabilities, an agent may

be considered as smart, collaborative or some other category. Silva [63] has

defined that the artificial intelligence capabilities of an agent based framework

depends on how strong the sense of agency is within the framework. A strong

sense of agency provides an AI agent framework, a weak sense of agency is simply

an agent based framework, and the object-orientated viewpoint of agency is really

middleware. Silva considers agents to be active components that perform tasks on

behalf of others.

Wooldridge [61] also considers the autonomy of agents as the important

distinction, and considers this is accomplished by agents having encapsulated state

and the ability to make decisions based on this state. Agents are also considered to

be reactive and proactive, and must have social capabilities, or the ability to

communicate.

Kendall [64] also considers the same properties as Wooldridge to be important, and

also provides a layered model of capabilities of an agent, considering mobility as the

highest level capability due to the provision of dynamic architectures. As already

stated, dynamic architectures are important to Ubiquitous Computing applications.

Molina [51] takes a Ubiquitous Computing viewpoint on agents, and, as well as

repeating the need to respond to events and communicate, states that agents

Chapter 2: Background 16

provide adaption and reasoning to allow usage within Ubiquitous Computing

applications.

2.2.1.1 Autonomous Agents

When agents are described within the context of artificial intelligence, the

autonomous behaviour of agents is usually the main focus of interest. The most

common architecture for defining agent behaviour is the Belief, Desire and

Intention (BDI) model [65, 66]. BDI defines that agents are given a set of goals

(Desires), plans, some of which have been committed to (Intentions), and some

internal state (Beliefs) that is used to make decisions. This model follows closely to

the idea of encapsulated components that are reactive and proactive.

Another common method to define behaviour is the active object [67], which

extends object orientation by allowing objects to have their own thread of

existence. Behaviour must be added to the object to allow the active object to be

more proactive. Garcia [68] attempts to incorporate behaviour by injecting code

into objects using aspect oriented techniques, which may lead to some form of

adaptive behaviour.

2.2.2 Modelling Agents

Considering agent orientation as a possible architecture for Ubiquitous Computing,

the question arises on how agent oriented architectures are modelled. Kinny [66]

describes an agent as having two models: internal and external. The internal model

incorporates the internal state of the agent, and can incorporate such ideas as BDI.

Externally, an agent utilises services and is also provided with a type based on a

hierarchy.

Iglesias [58] focuses on the external service viewpoint of agents, considering the

similarities between objects and agents when the communication mechanisms are

compared. In particular, Iglesias argues that although both utilise message passing,

agents have the ability to analyse messages and determine whether to execute

them. This idea returns to the notion of an agent having the ability to say no,

although Garcia’s work on applying aspect oriented ideas to implement agent

Chapter 2: Background 17

behaviour in object orientation would allow an object some capability to refuse

messages.

Bauer [60, 69] utilises UML to try and model agent based systems, providing

extensions to help model the autonomy and active runtime of agents. However,

Bauer does note that UML is not entirely suitable to model agent orientated

architectures.

Others have tried a more formal approach to modelling agents. Luck [70, 71] has

used Z Specifications to model agent oriented systems, and notes that there is

difficulty due to the overuse of the term agent. Luck defines a hierarchy of

properties that allows an agent to be defined. An entity is a set of attributes, and

an object is an entity with a set of actions. An agent is an object with a set of goals,

and an autonomous agent is an agent with a set of motivations, which allows goals

to be modified.

Duvigneau [72] examines agents by utilising Petri-Nets, and argues that agents form

hierarchies, thus requiring a “nets within nets” paradigm. Xu [73] also examines

Petri-Nets as a method to model agent oriented applications.

Gonzalez [74] has approached agent development using Communicating Sequential

Processes (CSP) [15, 16], and has argued that various behavioural aspects can be

modelled using the CSP formalism. Gonzalez argues that the notion of agents and

processes with CSP are strongly related.

Yu [75] utilises another process calculus, the π-Calculus, to model agent systems.

Yu’s argument centres on the dynamic architectures that the π-Calculus enables,

and argues that the π-Calculus process is also very similar to an agent.

2.2.3 Summary

Although agents have been proposed as a possible architecture for Ubiquitous

Computing, the fact that the term agent is over used does lead to questions on

what Ubiquitous Computing views as an agent. The common features of agent

descriptions focus on the ability to perform a task for another entity, autonomy,

and activeness. However, autonomy is also ill-defined, and it is unclear whether

Chapter 2: Background 18

autonomy simply means being active and performing a task, or whether an agent

should have intelligence and adapt to its environment. Considering one of the

properties of Ubiquitous Computing is adaptability, it is likely the latter description

that is being used to define Ubiquitous Computing agents.

The following section examines mobile software architectures, which is the second

architectural viewpoint considered for Ubiquitous Computing. Mobility is also one

of the requirements of Ubiquitous Computing, and therefore requires investigation.

2.3 Mobility

Software, or logical, mobility is different from the more commonly thought of

physical mobility, and has a number of different challenges. Baude [59]

distinguishes between mobile computing (physical devices) and mobile

computation (mobile software components), and in particular looks at mobile active

object systems. As Section 2.2 described, active objects have similarities to agents,

thus there is a commonality between the mobile and agent architectures. Baude

also distinguishes between strong and weak mobility, with strong mobility capturing

the execution state of the component, and weak not doing so.

Fuggetta [76] argues that there is general confusion on what state mobility actually

means. The state of a component may or may not include the current execution

point, or program counter, of the mobile component. To be strongly mobile, this

information must be captured and transferred transparently, without programmer

intervention. Data state contains no execution state, and mobile data state allows

weak component state to be transferred.

These views on logical mobility generally focus on the component, and the

following section examines these ideas in greater detail.

2.3.1 Logical Component Mobility

Tröger [77] redefines strong and weak mobility to active and passive component

mobility. A passive component can be considered one that has no path of

execution, and can be considered to be data or code library mobility. Many

frameworks provide this mechanism using serialization, which allows passive object

Chapter 2: Background 19

replication. Active component mobility describes components that have a path of

execution, and Tröger mentions the possibilities of such components within

Pervasive Computing environments.

Bettini [78] provides a further type of migration beyond weak and strong, that of

full mobility. Full mobility allows an entire operating system process to migrate,

and would be akin more to an entire application migrating rather than just an

individual component. Ghezzi [79] considers a different third type of mobility, that

is communication based rather than component based. For example, Remote

Procedure Calls (RPC) can be rebound to enable a component to move and

reconnect to existing components.

The idea of RPC enabling mobility is also considered by Cardelli [80], who also

defines five separate mobile component properties. A component may provide

control mobility, which allows the thread of control of a component to virtually

transfer to another location, using RPC. Data mobility allows the transfer of data

from one network host to another, and link mobility allows the migration of a

connection between two components to be migrated. Object mobility allows the

migration of objects, whereas remote evaluation permits an object to migrate to

another location, execute and return. The interlinking of location and migration has

been addressed by Roman [81], who states that location defines the position of the

logical component, and thus a change of position is a change of location and

therefore migration.

Phillips [82] has argued further on the notion of location, stating that a means of

expressing a process location is required, both physically and logically. Phillips has

also argued that the very nature of distributed mobile components requires

concurrent behaviour, and that communication between components must be

modelled.

Roman [81] also considers coordination between components, and believes that

coordination and location are the two most important factors for a logically mobile

framework. The consideration of coordination separately from the components

Chapter 2: Background 20

allows a decoupling of the components, and coordination should be considered

separately to the actual mobile component behaviour.

2.3.2 Properties and Requirements

There are a number of considerations when developing a mobile architecture.

Fortino [83] has argued that existing technologies such as RPC must be considered

to allow interoperability between frameworks. As interoperability is seen as a key

feature of Ubiquitous Computing, the argument is justified within the Ubiquitous

Computing context. Openness to new architectures must also be available

however.

Roman [81] has argued that component code and component state must be

considered as first class elements of the component, and Welch [12] agrees that

some form of passive state must be considered as part of a mobile component for

there to be a reason for mobility. Roman has also stated that disconnection of

components and subsequent reconnection is required to allow mobility, and thus

algorithms to support message passing between mobile components while they

move is also required.

A common requirement for logically mobile components is code mobility, and the

following section examines this is more detail.

2.3.2.1 Code Mobility

Code mobility is the ability to transfer code from one host to another, and allow the

dynamic loading of this code into an already running process. Ghezzi [79] has

summarised a number of different applications of code mobility, providing the

different behaviours each exhibit. These applications are:

 Client-server – server has the knowledge, resources and processors to

execute the task. There is really no migration of actual code in this

application.

 Remote-evaluation – client has the knowledge, whereas the server has the

resources and processor.

Chapter 2: Background 21

 Code on demand – client has the resources and processor, and the server

has the knowledge.

 Mobile agent – client has the knowledge and processor, and the server has

the resources.

Fuggetta [76] has taken a view where there are two types of code mobility –

process migration and object migration. The former is akin to Bettini’s [78] full

mobility. Fuggetta also considers some applications of code mobility, and metions

location aware programming as an advantage. As described in Section 2.1, location

is a key idea within Ubiquitous / Pervasive Computing. This helps to reaffirm

mobility as a suitable architecture for Ubiquitous Computing applications.

Active networks are added as a code mobility application by Brooks [84]. An active

network is a distributed system with the ability to adapt to environmental

conditions by modifying the communication structure. Again, this dynamic nature is

a requirement for Ubiquitous Computing, reaffirming mobility as a suitable

Ubiquitous Computing architecture.

2.3.3 Mobility Architecture

So far, the discussion on mobility has focused on the description and requirements

of logical mobility, and this has highlighted two separate mobile constructs –

component mobility and the mobility of connections between components. In this

section, a further analysis of mobile software architectures is presented.

Fuggetta [76] considers components and their interactions as the architectural

constructs to consider within a logical mobility architecture, and Lopes [85] has

stated that a clear separation of components via connectors is required to allow

adaptation. Zheng [86] has also called for separate coordination and computation,

with clear input and output interfaces defined.

Zheng and similarly Oquendo [87] have utilised Architectural Description Languages

(ADLs) based on the π-Calculus [10] to help define the dynamic architectures of

logical mobility systems. As stated, the π-Calculus has also been used to help

describe agent based architectures (Section 2.2). Oquendo also considers a

Chapter 2: Background 22

separation of components and connectors within the mobility architecture, and

considers the configuration of these components and connectors to be the high

level architectural view of a logical mobility system.

Connection migration is examined by a number of authors. Milner [88] has called a

mature connection mechanism as being able to communicate itself – a

communication that can communicate another method of communication. Zhong

[89] argues that connection migration must accommodate interacting components

migrating simultaneously, and this should occur transparently and reliably. Molina

[51] agrees with the notion of transparency, as well as location transparency as a

whole. Molina also argues that mobility and communication are interrelated,

requiring one another to operate.

May [90] has analysed the different types of mobility that both components and

connections can exhibit, and how these effect a communication mechanism. May

describes copying, moving and borrowing – copying replicates the sent entity at a

new location, moving copies an entity and destroys the original, and borrowing is

similar to moving, but with the mobile entity returning.

There is therefore a requirement for mobility of both components and connectors

in the software architecture to support logical mobility. Mobile and agent oriented

architectures have both been described as potential models for designing

Ubiquitous Computing applications, and therefore examining these ideas in unison

is desirable. Section 2.4 will discuss mobile agents. In the following subsection,

object orientation is examined as logical mobility architecture. As the argument has

been made to the similarities between agents and objects, mobile objects require

further examination.

2.3.3.1 Object Oriented Architectures

There are problems when considering objects as mobile. Barnes [91] has

highlighted that object orientation naturally supports mobility within the structure

of its architecture, and mobile design is used extensively in single machine based

applications. However, the problem stems from the inability to ensure that a

mobile object can safely move all its parts.

Chapter 2: Background 23

Hoare [92] has highlighted the key problem when considering mobile objects.

Object orientation allows aliasing of objects, in that an object may be accessible via

more than one path of references from the root object. In fact, Hoare has stated

that there is no method to explicitly name an object, rather just the connections to

objects. With this in mind, when examining mobility it can be considered that

objects are not first class elements, as there is no tangible method to own an

object.

Locke [93] has argued that objects also have no location due to this lack of

ownership. As mobility and location are intertwined, there is further evidence of a

problem when considering objects as a mobility architecture. Vitek [94] goes

further, and points out security flaws when considering mobile object systems that

arise from covert channels (aliases) crossing protection domains.

However, there has been work on trying to protect against aliasing (for example

[95]) by imposing ownership on objects. By enforcing strict encapsulation instead

of weak encapsulation, many of the problems associated with object mobility can

be overcome.

2.3.4 Formal Modelling of Mobility

As objects appear to be unsuitable for distributed mobile architectures, a more

formal approach to modelling mobile architectures is required. There are two main

approaches – state based and communication based. Mobile UNITY [85, 96, 97]

provides a state based model of mobility, and is an extension to the CommUNITY

formalism. Mobility is modelled by allowing components to change a location state

variable, and also define behaviour based on this variable [98]. Locations can also

be transferred between components [99]. Mobile UNITY has been used to model

mobility protocols such as Mobile IP [100].

The π-Calculus [10] promotes the mobility of connections between components to a

first class construct. Although the π-Calculus covers only part of the mobile

capabilities of a mobile architecture, further work on mobility formalisms attempts

to capture all aspects of mobility (for a summary see [101]).

Chapter 2: Background 24

Communication within the π-Calculus is synchronous in nature, and Phillips [102]

has argued that distributed systems do not exhibit synchronous but asynchronous

behaviour. Therefore Phillips proposes an asynchronous version of the π-Calculus

to model real distributed mobile architectures.

Cardelli [80, 103] has extended the ideas presented in the π-Calculus and developed

the Ambient Calculus. Unlike the π-Calculus, the Ambient Calculus promotes

ambient as the first class mobile entity. An ambient is considered to be a bounded,

nested collection of processes that migrates as a single entity. The idea of a

bounded entity assists in modelling protection domains for applications.

As the π-Calculus has been proposed as both a model for agent orientation and

mobile architectures, it would appear to provide a suitable model to investigate

Ubiquitous Computing. This is also proposed by Milner [11], who states that to

sufficiently support Ubiquitous Computing, protocols that enable communication

mobility are required.

Mobile agents also provide a mechanism to combine the ideas of agents with the

ideas for mobile architectures. In the following section, this area is further

examined to determine the suitability of mobile agents for Ubiquitous Computing.

2.4 Mobile Agents

As with agents, the term mobile agent is often overused and lacks a particular

definition. Lange [57], in a similar manner to normal agents, considers a mobile

agent to be a software object that is reactive and proactive, but with the added

capability of being able to change its execution environment. Contrary,

Papastavrou [104] does not consider agent capabilities at all, and states that a

mobile agent is a process that is dispatched from a source device to perform a task

within another execution environment, and upon completion returns to the source.

This description is also followed by Gray [105].

Spyrou [106] considers the active object view of agents and applies it to mobile

agents. Data can be viewed as a collection of objects, and a mobile active object

can therefore be seen as a mobile agent, or a mobile set of data with some

Chapter 2: Background 25

execution capabilities. Cabri [107] on the other hand sees data as the unit of

exchange between several mobile agents which make up an application.

2.4.1 Using Mobile Agents

Picco [108] states that the key contribution of mobile agents (and code mobility in

general) is that they allow location to be considered as a first class construct, and

promotes functionality based on location. Returning to the Ubiquitous / Pervasive

Computing argument, this is rather important as locality is seen as an important

construct. Picco also discusses different analogies for mobile agents. A single move

agent is simply a migratory service, whereas an agent that migrates many times is

an actual mobile agent. Both of these analogies fit within the scope of Ubiquitous /

Pervasive Computing, where services are also seen as an area of interest. Picco

does warn that mobile agents are not always the best solution in all cases however,

and Lange [57] also states that there has to be a reason for mobility.

Picco also returns to code mobility when describing mobile agents. A mobile agent

consists of code, data state, and behavioural state. However, most agent systems

are built utilising Java, which cannot promote strong mobility by capturing

behavioural state, and modifications are usually required to allow strong mobility.

Picco also points out that connections to resources can also be a problem, and this

stems back to the unsuitability of objects for mobility purposes. Picco does not

seem to consider connections between agents as being part of the mobile unit.

A number of authors have also overviewed mobile agent requirements and applied

them to current mobile agent platforms (for example, Gray [105] and Silva [63]). In

general, it has been argued that no mobile agent platform has suitably met all

required properties, mainly stemming from the lack of strong mobility because of a

reliance on Java, or lack of interoperability between different frameworks (e.g. Java

and .NET agents). Silva does mention that there are commonalities between mobile

agent platforms, which include usage of agent servers, autonomous active

components, and distributed agent communication.

Chapter 2: Background 26

2.4.2 Advantages of Mobile Agents

Many authors have listed advantages of mobile agents, although authors such as

Chess [109] have noted that there is no real application made possible only by

mobile agents. Chess argues that the main advantage for mobile agents is a

software engineering one, as they enable design of development of certain

applications in a simpler manner.

Other authors have focussed on implementation advantages of mobile agents.

Lange [110] lists reduced network load, reduced network latency, protocol

encapsulation, asynchronous and autonomous execution, dynamic adaptability,

heterogeneous applications, and robust fault tolerant applications. Returning to

the requirements of Ubiquitous Computing, Lange’s advantages of mobile agents

cover interoperability, performance, stability and adaptability, leaving only

scalability as an unanswered requirement. Lange also lists applications suitable for

mobile agent systems, many of which can fit into the sphere of Ubiquitous /

Pervasive Computing.

Gray [105, 111] considers mobile agents useful within dynamic, mobile computing

environments, and also lists bandwidth conservation and other performance criteria

as advantages, as does Picco [108]. Molina [51] adds a further advantage, that of

simplified maintenance. As Ubiquitous / Pervasive Computing requires easily

maintainable applications, due to the vast scale and minimal human interaction,

there is further evidence to support mobile agents as a Ubiquitous / Pervasive

Computing architecture.

2.4.3 Problems with Mobile Agents

There are some perceived problems with mobile agent approaches. Chess [109] has

questioned the supposed advantages of efficiency and flexibility, and has also raised

concerns of the security of mobile agent platforms. Considering the requirements

of a mobile architecture, which promotes both component and connection mobility,

Silva [63] has raised the question on what happens when two connected agents

move simultaneously. This problem can be related to the lack of consideration of

Chapter 2: Background 27

connection mobility within mobile agent approaches, and code mobility

applications in general.

Picco [108] believes that many of the problems within mobile agent applications

stem from the usage of Java and similar object-oriented platforms. In particular,

the reliance on the threading mechanisms in Java leads to problems with scalability,

and communication between components has been raised as an issue.

Communication in this respect can be considered as the connections between other

agents and resources. Picco notes that this problem is generally overcome by only

allowing co-located elements the ability to communicate with one another. This

does negate some possible applications of mobile agents however. Picco also

argues that there is too much focus on how mobile agents can be developed, and

not on why they should be. Java is seen as a blessing and curse in this respect, and

there is generally no willingness to develop applications that interact with existing

applications.

The communication and coordination between agents problem has been examined

by a number of authors. Cabri [107] believes coordination between agents is

fundamental, and utilises Linda like coordination to overcome the problem. Fortino

[112] defines an event based architecture built upon existing communication

middleware, including Linda and also RPC.

2.4.4 Mobile Agent Platforms

Most mobile agent platforms have been applied within Java. Lange [57] describes

the Aglet API for Java, and believes that Java provides a number of characteristics

that make it advantageous to use. These include platform independence, secure

execution, dynamic class loading, multithreaded programming, object serialization

and reflection. Many of these advantages focus on allowing simple mobility of

agents and code (dynamic class loading, object serialization, reflection), and

execution of agents (platform independence, multithreaded programming).

However, from a Ubiquitous / Pervasive Computing point of view, platform

independence is advantageous. Molina [51] also repeats these advantages when

considering Ubiquitous Computing.

Chapter 2: Background 28

However, Lange does point out some limitations within Java when considering

mobile agent platforms. These include inadequate support for resource control, no

protection of referenced objects, no sense of object ownership, and no strong

mobility. Many of these have been discussed already, although the resource

control does raise questions on scalability when considering Ubiquitous Computing.

Izatt [113] describes the Ajents platform, which also utilises Java. Although adding

little in comparison to Aglets, Izatt does argue against the suitability of Java Remote

Method Invocation (RMI) for mobile agent communication, due partially to the

ownership problems imposed by object orientation. Ajents also tries to overcome

the strong mobility problem of Java by imposing asynchronous communication and

allowing an agent to be called and a reply to be waited upon by the caller. This

does not solve the two simultaneously migrating agent problem highlighted by

Silva.

The JADE Agent Platform [114] focuses on communication and coordination as

opposed to mobility [115], although it has been shown that various design common

mobile agent design patterns can be implemented using JADE [116]. JADE provides

an almost strong approach to mobility, in that execution state is captured without

extra developer code, but not at any point during execution. JADE is also

implemented in Java, and provides its own communication mechanism that utilises

serialization.

Gray [111] describes the D’Agents system, which allows agents to be developed

using multiple languages. D’Agents appears to be the only attempt at doing this so

far, although there are limitations when considering communication and migration

of agents between platforms. Different language platforms also do not allow the

same capabilities as others. For example, Java D’Agents does not attempt to

overcome the strong mobility problem caused by Java.

2.4.5 Summary

Although mobile agents are a promising approach to Ubiquitous Computing, there

are still a number of disadvantages. Interoperability has been raised as an issue,

and there seems to be little regard for promoting connection mobility. Considering

Chapter 2: Background 29

the π-Calculus as a model for Ubiquitous Computing, the mobility of connections is

seen as more prominent. Java does appear to be the platform of choice, although

there are limitations. However, considering how prominent Java is as a platform, it

does provide a suitable starting point to investigate Ubiquitous Computing

middleware.

In the following section, an approach that incorporates both component and

connection mobility is discussed, which can incorporate many of the ideas from

agents, and thus provide a possible platform to support Ubiquitous Computing.

2.5 Communicating Process Architectures

Communicating Sequential Processes (CSP) [15, 16] is a formalism that describes a

set of processes (components) communicating with one another via a set of events

(connections). This is similar to the π-Calculus, where processes also communicate

via events. There are currently a number of implementations of CSP behaviour, and

in particular Java has the Communicating Sequential Processes for Java (JCSP)

library [117], which provides the necessary constructs to build CSP like applications

within Java. JCSP also has a package that enables these constructs to operate

across a communication mechanism [14], thus providing a base mechanism to

support distributed systems. At the heart of mobile agents and mobility

architectures, there is the notion of a distributed architecture, and likewise for

Ubiquitous / Pervasive Computing.

2.5.1 Similarities between CSP and Agent Orientation

Agents have their roots in the actor model, which are self contained, interactive,

concurrently executing objects, with internal state and respond to messages from

other agents [62]. This description is similar to that of a CSP process – a

concurrently executing entity, with internal state, which communicates with other

processes using channels (message passing).

The concurrent behaviour of agents and processes also brings a number of

similarities, and Gonzalez [74] has utilised CSP techniques to describe agents.

Petitpierre [118, 119] has argued on the similarities of active objects and CSP, and

Chapter 2: Background 30

considering the similarities discussed between agents and active objects, there does

appear to be commonalities between a CSP process and an agent.

2.5.2 Mobile Processes and Mobile Channels

Recently, mobility has been of interest within the field of Communicating Process

Architectures (CPA). Languages such as occam-π [12] have added channel and

process mobility, and the distributed framework for occam-π, pony [120], also

added mobility of networked channels. Connection mobility is seen as missing from

mobile agent platforms, so applying these ideas may overcome this problem.

Previous work on JCSP mobility [1, 17] has also attempted to incorporate both

channel and process mobility.

There are advantages when considering mobility in this form and examining

Ubiquitous Computing ideas. One of the required properties of Ubiquitous

Computing is scale, and Milner [11] believes the π-Calculus will enable

understanding of this scale. Ritson [121] has shown some of this capability, by

implementing a system with millions of interacting mobile process components in a

manner that can be considered simple to comprehend.

Considering the ideas of mobility presented thus far, it is possible to define how

practically a mobile process can be defined. As location is integral to the notion of

mobility, a mobile process can be considered as a process that has the ability to

change location. This description is basically the same as a mobile agent.

2.5.3 Examining the Capabilities of JCSP Networking

As mobile processes can be considered similar to mobile agents, and as mobile

channels enable the connection migration which is considered missing from mobile

agent definition and application, JCSP Networking can be considered a possible

architecture for Ubiquitous Computing applications. JCSP Networking brings

together a number of strengths from the different fields that have been seen as

applicable for Ubiquitous Computing, such as distribution and concurrency, and

work on pony has shown that distributed channel mobility is possible. However,

there are still properties that require examination.

Chapter 2: Background 31

Firstly, the defined requirements for Ubiquitous Computing (Section 2.1.2) must be

analysed within the JCSP Networking architecture. This will require extensive

analysis of the JCSP Networking architecture and the performance characteristics

thereof. Due to the distributed nature of JCSP Networking, the common

approaches to analyse networking performance of throughput and latency are

required. Considering Ubiquitous Computing, these properties require examination

in a suitably constrained environment, utilising wireless networking and mobile

devices.

Java utilises serialization to enable transfer of objects between remote machines,

and thus serialization requires examination (a discussion on Java’s serialization

mechanism is provided in Appendix A). JCSP utilises serialization, but the commonly

utilised communication architecture for distributed Java applications is Java Remote

Method Invocation (RMI). Serialization has been examined by a number of authors

[122, 123] with the focus being on analysing performance based on the complexity

of the objects. Analysis of RMI [123] has also shown that examining the individual

parts of the communication mechanism allows greater insight into the underlying

architecture. Applying these concepts to JCSP Networking is therefore worth

considering.

The next consideration is the implementation of the distributed mobile channel

structure. Although the pony architecture [120] has proposed a method to enable

distributed channel mobility, a more in depth analysis of the suitability of this model

within the context of Ubiquitous Computing is required. pony itself has some

significant overheads associated with its channel mobility model.

Finally, it has been noted that strong mobility is a requirement of logical mobility,

and that Java has problems in permitting this form of mobility. Therefore, the

development of a technique to enable the strong mobility of processes is required.

Due to the restrictions of Java, the actual capabilities of any technique must also be

brought into question. Currently, within JCSP, distributed process mobility is only

allowed at either the start state of the process, or when the process is in a stopped

Chapter 2: Background 32

state. The aim is to permit the same level of process mobility as local JCSP

processes.

2.6 Summary

Within this chapter, an analysis of the requirements of Ubiquitous Computing has

been presented, and has primarily focused on the underlying software architecture

requirements for Ubiquitous Computing. By examining the potential models for

software to support Ubiquitous Computing, it has been shown that mobility is seen

as a key feature, and likewise the capabilities of distributed systems due to the

distributed nature of the applications under consideration. Although several

platforms provide some of the properties of interest, there are still limitations when

considering such approaches as mobile agents when considering Ubiquitous

Computing, therefore another approach has been proposed as requiring

examination, utilising JCSP Networking as a test case.

In the following chapter, the current implementation of JCSP Networking is

presented. The existing architecture and functionality are described, and some

initial observations are made. These observations are required for further analysis

of JCSP Networking against Ubiquitous Computing requirements, which is presented

in Chapter 4.

Chapter 3 JCSP Networking

In this chapter, a description is presented of the current implementation of JCSP

Networking. From this description, an initial examination of the structure and

individual components required for the network architecture to operate and some

initial observations are made prior to a more thorough evaluation of the

implementation in Chapter 4. Section 3.1 presents the aim of JCSP Networking, and

Section 3.2 presents the current architecture. Section 3.3 examines the

functionality and Section 3.4 provides a brief analysis before initial observations are

made in Section 3.5.

3.1 Aim of JCSP Networking

The core implementation of JCSP is aimed at providing constructs necessary for a

CSP based concurrency model in Java. The network architecture expands JCSP by

providing channels that operate over a communication mechanism. Two

statements of the aim of JCSP Networking have been made. The first [14] alludes to

the creation of process networks over a communication medium by interpreting the

T9000 virtual channel model [124]. The second stated aim [125] is “to build

efficient, richly functional, scalable, distributed and dynamic evolving systems”. The

second interpretation of the aim of JCSP Networking comes from a discussion on

cluster computing, which is the main application area of JCSP Networking. The main

aim of JCSP Networking can therefore be interpreted as the exploitation of

parallelism in distributed system applications. This aim does not fit within the

sphere of Ubiquitous Computing per se, but the scalability and dynamic

architectures are requirements. Therefore, it can be claimed that JCSP Networking

may be a suitable framework for Ubiquitous Computing.

Chapter 3: JCSP Networking 34

3.2 JCSP Network Architecture

There are a number of components required to achieve the functionality within

JCSP Networking, and in this section a description of these components shall be

presented. Diagrams illustrating component interactions shall also be given.

The diagrams presented do not reflect previous reporting of JCSP Networking [14]

as a number of modifications have been made. The original implementation of JCSP

Networking utilised service processes for output channels, and the EventProcess

described in the next section was also not present. The LoopbackLink was also a

later addition to allow local channel ends to connect.

3.2.1 High Level View

Figure 1 illustrates the high level view of the current JCSP Networking architecture,

presenting the key components and how they interact. Solid lines with arrow heads

represent channel connections, and dashed lines represent object references.

Ovals represent active components (processes), rounded rectangles represent a

collection of active components and rectangles represent passive components

(objects). Channels with an infinity sign are provided with an infinite buffer.

Application

Process

Application

Process

Application

Process

Application

Process

Application

Process

Net Channel

Input

Net Channel

Output

Net Channel

Input

Net Channel

Output
Event Process

Net Channel

Input Process
Index Manager

Net Channel

Input Process
Link Manager

Link RX Link TX Link RX Link TX Link Server

Communication Mechanism

Loopback Link Link

Link Lost

Event

Channels
∞

∞

∞∞

∞

Figure 1: Current JCSP Networking Architecture

Chapter 3: JCSP Networking 35

 Link – the Link component is responsible for connecting a JCSP Node (a

single JVM) to another JCSP Node. The Link and its relevant sub-

components are designed to allow operation upon any communication

mechanism if the necessary addressing and connection functionality is

developed. At present only TCP/IP mechanisms are provided within the JCSP

Networking package. The Link component has two sub-components which

provide input and output operations between Nodes:

o LinkTX – the LinkTX process is responsible for transmitting

messages to the remote JCSP Node. LinkTX has little responsibility

except serialization of the sent message onto the communication

output stream.

o LinkRX – the LinkRX process is responsible for receiving messages

from the remote JCSP Node. LinkRx interprets incoming messages

and acts on the message type, accessing the destination channel if

required.

 LoopbackLink – the LoopbackLink operates as a normal Link and

provides a virtual connection within the local Node. If an output end of a

channel is connected to an input end within the same JCSP Node, the

message will travel through this component.

 LinkServer – the LinkServer process is responsible for receiving

incoming connection requests for the Node, creating the required Link

component to service the connection, and interacting with the

LinkManager to control, store and mange the Links within the Node.

 LinkManager – the LinkManager process is responsible for managing the

Links operating within the Node. This process ensures that only one Link

to a given Node is active at any time, and retrieves an existing Link to a

given Node when requested.

 EventProcess – the EventProcess is spawned by the LinkManager

and broadcasts LinkLost messages to any interested process. Whenever a

Link fails, the Link informs the LinkManager which sends a message to

the EventProcess. The EventProcess writes this message to all

Chapter 3: JCSP Networking 36

registered LinkLostEventChannels. These channels are infinitely

buffered to avoid deadlock.

 NetChannelOutput – the NetChannelOutput component provides the

interface to the writing end of a networked channel, and hides the

underlying interactions with the Link. The channel receiving messages

from the Link is infinitely buffered.

 NetChannelInput – the NetChannelInput component provides the

interface to the reading end of a networked channel, although the

interaction with the Link is handled by a separate process.

 NetChannelInputProcess – the NetChannelInputProcess services

communication between the NetChannelInput and the Link. It receives

messages from the Link, and either forwards the message to the

NetChannelInput, or responds to the message directly. The incoming

channel to the NetChannelInputProcess from the Link is infinitely

buffered.

 IndexManager – the IndexManager is a shared data object which

manages the networked channel ends within the Node. This component

allocates index numbers (Virtual Channel Numbers) [124] to channels and

allows retrieval of channel objects based on these indices.

The described components provide the application level channel functionality.

Some components may have numerous instances in operation. For example, each

NetChannelInput created has a front end and a NetChannelInputProcess,

and each connection to a remote Node requires a Link. There may be multiple

LinkServer processes if multiple interfaces or protocols are used.

The channels connecting the Links with the networked channel components are

shared at the writing end (they are Any-2-One). This permits multiple channel ends

to write to a LinkTX, and any LinkRX to receive incoming messages for any

channel. A virtual channel operation can be defined as a number of component

interactions, as described in the following section.

Chapter 3: JCSP Networking 37

3.3 JCSP Networking Functionality

Figure 2 presents the component interactions that occur during a normal

networked channel read/write operation.

Figure 2: Networked Channel

1. An Application Process calls the write method on the output end of a

networked channel, passing the data to be sent within the method call.

2. The NetChannelOutput wraps the data within a ChannelMessage. The

ChannelMessage contains the destination index, source index, a flag

indicating if the message should be acknowledged, and possibly the name of

the channel on the remote Node. The NetChannelOutput contains the

specific channel connected directly to the LinkTX and can write the

ChannelMessage onto this channel directly.

3. The LinkTX reads the outgoing ChannelMessage from its input channel

and streams it to the other Node via the communication stream. This

involves serialization of the ChannelMessage via an

ObjectOutputStream.

4. The receiving Node’s LinkRX deserializes the incoming ChannelMessage

from the connection stream, and examines the object to determine its type.

For an incoming send message, the destination index is extracted and used

to retrieve the channel to the NetChannelInputProcess. The LinkRX

adds the channel connecting to its partner LinkTX process to the

ChannelMessage to allow the NetChannelInputProcess to send the

acknowledgement. The ChannelMessage is then sent to the

NetChannelInputProcess.

5. The NetChannelInputProcess reads the incoming ChannelMessage

from the LinkRX and sends the sent data to the NetChannelInput. This

Application

Process

Link TX

Link RX

Link RX

Link TX

Net Channel

Input

Net Channel

Input Process

Application

Process

Net Channel

Output

1. Write
2. Write to

Link

3. Write to

stream

4. Write to Net

Channel Input

Process
5. Write to Net

Channel Input 6. Read

7. Return sent

message

8. Write

completed
9. Acknowledge

10. Write

to stream

11. Write

acknowledgement

to Net Channel

Output

12. Return

(complete write)

Chapter 3: JCSP Networking 38

is a blocking operation, and until the Application Process calls read on the

NetChannelInput, the NetChannelInputProcess will wait.

6. The Application Process calls read on the NetChannelInput. This call

may have occurred at any stage prior to this step, causing the receiving

Application Process to block until now.

7. The NetChannelInput returns the sent data.

8. The send is completed between the NetChannelInput and

NetChannelInputProcess, allowing the later to resume.

9. The NetChannelInputProcess creates an acknowledgement message.

The destination index of the message is the source index of the original send

message. The acknowledgement message is communicated to the LinkTX

using the channel attached to the incoming ChannelMessage in step 4.

10. The LinkTX process receives the outgoing acknowledgement and serializes

it over the connection stream.

11. The LinkRX process of the original sending Node deserializes the incoming

ChannelMessage. As an acknowledgement message has been received,

the LinkRX retrieves the channel to the NetChannelOutput from the

IndexManager using the destination index from the ChannelMessage.

The ChannelMessage is then sent to the NetChannelOutput.

12. The NetChannelOutput reads the acknowledgement and completes the

write method call, allowing the writing Application Process to proceed.

This illustrates the basic read/write operation. There are a number of different

message types within JCSP Networking. A brief description of these is provided

next.

3.3.1 JCSP Network Message Hierarchy

The hierarchy of network messages is presented in Figure 3. The message types for

networked channel operations are on the left – ChannelMessage and its children.

The other messages are of no concern for the rest of this work. BounceMessage

was used by MigratableChannels (an original implementation of mobile

channels), while PingMessage and PingReplyMessage are used during initial

Chapter 3: JCSP Networking 39

Link interactions. The ConnectionMessages are used by NetConnections,

and although a consideration for the future, are not examined in detail here.

Figure 3: JCSP Network Message Hierarchy

Figure 3 helps to illustrate the amount of data sent in a ChannelMessage. This will

be examined more fully in Chapter 4. The brief analysis in the following section

focuses on previous analysis performed on JCSP Networking and similar

frameworks, as well as presenting some issues based on the architecture presented

thus far.

3.4 Brief Analysis of the Current Architecture

Previous research into networked architectures based on CSP has primarily focused

on the performance gained from task parallelisation. In this work, the main focus is

the performance of the communication mechanism, and the overheads associated

with the architecture. Categorisation of some of the different CSP inspired

frameworks has been previously presented [126] when considering localised

systems, indicating the suitability of these frameworks within different contexts.

3.4.1 Previous Analysis on JCSP Networking

Little performance analysis of the communication mechanisms of JCSP Networking

has been made. Schaller [127] examined performance of Java parallel computing

libraries undertaking tasks across multiple networked Nodes. Vinter [125]

#destIndex : long

#sourceIndex : long

#destVCNLabel : string

Message

Channel Message

#data : object

#acknowledged : bool

ChannelMessage.Data

ChannelMessage.Ack ChannelMessage.WriteRejected

Message.BounceMessage Message.PingMessage ConnectionMessage

-data : object

ConnectionMessage.Open

-data : object

ConnectionMessage.Ping

-data : object

ConnectionMessage.Pong

-data : object

ConnectionMessage.Close

Message.PingReplyMessage

Chapter 3: JCSP Networking 40

examined similar properties with other Java libraries and different tasks, but

analysis was again based on parallel performance and not the communication

mechanism. Kumar [128] examined JCSP performance in the context of multiplayer

games, and although providing interesting results on the scalability of JCSP, little

performance of the communication mechanism is provided.

3.4.2 Previous Analysis on Other Process Oriented Network Architectures

Greater analysis of communication performance has been carried out within other

CSP based architectures. Brown [129] has examined latency and performance

overheads in C++CSP, but no extensive testing of the communication mechanism

was made. A work allocation method was used, with different packet sizes sent to

remote machines for processing. Although this did lead to some information on

communication performance, it does not go into enough detail to analyse the

variance between standard communication and C++CSP Networked. Brown also

conducted experiments for ping time, but this does not give a good indication to

communication time on its own. The problem is message flow, where the

acknowledgment for the original send is sent and immediately followed by the

resulting ping reply. From the point of view of the pinging process, the time taken

would vary little from the standard send-acknowledge cycle.

Schweigler [130] has performed extensive analysis on CPU overhead and

throughput in pony, and provides comparisons to JCSP Networking. Little analysis is

made of the communication mechanism in comparison to standard approaches,

although effort has been made to analyse the performance of the pony networked

channel. Comparisons with JCSP are made in a case study, although the main

conclusions gathered are interpreted from throughput and comparison when

parallelising a task.

Analysis of CSP.NET [131] provides only simplistic results thus far, without any

comparison to other communication approaches. A brief comparison to JCSP

Networking has been made however. The authors themselves note that the tests

performed are by no means thorough enough to constitute a benchmark.

Chapter 3: JCSP Networking 41

3.4.3 Resource Usage

If Figure 1 (page 34) is examined, there are a number of processes required for the

network functionality. Each connection to another Node involves two processes –

the LinkTX and LinkRX. Each NetChannelInput requires a service process (the

NetChannelInputProcess) and the NetChannelOutput is lightweight in

comparison. Link creation and management requires at least three processes: the

LinkServer, the LinkManager, and the EventProcess, but, as previously

stated, there may be multiple LinkServer processes in operation within a Node.

The LoopbackLink is created when a Node is initialised, requiring two processes.

Finally, although not illustrated in Figure 1, there is a process spawned with the first

NetChannelOutput. This process is meant to inform NetChannelOutputs of

Link failure, although this does not always operate as expected.

A number of temporary processes are also created during Node initialisation and

subsequent Link connection. These processes are used to set up resources and

perform connection handshaking and are subsequently killed when they have

completed their task.

Therefore, there are a number of processes utilised by JCSP Networking prior to

application processes being considered. As each process requires a thread to

operate, it can be seen that an unconnected Node requires six threads – two for the

LoopbackLink; a LinkManager; a LinkServer; an EventProcess; and the

main thread. A Node connected to a Channel Name Server (used as a channel name

broker) requires 11 processes – two for the new Link; one service process to the

CNS, the service having an input and output channel; one for a

NetChannelInputProcess; and the NetChannelOutput Link failure process.

The required processes increase as the number of Links and NetChannelInputs

increases. As an example, a Node connected to five other Nodes, with ten

networked input ends and an initial CNS connection will require a total of 31

processes. On resource constrained devices such as those required in Ubiquitous

Computing it can be seen that JCSP Networking does not scale well.

Chapter 3: JCSP Networking 42

Unfortunately, these processes are spawned without usage of the JCSP Parallel

construct. The Parallel acts as a pool for created threads, and attempts to reuse

threads whenever possible. As most of the processes used within JCSP Networking

are created without the Parallel, the reclamation of resources may be slow.

Many of these spawned processes are also created outside the application level,

and therefore cannot easily be stopped. Methods are in place to destroy the

NetChannelInputProcess components, but if a reference to the

NetChannelInput is lost, then the process cannot be reclaimed and is lost.

The main reason for the heavy resource usage stems from the CSP / occam

philosophy of using a process whenever possible. This is an ill advised approach

when considering Java, particularly within resource constrained devices. A major

problem is the use of a process to service a NetChannelInput, as this reduces the

number of possible input channels into a Node.

3.4.4 Complexity

JCSP Networking is a complex architecture. One of the properties of JCSP

Networking is that the architecture is removed from the underlying communication

mechanism, meaning it can be implemented upon any guaranteed packet delivery

protocol. The argument is that if the correct addressing and Link creation

mechanism is provided, JCSP Networking can utilise the communication

mechanism. Although this statement is true, it is difficult to achieve, requiring a

great deal of knowledge of the internal architecture of JCSP Networking. Without

the source code it would be difficult for a custom communication mechanism to be

used.

3.4.5 Objects Only

JCSP Networking only permits serializable objects to be transferred between Nodes.

In principle this is not a problem if JCSP is considered within the context of standard

Java, but adds difficultly when trying to communicate with other frameworks. It

would be useful to send raw data between Nodes as required, which can be done in

principle as a byte array is an object in Java, but there is an overhead in the

serialization. It is also a problem that not all Java platforms support serialization,

Chapter 3: JCSP Networking 43

leading to difficulties when trying to implement JCSP Networking on reduced Java

platforms [132].

Depending on serialization means that primitive data must be wrapped in an object

prior to sending. This brings an overhead, and limits networked channels to object

types only. The core JCSP package for example implements a primitive integer

channel for increased performance.

3.5 Initial Observations

This chapter presented a very high level analysis of the current JCSP Networking

implementation, and from this some initial observations can be made. Firstly, there

has been little in depth analysis of the communication mechanism in JCSP

Networking, although this is a key indicator of the overall performance of JCSP

Networking. Although other frameworks have been examined in greater depth,

little comparison with standard communication mechanisms has been made.

Secondly, the resource requirements for JCSP Networking are high, and thus reduce

scalability. Thirdly, the complexity of JCSP leads to difficulties when porting the

architecture to different platforms and communication mechanisms. Finally,

allowing only objects for network interactions prevents the interaction with other

platforms unless they implement Java serialization.

In the following chapter, a deeper analysis of JCSP Networking is presented. For

Ubiquitous Computing, there is a need to understand the properties of JCSP

Networking to determine how suitable the implementation is for Ubiquitous

Computing applications. Performance of networked channel communications is the

main focus, with other properties examined that are relevant to JCSP Networking

within the context of Ubiquitous Computing.

Chapter 4 Analysis of Current JCSP Networking

In this chapter, experimental data is presented that allows examination of the

current implementation of JCSP Networking in the context of Ubiquitous

Computing. The data is gathered from experiments within an environment that is

restrictive enough to determine the outcome of using JCSP Networking in a

relatively resource constrained manner similar to the possible scenarios envisioned

for Ubiquitous Computing. The aim of the experiments is to produce metrics that

allow a close approximation of the separate interactions of the individual JCSP

Networking components that form the basic network channel. By doing this, it is

possible to determine where any overheads occur which can be resolved. Section

4.1 describes the test framework in which the experiments are conducted, and

Section 4.2 examines the two Java Virtual Machines in use. Section 4.3 provides

experimental results that allow analysis of the network which allows analysis of

JCSP Networking in Section 4.4. Section 4.5 examines serialization within the test

framework, and Section 4.6 illustrates the overhead of JCSP Networking. Finally

conclusions are drawn in Section 4.7.

4.1 Test Framework

The data presented is gathered from the interactions between a small factor device

(a PDA) and a desktop PC acting as a server. Communications occur over a wireless

network. Various interaction properties are examined that incorporate both raw

data and objects of different sizes and complexities. This promotes insight into how

well JCSP Networking compares to standard communication within the test

framework. First, a description of the framework is provided.

Chapter 4: Analysis of Current JCSP Networking 45

4.1.1 PDA Specifications

The mobile device is an HP iPaq 2210, running Windows Mobile 4.2. It has 64

MBytes of memory, shared between storage and applications. The processor is

Intel XScale based and operates at a maximum frequency of 400 MHz. The PDA

only has Bluetooth capabilities to provide wireless communication, and therefore a

SDIO wireless card has been added to provide 802.11b wireless capabilities. The

wireless card is a SafeCom Technologies SDW11B and provides a 100 metre range at

11 Mbits/s bandwidth.

4.1.2 PC Specifications

The PC has a Pentium IV 3 GHz processor and 512 megabytes of memory. It is

connected to the network using a standard Ethernet card to a wireless router. This

provides the PC with a potential bandwidth of 100 Mbits/s. The operating system

installed is Ubuntu Linux 7.10.

4.1.3 Network Specifications

The network is controlled via a wireless router – a NetGear WGR614. The wireless

interface is 802.11g compatible, and potentially supports 54 Mbits/s bandwidth.

The PDA restricts bandwidth to 11 Mbits/s due to its wireless interface. The

wireless network does not utilise any form of security. The Ethernet interface

allows 100 Mbits/s bandwidth for the PC.

As two separate interfaces are used, there are differing maximum packet sizes

(Maximum Transmission Unit) in operation. The Ethernet interface has an MTU of

1500 bytes and the wireless interface 2272 bytes. The larger packets are

fragmented by the router for sending on the Ethernet interface, and are then

reconstructed by the PC.

4.1.4 Test Classes

A collection of classes have been developed to analyse the performance of a

networked JCSP channel in comparison to Java object streams when considering

object serialization. These objects vary in complexity and size to allow examination

of these properties to determine if they have an effect on communication time.

Chapter 4: Analysis of Current JCSP Networking 46

Complexity relates to the number of object references sent against the number of

unique objects sent. As Java serialization recreates the sent object graph, there is

the possibility that the sent object contains multiple references to the same object.

As this requires the usage of a lookup table, incorporating complexity allows the

lookup time characteristic to be taken into account.

The definitions of the test classes are provided in Appendix B. A brief summary of

the different classes is presented here:

 Integer array – an array of Integer objects. The length of the array ranges

from 0 to 100.

 TestObject – an object that contains both an Integer object array and a

Double object array. The lengths of these arrays are equal and range from

0 to 100.

 TestObject2 – extends TestObject, and thus contains the Integer and

Double arrays. TestObject2 declares its own Integer and Double

array. All four arrays have equal length.

 TestObject3 – extends TestObject and contains its own Integer and

Double arrays. However, each individual element of the Integer array is

referenced in the partner Integer array, thus leading to only 100 unique

Integer objects instead of 200. Likewise for the Double arrays.

 TestObject4 – extends TestObject, and has the same array definitions

as TestObject3. TestObject4 also contains a reference to another

TestObject4 which has its own unique arrays and array elements. The

second TestObject4 references the original TestObject4, creating a pair

of objects bound together.

 TestObject5 – extends TestObject, and is similar to TestObject4.

However, the other TestObject5 referenced within this object has arrays

which contain the same elements as this TestObject5. Thus there are

only 100 unique Integer objects and 100 unique Double objects.

Chapter 4: Analysis of Current JCSP Networking 47

A description of Java serialization is presented in Appendix A. For clarity, the

amount of data sent for each object relative to n (the length of the internal array(s))

is provided in Table 1. All values are in bytes.

Table 1: Test Object Sizes

Object Type n = 0 n > 0

Integer array 41 118 + (n – 1)∙10

TestObject 167 297 + (n – 1)∙24

TestObject2 247 401 + (n – 1)∙48

TestObject3 247 387 + (n – 1)∙34

TestObject4 326 500 + (n – 1)∙68

TestObject5 326 486 + (n – 1)∙54

The number of references against unique objects is presented in Table 2. This

information alludes to the different object complexities, and helps to determine if

there is an effect on communication performance because of this complexity. Java

object streams hold references to all sent/received objects (see Appendix A). Thus

lookup tables are kept of all serialized objects and classes. For serialized object

graphs with more unique objects, these tables will grow larger than object graphs

with fewer unique objects. Serialization time should therefore increase for object

graphs containing more unique objects.

Table 2: Test Object Reference Count against Unique Object Count

 n = 0 n > 0

Object Type Obj Ref Unique Obj Obj Ref Unique Obj

Integer array 1 1 n + 1 n + 1

TestObject 3 3 3 + 2·n 3 + 2·n

TestObject2 5 5 5 + 4·n 5 + 4·n

TestObject3 5 5 5 + 4·n 5 + 2·n

TestObject4 10 10 10 + 8·n 10 + 4·n

TestObject5 10 10 10 + 8·n 10 + 2·n

These objects have been chosen as it allows examination of the serialization process

itself. The largest object size will fit within the buffer JCSP has within its Link

connection streams (8192 bytes). Larger data sizes are tested by sending raw data

without the serialization process.

Chapter 4: Analysis of Current JCSP Networking 48

In the following section, the versions of Java used on the different devices are

examined to allow a better understanding of the results presented later in this

chapter. Full results can be found in Appendix D. Unless otherwise required, only

the results for TestObject4 are presented within this chapter as the size and

complexity of TestObject4 allows analysis for the majority of cases.

4.2 Examining the Java Virtual Machines

In this section, the two different JVMs are examined. The specifications of the

different versions of Java are presented, and benchmarks provided to allow a closer

comparison.

4.2.1 Java Versions

The two Java Virtual Machines in operation are quite different. The PC has a

standard Sun Java Development Kit version 1.6 JVM. The PDA has a reduced IBM J9

JVM that conforms to the Java 2 Micro Edition (J2ME) Connected Device

Configuration (CDC) Personal Profile. This provides a JVM that is approximately Java

1.3.1 compatible.

To benchmark the JVMs two methods have been used. The Java Grande Benchmark

Suite [133], although designed to benchmark JVMs in the context of high

performance computing, provides a number of tests that allow comparison of the

two JVMs. The second method is aimed at the JCSP implementation specifically by

performing standard benchmarks used to evaluate performance of CSP based

frameworks. A comparison of the two JVMs is provided in Appendix C. In general,

the PDA operates between 1 and 2.5 orders of magnitude slower than the PC in

these tests. The variance between the different result sets will be largely due to the

PC having faster I/O and having specialised machine instructions for some

operations.

There are some benchmarks that are relevant to the discussion of the performance

of JCSP Networking in the context of the experiments that have been performed.

The Java Grande Suite provides object creation and serialization benchmarks, and

Chapter 4: Analysis of Current JCSP Networking 49

the CommsTime benchmark in JCSP provides an approximation of the channel

communication time between two processes.

4.2.2 Java Grande Object Creation Benchmarks

The Java Grande Suite object creation benchmarks are performed on small objects

with certain properties, such as internal fields and sub-classing. The results are

based on allocation time, which does not allow enough insight into the time taken

to create the various object types being examined in this chapter. Therefore, the

operation of the benchmark is replicated using the test classes. The results for the

PC are presented in Figure 4 and the results for the PDA in Figure 5. The values

represented are the average time taken to create a single object of the given size

(along the x-axis) and type in milliseconds.

The creation time for the PC is almost negligible, the largest object taking

approximately 11 microseconds to create. The PDA performs approximately two

orders of magnitude slower than the PC. The Java Grande benchmark for object

creation (see Figure 80 in Appendix C) shows the PDA performing one order of

magnitude poorer than the PC with more complicated objects increasing this

variance. The increase from 1 to 2 orders of magnitude variance between the PC

and PDA can be attributed to memory allocation as the test objects are large in

comparison to the small objects tested using the normal Java Grande benchmark.

These results indicate that memory allocation time has the greatest impact on

object creation. TestObject2 and TestObject5 are approximately equal in size

for n < 100 (see Table 1, page 47), and take approximately the same time to create.

TestObject4, which is less complex than TestObject5, takes a greater time to

create, and TestObject3, which is more complex than TestObject2, takes less

time to create. Object complexity due to the number of references appears to have

little effect on object creation time.

Chapter 4: Analysis of Current JCSP Networking 50

Figure 4: PC Test Object Creation Times

Figure 5: PDA Test Object Creation Times

4.2.3 Java Grande Object Serialization Benchmarks

The Java Grande Suite provides object serialization benchmarks based on data

structures of various sizes and complexities. This test can be modified to operate

on the test classes. The Java Grande serialization benchmark does not reset its

streams after every object write operation, so the test is modified to reset the

streams after every communication. Within JCSP Networking, this is done to avoid

aliasing problems upon the object stream (see Appendix A). Therefore, this is

replicated within the serialization benchmarks. The standard Java Grande

serialization benchmark writes the serialized object to file.

Figure 6 presents the results for the PC performing the Java Grande serialization

benchmark with the test objects. The results represent the average time in

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

TestObject TestObject2 TestObject3

TestObject4 TestObject5

0.0

0.5

1.0

1.5

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

TestObject TestObject2 TestObject3

TestObject4 TestObject5

Chapter 4: Analysis of Current JCSP Networking 51

milliseconds taken to serialize a single object of the given type, with the x-axis

ranging over the length of the object’s array(s).

Figure 6: PC Java Grande Test Object Serialization

The interesting phenomenon where the lines for TestObject2 and TestObject4

increase in unison and likewise for TestObject, TestObject3 and TestObject5

can be attributed to the object complexities defined in Table 2 (page 47).

TestObject2 and TestObject4 increase the number of unique objects by a

factor of 4 relevant to n. The other object types (aside from the Integer array)

increase by a factor of 2. Therefore, for the Java Grande serialization benchmark,

the lookup table increasing in size does have an effect on performance.

Figure 7 presents the results for the PDA performing serialization on the test

objects. The lines are not grouped based on the number of unique objects and the

interesting phenomenon is that TestObject2 and TestObject5 are closely

grouped. These objects are approximately equal in size for n < 100. Therefore, for

the PDA the I/O time associated with writing the serialized objects to file has a

significant effect.

0

2

4

6

8

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integer Array TestObject TestObject2

TestObject3 TestObject4 TestObject5

Chapter 4: Analysis of Current JCSP Networking 52

Figure 7: PDA Java Grande Test Object Serialization

Figure 8 compares the performance of the PDA and PC for (de)serialization of

TestObject4. The results present the average time in milliseconds to (de)serialize

a single TestObject4. The x-axis represents the object size in bytes as generated

from Table 1. These results show the PC performs approximately 2.5 orders of

magnitude faster than the PDA, which concurs with the general performance

difference of the two devices. It is also of note that deserialization is faster than

serialization on the PDA, while the converse is initially true for the PC. This may be

due to the extra lookup required for each serialization of an object prior to it being

written, whereas the deserialization process only performs a lookup when

prompted to by a reference signal appearing on the stream. The PDA may also have

slower file output performance that input performance.

Figure 8: PC against PDA TestObject4 Java Grande (De)Serialization Benchmark

0

500

1000

1500

2000

2500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integer Array TestObject TestObject2

TestObject3 TestObject4 TestObject5

0.1

1

10

100

1000

10000

326 2132 3832 5532 7232

Ti
m

e
 m

s

Size of Internal Object Arrays

PDA Serialization PC Serialization

PDA Deserialization PC Deserialization

Chapter 4: Analysis of Current JCSP Networking 53

The results presented give some indication to the performance of the

(de)serialization process on the different devices, but they also incorporate file I/O

time. For JCSP network communications, objects are (de)serialized within a

memory buffer, which incurs a lower I/O overhead. Therefore, experiments

involving (de)serialization within memory are performed.

4.2.4 Serialization within Memory

The Java Grande serialization benchmark can be modified to use memory streams

instead of a file stream. This operation is generally fast, and would require a

greater number of operations within a timed cycle of operations to avoid noise

within the results. The available memory restricts this possibility, as the memory

stream must be declared prior to any timed operations. To avoid the buffer within

the stream requiring expansion during the timed cycle, a 10 million byte allocation

within the PC and a 1 million byte allocation within the PDA is used. This restricts

the maximum number of operations in a timed cycle to 1000 and 100 for the PC and

PDA respectively.

Figure 9 presents the results from the PC performing serialization into memory.

Unlike the file based serialization, the lines are more separated. TestObject2 and

TestObject4 are still rising close to uniformly. Both of these object types increase

in object size at different rates and therefore the amount of data is not the major

factor in their close proximity at these data ranges.

Figure 9: PC Memory Test Object Serialization

0

0.2

0.4

0.6

0.8

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integer Array TestObject TestObject2

TestObject3 TestObject4 TestObject5

Chapter 4: Analysis of Current JCSP Networking 54

Figure 10 presents the results for the PDA serializing the various test classes into

memory. Unlike file based serialization, the PDA has TestObject2 and

TestObject4 grouped together, and TestObject, TestObject3 and

TestObject5 grouped together. These results show the same object complexity

and lookup attributes as the PC, with time increase based on the number of unique

objects as opposed to I/O throughput.

Figure 10: PDA Memory Test Object Serialization

As JCSP Networking initially serializes objects directly into memory, the number of

unique objects has a greater effect on serialization time than object size when

considering these test classes. JCSP Networking resets its object streams after

every Link communication, which leads to more data being sent within a single

transaction due to class information requiring transmission every time. However, it

would appear that the reduction in lookup time does provide increased

performance, and this may overcome the increase in transferred data.

Figure 11 presents the PC against the PDA for (de)serialization of TestObject4

within memory. Figure 11 is similar to Figure 8, and an approximate 2.5 order of

magnitude difference between the two devices is still evident. This is despite the

different trends seen for the PDA for memory based serialization. It is also of note

that the difference between serialization and deserialization is smaller than the file

based serialization operations for the PDA, and that serialization is now faster than

deserialization on the PDA at larger sizes of TestObject4.

0

100

200

300

400

500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integer Array TestObject TestObject2

TestObject3 TestObject4 TestObject5

Chapter 4: Analysis of Current JCSP Networking 55

Figure 11: PC against PDA TestObject4 Memory (De)Serialization Benchmark

4.2.5 CommsTime

The CommsTime benchmark is a common mechanism for measuring channel

communication performance in a CSP based framework [134]. The PDA has a

CommsTime figure of approximately 720 microseconds and the PC approximately

62 microseconds for object based channels (see C.6.1). As CommsTime

incorporates a system with four channel communications, the channel

communication time for the PDA can be approximated at 180 microseconds, and

the PC at 15 microseconds. The PC has approximately a one order of magnitude

faster channel communication time.

4.3 Examining the Network Performance

In this section, the network infrastructure used in the test framework is examined.

There are a number of different properties of concern. The effect of the JVM on the

PDA networking performance is a factor, and therefore the underlying native

network libraries (Winsock) are tested. A comparison between normal Java

network streams and Java object streams on the network is required to establish

the overhead from using object based streams. Finally, there is the buffered stream

that has been placed within the JCSP Link and thus object streams require

buffering within these experiments. The buffer is set at 8192 bytes, the size of the

buffer internal to JCSP Networking.

0.01

0.1

1

10

100

326 2132 3832 5532 7232

Ti
m

e
 m

s

Size of Internal Object Arrays

PDA Serialization PC Serialization

PDA Deserialization PC Deserialization

Chapter 4: Analysis of Current JCSP Networking 56

There are two standard properties to measure network performance – latency and

bandwidth. A ping test allows analysis of latency, which is the overhead of the

communication compared to expected results, and bandwidth allows an

approximation of throughput. Various sizes of byte array are passed between the

two devices to evaluate the network properties. The smallest possible data size to

send via a network stream is a single byte. The smallest data size for an object

stream is a null value, which also takes up a single byte.

4.3.1 Simple Ping

To determine the basic send-acknowledge operation, a simple ping test is used. A

single byte or null object is sent from one device to the other and back. Each

operation is carried out 10,000 times within a timed cycle, and ten timed cycles are

performed. The ten times are trimmed to six by removing the top two and bottom

two values, and the mean of the six median values calculated. Times are gathered

from both devices for when the PC pings the PDA (PC to PDA), and when the PDA

pings the PC (PDA to PC), using both network streams and object streams. Tests are

repeated 2 to 3 times to ensure consistency, and one set of the results chosen for

representation. All individual results of the median six are within twenty percent

variance of the trimmed mean.

JCSP networking has the Nagle algorithm switched off for underlying TCP/IP

network connections. The Nagle algorithm increases performance by buffering

outgoing messages until either an entire packet of data is ready for transfer, or the

previous packet is acknowledged. By default, Nagle is turned on, and turning it off

is ill advised. Therefore, for the simple ping test, sockets with Nagle on and off are

examined. The usage of Nagle highlights the reason to use 10,000 operations in a

timed cycle. For 1,000 operations, the amount of data would fit into a single packet

on both interfaces, and would therefore give the Nagle based results significant

improvement. Therefore, the number of operations is increased by an order of

magnitude. Figure 12 presents the results of the simple ping test. The values are

the average times in milliseconds to perform a single ping-pong operation using the

various communication mechanisms.

Chapter 4: Analysis of Current JCSP Networking 57

Figure 12: Simple Ping Test

For standard networked streams, it can be seen that performance is slightly better

with Nagle turned on, and the time for PC to PDA has no large variance from the

PDA to PC. For object streams, having Nagle turned off appears to improve

performance by 100 microseconds per message. For an object stream, there is a

150 to 250 microsecond overhead, which is probably due to the encoding and

decoding of the null value on the stream, and the examination process required to

determine the object type during sending.

4.3.2 Bandwidth

Small packet send time can be determined by a device sending a single byte to the

other and gathering an average time for this operation from both the sending and

receiving device. These results are presented in Figure 13. As for the ping test, the

time taken to perform 10,000 operations is gathered ten times, and the median six

used to calculate the mean time to send a packet.

Figure 13 indicates that network streams have no significant improvement for

having Nagle on or off. Of interest is the time the PC takes to send a small message;

approximately 1.5 microseconds. The PDA takes 5 milliseconds, which is 3.5 orders

of magnitude greater. The PDA records a time of 240 microseconds to receive from

the PC, 2.5 orders of magnitude greater than the time for the PC to send the

message. Thus, it can be determined that the greatest bottleneck for small packet

sizes in the test framework is the PDA sending data to the PC. All JCSP network

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Nagle PC
to PDA

No Nagle
PC to
PDA

Nagle
PDA to

PC

No Nagle
PDA to

PC

Nagle
Object
PC to
PDA

No Nagle
Object
PC to
PDA

Nagle
Object
PDA to

PC

No Nagle
Object
PDA to

PC

Ti
m

e
 m

s

PC PDA

Chapter 4: Analysis of Current JCSP Networking 58

communications require acknowledgement, which is a relatively small message size

of 207 bytes. It can be estimated that that the PDA takes at least 5 milliseconds to

send an acknowledgement to the PC. The PC acknowledgement time is close to

insignificant in comparison.

Figure 13: Send and Receive Benchmark

Object streams show a similar performance difference, although the results are

better with Nagle than without. This contradicts the ping time test. The nature of

the Nagle algorithm means that ping tests are not well suited as no buffering will

occur for sent messages. JCSP network send messages are acknowledged, and

therefore Nagle may not cause an increase in performance. Performance would

therefore be determined by how many channels are serviced by a specific Link.

To determine actual bandwidth, different byte array sizes are transferred between

the PDA and PC. Sizes range from 103 to 106 bytes. Each array is sent ten times in a

timed cycle, and ten timed cycles performed. The six median values are taken, and

the mean time calculated from them. Figure 14 presents the PDA sending data via

Java network streams, native network streams, and networked object streams. The

results represent throughput in bytes per millisecond achieved with the different

data sizes.

0

1

2

3

4

5

6

Nagle PC
to PDA

No Nagle
PC to
PDA

Nagle
PDA to

PC

No Nagle
PDA to

PC

Nagle
Object
PC to
PDA

No Nagle
Object
PC to
PDA

Nagle
Object
PDA to

PC

No Nagle
Object
PDA to

PC

Ti
m

e
 m

s

PC PDA

Chapter 4: Analysis of Current JCSP Networking 59

Figure 14: PDA Bandwidth

From Figure 14, it can be determined that the PDA can transmit data between 100

and 225 bytes per millisecond. There are three interesting points. At data size

7,000, the native streams appear to perform better than Java network and object

streams – sending the data packet 10 ms faster than the other two mechanisms.

The reason for this apparent performance increase is unclear.

At 9,000 bytes, both native and Java streams dip in performance, whereas the

object streams do not. The reason for this occurring has not been fully determined,

although repetition within native and Java results points to an issue with the PC, the

PDA hardware, or the network infrastructure. Further analysis of this phenomenon

is presented in Section 4.5.1. The reason the object stream does not exhibit this

property is due to the extra data sent due to serialization. A primitive array object

has 23 bytes of serialization information, and this is enough to negate the

performance drop. The difference in the actual data packet size causes a similar

drop in performance for the object streams at 30,000 bytes.

Figure 15 presents the results for the PC sending to the PDA. These results show

the PC performs better for small packet sizes, which is the converse to the PDA. The

result for data size 1,000 is not shown as this gives bandwidth in excess of 60,000

bytes/ms, and would not permit the detail present in Figure 15. From these results,

it can be determined that the PC can output data onto the network between 800

and 300 bytes/ms.

0

50

100

150

200

250

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

B
yt

e
s

/
m

s

Data Size in Bytes

PDA Java Streams PDA Winsock Streams PDA Object Streams

Chapter 4: Analysis of Current JCSP Networking 60

Figure 15: PC Bandwidth

4.3.3 Latency

Latency refers to the overhead time taken for a message to travel from one device

to another beyond expected time, and includes any encoding and decoding of

messages. A simple method to determine latency is to perform a roundtrip (ping-

pong) message between the two devices and remove the time it should take for the

two devices to send data to one another. From the send and receive benchmark

(Figure 13 – page 58) and ping test (Figure 12 – page 57), it is possible to determine

latency of approximately 1.5 ms for a roundtrip message on a network stream, and

approximately 1.7 ms on an object stream for small message sizes. For a more

thorough examination, the bandwidth benchmark is repeated using roundtrip

operations.

Figure 16 presents the results for the PDA sending to and then receiving from the

PC. The results presented are the time in milliseconds taken to perform a single

roundtrip operation. The expected times are calculated by adding the time taken

for the send from the PDA to the PC and the send from the PC to the PDA. Native

Winsock streams perform approximately as the standard Java streams in this

experiment and are not presented. These results are given in Appendix D.

0
100
200
300
400
500
600
700
800
900

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

B
yt

e
s

/
m

s

Data Size in Bytes

PC Java Streams PC Object Streams

Chapter 4: Analysis of Current JCSP Networking 61

Figure 16: Roundtrip PDA to PC

At certain data sizes within Figure 16 performance drops during the roundtrip

operation. The data sizes of these drops (5,000 and 90,000) are different from the

performance drop for only sending data (9,000 bytes). The performance drop at

9,000 bytes has actually disappeared. This leads to further evidence that a network

centric or device centric issue is causing the drop in performance.

Object streams have the same performance drop at 30,000 bytes, and the actual

result has a larger peak than expected. It is unlikely that a serialization issue is

causing this drop, as after the initial header information for a serialized array,

performance is based on I/O throughput on the number of bytes.

Figure 17 presents the roundtrip time for the PC sending to the PDA. A comparison

of Figure 16 and Figure 17 show that the results for PDA to PC and PC to PDA to be

approximately equal, with the same points of poor performance.

From the roundtrip results, actual roundtrip time and estimated roundtrip time are

approximately equal, particularly for large data sizes. Excluding the peaks, only

smaller packet sizes have latency times noticeable in relation to time taken.

1

10

100

1000

10000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

Expected Java Streams Expected Object Streams

PDA Java Streams PDA Object Streams

Chapter 4: Analysis of Current JCSP Networking 62

Figure 17: Roundtrip PC to PDA

The network experiments presented within this section show that there is little

performance overhead incurred by the PDA JVM with respect to network

bandwidth, and that latency is generally low. There are some unexplained

performance issues at certain data sizes, but these are probably due to device or

network problems as opposed to anything from the JVM on the PDA. The

deactivating of the Nagle algorithm in JCSP may be an issue for performance, but

considering the send-acknowledge communication of network channels, this may

not strictly be true.

4.4 Examining JCSP Performance

With the information from sections 4.2 and 4.3 it is possible to estimate the

expected performance of JCSP Networking for sending the specified test objects. If

Figure 2 (page 37) is examined, there are eleven operations that have measured

values:

1. NetChannelOutput writes to the Link (channel communication)

2. Link serializes sent object message (data plus 249 byte message header

overhead – see Appendix A).

3. Link transmits the data to the remote Link

4. Remote Link deserializes the object message

5. Link writes the object message to the NetChannelInputProcess

(channel communication)

1

10

100

1000

10000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

Expected Java Streams Expected Object Streams

PC Java Streams PC Object Streams

Chapter 4: Analysis of Current JCSP Networking 63

6. NetChannelInputProcess writes the object to the NetChannelInput

(channel communication)

7. NetChannelInputProcess writes the acknowledgement to the Link

(channel communication)

8. Link serializes the acknowledgement message

9. Link transmits the acknowledgement message to the remote Link

10. Remote Link deserializes the acknowledgement message

11. Link writes acknowledgment to the NetChannelOutput (channel

communication)

A virtual networked channel will have one end on the PDA and one end on the PC,

and therefore the two channel times will be different. Separating the above

interactions into output operations and input operations allows values to be

entered into a performance calculation. Thus, there is a formula for channel output

time and a formula for channel input time. chan represents channel

communication time on the device, and the size in bytes of the ack message is 204

bytes, and a send message incurs a 249 byte overhead for the header:

𝐶𝑜𝑢𝑡 = 2 ∙ 𝑐𝑎𝑛 + 𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 𝑠𝑖𝑧𝑒𝑜𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 + 249 + 𝑑𝑒𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒(𝑎𝑐𝑘)

𝐶𝑖𝑛 = 3 ∙ 𝑐𝑎𝑛 + 𝑑𝑒𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 𝑠𝑖𝑧𝑒𝑜𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 + 249 + 𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒(𝑎𝑐𝑘)

The total time to communicate from across the channel is:

𝑁𝑒𝑡𝐶𝑎𝑛 = 𝐶𝑜𝑢𝑡 + 𝐶𝑖𝑛 + 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 𝑠𝑖𝑧𝑒𝑜𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 + 249 + 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡(𝑎𝑐𝑘)

Transmission time is separated as it relies on sender throughput and receiver

throughput independently, and the network infrastructure. From Sections 4.2 and

4.3 approximate values for the properties of interest can be given. These values are

presented in Table 3.

Table 3: Communication Properties

 Channel
(ms)

Serial
Small
(bytes/ms)

Serial
(bytes/ms)

Deserial
Small
(bytes/ms)

Deserial
(bytes/ms)

Min
Transfer
Time
(ms)

Transfer
Throughput
(bytes/ms)

PC 0.015 20000 10000 2000 10000 0.001 320
PDA 0.18 80 20 40 15 5 215

Chapter 4: Analysis of Current JCSP Networking 64

Channel is the channel communication time gained from the CommsTime

benchmark. Serial Small is the approximate bytes/ms serialization performance for

small objects, and likewise Deserial Small for deserialization. Serial is the

approximate throughput for serialization, and is calculated from the approximate

value for byte throughput when serializing the test objects at large sizes, gathering

the mean of these six values and rounding up to one significant digit. Deserial is

likewise calculated, but the PDA deserialization value has two significant digits due

to the closer proximity to 15 and the relatively small value. Min Transfer Time is the

send time for small messages gathered from Figure 13. Finally, throughput is the

approximate bandwidth values presented in Figure 14 and Figure 15 (pages 59and

60 respectively).

JCSP networking has two network channel types: acknowledged synchronous and

asynchronous without acknowledgement. The latter channel type is used to

implement server type connections, where a channel requests a message from a

server and the server responds. The unacknowledged channel would appear to be

an attempt to circumvent the poor exception handling in JCSP networking, which

could cause deadlock on the server if a connection failed [135]. If a server replies

asynchronously, there is no issue. If used for standard communication, the infinite

buffering in the underlying channel can cause a problem when no synchronization

occurs. Unacknowledged channels are tested to ascertain whether they can lead to

further insight into the overhead of network channel communication caused by the

acknowledgement signal.

To evaluate the network performance overhead of JCSP Networking, the ping,

bandwidth and latency tests are repeated. The results from these experiments are

presented in the following subsections.

4.4.1 Simple Ping

It is possible to estimate the ping time for a JCSP networked channel based on the

communication formula NetChan. As object streams are in operation within the

JCSP Networking architecture, the smallest data value to send over a networked

channel is null. With the 249 byte message header taken into consideration, this

Chapter 4: Analysis of Current JCSP Networking 65

provides a 250 byte sent data object, which is considered a small message. Likewise

the 204 byte acknowledgement message is considered small. Applying known

values to the NetChan formula provides the estimated overhead for JCSP network

channels within the test framework. These values are presented in Table 4. The

NetChan values are those for the specified device outputting to the other. All times

are in milliseconds.

Table 4: Net Channel Overhead

 Cout Cin NetChan

PC Sync 0.1445 0.1802 14.4855

PC Async 0.0275 0.155 6.6385

PDA Sync 8.585 9.34 13.7662

PDA Async 3.305 6.61 8.46

As asynchronous channels are examined, these values are also calculated.

Removing a channel communication and the (de)serialization and transfer time for

the acknowledgement provides these values. With the calculated approximate

channel communication values, it is possible to evaluate roundtrip time on small

messages. These results are presented in Figure 18. The Object Streams values are

taken from the No Nagle results in Figure 12.

Figure 18: JCSP Network Channel Ping Test

For null messages JCSP Networking is six times slower for a ping operation than

Object Streams when using synchronous channels. This is a significant overhead,

attributed to the extra information required for channel messages and the

0

5

10

15

20

25

30

35

40

PC to PDA Sync PDA to PC Sync PC to PDA Async PDA to PC Async

Ti
m

e
 m

s

PC PDA Expected Object Streams

Chapter 4: Analysis of Current JCSP Networking 66

synchronisation during the send. Asynchronous channels are under three times

slower than the Object Stream results, and this will be largely due to the message

header overhead.

Actual values are greater than the expected values – by 8 ms for synchronous

channels and 2 ms for asynchronous channels. There is the extra overhead for

lookup time with the IndexManager when an incoming message is received to

consider. There is also the underlying latency of the network architecture which is

1.5 ms for a roundtrip message. This will be doubled for synchronous channels as

two send and acknowledge interactions are occurring for each roundtrip. Another

consideration is actual (de)serialization time, which may be greater than the

estimated value due to the number of properties within a JCSP Networking channel

message.

The asynchronous results are below half the time for synchronous channels. This

does point to good performance benefits for having asynchronous message passing

within JCSP Networking, but the inherent danger due to the infinite buffering within

the underlying channel requires care.

4.4.2 Bandwidth

As Section 4.3.2, both the time to send the smallest possible message (null) and the

time to send byte arrays of various sizes are gathered within JCSP Networking.

Small message passing results, with Object Stream and Expected results for

comparison, are presented in Figure 19.

In this case, Expected results are approximately 2 ms better than actual results.

When latency is considered, Expected and actual values are approximately equal.

From the synchronised channel results, the estimated ping time should be 31.5 ms.

The actual result is 36 ms in Figure 18, and therefore an approximate latency of 4.5

ms is present for a JCSP Networking channel roundtrip communication in the test

framework.

Chapter 4: Analysis of Current JCSP Networking 67

Figure 19: JCSP Network Channel Send and Receive Benchmark

The Asynchronous results for the PC to PDA help illustrate a problem with the

underlying Link processes in JCSP Networking, which will be analysed further in

Section 4.6. The Link processes are given maximum priority within JCSP

Networking to enable communication to start quickly and data transfer to be

serviced quickly. The usage of high priority is due to the aim of JCSP Networking for

cluster computing scenarios where the computation time to communication time

ratio is high. However, this usage of high priority can lead to a problem when a

slow device is flooded by large data packets sent from a faster device. Therefore

the PDA appears to take no time to receive messages from the PC asynchronously

as the lower priority application process cannot start the timer while the PC

effectively floods the device with data. However, unacknowledged channels should

not really be used in this manner due to the infinite buffering issue, and their

existence in JCSP is questionable.

The Expected time to send a message asynchronously from the PC to PDA is greater

than the actual time, and is due to the channel being able to continuously write to

the Link to send a message without blocking. The Link is responsible for I/O and

therefore the PC application does not register this time fully within its asynchronous

results.

To gather throughput information for JCSP Networking, the bandwidth experiments

are repeated with the synchronous and asynchronous channels. The expected

results are calculated using the NetChan formula with the properties in Table 3. As

0

2

4

6

8

10

12

14

16

18

PC to PDA Sync PDA to PC Sync PC to PDA Async PDA to PC Async

Ti
m

e
 m

s

PC PDA Expected Object Streams

Chapter 4: Analysis of Current JCSP Networking 68

the bytes within the array are not serialized, the (de)serialization overhead is

calculated as the message header plus the 23 byte array description. Figure 20

presents the bandwidth results for the PDA for synchronous and asynchronous

channels, with the expected results also given.

Figure 20: PDA Channel Bandwidth

Synchronous bandwidth is lower than expected, and levels at 205 bytes/ms. This

value is 10 bytes/ms lower than expected. For asynchronous channels, bandwidth

is as expected. This suggests that synchronisation inflicts an approximate 10

bytes/ms overhead within the test framework at large data sizes. The

asynchronous results only reach 7x105 bytes, as after this point the PDA cannot

handle the amount of data being pushed towards it and fails with a memory

exception. This is the result of the high priority Link problem, as all the sent

information requires buffering which is obviously limited on the PDA.

The channel bandwidth for the PC is presented in Figure 21. Expected results are

provided based on the known properties and the NetChan formula.

0

50

100

150

200

250
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0
6

0
0

0
7

0
0

0
8

0
0

0
9

0
0

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

6
0

0
0

0
7

0
0

0
0

8
0

0
0

0
9

0
0

0
0

1
0

0
0

0
0

2
0

0
0

0
0

3
0

0
0

0
0

4
0

0
0

0
0

5
0

0
0

0
0

6
0

0
0

0
0

7
0

0
0

0
0

8
0

0
0

0
0

9
0

0
0

0
0

1
0

0
0

0
0

0

b
yt

e
s

/
m

s

Data Size in Bytes

PDA Sync PDA Async Expected Sync Expected Async

Chapter 4: Analysis of Current JCSP Networking 69

Figure 21: PC Channel Bandwidth

For the PC, the throughput for sending small (1,000 to 3,000) byte arrays

asynchronously is not presented on the chart due to the significant large value

when compared to the other communication results. These values give throughput

of up to 60,000 bytes/ms. The asynchronous results have greater throughput than

expected, due to the application level channel object outputting to the Link and

not waiting for the actual I/O to occur. As the PDA cannot accept the amount of

data pushed at it by the PC, the PC results also only reach 7x105 bytes.

Synchronous channels initially provide close to expected performance but drop

below expected results for data sizes above 8,000 bytes. Performance levels at 275

bytes/ms, which is 45 bytes/ms lower than expected. This will be largely due to the

expected calculations not considering the time for the PDA to input data, which is

greater than the time taken for the PC to output data. Receive time data is

provided in Appendix D.

4.4.3 Latency

The final property to examine within JCSP networking is latency. The roundtrip

experiments conducted on network and object streams are repeated with both

synchronous and asynchronous channels. The expected results are calculated from

the properties in Table 3 and the NetChan formula. As the results presented are

similar for both PDA to PC and PC to PDA, only the former results are presented.

0
100
200
300
400
500
600
700

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

b
yt

e
s

/
m

s

Data Size in Bytes

Sync Async Expected Sync Expected Async

Chapter 4: Analysis of Current JCSP Networking 70

Other data can be found in Appendix D for comparison. Figure 22 presents the

channel roundtrip results.

Figure 22: Channel Roundtrip PDA to PC

There is some variance between expected results and actual results. Excluding the

peaks within the Sync results, the mean latency is approximately 25 ms when actual

results are compared to expected results. For asynchronous channels, performance

is initially better than synchronous channels, but does reduce at higher values.

Figure 23 illustrates the variance between actual and expected results for the

roundtrip time in milliseconds, with the significant peaks removed, and subsequent

adjoining points connected.

Figure 23: Variance between Actual and Expected Channel Roundtrip Results

1

10

100

1000

10000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

Sync Async Expected Sync Expected Async

0
20
40
60
80

100
120
140
160

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

Sync Variance Async Variance

Chapter 4: Analysis of Current JCSP Networking 71

As Figure 23 illustrates, Asynchronous channels degrade in performance over time.

As the same underlying channel mechanism is used for both acknowledged and

unacknowledged channels, these results do seem to indicate that any initial benefit

for small message sizes sent asynchronously is balanced by poorer performance for

large data sizes. From the expected values, asynchronous channels should have a

14 ms lower roundtrip time. Therefore, subtracting 14 ms from the values

presented in Figure 23 indicates that asynchronous channels have what could be

considered a severe roundtrip overhead in the test architecture for large packet

sizes. As the results presented are similar for both PDA to PC and PC to PDA, and

the PDA starts its timer before initiating the roundtrip operation, the variance

cannot be due to the application process being unable to start its timer before the

PC sends data. After each timed cycle, a handshake is also performed to ensure

that the PDA is not flooded with the next cycle of data from the PC. The variance is

therefore not the fault of the high priority Link processes.

From the results presented in this section, it can be ascertained that JCSP

Networking does have some communication overhead, particularly for small

message sizes. For large message sizes, channel bandwidth is not far removed from

that of Java object streams. Most of the overhead thus far can be attributed to the

message header that requires serialization, and the acknowledgement message. In

the following section, serialization is examined in greater detail by comparing JCSP

and object streams for sending the various test objects.

4.5 Test Object Messages

To examine serialization and the effect serialization has on JCSP Networking, the

various test classes are subjected to the sending and roundtrip experiments that

raw data messages were subjected to. These experiments operate upon the various

test objects with sizes ranging from 0 to 100, and examine the different

communication mechanisms presented thus far. The mean is gathered from the six

median values from ten timed cycles.

Chapter 4: Analysis of Current JCSP Networking 72

4.5.1 Sending via Object Streams

The first results present the time taken for the PC to send the test classes using

networked object streams. These values are presented in Figure 24. The x-axis

represents the length of the Integer and Double object arrays within the

specified object.

Figure 24: PC Sending Test Objects via Object Streams

Unfortunately, this does not allow close examination due to significant peaks.

However, the results for TestObject4 do increase significantly after size 80. At

this point, TestObject4 is larger than 6000 bytes, and no other test object

reaches this size.

The peaks, unlike those in previous results, are for smaller data sizes and allow

closer examination. The seven peaks within the TestObject2 results, for

example, occur at regular intervals, the size interval between each peak being 4.

From the data size calculated using the equation for TestObject2 in Table 1, the

interval between each peak of these seven peaks represents 192 bytes, which is a

multiple of 16. This indicates a probable reason internal to the test framework.

Table 5 presents the data size at all the peaks present in Figure 24, calculated with

the equations in Table 1 and sorted. The Interval values are the variance between a

Peak Value and the previous Peak Value. The Rounded values are the Interval

values rounded by 1 to a suitable number.

0

50

100

150

200

250

300

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Array

Integer Array TestObject TestObject2

TestObject3 TestObject4 TestObject5

Chapter 4: Analysis of Current JCSP Networking 73

Table 5: Object Sizes at Peaks

Peak Value Interval Rounded

1768 - -

2268 500 500

2461 193 192

3024 563 564

3137 113 112

3152 15 16

3281 129 128

3345 64 64

3473 128 128

3665 192 192

3857 192 192

4049 192 192

4050 1 0

4240 190 192

4241 1 0

Table 5 indicates a pattern within the peaks, as most variances are multiples of 16

when rounded, except the large intervals of 500 and 564. However, the difference

between these two values is also a multiple of 16, and thus the observation of an

underlying pattern is strengthened. Two pairs of values have only a single byte

variance. The first pair (4049 and 4050) is from TestObject2 and TestObject5

respectively, and the second pair (4240 and 4241) is from TestObject4 and

TestObject2 respectively. This indicates a data packet size problem and not an

object complexity problem.

As the peaks can likely be dismissed, any subsequent presented data will have the

peaks removed, and the two adjoining value points connected. Actual data results

are given in Appendix D. Figure 25 presents the results from Figure 24 with the

peaks removed. The results for TestObject4 are shortened to allow closer

examination.

Chapter 4: Analysis of Current JCSP Networking 74

Figure 25: Cleaned PC Sending Test Objects via Object Streams

Figure 25 indicates a number of steps within the results which occur when extra

packet send operations are required. Table 6 presents the data size when the steps

occur. The MTU for the Ethernet interface is 1500 and for the wireless interface

2272.

Table 6: Object Sizes at Steps

TestObject TestObject2 TestObject3 TestObject4 TestObject5

1785 1649 2121 2132 2160

 2945 2937 2948 2970

 3905 4240 3942

 5124 5130

 5736

 6144

Three test object types have an initial step at approximately the same size, and

these values are close to the wireless interface packet size. TestObject and

TestObject2 have their initial step appearing earlier however. Four of the test

classes show a step at approximately 2950 bytes, which is approximately two

Ethernet packets in size. TestObject2 and TestObject5 have a step at

approximately 3900 bytes, which is approximately an Ethernet packet plus a

wireless packet in size. TestObject4 has a third step value at 4240, which does

not conform to a packet size ratio. Both TestObject4 and TestObject5 have a

step at approximately 5130 bytes, which is approximately two Ethernet packets plus

0

2

4

6

8

10

12

14

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integer Array TestObject TestObject2

TestObject3 TestObject4 TestObject5

Chapter 4: Analysis of Current JCSP Networking 75

a wireless packet in size. TestObject4 has two further steps. At 5736 bytes,

there is no conformity to a packet combination. However, 5736 is approximately

one Ethernet packet larger than the other TestObject4 value (4240) that did not

conform to a packet combination. The final step in the TestObject4 results

comes at 6144 bytes, approximately one Ethernet and two wireless packets in size.

From these results, I/O time is the key factor for the PC sending objects to the PDA

in the test framework, due to the extra packet requirement. Thus, smaller objects

will be more efficient for the PC. Large data objects require the PC to send extra

network packets, and in the test framework each packet takes approximately 2 to

2.5 ms to send.

Figure 26 presents the results gathered from the PDA sending the test classes to the

PC. No peaks have been removed from this result set.

Figure 26: PDA Sending Test Objects via Object Stream

Unlike the PC results, the PDA results has grouping based on object complexity. In

fact, this chart is almost exactly as Figure 10 (page 54), which indicates that

serialization is the main contributing factor for the PDA sending the test classes.

This is of course in line with the lower (de)serialization throughput of the PDA in

comparison to I/O throughput on the network, as shown in Table 3.

A possible cause for the PDA being serialization bound is the conversion of numeric

values into bytes for transmission. For the test classes, most unique objects wrap a

0

100

200

300

400

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integer Array TestObject TestObject2

TestObject3 TestObject4 TestObject5

Chapter 4: Analysis of Current JCSP Networking 76

primitive data type. Analysing primitive data sending illustrates why this is not the

case.

Figure 27 presents results for the PDA sending primitive integers using different

conversion mechanisms. Int Array is the primitive int[] type sent via an object

stream. Ints takes every element in the array and transfers it with the writeInt

method on a Java DataOutputStream, which is the stream which underlies the

Java object streams. Converted Ints has each integer element converted into four

bytes with bitwise operations, with the subsequent bytes stored in a byte array and

the byte array transferred as raw data on the network stream. Only Int Array has a

result at size 0 as the other methods send nothing at this point. All streams are

buffered as with the other experiments, except Converted Ints which sends the

generated byte array directly on the network stream.

Figure 27: PDA Sending Ints

There is no significant increase in overhead as more numbers are converted. If this

was a major factor in the serialization process, it would be expected that

performance would change as the Integer array results presented in Figure 26.

There are other interesting points in Figure 27. The bitwise conversion of integers

into bytes appears to give a marginal performance increase when compared to

sending the integers directly. This may be because of the flush operation required

in the buffered stream results. The other interesting point is the slight overhead for

sending the int[] object, which is approximately 0.55 ms. This will partially be

0

2

4

6

8

10

0 25 50 75 100

Ti
m

e
 m

s

Number of Values

Int Array Ints Converted Ints

Chapter 4: Analysis of Current JCSP Networking 77

from the 23 byte serialization header sent with the object, and may in fact be the

serialization operation time. If this is true, then it is likely to increase as more

objects are serialized, as the 0.55 ms per object overhead alone cannot attribute

the difference between the Integer Array results presented in Figure 26 and the

primitive int[] results presented in Figure 27.

Figure 28 compares send times and receive times for TestObject4 taken from the

PC and PDA with peaks removed. The x-axis provides the calculated size of the

object in bytes. The PDA sending time and the time recorded for the PC receiving

are equal and the variance between the two results sets never increases above 1

ms. Thus it appears as if only three lines are present in Figure 28, as the PC

Receiving result is imposed upon the PDA Sending results.

Figure 28: Sending and Receiving TestObject4 via Object Streams

4.5.2 Sending via Channels

To compare the JCSP Networking against object streams for sending the test

classes, the results from sending TestObject4 via JCSP networked channels are

presented. Other channel result sets are provided in Appendix D. Expected times

are generated using the NetChan equation and the performance characteristics

provided in Table 3 (page 63) and object sizes calculated from Table 1 (page 47).

Only expected synchronised channel values are calculated as synchronisation has

little effect on communication time for objects of this complexity. Figure 29

0

100

200

300

400

500

326 1112 1792 2472 3152 3832 4512 5192 5872 6552 7232

Ti
m

e
 m

s

Size of Object in Bytes

PDA Sending PC Sending PDA Receiving PC Receiving

Chapter 4: Analysis of Current JCSP Networking 78

presents these results for the PC. The x-axis represents the size in bytes of the

serialized object.

Figure 29: PC Sending TestObject4 via Networked Channels

Synchronised channels perform better than expected, the variance being between

30 and 50 ms. However, not all test classes show improved performance over

expected results (see Appendix D) and therefore it is deemed that there are no

adverse performance differences for large serialized objects sent via JCSP

Networking channels. Async results are relatively flat until spiking at the end similar

to Object Streams. The difference in object sizes at the two spikes is greater than

the JCSP message overhead, although this will have an effect on the observed

results.

Figure 30 presents expected and actual results for the PDA sending TestObject4,

and no peaks were removed from this data. As with the PC results, the PDA initially

shows better than expected results, but as object size increases the variance

between the two result sets reduces to zero. As with the PC results, the different

test classes exhibit either better or worse results than expected based on their type.

Async channels perform initially as well as Sync channels, but degrade as object size

increases. The variance between the Sync results and Object Stream results also

increases with object size, although initially channels have performance that is

comparable to object streams.

0

100

200

300

400

500

600

326 1112 1792 2472 3152 3832 4512 5192 5872 6552 7232

Ti
m

e
 m

s

Size of Object in Bytes

Sync Async Expected Sync Object Streams

Chapter 4: Analysis of Current JCSP Networking 79

Figure 30: PDA Sending TestObject4 via Networked Channels

From the TestObject4 sending results presented it is possible to approximate the

throughput of the networked channel for a complex object. This value takes into

consideration the serialization and deserialization time of both devices. The PC can

transfer TestObject4 messages at approximately 15 bytes/ms, and the PDA can

transfer TestObject4 at approximately 17 bytes/ms. The variance in performance

is due to the PDA having lower deserialization performance than serialization

performance, and the PDA (de)serialization process being the significant bottleneck.

The throughput reduction is concerning, and is attributed to (de)serialization

performance of the PDA. If PC channel bandwidth results (Figure 21 – page 69) and

PDA channel bandwidth results (Figure 20 – page 68) are examined, the serialization

process for TestObject4 reduces channel performance by 260 bytes/ms and 188

bytes/ms for the PC and PDA respectively. However, JCSP performance is better

than expected, and the PDA results indicate little overhead in comparison to object

streams.

Comparing transfer time for large serialized objects gives some indication to the

overhead associated with the PDA, but PC results are inconclusive due to the lack of

acknowledgement on the object streams causing significantly better results when

compared to JCSP Networking. Therefore, roundtrip results are also presented to

help compare the object stream and JCSP Networking results further.

0

100

200

300

400

500

326 1112 1792 2472 3152 3832 4512 5192 5872 6552 7232

Ti
m

e
 m

s

Size in Object in Bytes

Sync Async Expected Sync Object Streams

Chapter 4: Analysis of Current JCSP Networking 80

4.5.3 Roundtrip

Figure 31 presents the results for the PC performing a roundtrip operation with

TestObject4 using Sync and Async channels and Object Streams. The expected

results are also calculated using the properties from Table 3 and the NetChan

formula. The PDA results are not shown as they are similar, and are available in

Appendix D.

Figure 31: PC to PDA Roundtrip TestObject4

Figure 31 illustrates that actual channel communication time is better than

expected, and the expected and actual results increase in unison. Async results are

also comparable to Sync results. Object Streams perform better than networked

channel communications, and over time the performance gap increases. This

highlights a possible problem with complex objects sent over channels, the variance

between the two result sets reaching approximately 100 ms at TestObject4100
1.

If results from the PDA sending TestObject4 (Figure 30) are examined, there is an

approximate 50 ms variance between channels and Object Streams at

TestObject4100. The variance between receive times (Figure 32) on the PDA is

approximately 50 ms. Therefore, the PC has no significant overhead observed when

using JCSP Networking to send complex objects within the test framework, and any

overhead can be attributed to PDA performance.

1
 The notation TestObjectn is used to signify the length of the internal arrays within the object in

question. e.g. If n = 100, the length of the internal arrays of TestObject is 100.

0

200

400

600

800

1000

326 1112 1792 2472 3152 3832 4512 5192 5872 6552 7232

Ti
m

e
 m

s

Size of Object in Bytes

Sync Async Expected Sync Object Streams

Chapter 4: Analysis of Current JCSP Networking 81

Figure 32: PDA Receiving TestObject4

4.6 Examining JCSP Networking Overhead

Experimental data presented thus far has focused on communication overhead

within JCSP Networking. Another concern is resource overhead of the JCSP

Networking architecture. Section 3.4 highlighted some initial observations

regarding scalability, and issues with Link priority were highlighted in Section 4.4.

In this section the latter problem is examined in more depth.

To investigate the priority problem, a CommsTime benchmark, utilising fast integer

based channels, is performed on the PDA and PC in conjunction with the roundtrip

experiment for large data sizes. The latter experiment involves data being sent and

received in large blocks, and thus it is possible to examine the computational

overhead for I/O. There is a warm up and cool down period when the bandwidth

experiment is not operating, allowing the base CommsTime result to be

determined. The PDA results for the CommsTime benchmark in this scenario are

presented in Figure 33. Experiment time increases with the x-axis, and the broken

horizontal line across the figure is the recorded CommsTime figure at various times

during the experiment. Vertical lines indicate a packet size time being recorded at

that point in time during the experiment, packet sizes increasing as the roundtrip

experiment (0, 103, 2x103 ... 104, 2x104 ... 105, 2x105 ... 106). Gaps in the

CommsTime blue line result indicates that no time was gathered during the packet

sizes represented by the red lines. For example, between the times gathered for

packet size 0 and 10,000 no CommsTime figure is gathered as the relevant packet

0

100

200

300

400

500

600

326 1112 1792 2472 3152 3832 4512 5192 5872 6552 7232

Ti
m

e
 m

s

Size of Object in Bytes

Sync Object Streams

Chapter 4: Analysis of Current JCSP Networking 82

sizes each record a time while the CommsTime benchmark does not, leading to a

gap in the blue line representing the CommsTime result. This is due to the device

being consumed by I/O operations and is unable to perform computation for the

CommsTime benchmark.

Figure 33: PDA CommsTime Stressed Network

Figure 33 illustrates the high priority Link problem as the CommsTime on the PDA

increases from approximately 680 μs to approximately 70,000 μs during large

packet size transfer. The PDA is essentially flooded and has reduced computation

performance within this period, particularly during the larger packet sizes.

There is an interesting phenomenon where CommsTime reduces to approximately

normal levels, and no bandwidth results are recorded. This valley occurs during

data size 60,000, where channel roundtrip performance also drops in Figure 22

(page 70). It can therefore be judged that the PDA is not performing any operation

that should be significantly affecting network performance at this stage, which leads

to the probable cause of the network infrastructure causing a performance drop.

Roundtrip results recorded during this experiment, and the original recorded results

for roundtrip operations, are presented in Figure 34. As can be seen, the results are

similar, indicating that I/O has not suffered during the CommsTime experiment, and

I/O has effectively caused the application level CommsTime benchmark to be

allocated less computation resource.

0 10000 100000 1000000

100

1000

10000

100000

Ti
m

e
 μ

s

Time

Chapter 4: Analysis of Current JCSP Networking 83

Figure 34: Networked Channel Roundtrip with CommsTime

The PC results are not presented as CommsTime presents no impact on

performance and channel roundtrip time results are similar to PDA results.

4.7 Summary

A number of performance experiments have been performed that allow an analysis

of the current JCSP Networking implementation. Reflecting these characteristics

and the initial observations in Section 3.5 upon the usage of JCSP Networking in a

Ubiquitous Computing context raises a number of concerns. Considering the

required properties for Ubiquitous Computing highlighted within Chapter 2, the

following subsections discuss the problems.

4.7.1 Interoperability

JCSP Networking relies on Java serialization to the point where it is used internally

to transfer even non-data messages. From a Ubiquitous Computing point of view,

this is a weakness, as not all versions of Java implement serialization, particularly

versions aimed at small factor devices [132], which will be in operation in a

Ubiquitous Computing environment. As reflection is not available in reduced

versions of Java, it is not possible to implement a custom serialization mechanism to

overcome the lack of serialization. JCSP Networking requires modification to permit

non-serialization interactions, with methods implemented by classes and used to

convert an object into a byte array, and the serialization header information

1

10

100

1000

10000

0 1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

With CommsTime Orignal Results

Chapter 4: Analysis of Current JCSP Networking 84

transferred with the byte array. The channel message header is a problem, but as a

structure is present (see Appendix A) it is possible to overcome.

A separate Link could be developed to allow communication without serialization,

and a different message header mechanism could also be developed. Channel

messages are constructed in the networked channel object however, and thus the

channel would require modification to communicate with the Link, or the Link

would require further modification to extract the information to send.

If either approach is taken, JCSP Networking will require modification to promote

interoperability between Java versions. However, there is still consideration for

interoperability between different frameworks. Not all computational elements

within a Ubiquitous Computing environment will be capable of operating a Java

Virtual Machine. When this further restriction is placed on requirements, any

notion of Java serialization becomes a problem. In particular, the difficulty

interpreting the sent Java object is a problem, as not all platforms provide reference

based data structures and object graphs. Data structures are often interpreted

differently on different platforms, and thus object based serialization should be

avoided. Although work by Ripke [136] has shown that the underlying serialization

headers can be accommodated for in languages such as occam, the actual

implementation of data structures within Java does cause problems.

4.7.2 Performance

JCSP Networking provides performance in the test framework close to optimal

performance between the two devices. When using JCSP networked channels, the

PC drops to 275 bytes/ms bandwidth from 320 bytes/ms, a 45 bytes/ms reduction.

The PDA drops to 205 bytes/ms bandwidth from 215 bytes/ms when using JCSP

network channels. The low variance in performance for the PDA indicates that no

significant throughput overhead is observable. The PC has a greater variance

between the JCSP Networking channel and networked streams, although this can be

attributed to the deserialization time for the sent object on the PDA, and

subsequent serialization of the acknowledgement packet. From an initial analysis,

Chapter 4: Analysis of Current JCSP Networking 85

JCSP Networking has no significant communication overhead to argue against its

usage in various distributed computing contexts, not just Ubiquitous Computing.

Bandwidth does drop when complex object serialization is considered; performance

dropping to 15 bytes/ms. This highlights another problem with the reliance on

serialization for message encoding. Therefore it is argued that reliance on

serialization is a bad choice for high communication ratio applications, which could

be prevalent in a Ubiquitous Computing environment.

Latency is a problem however. Within the test framework, a ping takes

approximately 36 ms on a synchronized channel and approximately 16.75 ms on an

asynchronous channel. Object streams record ping at approximately 6.75 ms, and

network streams approximately 6.5 ms. The comparison to a synchronous channel

is possibly unfair due to the synchronisation between sender and receiver.

However, the asynchronous channel indicates a ping overhead of 10 ms for JCSP

networked channels within the test framework above the object streams. The

majority of the overhead can be attributed to serialization of the message header

on the PDA. High latency can be a problem in high communication applications, and

therefore JCSP Networking may not be suitable for such applications.

Asynchronous channels do provide an initial performance increase, but over time

the benefit reduces. Eventually asynchronous channels perform poorer than

synchronous channels. The infinite buffering mechanism within the JCSP

Networking architecture and garbage collection may have an effect. Therefore

asynchronous channels do not appear to be a good solution for high latency in all

scenarios.

Serialization performance on the PDA is disappointing, and is the greatest

bottleneck within the test framework. The PC can serialize objects at approximately

10,000 bytes/ms. The PDA can only achieve approximately 20 bytes/ms in

comparison. Considering the network throughput recorded on the PC and PDA (320

bytes/ms and 215 bytes/ms respectively), the PC is I/O bound and the PDA

serialization bound. Performance cannot be attributed to conversion of individual

values within the transferred object (Figure 27 – page 76) and appears to relate to

Chapter 4: Analysis of Current JCSP Networking 86

the lookup table internal to the serialization process increasing in size. Memory

allocation and I/O time do not indicate a relation to the size of the sent object. On

small factor devices the usage of serialization can be considered a severe limitation.

As Ubiquitous Computing scenarios involve computational elements ranging from

large to small, there is a further argument against object serialization.

4.7.3 Resource Usage

As discussed in Section 3.5, process usage within JCSP Networking increases as the

number of networked input channels and inter-node connections increases.

Temporary processes are created and destroyed during operation, and thus

problems can arise in resource constrained devices. The PDA has an approximate

400 thread limit, and although possibly a large number, smaller devices will have

fewer threads available. On smaller devices however, a single connection to a

server and a single input channel may be all that is required, and the excessive

usage of processes may not be a factor.

JCSP Networking relies on a JVM capable of object serialization, which some of the

reduced Java configurations do not accommodate. As discussed in Section 4.7.1,

this problem can be overcome, but even a reduced JVM may be too resource heavy

to operate on some devices. A reliance on Java in Ubiquitous Computing scenarios

is therefore a limitation.

4.7.4 System Overhead

JCSP Networking was designed operate in cluster computing type scenarios, which

leads to conflicts when considering other usages. Link processes are given

maximum priority, and therefore during intense I/O operations the application and

device will be allocated less computational resource to accommodate I/O. For

applications with high computation to low communication ratios, such as cluster

computing, high priority I/O enables fast service of communications. For high

communication to low computation ratios, the application must wait for I/O to

complete, and overtime a small device can be flooded. Small factor devices and

high communication ratios are possible in Ubiquitous Computing, thus the high

priority Link can cause a problem.

Chapter 4: Analysis of Current JCSP Networking 87

Other overheads in JCSP Networking are attributed to using objects as message

headers. The required information in a message packet (type, source and

destination) is small and therefore 249 and 204 byte headers are excessive. This is

another problem with the reliance on serialization for communications.

4.7.5 Scalability

Linked to resource usage and system overhead is scalability. Ubiquitous Computing

demands large scaled environments, with multitudes of devices interacting.

Scalability is one of the main arguments for using a formalised mobility model. JCSP

Networking does not scale well within these architectures. Considering the

capabilities for creating dynamic topologies of interacting components possible with

JCSP Networking, scalability can be seen as one of the major problems to overcome.

Java is also a problem for scalability. A JVM is not available on every device, thus

reliance on Java and serialization is a limitation. Thread limitations allow the PDA

approximately 400 processes and the PC 7,000 processes. Applications involving

thousands of agent processes moving through devices become difficult if not

impossible to achieve. Reliance on Java to accommodate such scale is therefore a

limitation.

4.7.6 Stability

No evidence of erroneous behaviour within JCSP Networking is presented, but

usage of the framework highlights a number of problems. The underlying

architecture does not accommodate exception handling that is accessible to

application layer developers. A process may block while communicating to a

remote process if the connection between the two Nodes fails. Ubiquitous

Computing requires management of failure to enable an environment to stay active

in the presence of erroneous behaviour. JCSP Networking does not indicate

erroneous behaviour reasonably and cannot be considered a suitable framework

from this perspective.

Chapter 4: Analysis of Current JCSP Networking 88

4.7.7 Accessibility and Extensibility

Properties internal to JCSP Networking are hidden. The Nagle algorithm being

turned off improves performance in cluster computing scenarios, but does not for

scenarios where sending as much data as possible in a packet is more efficient.

High priority I/O also causes problems for usage of JCSP Networking in domains

outside cluster computing. Buffering the underlying network stream increases

performance, but the size of the buffer cannot be modified to suit individual

purposes. Finally, reliance on serialization for communications limits inter-

framework interaction.

Exposing the underlying mechanisms and attributes would allow modification.

Unfortunately, many of these properties are hidden and cannot be modified outside

the source code. Numerous scenarios are possible in Ubiquitous Computing due to

differing communication, device and architecture configurations. Thus, the

underlying properties should be exposed to allow modification.

A final consideration is extensibility. In principle, JCSP Networking can utilise

different communication mechanisms, and functionality can be extended using the

networked channels. However, the existing architecture requires numerous

resources to allow a networked channel, and therefore resource usage for other

communication scenarios negates scalability. The implementation is also complex

[135], requiring a level of understanding of the internal mechanisms of JCSP

Networking to allow extensions to be created.

4.7.8 Conclusion

In this chapter, weaknesses have been identified within JCSP Networking that

highlights issues when considering a Ubiquitous Computing scenario. Many of

these problems can be linked to Java and serialization, although some are related to

implementation decisions within JCSP Networking. Therefore, it is necessary to

address these problems and modify JCSP Networking to accommodate Ubiquitous

Computing ideas. In the following chapter, a new implementation of JCSP

Networking is presented which aims to rectify many of the highlighted problems.

Chapter 4: Analysis of Current JCSP Networking 89

Although performance outside object serialization is not considered a major

problem, any improvement of performance is also desirable.

Chapter 5 A New Architecture and General Protocol for
JCSP Networking

Chapters 3 and 4 highlighted limitations of JCSP Networking when considering

Ubiquitous Computing requirements. In this chapter, a description of a new

implementation of JCSP Networking is presented and a definition of a protocol to

allow communication between various implementations of distributed

communicating process architectures is provided. Section 5.1 presents the new

architecture, and Section 5.2 the underlying protocol. Section 5.3 discusses the

operation of the new implementation, and Section 5.4 illustrates why it promotes

data independence. Finally, Section 5.5 provides a summary of the new JCSP

Networking implementation.

5.1 New Architecture for JCSP Networking

Two architectural views of the new implementation are presented. The first view

provides a layered examination of JCSP Networking, allowing separation of

functionality into different layers. The second view examines the internal

components of the layers, discussing how they interact together to support the

underlying distributed channel mechanism.

5.1.1 Layered Model

A basic layered view of the architecture is presented in Figure 35. It consists of four

layers:

Figure 35: Basic Layered Architecture

Communication

Link

Event

Application

Chapter 5: A New Architecture and General Protocol for JCSP Networking 91

 Application Layer – user level processes and applications.

 Event Layer – networked channel ends and other synchronization primitives.

Interfaces are provided to the application level processes, and the

communication functionality of the components encapsulated.

 Link Layer – connections to other nodes within the system, including receive

(RX), transmit (TX), server, and manager processes.

 Communication Layer – the underlying communication mechanism that a

JCSP Networking system is implemented upon.

The original implementation of JCSP Networking also has some layered attributes,

but the new implementation places more restrictions on cross layer

communication. Messages travel up and down the layers as far as necessary, and

this will be discussed further in Section 5.3.

The layered diagram can be expanded to illustrate how each layer communicates

with others, and how addressing within each layer is handled. This diagram is

presented in Figure 36.

Figure 36: Detailed Layered Architecture

On the left the addressing mechanism is given, on the right the message types are

given, and down the centre the interfaces between the layers is given. The

interfaces are:

Event

Application

Link

Communication

Channel End Interfaces

Channel & Link

Connection Channels

Connection Stream

Java Objects

CPA Network Protocol

Raw Byte Data

Virtual Numbering

Node Addressing

Communication

Specific Addressing

Communication Specific

Messaging

Chapter 5: A New Architecture and General Protocol for JCSP Networking 92

 Channel End Interfaces – interfaces defined by the core, non-networked,

JCSP channels with networked functionality added.

 Channel & Link Connection Channels – the crossbar allowing multiple Links

to communicate to multiple channel ends and multiple channel ends to

communicate to multiple Links. The crossbar is implemented using Any-2-

One channels in both directions.

 Connection Stream – Links communicate with the communication

mechanism using streams. These streams are communication specific.

 Communication Specific Messaging – the communication mechanism’s

specific messaging protocol (e.g. TCP/IP). This is of no concern to the new

implementation or the rest of this research.

Addressing mechanisms between each layer are:

 Virtual Numbering – number allocated for addressing and lookup purposes.

These are 4 byte signed integers for an addressing range of -231 to 231-1.

 Node Addressing – each Node is uniquely identifiable to allow inter-Node

connections. Link management relies on addressing to ensure that only

one Link to a remote Node exists. An address takes the form

<Protocol>\\<Address>. Protocol identifies the underlying communication

mechanism (e.g. tcpip) and Address is the unique address of the Node based

on the addressing mechanism of the communication mechanism.

 Communication Specific Addressing – the addressing mechanism enforced by

the communication mechanism, for example <IP Address>:<Port>.

Most interface and addressing concepts are inherited from the original JCSP

Networking implementation. Addressing has been modified to allow addresses to

be easily constructed and deconstructed into strings to promote inter-framework

interoperability. For example, a NetChannelLocation (address of a specific

channel end) of a channel with virtual number 74 on a TCP/IP connected Node takes

the form tcpip\\192.168.1.100:5000/74.

Each layer only understands certain message types. These are:

Chapter 5: A New Architecture and General Protocol for JCSP Networking 93

 Java Objects – the Application Layer of a Java system operates using Java

objects. Therefore this is the type of data it will communicate via the

networked channel ends.

 CPA Network Protocol – the responsibility of the Event Layer is to convert

outgoing messages into Network Protocol messages for communication via

the Link Layer, and conversion of incoming Network Protocol messages from

the Link Layer to communicate with the Application Layer. This protocol will

be discussed further in Section 5.2.

 Raw Byte Data – data leaving a Node is sent as bytes, which aids other

platforms to interpret the incoming message. In particular protocol

messages are transmitted as primitive data written directly onto the stream.

To avoid a reliance on Java objects and serialization, the Application Layer can

operate using whatever data type it understands. The Event Layer converts data

into raw bytes for transmission and subsequent reconstruction on reception. To do

this, the Event Layer utilises data encoders and decoders to perform the conversion.

This will be explained further in Sections 5.3 and 5.4.

5.1.2 High Level Model

The individual components and how they are connected is presented in Figure 37,

which closely resembles Figure 1 (page 34) with changes to the implemented

components.

 LoopbackLink has been removed. This component was unnecessary and

locally connected NetChannelOutputs now send directly to the

corresponding NetChannelInput end. This will be explained further in

Section 5.3.

 NetChannelInputProcess has been removed. The required functionality

has been folded into the NetChannelInput, and the NetChannelInput

is now as lightweight as the NetChannelOutput.

 IndexManager has been renamed ChannelManager. Each

communication primitive requires its own management component within

the Event Layer, and the renaming reflects this change.

Chapter 5: A New Architecture and General Protocol for JCSP Networking 94

 LinkManager is now a shared data object instead of a process.

 The EventProcess has been removed. When the LinkManager is

informed of Link failure, the event is immediately written to the Link Lost

Event Channels. These channels are infinitely buffered to avoid deadlock.

Figure 37: High Level Architectural Model

The key feature of the new architecture is the reduction in resource usage by

reducing the number of processes internal to JCSP Networking. The removal of the

NetChannelInputProcesses ensures that channels are more lightweight, and

other unnecessary processes have also been removed. Although not shown, the

connection service to the Channel Name Server has also been modified to a shared

passive object instead of a process, although this could have trivially been

accomplished in the existing architecture.

5.2 General Protocol for Communicating Process Architectures

Permitting inter-framework communication is difficult without well defined

protocols. In this section, a description of the communication protocol for JCSP

Networking is presented. The primary goal is that messages should be platform

independent, and using simple data primitives helps to achieve this goal.

Link RX Link TX

Link

Net Channel

Input

Net Channel

Output

Link Server

Channel

Manager

Application

Process

Application

Process

Application

Process

∞

∞

∞

Communication Mechanism

Link Manager

Chapter 5: A New Architecture and General Protocol for JCSP Networking 95

5.2.1 Protocol Definition

The protocol is based primarily on an examination of the original JCSP Networking

implementation, the pony Framework [130] and C++CSP Networked [129]. By

performing this examination, a great deal of common functionality and messaging

can be deduced. The key shared feature is a virtual channel across a

communication mechanism. Sent messages have a destination, and to permit

synchronisation the message must be acknowledged, and therefore messages also

have a source. Thus there are two attributes for a basic send message. The type of

the message must also be included, providing a message triple. All required

messages can be defined with a triple. There is also the optional data segment for

data messages, providing the following message signature:

 (<message type>, <attribute 1>, <attribute 2>, [<data>])

Each value in the message header is represented by a primitive data type. The

message header signature is:

 (byte, 32 bit signed integer, 32 bit signed integer)

Inclusion of the data segment depends on <message type>. A message receiver acts

accordingly to read data from the communication stream based on the incoming

message type. If the size of the data is sent as a header, then the receiver will know

how many bytes to read. Therefore, data has the following signature:

 (<size>, <bytes>)

or

 (32 bit signed integer, [1..size] bytes)

A signed integer is used as Java provides no unsigned value types, although this

could be changed to avoid negatively sized data messages. It is not envisioned

however that a data message will be as large as 231-1 bytes (2 Gbytes), which is

beyond the limits of allocated data sizes. The next standard data size is a 16 bit

unsigned integer, and this would only provide a maximum message size of 64

Chapter 5: A New Architecture and General Protocol for JCSP Networking 96

kilobytes. Although larger data packets could be avoided, they are not

unimaginable.

The basic channel message types are:

 SEND – basic send message, requiring a source, destination, and data

segment. (SEND, <destination>, <source>, <data>)

 ACK - SEND acknowledgement which notifies the sender that the message

has been read. Only the destination of the acknowledgement is required.

(ACK, <destination>, null)

 REJECT_CHANNEL – when a message is sent to a non-existent or destroyed

channel, the sending channel is informed with a REJECT_CHANNEL message.

The term reject is taken from rejectable channels that were used to pass I/O

exceptions to application processes in the original JCSP Networking

implementation. Only a destination is required. (REJECT_CHANNEL,

<destination>, null)

 POISON – poisoning of channels is a new addition to JCSP [137], based on

work originally by Welch [138] and then Sputh [139]. Poisoning will be

briefly discussed in Chapter 8 in relation to process mobility. A POISON

message requires a destination and a poison strength. (POISON,

<destination>, <strength>)

 LINK_LOST – when a Link fails, NetChannelOutputs connected via the

Link to their corresponding NetChannelInputs must be informed.

LINK_LOST messages are sent to each NetChannelOutput by the Link.

This message is not channel specific as other components in the Event Layer

will also be informed of this occurrence. LINK_LOST messages will also

never be transmitted between Nodes, but by a Link to local components.

No extra information is required within this message. (LINK_LOST, null, null)

 ASYNC_SEND – an unacknowledged SEND message. Usage of this message

permits the unacknowledged channel functionality from the existing JCSP

Networking architecture. Asynchronous messages are used by the Channel

Name Server to avoid blocking when servicing name registration or request.

The requirement for asynchronous messaging was to avoid deadlock caused

Chapter 5: A New Architecture and General Protocol for JCSP Networking 97

by connection failure prior to acknowledgement, but this problem has now

been resolved (Section 5.3). The ASYNC_SEND message has the same form

as a SEND. (ASYNC_SEND, <destination>, <source>, <data>)

Beyond the networked channels, there are other components within the Event

Layer. These include networked Barriers and Connections, but currently not

networked AltingBarriers. For completeness, the required message types are

provided in Appendix E.

The protocol is not complete, and further work is needed to discover other required

message types. For example, occam uses a claiming technique to control access to

shared channel ends [140]. JCSP has no such technique, but it should be possible to

enforce on networked channels without modifying the channel interfaces.

However, claiming of channels may not be a requirement as future versions of

occam may not utilise explicit claiming. AltingBarrier [137] is a further

consideration for networked systems.

5.2.2 General Nature of the Protocol

The protocol promotes inter-framework coordination due to how the messages are

defined. Message type is represented by a single byte – providing 255 message

types – and thus a lookup enumeration can be used on the message type on

reception. If all frameworks agree on message values, each framework can focus on

how the architecture can be implemented. If correct behaviour is emitted by an

implementation (e.g. each SEND must be given an ACK) then the individual

implementations are separated. Addressing of individual synchronisation primitives

in the Event Layer utilises 32 bit signed integers, allowing interpretation on the

majority of other frameworks. There is a concern related to the usage of big-endian

or little-endian to represent values on a framework [129]. Network byte-order (big-

endian) should therefore be conformed to. Data within a message has been

separated from the header, and thus only conversion of data across platforms’ is a

concern. This will be discussed in Section 5.4.

Chapter 5: A New Architecture and General Protocol for JCSP Networking 98

5.3 Operation

In this section, basic operations of the new JCSP Networking architecture are

outlined. The methods to capture Link failure and data conversion are also

covered. First a brief description of the new virtual channel is presented.

5.3.1 Virtual Channel

The new implementation of the virtual channel is functionally similar to the original

implementation with NetChannelInputProcess operations folded into the

NetChannelInput. Thus the reading process performs the read operation

explicitly. Therefore it is the reading process’ task to recreate the sent data into an

object (or otherwise).

Figure 38 illustrates how a virtual channel crosses the layers of one system to

another, the arrow being the virtual channel.

Figure 38: Layered Virtual Channel

Figure 39 illustrates how components interact in the new architecture to form a

networked channel. Figure 39 is similar to Figure 2 (page 37) with

NetChannelInputProcess removed. Messages between components illustrate

the data that is being communicated, with SEND being represented by 1 in the

protocol and ACK being represented by 2. Numbers in parenthesis within the

NetChannelInput and NetChannelOutput are the virtual channel numbers in

use.

Communication

Link

Event

Application

Link

Event

Application

Chapter 5: A New Architecture and General Protocol for JCSP Networking 99

Figure 39: New Networked Channel

5.3.2 Basic SEND / ACK Operation

Figure 39 illustrates a normal read-write operation in the new architecture. A

description of the operation within the existing architecture was provided in Section

3.3. Here the same description is given for the new implementation of JCSP

Networking, discussing the messages being sent between the components.

1. An Application Process calls write on a NetChannelOutput, passing an

Object to send as a parameter.

2. The NetChannelOutput constructs a network message, setting the type as

SEND, attribute 1 as the destination value (97) and attribute 2 as the source

value (45). The NetChannelOutput then must convert the Object into

bytes. This is the only point at which data is copied, and if actual bytes are

sent then no copying may happen at all. On creation of the

NetChannelOutput, an encoding filter was provided to accomplish this,

and once passed through the filter, an array of bytes is returned. The

NetChannelOutput attaches this to the network message and sends the

message to the LinkTX, and awaits acknowledgement.

3. The LinkTX reads in the network message and writes the type (1) and two

attributes (97 and 45) to the stream. The stream of bytes sent is therefore

<1, 0, 0, 0, 97, 0, 0, 0, 45>. The LinkTX examines the type of message, and

as it is SEND there is a data portion. The LinkTX writes the size of the byte

array to the stream, and then the bytes that make up the object.

4. The receiving Node’s LinkRX reads in the type and the two attributes,

creating a network message from them. The LinkRX process then examines

the message type, which is SEND and thus contains data. The size is read

from the stream and used to read the required number of bytes from the

Application

Process

Net Channel

Output (45, 97)

Link TX Link RX

Net Channel

Input (97, 45)

Application

Process

Link RX Link TX

1. write(Object)

2. SEND|97|45|[data]

3. [1,0,0,0,97,0,0,0,45][data]

4. SEND|97|45|[data]
5. read()

6. Object
7. ACK|45|-1

8. [2,0,0,0,45,-1,-1,-1,-1]

9. ACK|45|-1
10. return

Chapter 5: A New Architecture and General Protocol for JCSP Networking 100

stream. The LinkRX then retrieves the destination channel end from the

ChannelManager and checks its state. If the channel is in an OK_INPUT

state the channel connecting to the partner LinkTX is added to the

message, and the message sent to the NetChannelInput.

5. The Application Process calls read to receive the incoming message.

6. The NetChannelInput reads in the network message and checks the

message type. As the type is SEND the message is to be delivered. The

NetChannelInput has a decoding filter to convert a sequence of bytes

back into an object, and retrieves the bytes from the message, passes them

through the filter to recreate the sent Object and returns this to the

Application Process.

7. During step 6, a network message is created with the type ACK. Attribute 1

is set to attribute 2 of the incoming message (the original source) and

attribute 2 is not used and set to -1. This message is written on the channel

contained in the original message; the channel to the LinkTX process

connected to the sending Node.

8. The LinkTX process reads the network message and writes the type (2) and

the two attributes (45 and -1) to the stream. The stream of bytes sent is <2,

0, 0, 0, 45, -1, -1, -1, -1> or <2, 0, 0, 0, 45, 255, 255, 255, 255> if byte is

considered unsigned. The LinkTX examines the type of the message, and

as the type is ACK there is no data.

9. The original sending Node’s LinkRX reads in the type and two attributes

creating a network message from them. The LinkRX then examines the

message type, and as it is a type that contains no data there is no need to

read data from the stream. The LinkRX retrieves the channel from the

ChannelManager and checks its state. If the channel is in an OK_OUTPUT

state the network message is written to the NetChannelOutput.

10. The NetChannelOutput reads in the network message and checks the

message type. As the type is ACK the write operation completes normally,

freeing the Application Process.

Chapter 5: A New Architecture and General Protocol for JCSP Networking 101

The steps provided describe the operation under normal conditions. If the

NetChannelOutput is connected locally to a NetChannelInput, the same

operations occur although at step 2 the message is sent directly to the

NetChannelInput object with the acknowledge channel of the

NetChannelOutput attached for direct acknowledgement.

As the architecture utilises I/O there is the possibility that erroneous behaviour can

occur. The following sub-sections illustrate how this is handled in the new

architecture.

5.3.3 SEND / REJECT operation

As stated in Chapter 3, the existing method for erroneous message delivery was

implemented by the now deprecated rejectable channel mechanism. It is obviously

still possible that erroneous message delivery can occur due to channel destruction

or I/O operations. Therefore message rejection is kept, but implemented within the

Link Layer instead of the NetChannelInputProcess. Figure 40 illustrates the

component interactions that occur. The sequence of operations is:

Figure 40: Reject Channel Operation

1. As normal operation

2. As normal operation

3. As normal operation

4. Initially this operation occurs as before. When the LinkRX attempts to

retrieve channel 97 from the ChannelManger, the channel may not exist or

its state may not be OK_INPUT. In either case, the LinkRX generates a

network message and assigns the type REJECT_CHANNEL (8). Attribute 1 is

Application

Process

Net Channel

Output (45)

Link TX

Link RX

Link RX

Link TX

1. write(Object)

2. SEND|97|45|[data]

3. [1,0,0,0,97,0,0,0,45][data]

5. [8,0,0,0,45,-1,-1,-1,-1]

6. REJECT_CHANNEL|45|-1

7. exception

4. REJECT_CHANNEL|45|-1

Chapter 5: A New Architecture and General Protocol for JCSP Networking 102

set to attribute 2 of the original message (45), and attribute 2 is not

required. The network message is sent to the partner LinkTX.

5. As normal operation step 8, the LinkTX writes the message to the stream.

There is no data segment.

6. The LinkRX reads in the type and two attributes. As the type contains no

data segment, no data is read from the stream. The LinkRX then retrieves

the necessary channel from the ChannelManager and checks the channel’s

state. If the channel is OK_OUTPUT the message is sent to the

NetChannelOutput.

7. The NetChannelOutput reads in the message and checks the message

type. As the message type is REJECT_CHANNEL, it is determined that the

previous send was rejected. The NetChannelOutput changes its state to

BROKEN and removes itself from the ChannelManager. An exception is

raised and causes the Application Process to continue but with an exception.

5.3.4 SEND / LINK_LOST

Another form of erroneous behaviour occurs when the connection to the Node

where the NetChannelInput resides fails. As stated in Chapter 3, this is not

always captured by the original architecture depending on the stage of the

read/write operation. To overcome this, a NetChannelOutput registers itself

with a Link when it is created. As a NetChannelOutput will only connect to one

NetChannelInput, a Link can retain a set of all connected output channels. If

the connection to the remote Node is lost, the Link can inform all its registered

channels by sending them a LINK_LOST message. Link failure may occur at any

stage and therefore cannot easily be mapped into operational steps. There are two

possibilities however:

 Prior to a write operation, the Link to the remote Node hosting the

NetChannelInput fails, causing a LINK_LOST message to be sent to the

NetChannelOutput on its acknowledgement channel. When write is

called on the NetChannelOutput, the acknowledgement channel is first

Chapter 5: A New Architecture and General Protocol for JCSP Networking 103

checked for pending messages. As LINK_LOST will be present, the

NetChannelOutput can behave as if a message was rejected.

 After performing a write, but prior to receiving the ACK, the Link to the

NetChannelInput fails. The Link informs all registered channel ends

with a LINK_LOST message on their acknowledgement channels. The

NetChannelOutput will read in this message, discover it is a LINK_LOST

message and act as if the message was rejected.

By having all NetChannelOutputs register with Links, Link failure can be

transmitted as required, thus avoiding the deadlock problem described in Section

4.7.6. NetChannelInputs do not have this requirement as they may service

multiple incoming connections. To avoid deadlock, the LinkTX remains active to

black hole any outgoing messages. This restriction can be overcome either by

converting the LinkTX into a passive object which throws an exception when

closed, or by poisoning the incoming channel.

5.3.5 Exception Handling

I/O operations can fail for a number of reasons. Passing failures to the Application

Layer is the key to allowing recovery by user level applications. Passing exceptions

as I/O exceptions is not an option however, as I/O exceptions must be explicitly

caught by an application within Java. JCSP Networking utilises the existing JCSP core

interfaces for channel ends, and these do not specify I/O exceptions as possible

failures. Therefore an exception has been created – JCSPNetworkException –

which is an unchecked exception and does not have to be explicitly caught by an

application, allowing existing processes to operate as if networked channel ends

were not in use. If the exception is raised, it will cause the program to terminate if

not explicitly caught, thereby allowing erroneous behaviour to be accommodated

for if required. Any underlying I/O exceptions within the new JCSP Networking

architecture are caught and JCSPNetworkException thrown appropriately.

5.3.6 Channel States

Previous operational descriptions have mentioned channel states to determine how

the Link Layer and Event Layer should behave. These state objects are shared

Chapter 5: A New Architecture and General Protocol for JCSP Networking 104

between separate processes, and access and modification is protected using

standard Java monitors. The individual channel states are as follows:

 INACTIVE – initial channel state. This occurs prior to initialisation.

 OK_INPUT – a NetChannelInput willing to receive incoming messages.

 OK_OUTPUT – a NetChannelOutput willing to send outgoing messages.

 DESTROYED – the channel end has been destroyed by an Application Layer

process. This is usually performed to recover resources.

 BROKEN – a NetChannelOutput end that has become broken due to some

form of erroneous behaviour.

 POISONED – a channel end that has become poisoned, either by receiving a

POISON message or by an Application Layer process invoking poison.

Figure 41 illustrates the transitions that occur between states within the channel.

This diagram is important when verification of the new architecture is presented in

Chapter 6 and when channel mobility is presented in Chapter 7 and Appendix G.

Figure 41: Channel State Transition

The SEND / ACK operation highlighted the usage of filters to encode and decode

objects into bytes for transfer. The usage of these filters provides a level of data

independence which is discussed in the next section.

INACTIVEOK_INPUT

POISONED

DESTROYED

OK_OUTPUT BROKEN

POISON

or

poison()

POISON

or

poison()

create() create()

destroy() destroy()

REJECT_CHANNEL

or

LINK_LOST

Chapter 5: A New Architecture and General Protocol for JCSP Networking 105

5.4 Data Independence

Responsibility for conversion of data is now with the components within the Event

Layer. These components have filters placed within them to handle encoding to

(output) and decoding from (input) raw bytes. The default filter within a JCSP

Networking channel uses serialization as the existing architecture did, except

serialization is performed within memory streams instead of buffered

communication streams. This is required as Links no longer interpret object

messages. Different filters will allow conversion using other techniques; the

simplest filter sending a byte array and performing no conversion.

Separating data conversion provides the user with some data independence, which

is important for cross framework communication. If two frameworks agree on a

data transfer mechanism, then inter-framework communication via the

communication protocol becomes possible. There are still problems however.

Brown [129] illustrates the point when considering C++CSP Networked, in that

different platforms may define data structures differently, endianess of bytes being

highlighted as a particular problem. Endianess can be overcome by enforcing the

network standard byte order, but if other platforms such as pony [120, 130] are

considered then some standards must be enforced.

occam has no cyclic data structures as Java, C, and other reference / pointer based

languages do. Thus object graphs cannot be faithfully transferred from a JCSP

Networking system to pony. The solution is simple although it enforces certain

constraints on the Java programmer. If data structures are to be transferred

between platforms in a manner that can be interpreted by all available platforms,

then the most restrictive structure of data must be adhered too. Schweigler’s work

on pony [120, 130] permitted communication of occam data structures, thus

providing insight into possible directions. Providing such a mechanism in Java is left

for future work.

As data conversion has been abstracted to the point where the JCSP Networking

user can implement their own mechanism, then ubiquitous communication

between devices becomes easier. There is no requirement of having Java on the

Chapter 5: A New Architecture and General Protocol for JCSP Networking 106

target platform, thus opening up the possibilities of communication. This is a key

feature to permit JCSP Networking to be considered as an architecture suitable for

Ubiquitous Computing applications. The only hurdle lies in graph based data

structures. Sending such data structures may be a problem for certain frameworks

and a question is at what point a cyclic graph becomes a necessary data structure to

send between two remote Nodes.

5.5 Summary

In this chapter a presentation of the new JCSP Networking architecture and protocol

has been presented. Architectural diagrams and protocol definition were provided,

and how separate components communicate. Where necessary, comparison to the

original JCSP Networking architecture was provided to illustrate improvements and

differences. Exception handling and channel states were also presented. Finally the

mechanism for providing data independence was described.

An implementation of this architecture and is currently available via the JCSP

repository2. The current version is the reference version based on the work

presented in this chapter. The reference implementation also includes

implementations of the channel mobility and code mobility models presented in

previous work [17].

In the following chapter, the new architecture is examined from a performance

point of view, repeating the experiments performed on the original JCSP

Networking implementation. A verification of the new model and protocol is also

presented that illustrates that certain properties are present in the new

architecture, and that problems in the original architecture have been overcome.

2
 The JCSP repository is available from http://www.cs.kent.ac.uk/projects/ofa/jcsp/

http://www.cs.kent.ac.uk/projects/ofa/jcsp/

Chapter 6 Examining the New Architecture

In this chapter, experimental data is presented to compare the new JCSP

Networking implementation with the original implementation. Relevant

experiments conducted in Chapter 4 are repeated to compare the properties of

interest within the test framework described in Section 4.1. To check error handling

and other possible architectural implementation issues, a model of the new

implementation has been developed using the SPIN model checker [141]. A

discussion of the model is presented at the end of this chapter. Section 6.1

presents the expected performance for the new implementation before actual

performance is presented in Section 6.2. Section 6.3 examines object serialization

and Section 6.4 presents the overhead of the new implementation of JCSP

Networking. The verification model is presented in Section 6.5, before conclusions

are drawn in Section 6.6.

6.1 Expected Channel Performance

Section 4.4 described interactions between each component within the original

JCSP Networking channel and provided formulae to approximate channel

performance based on known properties. In this section, new formulae are

presented based on the new implementation presented in Chapter 5. There are

eight operations with values:

1. NetChannelOutput encodes the sent object message

2. NetChannelOutput writes the message to the LinkTX (channel

communication)

3. Link transmits the message to the remote Link.

4. Remote Link sends received message to the NetChannelInput (channel

communication)

Chapter 6: Examining the New Architecture 108

5. NetChannelInput decodes the sent object

6. NetChannelInput writes the acknowledgement message to the Link

(channel communication)

7. Link transmits the acknowledgement to the original Link

8. Link sends the acknowledgement to the NetChannelOutput (channel

communication)

The channel has two ends. Both require a formula to determine approximate

communication time. These formulae are:

𝐶𝑜𝑢𝑡 = 2 ∙ 𝑐𝑎𝑛 + 𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒(𝑠𝑖𝑧𝑒𝑜𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒)

𝐶𝑖𝑛 = 2 ∙ 𝑐𝑎𝑛 + 𝑑𝑒𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒(𝑠𝑖𝑧𝑒𝑜𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒)

Total communication time from output to input is calculated as:

𝑁𝑒𝑡𝐶𝑎𝑛 = 𝐶𝑜𝑢𝑡 + 𝐶𝑖𝑛 + 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 𝑠𝑖𝑧𝑒𝑜𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 + 13 + 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡(9)

These formulae include object (de)serialization time, but the new implementation

allows raw data communication without serialization. In such circumstances,

(de)serialization time is omitted. Asynchronous channel operations remove

acknowledgement time of a channel communication per networked channel end,

and the transmission of the 9 byte ACK message.

From Table 3 (page 63) it is possible to estimate channel performance when sending

a null or single byte value. These values are presented in Table 7. All values are in

milliseconds.

Table 7: New Net Channel Overhead

 Cout Cin NetChan

PC Sync 0.030 0.031 5.404

PC Async 0.015 0.016 0.221

PDA Sync 0.373 0.385 5.404

PDA Async 0.193 0.205 5.208

From an initial comparison of expected results from the original JCSP Networking

implementation presented in Table 4 (page 65) and expected results of the new

implementation presented in Table 7, expected communication time has decreased

Chapter 6: Examining the New Architecture 109

by approximately 9 ms for a synchronised channel. Asynchronous channels on the

PC should perform a send in approximately 0.22 ms and on the PDA performance is

expected to be approximately 5.208 ms. The significant decrease for the PC

asynchronous channels is due to the PDA not performing deserialziation on the

incoming channel message header.

6.2 New JCSP Networking Performance

To analyse the new implementation, the ping, bandwidth and roundtrip

experiments are repeated using large data packets. Raw byte data can be sent

directly on a channel with no conversion, thus experimental data representing this

scenario is also presented. Unlike the experiments conducted on the original JCSP

Networking implementation, Links are only given normal priority within the test

framework.

6.2.1 Simple Ping

Figure 42 presents results for a ping benchmark using the new JCSP Networking

channel implementation. Original JCSP Networking and Object Stream results are

provided for comparison. Expected results are generated with the new NetChan

formulae. Times presented are the average time in milliseconds to perform the

ping operation.

Figure 42: Simple Ping New Network Channel

Figure 42 indicates an increase in performance for small data packets. For

synchronous channels, both the PDA and PC results show an approximate 15 ms

0

5

10

15

20

25

30

35

40

PC to PDA Sync PDA to PC Sync PC to PDA Async PDA to PC Async

Ti
m

e
 m

s

PC PDA Expected Original Object Streams

Chapter 6: Examining the New Architecture 110

improvement. There is an approximate 10 ms variance from expected results.

However, taking into account network latency subtracts 3 ms from this figure,

providing an approximate latency of 7 ms for a network channel roundtrip

operation, or 3.5 ms for a send operation. There is an approximate 14 ms variance

between Sync and Object Stream results.

Async results are favourable, actual results being approximately 3 ms greater than

expected. Taking into account roundtrip latency of the network at 1.5 ms, the

latency for Async roundtrip can be approximated at 1.5 ms. Object Stream results

perform approximately 2 ms better than asynchronous channels under these

conditions.

6.2.2 Bandwidth

Bandwidth experiments consist of single byte messages and large data sizes. For

the former, only null value objects are sent via a networked channel using

serialization, and for the latter, both serialization and raw data results are provided.

As serialization takes place within the channel, a memory buffer is utilised to

serialize the object into. The buffer is allocated 8192 bytes, the same buffer size as

the Link stream in the new and existing JCSP Networking implementation. Each

NetChannelOutput is given its own buffer. As the size of the data to be serialized

is greater than 8192 bytes within these experiments, the buffer is doubled as

required by Java. At the next serialization operation the buffer is reset to 8192

bytes. Increasing the buffer in this manner will have an effect on performance, but

it is necessary for large data objects. Giving each channel a large buffer will

constrain resources and is therefore not a suitable option. The other approach is to

use a single large shared buffer. This could require guarded access which would

also reduce performance, although is a possible area of investigation in the future.

Figure 43 presents results for sending null objects via the new JCSP Networking

channel. The original network channel and Object Stream results are provided for

comparison. Expected values are calculated using the new NetChan formulae.

Values are the average time in milliseconds to perform a single send or receive

operation.

Chapter 6: Examining the New Architecture 111

Figure 43: New Network Channel Send and Receive Benchmark

Figure 43 illustrates that the time taken to send a null message using the new JCSP

Networking implementation is approximately half the time taken within the original

implementation. Synchronous channels perform approximately 2 ms slower than

expected, but taking into account the roundtrip latency of 1.5 ms there is an

approximate 0.5 ms difference. Discounting PC Object Stream results due to the

low value, PDA Object Streams are 3 ms faster at sending a simple packet than a

new networked channel. Roundtrip network latency reduces this value to 1.5 ms.

Asynchronous channels for PC to PDA indicate that the high priority Link problem

has been overcome. The PC and PDA both register low times, the PC being 0.01 ms

lower than expected. Comparing this value to the original JCSP Networking

implementation where high priority Links flooded the PDA, the PC actually gains

performance as the PDA is able to service incoming messages quickly.

(De)serialization of the message headers in the original implementation will also be

a contributing factor to the lower figure however. PDA Async results show an

improvement of approximately 4 ms, and are approximately 1.5 ms slower than

Object Streams.

For actual bandwidth of the new networked channel, large data packets are sent

with and without serialization. Both synchronous and asynchronous channels are

examined, and expected results are provided. The performance of the original

implementation of JCSP Networking and Object Streams are provided for

0

2

4

6

8

10

12

14

16

18

PC to PDA Sync PDA to PC Sync PC to PDA Async PDA to PC Async

Ti
m

e
 m

s

PC PDA Expected Original Object Streams

Chapter 6: Examining the New Architecture 112

comparison. Figure 44 presents PDA synchronous channel results and Figure 45

presents PDA asynchronous channel results.

Figure 44: PDA New Synchronous Channel Bandwidth

For synchronous channels there is an initial approximate 50 bytes/ms performance

improvement with the new implementation. Performance does converge over time

however. Throughput within the new implementation is approximately 2 bytes/ms

better than the original at the largest packet sizes, which can probably be attributed

to the removal of the object message header. Object Streams have approximately 4

bytes/ms better throughput when compared to the new synchronous channel

results.

Figure 45: PDA New Asynchronous Channel Bandwidth

0

50

100

150

200

250

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

b
yt

e
s

/
m

s

Data Size in Bytes

New Sync Expected Sync Original Sync Object Streams

0

50

100

150

200

250

300

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

b
yt

e
s

/
m

s

Data Size in Bytes

New Async Expected Async Original Async Object Streams

Chapter 6: Examining the New Architecture 113

Asynchronous channels show improved performance before bandwidth values

converge. The new implementation does show improved performance for larger

packets, and this will be due to the reduction of Link priority. Under these

conditions, no memory exception occurs due to large packet sizes flooding the PDA,

and thus results continue to the maximum data size, unlike the original

implementation. At large packet sizes, performance is approximately 20 bytes/ms

better than expected. This will be due to the Link performing the actual I/O when

the application process has finished. This is also why Object Streams show poorer

performance than the new implementation.

Results for sending the data without serialization are provided in Appendix D. There

is little performance difference between the serialized and raw data results.

Asynchronous channels perform approximately 8 bytes/ms faster for large data

sizes, but this will largely be due to the buffering problem described at the start of

this section.

Results for PC synchronous channels are presented in Figure 46 and asynchronous

channels in Figure 47. Object Stream results are provided for data sizes greater

than 3,000 bytes due to the large bandwidth value that small packet sizes provide.

For asynchronous channels, all presented results are for data sizes greater than

3,000 bytes due to large bandwidth values. As serialized and non-serialized values

are similar, the latter are provided in Appendix D.

Figure 46: PC New Synchronous Channel Bandwidth

0

100

200

300

400

500

600

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

b
yt

e
s

/
m

s

Data Size in Bytes

New Sync Expected Sync Original Sync Object Streams

Chapter 6: Examining the New Architecture 114

For synchronous channels on the PC there is a performance improvement for all

data sizes except for a valley at 800,000 bytes. The new implementation provides

an approximate 35 bytes/ms improvement, reaching 310 bytes/ms. This is 10

bytes/ms lower than expected, which is similar to PDA throughput variance

between actual and expected results for synchronous channels. The improvement

in performance can be attributed to the PDA not having to deserialize the incoming

message header.

Figure 47: PC New Asynchronous Channel Bandwidth

Asynchronous results show an initial improvement within the new implementation

in comparison to the original. Results converge before the original results end due

to the memory exception on the PDA. Asynchronous results show a 35 bytes/ms

improvement over the expected results, but this will be due to the Link performing

I/O when the application process has completed.

6.2.3 Latency

From the ping and send experimental results (Figure 42 and Figure 43 – pages 109

and 111), latency can be estimated for null messages within the new

implementation. The estimated latency is 10 ms for a roundtrip operation when

compared to expected results, and 5 ms when actual ping time is compared to

actual send time. Halving these values gives an approximate latency of 5 ms and 2.5

ms respectively within the new implementation of JCSP Networking.

0

200

400

600

800

1000

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

b
yt

s
/

m
s

Data Size in Bytes

New Async Expected Async Original Async Object Streams

Chapter 6: Examining the New Architecture 115

For closer analysis, large data packets are sent via synchronous and asynchronous

channels with and without serialization. The serialization scenario utilises an 8192

byte buffer within the channel. Expected and original JCSP Networking results are

provided for comparison. As the values recorded for both PC to PDA and PDA to PC

are similar, only PDA to PC results are presented. The other results are available in

Appendix D.

Figure 48 provides results for a roundtrip operation from the PDA to the PC over the

various data sizes, using serializing synchronised channels. Figure 49 presents the

results serializing asynchronous channels. Expected times are generated using the

NetChan formula. Original and Object Stream results are also provided. The values

presented are the average time to perform a single operation in milliseconds.

Figure 48: PDA Synchronous Serialization Channel Roundtrip

For synchronous channels, performance within the new implementation is initially

better than the old implementation but poorer than Expected and Object Stream

results. For larger packet sizes, the original implementation performs better than

the new implementation when using serialization within the channels. The new

implementation is approximately 150 ms slower than expected, and approximately

70 ms slower than the original implementation.

1

10

100

1000

10000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

New Sync Expected Sync Original Sync Object Streams

Chapter 6: Examining the New Architecture 116

Figure 49: PDA Asynchronous Serialization Channel Roundtrip

Asynchronous channels perform similar to the original implementation and Object

Streams. Performance is approximately 150 ms slower than expected.

Asynchronous and synchronous roundtrip times are now within a few milliseconds

variance for large packet sizes, unlike the original implementation where

asynchronous performance deteriorated over time.

To determine the effect of buffer resizing, the experiment is repeated with the data

sent with no serialization. Figure 50 presents the synchronous results for a PDA to

PC roundtrip and Figure 51 presents the asynchronous results for a PDA to PC

roundtrip. Expected times are adjusted to remove the serialization time and the

extra data overhead incurred by the byte array class description.

Aside from the peak at data size 2,000, synchronous channels with no serialization

perform similarly to serializing channels. There is slight improvement towards large

packet sizes. Actual results are approximately 120 ms greater than expected at the

largest packet size. There is an approximate 40 ms variance in performance from

the original implementation at this packet size.

For asynchronous results, the new implementation performs better than the

original implementation over all packet sizes. For the largest packet size, the new

implementation performs approximately 70 ms better. Compared to expected

results, the new implementation is 85 ms slower at large packet sizes. The

1

10

100

1000

10000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

New Async Expected Async Original Async Object Streams

Chapter 6: Examining the New Architecture 117

performance of the new asynchronous channel is similar to the performance of the

original synchronous channel under these conditions.

Figure 50: PDA Synchronous Raw Channel Roundtrip

Figure 51: PDA Asynchronous Raw Channel Roundtrip

A possible cause of the performance reduction is the lower priority I/O. As an

example, Figure 52 presents the results recorded on the PDA when the PC sends

data to the PDA in a roundtrip asynchronous operation without serialization. For

the new JCSP Networking implementation, there is an approximate 300 ms

performance improvement for the largest packet size. From the bandwidth results

for the new JCSP Networking implementation (Figure 44 and Figure 46 – pages 112

and 113), there is an observed increase in throughput. Lower priority I/O does

mean I/O is not serviced as quickly in the new implementation compared to the

1

10

100

1000

10000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

New Sync Expected Sync Original Sync Object Streams

1

10

100

1000

10000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

New Async Expected Async Original Async Object Streams

Chapter 6: Examining the New Architecture 118

original implementation, and therefore reducing I/O priority may have increased

latency. Reducing I/O priority does permit the application to handle incoming and

outgoing messages, overcoming the problem of a fast device flooding a slower one.

Thus, exposing the Link priority as a property in the new JCSP Networking

implementation permits more ubiquitous usage of JCSP Networking within different

scenarios.

Figure 52: PDA Receiving Asynchronous Raw Channel Roundtrip

To examine the assumption that lower Link priority is effecting latency, Links are

given maximum priority and the non-serializing synchronous roundtrip experiment

repeated. Figure 53 presents these results. Here, high priority I/O results are the

same as normal priority I/O. Therefore high priority does not account for the

differing performance. A further possible explanation is the removal of the

NetChannelInputProcess, which serviced input messages prior to actual

reading by the application process. This could possibly lead to faster performance.

500
1500
2500
3500
4500
5500
6500
7500

1
0

0
0

0
0

2
0

0
0

0
0

3
0

0
0

0
0

4
0

0
0

0
0

5
0

0
0

0
0

6
0

0
0

0
0

7
0

0
0

0
0

8
0

0
0

0
0

9
0

0
0

0
0

1
0

0
0

0
0

0

Ti
m

e
 m

s

Data Size in Bytes

New Async Original Async

Chapter 6: Examining the New Architecture 119

Figure 53: High Priority vs. Normal Priority Link

6.3 Test Object Messages

From experimental data presented in Section 4.5.2, transmission time of the various

test objects was shown to be bound by PDA serialization performance except during

asynchronous sending by the PC to the PDA. The new implementation should

likewise be serialization bound, although improvement should be evident because

of the removal of the object channel message header. In this section, the test

object experiments are repeated within the new implementation, with original and

expected results provided for comparison. Only TestObject4 results are

presented within this section as these provide enough insight into performance.

Other results are available in Appendix D.

6.3.1 Sending

Figure 54 presents results for the PC sending TestObject4 to the PDA via

synchronous and asynchronous communication within the new implementation of

JCSP Networking. Original Sync and Async results are also provided, as are expected

Sync and the underlying Object Streams. The values presented are the average

times taken to perform a single send operation in milliseconds. The x-axis

represents the size of the sent object in bytes. Any significant peaks have been

removed to allow better analysis, with actual results being provided in Appendix D.

1

10

100

1000

10000

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0
6

0
0

0
7

0
0

0
8

0
0

0
9

0
0

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

6
0

0
0

0
7

0
0

0
0

8
0

0
0

0
9

0
0

0
0

1
0

0
0

0
0

2
0

0
0

0
0

3
0

0
0

0
0

4
0

0
0

0
0

5
0

0
0

0
0

6
0

0
0

0
0

7
0

0
0

0
0

8
0

0
0

0
0

9
0

0
0

0
0

1
0

0
0

0
0

0

Ti
m

e
 m

s

Data Size in Bytes

Sync High Sync Normal

Chapter 6: Examining the New Architecture 120

Figure 54: PC Sending TestObject4 via New Networked Channel

For Sync channels in the new JCSP Networking implementation there is a

performance increase in comparison to the original implementation. At

TestObject4100 this improvement is approximately 50 ms. Considering the

deserialization time on the PDA for the object message header (approximately 16.5

ms) and the serialization time for the acknowledgement (approximately 10.5 ms)

there is an approximate 23 ms variance between the original implementation and

new implementation results. Performance of the new implementation appears to

level slightly at size greater than 96. TestObject495 has a peak in the new results,

so TestObject494 is compared between the new JCSP Networking implementation

and the original implementation. There is an approximate 30 ms variance between

the two results at TestObject494, which is 3 ms greater than the overhead

removed due to (de)serialization of message headers.

New Async results do not show the same jump in time taken as the Original Async

results. There is a slight increase in the time taken to perform an operation at large

object sizes, but the non-object message header and lower priority Link seems to

have removed this overhead. Asynchronous channels also perform better than

Object Streams, though this will be due to the LinkTX process performing the I/O

thus reducing application I/O time.

Figure 55 presents the results for the PDA sending TestObject4 to the PC utilising

the new implementation of JCSP Networking. Due to similarities between Sync and

0

100

200

300

400

500

600

326 2132 3832 5532 7232

Ti
m

e
 m

s

Size of Internal Object Arrays

New Sync Original Sync Expected Sync

New Async Original Async Object Streams

Chapter 6: Examining the New Architecture 121

Async results within the PDA only the Sync results are presented here. No peaks

have been removed from these results.

Figure 55: PDA Sending TestObject4 via New Networked Channel

As expected, the new implementation shows similar performance to the original

implementation for sending TestObject4. There is an improvement in

performance for large sized objects, and this will be partially due to the removal of

the object message header in the original implementation. Performance of the new

channels is only slightly poorer than Object Streams for larger sizes, and would

appear to increase more or less in unison with the Object Streams. This is unlike the

original implementation where the performance difference between the two results

appears to widen.

From Figure 54 and Figure 55 it is possible to estimate throughput of the PC and

PDA when performing complex serialization using the new networked channel. For

the PC this figure is approximately 16.5 bytes/ms and for the PDA approximately

19.5 bytes/ms.

6.3.2 Roundtrip

Figure 56 presents synchronous roundtrip results from PC to PDA for TestObject4

within the new JCSP Networking implementation. Expected, Original Sync and

Object Stream results are also provided for comparison. PDA to PC results are

0
50

100
150
200
250
300
350
400
450

326 2132 3832 5532 7232

Ti
m

e
 m

s

Size of Internal Object Array

New Sync Original Sync Expected Sync Object Streams

Chapter 6: Examining the New Architecture 122

similar, and Async results show only slight improvement. Thus these results are

provided in Appendix D.

Figure 56: PC to PDA TestObject4 Synchronous Roundtrip via New Networked Channel

For the new implementation, there is some improvement in comparison to the

original implementation. This is due to the removal of the object message header.

Results are better than expected, but this does not hold for all test object types and

is related to the different serialization performance between the objects. The

roundtrip operation for TestObject4 in the new implementation is 60 ms slower

at TestObject4100 than when performed via an object stream.

6.4 Overhead of the New Implementation

It has been shown that the reduction in Link priority has reduced the chance of

potential flooding on a resource constrained device. To analyse the reduction in

performance overhead that lowering the priority has caused, the CommsTime with

roundtrip data experiment is repeated. The lower priority I/O should enable the

PDA to record generally lower CommsTime values, while the roundtrip time should

increase. Figure 57 presents the CommsTime results for the PDA when performing

roundtrip operations of large data sizes with serializing channels. Vertical lines

indicate when a time is recorded for one of the data sizes. Gaps in the blue

CommsTime line indicate when no CommsTime value was recorded between the

packet sizes.

0

200

400

600

800

1000

326 2132 3832 5532 7232

Ti
m

e
 m

s

Size of Object in Bytes

Sync Expected Sync Original Sync Object Streams

Chapter 6: Examining the New Architecture 123

Figure 57: PDA CommsTime New Stressed Network

Comparing Figure 57 against Figure 33 (page 82), the maximum CommsTime value

recorded has been reduced from approximately 70 ms to 55 ms. This value is still a

significant increase in the CommsTime figure in comparison to the approximate 680

μs time without I/O operations.

Figure 58 presents the recorded roundtrip time on the PDA for large data packets

while performing CommsTime. There is little variance between the times recorded

with CommsTime and without, except towards the larger packet sizes. Here,

performance varies, with the roundtrip time With CommsTime sometimes

performing better, and likewise Without CommsTime. The variance between the

two result sets can reach approximately 180 ms.

Figure 58: New Networked Channel Roundtrip with CommsTime

0
10000

100000
1000000

100

1000

10000

100000

Ti
m

e
 μ

s

Time

1

10

100

1000

10000

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0
6

0
0

0
7

0
0

0
8

0
0

0
9

0
0

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

6
0

0
0

0
7

0
0

0
0

8
0

0
0

0
9

0
0

0
0

1
0

0
0

0
0

2
0

0
0

0
0

3
0

0
0

0
0

4
0

0
0

0
0

5
0

0
0

0
0

6
0

0
0

0
0

7
0

0
0

0
0

8
0

0
0

0
0

9
0

0
0

0
0

1
0

0
0

0
0

0

Ti
m

e
 m

s

Data Size in Bytes

With CommsTime Without CommsTime

Chapter 6: Examining the New Architecture 124

It can be judged that the overhead when implementing lower priority I/O has been

reduced, but can still be considered as significant. I/O does not appear to suffer

due to lower priority. There may be some effect from the removal of the

(de)serialization of the message header from the original JCSP Networking

implementation, as on the PDA this has been shown to be a slow operation and

thus takes some CPU time.

6.5 Verifying the Protocol and Architecture

One of the problems highlighted in the original JCSP Networking architecture was

poor error handling. NetChannelOutputs can fail due to Link failure when the

subsequent exception is not passed to the application level. In the new JCSP

Networking implementation, NetChannelOutputs are registered with the

relevant outgoing Link. If the connection fails, the Link iterates through the list of

registered channels and signals each in turn.

To determine whether registering with the Link is enough to avoid the output

channel hanging, a model of the new architecture and protocol has been developed

with the SPIN Model Checker [141]. The development of the model also allows

general verification of the architecture to check that it is deadlock free, as well as

examination of properties that are of interest.

6.5.1 SPIN

SPIN (Simple Promela INterpreter) is a model checker that allows examination of

properties within a derived model by thoroughly checking the state space of the

model. SPIN can verify a number of correctness requirements by usage of

assertions, checking for deadlock, fairness and liveness of the defined model. The

underlying language used to build a SPIN model is Promela (PROcess MEta

LAnguage), which has similar semantics to CSP (e.g. channels, processes, choice).

SPIN is similar enough that is possible to almost directly compose a JCSP application

into a SPIN model for verification.

To verify a model, SPIN converts the Promela code into C code, which is then

compiled into an application. The application attempts to verify the model by

Chapter 6: Examining the New Architecture 125

creating the entire possible state space of the model, thus visiting every possible

state that the model can be in. If at any point it is impossible for the application to

move to another state and the model is not in a correct end state, then verification

fails. This is a basic deadlock check, and other properties can be checked from the

built state model.

Normally, CSP based architectures are verified using the FDR tool [142], which

allows verification of a model based on properties such as deadlock and livelock,

and also provides refinement checking. Refinement checking allows comparison of

a model against expected behaviour. CSP does not at present incorporate channel

mobility however, and neither does FDR. Although it is possible to circumvent

channel mobility directly by passing values that represent a channel [143], it is not

strictly channel mobility.

SPIN does permit channel mobility by passing channels as parameters in a message.

The SPIN channel is similar to a channel in JCSP, although SPIN permits guarded

operations on shared channel ends. As JCSP does not allow these operations, they

are not used within the new JCSP Networking implementation. Thus the SPIN

model of the architecture does not utilise such operations either.

The full SPIN model of the verified architecture is provided in Appendix F. Here, a

high level description is provided. The model represents only the channel

operations and architecture within the new implementation. First a description of

the protocol messages is provided.

6.5.2 Protocol Definition

SPIN uses the mtype keyword to define message types. From the discussion

presented in Section 5.2, six message types within the protocol are relevant to

channels. The ASYNC_SEND operation cannot be modelled as it can occur at any

point during execution and requires no synchronisation between communicating

components. This would increase the state space of the model beyond the

capabilities of the model checker. An argument on its verification shall be

presented at the end of this section.

Chapter 6: Examining the New Architecture 126

Discounting the ASYNC_SEND message, mtype is defined as follows:

 mtype = {SEND, ACK, REJECT_CHANNEL, POISON, LINK_LOST};

6.5.3 Channel

A networked channel has a number of required definitions: the possible channel

states, the data structure representing a channel, and the processes that represent

NetChannelInput and NetChannelOutput.

6.5.3.1 Channel States

Figure 41 (page 104) presented the possible states and state transitions of the new

networked channel. These states are given constant values and added to the

model.

6.5.3.2 Channel Data Structure

Each channel is provided with a data structure that contains the Virtual Channel

Number, the state and the channel that the Link uses to communicate with the

channel object. This is defined as follows:

 typedef CHANNEL_DATA
 {
 byte vcn;
 byte state = INACTIVE;
 chan toChannel;
 }

6.5.3.3 Channel Process

SPIN uses processes to represent components, thus a networked channel must be

represented by a process. The process is given a CHANNEL_DATA structure to

represent the channel, and an interface of channels that represent the possible

method calls that can be made on the channel. There are two channel types,

NetChannelInput and NetChannelOutput. Figure 59 presents the

NetChannelOutput process.

Chapter 6: Examining the New Architecture 127

NetChannelOutput

write

poison

destroy

callReturn

toLinkTx

ackChannel

Figure 59: NetChannelOutput Process

On the left of Figure 59 the interface channels are provided. Each channel

represents the calling of a method on NetChannelOutput, except callReturn

which is read to simulate the end of a method call on the process.

On the right of Figure 59 are the channels connecting the channel process to the

Link process. toLinkTx is a fixed channel that connects to the LinkTx where the

input end of the virtual channel is connected. ackChannel is the channel coming

from the Link, and is the channel defined in the CHANNEL_DATA type.

Figure 60 presents the NetChannelInput process. The method interface is on the

left, and includes extended rendezvous and poison operations which were added to

JCSP in version 1.1 [137], and thus require addition to the new JCSP Networking

implementation. For completeness these operations are added to the SPIN model.

The NetChannelInput process has only one connection to the Link processes,

the fromLink channel. This channel is the same as declared in the

CHANNEL_DATA type. When a Link sends the NetChannelInput a message, it

also sends the channel to send the response back to the Link. This is where

channel mobility is required.

Chapter 6: Examining the New Architecture 128

NetChannelInput

read

startRead

endRead

callReturn

fromLink

poison

destroy

Figure 60: NetChannelInput Process

6.5.4 Link Processes

Link contains two processes: LinkTx and LinkRx. LinkTx receives messages

from the channel processes and sends them to the remote LinkRx. Figure 61

represents the LinkTx process.

LinkTx

input txStream

Figure 61: LinkTx Process

input receives messages from the channel processes. txStream represents the

connection to the remote LinkRx process.

LinkRx receives messages from a remote LinkTx and sends them to the correct

channel. It is represented in Figure 62.

LinkRx

rxStream toLinkTx

Figure 62: LinkRx Process

rxStream represents the incoming stream from the remote LinkTx. toLinkTx

connects to the complement LinkTx, and is used to send messages directly to the

LinkTx and to attach to incoming messages to allow a subsequent

acknowledgement to be sent directly to the LinkTx.

Chapter 6: Examining the New Architecture 129

A Link represents a connection to another node, and is composed of a LinkTx

and a LinkRx. Figure 63 represents the Link process.

Link

toLinkTx

toNetwork

fromNetwork

Figure 63: Link Process

6.5.5 Application Processes

There are two types of application process: an outputting application and an

inputting application. These processes operate on the complement end interface

channels that connect to a NetChannelInput or NetChannelOutput. The

application process chooses non-deterministically to write to one of the method call

channels and then reads from the callReturn channel, thus waiting for the

operation to complete. callReturn returns either 0 or 1 to represent either an

EXCEPTION or an OK return message. If an EXCEPTION is returned, then the

application process terminates.

Full details of these processes are available in Appendix F, and are named Sender

for an outputting application and Receiver for an inputting application.

6.5.6 Node

Within the model, two node types are defined: InputNode and OutputNode. An

InputNode starts a number of Receiver processes with relevant

NetChannelInput processes. An OutputNode starts a number of Sender

processes and relevant NetChannelOutput processes. Figure 64 presents the

InputNode process. The connection between the Link process(es) and the

NetChannelInput process(es) is shown, although this is dynamic.

NetChannelInput ReceiverLink

InputNode

Figure 64: InputNode Process

Chapter 6: Examining the New Architecture 130

Figure 65 illustrates the OutputNode process. In this circumstance, the connection

between the NetChannelOutput and Link is static.

Sender NetChannelOutput Link

OutputNode

Figure 65: OutputNode Process

For both Nodes, the toNetwork and fromNetwork channels represent the

txStream and rxStream across the network connecting the two remote Nodes. A

process is also added that allows simulation of the network connection itself.

6.5.7 Network Process

To simulate network failure, a simple process to represent the network is added to

the model. The process non-deterministically chooses to either send a message

from the OutputNode to the InputNode, from the InputNode to the

OutputNode, or fail and break the connection. In the later case, a LINK_LOST

signal is sent to the two corresponding LinkRx processes, and a flag is set which

the LinkTx processes check to determine if they should fail. Within the JCSP

Networking implementation, the latter occurrence is detected when the LinkTX

process tries to write to a closed stream. The setting of a flag achieves the same

outcome.

Figure 66 presents the overall SPIN model developed for JCSP Networking. The two

nodes are connected via the Network process.

OutputNode Network InputNode

Figure 66: Simple JCSP Networking Model

6.5.8 Global Values

There are a number of global values within the model, and these are summarised

below:

Chapter 6: Examining the New Architecture 131

 NUMBER_INPUTS – the total number of input channels within the model.

 NUMBER_OUTPUTS – the number of output channels connected to a single

input channel

 TOTAL_OUTPUTS – the total number of output channels –

NUMBER_OUTPUTS * NUMBER_INPUTS

 BUFFER_SIZE – the size of the buffer to the channel processes. This is used

to simulate the infinite buffer within the actual application. For the

application to operate, BUFFER_SIZE should equal NUMBER_OUTPUTS. This

value is manipulated to verify this assumption

 CHANNEL_ARRAY – a type declaration for the array of channel ends on a

particular node – CHANNEL_DATA channels[TOTAL_OUTPUTS]. SPIN does

not permit arrays to be passed as parameters into processes, therefore this

must be declared globally. For channels above NUMBER_INPUTS on the

InputNode, the channel state is set to INACTIVE.

 chans – all the channels within the model. As CHANNEL_ARRAY cannot be

passed as a parameter to an individual process, this is declared globally –

CHANNEL_ARRAY chans[2].

 linkLost – the flag used to indicate Link failure. This is initially set to

false.

6.5.9 Basic Verification

Simple verification can be carried on a model comprising of a single

NetChannelOutput connected to a NetChannelInput with BUFFER_SIZE = 1.

This is the default assumption that for every connected output channel end to an

input channel end, there is required a single place in the buffer to avoid deadlock.

When passed through SPIN, the model is verified with no deadlock errors. This is

enough to reasonably assume that having the Link processes inform the relevant

output channels of connection failure overcomes the deadlock problem in the

original JCSP Networking implementation.

The model also allows some indication of other problems in the original JCSP

Networking implementation. In the new implementation, the LinkRX process

Chapter 6: Examining the New Architecture 132

retrieves a channel from the ChannelManager and locks the state object of the

channel before checking said state. Thereby, LinkRX is the only process acting on

the channel state at any one time. This allows various behaviours to occur based on

the state of the channel object. This feature was added to the new implementation

when the model originally pointed out deadlock due to this occurrence not being

taken into consideration. As the channel object can change state based on certain

calls (poison, destroy), this would have caused inconsistent behaviour within the

implementation.

The original implementation used no such state variable, and LinkRx would send a

message to a channel object based purely on availability within the

IndexManager. The IndexManager would only return the connecting output

channel end connected to the networked channel object. When a channel object

was destroyed, it was removed from the IndexManager prior to any clean up

operations (rejection of pending messages). Therefore, a channel either existed

within the IndexManager or it did not. There were no other possible states as no

common protected state value was exposed. This meant that much of the

behaviour required for more advanced functionality (poison, mobility, barriers) was

not possible as there was no method to expose these states without

reimplementation of the underlying mechanisms of JCSP Networking. As the new

implementation exposes these properties, this problem has been overcome.

6.5.10 Advanced Verification

The simple verified model does not allow analysis of the common assumption of

JCSP Networking that the channel connected to the NetChannelInput requires

exactly one buffer space for each connected NetChannelOutput. With

manipulation of the BUFFER_SIZE value, this can be analysed to provide a stronger

insight into this assumption. Table 8 presents results from different verification

scenarios. To enable verification of the model, the option within SPIN to use

minimal automata to search is activated.

Chapter 6: Examining the New Architecture 133

Table 8: SPIN Verification Results

NUMBER_OUTPUTS 1 2 3 4

BUFFER_SIZE

0 FAIL FAIL FAIL FAIL

1 3.06x105 states
351 depth

FAIL FAIL FAIL

2 2.78x105 states
351 depth

3.71x107 states
3264 depth

FAIL FAIL

3 2.78x105 states
351 depth

3.71x107 states
3264 depth

PASS*3 FAIL

4 2.78x105 states
351 depth

3.71x107 states
3264 depth

PASS* PASS*

Table 8 illustrates that a NetChannelInput requires one buffer space for each

connected NetChannelOutput for connected NetChannelOutputs less than

four. The number of states does not increase when the buffer size is increased

beyond the required buffer size, except when a single NetChannelOutput to

NetChannelInput has the buffer increased from 1 to 2, although search depth

does not increase. The reason for the reduction in state space could be the usage

of the minimal automata search option within SPIN, or that the

NetChannelOutput requires less state space in conjunction with the Link

processes at BUFFER_SIZE = 2. The NetChannelOutput also utilises the same size

buffer as the NetChannelInput in the model, and this could have an effect in

total required states.

6.6 Summary

The performance experiments performed on the original implementation of JCSP

Networking have been repeated on the new implementation of JCSP Networking.

Analysing the results from the new implementation, and the description of the new

architecture presented within Chapter 5, against the original implementation within

the context of the problems highlighted in Section 4.7, a number of observations

can be made. These are summarised in the following subsections.

3
 Results marked with a * are gathered using the bit state compression technique due to the state

space size. Thus, these results are deemed as approximations.

Chapter 6: Examining the New Architecture 134

6.6.1 Interoperability

JCSP Networking no longer relies on Java serialization, although it can utilise this

functionality for convenience when necessary. As channels now have the

responsibility of converting data using a specific encoder/decoder, applications can

be tailored to their context. By implementing this mechanism, it is now possible to

implement a reduced version of JCSP Networking on reduced versions of Java. The

lack of serialization capabilities is no longer a factor for basic communication.

Removing the object message header allows interoperability beyond Java.

Communication is implemented on a base protocol which can be interpreted by

numerous frameworks. Data transfer is a problem due to the different approaches

taken to represent data in different frameworks, but the abstraction of encoding

and decoding into a user customizable manner permits mechanisms to be

developed to allow inter-framework communication of data if well defined data

conversion is created.

For Ubiquitous Computing interoperability is important, and JCSP Networking now

exhibits a level of interoperability which enables usage within various versions of

Java and, if the same communication protocol is utilised, within different

frameworks.

6.6.2 Performance

The performance of the new implementation in comparison to the original

implementation shows slight improvement, but this can largely be attributed to the

removal of the object based message header in the original implementation. PC

networked channel bandwidth has increased from 275 bytes/ms to 310 bytes/ms,

10 bytes/ms lower than the optimum 320 bytes/ms throughput of the network.

The PDA shows only a 2 bytes/ms improvement, which is considered insignificant.

Therefore, no adverse loss in performance is observed in the new implementation.

As expected, for complex object serialization there is still a significant drop in

performance. The removal of the object message header has improved

performance, but not significantly.

Chapter 6: Examining the New Architecture 135

Latency has been reduced, and specifically simple message transfer time is

approximately half of the original implementation within the test framework. For a

ping experiment, there has been a further reduction from approximately 36 ms to

approximately 20.5 ms for synchronous message passing. For asynchronous

messaging, the figure is approximately 8.25 ms. Object Streams record a ping time

of approximately 6.75 ms, thus asynchronous channels have a 1.5 ms overhead.

Original channels had an approximate 10 ms overhead. Latency for larger data

packets has increased however, and is likely due to the removal of the

NetChannelInputProcess. The increase of 70 ms for a roundtrip of 1 million

bytes is not a significant increase in latency however.

Asynchronous channels perform uniformly better than synchronous channels within

the new implementation, which is unlike the original implementation of JCSP

Networking. The increase in performance is only slight, and as I/O priority has been

reduced within the new experiments this allows the application to service I/O and

thus not inflict problems due to buffering. Asynchronous channels now enable the

high latency to be overcome, if the priority of the I/O is suitably set. As priority has

been exposed to the JCSP Networking user, this problem has been overcome.

Lower priority I/O has not affected performance observably, although there is

variance when running other operations with I/O. Considering serialization as a

CPU intensive operation, particularly on the PDA, reducing I/O priority enables

improvement for other computation at the expense of I/O but not at the expense of

(de)serialization. The (de)serialization process is performed by the application

process engaging in the I/O, and as this functionality has been folded into the

passive NetChannelInput object, (de)serialization time depends on the

application process performing the (de)serialization. Thus, (de)serialization is

prioritised based on the priority of the application process.

As there were no adverse performance problems within the original

implementation of JCSP Networking when considering Ubiquitous Computing,

besides low serialization performance on the PDA, then the new implementation

Chapter 6: Examining the New Architecture 136

can likewise be argued that the new implementation has no adverse performance

problems when considering Ubiquitous Computing.

6.6.3 Resource Usage

Process usage in the new implementation of JCSP Networking has been reduced,

specifically by removing the NetChannelInputProcess and various management

processes within the original architecture. No temporary processes are created for

handshaking, and therefore the only process increases come from application

processes and inter-Node connections requiring Link processes. The latter is still a

problem, and can be overcome by using polling statements on incoming

connections, which has been shown to further improve performance [144]. This

feature is not available in reduced Java versions, therefore cannot be implemented

as a solution for resource constrained devices in all occurrences. However, as

stated, it may be that small devices exhibit only a single incoming connection from

another device, and Link processes are no longer a factor.

JCSP Networking no longer relies on a JVM capable of object serialization, and thus

an initial problem of requiring a resource heavy JVM has been reduced. However,

JCSP Networking is still implemented within Java, and as argued, Java may not be

available within all devices. The introduction of a communication protocol which

does not require Java serialization enables native applications to communicate with

a JCSP Networking system utilising the same communication methods, but data

encoding would still need to be agreed upon. Reliance on Java is therefore reduced,

which is more practical for Ubiquitous Computing on a larger scale.

6.6.4 System Overhead

As the new implementation of JCSP Networking does not have fixed, high priority

I/O, intense I/O operations do not impose as large an overhead when other

computation is occurring. As the priority of the I/O is now flexible, higher priority

I/O can be enabled for high computation to low communication scenarios, whereas

lower priority I/O can be utilised in high communication to low computation

scenarios. This reduces the risk of smaller devices being flooded, and enables a

Chapter 6: Examining the New Architecture 137

more ubiquitous use of JCSP Networking beyond the cluster computing scenarios

originally designed for.

Overheads associated with the object message header have been removed.

Message headers are now relatively small, being at most 13 bytes in size, reduced

from 249 bytes.

6.6.5 Scalability

As resource usage and system overhead has been reduced within the new

implementation of JCSP Networking, it can be argued that scalability has likewise

improved. There may still be scalability issues when considering multiple incoming

connections into a single Node, although it may be possible to reduce this

overhead. JCSP Networking is now more suitable for Ubiquitous Computing

architectures, but not necessarily ideal. Java is still considered a problem, although

the introduction of a protocol means that Java is not necessary on every device. As

argued, applications with thousands of mobile agent processes are still difficult for

Java to accommodate.

6.6.6 Stability

Error handling within the new implementation of JCSP Networking has been

improved in comparison to the original implementation. Exceptions are now passed

to the application level processes, and the problem of a NetChannelOutput

becoming blocked while awaiting an acknowledgement from a disconnected Node

has been overcome. By permitting better error handling, the usage of JCSP

Networking within a Ubiquitous Computing environment has been improved,

although further experiments will be required to fully analyse potential failures and

how they are handled by the JCSP Networking architecture or passed to the

application level processes.

6.6.7 Accessibility and Extensibility

Internal properties within JCSP Networking have now been exposed. This allows

some modification of the architecture to suit individual purposes. The exposing of

data encoding to the user also enables user specified data transfer. The

Chapter 6: Examining the New Architecture 138

enablement of multiple configurations allows ubiquitous usage of JCSP Networking,

and allows the numerous scenarios Ubiquitous Computing requires.

Extensibility has also been improved, and the interfaces allowing custom

communication mechanisms have been simplified. However, adding new primitives

to the Event Layer still requires access to the source code and modification of the

Link processes. The layered architecture makes this simpler to achieve.

6.6.8 Conclusion

In this chapter, the experiments conducted on the original implementation of JCSP

Networking have been repeated within the new implementation. Many of the

issues raised about the original implementation have been overcome, without any

adverse effects on performance. There are still problems when considering JCSP

Networking within the context of Ubiquitous Computing, but these are now centred

on limitations of Java and JVMs available on resource constrained devices. The

introduction of a protocol enables communication outside Java, and the abstraction

of data encoding further enables inter-framework communication.

Chapter 7 Channel Mobility

Previous chapters have focused on the properties of JCSP Networking when applied

to a resource constrained environment. Consideration of JCSP Networking as a

Ubiquitous Computing framework must also take into account the dynamic

topologies required, with consideration on the practicalities of distributed process

and channel mobility. In the following two chapters mobility is examined in this

context. Mobility is seen as a key feature when considering JCSP Networking as an

architecture for Ubiquitous Computing, as it provides the dynamic capabilities that

are considered important in such an implementation context. Thus far the

information presented has shown that JCSP Networking has no significant

communication overhead in comparison to standard networking when considering

the reduced framework the experiments have been conducted in, although

resource usage over time may be a concern. In this chapter, various approaches to

channel mobility are presented, with various properties examined in the context of

each model. In Section 7.1 a definition of channel mobility is provided. Section 7.2

summarises potential channel mobility models, and Section 7.3 analyses properties

of these models, Section 7.4 summarising these properties. Finally, Section 7.5

draws some conclusions on the suitability of these models within a Ubiquitous

Computing scenario.

7.1 Defining Channel End Mobility

As discussed, channel mobility is the capability to migrate a connection from one

component to another. The π-Calculus [10] models channel mobility by allowing

names to be passed between process contexts. Mobility in the π-Calculus allows

channel identifiers to be copied from one process to another, rather than strictly

moved. However, if the location that a name is migrating from no longer utilises

the name, then the channel name becomes unbound from the original location, and

Chapter 7: Channel Mobility 140

thus is moved rather than copied. When a name arrives at a process, it becomes

bound at that location. For example, Figure 67 presents a process tree, with the

output end of channel a communicated from V to R via channel b. If V no longer

uses a then it becomes unbound in V. Within R, a becomes bound. W has no

knowledge of the migration of a, and R now has a new connection to W.

P

V WUT

SRQ

a

a

b

Figure 67: Channel Mobility

Figure 67 indicates how channel end mobility is achieved. It requires a channel end

to be passed by another channel, or a communication that is communicable via

another form of communication [88]. A simple analogy is that R has been provided

with an address to communicate to W. As Chapter 5 discussed, the underlying

mechanism of JCSP Networking relies on channel addresses, thus mobility is

occurring on a very basic level as addresses are passed between Nodes.

From this description, it is possible to define what a mobile channel looks like at a

basic level, which is essentially an address. As JCSP Networking utilises a channel

end mechanism, it can be argued that output channel mobility is a case of migrating

the address of the input end of a channel to another location. Input channel

migration is more complicated, and this chapter focuses more on mechanisms to

enable input channel mobility. Most models allow input channel mobility via

address mobility also, although there are exceptions as highlighted in Appendix G.

7.2 Channel Mobility Models

Analysing current techniques for connection mobility, it is possible to extract seven

different models that enable channel mobility. In this section, these seven models

Chapter 7: Channel Mobility 141

are presented. The relevant interaction sequences, state diagrams and new

protocol messages for these models are available in Appendix G and can be used to

help illustrate exactly how these models operate. For the discussion presented

here this is not necessary, and the general description is enough to analyse

interesting properties.

7.2.1 One-to-One Networked Channels

Networked channels are generally considered to be Any-to-One in that any output

end may connect to an input end. This makes mobility difficult as it is unknown

how many output ends may be connected to an input end, and therefore informing

output ends of the movement of an input end is not a one-to-one communication.

Muller [145] has presented a mobile channel protocol that utilises a one-to-one

channel mobility model. Channel end (port) states vary based on whether the port

is locally connected or remotely connected, and ports are aware of the address of

their companion port. A full explanation of channel states can be found in [145]. A

port is aware of the location of its companion and informs the companion of the

new location on arrival. Mobility is easier in comparison to the Any-to-One model

of networked channels as it can be guaranteed that the companion port has been

notified of the new location.

The main disadvantage with this model is that networked channels become One-to-

One connections instead of Any-to-One. This is not a major drawback as, if an Any-

to-One architecture is required, a multiplexing process can receive from multiple

processes and send to a single process. This incurs an overhead for transmission

time, and requires a fixed process for each such channel. If there are few such

channels required these limitations may be considered inconsequential.

7.2.2 Centralised Server

Mobile channel ends controlled by a server is the approach taken in the pony

framework [120, 130]. Each channel is allocated an identifier unique to the

application context (the set of Nodes that make up a single pony application).

These identifiers are managed by a server which keeps the current location of the

Chapter 7: Channel Mobility 142

channel. As the channel end is migrated, this location is updated. An output end

connected to an input end can resolve this location, and then connect directly to

the input end. If the input end should later move, the output end retrieves the new

location from the central server. Therefore a channel end can be thought of as

either being at the given location or not – in which case the server is checked for

the new location.

The server requires messages to allow registration, resolution and updating of

channel locations. The current JCSP Networking Channel Name Server implements

most of these functions. pony has separated the functionality into two separate

components, an Application Name Server, which allows registration and resolution

of applications as opposed to channels, and a main node for each application. The

main node is responsible of controlling channel mobility.

7.2.3 Message Box

Message boxes are the approach used for mobile agents [89], and was previously

proposed as the model for JCSP Networking channel mobility [17]. The Node

declaring the NetChannelInput creates a message box, which allows the

NetChannelOutput to send to a single address, and the NetChannelInput to

request the next message from the message box. The message box is fixed, so

there are no new channel states, although the message box will require its own

state model.

The main disadvantage of message boxes is that the Node declaring the message

box must remain operational. As the declaring Node’s execution may complete

before the mobile channel end is no longer required, this can be a severe limitation.

7.2.4 Message Box Server

Message box and server models can be combined by creating message boxes on a

server instead of locally [63]. Apart from the requirement of server creation, the

operation of the message box is identical to the message box.

Utilising a server overcomes the main disadvantage of the message box, but does so

by having all messages channels pass through the server node. Thus there is a

Chapter 7: Channel Mobility 143

bottleneck in the architecture. This can put strain on a server Node, although

multiple servers may overcome the problem.

7.2.5 Chain

The chain approach to mobility [51] requires each previous location of a channel

end to forward messages on to the next location. When an input end arrives at a

new location it informs the previous location of the new location. When an output

end moves the previous location is sent with the migration message, which is used

to send to the previous location. Thus a chain of connections is created, and any

message must traverse the entire chain to get from one end to the other.

In the Any-to-One network channel architecture, there will be chains of various

lengths in operation. The length from the original input location to the current

input location is always determined by the number of migrations that the input end

has made. The length of the output end(s) depends how far the outputting end has

moved from its original location. Thus, as different output ends may traverse

different distances, there will be multiple chain lengths in operation.

The main disadvantage of the chain model is the distance travelled for each

message. The chain may also contain loops. A loop occurs when a message travels

through the same node more than once. Each previous location of a channel end is

a link in the chain and a channel end may move to any location during operation,

therefore loops can be formed if a channel end moves through a Node where a link

in the chain already exists. A further disadvantage occurs when a Node fails, which

can cause multiple chains to break.

7.2.6 Reconfiguring Chain

To overcome the loop and transmission time problems of the chain model [59], the

chain can reconfigure itself by finding shortcuts to a previous link if it is accessible.

Any loop is therefore removed, and transmission time may become reduced

whenever the chain is shortened.

To achieve reconfiguration, a migrating channel end takes all previous locations in

the chain. On arrival, the locations are iterated through and reconnection is

Chapter 7: Channel Mobility 144

attempted to the oldest possible link in the chain. Loops are removed as a Node

can always shortcut to itself. Transmission time for messages can be reduced as the

most direct route between two nodes is used instead of the total distance covered

by the mobile end.

7.2.7 Mobile IP Model

Mobile IP [146] is used for physical device mobility within IP based networks.

Connections are registered with a home agent which is responsible for forwarding

messages onto the current location of the connection. When a connection

migrates, it informs the home agent, which buffers messages until the new location

is resolved. The new location address is generated by a foreign agent within the

domain of the connection’s new location. The home agent forwards received

messages to the foreign agent, which forwards messages to the connection’s new

location. Whenever the mobile end moves, the foreign agent informs the home

agent, and the same migration process occurs.

To enable mobility between sub-domains, tunnelling is used to allow messages to

be sent to the new foreign agent. Tunnelling can be reproduced in a mobile

channel context by utilising a chain of foreign agents that forward messages to the

respective channel end location or next foreign agent. In effect, this creates a

hybrid model of chaining, server and message box. The foreign agents act as

gateways between domains.

The main disadvantage of this model is that there may still be loops within the chain

of foreign agents. A mobile node may send to another mobile node within the

same domain, but the message would travel to the home agent first – which may be

within another domain. Intelligence built into the foreign agent may remove these

loops, providing direct connection, but would require more complex

reconfiguration of the architecture.

7.3 Analysing Channel Mobility Models

For analysis of the different channel mobility models, the layout of standard TCP/IP

based communication networks is used. A network domain may consist of several

Chapter 7: Channel Mobility 145

sub-domains, which may themselves consist of sub-domains. At the root of the

domain tree is the global domain. Each node in the tree can be allocated an

identifier to represent the domain in the hierarchy. Messages are sent between

members of domains; messages being the communication from one machine to

another. Figure 68 presents an example domain tree.

G

A B

C D

E F

Figure 68: Domain Tree

Each node in the tree has an identifier based on its domain branch. For example,

leaf E has the identifier G.A.C.E. A simplistic viewpoint is taken to connectivity in

that members of a sub-domain may connect to a member of its parent domain.

Thus any leaf in the tree can connect to any domain further up its branch until the

global domain root node is reached. For example, a member of leaf G.A.C.E can

connect to a member in three other domain nodes: G.A.C, G.A and G. This form of

connectivity will be called addressability, implying that the node can address a

member in a given domain unambiguously.

This view of addressability is taken to represent the fact that members of a given

sub-domain may be given addresses which are also used in another sub-domain.

For example, domain G.A.C.E may provide members with IP addresses in the

standard local domain form 192.168.x.x. Domain G.A.C.F may also use the local

domain addressing mechanism. Thus, a member of G.A.C.E may have an IP address

192.168.1.1, and so might a member of G.A.C.F. The domain tree structure ensures

that this is not a problem.

As a sub-domain may address its parent domain, then it becomes obvious that a

member of the parent domain may be connected to a member of a sub-domain.

Chapter 7: Channel Mobility 146

However, this form of connection must be initiated by the member of the sub-

domain. Therefore, connectivity is permitted down the domain tree, but not

addressability. For the purposes of discussion, messages can travel either up or

down the tree, but not both in a single operation. A message travelling up or down

must be received by a domain member before it is sent in a different direction

through the tree.

The analysis presented represents input channel end mobility, as this is the most

complicated to achieve. For an output end, the majority of models permit the

address or some other representation of the input channel end to be sent and a

new output end to be created, effectively copying the output end at a new location.

The π-Calculus [10] permits this form of copy name passing, and therefore can be

considered to not be incorrect from the modelling viewpoint either. There are

some exceptions which are presented in Appendix G.

To aid in analysis, a number of values are defined:

 PROTOCOL – a message in the protocol without data. This includes

acknowledgement messages. As these messages should be of fixed size, the

time taken to communicate one should be fixed.

 ADDR – the size of a channel location address structure. These structures

are used to permit the output end of a channel to connect to a

corresponding input end. ADDR may vary based on implementation, but not

enough to be considered unfixed.

 MESSAGE – a message sent in a communication from one domain member

to another. The size of MESSAGE is variable.

To represent mobility, Mn is used. The parameter n is the number of movement

operations that have occurred from initial setup – M0 representing a channel end

that has not migrated.

There are four properties that are of interest. These are Transmission time,

Reconfiguration time, Reachability and Strength. When defining an equation that

Chapter 7: Channel Mobility 147

has an optional value based on circumstance, the optional value will be enclosed

within square brackets [].

7.3.1 Transmission Time

Transmission time is the time taken for a sent data message to arrive at its

destination. The time taken to transfer a message of a particular type (PROTOCOL,

ADDR or MESSAGE) can be expressed using the function t and is based on the

amount of data sent in the message. For discussion purposes, for a single

communication between two members of any two domains, t is not affected by the

actual distance up or down the domain tree travelled.

 One-to-One networked channel – transmission time in this model is the

normal communication time between two domain members. Therefore, for

any n, transmission time for Mn = t(MESSAGE) + t(PROTOCOL).

 Centralised server – the connection between an input end and an output

end is always direct. The only exception is when the input end has moved,

leading to a message that must be resent, a message to indicate that the

channel end has moved and a query for the new address from the server.

Thus, transmission time for Mn = t(MESSAGE) + t(PROTOCOL) [+ t(MESSAGE)

+ 2·t(PROTOCOL) + t(ADDR)].

 Message box – a message is transferred twice – once to the message box

and once to the input channel end proper. The requesting message contains

the current input channel end location. Prior to the first move of the

channel, the request and subsequent send is local, as the input end is co-

located with the message box. Thus, transmission time for M0 = t(MESSAGE)

+ t(PROTOCOL) and for Mn>0 = 2·t(MESSAGE) + t(ADDR) + t(PROTOCOL).

 Message box server – has the same transmission overhead as the message

box, although the message box is always remote to the input end, thus there

is no initial direct communication. Transmission time for Mn = 2·t(MESSAGE)

+ t(ADDR) + t(PROTOCOL).

 Chain – sent messages must travel the entire length of the chain. As the

length of the chain increases with each migration, transmission time also

Chapter 7: Channel Mobility 148

increases. Acknowledgement and other protocol messages must also travel

the entire length of the chain. Therefore, transmission time for Mn =

n·t(MESSAGE) + n·t(PROTOCOL).

 Reconfiguring chain – the chain has the ability to shorten whenever possible,

thus there are worst and best case scenarios for transmission time. For the

worst case scenario, any message must travel the entire length of the chain,

so transmission time is the same as chain – for Mn = n·t(MESSAGE) +

n·t(PROTOCOL). For the best case scenario, the chain may connect directly

between two domain members, thus providing optimum transmission time

– for Mn = t(MESSAGE) + t(PROTOCOL).

 Mobile IP – transmission time is based on the number of foreign agents to

reach the destination. This is based on the number of nodes up and down a

sub-tree that are traversed by the message. These values are represented

by up and down respectively. Transmission time for Mn =

up·down·t(MESSAGE) + up·down·t(PROTOCOL).

7.3.2 Reconfiguration Time

Reconfiguration time is the time taken to reconfigure the communication

architecture to permit the new communication path created by the migration of a

channel. Reconfiguration complexity is represented by a function, r. r takes three

possible values: EASY for an architecture requiring little reconfiguration to allow

two mobile channel ends to connect; MODERATE for an architecture that takes

some extra functionality and link creation; and HARD for an architecture that

requires a great deal of reconfiguration to allow mobility. The time represented by

r will generally be small in comparison to the time taken to transfer messages

between Nodes to allow reconfiguration. Message transfer time is taken into

consideration for message transfer and acknowledgement. Channel transfer time

for all models is either a protocol message or an address message. Further details

are provided in Appendix G.

 One-to-One networked channel – reconfiguration of the underlying

architecture involves changing the channel state and informing the

Chapter 7: Channel Mobility 149

complement channel end of the new address. Messages sent involve the

new address and possibly any message waiting on an input channel when it

migrates. Thus, reconfiguration time for Mn = r(EASY) + 2·t(ADDRESS) +

2·t(PROTOCOL) [+ t(MESSAGE)].

 Centralised server – reconfiguration involves sending an acknowledged

message informing the server that the input channel end is about to

migrate, sending an acknowledged message to the server with the new

address, and a protocol message from the output end to enquire on the new

address, and the address sent back as a response. Therefore,

reconfiguration time for Mn = r(EASY) + 6·t(PROTOCOL) + 2·t(ADDR).

 Message box – as messages are always sent and requested from the same

location, and reconfiguration is a matter of sending the address of the

message box to the new location. Thus reconfiguration time for Mn =

r(EASY) + t(ADDR) + t(PROTOCOL).

 Message box server – reconfiguration time for the message box server is the

same as message box mobility. For Mn = r(EASY) + t(ADDR) + t(PROTOCOL).

 Chain – the chain is similar to the message box, and requires redirection of

the receiving channel (the channel linking the LinkRX to the channel object

in Figure 37 of Section 5.1) to point to the new outgoing Link. A migration

message contains the previous location, and the acknowledgement message

contains the new address. Thus, reconfiguration time for Mn = r(EASY) +

2·t(ADDR).

 Reconfiguring chain – there are best and worst case scenarios for

reconfiguring the chain. When migrating, the channel end must take every

previous location of the channel end and on arrival iterate through the list,

checking connectivity to these previous locations. Therefore, the channel

end must take at least one previous location, and may in fact take all

previous locations. The best case scenario for Mn = r(EASY) + 2·t(ADDR) and

the worst case scenario is Mn = r(HARD) + (n + 1)·t(ADDR).

 Mobile IP – reconfiguration is based on how quickly the communication path

through the foreign agents can be created. A mobile channel is sent via an

existing channel, thus the backbone links between the foreign agents must

Chapter 7: Channel Mobility 150

already exist. Reconfiguration therefore involves the foreign agent

examining the migration message and determining where the registered

channel must be redirected. The number of domains travelled is a

consideration – these values can be represented by up and down

respectively. Each migration message contains two addresses, and has a

complement ARRIVED message with two addresses in most cases. The

migration message must also be acknowledged through the communication

path back to the sender of the migrating end. Thus, reconfiguration time for

Mn = r(MODERATE) + 2·up·down·2·t(ADDR) + up·down·t(ADDR).

7.3.3 Reachability

Reachability is the set of domains within which a channel output end can

successfully communicate to an input end using the specified mobility model.

There are three sets of interest:

 DOMAIN – the domain in which the input end of the channel is located and

all the sub-domains of this domain.

 BRANCH – the set of domains within the same branch as the input end,

implying both up and down traversal of the domain tree.

 GLOBAL – is the set of all domains.

As it is possible for a node within a domain to connect up the tree, any model that

allows such a connection is deemed to permit an output channel end that has

migrated using such an existing connection to be connected to an input channel end

down the tree via this connection. This is a generalisation. If the input or output

ends were to move further, then the link would be broken in many cases.

 One-to-One networked channel – ports are sent via an existing connection to

a new node, thus the new host is reachable from the existing one.

Therefore, the first interaction allows connection into a sub-domain from

the parent domain if the migrated port and its complement are on the same

node. After this migration, then this is no longer the case as the port may

have moved to a node not addressable from the new location. This can be

Chapter 7: Channel Mobility 151

overcome by the sender of the port determining which node could connect

to the other. Therefore, reachability is given as BRANCH.

 Centralised server – the server is used to maintain channel locations,

therefore only domain members can connect directly to the server. Thus,

normal reachability is DOMAIN. However, this would imply that two distinct

sub-domains of the server’s domain could communicate via a mobile

channel, which is not the case. Thus, reachability is actually DOMAIN ∩

BRANCH.

 Message box – any node that can connect to the host of the mailbox can

form an end of the mobile channel. Therefore, reachability can be initially

thought of as DOMAIN. However, as the sender of a channel end may

connect up the branch of the domain tree, it is possible that the host of the

message box be told likewise to connect up the tree. This gives reachability

of DOMAIN ∪ BRANCH.

 Message box server – as a server is being used, it must be possible for any

receiver of a mobile channel end to be able to connect to the server. Unlike

the centralised server approach, channel ends in two distinct sub-domains

may communicate as the message is sent and retrieved from the server.

Thus reachability is DOMAIN.

 Chain – as every location which the channel visits leaves a forwarding

address, anywhere the channel migrates can be reached from the previous

location. As a connection between any sub-domain and its parent is

possible, the chain can effectively stretch anywhere through the tree.

Reachability is therefore GLOBAL.

 Reconfiguring chain – as the chain only reconfigures itself based on

connectivity to previous locations, the reachability of the reconfiguring chain

is the same as that of the chain. Reachability is thus GLOBAL.

 Mobile IP – as messages are passed between domains via the agents within

each domain, a channel end can effectively move anywhere. The path is

created dynamically as a channel end is migrated. Thus, reachability is

GLOBAL.

Chapter 7: Channel Mobility 152

7.3.4 Strength

The strength of the mobility model relates to the robustness of the connection

between the input and the output end. Robustness includes reliance on external

elements; thus a server type system is considered to be relatively robust in

comparison to an individual node. This is due to the possibility of multiple servers

being used and servers being dedicated to specific tasks, as opposed to a single

node which may terminate when computation is complete.

For strength there are three values:

 WEAK – a connection relying on a number of external entities.

 MODERATE – a connection relying on some external entities.

 STRONG – a direct connection between two nodes, requiring no external

entities. All direct connections between two nodes within the same domain

are considered STRONG.

The strengths of the different mobility models are:

 One-to-One networked channel – a port and its complement are always

directly connected. Thus, the strength of the model is STRONG.

 Centralised server – as the connection between input and output ends is

direct, the channel strength can be considered STRONG in most

circumstances. The reliance on an external server does reduce the strength

slightly. Strength is therefore MODERATE to STRONG.

 Message box – each channel requires that the original declarer of the input

end remains operational and connected until the channel is no longer

required. This does not lend itself well to standard distributed systems

architectures as a node may disconnect when it has finished its own

operations. The channel itself only requires two inter-node links, and is

therefore reasonably strong in that respect. The strength of this model is

therefore MODERATE.

Chapter 7: Channel Mobility 153

 Message box server – the usage of a server removes the requirement of the

node creating the input end remaining operational. Thus, strength is the

same as the centralised server model – MODERATE to STRONG.

 Chain – the chain relies on every previous channel end location remaining

active during the lifetime of the system. This is a serious weakness, as any

one of these domain members may fail or disconnect for reasons outside

the control of the nodes containing the channel ends. Strength is therefore

WEAK.

 Reconfiguring chain – as the chain can potentially be shortened to the point

where the output and input ends of the channel are directly connected;

there is the potential for this model to be STRONG. Conversely, there is the

potential that all previous locations are required for the chain to deliver

messages. Strength is therefore WEAK to STRONG.

 Mobile IP – a reliance on domain agents routing messages to the correct

location does mean that the inter-domain connections must remain

operational. However, as these agents are effectively servers, dedicated to

routing and reconfiguration, the strength of the model can be considered

MODERATE.

7.4 Summary of Model Properties

Table 9 summarises the different mobile channel models by placing them in order

from best to worst under the respective property headings.

Table 9: Summary of Mobile Channel Models

Transmission Time Reconfiguration
Time

Reachability Strength

One-to-One
networked channel

One-to-One
networked channel

Chain One-to-One
networked channel

Centralised server Message box server Reconfiguring chain Centralised server

Message box Message box Mobile IP Message box server

Message box server Chain Message box Mobile IP

Reconfiguring chain Centralised server Message box server Message box

Mobile IP Mobile IP One-to-One
networked channel

Reconfiguring chain

Chain Reconfiguring chain Centralised server Chain

Chapter 7: Channel Mobility 154

For transmission time, the one-to-one networked channel model provides the best

scenario, followed closely by the centralised server model which is also normally

directly connected. The two message box models allow transmission time that is

fixed at twice the normal transmission time; the normal message box having an

initial interaction advantage. The reconfiguring chain has the potential of directly

connected channel ends, but may in fact have a greater transmission time if the

chain cannot be reconfigured. The Mobile IP model also has the potential of direct

connections, but may involve transmission via a number of domains. The

reconfiguring chain model allows domains to be jumped if a direct connection up or

down can be created, and thus the Mobile IP model is considered to have greater

transmission time due to the number of intermediate domain agents that must be

passed through. Finally, the chain model increases transmission time with each

migration, with no potential for reconfiguration.

For reconfiguration time the one-to-one model provides the best case, followed by

the two message box approaches which only require address transmission for

migration. The chain requires an address for transmission, although a

reconfiguration message to the previous location is required. As the centralised

server model does not permit easy input end migration without the output end

requiring reconfiguration, this model comes next. The Mobile IP model requires

reconfiguring at multiple domain agents, whereas the reconfiguring chain attempts

to shorten the chain by linking to the furthest location back in the chain possible.

For reachability, only three models allow a channel end to potentially move

anywhere and remain connected to its complement. The chain models require no

server to achieve this, and are therefore given a better reachability. The Mobile IP

model requires the domain to have an agent to permit mobility. As the message

box approaches allow a channel end and its complement to be in two separate sub-

domains, these models come next. The one-to-one model potentially allows

connection the entire length of a branch. The centralised server only allows two

channel ends to be within the same branch below the server.

Chapter 7: Channel Mobility 155

The directly connected models, one-to-one networked channel and centralised

server, provide the strongest connection. The message box server, with the server

managing the message box, provides the next strongest connection. As the Mobile

IP model utilises server agents, it provides a fairly robust channel structure. The

standard message box’s reliance on nodes that may disconnect comes next. As the

reconfiguring chain may rely on some external nodes, it is stronger than the chain

model which gets weaker with every movement.

7.5 Conclusions

Examining these properties, it can be seen that the one-to-one networked channel

model has the best transmission time, reconfiguration time and strength, although

it does fair badly for reachability. The main drawback for the one-to-one model is

the removal of the Any-2-One communication architecture present in standard

networked channels. This problem is not an issue for a Ubiquitous Computing per

se, but the π-Calculus does permit this form of name sharing. If the π-Calculus is

seen as a formal mobility model for modelling Ubiquitous Computing architectures,

then having a shared channel end is advantageous. The reachability problem is of

more concern, as it means that channel ends cannot migrate too far from their

complement. A further consideration is how the one-to-one architecture is

enforced. This can be done by adding registration and deregistration messages to

the protocol, and adding channel states for a channel that is registered (and thus

only accepts messages from the correct output channel end).

The centralised server has low transmission time and high strength, although

reachability is an issue. Reconfiguration time is poor compared to the majority of

other models, although the difference between this approach and the one-to-one

model is not great. This model is well suited for controlled environments such as

cluster computing, which is where the pony framework [120, 130] is aimed. For

Ubiquitous Computing however, it does not provide the potential reachability that

may be required.

The message box approaches have reasonable, and predictable, transmission time

and reconfiguration time. Strength is good, although the normal message box has

Chapter 7: Channel Mobility 156

weaknesses. Reachability is better than the server and one-to-one channel models

due to the two step transmission process, thus the message box offers greater

potential. Reachability is still not global, and therefore certain models of interaction

are not possible.

The chain based approaches provide global reachability, but do so at the detriment

of transmission time and strength. Reconfiguration time is good however.

Although the reachability permits the interactions that may be required in

Ubiquitous Computing, the increased transmission time and weakness nullifies this

advantage, leading to channels that are not suitable for systems requiring service

guarantees. Ubiquitous Computing does have the constraint of stability placed

upon it. Potentially, the reconfiguring chain provides a model that may be suitable

for Ubiquitous Computing connection mobility.

The Mobile IP model provides global mobility within domains that have agents

controlling channels. Transmission time may be slow, but it is more predictable

than the chain based approaches, and potentially allows direct connections.

Reconfiguration time is poor, although it is significantly better than the

reconfiguring chain model. This model is also stronger than the chain based

models. Therefore, the Mobile IP model provides a good model for connection

mobility in many scenarios, including Ubiquitous Computing.

Therefore, there are two models that appear to provide the mobility required to

support truly dynamic architectures within a global architecture. However, this is

assuming that channel ends require this level of migration within Ubiquitous

Computing. As Chapter 2 described, the idea of the global Ubiquitous Computer is

possibly incorrect, and individually controlled ubiquitous domains may be a more

suitable approach. Therefore, the server based approaches may be more suitable

due to the control they provide.

What is apparent from these different models is that mobility may not be possible

at the protocol level, due to the different requirements for different application

contexts. For example, the cluster computing scenarios that pony is aimed at

require a model that has good transmission time, and strong connections. This

Chapter 7: Channel Mobility 157

server approach may not suit Ubiquitous Computing. Any protocol implemented

across the various CSP based network environments must be general enough to

provide the application context required for different scenarios. Picking one of the

models described does not provide this. A focus could be placed on Ubiquitous

Computing only however.

A potential solution is to adopt both the centralised server and Mobile IP model. As

a node must resolve a new location if the input end moves in both models, the

potential of either a domain agent forwarding the message or a server that merely

provides a new address does not change how the node acts after the complement

end of a channel has migrated. Although this may permit many scenarios, further

research is required to discover if it satisfies them all.

Another consideration not discussed is the handover between local and networked

channels that is caused by migration. If a networked channel and a local JCSP

channel are to behave similarly, then it should be possible to send a local channel

end down a networked channel, and for the local channel to become networked.

The main difference between a local channel and a networked channel is that a

networked channel has a location, and this must transparently be created and the

required network infrastructure put in place to handle the new networked channel.

In summary, there are models of channel mobility that are suitable for Ubiquitous

Computing but which are not suitable for other applications. Therefore, building a

mobility model directly into the protocol and architecture is only reasonable within

individual application contexts. This is a limitation to the different possible

scenarios even Ubiquitous Computing promotes. Any framework with which JCSP

Networking interacts with must also adopt the same channel mobility model if used

in a Ubiquitous Computing scenario.

A problem also exists with channels that are sent as part of another data structure,

as any protocol will have to take into account that a channel is sent with other data.

The most probable candidate for this operation is a mobile process. The following

chapter discusses potential process mobility, and notes why this is far more difficult

to achieve between different platforms.

Chapter 8 Process Mobility

In this chapter, a discussion of how process mobility in JCSP Networking can be

achieved is presented. Channel mobility models have been presented in the

previous chapter, with potential models of channel mobility that suit Ubiquitous

Computing scenarios highlighted. Consideration of how distributed mobility can be

achieved allows a discussion on how suitable JCSP Networking is for the dynamic

architectures of Ubiquitous Computing. Process mobility is enabled by channel

mobility, although the migration of an actively running component is considered

difficult. In this chapter, an approach to enable process mobility is discussed.

Section 8.1 introduces process mobility in more detail, and Section 8.2 reviews

other attempts at active component mobility. Section 8.3 discusses a technique to

enable strong process mobility, and Section 8.4 illustrates a practical

implementation of the approach. Finally Section 8.5 summarises the technique

developed.

8.1 Introduction

Chapter 2 provided an abstract definition of process mobility. This was:

Process mobility is the ability to change the location of an actively running

process.

The key concept is “actively running”. Previous work on JCSP mobility [17] has

focussed on single stopped processes, providing code mobility mechanisms

necessary to move a process transparently from one system to another. Code

mobility is not difficult in a framework such as Java, however work previously

presented within this thesis has argued against reliance on Java as a platform. This

negates the code mobility argument. Currently it is not possible to define a process

for one framework and send the code for execution in another without some form

Chapter 8: Process Mobility 159

of virtualisation technology, or relying on typed processes and no mobility of code.

Therefore, code mobility will not form any further discussion on process mobility

presented here.

8.1.1 Defining a Mobile Process

Removing code mobility from strong mobility modifies what a strongly mobile

component comprises. From the argument presented thus far, there is also the

consideration of channel or connection mobility. Finally, the removal of code

highlights that a mobile component can be partially defined by its type. Thus it is

possible to redefine strong component mobility when considering process mobility:

 Type – the type of the process, defining its structure and behaviour.

 State – the state of the mobile component. This comprises of three parts:

o Connections – the inter-component connections that are contained

within the mobile component.

o Data – the variables that are contained within the component. This

also includes any sub-components.

o Behaviour – the current execution state of the component.

Code can be considered as part of the type information if this is not known at the

receiving Node of a mobile component, although the receiving Node will require

some knowledge of the component in an abstract manner.

Connections form part of the state and due to channel mobility can also be

considered variable. Thus, although initially a host process will know all external

connections, it must be the case that all sub-components take their own

connections with them. This is due to the dynamic nature of the connections within

a component.

How the process executes can also define how the process can be viewed. If a

process is migrated to a new location, and then executed in sequence with the new

host process, the mobile process can be considered as a mobile service [108]. This

is because the process has added functionality to the actively running host process.

If the mobile process is to run in parallel with the host process, then this process

Chapter 8: Process Mobility 160

can be considered a mobile agent. This view is due to the idea of an agent

performing a task on behalf of another component, and thus executing outside the

normal running of another component.

The definition of strong mobility might also not be what we wish to achieved.

Although strong mobility originally referred to a component which took its

execution state with it, the current direction is a component that can move at any

point in its execution and take its execution state with it. In this chapter, the latter

definition is approached, as achieving this goal permits achievement of the former.

8.1.2 Transferring a Process

The ability to transfer an actively running process has been discussed previously in

[17]. In particular the argument was made that complex process mobility is

difficult. Complex process mobility involves the suspension of a network of

interacting processes, the transfer of said process network, and the resumption of

the process network at the receiving location at the same execution state that the

network was suspended at. The problem with suspending a process network has

been evident in process oriented architectures for some time (for example [138]).

Complex process migration can also be related to strong mobility of code / agents

[76], which is the mobility of execution and data state within a mobile component.

Process networks can be viewed in a tree structure. The initial process has a

number of child processes, which have child processes, etc. Figure 69 illustrates a

process tree view of a process network, and illustrates how process mobility is

viewed in such a context.

Figure 69 shows the migration of process T from the context of Q to the context of

R. As indicated, it is actually migration of a branch of the tree that is occurring, with

the connection from Q to T migrated to form the connection from R to T.

Chapter 8: Process Mobility 161

P

V WUT

SRQ

X Y

T

X Y

Figure 69: Process Branch Mobility

Examining process mobility from this view illustrates where a migration signal must

come from, which is the connection between Q and T. Thus, either Q can transfer T

to R, or if self referential processes are allowed, T can copy itself to R. The latter

case does raise the question of whether the original copy should remain active. For

the argument presented in this chapter, it is considered that strict mobility and not

copying is in effect for processes.

The ability to move an entire branch of a process network to a new location is

considered complex process mobility, whereas the ability to move a single leaf

process is considered simple process mobility. The latter can be achieved by

supplying a signal to the process to suspend. The former requires a mechanism that

ensures that externally the process behaves as expected, but also appears willing to

migrate at any point. If this idea is imposed within the migratory process, then it

can be seen that each individual process must also appear to be willing to migrate

at any point.

This chapter presents a method for allowing complex process mobility by capturing

the behaviour of currently running processes. The methodology is by no means

complete and verified, and some problems are highlighted. Some of these

problems are related to current methods used to achieve primitives in architectures

such as JCSP, and a proof of this shall be given. First, some information on other

Chapter 8: Process Mobility 162

approaches used to achieve strong mobility and process network suspension is

presented.

8.2 Related Work

Picco [108] has defined strong mobility as the execution state of the mobile

component being transferred transparently without specific coding to handle the

mobility. Unfortunately, many mobility systems utilise Java, and thus do not offer

this capability due to the inability to capture thread state in Java. Other approaches

are used to attempt to artificially capture the execution state at a fixed point of

execution, with the possibility of rolling back execution to the previously stored

fixed point if migration occurs between capture points. This technique is referred

to as checkpointing [147].

8.2.1 Java Based Approaches

Howell [148] has used checkpointing to capture execution state of programs by

capturing the state of an entire JVM. This involves a modified Java Runtime

Environment (JRE) but no actual modification to code or compiler. Although thread

state is captured, it is the entire JVM that is checkpointed and not individual

threads. The approach is also not portable as it requires a modified JRE. Although

inter-framework mobility is negated by the lack of code mobility, an approach that

can be replicated between platforms is better for Ubiquitous Computing.

Truyen [149] captured individual thread state by manipulating bytecode to insert

code blocks to capture and resume execution state. By doing this, and abstracting

Java Threads into tasks and creating their own scheduler, Truyen successfully

captured thread behaviour without manipulating the JVM or JRE. The approach

works on individual threads, not numerous interacting ones. Work was expanded

[150] to accommodate remote object systems, where multiple threads are

coordinating via Java RMI. Although interesting from a connection mobility point of

view, no work on threads with internal threads was undertaken. The problem

solved is particular to distributed object systems, where there is no encapsulated

ownership of individual remote objects.

Chapter 8: Process Mobility 163

Zhu [151] developed a method that modified Java’s Just-In-Time (JIT) compilation to

capture individual thread states transparently. This approach is complicated due to

some Java bytecode instructions having no direct correlation on the native machine.

The method is also restrictive as it is Java specific, only captures individual thread

state, and requires a modified JRE to operate.

Bouchenak [152-154] has proposed a solution that requires modification of the

JVM, one of the main goals being elimination of overhead incurred by other

approaches to thread migration. Bouchenak’s approach gathered type information

within the JVM for correct and complete reinterpretation of the thread at its

destination. This approach is restricted by reliance on a modified JVM and allows

migration of single threads only.

Sakamoto [155] applied a technique that used bytecode transformation to modify

method calls to throw exceptions that would emit the execution state of a method.

Points within method bodies are marked as possibly migratory and the resultant

exception added to the surrounding method. The approach is interesting as it could

be manipulated to mark methods as migration guarded in the same manner that

methods can be guarded against multiple thread access. There is an overhead

incurred, and the authors note limitations to their approach. There is also the

limitation of single thread migration, and reliance on threads entering marked

methods to allow the migration.

Ma [156] has provided strong process migration within Java-MPI (Message Passing

Interface) using the Java debugging interface. No modified JVM or bytecode

manipulation is required, and there is little overhead. A migration layer within the

MPI framework is utilised to achieve strong migration. However, features of Java

are still required and there is no capturing of multiple thread state.

Java mobile agent systems also attempt to capture execution state for transferral.

The D’Agents framework [111] provides strong migration of threads, but does not

allow multi-threaded migration – the authors noting that it is unclear whether this

should be a necessity. As the term agent is itself ambiguous this is understandable.

Chapter 8: Process Mobility 164

The NOMADS system [157] provides strong mobility of multiple threads by allowing

migration of Java thread groups, which allows migration of multiple mobile agents

in a group. NOMADS executes within a Java-compatible virtual machine.

Java has a problem when considering thread migration. There is the problem that

thread state is not explicitly exposed to the user, thus negating any simple method

to allow thread migration. There is no concept of thread ownership, and thus it

becomes difficult to decide whether a single thread or multiple threads should be

migrated. This is not just a problem for threads, but for passive objects also. Java

only provides weak encapsulation, thus an object may be owned by more than one

thread. No consideration of object ownership has been taken in the above

approaches except when involving Java RMI [150], the only solution that appears to

consider connection mobility. For CSP / occam based approaches, strict

encapsulation and boundaries are in place, with connectivity controlled via well

defined channel interfaces. If adhered to, this removes many limitations Java only

approaches face.

Serialization does provide mechanisms to enable transfer of object references by

allowing aliasing within the object stream. However, the mechanisms do not

support the type of migration required for mobility in this context. If an object is

migrated as part of another object graph, and then modified at the original location

and subsequently transferred, updates to the data state are lost in transfer due to

the aliasing within the object stream. The lack of ownership of an object causes this

to be a significant problem when considering both data and behavioural objects.

8.2.2 Generic Approaches

Fortino [158] has proposed mobile agent design using statecharts. A mobile agent

retains its current historical state when migrated, and reintroduces this state on

arrival. During execution, the mobile agent explicitly changes its execution state

between state points. These state points can be considered checkpoints. Only at a

checkpoint can a mobile agent choose to migrate. This is enforced by the agent

interacting using events instead of standard methods. The weakness of this

Chapter 8: Process Mobility 165

approach is that the state points have to be created and stored to allow transfer.

The authors also note that this approach is only suitable for single threaded agents.

Bettini [78] proposes making a procedure strongly mobile via the introduction of

mark points, mark points being similar to checkpoints or state points. This

approach is platform independent, modifying the design of a procedure as opposed

to a specific implementation. The method is limited in that it does not consider

multiple internally interacting components, and the method produces significantly

more code for choice and iteration primitives.

Phillips [102] has developed a mobile ambient implementation within Java,

although the technique to achieve mobility of agents is transferable. Between

computations and communications, an agent checks if it has been called to move,

and after migration the agent continues execution at this point. The technique is

similar to introducing checkpoints, and takes into account child agents with a parent

agent requesting that child agents migrate also. The technique is based on the

asynchronous π-Calculus, and therefore does not consider committed events in a

synchronous architecture. Recent work in this area [82] no longer discusses this

approach, so it is unclear whether it has been expanded upon.

Generic approaches provide more insight into how a method to capture process

network state can be developed. This is due to the view beyond threads, and Java

in particular. The ability to place points within code at which processes must check

whether or not they should migrate is of most interest, but consideration of CSP

semantics must be taken into consideration. For further insight, approaches

specific to CSP inspired platforms are examined.

8.2.3 CSP Based Approaches

Stopping a process network is not a new problem [138]. Welch discussed different

approaches to terminate a process network and in particular how not to do it.

Resetting is seen as practically what is required as opposed to stopping a process

network, and resetting is more related to the capturing of state for migration.

Resetting of a process network involves sending a reset signal through the network,

Chapter 8: Process Mobility 166

which each process receives and thus places itself into the reset state. This

approach was prior to new additions to JCSP [137], which enables another solution.

Sputh [139] has criticised Welch’s approach. The criticisms are somewhat JCSP

specific, but computational processing and increased complexity are cited as

problems, and also the handling of shared channel ends. Another problem

overcome by Sputh’s work not specifically highlighted is the black holing of

incoming messages to prevent deadlock. Sputh overcomes this problem by allowing

reset signals to travel both backwards and forwards through a process network.

The reason that this is a problem is that black holing a message implies that the

message is lost, which does not effectively capture the current execution state.

Within an entire system this is not a problem, but a mobile process will only form

part of a system and thus messages entering the mobile may be lost.

Sputh mentioned some problems with trying to reset a sub-network of processes

using the JCSP-Poison technique. As a mobile process will be a sub-network this

problem is imposed on process mobility also. Sputh has mentioned the problem of

having two resetting process networks connected together via a channel, but the

two process networks themselves having the possibility of being terminated

independently. The problem scales, and resetting and terminating n process sub-

networks is a problem if each may be terminated individually.

Welch [12] has expanded resetting to incorporate the suspension of mobile

processes. This approach is the most complete solution thus far, but only suggests

how suspension can be achieved with examples. A process must handle an

incoming suspension signal externally from the process network, although only at

certain points in execution. Strong mobility requires migration at any point during

execution. Agent mobility implies externally and internally activated migration,

thus relying solely on external signals may be a problem. Barnes does use a

technique that retains current execution state via a state variable.

When considering mobility, using poison is not a suitable approach in all cases due

to the different problem poison was meant to overcome. Poison is invariably

injected into a process network from one of the leaves of the process tree (e.g. X in

Chapter 8: Process Mobility 167

Figure 67, page 140). It has been argued that a migration signal must come from

the parent process or from the process itself, and travel down into all sub-

processes. Poison flows through a system via channels, and sub-processes might

not be connected, implying multiple poison signals entering the process network.

Thus, poison does not enable complex process mobility in all circumstances.

Specific approaches within CSP based frameworks have been used to attempt to

reset a network of processes. However, none of these approaches is sufficiently

generic enough for the problem of capturing the current behavioural state of an

actively running process network at any point. The solution presented in the

following section attempts to overcome this problem.

8.3 Observably Strongly Mobile Processes

The approach proposed builds on the idea of strong mobility, checkpointing, state

capture and processes having the choice to migrate at certain points. It builds upon

the newer ideas presented by Welch [12], but does not use the graceful resetting

technique originally proposed by Welch [138]. It exploits recent additions to JCSP

[137], in particular the multi-way synchronisation capability provided by the

AltingBarrier. We are not going to discuss how channel mobility is modelled

here. To help illustrate, a small subset of CSP notation shall be used:

𝑃𝑅𝑂𝐶𝐸𝑆𝑆 ∶= 𝐴, 𝐵, 𝐶, …

𝐸𝑉𝐸𝑁𝑇 ∶= 𝑎, 𝑏, 𝑐, …

𝑃𝑟𝑒𝑓𝑖𝑥 ∶= 𝑎 → 𝑃

𝐶𝑜𝑖𝑐𝑒 ∶= 𝑎 → 𝑃) (𝑏 → 𝑄)

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 ∶= 𝐴 ∥ 𝐵

𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 ∶= 𝐴 ; 𝐵

𝑅𝑒𝑛𝑎𝑚𝑖𝑛𝑔 ∶= 𝑃 𝑎 𝑏

𝐻𝑖𝑑𝑖𝑛𝑔 ∶= 𝑎 → 𝑃 ∖ {𝑎}

Processes are declared in upper case, and events in lower case. Prefix defines a

new process from an event and process definition. For example, Prefix above

means synchronise on a then behave as P. Specific input and output events

(channel operations) are not defined as they are of no consequence as all events

Chapter 8: Process Mobility 168

must be usable as guards. Choice allows a process to choose between two possible

guarded communications (e.g. a or b), and choice affects process behaviour

depending on the chosen event. This is a generalised guarded alternative; more

specific choices are used but are not examined here. A migration may be caused

internally due to the process causing the move, or externally from the parent

process. The Parallel operator yields a process in which its operand processes

operate in parallel and which does not terminate until both its operand processes

terminate. Parallel is normally defined with the events used to synchronise the

processes, but this is of no consequence for the discussion presented. It is assumed

that processes will only synchronise on shared events. Sequential means that once

one process has finished the next process should be performed. Renaming allows

an event name to be changed within a Process. For example, the above Renaming

operation replaces event b with a in process P. Finally, Hiding is used to hide an

event from being externally visible. For example, the above Hiding operation states

that the event a is not observable outside of the defined process, and therefore

externally the process behaves as P.

8.3.1 Simple Process Migration

Consider the definitions given for process mobility and strong mobility:

 Process mobility is the ability to change the location of an actively running

process.

 Strong mobility is the ability to migrate a mobile component at any given

point in its execution.

The goal is to allow processes to migrate at any point in their execution to another

location and resume execution at the point of migration. To achieve this, a process

is offered the choice to migrate at any point. Consider process P defined as:

𝑃 ∶= 𝑎 → 𝑏 → 𝑃

P synchronises on a, then b, and then behaves as P (a then b then P). To offer

migration, a new event is introduced called migrate. This event must be possible at

any point in execution. Thus, P becomes:

Chapter 8: Process Mobility 169

𝑃𝑚𝑜𝑏𝑖𝑙𝑒 ∶= 𝑃𝑎

𝑃𝑎 ∶= 𝑎 → 𝑃𝑏 | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃)

𝑃𝑏 ∶= 𝑏 → 𝑃𝑎 | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃)

Pmobile emits the same behaviour as P, but also has the opportunity to migrate. SKIP

indicates successful completion of the process. This example does not outline how

migrate is fired. migrate will normally occur from outside the process or process

network, but as shall be shown is particular to where the migration attempt occurs

and what exactly is to be migrated.

The problem is to retain the execution state of Pmobile after migration. As the

process has been split into two separate process definitions, it becomes possible to

start the process at any one of these definitions. What must occur is that the

current execution state of the process must be stored or emitted somehow. This

depends on the implementation platform (for example, Java would retain it as an

internal attribute to the object), so specific details are left.

This shows how a simple process can be given the option to migrate, but this in

itself is not new. All that is occurring here is that an option of a migration signal is

given to the mobile. To expand this, consider two interacting processes:

𝑃 ∶= 𝑎 → 𝑏 → 𝑃

𝑄 ∶= 𝑏 → 𝑐 → 𝑄

𝑅 ∶= 𝑃 ∥ 𝑄

Introducing mobility into these processes gives us the following:

𝑃𝑚𝑜𝑏𝑖𝑙𝑒 ∶= 𝑃𝑎

𝑃𝑎 ∶= 𝑎 → 𝑃𝑏 | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃)

𝑃𝑏 ∶= 𝑏 → 𝑃𝑎 | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃)

𝑄𝑚𝑜𝑏𝑖𝑙𝑒 ∶= 𝑄𝑏

𝑄𝑏 ∶= 𝑏 → 𝑄𝑐 | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃)

𝑄𝑐 ∶= 𝑐 → 𝑄𝑏 | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃)

𝑅𝑚𝑜𝑏𝑖𝑙𝑒 ∶= (𝑃𝑚𝑜𝑏𝑖𝑙𝑒 ∥ 𝑄𝑚𝑜𝑏𝑖𝑙𝑒)

Chapter 8: Process Mobility 170

CSP enforces that an event can only be fired when all relevant processes agree to

synchronise, thus for migrate to fire both P and Q must be willing to participate.

For Rmobile, parallel execution of P and Q completes before the SKIP is reached. This

can only occur when both P and Q have finished, thus migrate must have been fired

bringing P and Q to a successful termination.

8.3.2 Parallelised Process Migration

A more complicated situation occurs when a process starts and then goes parallel

before or after performing other interactions. This occurrence has been highlighted

numerous times within the context of poison and resetting [138, 159]. The simple

technique of synchronising on an event does not work in all circumstances, as there

is no way of knowing whether or not the parallel completed successfully without

migration or was paused due to migration. Consider two possibilities for internally

parallel processes. A process may perform some events and then go parallel as the

last operation, or the parallel may occur prior to other events. Both these

eventualities cover any combination of events and parallelisation.

8.3.2.1 Processes Ending Parallelised

Consider the following process definition:

𝑃 ∶= 𝑎 → 𝑏 → (𝑄 ∥ 𝑅)

From the previous definition of creating mobile processes, P can be converted to

the following:

𝑃𝑚𝑜𝑏𝑖𝑙𝑒 ∶= 𝑃𝑎

𝑃𝑎 ∶= 𝑎 → 𝑃𝑏 | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃)

𝑃𝑏 ∶= 𝑏 → 𝑃𝑝𝑎𝑟 | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃)

𝑃𝑝𝑎𝑟 ∶= (𝑄𝑚𝑜𝑏𝑖𝑙𝑒 ∥ 𝑅𝑚𝑜𝑏𝑖𝑙𝑒)

Qmobile and Rmobile will synchronise on migrate if they are made mobile in the manner

described, thus it becomes evident that Ppar will only terminate when migrate

occurs. This is all that is needed for a process that ends internally parallel.

Chapter 8: Process Mobility 171

8.3.2.2 Processes Beginning Parallelised

Processes that begin internally parallelised before performing other operations are

more difficult. Consider the following:

𝑃 ∶= (𝑄 ∥ 𝑅) ; (𝑎 → 𝑏 → 𝑃)

𝑄 ∶= 𝑐 → 𝑑 → 𝑆𝐾𝐼𝑃

𝑅 ∶= 𝑐 → 𝑒 → 𝑆𝐾𝐼𝑃

P begins by performing both Q and R together, and then performing a then b. The

problem faced is that (Q ‖ R) can terminate due to migrate or normal operations. It

must be possible to distinguish between successful termination of parallelised

processes and migration termination of parallelised processes. The subtlety of the

example presented is that Q may successfully terminate prior to R if d is executed

first and vice versa if e is executed first. To check completion, the introduction of a

further event, finished, is required to check successful completion of the parallelised

processes. This event is not observable from outside P and is therefore hidden. By

doing this, the following process definitions are generated:

𝑄𝑚𝑜𝑏𝑖𝑙𝑒 ∶= 𝑄𝑐

𝑄𝑐 ∶= 𝑐 → 𝑄𝑑 | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃)

𝑄𝑑 ∶= (𝑑 → 𝑄𝑓𝑖𝑛𝑖𝑠 𝑒𝑑) | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃)

𝑄𝑓𝑖𝑛𝑖𝑠 𝑒𝑑 ∶= (𝑓𝑖𝑛𝑖𝑠 → 𝑆𝐾𝐼𝑃) | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃)

𝑃𝑚𝑜𝑏𝑖𝑙𝑒 ∶= 𝑃𝑝𝑎𝑟

𝑃𝑝𝑎𝑟 ∶= (𝑄𝑚𝑜𝑏𝑖𝑙𝑒 ∥ 𝑅𝑚𝑜𝑏𝑖𝑙𝑒 ∥ ((𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) | (𝑓𝑖𝑛𝑖𝑠𝑒𝑑 → 𝑃𝑎)))

∖ 𝑓𝑖𝑛𝑖𝑠𝑒𝑑

𝑃𝑎 ∶= 𝑎 → 𝑃𝑏 | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃)

𝑃𝑏 ≔ 𝑏 → 𝑃𝑝𝑎𝑟 | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃)

The definition of Rmobile is similar to Qmobile and not given. The rest of the definition

of P is straightforward. To handle parallelisation, a separate process interacts with

both Q and R via migrate and finished. Qmobile operates as a standard mobile except

when it reaches completion. At this point there are two options.

Chapter 8: Process Mobility 172

1. If Rmobile successfully completes, finished is selected, thus completing Qmobile,

Rmobile and the manager process within Pmobile, allowing Pmobile to continue.

2. migrate may occur, thus triggering the migration within all processes and

not allowing Pmobile to continue to the next state point.

In either case, all the processes are terminated, and the relevant execution states

either captured or continued.

8.3.3 Connected Mobiles

Another subtle problem with capturing the current behaviour of process networks

is ensuring that any other connected process networks do not deadlock due to

incorrect behaviour. Capturing the current state of the network, and the

assumption that channels / events are also mobile overcomes some of the initial

problems. However, if sub-process networks are independently mobile within a

mobile process, more care must be taken. Consider the following:

𝑃 ∶= 𝑎 → 𝑏 → 𝑃

𝑄 ∶= 𝑏 → 𝑐 → 𝑄

𝑅 ∶= 𝑃 ∥ 𝑄

If P and Q are independently mobile, then they cannot share the same migrate

event as this will enforce the two processes to terminate. migrate can be renamed

to overcome this.

𝑅 ∶= 𝑃𝑚𝑜𝑏𝑖𝑙𝑒 𝑚𝑖𝑔𝑟𝑎𝑡𝑒_𝑝 𝑚𝑖𝑔𝑟𝑎𝑡𝑒 ∥ 𝑄𝑚𝑜𝑏𝑖𝑙𝑒 𝑚𝑖𝑔𝑟𝑎𝑡𝑒_𝑞 𝑚𝑖𝑔𝑟𝑎𝑡𝑒

This allows both P and Q to be independently mobile. If R must be mobile as well,

then a further consideration must be taken into account where R receives a

migration signal, subsequently signal that the sub-processes P and Q should

terminate, and then signal that R has terminated. To do this, another process and

the finished event are used again:

𝑅𝑚𝑜𝑏𝑖𝑙𝑒 ∶= (𝑃𝑚𝑜𝑏𝑖𝑙𝑒 𝑚𝑖𝑔𝑟𝑎𝑡𝑒_𝑝 𝑚𝑖𝑔𝑟𝑎𝑡𝑒 ∥ 𝑄𝑚𝑜𝑏𝑖𝑙𝑒 𝑚𝑖𝑔𝑟𝑎𝑡𝑒_𝑞 𝑚𝑖𝑔𝑟𝑎𝑡𝑒

∥ (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑚𝑖𝑔𝑟𝑎𝑡𝑒_𝑝 → 𝑚𝑖𝑔𝑟𝑎𝑡𝑒_𝑞 → 𝑓𝑖𝑛𝑖𝑠𝑒𝑑 → 𝑆𝐾𝐼𝑃)) ∖ {𝑓𝑖𝑛𝑖𝑠𝑒𝑑}

Chapter 8: Process Mobility 173

As Pmobile and Qmobile are independently mobile, they can be terminated in sequence

within the new process. Once all processes have been terminated, the finished

event is fired, thus signalling that Rmobile is ready for migration.

Giving each sub-process a unique migrate event and signalling each process in turn

could also be used to shut down internally parallel processes. The reason not to do

this is that it would involve an extra manger process for each sub-process network.

Although shutting down processes in sequence is cautioned against [138], this was

due to a lack of output guards and multi-way events being available. As this

problem has recently been resolved [137], there is no longer the same concern.

8.3.4 Example – Numbers Process

The Numbers Process is used for the CommsTime benchmark [134], and consists of

three processes: PREFIX, SUCCESSOR, and DELTA2. These processes are defined as:

𝑃𝑅𝐸𝐹𝐼𝑋(𝑥) ∶= 𝑎! 𝑥 → 𝐼𝐷𝐸𝑁𝑇𝐼𝑇𝑌

𝐼𝐷𝐸𝑁𝑇𝐼𝑇𝑌 ∶= 𝑏? 𝑥 → 𝑎! 𝑥 → 𝐼𝐷𝐸𝑁𝑇𝐼𝑇𝑌

𝑆𝑈𝐶𝐶𝐸𝑆𝑆𝑂𝑅 ∶= 𝑐? 𝑥 → 𝑏! 𝑥 + 1 → 𝑆𝑈𝐶𝐶𝐸𝑆𝑆𝑂𝑅

𝐷𝐸𝐿𝑇𝐴2 ∶= 𝑎? 𝑥 → (𝑐! 𝑥 → 𝑆𝐾𝐼𝑃 ∥ 𝑑! 𝑥 → 𝑆𝐾𝐼𝑃) ; 𝐷𝐸𝐿𝑇𝐴2

𝑁𝑈𝑀𝐵𝐸𝑅𝑆 ∶= (𝑃𝑅𝐸𝐹𝐼𝑋 0 ∥ 𝑆𝑈𝐶𝐸𝑆𝑆𝑂𝑅 ∥ 𝐷𝐸𝐿𝑇𝐴2) ∖ {𝑎, 𝑏, 𝑐}

Channel communication is defined using ! for output and ? for input. For this

example, no consideration on how the states of the processes are retained is given,

and it is assumed that when a process is restarted, the correct state is used. The

NUMBERS process has channels a, b and c hidden, thus leaving d exposed as an

external channel from NUMBERS, the others being internal. First consider PREFIX:

𝑃𝑅𝐸𝐹𝐼𝑋𝑚𝑜𝑏𝑖𝑙𝑒 𝑥 ∶= 𝑃𝑅𝐸𝐹𝐼𝑋𝑤𝑟𝑖𝑡𝑖𝑛𝑔 (𝑥)

𝑃𝑅𝐸𝐹𝐼𝑋𝑤𝑟𝑖𝑡𝑖𝑛𝑔 𝑥 ∶= (𝑎! 𝑥 → 𝑃𝑅𝐸𝐹𝐼𝑋𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦) | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃)

𝑃𝑅𝐸𝐹𝐼𝑋𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 ∶= 𝐼𝐷𝐸𝑁𝑇𝐼𝑇𝑌𝑚𝑜𝑏𝑖𝑙𝑒

This allows termination of PREFIX and subsequent restarting at any point. If the

internal IDENTITY process is to be restarted, it is assumed that the correct execution

state of the internal process is chosen. IDENTITY itself is simple:

Chapter 8: Process Mobility 174

𝐼𝐷𝐸𝑁𝑇𝐼𝑇𝑌𝑚𝑜𝑏𝑖𝑙𝑒 ∶= 𝐼𝐷𝐸𝑁𝑇𝐼𝑇𝑌𝑟𝑒𝑎𝑑𝑖𝑛𝑔

𝐼𝐷𝐸𝑁𝑇𝐼𝑇𝑌𝑟𝑒𝑎𝑑𝑖𝑛𝑔 ∶= (𝑏? 𝑥 → 𝐼𝐷𝐸𝑁𝑇𝐼𝑇𝑌𝑤𝑟𝑖𝑡𝑖𝑛𝑔 (𝑥)) | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃)

𝐼𝐷𝐸𝑁𝑇𝐼𝑇𝑌𝑤𝑟𝑖𝑡𝑖𝑛𝑔 (𝑥) ∶= (𝑎! 𝑥 → 𝐼𝐷𝐸𝑁𝑇𝐼𝑇𝑌𝑟𝑒𝑎𝑑𝑖𝑛𝑔) | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃)

It is assumed that when the IDENTITYwriting process is terminated, it retains the last

read value (x) for subsequent sending when the process is restarted.

SUCCESSORmobile is similar to IDENTITYmobile and is not provided.

DELTA2 requires more care due to the internal parallel. To ease the problem, a new

process definition is introduced which is responsible for outputting a value on a

channel:

𝑊𝑅𝐼𝑇𝐸(𝑥) ∶= 𝑜𝑢𝑡! 𝑥 → 𝑆𝐾𝐼𝑃

DELTA2 is now redefined as:

𝐷𝐸𝐿𝑇𝐴2 ∶= 𝑎? 𝑥 → (𝑊𝑅𝐼𝑇𝐸(𝑥) 𝑐/𝑜𝑢𝑡 ∥ 𝑊𝑅𝐼𝑇𝐸(𝑥) 𝑑/𝑜𝑢𝑡) ; 𝐷𝐸𝐿𝑇𝐴2

Converting this into a mobile process requires a mobile version of the WRITE

process, which must incorporate the finished and migrate events (Section 8.3.2.2).

Thus:

𝑊𝑅𝐼𝑇𝐸𝑚𝑜𝑏𝑖𝑙𝑒 (𝑥) ∶= 𝑊𝑅𝐼𝑇𝐸𝑤𝑟𝑖𝑡𝑖𝑛𝑔 (𝑥)

𝑊𝑅𝐼𝑇𝐸𝑤𝑟𝑖𝑡𝑖𝑛𝑔 (𝑥) ∶= (𝑜𝑢𝑡! 𝑥 → 𝑊𝑅𝐼𝑇𝐸𝑓𝑖𝑛𝑖𝑠 𝑖𝑛𝑔) | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃)

𝑊𝑅𝐼𝑇𝐸𝑓𝑖𝑛𝑖𝑠 𝑖𝑛𝑔 ∶= (𝑓𝑖𝑛𝑖𝑠𝑒𝑑 → 𝑆𝐾𝐼𝑃) | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃)

Now DELTA2mobile can be defined:

𝐷𝐸𝐿𝑇𝐴2𝑚𝑜𝑏𝑖𝑙𝑒 ∶= 𝐷𝐸𝐿𝑇𝐴2𝑟𝑒𝑎𝑑𝑖𝑛𝑔

𝐷𝐸𝐿𝑇𝐴2𝑟𝑒𝑎𝑑𝑖𝑛𝑔 ∶= (𝑎? 𝑥 → 𝐷𝐸𝐿𝑇𝐴2𝑤𝑟𝑖𝑡𝑖𝑛𝑔 (𝑥)) | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃)

𝐷𝐸𝐿𝑇𝐴2𝑤𝑟𝑖𝑡𝑖𝑛𝑔 𝑥 ∶= ((𝑊𝑅𝐼𝑇𝐸𝑚𝑜𝑏𝑖𝑙𝑒 (𝑥) 𝑐/𝑜𝑢𝑡 ∥ 𝑊𝑅𝐼𝑇𝐸𝑚𝑜𝑏𝑖𝑙𝑒 (𝑥) 𝑑/𝑜𝑢𝑡)

 ∥ ((𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) | (𝑓𝑖𝑛𝑖𝑠𝑒𝑑 → 𝐷𝐸𝐿𝑇𝐴2𝑟𝑒𝑎𝑑𝑖𝑛 𝑔))) ∖ {𝑓𝑖𝑛𝑖𝑠𝑒𝑑}

The definition of the NUMBERSmobile is now straight forward:

𝑁𝑈𝑀𝐵𝐸𝑅𝑆𝑚𝑜𝑏𝑖𝑙𝑒 ∶= 𝑃𝑅𝐸𝐹𝐼𝑋𝑚𝑜𝑏𝑖𝑙𝑒 0 ∥ 𝑆𝑈𝐶𝐶𝐸𝑆𝑆𝑂𝑅𝑚𝑜𝑏𝑖𝑙𝑒 ∥ 𝐷𝐸𝐿𝑇𝐴2𝑚𝑜𝑏𝑖𝑙𝑒

∖ 𝑎, 𝑏, 𝑐

Chapter 8: Process Mobility 175

8.3.5 Limitations

The methodology described here is by no means complete, and there are

limitations from the theoretical point of view. Limitations from an implementation

point of view also exist, and shall be described presently. It first must be considered

that this technique has been developed with practical implementation of JCSP

process network mobility in mind, and no formal analysis has been undertaken to

verify that the technique is correct in all circumstances.

The first limitation is the generalisation of choice. There are three choice types

within CSP: external choice, non-deterministic choice and conditional choice. With

this method, it is external choice that is the most likely to be considered, as migrate

will likely be fired from outside the process. Non-deterministic choice of migrate

implies that the process has itself decided to migrate. From a CSP point of view this

is complicated as it implies that the external process is willing to migrate the mobile

process. This may not be the case, and the external process may be performing

other actions that do not consider migration. From an implementation point of

view, especially in Java, a process may move itself as Java objects can reference

themselves. Care would have to be taken to ensure that the inner process is

terminated independently and moved without requiring the external process to

interact with it.

Priority of choice has also not been taken into account. If migrate is offered at any

point another event is offered, then the environment may not choose migrate over

the other offered event. As the process must be willing to migrate at any point, no

guaranteed selection of migrate is a problem. In implementation terms, priority of

choice can be provided, although it is not always guaranteed [137]. This has some

repercussions for implementation which shall be discussed shortly. migrate must

always be possible when considering this approach to process state capture, and

should not be arbitrary.

Interleaving has not been taken into account. Interleaving of processes means that

the processes do not interact together. It can be considered as a parallel without

Chapter 8: Process Mobility 176

any shared events, and therefore interleaving could be converted into a parallel

sharing the migrate event.

No consideration has been taken for how current execution and data state of a

process is stored. This is implementation specific. The method described here

could add such information emitted on a channel (status) after migrate and prior to

successful termination. However, for a Java implementation, this status can be

stored within the object.

No indication as to where migrate is fired from is given, and this relates back to the

use of generalised choice. As processes can be considered strictly owned by a

parent (or starting) process, it is the parent process or the process itself that has the

ability to migrate the mobile. An ancestor of the parent process should not have

access to the individual sub-processes of one of its children.

It has also been assumed that processes can be sent via channels, and that they can

be successfully restarted within the context of the receiving process. None of these

features are present in CSP, and therefore it is currently difficult to verify that this

approach will work. Future work will hopefully lead to verification that the mobile

version of a process emits the same behaviour as the non-mobile, and that the

mobile process is also willing to offer migrate at any point in its execution.

8.4 Implementation

The method described in Section 8.3 takes an abstract view of process network

mobility via state capture. In this section, an implementation of the NUMBERS

process in JCSP shall be presented and modified to allow migration. An examination

of specific features available within Java to aid the migration process and limitations

due to the current implementation of JCSP are also presented.

8.4.1 NumbersInt Process in JCSP

The NumbersInt process in JCSP is an implementation of the NUMBERS process

described in Section 8.3.4. Full code listings of this process and the mobile process

version can be found in Appendix H. Here only necessary code segments are

presented for discussion.

Chapter 8: Process Mobility 177

The JCSP implementation of NumbersInt is similar to the CSP definition, and has

the same processes in operation: PrefixInt, SuccessorInt, and Delta2Int.

There are also IdentityInt and ProcessWriteInt processes for necessary

internal processes. The run methods (modified for clarity) of these processes are:

public class PrefixInt
{
 int prefix;
 ChannelInputInt b;
 ChannelOutputInt a;

 public void run()
 {
 a.write(prefix);
 new IdentityInt(a, b).run();
 }
}

public class IdentityInt
{
 ChannelInputInt b;
 ChannelOutputInt a;

 public void run()
 {
 while (true)
 {
 int x = b.read();
 a.write(x);
 }
 }
}

public class SuccessorInt
{
 ChannelInputInt c;
 ChannelOutputInt b;

 public void run()
 {
 while (true)
 {
 int x = c.read();
 b.write(x);
 }
 }
}

public class Delta2Int
{
 ChannelInputInt a;
 ChannelOutputInt c;
 ChannelOutputInt d;

 public void run()
 {
 ProcessWriteInt[] parWrite =
 {new ProcessWriteInt(c), new ProcessWriteInt(d)};
 Parallel par = new Parallel(parWrite);

Chapter 8: Process Mobility 178

 while (true)
 {
 int x = a.read();
 parWrite[0].value = x;
 parWrite[1].value = x;
 par.run();
 }
}

public class ProcessWriteInt
{
 ChannelOutputInt out;

 public void run()
 {
 out.write(value);
 }
}

public class Numbers
{
 ChannelOutputInt d;

 public void run()
 {
 One2OneChannelInt a = Channel.one2one();
 One2OneChannelInt b = Channel.one2one();
 One2OneChannelInt c = Channel.one2one();
 new Parallel(new CSProcess[]
 {
 new PrefixInt(0, b.in(), a.out()),
 new SuccessorInt(c.in(), b.out()),
 new Delta2Int(a.in(), c.out(), d)
 }).run();
 }
}

The Delta2Int process is defined in such a manner due to Java constraints, as the

individual ProcessWriteInt processes are required to provide parallel output.

The other approach would be to use inline code to represent the processes. The

handler for the finished event is likewise implemented in this fashion in the mobile

version of Delta2Int described in the next question.

8.4.2 MobileNumbersInt Process

Recent additions to JCSP [137] have added multi-way synchronisation via

AltingBarrier, and guarded output (AltingChannelOutputInt) is offered

with One2OneChannelSymmetricInt. This channel operates with an internal

AltingBarrier to enable guarded output. Mobile PrefixInt is simple:

Chapter 8: Process Mobility 179

public class MobilePrefixInt
{
 int prefix;
 AltingChannelInputInt b;
 AltingChannelOutputInt a;
 AltingBarrier migrate;
 MobileIdentity identity;

 public void run()
 {
 Guard[] guards = {migrate, a};
 Alternative alt = new Alternative(guards);
 switch (state)
 {
 case WRITING:
 int selected = alt.priSelect();
 switch (selected)
 {
 case 0: break; // migrate
 case 1: // a
 a.write(prefix);
 state = IDENTITY;
 identity.run();
 }
 break;
 case IDENTITY:
 identity.run();
 }
 }
}

state holds the current execution state of the process, and is initially set to

WRITING. If the first value (prefix) is successfully written, the state changes to

IDENTITY and IdentityInt is executed. The IdentityInt process is just run,

as this process will have been initialised within the constructor, or will have state

based on the previous run of the process. Mobile IdentityInt is also trivial:

public class MobileIdentityInt
{
 AltingChannelInputInt b;
 AltingChannelOutputInt a;
 AltingBarrier migrate;

 public void run()
 {
 Guard[] guards = {migrate, b, a};
 Alternative alt = new Alternative(guards);
 boolean running = true;
 while (running)
 {
 switch (state)
 {
 case READING:
 boolean[] active = {true, true, false};
 int selected = alt.priSelect(active);
 switch (selected)
 {
 case 0: // migrate
 running = false;
 break;
 case 1: // b
 x = b.read();
 state = WRITING;

Chapter 8: Process Mobility 180

 }
 break;
 case WRITING:
 boolean[] active = {true, false, true};
 int selected = alt.priSelect(active);
 switch (selected)
 {
 case 0: // migrate
 running = false;
 break;
 case 2: // a
 a.write(x);
 state = READING;
 }
 break;
 }
 }
 }
}

The usage of flagged guards in this process is to allow simplicity of implementation,

and two separate Alternative objects could have been used instead. This is a

requirement enforced by Java / JCSP. MobileSuccessorInt is similar to

MobileIdentityInt and its full code listing can be found in Appendix H.

Mobile Delta2Int is more complicated. First, consider the mobile version of

ProcessWriteInt:

public class MobileProcessWriteInt
{
 AltingChannelOutputInt out;
 AltingBarrier migrate;
 AltingBarrier finished;

 public void run()
 {
 Guard[] guards = {migrate, out, finished};
 Alternative alt = new Alternative(guards);
 switch (state)
 {
 case WRITING:
 boolean[] active = {true, true, false};
 int selected = alt.priSelect(active);
 switch (selected)
 {
 case 0: break; // migrate
 case 1: // out
 out.write(value);
 state = FINISHING;
 }
 break;
 case FINISHING:
 boolean[] active = {true, false, true};
 int selected = alt.priSelect(active);
 switch (selected)
 {
 case 0: break; // migrate
 case 2: // finished
 state = WRITING;
 } // For reuse purposes
 break;

Chapter 8: Process Mobility 181

 }
 }
}

To capture that a process may be finished or not, a new process is defined:

public class CheckFinished
{
 AltingBarrier migrate;
 AltingBarrier finished;
 boolean isFinished;

 public void run()
 {
 Guard[] guards = {migrate, finished};
 Alternative alt = new Alternative(guards);
 isFinished = false;
 int selected = alt.priSelect();
 if (selected != 0)
 isFinished = true;
 }
}

The attribute isFinished is used to check if the process completed via the

migrate event or the finished event. This value remains false unless

finished is selected within the Alternative. With this process defined,

MobileDelta2Int can now be defined:

public class MobileDelta2Int
{
 AltingChannelInputInt a;
 AltingChannelOutputInt c;
 AltingChannelOutputInt d;
 AltingBarrier migrate;
 MobileProcessWrite[] parWrite;
 CheckFinished checkFinished;
 AltingBarrier[] barrier = migrate.expand(2);

 public void run()
 {
 Guard[] guards = {migrate, a};
 Alternative alt = new Alternative(guards);
 CSProcess[] processes =
 {parWrite[0], parWrite[1], checkFinished};
 Parallel par = new Parallel(processes);
 boolean running = false;
 while (running)
 {
 switch (state)
 {
 case READING:
 int selected = alt.priSelect();
 switch (selected)
 {
 case 0:
 finished = false;
 break;
 case 1:
 x = a.read();
 state = WRITING;
 }
 break;

Chapter 8: Process Mobility 182

 case WRITING:
 parWrite[0].value = x;
 parWrite[1].value = x;
 barrier[0].enroll();
 barrier[1].enroll();
 par.run();
 if (!checkFinished.isFinished)
 running = false;
 else
 {
 state = READING;
 barrier[0].resign();
 barrier[1].resign();
 }
 break;
 }
 }
 }
}

The reason for starting the ProcessWrite and CheckFinished processes in

parallel is to ensure that the underlying threads have finished before trying to

restart the processes, which may not be the case in Java. Using a

ProcessManager to spawn the MobileProcessWrite processes and allowing

MobileNumbersInt to guard on migrate and finished can lead to exceptions

caused by spawning too many threads. The process enrols and then resigns from

the AltingBarriers of the MobileProcessWrites prior to activation and after

termination. This is to ensure that the other processes can synchronise on migrate

independently of the MobileProcessWriteInt being in operation. Whenever

the process is started it must be enrolled on the AltingBarrier, and once it has

successfully terminated, it must resign.

It is now possible to define a mobile NumbersInt process:

MobileNumbersInt(AltingChannelOutputInt d)
{
 AltingChannelOutputInt d;

 public void run()
 {
 AltingBarrier[] migrate = AltingBarrier.create(4);
 One2OneChannelSymmetricInt a = Channel.one2oneSymmetricInt();
 One2OneChannelSymmetricInt b = Channel.one2oneSymmetricInt();
 One2OneChannelSymmetricInt c = Channel.one2oneSymmetricInt();
 AltingBarrier innerMigrate = migrate[3];
 prefix = new MobilePrefixInt(0, b.out(), a.in(), migrate[0]);
 successor =
 new MobileSuccessorInt(c.in(), b.out(), migrate[1]);
 delta = new MobileDelta2Int(a.in(), c.out(), d, migrate[2]);
 new Parallel(new CSProcess[] {prefix, successor,delta}).run();
 }
}

Chapter 8: Process Mobility 183

The innerMigrate AltingBarrier is used to trigger the migration process

externally, as shall be described in the following subsection.

8.4.3 Java Serialization to Help Migration

Customisation of the serialization process can be exploited to enable the

suspension process. A class can be declared Externalizable, or specific

methods overridden to customise the serialization behaviour. Whenever an

instance of the class is written to or read from an object stream, these methods are

called instead of the standard mechanism used. For example, the method called to

serialize an instance of MobileNumbersInt is:

private void writeObject(ObjectOutputStream out) throws IOException
{
 innerMigrate.sync();
 out.writeObject(prefix);
 out.writeObject(successor);
 out.writeObject(delta);
}

The innerMigrate is waited upon by the writing process, thus it can be judged

that the processes are in such a state that they can be written to the stream safely.

8.4.4 Implementation Limitations

There are implementation problems when considering this method within the

context of JCSP. The first relates to certain assumptions made on the mobility of

events and channels. As Chapter 7 described, distributed channel mobility is not a

guaranteed feature, and still requires finalisation. General guarded events provided

by the AltingBarrier also do not have a networked equivalent. Careful design

may get round these problems.

The second problem comes from the lack of a networked AltingBarrier. As

guarded output is currently implemented using an AltingBarrier, there is no

such method to allow guarded network output. This means that networked output

must be committed to, and the general approach of guarding all events cannot be

used. However, as the mobile process will not span local machine boundaries, this

is not an issue. The remote process communicated to via the network channel shall

not be part of the mobile and should be unaware of the migration of the process.

Chapter 8: Process Mobility 184

Thus the networked output can be committed to in a write operation without fear

of deadlock, only input need be guarded upon.

Another limitation comes from the lack of shared input and output guards (from the

Any-2-One, One-2-Any and Any-2-Any channels). Therefore, certain forms of input

and output cannot be guarded. A simple method to overcome this is to place a

multiplex / demultiplex process within the channel to handle the relative input and

output transactions. This comes at a cost of resources and performance for

expansion / contraction of the shared end, the selection sequence within the

process, and the need of an extra process.

A limitation also exists for this approach when using the current implementation of

AltingBarrier, a possibility hinted at in [160]. This is not an error in the

AltingBarrier itself, as it provides the mechanism required for multi-way

synchronous event. However, for the approach to process mobility described, a

prioritised AltingBarrier is required. The AltingBarrier operates by only

allowing one process in the system to be in operation within an AltingBarrier at

any one time, using a coordination object [137]. This leads to the following

problem:

Given a set of processes A that synchronise on AltingBarrier a, if there are

two or more disjoint subsets of A that always offer choice between their own

AltingBarrier and a, then a can never be selected.

For example consider Figure 70.

Figure 70: AltingBarrier Sample Process Network

The processes can be defined as follows:

B

B’

C

C’

a
b c

Chapter 8: Process Mobility 185

𝐵 ∶= 𝑎 → 𝐵 | 𝑏 → 𝐵

𝐵′ ∶= 𝑎 → 𝐵′ | 𝑏 → 𝐵′

𝐶 ∶= 𝑎 → 𝐶 | 𝑐 → 𝐶

𝐶′ ∶= 𝑎 → 𝐶′ | 𝑐 → 𝐶′

a, b and c are AltingBarriers. To operate, a count on the number of required

synchronisations within the AltingBarrier is kept. When this reaches 0 the

relevant AltingBarrier is fired. In the above example, a has a count of 4 and b

and c both have a count of 2. As only one process can operate on

AltingBarriers at any one time, there are determinable outcomes.

B activates first and offers a and b, taking the counts down to 3 and 1 respectively.

There are three possible outcomes:

1. B’ activates next and offers a and b. The count on b reaches 0 and it is

selected. Thus the offers on a are removed taking the count back to 4.

2. Either C or C’ activates and offers a and c, taking their respective counts to 2

and 1. B’ activates next and offers a and b, taking the count on b to 0 and

selecting it. Thus two offers on a are removed taking the count back to 3.

3. C then C’ are activated in succession (or vice-versa), thus taking the count on

a to 1, but the count on c to 0. Thus c is selected and two offers on a are

removed, taking the count on a back to 3.

Similar arguments can be given for B’, C and C’ activating first. Thus it can be seen

that it is impossible for a to ever be selected. This leads to a problem when

implementing the migration method. As all processes must synchronise on migrate

for migration to occur, no more than one disjoint set of sub processes can offer

another guarded synchronisation among them. As the guarded input and output

One2OneChannelSymmetricInt channel does this to provide guarded output,

there is a danger that the internal processes will never sync on migrate. In fact, the

MobileNumbersInt will suffer from this problem if the output channel (d) is

always willing to accept messages.

To overcome this problem, the technique for making individual parts of the process

network mobile can be used (Section 8.3.3). Effectively, this approach can be used

Chapter 8: Process Mobility 186

to the point where each individual process is given its own AltingBarrier that

acts as a switch to turn off a process. However, this will come at a greater overhead

for normal process operations and migration operations.

Relative overhead in comparison to normal operation is also a consideration. As

each communication / synchronisation event must be guarded upon, there is the

added overhead of performing Alternation on these events. For example, consider

Table 10 which presents the CommsTime benchmark with fast integer channels

performed normally, using guarded channels, and with mobile processes.

Communication overhead alone is significant without considering the migration

process itself. The times presented are the iteration times in microseconds.

Table 10: CommsTime for Mobiles

 CommsTime CommsTime
Symmetric

Mobile CommsTime
Parallel Shutdown

Mobile CommsTime
Sequential Shutdown

PC 62 micros 123 micros 168 micros 168 micros

PDA 681 micros 1922 micros 2915 micros 2920 micros

The other time to consider is the time taken to shutdown processes using these

methods. This is presented in Table 11, which provides the shutdown times in

milliseconds of MobileNumbersInt processes using the normal technique (Par)

and the sequential technique (Seq). As a Numbers process consists of numerous

internal processes, the number of processes suspended is up to five times the

number of Numbers processes. Note that this time also incorporates the time

taken to reclaim any threads used within the internal processes.

Table 11: Suspending Numbers Processes

Numbers Processes 1 2 4 8 16 32 64

PC Par Shutdown 0.14 0.36 0.76 1.03 1.32 2.22 3.88

PC Seq Shutdown 0.21 0.67 1.61 2.94 6.35 12.94 29.26

PDA Par Shutdown 3.2 9.58 20.57 42.03 53.51 95.79 103.33

PDA Seq Shutdown 2.04 14.23 41.69 96.63 183.2 371.02 752

Chapter 8: Process Mobility 187

Table 11 indicates that the time to shutdown processes increases in an

approximately linear fashion when using the parallel shutdown technique. The

sequential shutdown does have a higher overhead, as expected.

Another overhead incurred by implementation of this approach is the addition of

extra processes to handle internal parallelisation. Much of the argument presented

thus far has been on the removal of processes whenever necessary when using JCSP

in a Ubiquitous Computing context. Therefore, careful consideration must be taken

when designing a process network that is intended to be mobile.

8.5 Summary

In this chapter, a discussion on how process mobility can be achieved in JCSP and

other process oriented architectures has been presented. Initially, other

approaches to capture process state were analysed and found to have certain

limitations. In particular, the approach of capturing thread state is found to be

limited due to the lack of understanding of thread boundaries, which reflect on the

fact that it is difficult to decide what should be migrated in a thread orientated

system. These are the same problems that are apparent in Java object serialization,

where aliasing problems highlight the issues with self referential and circular graph

topologies. Process based approaches are more promising because of strict

boundaries and ownership of processes and data, meaning that there is no

ambiguity over what should be migrated. However, many of the proposed solutions

for shutting down process networks lack capabilities when considering mobile

process models.

A solution to these limitations has been proposed which should overcome many of

the issues presented. However, it also has limitations. Due to subtleties within

some designs, and certain limitations within current process oriented

implementations, the method is currently not mechanical except in a specification

point of view. Future work on implementing prioritised multi-way synchronisation

that can be used in any context will overcome many of these problems.

A question is raised however on whether this is the type of mobility of a process

that is required. Strong mobility (the ability to capture execution state at any point)

Chapter 8: Process Mobility 188

is probably not required and may indeed be impractical, especially as a process can

take any of its external connections (channels) with it as it migrates and alting on

every possible event incurs an overhead. CSP processes are generally defined by

their external behaviour, so it is possible for a process to move at any point without

concern over whether it behaves as expected. The only external communications to

a process to consider are channels connected to the local execution environment.

In other words, it is possible to limit the type of mobility to constrained mobility.

Constrained mobility allows migration with execution state, but only at certain well

defined state points. Ensuring that an entire process network does shutdown

correctly prior to migration is therefore still considered difficult from this point of

view.

Chapter 9 Conclusions and Future Work

In this chapter, final conclusions are drawn from the work presented in the rest of

this thesis, and some future work presented. Section 9.1 discusses the suitability of

JCSP Networking as a framework for Ubiquitous Computing, and Section 9.2

discusses mobility within the context of JCSP Networking and Ubiquitous

Computing. Finally, Section 9.4 presents future work.

9.1 Suitability of JCSP Networking for Ubiquitous Computing

The major question asked was the suitability of JCSP Networking as a framework for

Ubiquitous Computing. There are a number of different facets of JCSP Networking

that have been examined, in particular towards performance in a more resource

constrained environment than JCSP Networking was originally designed for. From

the examination of the original architecture in Chapter 3 and the experimental data

presented in Chapter 4 it can be judged that the original implementation of JCSP

Networking had some fair performance characteristics, providing throughput on a

PDA similar to the throughput from the underlying network connection.

Other features available or easily implemented within JCSP Networking also

promote possible usage within the context of Ubiquitous Computing. In particular,

Ubiquitous Computing requires a sense of adaptability and dynamic interactions

which are possible in JCSP Networking utilising channel mobility and code mobility.

The partially transparent interface between networked and local interaction

provided by the channel mechanism within JCSP Networking allow much of this

dynamic architecture to be implemented either locally or remotely, thus increasing

the usefulness of the dynamic architectures beyond what the Java object model can

provide.

Chapter 9: Conclusions and Future Work 190

However, the original implementation of JCSP Networking had some issues when

considering some of the other requirements of Ubiquitous Computing

architectures, particularly when considering more resource constrained and

heterogeneous application areas.

9.1.1 Problems with the Current Implementation

Chapter 2 uncovered a number of properties that are desirable within a Ubiquitous

Computing framework, beyond the dynamic architectures that mobility helps to

support. To examine the problems within the original JCSP Networking

implementation, some of these properties are returned to and examined within the

context of Ubiquitous Computing. Other issues relating to these properties are also

examined individually.

9.1.1.1 Interoperability

A key feature of Ubiquitous Computing is a sense of interoperability between

numerous, heterogeneous platforms. Any feature of a framework that reduces

inter-platform communication should be considered as a serious problem when

considering Ubiquitous Computing. With JCSP Networking, such a problem exists

with the heavy reliance on object serialization, which makes inter-framework

communication difficult.

The main problem when considering interoperability and JCSP Networking is the

usage of objects to describe messages. As these objects are serialized upon the

outgoing stream, any framework wishing to communicate with JCSP Networking

requires a method to interpret these object message headers. Although this can be

built into a framework, it would require extra computational resources to do so.

Not every version of Java supports object serialization and thus there is even a

limitation for cross-Java communication.

Another issue relating to the reliance on object serialization is that data sent

between two communicating systems within JCSP must be a Java object. This again

requires other communicating platforms to be able to interpret serialized Java

objects to allow communication. This limitation can be circumvented by converting

Chapter 9: Conclusions and Future Work 191

the data to be sent into a byte array, and providing the receiving framework the

ability to strip the object header for the byte array, and reconstruct the data as

required. This requires extra functionality and computation, and limits the overall

interoperability between heterogeneous frameworks.

For ubiquity between frameworks, a ubiquitous protocol is required that enables

the communication functionality within JCSP Networking to be replicated. The

protocol should not be locked into a particular platform, but should permit inter-

platform communication. Thus, data transfer becomes the key problem, unless a

well defined data transfer mechanism is likewise developed. Common data transfer

negates the usage of common data structures usually implemented in Java (i.e.

cyclic graphs) as not all frameworks will allow such complex data structures. This

problem is therefore hard, due to the different data structures and encoding

mechanisms in place. The usage of existing data transfer techniques such as XML

may overcome this problem somewhat, but this will reduce communication

performance and require a greater amount of computational resources to achieve.

On resource constrained devices, this will cause a problem.

In general, interoperability between diverse frameworks is hampered by the sole

reliance within the original implementation of JCSP Networking on Java object

serialization. Any such reliance on a specific framework feature is to be avoided

whenever possible, and thus Java object serialization must be avoided.

9.1.1.2 Performance

The performance of JCSP Networking from a communication viewpoint is not far

removed from the bare network communication mechanism on a small device. The

experimental data presented has shown that a PDA performs at close to optimum

throughput for large data sizes. Smaller data sizes show a performance reduction,

but this is largely due to the extra message overhead in the original implementation

of JCSP Networking, and the synchronisation that occurs when using a standard

networked channel.

However, serialization on small devices can reduce throughput due to the extra

computation time required to convert a Java object into an array of bytes. For

Chapter 9: Conclusions and Future Work 192

sufficiently complex objects, performance can drop significantly. Thus, serialization

should be avoided whenever possible. Throughput is bound by the (de)serialization

performance of the PDA used within the experiments presented, and therefore

removing serialization will increase performance for basic communication. This

argument against the usage of Java serialization in small devices leads to the

question of Java’s usage in general for communicating systems on resource

constrained frameworks. If the sending of object data between two small devices

should be avoided, then applications can be developed outside Java. Thus, the

general argument that Java supports Ubiquitous Computing due to its ubiquity

across platforms is weakened.

The bounding of the performance of object message communication by serialization

may appear initially as incorrect. However, the performance characteristics of the

PC and PDA show that serialization performance is within the bounds of the

variance between the two devices. Thus, it can be deemed that serialization time is

the largest contributor to object communication within the experimental

framework.

Serialization does not appear to be related to object creation time. Object creation

time is related to the amount of memory required for the object, and is thus based

on memory allocation time. Serialization, and in particular deserialization, should

also be related to memory allocation time as the object must be re-created. On

small devices, this does not appear to be the case. The JVM utilised on the PDA

within the experiments showed serialization performance below both I/O

throughput of the network, and object creation time.

9.1.1.3 Resource Usage

Except for the reliance on Java serialization within the original implementation of

JCSP Networking and the problems this causes, the major issue when considering

JCSP Networking within Ubiquitous Computing environments is the high resource

usage. The number of created processes within the original JCSP Networking

architecture limits the usage of JCSP Networking on resource constrained devices.

Numerous processes were spawned to service the architecture, and subsequently

Chapter 9: Conclusions and Future Work 193

this caused a limitation on the usage of JCSP Networking for large scaled,

distributed systems with numerous small devices. Some processes were spawned

and subsequently destroyed during connection between devices, and this process

could also occur when a connection between the two devices already existed.

Considering the limited resources on small devices, temporary process creation

could cause the application to run out of memory.

Considering JCSP as a whole, it is arguable that any requirement of Ubiquitous

Computing on Java is a limitation. A JVM requires extra resources to operate, and

for the smallest scale devices this will likely negate the possibility of running Java

and subsequently JCSP. Therefore, if the fundamental ideas of JCSP and JCSP

Networking are of importance, then the requirement is to replicate these ideas

within other frameworks but allow interaction with JCSP Networking.

9.1.1.4 System Overhead

Within the original implementation of JCSP Networking, system overhead is a

problem. Throughput performance is reasonable, but resource usage is high.

Another factor is the high priority given to I/O operations, which can lead to

computation being starved of resources as I/O is serviced. This may or may not be

an issue depending on the application context. However, the inability to modify this

property causes a limitation. It has been shown that it is possible to flood a small

device with messages, and thus break an application. Although the experimental

data gathered utilises functionality within JCSP Networking which should not be

used in such a manner, the same outcome could occur by having multiple fast

devices communicating to a single slow device.

9.1.1.5 Scalability

An important characteristic of Ubiquitous Computing is the sense of scale

envisioned within such environments. From the observations of resource usage and

system overhead within the original implementation of JCSP Networking, it can be

argued that scalability is a problem. As the number of inter-device connections

increase, and likewise the abstractions used to communicate within those devices

increases in number, resource usage and system overhead will increase. For

Chapter 9: Conclusions and Future Work 194

Ubiquitous Computing scenarios, JCSP Networking is unlikely to be useful for larger

scaled applications.

9.1.1.6 Stability

JCSP Networking suffers from a number of stability problems. In particular, poor

error handling within the underlying architecture causes a problem for error prone

applications. Within Ubiquitous Computing, error handling is seen as a key feature,

and JCSP Networking cannot provide a reliable level of error protection. Ubiquitous

Computing environments envision numerous small devices interacting together,

and these devices may fail. As user interaction is considered to be minimal and

abstracted, it is unlikely that these devices can be easily reset. The main issue with

JCSP Networking when considered in such a context is that a device failing could

cause another device to fail due to the poor error handling to detect the

disconnection of the device. This could spread across an entire Ubiquitous

Computing environment.

Another stability problem relates to the high priority I/O. It has been shown that a

device can be caused to fail due to flooding as I/O is serviced while the application

cannot actually complete the I/O operation, thus leading to the internal buffering

increasing beyond the capabilities of the device.

9.1.1.7 Accessibility and Extensibility

A key problem with JCSP Networking, related to many of the issues discovered

when considering JCSP Networking in the context of Ubiquitous Computing, is the

accessibility and extensibility of the architecture. The tightly coupled

implementation leads to difficulties when attempting to add new features to JCSP

Networking, or extend upon existing features. This leads to extensions being built

using existing abstractions, and it has been shown that the existing architecture

utilises numerous resources to achieve these abstractions. If extensions are built

upon the existing primitives, then required resources for these extensions will also

be high.

Chapter 9: Conclusions and Future Work 195

Access to low level properties within the original JCSP Networking implementation

is limited, and thus JCSP Networking cannot be adapted to suit differing application

areas. This is not a problem if JCSP Networking is utilised within its designed

application area of cluster computing, but Ubiquitous Computing scenarios dictate

versatility. The hiding of these properties from manipulation by application

developers is a limitation.

9.1.1.8 Usage of Java Serialization

JCSP Networking relies heavily on Java object serialization, and this is a limitation

across a number of properties of interest within Ubiquitous Computing. On small

devices, serialization is slow, and the device is bound by the serialization process

rather than I/O performance. Object messages in resource constrained scenarios

should therefore be avoided.

The communication mechanism in JCSP Networking relies on Java serialization

without consideration for the sent data. This inhibits communication between

disparate frameworks as each requires functionality to be able to interpret the

message header. Although it is possible to work round this limitation, it is not ideal.

Also, the extra overhead associated with the (de)serialization of the message

header could be reduced.

9.1.1.9 Usage of Java

Reliance on Java is also considered a problem. It cannot be considered that a JVM

will be available for every possible device in a Ubiquitous Computing environment,

particularly for the smallest factor devices. The argument that Java is the key

platform for Ubiquitous Computing due to the ubiquity of Java is a weak one.

Ubiquitous Computing should not rely solely on any platform, and it has been

shown that object serialization reduces performance on small factor devices, and

also inhibits inter-framework communication. This raises a question on why Java

should be seen as the key Ubiquitous Computing platform when communication is

better suited to mechanisms possible without Java.

Chapter 9: Conclusions and Future Work 196

A probable answer to Java being seen as the key platform is the code mobility

mechanisms that enable some of the more dynamic architectures by utilising

mobile components. However, research in the mobile agent field has also

highlighted problems when viewing Java as the desirable method for such

application areas. When considering numerous frameworks, code mobility

becomes difficult to impossible.

9.1.1.10 Lack of Communication Protocol

A key problem when considering inter-framework communication relying on the

ideas within JCSP Networking is the lack of a well defined and documented

protocol. Although there are numerous implementations across different

frameworks of the virtual channel model that is utilised within JCSP Networking,

none of these frameworks can communicate as there is no universal protocol to

determine how they should communicate. If the basic channel mechanism is seen

as a suitable abstraction for Ubiquitous Computing, then a protocol to enable the

channel abstraction between frameworks is required.

The lack of a protocol also inhibits mobility. Connection mobility protocols are

required to enable the dynamic topologies within Ubiquitous Computing

environments. If the base communication mechanism in JCSP Networking does not

have a well defined protocol, then adding channel mobility to JCSP Networking

becomes a problem.

9.1.2 Overcoming the Problems in JCSP Networking

To overcome the limitations and problems of JCSP Networking when considering

the framework within a Ubiquitous Computing context, a new implementation of

JCSP Networking has been developed. This new implementation overcomes the

limitations of the original implementation in a number of ways.

9.1.2.1 Reduced Architecture

To overcome the resource overhead, the new implementation has reduced the

number of required resources. By removing processes and either replacing them

with shared data objects or folding the functionality into existing components, the

Chapter 9: Conclusions and Future Work 197

basic architecture is now more lightweight. There are still processes that could

possibly be removed, although there are limitations when considering reduced Java

implementations in this respect.

The basic networked channel mechanism is now lightweight, and utilises no extra

processes beyond those required for the inter-device connection. By doing this,

there is less chance of processes being left operational when references to channels

are lost, and the removal of the NetChannelInputProcess is one of the key

factors to resource usage reduction.

9.1.2.2 Removal of Reliance on Serialization

There is no longer reliance within the new architecture upon Java object

serialization. By abstracting data encoding functionality into a user manipulative

manner, and by removing the usage of objects as message headers, serialization is

no longer required within JCSP Networking. It is still possible to utilise serialization

if this is seen as a suitable mechanism for data transfer between two devices.

9.1.2.3 Abstraction of Data Encoding

As data encoding has been abstracted, it is possible to implement custom

mechanisms to convert data when transferring between devices. If two devices

agree upon the data encoding mechanism to be used, then it becomes possible to

have inter-framework interoperability, and thus reliance on Java and JCSP

Networking is removed. If other implementations of JCSP Networking on different

frameworks exhibit similar behaviour while communicating with one another, then

agreement on data encoding becomes the sole problem for inter-framework

communication.

9.1.2.4 Communication Protocol

By developing a communication protocol in a platform independent manner, inter-

framework communication has become further enabled. By defining the message

types and headers, replication within other frameworks becomes possible. This

strengthens the usage of JCSP Networking and communicating process

architectures in general when considering Ubiquitous Computing. As devices can

Chapter 9: Conclusions and Future Work 198

have the protocol built into their functionality, data encoding mechanisms become

the core problem for inter-device communication within a virtual channel model.

9.1.2.5 Performance

As reliance on serialization has been removed, performance has increased

somewhat. Although communication performance within the original JCSP

Networking implementation was not seen as a problem when considering the

synchronous nature of the communication, any increase in performance should be

seen as favourable.

9.1.2.6 Verified Model

To overcome the erroneous behaviour exhibited by JCSP Networking, a model has

been developed using the SPIN model checker. The model has been verified with

no errors, thus some of the erroneous behaviour of JCSP Networking has been

removed. However, further work needs to be undertaken to further examine JCSP

Networking in a larger Ubiquitous Computing context to investigate other possible

problems that may occur.

In summary, the development of a new implementation of JCSP Networking and the

creation of a communication protocol to enable inter-framework communication

has improved the usefulness of JCSP Networking and possibly other communicating

process architecture based frameworks within the context of Ubiquitous

Computing.

9.2 Mobility

The key reason to investigate JCSP Networking within the context of Ubiquitous

Computing was the potential availability of distributed mobility. Channel and

process mobility models have been proposed as likely architectures to enable

development of the complex and dynamic topologies that Ubiquitous Computing

exhibits, and the possibility of implementing these constructs within JCSP

Networking would enable construction of systems based on the channel and

process mobility models.

Chapter 9: Conclusions and Future Work 199

9.2.1 Advantages of Communicating Process Architecture Mobility

What are the practical advantages of communicating process architectures in

comparison to the common object-oriented approaches used in agent based

systems when considering mobility? The clear advantage of using a process

oriented approach to mobility is that there is no question about what should be

moved during a migrate operation. As a process completely encapsulates

everything internal to the process, then when a process migrates everything it owns

should move with it. Thus, the definition of a mobile process can easily be

described, and contains the channel connections, internal processes and data

relevant to the process. This is unlike object-oriented mobility, where it is unclear

whether an object should or should not move when it is shared, or how the

connection between a stationary object and a mobile one should be managed.

Within communicating process architecture mobility, connection and component

mobility are completely independent, which is unlike object based systems. If an

object moves, then if it is to move everything it owns, a question is raised on how to

handle shared objects. If a shared object is moved, should the remaining objects be

linked to the object via, now networked, references, or should the remaining

objects completely disconnect from the shared object or likewise the migrating

object disconnect from the stationary shared object? If the migrating shared object

is copied, what occurs when a previously connected object arrives at the new

location of the migrating shared object? As object-orientation does not distinguish

between connection and component, this becomes a problem. As communicating

process architectures treat connections (channels) and components (processes)

separately, there is no such problem. Any shared resource is protected within a

process and accessed via a channel interface. If the shared resource is moved, then

the channel interface owned by the process would be moved, but the other

connection ends would not. If a process connected to the resource were to move, it

would take its connection to the resource with it. Thus, there is no question of

what to migrate and how to handle shared resources.

The notion of strong code mobility does not in essence capture process mobility.

Data and behaviour state are similar, but strong code mobility centres on the code

Chapter 9: Conclusions and Future Work 200

rather than the component. Code may not be required in a migration, and is

arbitrary. Much can be inferred by the type of the process, and this can be carried

between different frameworks where code cannot. There are dangers if the

definition of the type is different however. Connection migration is also not

considered in code migration. Thus, strong component mobility should be

considered separate from code mobility and include connection mobility, and code

mobility considered arbitrary depending on circumstance.

9.2.2 Channel Mobility

Chapter 7 discussed possible options for channel mobility, the question being

whether a suitable model of channel mobility can be developed that allows the

dynamic topologies envisioned by Ubiquitous Computing. The call for protocols to

enable mobility requires a decision on the type of mobility model best suited for

Ubiquitous Computing. A general agreement is required to enable channel mobility

across frameworks. From a Ubiquitous Computing context, many differing models

may be suitable. If channel mobility is examined in a larger context, then a suitable

model for Ubiquitous Computing may not be suitable for cluster based computing.

To develop a suitable protocol for channel mobility, a number of considerations

must be taken. In particular, if a suitable mobility protocol is developed, the

description of a mobile channel and a suitable model must be developed. A general

description of a mobile channel can be developed based on the location of the

channel end, but extra information may be required for certain models.

9.2.3 Process Mobility

The aim was to provide the strong mobility behaviour required for agent mobility

with JCSP Networking, and thus permit the adaption and dynamic architectures for

Ubiquitous Computing. Some work towards providing a suitable technique to

enable strong process mobility within JCSP Networking has been developed,

although usage across all possible applications is still questionable. By examining

behaviour from an event viewpoint, instead of focusing on individual Java

statements, it becomes easier to handle migration. In particular, the agreement of

the mobile process to move is seen as a key property, instead of the migrating unit

Chapter 9: Conclusions and Future Work 201

being forced to move thus causing inconsistent state. As overzealous usage of the

strong mobility idea is partially to blame for the attempts at forcing component

migration like this.

Capturing process state should be possible based on event behaviour. It is also

possible to discern what should be moved and when. Committing to external

events of the mobile does not actually cause a problem, but internal events must be

deactivated. However, the externally observable behaviour of a process dictates

whether a process is strongly mobile.

Multi-framework applications make code mobility a problem, and thus behaviour

mobility is limited. Therefore, code mobility should not be relied upon to enable

the migration of events between frameworks. If code mobility is required, then

limitations must be placed upon its usage to avoid problems when communicating

with differing frameworks. The usage of a ubiquitous communication protocol

overcomes inter-framework communication to a certain degree. Code mobility

requires a framework such as Java which enables dynamic code loading, but if code

mobility is limited then the argument of Java as the Ubiquitous Computing language

is limited.

It is also questionable whether strictly strong mobility of processes is required in an

application. Considering the overheads and other difficulties when migrating a

process at any point during its execution, a much better approach to process

mobility is constrained mobility. With this viewpoint of mobility, only at certain well

defined points in execution is it possible to migrate a process. The requirement is

that the process must be in a consistent state to allow migration, and many of the

other problems associated with other software models when dealing with

component mobility are overcome by enabling connection mobility. Further

considerations on what should be taken with a mobile process are also required

before deciding when and how to migrate a mobile process.

9.3 Summary

The two questions posed at the start of this thesis questioned two different aspects

of JCSP Networking in the context of Ubiquitous Computing. The first question was

Chapter 9: Conclusions and Future Work 202

the suitability of JCSP Networking as a framework for Ubiquitous Computing

applications, and this has both a positive and negative answer. The original

implementation of JCSP Networking was not a suitable framework for developing

Ubiquitous Computing applications, particularly due to the scalability problems

caused by excessive resource usage and reliance on Java serialization. The new

implementation overcomes these issues, but requiring a Java Virtual Machine to

operate the JCSP Networking architecture is still seen as a problem. The

implementation of the new communication protocol alleviates some of this

problem.

The second question focused on the ability to build suitable mobility models to

allow practical implementation of distributed channel and process mobility within

JCSP Networking, and this question is left unanswered. Channel mobility models

have been examined, and while possible suitable models for channel mobility within

Ubiquitous Computing have been identified, further examination of these models

within different contexts and frameworks is required. A possible method of process

mobility has also been proposed, but it too requires further examination to

determine how practical this method is in all circumstances.

9.4 Future Work

There are a number of future directions that have been opened from the work

presented in this thesis. Firstly, it must be considered that the second posed

research question has not been answered, which is due to further work required in

the areas of implementable channel and process mobility models. For channel

mobility, actual implementation of the proposed models is required for examination

within the context of both Ubiquitous Computing and other usages of JCSP

Networking principles. Possible solutions lie with providing hybrid approaches that

accommodate both Ubiquitous Computing and cluster computing, such as utilising

server based mobility which utilises message box or mobile IP style mobility when

channels must stretch across domains. For process mobility, further analysis on

what is actually required for component mobility needs to be conducted. This

further analysis will enable a more concrete approach towards constrained process

Chapter 9: Conclusions and Future Work 203

mobility – process mobility that allows capturing of execution state but at fixed

points.

One of the key areas of future work highlighted in this thesis is the further

development of a generalised protocol and architecture for CSP based distributed

computing. Further analysis of the requirements of the general protocol will enable

the discovery of other message types and further development of the message

header structure to incorporate these message types. Development of the protocol

and architecture has benefits far outside the area of Ubiquitous Computing and will

enable levels of communication between CSP frameworks which is currently

severely lacking. Languages such as occam, Erlang, C++ and Python can all benefit

from a unified approach to distributed channel based applications. Analysis and

comparison of the protocol against existing approaches such as the session layer

protocol Remote Procedure Call (RPC) can provide insight into further

requirements. Further refinement of the architecture may also lead to further

performance improvements and resource usage reduction, and the possibility of

building a generic reference architecture library usable by all frameworks would be

advantageous.

Further consideration within the architecture and protocol for channel mobility is

another key direction highlighted in this work. A number of possible approaches to

channel mobility have been discussed in Chapter 7, and further analysis of these

approaches is required to discover which is the most suitable across a broad range

of application areas. This further analysis includes implementation and case study

work to examine the different models within different application areas. Also, it will

enable development of the necessary structures within the architecture required to

permit channel mobility. The discovery of the necessary protocol messages

required to support channel mobility will enable the protocol to be updated to

accommodate the necessary channel mobility model between the different CSP

based frameworks. The development of such a channel mobility mechanism will

provide a great deal of high level functionality which can be utilised in a number of

contexts, and is itself an interesting area of future research.

Chapter 9: Conclusions and Future Work 204

Further work within the area of process mobility will enable a better understanding

of the requirements for constrained process mobility. Although current work within

the area of strong code mobility is leading towards the capturing of active

component state at any point in its execution, this is largely due to the lack of

sufficient connection mobility structures that enable a migrating component to stay

connected to its communication partners. Therefore, process mobility should not

aim for such strength, as it is likely to be difficult to achieve efficiently. Instead,

further work in this area requires analysis of when a process should be able to

move, and how complex process mobility can be achieved safely. The possibility of

enabling process mobility between different frameworks is also an area of interest;

this cannot be directly supported by of code mobility however.

With a generalised protocol and architecture, along with mechanisms for providing

channel and process mobility, work into developing mechanisms that will enable

transparent channel and process mobility is required. The ability of local channels

or processes to be sent across a networked channel and for the necessary

architecture put in place to support the now distributed application would provide

transparent functionality. Although pony does provide some of this capability, it

does so at a cost to performance, and a better approach is required. Enabling this

functionality within the protocol and architecture will be advantageous, and may

allow transparent handover of processes and channels between frameworks.

Another addition to the general CSP network protocol and architecture is the

support for distributed multi-way synchronisation events. A networked

AltingBarrier would enable distributed choice on multi-way events, and the

addition of such a construct would bring JCSP Networking to the same level of

functionality as the core package of JCSP. Such a construct cannot utilise the

current approach to multi-way synchronisation within a single running application,

due to the nature of the AltingBarrier implementation. This is due to the

construct not permitting parallel access to the AltingBarrier by multiple

processes. Although on a single machine, concurrent behaviour implies only one

process may run, and hence single access is not considered an issue, with

distributed parallel architectures, the implication is that only one device on the

Chapter 9: Conclusions and Future Work 205

network can be in engaged in the selection sequence at a time, although other

processes may still be in operation. Further work in this area must focus on the

necessary architecture to permit distributed multi-way synchronisation, and the

necessary messages within the protocol to support these constructs. A centralised

coordinator will not be sufficient to control all multi-way synchronisations within

the network, and a method that performs some of the work on a local machine is

required. This approach implies a two layered method of coordination (local and

remote), with the local step consolidating and controlling as many local messages as

possible prior to coordination with a server. However, there will still be an issue

with a single process being in coordination with the main networked coordinator at

a time.

With a suitable architecture for general CSP networking in place, further work

within the area of Ubiquitous / Pervasive Computing is required to analyse the

suitability of such an approach for Ubiquitous Computing applications. This work

requires case study type analysis, and certain features of Ubiquitous / Pervasive

Computing must be taken into consideration. The sheer scale of Ubiquitous

Computing requires careful decisions and analysis into how a CSP based approach

can help understanding and reasoning, and careful consideration must also be

taken into the resource constrained nature of many Ubiquitous Computing devices.

Possible comparison with other approaches to Ubiquitous Computing is also

required, such as comparing the mobility features of a general CSP networking

architecture to mobile agent approaches. When considering resource constraints,

further analysis of smaller runtimes, such as the Transterpreter [161], may show

more suitability, and therefore work in this area to implement and examine the

network architecture and possible code mobility requirements is a further future

area of interest.

Further work within the core functionality of JCSP is also required. During the

development of a process mobility mechanism, it was highlighted that the current

implementation of the AltingBarrier could not achieve the functionality

required by the approach. This requires the development of a prioritised version of

a multi-way synchronous event, which would allow certain event combinations to

Chapter 9: Conclusions and Future Work 206

be chosen. The ability to know when to wait for further offers, and when to chose

an event with a waiting count of zero is an open question, and is difficult to achieve,

considering that certain further offers may contain higher priority events.

Another problem highlighted when process mobility was considered was the

current lack of shared channel guards. Adding this functionality to the core package

of JCSP would enable all channels to be used guards within an alternative.

Consideration must also be taken to how well the problem to this solution will

scale. Developing a shared channel guard is possible using multiple

AltingBarrier events, but would require an AltingBarrier for each shared

end. A solution that provides fast resolution of choice on shared events is more

suitable. Possible areas of investigation include utilising the other capabilities in the

Java concurrency library to allow the level of functionality that is required.

In summary, the work highlighted within this thesis has shown that there is still a

great deal of future areas that require further examination and development before

the required functionality to support Ubiquitous Computing can be suitable

achieved.

References

[1] K. Chalmers and J. Kerridge, "jcsp.mobile: A Package Enabling Mobile
Processes and Channels," in J. F. Broenink, H. Roebbers, J. Sunter, P. H.
Welch, and D. Wood (Eds.), Communicating Process Architectures 2005, pp.
109-127, IOS Press, Amsterdam, 2005.

[2] J. Kerridge, J.-O. Haschke, and K. Chalmers, "Mobile Agents and Processes
using Communicating Process Architectures," in P. H. Welch, S. Stepney, F. A.
C. Polack, F. R. M. Barnes, A. McEwan, G. S. Stiles, J. F. Broenink, and A. T.
Sampson (Eds.), Communicating Process Architectures 2008, pp. 397-409,
IOS Press, Amsterdam, 2008.

[3] J. Kerridge and K. Chalmers, "Ubiquitous Access to Site Specific Services," in
P. H. Welch, J. Kerridge, and F. R. M. Barnes (Eds.), Communicating Process
Architectures 2006, pp. 41-58, IOS Press, Amsterdam, 2006.

[4] M. Weiser, "The Computer for the 21st Century," Scientific American,
September, 1991.

[5] M. Weiser, R. Gold, and J. S. Brown, "The Origins of Ubiquitous Computing
Research at PARC in the Late 1980s," IBM Systems Journal, 38(4), pp. 693-
696, 1999.

[6] B. N. Schilit, N. Adams, R. Gold, M. M. Tso, and R. Want, "The PARCTAB
Mobile Computing System," in Fourth Workshop on Workstation Operating
Systems, pp. 34-39, IEEE Computer Society, 1993.

[7] R. Want, A. Hopper, V. Falcão, and J. Gibbons, "The Active Badge Location
System," ACM Transactions on Information Systems (TOIS), 10(1), pp. 91-
102, 1992.

[8] K. Henricksen, J. Indulska, and A. Rakotonirainy, "Infrastructure for Pervasive
Computing: Challenges," in Informatik Workshop on Pervasive Computing
and Information Logistics, pp. 214-222, 2001. Available from:
http://henricksen.id.au/publications/Informatik01.pdf

[9] R. Campbell, J. Al-Muhtadi, P. Naldurg, G. Sampemane, and M. D. Mickunas,
"Towards Security and Privacy for Pervasive Computing," in M. Okada, B.
Pierce, A. Scedrov, H. Tokuda, and A. Yonezawa (Eds.), Software Security -
Theories and Systems, Lecture Notes in Computer Science 2609, pp. 77-82,
Springer Berlin / Heidelberg, 2003.

[10] R. Milner, J. Parrow, and D. Walker, "A Calculus of Mobile Processes, I,"
Information and Computation, 100(1), pp. 1-40, 1992.

[11] R. Milner, "Ubiquitous Computing: Shall we Understand It?," The Computer
Journal, 49(4), pp. 383-389, 2006.

[12] P. H. Welch and F. R. M. Barnes, "Communicating Mobile Processes -
Introducing occam-pi," in A. E. Abdallah, C. B. Jones, and J. W. Sanders (Eds.),

http://henricksen.id.au/publications/Informatik01.pdf

References 208

Communicating Sequential Processes: The First 25 Years - Symposium on the
Occasion of 25 Years of CSP, Lecture Notes in Computer Science 3525, pp.
175-210, Springer Berlin / Heidelberg, 2005.

[13] P. H. Welch, "Process Oriented Design for Java: Concurrency for All," in H. R.
Arabnia (Ed.), International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA '2000)Volume 1, pp. 51-57,
CSREA Press, 2000.

[14] P. H. Welch, J. R. Aldous, and J. Foster, "CSP Networking for Java (JCSP.net),"
in P. M. A. Sloot, C. J. K. Tan, J. J. Dongarra, and A. G. Hoekstra (Eds.),
International Conference Computational Science — ICCS 2002, Lecture Notes
in Computer Science 2330, pp. 695-708, Springer Berlin / Heidelberg, 2002.

[15] C. A. R. Hoare, Communicating Sequential Processes. Prentice Hall, Inc.,
1985.

[16] A. W. Roscoe, The Theory and Practice of Concurrency. Prentice Hall, 1998.
[17] K. Chalmers, J. Kerridge, and I. Romdhani, "Mobility in JCSP: New Mobile

Channel and Mobile Process Models," in A. McEwan, S. Schneider, W. Ifill,
and P. H. Welch (Eds.), Communicating Process Architectures 2007, pp. 163-
182, IOS Press, Amsterdam, 2007.

[18] D. Saha and A. Mukherjee, "Pervasive Computing: A Paradigm for the 21st
Century," IEEE Computer, 36(3), pp. 25-31, 2003.

[19] D. M. Konidala, C. Y. Yeun, and K. Kim, "A Secure and Privacy Enhance
Protocol for Location-based Services in Ubiquitous Society," in IEEE Global
Telecommunications Conference 20044, pp. 2164-2168, IEEE Computer
Society, 2004.

[20] C. A. da Costa, A. C. Yamin, and C. F. R. Geyer, "Toward a General Software
Infrastructure for Ubiquitous Computing," IEEE Pervasive Computing, 7(1),
pp. 64-73, 2008.

[21] M. Weiser and J. S. Brown, "The Coming Age of Calm Technology," in P. J.
Denning and R. M. Metcalfe (Eds.), Beyond Calculation: The Next Fifty Years
of Computing, Copernicus, 1998.

[22] A. A. Araya, "Questioning Ubiquitous Computing," in 1995 ACM 23rd Annual
Conference on Computer Science, pp. 230-237, ACM Press, 1995.

[23] G. Banavar and A. Bernstein, "Software Infrastructure and Design Challenges
for Ubiquitous Computing Applications," Communications of the ACM,
45(12), pp. 92-96, 2002.

[24] G. D. Abowd and E. D. Mynatt, "Charting Past, Present, and Future Research
in Ubiquitous Computing," ACM Transactions on Computer-Human
Interaction (TOCHI), 7(1), pp. 29-58, 2000.

[25] F. Zhu, M. W. Mutka, and L. M. Ni, "Service Discovery in Pervasive
Computing Environments," IEEE Pervasive Computing, 4(4), pp. 81-90, 2005.

[26] E. Niemela and J. Latvakoski, "Survey of Requirements and Solutions for
Ubiquitous Software," in 3rd International Conference on Mobile and
Ubiquitous Multimedia, ACM International Conference Proceeding Series 83,
pp. 71-78, ACM Press, 2004.

[27] G. Koloniari and E. Pitoura, "Filters for XML-based Service Discovery in
Pervasive Computing," The Computer Journal, 47(4), pp. 461-474, 2004.

References 209

[28] K. Henricksen and J. Indulska, "A Software Engineering Framework for
Context-Aware Pervasive Computing," in Second IEEE International
Conference on Pervasive Computing and Communications (PerCom'04), pp.
77-86, IEEE Computer Society Press, 2004.

[29] R. S. Cardoso and F. Kon, "Mobile Agents: A Key for Effective Pervasive
Computing," in Second Pervasive Computing Workshop of ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
ACM, 2002. Available from:
http://www.ime.usp.br/~speicys/publications/oopsla2002.pdf

[30] S. Schuhmann, K. Herrmann, and K. Rothermel, "A Framework for Adapting
the Distribution of Automatic Application Configuration," in 5th
International Conference on Pervasive Services, pp. 163-172, ACM, 2008.

[31] M. Satyanarayanan, "Pervasive Computing: Vision and Challenges," IEEE
Personal Communications, 8(4), pp. 10-17, 2001.

[32] S.-W. Cheng, D. Garlan, B. Schmerl, J. P. Sousa, B. Spitznagel, P. Steenkiste,
and N. Hu, "Software Architecture-Based Adaptation for Pervasive Systems,"
in H. Schmeck, T. Ungerer, and L. Wolf (Eds.), Trends in Network and
Pervasive Computing - ARCS 20022299, pp. 217-233, Srpinger Berlin /
Heidelberg, 2002.

[33] J. E. Bardram, "Activity-based Computing: Support for Mobility and
Collaboration in Ubiquitous Computing," Personal and Ubiquitous
Computing, 9(5), pp. 312-322, 2005.

[34] J. Kjeldskov and M. B. Skov, "Exploring Context-awareness for Ubiquitous
Computing in the Healthcare Domain," Personal and Ubiquitous Computing,
11(7), pp. 549-562, 2007.

[35] British Computer Society, "Grand Challenges in Computing Research," British
Computer Society, 2005.

[36] B. Rao and L. Minakakis, "Evolution of Mobile Location-based Services,"
Communications of the ACM, 46(12), pp. 61-65, 2003.

[37] J. P. Munson and V. K. Gupta, "Location-Based Notification as a General-
Purpose Service," in 2nd International Workshop on Mobile Commerce, pp.
40-44, ACM, 2002.

[38] R. José, A. Moreira, H. Rodrigues, and N. Davies, "The AROUND Architecture
for Dynamic Location-Based Services," Mobile Networks and Applications,
8(4), pp. 377-387, 2003.

[39] H. Gellersen, C. Fischer, D. Guinard, R. Gostner, G. Kortuem, C. Kray, E.
Rukzio, and S. Streng, "Supporting Device Discovery and Spontaneous
Interaction with Spacial References," Personal and Ubiquitous Computing,
Online First, 2008.

[40] A. Friday, N. Davies, and E. Catteral, "Supporting Service Discovery, Querying
and Interaction in Ubiquitous Computing Environments," Wireless Networks,
10(6), pp. 631-641, 2005.

[41] M. Weiser, "Some Computer Science Issues in Ubiquitous Computing,"
Communications of the ACM, 36(7), pp. 75-84, 1993.

[42] T. Kindberg and A. Fox, "System Software for Ubiquitous Computing," IEEE
Pervasive Computing, 1(1), pp. 70-81, 2002.

http://www.ime.usp.br/~speicys/publications/oopsla2002.pdf

References 210

[43] J. P. Sousa, B. Schmerl, P. Steenkiste, and D. Garlan, "Activity-oriented
Computing," in S. K. Mostefaoui, Z. Maamar, and G. Giaglis (Eds.), Advances
in Ubiquitous Computing: Future Paradigms and Directions, IGI Publishing,
Herschey, PA, 2008.

[44] J. Lindenberg, W. Pasman, K. Kranenborg, J. Stegeman, and M. A. Neerinex,
"Improving Service Matching and Selection in Ubiquitous Computing
Environments: A User Study," Personal and Ubiquitous Computing, 11(1), pp.
59-68, 2005.

[45] K. Henricksen, J. Indulska, T. McFadden, and S. Balasubramaniam,
"Middleware for Distributed Context-Aware Systems," in R. Meersman, Z.
Tari, M.-S. Hacid, J. Mylopoulos, B. Pernici, O. Babaoglu, H.-A. Jacobsen, M.
Kifer, and S. Spaccapietra (Eds.), On the Move to Meaningful Internet
Systems 2005: CoopIS, DOA, and ODBASE, Lecture Notes in Computer Science
3760, pp. 846-863, Springer Berlin / Heidelberg, 2005.

[46] W. K. Edwards, M. W. Newman, J. Z. Sedivy, and T. F. Smith, "Bringing
Network Effects to Pervasive Spaces," IEEE Pervasive Computing, 4(3), pp.
15-17, 2005.

[47] D. Garlan and B. Schmerl, "Component-Based Software Engineering in
Pervasive Computing Environments," in The 4th ICSE Workshop on
Component-Based Software Engineering: Component Certification and
System Prediction, 2001. Available from:
http://www.cs.cmu.edu/afs/cs/project/able/ftp/cbse01/cbse01-
submission.pdf

[48] D. Hoareau and Y. Mahéo, "Middleware Support for the Deployment of
Ubiquitous Software Components," Personal and Ubiquitous Computing,
12(2), pp. 167-178, 2008.

[49] F. Zambonelli and M. Luck, "Agent Hell: A Scenario of Worst Practices," IEEE
Computer, 37(3), pp. 96-98, 2004.

[50] Y. Jung, J. Lee, and M. Kim, "Multi-agent Based Community Computing
System Development with the Model Driven Architecture," in Fifth
International Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 1329-1331, ACM, 2005.

[51] J. M. Molina, J. M. Corchado, and J. Bajo, "Ubiquitous Computing for Mobile
Environments," in A. Moreno and J. Pavón (Eds.), Issues in Multi-Agent
Systems, Birkhäuser Basel, 2007, pp. 33-57.

[52] S. Hartwig, J.-P. Strömann, and P. Resch, "Wireless Microservers," IEEE
Pervasive Computing, 1(2), pp. 58-66, 2002.

[53] R. Want, T. Pering, G. Danneels, M. Kumar, M. Sundar, and J. Light, "The
Personal Server: Changing the Way We Think About Ubiquitous Computing,"
in G. Borriello and L. E. Holmquist (Eds.), 4th International Conference on
Ubiquitous Computing, Lecture Notes in Computer Science 2498, pp. 223-
230, Springer Berlin / Heidelberg, 2002.

[54] T. Moors, M. Mei, and A. Salim, "Using Short-range Communication to
Control Mobile Device Functionality," Personal and Ubiquitous Computing,
12(1), pp. 11-18, 2008.

http://www.cs.cmu.edu/afs/cs/project/able/ftp/cbse01/cbse01-submission.pdf
http://www.cs.cmu.edu/afs/cs/project/able/ftp/cbse01/cbse01-submission.pdf

References 211

[55] G. D. Abowd, L. Iftode, and H. Mitchell, "Guest Editors' Introduction: The
Smart Phone: A First Platform for Pervasive Computing," IEEE Pervasive
Computing, 4(2), pp. 18-19, 2005.

[56] M. Tokoro, "The Society of Objects," in Conference on Object Oriented
Programming Systems Languages and Applications, pp. 3-12, ACM, 1993.

[57] D. B. Lange and M. Oshima, "Mobile Agents with Java: The Aglet API," World
Wide Web, 1(3), pp. 111-121, 1998.

[58] C. A. Iglesias, M. Garijo, and J. C. Gonzalez, "A Survey of Agent-Oriented
Methodologies," in J. P. Müller, M. P. Singh, and A. S. Rao (Eds.), 5th
International Conference on Intelligent Agents: Agents Theories,
Architectures, and Languages, Lecture Notes in Computer Science 1555,
Springer Berlin / Heidelberg, 1998.

[59] F. Baude, D. Caromel, F. Huet, and J. Vayssière, "Communicating Mobile
Active Objects in Java," in M. Bubak, H. Afsarmanesh, R. Williams, and B.
Hertzberger (Eds.), High Performance Computing and Networking: 8th
International Conference, HPCN Europe 2000, Lecture Notes in Computer
Science 1823, pp. 633-643, Springer Berlin / Heidelberg, 2000.

[60] B. Bauer, "UML Class Diagrams Revisited in the Context of Agent-Based
Systems," in M. Wooldrige, G. Weiß, and P. Ciancarini (Eds.), Second
International Workshop on Agent-Oriented Software Engineering, Lecture
Notes in Computer Science 2222, pp. 101-118, Springer Berlin / Heidelberg,
2002.

[61] M. Wooldrige and P. Ciancarini, "Agent-Oriented Software Engineering: The
State of the Art," in P. Ciancarini and M. Wooldrige (Eds.), First International
Workshop on Agent-Oriented Software Engineering, Lecture Notes in
Computer Science 1957, pp. 55-82, Springer Berlin / Heidelberg, 2001.

[62] H. S. Nwana, "Software Agents: An Overview," Knowledge Engineering
Review, 11(3), pp. 205-244, 1996.

[63] A. R. Silva, A. Ramão, D. Deugo, and M. M. da Silva, "Towards a Reference
Model for Surveying Mobile Agent Systems," Autonomous Agents and Multi-
Agent Systems, 4(3), pp. 187-231, 2001.

[64] E. A. Kendall, P. V. M. Krishna, C. V. Pathak, and C. B. Suresh, "Patterns of
Intelligent and Mobile Agents," in Second International Conference on
Autonomous Agents, pp. 92-99, ACM, 1998.

[65] I. Dickinson and M. Wooldrige, "Towards Practical Reasoning Agents for the
Semantic Web," in Second International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 827-834, ACM, 2003.

[66] D. Kinny and M. Georgeff, "Modelling and Design of Multi-Agent Systems,"
in J. P. Müller, M. Wooldrige, and N. R. Jennings (Eds.), Intelligent Agents III:
Agent Theories, Architectures, and Languages, Lecture Notes in Computer
Science 1193, pp. 1-20, Springer Berlin / Heidelberg, 1996.

[67] Z. Guessoum and J.-P. Briot, "From Active Objects to Autonomous Agents,"
IEEE Concurrency, 7(3), pp. 68-76, 1999.

[68] A. F. Garcia, C. J. P. de Lucena, and D. D. Cowan, "Agents in Object-Oriented
Software Engineering," Software: Practice and Experience, 34(5), pp. 489-
521, 2004.

References 212

[69] B. Bauer, J. P. Müller, and J. Odell, "An Extension of UML by Protocols for
Multiagent Interaction," in Fourth International Conference on Mutliagent
Systems, pp. 207-214, IEEE Computer Society, 2000.

[70] M. Luck and M. d'Inverno, "A Formal Framework for Agency and Autonomy,"
in Proceedings of the First International Conference on Multi-Agent Systems,
pp. 254-260, AAAI Press / MIT Press, 1995.

[71] M. Luck, N. Griffiths, and M. d'Inverno, "From Agent Theory to Agent
Construction: A Case Study," in J. E. Müller, M. Wooldrige, and N. R. Jennings
(Eds.), Intelligent Agents III Agent Theories, Architectures, and Languages,
Lecture Notes in Computer Science 1193, pp. 49-63, Springer Berlin /
Heidelberg, 1997.

[72] M. Duvigneau, D. Moldt, and H. Rölke, "Concurrent Architecture for a Multi-
agent Platform," in F. Giunchiglia, J. Odell, and G. Weiß (Eds.), Third
International Workshop on Agent-Oriented Software Engineering, Lecture
Notes in Computer Science 2585, pp. 59-72, Springer Berlin / Heidelberg,
2002.

[73] H. Xu and S. M. Shatz, "A Framework for Model-based Design of Agent-
oriented Software," IEEE Transactions on Software Engineering, 29(1), pp.
15-30, 2003.

[74] E. Gonzalez, C. Bustacara, and J. Avila, "Agents for Concurrent
Programming," in J. F. Broenink and G. H. Hilderink (Eds.), Communicating
Process Architectures 2003, pp. 157-166, IOS Press, Amsterdam, 2003.

[75] Z.-h. Yu and Y.-l. Cai, "On Modeling and Analyzing Multi-agent Systems Using
π-calculus," Journal of Shanghai University (English Edition), 11(1), pp. 58-63,
2007.

[76] A. Fuggetta, G. P. Picco, and G. Vigna, "Understanding Code Mobility," IEEE
Transactions on Software Engineering, 24(5), pp. 342-361, 1998.

[77] P. Tröger and A. Polze, "Object and Process Migration in .NET," in Eighth
IEEE International Workshop on Object-Oriented Real-Time Dependable
Systems, pp. 139-146, IEEE Computer Society, 2003.

[78] L. Bettini and R. de Nicola, "Translating Strong Mobility into Weak Mobility,"
in G. P. Picco (Ed.), Mobile Agents: 5th International Conference, MA 2001,
Lecture Notes in Computer Science 2240, pp. 182-197, Springer Berlin /
Heidelberg, 2001.

[79] C. Ghezzi and G. Vigna, "Mobile Code Paradigms and Technologies: A Case
Study," in K. Rothermel and R. Popescu-Zeletin (Eds.), First International
Workshop on Mobile Agents, Lecture Notes in Computer Science 1219, pp.
39-49, Springer Berlin / Heidelberg, 1997.

[80] L. Cardelli, "Abstractions for Mobile Computation," in J. Vitek and C. D.
Jensen (Eds.), Secure Internet Programming: Security Issues for Mobile and
Distributed Objects. vol. 1603, Springer Berlin / Heidelberg, 1999, pp. 51-94.

[81] G.-C. Roman, G. P. Picco, and A. L. Murphy, "Software Engineering for
Mobility: A Roadmap," in Proceedings of the Conference on The Future of
Software Engineering, pp. 241-258, ACM Press, 2000.

[82] A. Phillips, N. Yoshida, and S. Eisenbach, "A Distributed Abstract Machine for
Boxed Ambient Calculi," in D. Schmidt (Ed.), Programming Languages and
Systems: 13th European Symposium on Programming, ESOP 2004, Lecture

References 213

Notes in Computer Science 2986, pp. 155-170, Springer Berlin / Heidelberg,
2004.

[83] G. Fortino, F. Frattolillo, W. Russo, and E. Zimeo, "Mobile Active Objects for
Highly Dynamic Distributed Computing," in Proceedings International
Parallel and Distributed Processing Symposium. IPDPS 2002,, pp. 118-125,
IEEE Press, 2002.

[84] R. R. Brooks, "Mobile Code Paradigms and Security Issues," IEEE Internet
Computing, 8(3), pp. 54-59, 2004.

[85] A. Lopes, J. L. Fiadeiro, and M. W. Wemelinger, "Architectural Primitives for
Distribution and Mobility," in Proceedings of the 10th ACM SIGSOFT
Symposium on Foundations of Software Engineering, pp. 41-50, ACM, 2002.

[86] Y. Zheng and A. T. S. Chan, "MobiGATE: A Mobile Computing Middleware for
the Active Deployment of Transport," IEEE Transactions on Software
Engineering, 32(1), pp. 35-50, 2006.

[87] F. Oquendo, "π-ADL: An Architecture Description Language Based on the
Higher-Order Typed π-Calculus for Specifying Dynamic and Mobile Software
Architectures," ACM SIGSOFT Software Engineering Notes, 29(3), pp. 1-14,
2004.

[88] R. Milner, "Turing, Computing and Communication," in D. Goldin, S. A.
Smolka, and P. Wegner (Eds.), Interactive Computation: The New Paradigm,
Springer Berlin/Heidelberg, 2006, pp. 1-8.

[89] X. Zhong and C.-Z. Xu, "A Reliable Connection Migration Mechanism for
Synchronous Transient Communication in Mobile Codes," in International
Conference on Parallel Processing 20041, pp. 431-438, IEEE Computer
Society, 2004.

[90] D. May and H. Muller, "Copying, Moving and Borrowing Semantics," in A.
Chalmers, M. Mirmehdi, and H. Muller (Eds.), Communicating Process
Architectures 2001, pp. 15-26, IOS Press, Amsterdam, 2001.

[91] F. R. M. Barnes and P. H. Welch, "Mobile Data, Dynamic Allocation and Zero
Aliasing: an occam Experiment," in A. Chalmers, M. Mirmehdi, and H. Muller
(Eds.), Communicating Process Architectures 2001, pp. 243-264, IOS Press,
Amsterdam, 2001.

[92] C. A. R. Hoare and H. Jifeng, "A Trace Model for Pointers and Objects," in R.
Guerraoui (Ed.), Proceedings ECOOP'99 - Object-Oriented Programming:
13th European Conference., Lecture Notes in Computer Science 1628, p. 668,
Springer Berlin / Heidelberg, 1999.

[93] T. Locke, "Towards a Viable Alternative to OO - Extending the occam/CSP
Programming Model," in A. G. Chalmers, M. Mirmehdi, and H. Muller (Eds.),
Communicating Process Architectures 2001, pp. 329-349, IOS Press,
Amsterdam, 2001.

[94] J. Vitek, M. Serrano, and D. Thanos, "Security and Communication in Mobile
Object Systems," in J. Vitek and C. Tschudin (Eds.), Second International
Workshop on Mobile Object Systems: Towards the Programmable
Internet1222, pp. 177-194, Springer Berlin / Heidelberg, 1997.

[95] J. Potter, J. Noble, and D. Clarke, "The Ins and Outs of Objects," in The
Australian Software Engineering Conference, pp. 80-89, IEEE Press, 1998.

References 214

[96] J. L. Fiadeiro and A. Lopes, "CommUnity on the Move: Architectures for
Distribution and Mobility," in F. S. de Boer, M. M. Bonsangue, S. Graf, and
W.-P. de Roever (Eds.), Second International Symposium on Formal Methods
for Components and Objects, Lecture Notes in Computer Science 3188, pp.
177-196, Springer Berlin / Heidelberg, 2004.

[97] P. J. McCann and G.-C. Roman, "Compositional Programming Abstractions
for Mobile Computing," IEEE Transactions on Software Engineering, 24(2),
pp. 97-110, 1998.

[98] L. Andrade, P. Baldan, H. Baumeister, R. Bruni, A. Corradini, R. de Nicola, J. L.
Fiadeiro, F. Gadducci, S. Gnesi, P. Hoffman, N. Koch, P. Kosiuczenko, A.
Lapadula, D. Latella, A. Lopes, M. Loreti, M. Massink, F. Mazzanti, U.
Montanari, C. Oliveira, R. Pugliese, A. Tarlecki, M. W. Wemelinger, M.
Wirsing, and A. Zawlocki, "AGILE: Software Architecture for Mobility," in M.
Wirsing, D. Pattinson, and R. Hennicker (Eds.), 16th International Workshop
on Recent Trends in Algebraic Development Techniques Lecture Notes in
Computer Science 2755, pp. 1-33, Springer Berlin / Heidelberg, 2003.

[99] A. Lopes and J. L. Fiadeiro, "Adding Mobility to Software Architectures,"
Electronic Notes in Theoretical Computer Science, 97, pp. 241-258, 2004.

[100] P. J. McCann and G.-C. Roman, "Modeling Mobile IP in Mobile UNITY," ACM
Transactions on Software Engineering and Methodology (TOSEM), 8(2), pp.
115-146, 1999.

[101] S. D. Zilio, "Mobile Processes: A Commented Bibliography," in F. Cassez, C.
Jard, B. Rozoy, and M. D. Ryan (Eds.), 4th Summer School on Modeling and
Verification of Parallel Processes, Lecture Notes in Computer Science 2067,
pp. 206-222, Springer Berlin / Heidelberg, 2000.

[102] A. Phillips, S. Eisenbach, and D. Lister, "From Process Algebra to Java Code,"
in ECOOP Workshop on Formal Techniques for Java-like Programs:
FTfJP'2002, 2002. Available from: http://www.cs.ru.nl/ftfjp/2002.html

[103] L. Cardelli, "Mobile Ambient Synchronization," Digital Equipment
Corporation, Systems Research Centre, Palo Alto, Technical Report 1997-
013, July 1997.

[104] S. Papastavrou, G. Samaras, and E. Pitoura, "Mobile Agents for WWW
Distributed Database Access," IEEE Transactions on Knowledge and Data
Engineering, 12(5), pp. 802-820, 2000.

[105] R. Gray, D. Kotz, G. Cybenko, and D. Rus, "Mobile Agents: Motivations and
State-of-the-Art Systems," Dartmouth College 2000.

[106] C. Spyrou, G. Samaras, E. Pitoura, and P. Evripidou, "Mobile Agents for
Wireless Computing: The Convergence of Wireless Computational Models
with Mobile-Agent Technologies," Mobile Networks and Applications, 9(5),
pp. 517-528, 2004.

[107] G. Cabri, L. Leonardi, and F. Zambonelli, "MARS: A Programmable
Coordination Architecture for Mobile Agents," IEEE Internet Computing, 4(4),
pp. 26-35, 2000.

[108] G. P. Picco, "Mobile Agents: an Introduction," Microprocessors and
Microsystems, 25(2), pp. 65-74, 2001.

[109] D. Chess, C. Harrison, and A. Kershenbaum, "Mobile Agents: Are They Good
Enough," in J. Vitek and C. Tschudin (Eds.), Second International workshop

http://www.cs.ru.nl/ftfjp/2002.html

References 215

Mobile Object Systems Towards the Programmable Internet, Lecture notes in
Computer Science 1222, pp. 25-45, Springer Berlin / Heidelberg, 1997.

[110] D. B. Lange, "Mobile Objects and Mobile Agents: The Future of Distributed
Computing?," in E. Jul (Ed.), 12th European Conference Object-Oriented
Programming: ECOOP’981445, pp. 1-12, Springer Berlin / Heidelberg, 1998.

[111] R. S. Gray, G. Cybenko, D. Kotz, R. A. Peterson, and D. Rus, "D'Agents:
Applications and Performance of a Mobile-Agent System," Software: Practice
and Experience, 32(6), pp. 543-573, 2002.

[112] G. Fortino and W. Russo, "Multi-coordination of Mobile Agents: a Model and
Component-based Architecture," in SAC '05: Proceedings of the 2005 ACM
symposium on Applied computing, pp. 443-450, ACM, 2005.

[113] M. Izatt, P. Chan, and T. Brecht, "Ajents: Towards an Environment for
Parallel, Distributed and Mobile Java Applications," Concurrency: Practice
and Experience, 12(8), pp. 667-685, 2000.

[114] F. Bellifemine, A. Poggi, and G. Rimassa, "JADE: a FIPA2000 Compliant Agent
Development Environment," in Fifth International Conference on
Autonomous Agents, pp. 216-217, ACM, 2001.

[115] U. Pinsdorf and V. Roth, "Mobile Agent Interoperability Patterns and
Practice," in Ninth Annual IEEE International Conference and Workshop on
pp. 238-244, IEEE Computer Society, 2002.

[116] E. F. d. A. Lima, P. D. d. L. Machado, J. C. A. de Figueiredo, and F. R. Sampaio,
"Implementing Mobile Agent Design Patterns in the JADE Framework," TILAB
Journal, (EXP in Search of Innovation - Special Issue on JADE), 2003. Available
from: http://jade.tilab.com/papers/EXP/Ferreira.pdf

[117] P. H. Welch, "Java Threads in the Light of occam/CSP," in P. H. Welch and A.
W. P. Bakkers (Eds.), WoTUG-21: Architectures, Languages and Patterns for
Parallel and Distributed Applications, pp. 259-284, IOS Press, Amsterdam,
1998.

[118] C. Petitpierre, "Synchronous Active Objects Introduce CSP's Primitives in
Java," in J. Pascoe, P. H. Welch, R. Loader, and V. Sunderam (Eds.),
Communicating Process Architectures 2002, pp. 109-122, IOS Press,
Amsterdam, 2002.

[119] C. Petitpierre, "A Development Method Boosted by Synchronous Active
Objects," in J. F. Broenink and G. H. Hilderink (Eds.), Communicating Process
Architectures 2003, pp. 17-32, IOS Press, Amsterdam, 2003.

[120] M. Schweigler, A Unified Model for Inter- and Intra-Process Concurrency.
PhD Thesis, The University of Kent, Canterbury, 2006.

[121] C. G. Ritson and P. H. Welch, "A Process-Oriented Architecture for Complex
System Modelling," in A. McEwan, S. Schneider, W. Ifill, and P. H. Welch
(Eds.), Communicating Process Architectures 2007, pp. 249-266, IOS Press,
Amsterdam, 2007.

[122] M. Hericko, M. B. Juric, I. Rozman, S. Beloglavec, and A. Zivkovic, "Object
Serialization Analysis and Comparison in Java and .NET," ACM SIGPLAN
Notices, 38(8), pp. 44-54, 2003.

[123] M. Phillippsen, B. Haumacher, and C. Nester, "More Efficient Serialization
and RMI for Java," Concurrency: Practice and Experience, 12(7), pp. 495-518,
2000.

http://jade.tilab.com/papers/EXP/Ferreira.pdf

References 216

[124] Inmos Limited, "The T9000 Transputer Instruction Set Manual," SGS-
Thompson Microelectronics 1993.

[125] B. Vinter and P. H. Welch, "Cluster Computing and JCSP Networking," in J.
Pascoe, P. H. Welch, R. Loader, and V. Sunderam (Eds.), Communicating
Process Architectures 2002, pp. 203-222, IOS Press, Amsterdam, 2002.

[126] K. Chalmers and S. Clayton, "CSP for .NET Based on JCSP," in P. H. Welch, J.
Kerridge, and F. R. M. Barnes (Eds.), Communicating Process Architectures
2006, pp. 59-76, IOS Press, Amsterdam, 2006.

[127] N. C. Schaller, S. W. Marshall, and Y.-F. Cho, "A Comparison of High
Performance, Parallel Computing Java Packages," in J. F. Broenink and G. H.
Hilderink (Eds.), Communicating Process Architectures 2003, pp. 1-16, IOS
Press, Amsterdam, 2003.

[128] S. Kumar and G. S. Stiles, "A JCSP.net Implementation of a Massively
Multiplayer Online Game," in P. H. Welch, J. Kerridge, and F. R. M. Barnes
(Eds.), Communicating Process Architectures 2006, pp. 135-149, IOS Press,
Amsterdam, 2006.

[129] N. Brown, "C++CSP Networked," in I. East, J. Martin, P. H. Welch, D. Duce,
and M. Green (Eds.), Communicating Process Architectures 2004, pp. 185-
200, IOS Press, Amsterdam, 2004.

[130] M. Schweigler and A. T. Sampson, "pony - The occam-π Network
Environment," in P. H. Welch, J. Kerridge, and F. R. M. Barnes (Eds.),
Communicating Process Architectures 2006, pp. 77-108, IOS Press,
Amsterdam, 2006.

[131] A. A. Lehmberg and M. Olsen, "An Introduction to CSP.NET," in P. H. Welch,
J. Kerridge, and F. R. M. Barnes (Eds.), Communicating Process Architectures
2006, pp. 13-30, IOS Press, Amsterdam, 2006.

[132] K. Chalmers, J. Kerridge, and I. Romdhani, "Performance Evaluation of JCSP
Micro Edition: JCSPme," in P. H. Welch, J. Kerridge, and F. R. M. Barnes
(Eds.), Communicating Process Architectures 2006, pp. 31-40, IOS Press,
Amsterdam, 2006.

[133] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A. Davey, "A
Benchmark Suite for High Performance Java," Concurrency: Practice and
Experience, 12(6), pp. 375-388, 2000.

[134] N. Brown and P. H. Welch, "An Introduction to the Kent C++CSP Library," in J.
F. Broenink and G. H. Hilderink (Eds.), Communicating Process Architectures
2003, pp. 139-156, IOS Press, Amsterdam, 2003.

[135] K. Chalmers, J. Kerridge, and I. Romdhani, "A Critique of JCSP Networking,"
in P. H. Welch, S. Stepney, F. A. C. Polack, F. R. M. Barnes, A. McEwan, G. S.
Stiles, J. F. Broenink, and A. T. Sampson (Eds.), Communicating Process
Architectures 2008, pp. 271-291, IOS Press, Amsterdam, 2008.

[136] A. Ripke, A. R. Allen, Y. Feng, and S. C. Allison, "Distributed Computing using
Channel Communications and Java," in P. H. Welch and A. W. P. Bakkers
(Eds.), Communicating Process Architectures 2000, pp. 49-62, IOS Press,
Amsterdam, 2000.

[137] P. H. Welch, N. Brown, J. Moores, K. Chalmers, and B. H. C. Sputh,
"Integrating and Extending JCSP," in A. McEwan, S. Schneider, W. Ifill, and P.

References 217

H. Welch (Eds.), Communicating Process Architectures 2007, pp. 349-370,
IOS Press, Amsterdam, 2007.

[138] P. H. Welch, "Graceful Termination - Graceful Resetting," in A. W. P. Bakkers
(Ed.), OUG-10: Applying Transputer Based Parallel Machines, pp. 310-317,
IOS Press, 1989.

[139] B. H. C. Sputh and A. R. Allen, "JCSP-Poison: Safe Termination of CSP Process
Networks," in J. F. Broenink, H. Roebbers, J. Sunter, P. H. Welch, and D.
Wood (Eds.), Communicating Process Architectures 2005, pp. 71-107, IOS
Press, Amsterdam, 2005.

[140] F. R. M. Barnes and P. H. Welch, "Prioritised Dynamic Communicating
Processes: Part I," in J. Pascoe, P. H. Welch, R. Loader, and V. Sunderam
(Eds.), Communicating Process Architectures 2002, pp. 321-352, IOS Press,
Amsterdam, 2002.

[141] G. J. Holzmann, The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley, Boston, 2003.

[142] Formal Systems (Europe) Ltd., "FDR: User Manual and Tutorial, version
2.82," Formal Systems (Europe) Ltd., 2005.

[143] P. H. Welch and F. R. M. Barnes, "A CSP Model for Mobile Channels," in P. H.
Welch, S. Stepney, F. A. C. Polack, F. R. M. Barnes, A. McEwan, G. S. Stiles, J.
F. Broenink, and A. T. Sampson (Eds.), Communicating Process Architectures
2008, pp. 17-33, IOS Press, Amsterdam, 2008.

[144] H. H. Happe, "TCP Input Threading in High Performance Distributed
Systems," in P. H. Welch, J. Kerridge, and F. R. M. Barnes (Eds.),
Communicating Process Architectures 2006, pp. 203-213, IOS Press,
Amsterdam, 2006.

[145] H. Muller and D. May, "A Simple Protocol to Communicate Channels over
Channels," in D. Pritchard and J. Reeve (Eds.), Proceedings 4th International
Euro-Par Conference: Euro-Par’98 Parallel Processing, Lecture Notes in
Computer Science 1470, pp. 591-600, Springer Berlin / Heidelberg, 1998.

[146] C. E. Perkins, "Mobile IP," IEEE Communications Magazine, 40(5), pp. 66-82,
2002.

[147] R. Koo and S. Toueg, "Checkpointing and Rollback-Recovery for Distributed
Systems," IEEE Transactions on Software Engineering, 13(1), pp. 23-31, 1987.

[148] J. Howell, "Straightforward Java Peristence Through Checkpointing," in R.
Morrison, M. Jordan, and M. Atkinson (Eds.), Proceedings of the 3rd
International Workshop on Peristence and Java (PJW3): Advances in
Peristent Object Systems, pp. 322-334, Mogran Kaufmann Publishers, Inc.,
1999.

[149] E. Truyen, B. Robben, B. Vanhaute, T. Coninx, W. Joosen, and P. Verbaeten,
"Portable Support for Transparent Thread Migration in Java," in D. Kotz and
F. Mattern (Eds.), Agent Systems, Mobile Agents, and Applications, Lecture
Notes in Computer Science 1882, pp. 29-43, Springer Berlin / Heidelberg,
2000.

[150] D. Weyns, E. Truyen, and P. Verbaeten, "Serialization of Distributed
Execution-state in Java," in M. Aksit, M. Mezini, and R. Unland (Eds.),
Objects, Components, Architectures, Services, and Applications for a
Networked World: International Conference NetObjectDays, NODe 2002,

References 218

Lecture Notes in Computer Science 2591, pp. 41-61, Springer Berlin /
Heidelburg, 2003.

[151] W. Zhu, C.-L. Wang, W. Fang, and F. C. M. Lau, "A New Transparent Java
Thread Migration System Using Just-In-Time Recompilation," in T. Gonzalez
(Ed.), The 16th IASTED International Conference on Parallel and Distributed
Systems: PDCS 2004, pp. 766-771, ACTA Press, 2004.

[152] S. Bouchenak and D. Hagimont, "Zero Overhead Java Thread Migration,"
Insitut National de Rechierche en Informatique et an Automatique 2002.

[153] S. Bouchenak, D. Hagimont, and N. De Palma, "Efficient Java Thread
Serialization," in Proceedings of the 2nd International Conference on
Principles and Practice of Programming in Java, ACM International
Conference Proceeding Series 42, pp. 35-39, Computer Science Press, Inc.,
2003.

[154] S. Bouchenak, D. Hagimont, S. Krakowiak, N. de Palma, and F. Boyer,
"Experiences Implementing Efficient Java Thread Serialization, Mobility and
Persistence," Instiut National de Recherche en Informatique et an
Automatique 2002.

[155] T. Sakamoto, T. Sekigucki, and A. Yonezawa, "Bytecode Transformation for
Portable Thread Migration in Java," in D. Kotz and F. Mattern (Eds.), Agent
Systems, Mobile Agents, and Applications, Lecture Notes in Computer
Science 1882, pp. 16-28, Springer Berlin / Heidelberg, 2000.

[156] R. K. K. Ma, C.-L. Wang, and F. C. M. Lau, "M-JavaMPI: A Java-MPI Binding
with Process Migration Support," in 2nd IEEE/ACM International Symposium
on Cluster Computing and the Grid, 2002, pp. 255-232, IEEE Computer
Society, 2002.

[157] N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth, G. A. Hill, and R. Jeffers,
"Strong Mobility and Fine-Grained Resource Control in NOMADS," in D. Kotz
and F. Mattern (Eds.), Agent Systems, Mobile Agents, and Applications,
Lecture Notes in Computer Science 1882, pp. 2-15, Springer Berlin /
Heidelberg, 2000.

[158] G. Fortino, W. Russo, and E. Zimeo, "A Statecharts-based Software
Development Process for Mobile Agents," Information and Software
Technology, 46(13), pp. 907-921, 2004.

[159] F. R. M. Barnes and P. H. Welch, "Communicating Mobile Processes," in I.
East, J. Martin, P. H. Welch, D. Duce, and M. Green (Eds.), Communicating
Process Architectures 2004, pp. 201-218, IOS Press, Amsterdam, 2004.

[160] P. H. Welch, F. R. M. Barnes, and F. A. C. Polack, "Communicating Complex
Systems," in 11th IEEE International Conference on Engineering of Complex
Systems, 2006: ICECCS 2006, pp. 107-120, IEEE Computer Society, 2006.

[161] C. L. Jacobsen and M. C. Jadud, "The Transterpreter: A Transputer
Interpreter," in I. East, D. Duce, M. Green, J. Martin, and P. H. Welch (Eds.),
Communicating Process Architectures 2004, pp. 99-107, IOS Press,
Amsterdam, 2004.

[162] Sun Microsystems, "Java 2 SDK, Standard Edition Documentation," 2001.
Available from: http://java.sun.com/j2se/1.3/docs/guide/

[163] Sun Microsystems, "Java Platform, Standard Edition 6 API Specification,"
2006. Available from: http://java.sun.com/javase/6/docs/api/

http://java.sun.com/j2se/1.3/docs/guide/
http://java.sun.com/javase/6/docs/api/

References 219

Appendix A Serialization in Java

The information presented in this appendix is gathered from the Java SDK

documentation [162] and Java API [163].

A.1 Serialization Components

Serialization in Java is provided by the use of a number of different interfaces and

objects. The most important of these are the Serializable interface and the

ObjectInputStream and ObjectOutputStream objects. The former is used to

mark a class as being capable of serialization, and is inherited by all subclasses.

Marking a class as serializable does not guarantee serialization, as there may be

other objects within the sent object graph that are not serializable. In this situation,

an exception will be thrown.

The object streams perform the encoding and decoding of object information.

These objects are placed on other I/O streams that are responsible for the transfer /

storage of the object information. Two methods are added to standard streams,

readObject to read an object from an ObjectInputStream, and writeObject

to write an object to an ObjectOutputStream. All sent classes and objects are

recorded in a lookup table. If an object of an already sent class, or an already sent

object, is written to the stream then a reference to the relevant class or object is

sent instead of full details. As this lookup table can become large over time, it is

possible to call reset on the output stream to clear this table, which also sends a

signal to the input end. Another method to reduce the lookup table size is to use

the writeUnshared method, which means that an object is always written as new

on the stream, but the class definition is retained. Over time the lookup table will

increase, but not significantly. The writeUnshared method was added in Java 1.4,

and is therefore not supported by the JVM on the PDA.

Appendix A: Serialization in Java 221

The serialization of an object implementing Serializable is automatic unless the

class implements specific methods. The writeObject method is called when an

object is written to an ObjectOutputStream, and readObject is called when an

object is read from an ObjectInputStream. This allows customisable

serialization behaviour. Two other methods – writeReplace and readResolve

– allow an object to be replaced by another when written to or read from the

stream.

Serialization can also be controlled by classes implementing the Externalizable

interface. Externalizable requires two methods to be implemented by the

implementing class, writeExternal and readExternal. It is also the

responsibility of the implementing class to coordinate with its super class to

externalize its attributes, and also provide a no argument constructor for use by any

sub classes which will also be externalizable. Externalization can perform better

than serialization, due to the greater control provided to the developer, but it does

require more development and care to implement.

A.2 Serialization Functionality

A number of control signals are used to control object serialization upon a stream.

As a case study, the serialized representation of an Integer object is presented here,

with the relevant control signals highlighted.

Aside from the serialization functionality proper, Java Reflection (the ability to

interrogate an object to discover its properties and methods) is also used to gather

the values within the object and the subsequent recreation of the object from its

full name (e.g. java.lang.Integer). Reflection does have an overhead, but not

on the data sent on the stream.

The control signals and flags used by Java serialization are available in the Java API

documentation [163]. The values are repeated in Table 12 to allow easier

presentation of the serialization operation.

Appendix A: Serialization in Java 222

Table 12: Serialization Control Signals and Flags

Signal Type Value

baseWireHandle int 8257536

PROTOCOL_VERSION_1 int 1

PROTOCOL_VERSION_2 int 2

SC_BLOCK_DATA byte 8

SC_ENUM byte 16

SC_EXTERNALIZABLE byte 4

SC_SERIALIZABLE byte 2

SC_WRITE_METHOD byte 1

STREAM_MAGIC short -21267

STREAM_VERSION short 5

TC_ARRAY byte 117

TC_BASE byte 112

TC_BLOCKDATA byte 119

TC_BLOCKDATALONG byte 122

TC_CLASS byte 118

TC_CLASSDESC byte 114

TC_ENDBLOCKDATA byte 120

TC_ENUM byte 126

TC_EXCEPTION byte 123

TC_LONGSTRING byte 124

TC_MAX byte 126

TC_NULL byte 112

TC_OBJECT byte 115

TC_PROXYCLASSDESC byte 125

TC_REFERENCE byte 113

TC_RESET byte 121

TC_STRING byte 116

When a new ObjectOutputStream is created, an initial handshake message is

sent to allow correct behaviour at the receiving end. This message consists of two

16-bit values, STREAM_MAGIC and STREAM_VERSION. These signals are only sent

once, and are therefore not considered part of a sent object.

When reset is called on an ObjectOutputStream a signal is sent to the

complement ObjectInputStream to inform it of the reset. This is the TC_RESET

signal. Again, this is not considered as part of normal serialized data.

Figure 71 presents the serialized form of an Integer object. Red signifies a control

signal, yellow a string (prefixed with a two byte length header in white), and green

signifies values defining the class. The data part of the object is given in blue.

Appendix A: Serialization in Java 223

Figure 71: Serialized Integer Object

The first value is TC_OBJECT, which is used to represent the type of object being

sent. The other possible data types are TC_ARRAY (array), TC_CLASS (class),

TC_ENUM (enum constant), TC_LONGSTRING (long string), TC_NULL (null value),

TC_REFERENCE (reference to previous item on stream), and TC_STRING (a string).

After the TC_OBJECT signal, a TC_CLASSDESC is sent to indicate the start of a

new class description. If the class has previously been used on the stream,

TC_REFERENCE is used instead.

The name of the class (bytes 4 to 20) is sent next, with a 16-bit string length header

(2 - 3). An Integer object has the full name java.lang.Integer. Bytes 21 to 28

represent the 64-bit serialization identifier for the class, and this is used to ensure

the correct class type is being used by each end of the stream. A byte representing

flag values is then sent to allow correct interpretation of the serialization process.

The flag values are SC_WRITE_METHOD, SC_SERIALIZABLE,

SC_EXTERNALIZABLE, SC_BLOCKDATA and SC_ENUM. These indicate whether

the class uses a writeObject method, uses normal serialization, uses

externalization, uses block data externalization, or is an enum type.

The number of internal fields within the class is then sent as a 16-bit value (30 – 31).

Integer only has a single internal field, the value of the primitive int. The types of all

the internal fields are sent, which may involve further class descriptions, thus

starting the description process for these classes. For the primitive int in the

Integer object, the type is represented by the letter I (ASCII 73). The name of the

field is then sent as a string (5 – 9) with a 16-bit length header. The name of the

int field is value in the Integer object. A control signal (TC_ENDBLOCKDATA) is

then sent to indicate the end of the class description.

0 1 2 3 4 5 6 7 8 9

0 TC_OBJECT TC_CLASSDESC Name length (17) j a v a . l

10 a n g . I n t e g e

20 r Class Serialization Identifier (1360826667806853064) Flags

30 Variable count (1) I(nteger) Name length (5) v a l u e

40 TC_ENDBLOCKDATA TC_CLASSDESC Name length (16) j a v a . l

50 a n g . N u m b e r

60 Class Serialization Identifier (-8742448824652078987) Flags Variable count (0)

70 TC_ENDBLOCKDATA TC_BASE value

Appendix A: Serialization in Java 224

If the class has a parent, then the description of this class is also sent on the stream

using the aforementioned method. This is required as the parent class may declare

fields of its own not visible to the child object, but are still used by methods from

the parent class. Integer extends Number (java.lang.Number) which has no

declared fields. Finally, a signal is sent to indicate that the field values are to be

sent (TC_BASE) followed by the field values. For the Integer object, this is a four

byte value representing the int.

Serialized representations of commonly used objects are provided here with no

description. These objects are byte array, Integer array, the JCSP data message, the

acknowledge message, and the various test classes.

Each data type in Java has a signature letter to distinguish it within a serialization

stream. These are provided in Table 13 to allow clearer understanding of the

serialization data presented.

Table 13: Java Data Type Signatures

Data Type Signature

boolean Z

byte B

char C

short S

int I

long J

float F

double D

Object L

Object name L<name>;

Array [<type>

A.3 Byte Array

Figure 72: Serialized Byte Array

0 1 2 3 4 5 6 7 8 9

0 TC_ARRAY TC_CLASSDESC Name length (2) [B Class Serialization Identifier
10 Flags Variable count (0) TC_ENDBLOCKDATA TC_BASE Length
20 Elements

Appendix A: Serialization in Java 225

A.4 ChannelMessage.Data

Figure 73: Serialized ChannelMessage.Data

A.5 ChannelMessage.Ack

Figure 74: Serialized ChannelMessage.Ack

A.6 Integer Array

Figure 75: Serialized Integer Array

0 1 2 3 4 5 6 7 8 9

0 TC_OBJECT TC_CLASSDESC Name length (32) o r g . j c

10 s p . n e t . C h a

20 n n e l M e s s a g

30 e $ D a t a Class Serialization Identifier

40 Flags Variable count (2) Z (boolean) Name length (12)

50 a c k n o w l e d g

60 e d L (Object) Name length (4) d a t a TC_STRING

70 Name length (18) L j a v a / l a

80 n g / O b j e c t ;

90 TC_ENDBLOCKDATA TC_CLASSDESC Name length (27) o r g . j c

100 s p . n e t . C h a

110 n n e l M e s s a g

120 e Class Serialization Identifier Flags

130 Variable count (0) TC_ENDBLOCKDATA TC_CLASSDESC Name length (20) o r g .

140 j c s p . n e t . M

150 e s s a g e Class Serialization Identifier

160 Flags Variable count (3) J (long) Name length (9)

170 d e s t I n d e x J (long)

180 Name length (11) s o u r c e I n

190 d e x L (Object) Name length (12) d e s t

200 V C N L a b e l TC_STRING Name length (18)

210 L j a v a / l a n

220 g / S t r i n g ; TC_ENDBLOCKDATA

230 TC_BASE destIndex sourceIndex

240 destVCNLabel acknowledged data

0 1 2 3 4 5 6 7 8 9

0 TC_OBJECT TC_CLASSDESC Name length (31) o r g . j c

10 s p . n e t . C h a

20 n n e l M e s s a g

30 e $ A c k Class Serialization Identifier

40 Flags Variable count (0) TC_ENDBLOCKDATA TC_CLASSDESCName length (27)

50 o r g . j c s p . n

60 e t . C h a n n e l

70 M e s s a g e Class Serialization Identifier

80 Flags Variable count (0) TC_ENDBLOCKDATA TC_CLASSDESC

90 Name length (20) o r g . j c s p

100 . n e t . M e s s a

110 g e Class Serialization Identifier

120 Flags Variable Count (3) J (Long) Name length (9) d e s t

130 I n d e x J (Long) Name length (11) s o

140 u r c e I n d e x L (Object)

150 Name length (12) d e s t V C N L

160 a b e l TC_STRING Name length (18) L j a

170 v a / l a n g / S t

180 r i n g ; TC_ENDBLOCKDATA TC_BASE destIndex

190 sourceIndex

200 destVCNLabel

0 1 2 3 4 5 6 7 8 9

0 TC_ARRAY TC_CLASSDESC Name length (20) [L j a v a

10 . l a n g . I n t e

20 g e r ; Class Serialization Identifier

30 Flags Variable count (0) TC_ENDBLOCKDATA TC_BASE Length

40 Elements

Appendix A: Serialization in Java 226

A.7 TestObject

Figure 76: Serialized TestObject

A.8 TestObject2 and TestObject3

TestObject2 and TestObject3 are identical in description except for their name. The

difference is only in byte 14, which will be 2 or 3 respectively.

Figure 77: Serialized TestObject2 and TestObject3

A.9 TestObject4 and TestObject5

TestObject4 and TestObject5 are identical in description except for their name. The

difference is only in byte 14, which will be 4 or 5 respectively.

0 1 2 3 4 5 6 7 8 9

0 TC_OBJECT TC_CLASSDESC Name length (10) T e s t O b

10 j e c t Class Serialization Identifier

20 ? u Flags Variable Count (2) [(array) Name length (4) d b

30 l s TC_STRING Name length (19) [L j a v

40 a / l a n g / D o u

50 b l e ; [(array) Name length (4) i n t

60 s TC_STRING Name length (20) [L j a v a

70 / l a n g / I n t e

80 g e r ; TC_ENDBLOCKDATATC_BASE TC_ARRAY TC_CLASSDESC Name length (19)

90 [L j a v a . l a n

100 g . D o u b l e ; Class

110 Serialization Identifier Flags Variable Count (0)

120 TC_ENDBLOCKDATATC_BASE Length TC_ARRAY TC_CLASSDESC Name length (20)

130 [L j a v a . l a n

140 g . I n t e g e r ;

150 Class Serialization Identifier Flags Variable

160 Count (0) TC_ENDBLOCKDATA TC_BASE Length

0 1 2 3 4 5 6 7 8 9

0 TC_OBJECT TC_CLASSDESC Name length (11) T e s t O b

10 j e c t 2 Class Serialization Identifier

20 Flags Variable Count (2) [(array) Name length (9) l

30 o c a l D b l s TC_STRING Name

40 length (19) [L j a v a / l a

50 n g / D o u b l e ;

60 [(array) Name length (9) l o c a l I n

70 t s TC_STRING Name length (20) [L j a v

80 a / l a n g / I n t

90 e g e r ; TC_ENDBLOCKDATA TC_CLASSDESC Name length (10) T

100 e s t O b j e c t Class

110 Serialization Identifier Flags Variable Count (2)

120 [(array) Name length (4) d b l s TC_REFERENCE Reference in Stream

130 [(array) Name length (4) i n t s TC_REFERENCE

140 Reference in Stream TC_ENDBLOCKDATA TC_BASE TC_ARRAY TC_CLASSDESC Name length (19)

150 [L j a v a . l a n

160 g . D o u b l e ; Class

170 Serialization Identifier Flags Variable Count (0)

180 TC_ENDBLOCKDATATC_BASE Length TC_ARRAY TC_CLASSDESC Name length (20)

190 [L j a v a . l a n

200 g . I n t e g e r ;

210 Class Serialization Identifier Flags Variable

220 Count (0) TC_ENDBLOCKDATA TC_BASE Length TC_ARRAY TC_REFERENCE Reference in

230 Stream Length TC_ARRAY TC_REFERENCE Reference in

240 Stream Length

Appendix A: Serialization in Java 227

Figure 78: Serialized TestObject4 and TestObject5

0 1 2 3 4 5 6 7 8 9

0 TC_OBJECT TC_CLASSDESC Name length (11) T e s t O b

10 j e c t 4 Class Serialization Identifier

20 Flags Variable Count (3) [(array) Name length (9) l

30 o c a l D b l s TC_STRING Name

40 length (19) [L j a v a / l a

50 n g / D o u b l e ;

60 [(array) Name length (9) l o c a l I n

70 t s TC_STRING Name length (20) [L j a v

80 a / l a n g / I n t

90 e g e r ; L (Object) Name length (10) t e

100 s t O b j e c t TC_STRING Name

110 length (12) L T e s t O b j e

120 c t ; TC_ENDBLOCKDATA TC_CLASSDESC Name length (10) T e s

130 t O b j e c t Class Serialization Identifier

140 Flags Variable Count (2) [(array) Name

150 length (4) d b l s TC_REFERENCEReference in stream

160 [(array) Name length (4) i n t s TC_REFERENCE Reference in stream

170 TC_ENDBLOCKDATATC_BASE TC_ARRAY TC_CLASSDESCName length (19) [L

180 j a v a . l a n g .

190 D o u b l e ; Class Serialization Identifier

200 Flags Variable Count (0) TC_ENDBLOCKDATA TC_BASE

210 Length TC_ARRAY TC_CLASSDESCName length (20) [L

220 j a v a . l a n g .

230 I n t e g e r ; Class Serialization

240 Identifier Flags Variable Count (0) TC_ENDBLOCKDATA

250 TC_BASE Length TC_ARRAY TC_REFERENCE Reference in stream

260 Length TC_ARRAY TC_REFERENCE Reference in stream

270 Length TC_OBJECT TC_REFERENCE Reference in stream

280 TC_ARRAY TC_REFERENCE Reference in Stream Length

290 TC_ARRAY TC_REFERENCE Reference in Stream Length

300 TC_ARRAY TC_REFERENCE Reference in Stream Length

310 TC_ARRAY TC_REFERENCE Reference in Stream Length

320 TC_REFERENCE Reference in Stream

Appendix B Test Object Class Definitions

B.1 TestObject

public class TestObject implements Serializable
{
 protected Integer[] ints;
 protected Double[] dbls;

 public TestObject()
 {
 }

 public TestObject(int size)
 {
 ints = new Integer[size];
 dbls = new Double[size];
 for (int i = 0; i < size; i++)
 {
 ints[i] = new Integer(i);
 dbls[i] = new Double(i * 1000);
 }
 }

 public static TestObject create(int size)
 {
 return new TestObject(size);
 }
}

B.2 TestObject2

public class TestObject2 extends TestObject
{
 private Integer[] localInts;
 private Double[] localDbls;

 public TestObject2()
 {
 }

 public TestObject2(int size)
 {
 ints = new Integer[size];
 dbls = new Double[size];
 localInts = new Integer[size];
 localDbls = new Double[size];
 for (int i = 0; i < size; i++)
 {
 ints[i] = new Integer(i);
 dbls[i] = new Double(i * 1000);
 localInts[i] = new Integer(i * 1000000);
 localDbls[i] = new Double(i * 1000000000);
 }
 }

Appendix B: Test Object Class Definitions 229

 public static TestObject create(int size)
 {
 return new TestObject2(size);
 }
}

B.3 TestObject3

public class TestObject3 extends TestObject
{
 private Integer[] localInts;
 private Double[] localDbls;

 public TestObject3()
 {
 }

 public TestObject3(int size)
 {
 ints = new Integer[size];
 dbls = new Double[size];
 localInts = new Integer[size];
 localDbls = new Double[size];
 for (int i = 0; i < size; i++)
 {
 ints[i] = localInts[i] = new Integer(i);
 dbls[i] = localDbls[i] = new Double(i * 1000);
 }
 }

 public static TestObject create(int size)
 {
 return new TestObject3(size);
 }
}

B.4 TestObject4

public class TestObject4 extends TestObject
{
 private TestObject testObject;
 private Integer[] localInts;
 private Double[] localDbls;

 public TestObject4()
 {
 }

 public TestObject4(int size)
 {
 ints = new Integer[size];
 dbls = new Double[size];
 localInts = new Integer[size];
 localDbls = new Double[size];
 for (int i = 0; i < size; i++)
 {
 ints[i] = localInts[i] = new Integer(i);
 dbls[i] = localDbls[i] = new Double(i * 1000);
 }
 }

 public void setTest(TestObject testObject)
 {
 this.testObject = testObject;
 }

Appendix B: Test Object Class Definitions 230

 public static TestObject create(int size)
 {
 TestObject4 tObj1 = new TestObject4(size);
 TestObject4 tObj2 = new TestObject4(size);
 tObj1.setTest(tObj2);
 tObj2.setTest(tObj1);
 return tObj1;
 }
}

B.5 TestObject5

public class TestObject5 extends TestObject
{
 private TestObject testObject;
 private Integer[] localInts;
 private Double[] localDbls;

 public TestObject5()
 {
 }

 public TestObject5(int size)
 {
 ints = new Integer[size];
 dbls = new Double[size];
 localInts = new Integer[size];
 localDbls = new Double[size];
 for (int i = 0; i < size; i++)
 {
 ints[i] = localInts[i] = new Integer(i);
 dbls[i] = localDbls[i] = new Double(i * 1000);
 }
 }

 public TestObject5(TestObject5 testObject)
 {
 int size = testObject.ints.length;
 ints = new Integer[size];
 dbls = new Double[size];
 localInts = new Integer[size];
 localDbls = new Double[size];
 this.testObject = testObject;
 for (int i = 0; i < size; i++)
 {
 ints[i] = localInts[i] = testObject.ints[i];
 dbls[i] = localDbls[i] = testObject.dbls[i];
 }
 }

 public void setTest(TestObject testObject)
 {
 this.testObject = testObject;
 }

 public static TestObject create(int size)
 {
 TestObject5 tObj1 = new TestObject5(size);
 TestObject5 tObj2 = new TestObject5(tObj1);
 tObj1.setTest(tObj2);
 return tObj1;
 }
}

Appendix C Performance Characterisation Data

C.1 Java Grande Benchmark Arithmetic Operations

Figure 79 presents the results from the Java Grande Benchmark Suite arithmetic

tests.

Figure 79: Arithmetic Benchmark Results

The results presented are in operations per second across the various arithmetic

operations and across the four primitive numeric types of Java. In general, the ratio

between the results for the PDA and the PC ranges between 1.5 (division

operations) and 2.5 (addition operations) orders of magnitude.

C.2 Object Creation Time

Figure 80 presents the results from the Java Grande Benchmark Suite object

creation tests. The different object creation methods are:

 Base – the base Java Object.

 Simple – simple object.

 Simple:Constructor – simple object with a defined constructor.

100

1,000

10,000

100,000

1,000,000

10,000,000

Th
o

u
sa

n
d

s
o

p
e

ra
ti

o
n

s
/

se
co

n
d

PDA PC

Appendix C: Performance Characterisation Data 232

 Simple:1Field – simple object with one field.

 Simple:2Field – simple object with two fields.

 Simple:4Field – simple object with four fields.

 Simple:4fField – simple object with four float fields.

 Simple:4LField – simple object with four long fields.

 Subclass – an object that extends another object.

 Complex – an object that contains another object.

 Complex:Constructor – an object that contains another object using a

constructor.

Figure 80: Object Creation Benchmark Results

Aside from the time taken to create a base Java object and a complex object, the

difference in creating objects between the PDA and PC is just below one order of

magnitude. The PDA takes roughly the same time to allocate an object without

consideration for internal fields. This accounts for the time taken to create a

complex object.

C.3 Array Creation Time

Figure 81 presents the results from creating various array types of various sizes.

The three primitive numeric types int, long, and float are provided. The object array

is an array of the base Java Object. The time taken to allocate the object array does

100

1000

10000

100000

1000000

Th
o

u
sa

n
d

s
o

b
je

ct
s

/
se

co
n

d

PDA PC

Appendix C: Performance Characterisation Data 233

not incorporate object creation time, therefore each element in the array will be set

to null.

Figure 81: Array Creation Benchmark Results

The results show similar patterns within the PDA and the PC for allocating the

arrays, although the PC has close to linear performance decline, whereas the PDA

has exponential decline. The difference in performance is about 1.5 orders of

magnitude between the PDA and PC.

C.4 Serialization

Figure 82 presents the results from the Java Grande Suite serialization tests. In

these tests, various objects are serialized into a file and the throughput in bytes per

second recorded. Therefore, these results are not only the time taken to convert

the object into bytes via serialization, but also the time taken to write said bytes to

file.

The PC generally has serialization throughput 2.5 orders of magnitude greater than

that of the PDA. Part of this throughput difference will be due to the I/O time for

writing the bytes to the file.

10

100

1000

10000

100000

In
t:

1
In

t:
2

In
t:

4
In

t:
8

In
t:

1
6

In
t:

3
2

In
t:

6
4

In
t:

1
2

8
Lo

n
g:

1
Lo

n
g:

2
Lo

n
g:

4
Lo

n
g:

8
Lo

n
g:

1
6

Lo
n

g:
3

2
Lo

n
g:

6
4

Lo
n

g:
1

2
8

Fl
o

at
:1

Fl
o

at
:2

Fl
o

at
:4

Fl
o

at
:8

Fl
o

at
:1

6
Fl

o
at

:3
2

Fl
o

at
:6

4
Fl

o
at

:1
2

8
O

b
je

ct
:1

O
b

je
ct

:2
O

b
je

ct
:4

O
b

je
ct

:8
O

b
je

ct
:1

6
O

b
je

ct
:3

2
O

b
je

ct
:6

4
O

b
je

ct
:1

2
8Th

o
u

sa
n

d
s

ar
ra

ys
 /

 s
e

co
n

d

PDA PC

Appendix C: Performance Characterisation Data 234

Figure 82: Serialization Benchmark Results

C.5 Multithreaded Benchmarks

C.5.1 Fork / Join Time

Figure 83 presents the results from the Java Grande Benchmark Suite fork / join

test. The fork / join test measures the time taken to fork the number of threads,

and subsequently join the threads after they have all been forked. Thus thread

creation and subsequent destruction is captured. The run method of each thread is

trivial, and the benchmark removes this time from the results.

Figure 83: Fork / Join Benchmark Results

These results show a difference in thread fork / join operations of 1.5 orders of

magnitude between the PDA and the PC. The decline is linear on the logarithmic

1

10

100

1000

10000

100000

1000000

b
yt

e
s

/
se

co
n

d

PDA PC

1

10

100

1000

10000

2 4 8 16 32 64 128 256

Fo
rk

-J
o

in
s

/
se

co
n

d

Number of Threads

PDA PC

Appendix C: Performance Characterisation Data 235

scale used in the figure, which is as expected. The decline is therefore exponential

based on the number of threads increasing by a factor of two per test.

C.5.2 Thread Synchronisation Time

Figure 84 presents the results from the thread synchronisation tests within the Java

Grande Benchmark Suite. In these tests, the relative threads compete for access to

a shared data object, either by using a synchronised method, or by using an object

as a monitor lock.

Figure 84: Synchronisation Benchmark Results

As these results show, the PC performs these operations approximately two orders

of magnitude faster than the PDA. However, the result for 256 threads is

considerably off scale in comparison to the others. This feature is deemed to be an

issue of the PDA trying to deal with too many threads competing for the shared

resource, and is considered a false result.

C.6 JCSP Specific Test Results

C.6.1 CommsTime

Figure 85 presents the results for the standard CommsTime test in JCSP. The results

represent the time – in microseconds – it takes for a Prefix, Parallel Delta and

Successor process to produce a number. These processes are connected together

such that the sequence of natural numbers is produced. The actual code definitions

for these processes are available in Appendix H.

1

10

100

1000

10000

2 4 8 16 32 64 128 256

H
u

n
d

re
d

s
sy

n
ch

ro
n

is
at

io
n

s
/

se
co

n
d

Number of Threads

PDA:SYNC:METHOD PDA:SYNC:OBJECT

PC:SYNC:METHOD PC:SYNC:OBJECT

Appendix C: Performance Characterisation Data 236

These processes can be used to test the communication time between two

processes via a channel. The figures presented represent the communication time

over four channels, and thus the communication time per channel is this figure

divided by four. This can also lead to an approximation of the context switch time

by further dividing this figure by two. This does not take into consideration any

time it might take for the internal processes of the Parallel Delta being started and

subsequently completed, which incurs an internal synchronisation.

Figure 85: CommsTime Benchmark Results

Three separate CommsTime tests are presented:

 CommsTime – is the CommsTime test performed using channels that

communicate primitive int data.

 CommsTimeSymmetric – is the CommsTime test performed using channels

that communicate primitive int data and also have guarded output. This is

incorporated using an internal AltingBarrier within the channel.

 CommsTimeObject – is the CommsTime test performed using Integer objects

rather than primitive integers. This incurs an overhead due to boxing and

unboxing the value to allow arithmetic operations upon the internal

primitive integer of the Integer object.

As these results show, there is a difference of one order of magnitude between the

PC and the PDA. Relatively speaking, there is little difference between

1

10

100

1000

10000

CommsTime CommsTimeSymmetric CommsTimeObject

m
ic

ro
se

co
n

d
s

/
it

e
ra

ti
o

n

PDA PC

Appendix C: Performance Characterisation Data 237

communicating an object and communicating a primitive integer using a channel.

There is an overhead incurred by using an AltingBarrier within a channel however.

C.6.2 Stressed Alternative

Figure 86 presents results from various configurations of the Stress Alternative test

within the PDA and the PC. The configurations on the x-axis are the number of

channels and the number of processes per channel. Thus, 5 x 10 implies 5 channels

connected to the reader, with each having 10 processes, for a total of 50 processes.

The value presented is the time taken to select a ready channel fairly in an

Alternative.

Figure 86: Stressed Alt Benchmark Results

The time taken to select a ready channel does not vary on the channel / process

configurations presented. In general, the PC performs 1.25 orders of magnitude

better than the PDA in these tests.

1

10

100

1000

5 x 10 10 x 10 10 x 20 10 x 30 20 x 10 30 x 10 10 x 5

m
ic

ro
se

co
n

d
s

/
it

e
ra

ti
o

n

Channels x Processes

PDA PC

Appendix D Experimentation Results

D.1 Serialization of Test Objects

D.1.1 Java Grande Serialization Benchmarks

Figure 87 through Figure 90 present the times taken to serialize and deserialize

Integer object arrays of size 0 to 100, and the different test object types also

ranging in size from 0 to 100. These results are the Java Grande benchmark results,

and thus include file I/O time. The results represent the average time taken to

serialize or deserialize an object in milliseconds.

The phenomena in the PC serialization results (Figure 87), where TestObject2 and

TestObject4 increase together and TestObject, TestObject3, and TestObject4

increase together is directly attributable to the complexities of the different objects

(see Table 2). The number of unique objects for both TestObject2 and TestObject4

increase by a factor of 4 relative to the size of the arrays, whereas the others only

increase by a factor of 2.

Figure 87: PC Java Grande Serialization Time

0

2

4

6

8

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integer Array TestObject TestObject2

TestObject3 TestObject4 TestObject5

Appendix D: Experimentation Results 239

Figure 88: PC Java Grande Deserialization Time

Figure 89: PDA Java Grande Serialization Time

Figure 90: PDA Java Grande Deserialization Time

0

1

2

3

4

5

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integer Array TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

500

1000

1500

2000

2500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integer Array TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

500

1000

1500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integer Array TestObject TestObject2

TestObject3 TestObject4 TestObject5

Appendix D: Experimentation Results 240

D.1.2 Serialization into Memory

Figure 91 to Figure 94 presents the results from serializing and deserializing the test

objects in memory. The results presented are the average time in milliseconds to

perform a single operation on the relevant object type and size.

Figure 91: PC Memory Serialization Time

Figure 92: PC Memory Deserialization Time

0

0.2

0.4

0.6

0.8

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integer Array TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

0.2

0.4

0.6

0.8

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integer Array TestObject TestObject2

TestObject3 TestObject4 TestObject5

Appendix D: Experimentation Results 241

Figure 93: PDA Memory Serialization Time

Figure 94: PDA Memory Deserialization Time

D.2 Network Performance

D.2.1 Send and Receive

Figure 95 presents the times recorded for the PC sending large data packets via the

different communication mechanisms, while Figure 96 presents the times recorded

for the PC to receive large data packets via the different communication

mechanisms. Similarly, Figure 97 presents the recorded times for the PDA to send

large data packets and Figure 98 presents the times for the PDA to receive large

packet sizes. All times are in milliseconds.

0

100

200

300

400

500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integer Array TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

100

200

300

400

500

600

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integer Array TestObject TestObject2

TestObject3 TestObject4 TestObject5

Appendix D: Experimentation Results 242

Figure 95: PC Sending Data

Figure 96: PC Receiving Data

0

1000

2000

3000

4000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

Network Streams Object Streams

Sync Channels Async Channels

0

1000

2000

3000

4000

5000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

Network Streams Object Streams

Sync Channels Async Channels

Appendix D: Experimentation Results 243

Figure 97: PDA Sending Data

Figure 98: PDA Receiving Data

D.2.2 New Send and Receive

Figure 99 presents the times recorded for the PC to send large data packets using

the new implementation of JCSP Networking, and Figure 100 presents the recorded

times for the PC receiving large data sizes using the new JCSP Networking

implementation. Similarly, Figure 101 presents the times recorded for the PDA to

send large data packets and Figure 102 presents the times for the PDA to receive

large data packets.

0
1000
2000
3000
4000
5000
6000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

Java Streams Native Streams Object Streams

Sync Channels Async Channels

0
500

1000
1500
2000
2500
3000
3500

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

Java Streams Native Streams Object Streams

Sync Channels Async Channels

Appendix D: Experimentation Results 244

Figure 99: PC Sending Data New JCSP

Figure 100: PC Receiving Data New JCSP

0
500

1000
1500
2000
2500
3000
3500
4000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

Serializing Sync Serializing Async Raw Sync Raw Async

0

1000

2000

3000

4000

5000

6000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

Serializing Sync Serializing Async Raw Sync Raw Async

Appendix D: Experimentation Results 245

Figure 101: PDA Sending Data New JCSP

Figure 102: PDA Receiving Data New JCSP

D.2.3 Roundtrip

Figure 103 presents the times recorded on the PC during a roundtrip operation of

large data sizes from the PC to the PDA and back. Figure 104 presents the times

recorded on the PC for this operation, but from the PDA to PC and back. Figure 105

presents the times recorded on the PDA during a roundtrip operation from the PDA

to the PC and back, and Figure 106 presents the times recorded on the PDA for a

roundtrip operation from the PC to the PDA and back.

0

1000

2000

3000

4000

5000

6000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

Serializing Sync Serializing Async Raw Sync Raw Async

0
500

1000
1500
2000
2500
3000
3500
4000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

Serializing Sync Serializing Async Raw Sync Raw Async

Appendix D: Experimentation Results 246

Figure 103: PC Time PC to PDA Roundtrip Data

Figure 104: PC Time PDA to PC Roundtrip Data

0

2000

4000

6000

8000

10000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

Network Streams Object Streams

Sync Channels Async Channels

0

2000

4000

6000

8000

10000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

Network Streams Object Streams

Sync Channels Async Channels

Appendix D: Experimentation Results 247

Figure 105: PDA Time PDA to PC Roundtrip Data

Figure 106: PDA Time PC to PDA Roundtrip Data

D.2.4 New Roundtrip

Figure 107 presents the times recorded on the PC for a roundtrip operation of large

data packets from the PC to the PDA using the new JCSP Networking

implementation. Figure 108 presents the times recorded on the PC for a roundtrip

operation from the PDA to the PC and back using the new JCSP Networking

implementation. Figure 109 presents the times recorded on the PDA for a

roundtrip from the PDA to the PC, whereas Figure 110 presents the times recorded

on the PDA for a roundtrip operation from the PC to the PDA and back using the

new JCSP Networking implementation.

0

2000

4000

6000

8000

10000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

Java Streams Native Streams Object Streams

Sync Channels Async Channels

0

2000

4000

6000

8000

10000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

Java Streams Native Streams Object Streams

Sync Channels Async Channels

Appendix D: Experimentation Results 248

Figure 107: PC Time PC to PDA New JCSP Roundtrip Data

Figure 108: PC Time PDA to PC New JCSP Roundtrip Data

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

Serializing Sync Serializing Async Raw Sync Raw Async

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

Serializing Sync Serializing Async Raw Sync Raw Async

Appendix D: Experimentation Results 249

Figure 109: PDA Time PDA to PC New JCSP Roundtrip Data

Figure 110: PDA Time PC to PDA New JCSP Roundtrip Data

D.3 Test Object Communication

D.3.1 Sending

D.3.1.1 Object Streams

Figure 111 presents the times recorded for the PC to send the various test objects,

whereas Figure 112 presents the recorded times for the PDA to send the test

objects.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

Serializing Sync Serializing Async Raw Sync Raw Async

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

7
0

0
0

0
8

0
0

0
0

9
0

0
0

0
1

0
0

0
0

0
2

0
0

0
0

0
3

0
0

0
0

0
4

0
0

0
0

0
5

0
0

0
0

0
6

0
0

0
0

0
7

0
0

0
0

0
8

0
0

0
0

0
9

0
0

0
0

0
1

0
0

0
0

0
0

Ti
m

e
 m

s

Data Size in Bytes

Serializing Sync Serializing Async Raw Sync Raw Async

Appendix D: Experimentation Results 250

Figure 111: PC Sending TestObject via Object Streams

Figure 112: PDA Sending TestObject via Object Streams

D.3.1.2 Networked Channels

Figure 113 presents the expected sending time for the PC sending the various test

objects using synchronous channels, and Figure 114 and Figure 115 present the

actual recorded results for synchronous and asynchronous channels respectively.

Likewise, Figure 116 presents the expected send times for the PDA using

synchronous networked channels, with Figure 117 and Figure 118 presenting the

actual results for synchronous and asynchronous channels respectively.

0

50

100

150

200

250

300

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

100

200

300

400

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

Appendix D: Experimentation Results 251

Figure 113: Expected PC Sending TestObject via Synchronous Networked Channels

Figure 114: PC Sending TestObject via Synchronous Networked Channels

Figure 115: PC Sending TestObject via Asynchronous Networked Channels

0

100

200

300

400

500

600

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

500

1000

1500

2000

2500

3000

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

50

100

150

200

250

300

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

Appendix D: Experimentation Results 252

Figure 116: Expected PDA Sending TestObject via Synchronous Networked Channels

Figure 117: PDA Sending TestObject via Synchronous Networked Channels

Figure 118: PDA Sending TestObject via Asynchronous Networked Channels

0

100

200

300

400

500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

100

200

300

400

500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

100

200

300

400

500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

Appendix D: Experimentation Results 253

D.3.1.3 New Networked Channels

Figure 119 presents the expected results for the PC to synchronously send the test

objects using the new JCSP Networking implementation, with Figure 120 and Figure

121 presenting the actual recorded results for the PC sending via synchronous and

asynchronous channels respectively. Figure 122 presents the expected times for

the PDA to send the test objects within the new JCSP Networking implementation,

and Figure 123 and Figure 124 present the actual results for synchronous and

asynchronous channels respectively.

Figure 119: Expected PC Sending TestObject via New Synchronous Networked Channels

Figure 120: PC Sending TestObject via New Synchronous Networked Channels

0

100

200

300

400

500

600

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

500

1000

1500

2000

2500

3000

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

Appendix D: Experimentation Results 254

Figure 121: PC Sending TestObject via New Asynchronous Networked Channels

Figure 122: Expected PDA Sending TestObject via New Synchronous Networked Channels

Figure 123: PDA Sending TestObject via New Synchronous Networked Channels

0

50

100

150

200

250

300

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

100

200

300

400

500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

100

200

300

400

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

Appendix D: Experimentation Results 255

Figure 124: PDA Sending TestObject via New Asynchronous Networked Channels

D.3.2 Receiving

D.3.2.1 Object Streams

Figure 125 presents the results recorded for the PC to receive the test objects

utilising object streams, whereas Figure 126 presents the times recorded for the

PDA to receive the various test objects via object streams.

Figure 125: PC Receiving TestObject via Object Streams

0

100

200

300

400

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

100

200

300

400

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

Appendix D: Experimentation Results 256

Figure 126: PDA Receiving TestObject via Object Streams

D.3.2.2 Networked Channels

Figure 127 presents the recorded times for the PC to receive the test objects via

synchronous networked channels in the original JCSP Networking implementation,

and Figure 128 presents the recorded times for the PC to receive the test objects via

asynchronous channels. Figure 129 presents the recorded times for the PDA to

receive the test objects using synchronous channels, whereas Figure 130 presents

the times recorded for the PDA to receive the test objects via asynchronous

channels.

Figure 127: PC Receiving TestObject via Synchronous Networked Channels

0

100

200

300

400

500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

100

200

300

400

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

Appendix D: Experimentation Results 257

Figure 128: PC Receiving TestObject via Asynchronous Networked Channels

Figure 129: PDA Receiving TestObject via Synchronous Networked Channels

Figure 130: PDA Receiving TestObject via Asynchronous Networked Channels

0

100

200

300

400

500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

500

1000

1500

2000

2500

3000

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

200

400

600

800

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

Appendix D: Experimentation Results 258

D.3.2.3 New Networked Channels

Figure 131 presents the recorded times for the PC to receive the test objects via

synchronous channels in the new JCSP Networking implementation, and Figure 132

presents the results for the PC to receive the test objects asynchronously. Figure

133 presents the results for the PDA to receive the test objects synchronously

within the new JCSP Networking implementation, whereas Figure 134 presents the

times recorded for the PDA to receive the test objects using asynchronous channels.

Figure 131: PC Receiving TestObject via Synchronous New Networked Channels

Figure 132: PC Receiving TestObject via Asynchronous New Networked Channels

0

100

200

300

400

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

100

200

300

400

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

Appendix D: Experimentation Results 259

Figure 133: PDA Receiving TestObject via Synchronous New Networked Channels

Figure 134: PDA Receiving TestObject via Asynchronous New Networked Channels

D.3.3 Roundtrip

D.3.3.1 Object Streams

Figure 135 presents the times recorded on the PC during a roundtrip operation on

the test objects from the PC to the PDA and back, using object streams. Figure 136

presents the times recorded on the PC for a roundtrip from the PDA to PC and back.

Figure 137 presents the times recorded on the PDA for a roundtrip operation from

the PDA to the PC and back using object streams, and Figure 138 presents the times

recorded on the PDA for a roundtrip operation from the PC to the PDA and back

with the test objects.

0

500

1000

1500

2000

2500

3000

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

100

200

300

400

500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

Appendix D: Experimentation Results 260

Figure 135: PC Time PC to PDA TestObject Roundtrip via Object Streams

Figure 136: PC Time PDA to PC TestObject Roundtrip via Object Streams

Figure 137: PDA Time PDA to PC TestObject Roundtrip via Object Streams

0

500

1000

1500

2000

2500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

500

1000

1500

2000

2500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

500

1000

1500

2000

2500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

Appendix D: Experimentation Results 261

Figure 138: PDA Time PC to PDA TestObject Roundtrip via Object Streams

D.3.3.2 Networked Channels

Figure 139 presents the times recorded on the PC for a synchronous networked

channel roundtrip operation with the test objects from the PC to PDA and back,

whereas Figure 140 presents the times recorded on the PC for the same operation

asynchronously. Figure 141 presents the times recorded for a synchronous

networked channel roundtrip operation with the test objects from the PDA to PC

and back, with Figure 142 presenting the results for this operation using

asynchronous channels.

Figure 139: PC Time PC to PDA TestObject Roundtrip via Synchronous Networked Channels

0

500

1000

1500

2000

2500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

500

1000

1500

2000

2500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

Appendix D: Experimentation Results 262

Figure 140: PC Time PC to PDA TestObject Roundtrip via Asynchronous Networked Channels

Figure 141: PC Time PDA to PC TestObject Roundtrip via Synchronous Networked Channels

Figure 142: PC Time PDA to PC TestObject Roundtrip via Asynchronous Networked Channels

0

500

1000

1500

2000

2500

3000

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

500

1000

1500

2000

2500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

500

1000

1500

2000

2500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

Appendix D: Experimentation Results 263

Figure 143 presents the times recorded on the PDA for a synchronous networked

channel roundtrip operation from the PDA to PC and back using the test objects,

with Figure 144 presenting the results for this operation performed asynchronously.

Figure 145 presents the results recorded on the PDA for a synchronous roundtrip

operation from the PC to the PDA and back, and Figure 146 presents the recorded

times for this operation performed asynchronously.

Figure 143: PDA Time PDA to PC TestObject Roundtrip via Synchronous Networked Channels

Figure 144: PDA Time PDA to PC TestObject Roundtrip via Asynchronous Networked Channels

0

500

1000

1500

2000

2500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

500

1000

1500

2000

2500

3000

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

Appendix D: Experimentation Results 264

Figure 145: PDA Time PC to PDA TestObject Roundtrip via Synchronous Networked Channels

Figure 146: PDA Time PC to PDA TestObject Roundtrip via Asynchronous Networked Channels

D.3.3.3 New Networked Channels

Figure 147 presents the times recorded on the PC to perform a synchronous

roundtrip operation, from the PC to the PDA and back, within the new JCSP

Networking implementation, using the test objects. Figure 148 presents the results

for this operation performed asynchronously. Figure 149 presents the results

recorded on the PC for a synchronous roundtrip operation from the PDA to PC and

back with the test objects, with Figure 150 providing the asynchronous results.

0

500

1000

1500

2000

2500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

500

1000

1500

2000

2500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

Appendix D: Experimentation Results 265

Figure 147: PC Time PC to PDA TestObject Roundtrip via Synchronous New Networked Channels

Figure 148: PC Time PC to PDA TestObject Roundtrip via Asynchronous New Networked Channels

Figure 149: PC Time PDA to PC TestObject Roundtrip via Synchronous New Networked Channels

0

500

1000

1500

2000

2500

3000

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

500

1000

1500

2000

2500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

500

1000

1500

2000

2500

3000

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

Appendix D: Experimentation Results 266

Figure 150: PC Time PDA to PC TestObject Roundtrip via Asynchronous New Networked Channels

Figure 151 presents the results recorded on the PDA for a synchronous roundtrip

operation from the PDA to the PC and back, using the new implementation of JCSP

Networking and the test objects. Figure 152 provides the asynchronous results for

this operation. Figure 153 presents the PDA recorded times for synchronous test

object roundtrip operations from the PC to PDA and back using the new JCSP

Networking implementation, whereas Figure 154 presents the times recorded for

these operations performed asynchronously.

Figure 151: PDA Time PDA to PC TestObject Roundtrip via Synchronous New Networked Channels

0

500

1000

1500

2000

2500

3000

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

500

1000

1500

2000

2500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

Appendix D: Experimentation Results 267

Figure 152: PDA Time PDA to PC TestObject Roundtrip via Asynchronous New Networked Channels

Figure 153: PDA Time PC to PDA TestObject Roundtrip via Synchronous New Networked Channels

Figure 154: PDA Time PC to PDA TestObject Roundtrip via Asynchronous New Networked Channels

0

1000

2000

3000

4000

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

500

1000

1500

2000

2500

3000

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

500

1000

1500

2000

2500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

Appendix E Network Protocol Definition

E.1 Channel Messages

Message Value Description

SEND 1 A data message sent from a NetChannelOutput to a
NetChannelInput. This takes the form (SEND, <destination>,
<source>, <size>, <bytes>).

ACK 2 The acknowledgement sent from a NetChannelInput to the
sending NetChannelOutput. This takes the form (ACK,
<destination>, -1).

REJECT_CHANNEL 8 Sent to a Node to indicate that a previous SEND message was
rejected at the receiving Node for some reason. This takes the
form (REJECT_CHANNEL, <destination>, -1).

POISON 12 A message sent to indicate that a channel end should
poisoned. The message needs to indicate the destination and
the strength of the poison. This takes the form (POISON,
<destination>, <strength>).

ASYNC_SEND 13 An unacknowledged send message. This is kept in for legacy
reasons at present, and will likely be removed in the future.
This takes the form (ASYNC_SEND, <destination>, <source>,
<size>, <bytes>).

E.2 Barrier Messages

Message Value Description

SYNC 5 A synchronisation from a NetBarrier client to a NetBarrier
server. This takes the form (SYNC, <destination>, <source>).

RELEASE 6 A message sent from the NetBarrier server end to a NetBarrier
client end to indicate that all client ends have synchronised and
can now continue. This takes the form (RELEASE, <destination>,
-1).

ENROLL 3 Sent from a NetBarrier client end to a NetBarrier server end to
indicate that it is joining the set of synchronising NetBarrier
ends. This takes the form (ENROLL, <destination>, -1).

RESIGN 4 Sent from a NetBarrier client end to a NetBarrier server end to
indicate that it is resigning from the set of synchronising
NetBarrier ends. This takes the form (RESIGN, <destination>, -
1).

REJECT_BARRIER 7 Sent to a Node to indicate that a previous barrier message was
rejected at the receiving Node for some reason. This can be
sent to both server and client NetBarrier ends. This takes the
form (REJECT_BARRIER, <destination>, -1).

Appendix E: Network Protocol Definition 269

E.3 Connection Messages

Message Value Description

OPEN 14 Opens a connection communication from a client
connection end to a server connection end. This
includes a data message that is the initial request to
the connection. This takes the form (OPEN,
<destination>, <source>, <size>, <bytes>).

REQUEST 15 A request data message sent from the connection
client end to the connection server end. This is
basically the same as the OPEN message, but is used
when an ongoing communication is occurring. This
takes the form (REQUEST, <destination>, <source>,
<size>, <bytes>).

REPLY 16 A reply data message sent from the connection server
end to the connection client end. This takes the form
(REPLY, <destination>, <source>, <size>, <bytes>).

REPLY_AND_CLOSE 17 A reply message sent from the server end to the
connection end, and also closes the communication.
This takes the form (REPLY_AND_CLOSE,
<destination>, <source>, <size>, <bytes>).

REQUEST_ACK 22 An acknowledgement sent from the server
connection end to the client end. This message is
used to acknowledge both OPEN and REQUEST
messages. It takes the form (REQUEST_ACK,
<destination>, -1).

REPLY_ACK 23 An acknowledgement sent from the client connection
end to the server end. This message is used to
acknowledge both REPLY and REPLY_AND_CLOSE
messages. It takes the form (REPLY_ACK,
<destination>, -1).

ASYNC_OPEN 18 An unacknowledged open connection message. As
any connection interaction takes the form request-
reply, there is no risk of infinite buffer increasing as
the NetConnectionClient must call reply before
performing another ASYNC_OPEN. This takes the
form (ASYNC_OPEN, <destination>, <source>, <size>,
<bytes>).

ASYNC_REQUEST 19 An unacknowledged request message. This takes the
form (ASYNC_REQUEST, <destination>, <source>,
<size>, <bytes>).

ASYNC_REPLY 20 An unacknowledged reply message. This takes the
form (ASYNC_REPLY, <destination>, <source>, <size>,
<bytes>).

ASYNC_REPLY_AND_CLOSE 21 An unacknowledged reply message that closes the
connection. (ASYNC_REPLY_AND_CLOSE,
 <destination>, <source>, <size>, <bytes>).

REJECT_CONNECTION 24 Sent to a Node to indicate that a previous connection
message was rejected. This can be sent from both
the client and server end. It takes the form
(REJECT_CONNECTION, <destination>, -1).

Appendix E: Network Protocol Definition 270

E.4 Miscellaneous Messages

Message Value Description

LINK_LOST 9 Sent to an event component to indicate that the Link it was operating
on has failed for some reason. All event component types use this
message in some form. A NetChannelOutput is sent LINK_LOST to
indicate that the Link to the NetChannelInput has failed. The
NetBarrier client end is sent this message to indicate that the
connection to the server end has gone, and therefore the NetBarrier
fails. The NetBarrier server end receives this message when one of its
client ends has become disconnected, and the server end should act
accordingly. A connection end receives this message if the other end
of the connection has gone. A client end is broken, whereas the
server end may continue after disassociating itself from the client.

Appendix F SPIN Model of New JCSP Network
Architecture

/* Define the possible states of the channel.
 These are set constants. */

#define INACTIVE 0
#define OK_INPUT 1
#define OK_OUTPUT 2
#define DESTROYED 3
#define BROKEN 4
#define POISONED 5

/* Define return values from a call on a channel.
 These are set constants. */

#define OK 1
#define EXCEPTION 0

/* Define number of of input channels, number outputs to inputs
 and buffer size of the channels. */

#define NUMBER_INPUTS 1
#define NUMBER_OUTPUTS 1
#define TOTAL_OUTPUTS 1
#define BUFFER_SIZE 1

/* Protocol definition */

mtype = {
 SEND, /* A standard send message to a ChannelInput */
 ACK, /* An acknowledgement for a SEND */
 REJECT_CHANNEL, /* Rejection of a channel message */
 LINK_LOST, /* Link to Node lost */
 POISON}; /* Poison message */

/* ********** TYPE DEFINITIONS ********** */

/* The channel data state object. This retains information
about a channel to allow operation. */

typedef CHANNEL_DATA
{
 byte vcn; /* The Virtual Channel Number of the channel.
 Used to uniquelly identify the channel in
 the Node. */
 byte state = INACTIVE; /* The current state of the channel.
 Initially the channel is set to
 INACTIVE. */
 chan toChannel; /* The channel connecting the Link level with
 the Net Channel. The Net Channel reads
 from this channel, whereas the Link writes
 to it. */
};

Appendix F: SPIN Model of New JCSP Network Architecture 272

/* The input channel interface. We bundle this together to make
 things easier. */

typedef INPUT_CHANNEL_INTERFACE
{
 /* Channel written to when a read operation occurs */
 chan read = [0] of { bool };
 /* Channel written to when an extended read operation is begun */
 chan startRead = [0] of { bool };
 /* Channel written to when an extended read operation is
 completed */
 chan endRead = [0] of { bool };
 /* Channel written to when the channel is poisoned by the
 application */
 chan poison = [0] of { bool };
 /* Channel written to when the channel is destroyed by the
 application */
 chan destroy = [0] of { bool };
 /* Channel read from to simulate the return from the method
 call */
 chan callReturn = [0] of { bit };
};

/* The output channel interface. We bundle this together to make
 things easier */

typedef OUTPUT_CHANNEL_INTERFACE
{
 /* Channel written to when a write operation occurs */
 chan write = [0] of { bool };
 /* Channel written to when the channel is poisoned by
 the application */
 chan poison = [0] of { bool };
 /* Channel written to when the channel is destroyed by
 the application */
 chan destroy = [0] of { bool };
 /* Channel read from to simulate the return from the method
 call */
 chan callReturn = [0] of { bit };
};

/* The channels declared for a Node */

typedef CHANNEL_ARRAY
{
 CHANNEL_DATA channels[TOTAL_OUTPUTS];
};

/* ********** GLOBALS ********** */

/* Global flag used to signal link failure to the Application
 processes. We use this to get round the problem if a Link fails
 while a channel input is committed in a read operation. We
 essentially know that this will cause the application process to
 break, as it has no one to read from. However, this should not
 be seen as a fault of the architecture, as the net channels are
 any-2-one, so another connection might later be established.
 The flag is false and is set to true when the Network fails, and
 the input channels can safely die. */

byte linkLost = false;

/* The channels for each Node. The writing Node has one, and the
 reading Node also has one */

CHANNEL_ARRAY chans[2];

Appendix F: SPIN Model of New JCSP Network Architecture 273

/* ********** PROCESSES ********** */

/* A network connection, simulated by a process to allow network
 failure and network buffering to occur. */

proctype Network(chan in0; chan in1; chan out0; chan out1)
{
 /* Network reads in message type and two attributes. */
 mtype type;
 byte attr1;
 byte attr2;
 /* Either read in a message and output it, or break
 the connection */
 /* Valid end state for network. Waiting to stream message */
end_network:
 do
 /* Stream message */
 :: atomic
 {
 in0 ? type, attr1, attr2 -> out1 ! type, attr1, attr2
 }
 /* Stream message */
 :: atomic
 {
 in1 ? type, attr1, attr2 -> out0 ! type, attr1, attr2
 }
 /* Non deterministically choose to break link. Connection
 down */
 :: atomic
 {
 linkLost = true ->
 /* Send connected Nodes the LINK_LOST message */
 out0 ! LINK_LOST(-1, -1);
 out1 ! LINK_LOST(-1, -1);
 /* End network process */
 }
 break;
 od
}

/* A NetChannelOutput */

proctype NetChannelOutput(OUTPUT_CHANNEL_INTERFACE interface;
 chan toLinkTx; chan ackChannel;
 CHANNEL_DATA data; byte remoteVCN)
{
 /* The response from the Link */
 mtype response;

 /* Valid end state for output channel. Channel is awaiting a
 method call */
end_nco:
 do
 /* Write operation */
 :: interface.write ? _ ->
 /* Check the channel state first, and return exception if
 necessary */
 if
 :: atomic
 {
 (data.state == DESTROYED) ->
 interface.callReturn ! EXCEPTION
 }
 :: atomic
 {
 (data.state == BROKEN) ->
 interface.callReturn ! EXCEPTION
 }

Appendix F: SPIN Model of New JCSP Network Architecture 274

 :: atomic
 {
 (data.state == POISONED) ->
 interface.callReturn ! EXCEPTION
 }
 /* Otherwise channel in OK state. Continue write operation */
 :: else ->
 if
 /* Check if there are any residual messages. The
 channel may have been rejected, or the Link might
 have failed */
 :: atomic
 {
 (nempty(ackChannel)) ->
 /* There is a residual message. Process it. */
 ackChannel ? response;
 if
 /* A previous send was rejected. Break channel */
 :: (response == REJECT_CHANNEL) ->
 data.state = BROKEN;
 interface.callReturn ! EXCEPTION
 /* The network has gone down. Break channel */
 :: (response == LINK_LOST) ->
 data.state = BROKEN;
 interface.callReturn ! EXCEPTION
 /* Poison received. Poison channel */
 :: (response == POISON) ->
 data.state = POISONED;
 interface.callReturn ! EXCEPTION
 /* Otherwise an unexpected message has been
 received. Fail */
 :: else -> assert(false)
 fi
 }
 /* There are no residual messages. Continue write
 operation. */
 :: else ->
 /* Send message to the Link. Destination at
 receiving Node is remoteVCN and local
 sender is data.vcn */
 toLinkTx ! SEND(remoteVCN, data.vcn);
 /* Now wait for a response */
 atomic
 {
 ackChannel ? response;
 /* Now process the message */
 if
 /* SEND was rejected. Break channel */
 :: (response == REJECT_CHANNEL) ->
 data.state = BROKEN;
 interface.callReturn ! EXCEPTION
 /* Network has gone down. Return exception */
 :: (response == LINK_LOST) ->
 data.state = BROKEN;
 interface.callReturn ! EXCEPTION
 /* Channel has been poisoned. */
 :: (response == POISON) ->
 data.state = POISONED;
 interface.callReturn ! EXCEPTION
 /* ACK received. */
 :: (response == ACK) ->
 interface.callReturn ! OK
 /* Unexpected message. Fail */
 :: else -> assert(false)
 fi
 }
 fi;
 fi; /* End of write operation */

Appendix F: SPIN Model of New JCSP Network Architecture 275

 /* The application has poisoned the channel */
 :: interface.poison ? _ ->
 /* First check the status of the channel. If the channel is
 BROKEN, DESTROYED, or POISONED we simply return */
 if
 :: atomic
 {
 (data.state == DESTROYED) ->
 interface.callReturn ! OK
 }
 :: atomic
 {
 (data.state == BROKEN) ->
 interface.callReturn ! OK
 }
 :: atomic
 {
 (data.state == POISONED) ->
 interface.callReturn ! OK
 }
 /* Otherwise channel in OK state. Continue with poisoning */
 :: else ->
 /* Check for pending messages. This could mean the
 channel is broken, in which case poisoning can
 be ignored */
 if
 :: atomic
 {
 (nempty(ackChannel)) ->
 /* There is a residual message. Process it. */
 ackChannel ? response;
 if
 /* A previous send was rejected. Break channel,
 and return OK */
 :: (response == REJECT_CHANNEL) ->
 data.state = BROKEN;
 interface.callReturn ! OK
 /* The network has gone down. Break channel and
 return OK. */
 :: (response == LINK_LOST) ->
 data.state = BROKEN;
 interface.callReturn ! OK
 /* Poison received. Poison channel as this was
 going to happen anyway, and then return */
 :: (response == POISON) ->
 data.state = POISONED;
 interface.callReturn ! OK
 /* Otherwise an unexpected message has been
 received. Fail */
 :: else -> assert(false)
 fi
 }
 /* There are no residual messages. Continue poison
 operation. */
 :: atomic
 {
 empty(ackChannel) ->
 /* Set state to POISONED, send poison to input
 end, and return */
 data.state = POISONED;
 toLinkTx ! POISON(remoteVCN, -1);
 interface.callReturn ! OK
 }
 fi;
 fi; /* End of poison operation */

Appendix F: SPIN Model of New JCSP Network Architecture 276

 /* Channel is being destroyed by the application */
 :: interface.destroy ? _ ->
 /* First check the status of the channel. We may not need to
 do anything */
 if
 :: atomic
 {
 (data.state == DESTROYED) ->
 interface.callReturn ! OK
 }
 :: atomic
 {
 (data.state == BROKEN) ->
 data.state = DESTROYED;
 interface.callReturn ! OK
 }
 :: atomic
 {
 (data.state == POISONED) ->
 data.state = DESTROYED;
 interface.callReturn ! OK
 }
 /* Otherwise we need to set the state to destroyed, remove
 any pending messages, and return OK */
 :: else ->
 atomic
 {
 data.state = DESTROYED;
 do
 :: (nempty(ackChannel)) -> ackChannel ? response
 :: (empty(ackChannel)) -> break
 od;
 interface.callReturn ! OK
 }
 fi; /* End of destroy operation */
 od
}

/* A networked input channel */

proctype NetChannelInput(INPUT_CHANNEL_INTERFACE interface;
 chan fromLink; CHANNEL_DATA data)
{
 /* Variables used to store incoming message */
 mtype type;
 byte returnIdx;
 chan toLink;

 /* Flag to indicate if the channel is in an extended read state.
 In the implementation we are actually testing for nullity of
 the last read message, but this flag serves the same purpose */
 bool extended = false;
 /* Valid end state for channel input. Channel waiting for
 application call */
end_nci:
 do
 /* Read operation */
 :: interface.read ? _ ->
 /* First check state of channel and act accordingly */
 if
 :: atomic
 {
 (data.state == DESTROYED) ->
 interface.callReturn ! EXCEPTION
 }
 :: atomic
 {
 (data.state == POISONED) ->
 interface.callReturn ! EXCEPTION
 }

Appendix F: SPIN Model of New JCSP Network Architecture 277

 :: atomic
 {
 (data.state == BROKEN) ->
 interface.callReturn ! EXCEPTION
 }
 :: atomic
 {
 extended -> interface.callReturn ! EXCEPTION
 }
 /* Otherwise continue read operation */
 :: else ->
 if
 /* Read in next message */
 :: atomic
 {
 fromLink ? type, returnIdx, toLink ->
 /* Check message type and act accordingly */
 if
 /* SEND received. Complete read operation */
 :: (type == SEND) ->
 /* Send back ACK message */
 toLink ! ACK(returnIdx, -1);
 /* Return OK */
 interface.callReturn ! OK;
 /* Poison received. Poison the channel */
 :: (type == POISON) ->
 /* Change state to poisoned */
 data.state = POISONED;
 /* Send poison to any incoming messages */
 do
 :: (nempty(fromLink)) ->
 /* There is an incoming message.
 Process it */
 fromLink ? type, returnIdx, toLink;
 if
 :: (type == SEND) ->
 toLink ! POISON(returnIdx, -1)
 :: else -> skip
 fi;
 :: (empty(fromLink)) ->
 break /* No more pending messages */
 od;
 /* Return EXCEPTION */
 interface.callReturn ! EXCEPTION;
 /* Otherwise an unknown message has been
 received. Fail */
 :: else -> assert(false)
 fi;
 }
 /* All incoming Links are gone. Read cannot complete,
 so set state to broken and return */
 :: atomic
 {
 linkLost ->
 data.state = BROKEN;
 interface.callReturn ! EXCEPTION
 }
 fi;
 fi; /* End of read operation */
 /* Start extended read operation */
 :: interface.startRead ? _ ->
 /* First check the state of the channel and act
 accordingly */
 if
 :: atomic
 {
 (data.state == DESTROYED) ->
 interface.callReturn ! EXCEPTION
 }

Appendix F: SPIN Model of New JCSP Network Architecture 278

 :: atomic
 {
 (data.state == POISONED) ->
 interface.callReturn ! EXCEPTION
 }
 :: atomic
 {
 (data.state == BROKEN) ->
 interface.callReturn ! EXCEPTION
 }
 :: atomic
 {
 extended -> interface.callReturn ! EXCEPTION
 }
 /* Otherwise continue extended read operation */
 :: else ->
 if
 /* Read in next message */
 :: atomic
 {
 fromLink ? type, returnIdx, toLink ->
 /* Check message type and act accordingly */
 if
 /* SEND received. Complete read operation */
 :: (type == SEND) ->
 /* Set extended to true and return */
 extended = true;
 /* Return OK */
 interface.callReturn ! OK;
 /* Poison received. Poison the channel */
 :: (type == POISON) ->
 /* Change state to poisoned */
 data.state = POISONED;
 /* Send poison to any incoming messages */
 do
 :: (nempty(fromLink)) ->
 /* There is an incoming message.
 Process it */
 fromLink ? type, returnIdx, toLink;
 if
 :: (type == SEND) ->
 toLink ! POISON(returnIdx, -1)
 :: else -> skip
 fi;
 :: (empty(fromLink)) ->
 break /* No more pending messages */
 od;
 /* Return EXCEPTION */
 interface.callReturn ! EXCEPTION;
 /* Otherwise an unknown message has been
 received. Fail */
 :: else -> assert(false)
 fi;
 }
 /* All incoming Links are gone. Extended read cannot
 complete, so set state to broken and return */
 :: atomic
 {
 linkLost ->
 data.state = BROKEN;
 interface.callReturn ! EXCEPTION
 }
 fi;
 fi; /* End of start read operation */

Appendix F: SPIN Model of New JCSP Network Architecture 279

 /* End extended read operation */
 :: interface.endRead ? _ ->
 /* First check state of channel. */
 if
 :: atomic
 {
 (data.state == DESTROYED) ->
 interface.callReturn ! EXCEPTION
 }
 :: atomic
 {
 (data.state == POISONED) ->
 interface.callReturn ! EXCEPTION
 }
 :: atomic
 {
 (data.state == BROKEN) ->
 interface.callReturn ! EXCEPTION
 }
 :: atomic
 {
 (!extended) ->
 interface.callReturn ! EXCEPTION
 }
 /* Otherwise send acknowledgement message */
 :: atomic
 {
 else ->
 extended = false;
 toLink ! ACK(returnIdx, -1);
 interface.callReturn ! OK
 }
 fi; /* End of end extended read operation */
 /* Poison channel operation */
 :: interface.poison ? _ ->
 /* First check the state of the channel. Nothing may need
 to be done */
 if
 :: atomic
 {
 (data.state == DESTROYED) -> interface.callReturn ! OK
 }
 :: atomic
 {
 (data.state == POISONED) -> interface.callReturn ! OK
 }
 :: atomic
 {
 (data.state == BROKEN) -> interface.callReturn ! OK
 }
 /* Otherwise continue poison operation */
 :: else ->
 atomic
 {
 /* If the channel is extended, the previous message
 needs to be acked by poison */
 if
 :: extended -> toLink ! POISON(returnIdx, -1)
 :: else -> skip
 fi;
 /* Set state to poisoned and process any pending
 messages */
 /* Change state to poisoned */
 data.state = POISONED;
 /* Send poison to any incoming messages */

Appendix F: SPIN Model of New JCSP Network Architecture 280

 do
 :: (nempty(fromLink)) ->
 /* There is an incoming message. Process it */
 fromLink ? type, returnIdx, toLink;
 if
 :: (type == SEND) ->
 toLink ! POISON(returnIdx, -1)
 :: else -> skip
 fi;
 :: (empty(fromLink)) ->
 break /* No more pending messages */
 od;
 /* Return OK */
 interface.callReturn ! OK;
 }
 fi; /* End of poison operation */
 /* Destroy channel operation operation */
 :: interface.destroy ? _ ->
 /* First check the state of the channel. Nothing may need to
 be done */
 if
 :: atomic
 {
 (data.state == DESTROYED) -> interface.callReturn ! OK
 }
 :: atomic
 {
 (data.state == POISONED) ->
 data.state = DESTROYED;
 interface.callReturn ! OK
 }
 :: atomic
 {
 (data.state == BROKEN) ->
 data.state = DESTROYED;
 interface.callReturn ! OK
 }
 /* Otherwise continue destroy operation */
 :: else ->
 atomic
 {
 /* If the channel is extended, the previous message
 needs to be rejected */
 if
 :: extended -> toLink ! REJECT_CHANNEL(returnIdx, -1)
 :: else -> skip
 fi;
 /* Set state to destroyed and process any pending
 messages */
 /* Change state to destroyed */
 data.state = DESTROYED;
 /* Send rejection to any incoming messages */
 do
 :: (nempty(fromLink)) ->
 /* There is an incoming message. Process it */
 fromLink ? type, returnIdx, toLink;
 if
 :: (type == SEND) ->
 toLink ! REJECT_CHANNEL(returnIdx, -1)
 :: else -> skip
 fi;
 :: (empty(fromLink)) ->
 break /* No more pending messages */
 od;
 /* Return OK */
 interface.callReturn ! OK;
 }
 fi; /* End of destroy operation */
 od
}

Appendix F: SPIN Model of New JCSP Network Architecture 281

/* The TX process of the Link */

proctype LinkTx(chan input; chan txStream)
{
 mtype type;
 byte attr1;
 byte attr2;

 /* The point of this process is to forward whatever message it
 receives onto the network *EXCEPT* when the network has gone
 down. We simulate this with the linkFailed flag, so the LinkTx
 must also check this flag when it tries to send */
 /* Valid end state for LinkTx. Waiting for message to forward */
end_ltx1:
 do
 :: input ? type, attr1, attr2 ->
 if
 /* Network still up, we can send */
 :: txStream ! type, attr1, attr2
 /* Network is down. We now accept any incoming messages, but
 do not forward them onto the stream. The sender should be
 informed by the LinkRx. Valid end state, waiting for
 message to black hole */
 :: linkLost ->
end_ltx2:
 do
 :: input ? type, attr1, attr2
 od
 fi
 od
}

/* The RX process of the Link */

proctype LinkRx(chan toTxProcess; chan rxStream; bit nodeNumber)
{
 /* Attributes read in with incoming message */
 byte attr1;
 byte attr2;

 /* This process reads an incoming message from the message and
 processes it. Generally the message is forwarded onto the
 correct destination, although erroneous behaviour must be dealt
 with */
 /* Valid end state. Waiting for input from the network */
end_lrx:
 do
 /* SEND received. */
 :: atomic
 {
 rxStream ? SEND(attr1, attr2) ->
 /* First check if the message is going to a valid
 channel */
 if
 /* Destination channel is outside range. Reject message */
 :: (attr1 > TOTAL_OUTPUTS) ->
 toTxProcess ! REJECT_CHANNEL(attr2, -1)
 :: else ->
 /* Message is for a valid channel. Check channel
 state and deal with accordingly */
 if
 :: (chans[nodeNumber].channels[attr1].state
 == OK_INPUT) ->
 /* Channel is OK to receive messages. Forward
 the message onto the channel process */
 chans[nodeNumber].channels[attr1].toChannel
 ! SEND(attr2, toTxProcess)

Appendix F: SPIN Model of New JCSP Network Architecture 282

 :: (chans[nodeNumber].channels[attr1].state
 == POISONED) ->
 /* Channel has been poisoned. Propagate the
 poison back to the writer */
 toTxProcess ! POISON(attr2, 0)
 :: (chans[nodeNumber].channels[attr1].state
 == DESTROYED) ->
 /* Channel has been destroyed. Reject the
 message */
 toTxProcess ! REJECT_CHANNEL(attr2, 0)
 :: (chans[nodeNumber].channels[attr1].state
 == BROKEN) ->
 /* Channel is broken. This should only happen
 during Link failure, but be safe and reject */
 toTxProcess ! REJECT_CHANNEL(attr2, 0)
 :: else ->
 /* Channel is in some other state. This could be
 a channel trying to send to an output or some
 other problem. We reject the message in this
 instance and continue */
 toTxProcess ! REJECT_CHANNEL(attr2, 0)
 fi
 fi
 }
 /* Acknowledgement operation */
 :: atomic
 {
 rxStream ? ACK(attr1, attr2) ->
 /* First check if the message is going to a valid
 channel */
 if
 /* Destination channel is outside range. Ignore message */
 :: (attr1 > TOTAL_OUTPUTS) -> skip
 :: else ->
 /* Message is for a valid channel. Check channel
 state and deal with accordingly */
 if
 :: (chans[nodeNumber].channels[attr1].state
 == OK_OUTPUT) ->
 /* ACK being sent to an output channel. Forward
 the message onto the channel process */
 chans[nodeNumber].channels[attr1].toChannel ! ACK
 /* In all other cases, we drop the message. The
 message has been sent to a channel that was
 not in a state to accept it. */
 :: else -> skip
 fi
 fi
 }
 /* Reject channel message received */
 :: atomic
 {
 rxStream ? REJECT_CHANNEL(attr1, attr2) ->
 /* First check if the message is going to a valid
 channel */
 if
 /* Destination channel is outside range. No point in
 rejecting (we could end up with a continuous cycle of
 rejects). Simply ignore the message. */
 :: (attr1 > TOTAL_OUTPUTS) -> skip
 :: else ->
 /* Message is for a valid Channel. Check channel
 state and deal with accordingly */
 if
 :: (chans[nodeNumber].channels[attr1].state
 == OK_OUTPUT) ->
 /* Channel can accept the reject message. Pass
 onto the channel process */
 chans[nodeNumber].channels[attr1].toChannel
 ! REJECT_CHANNEL

Appendix F: SPIN Model of New JCSP Network Architecture 283

 /* In all other cases ignore the message. The channel
 is in no state to receive it */
 :: else -> skip
 fi
 fi
 }
 /* Poison message received */
 :: atomic
 {
 rxStream ? POISON(attr1, attr2) ->
 /* First check if the message is going to a valid
 channel */
 if
 /* Destination channel is outside range. No point in
 rejecting (we could end up with a continuous cycle of
 rejects). Simply ignore the message. */
 :: (attr1 > TOTAL_OUTPUTS) -> skip
 :: else ->
 /* Message is for a valid Channel. Check channel
 state and deal with accordingly */
 if
 :: (chans[nodeNumber].channels[attr1].state
 == OK_OUTPUT) ->
 /* Channel is an output. Simply send POISON to
 it. */
 chans[nodeNumber].channels[attr1].toChannel
 ! POISON
 :: (chans[nodeNumber].channels[attr1].state
 == OK_INPUT) ->
 /* Channel is an input. Simply send POISON to
 it */
 chans[nodeNumber].channels[attr1].toChannel
 ! POISON(attr1, attr2)
 /* In all other cases we ignore the poison. Either the
 channel is poisoned, and in the Model nothing else
 needs to be done (in the implementation we increase
 the poison strength if necessary), or it is
 destroyed or broken, which is considered to be
 greater than poison */
 :: else -> skip
 fi
 fi
 }
 /* Link lost received */
 :: rxStream ? LINK_LOST(attr1, attr2) ->
 atomic
 {
 /* Inform all output ends */
 byte idx = 0;
 do
 :: (idx < TOTAL_OUTPUTS) ->
 if
 :: (chans[nodeNumber].channels[idx].state
 == OK_OUTPUT) ->
 chans[nodeNumber].channels[idx].toChannel
 ! LINK_LOST
 :: else -> skip
 fi;
 idx = idx + 1;
 :: else -> break
 od;
 }
 break;
 od;
}

Appendix F: SPIN Model of New JCSP Network Architecture 284

/* The complete Link process */

proctype Link(chan toLinkTx; chan toNetwork; chan fromNetwork;
 bit nodeNumber)
{
 atomic
 {
 run LinkRx(toLinkTx, fromNetwork, nodeNumber);
 run LinkTx(toLinkTx, toNetwork);
 }
}

/* A receiving application process */

proctype Receiver(INPUT_CHANNEL_INTERFACE chanIn)
{
 /* Response from the method call */
 bit response;
 /* Non deterministically choose an operation to perform on the
 channel */
 /* Valid end state for the process */
end_receiver:
 do
 :: atomic
 {
 if
 :: chanIn.read ! true -> chanIn.callReturn ? response
 :: chanIn.startRead ! true -> chanIn.callReturn ? response
 :: chanIn.endRead ! true -> chanIn.callReturn ? response
 :: chanIn.poison ! true -> chanIn.callReturn ? response
 :: chanIn.destroy ! true -> chanIn.callReturn ? response
 fi;
 if
 :: (response == EXCEPTION) -> goto end_receiverStop
 :: else -> skip
 fi
 }
 Od;
end_receiverStop:
 skip
}

/* A sending application process */

proctype Sender(OUTPUT_CHANNEL_INTERFACE chanOut)
{
 /* Response from the method call */
 bit response;
 /* Non deterministically choose an operation to perform on
 the channel */
 /* Valid end state for the process */
end_sender:
 do
 :: atomic
 {
 if
 :: chanOut.write ! true -> chanOut.callReturn ? response
 :: chanOut.poison ! true -> chanOut.callReturn ? response
 :: chanOut.destroy ! true -> chanOut.callReturn ? response
 fi;
 if
 :: (response == EXCEPTION) -> goto end_senderStop
 :: else -> skip
 fi
 }
 od;
end_senderStop:
 skip
}

Appendix F: SPIN Model of New JCSP Network Architecture 285

/* Inputting Node process */

proctype InputNode(chan toNetwork; chan fromNetwork)
{
 atomic
 {
 chan toLinkTx = [0] of { mtype, byte, byte };
 /* Set up the Link */
 run Link(toLinkTx, toNetwork, fromNetwork, 0);
 /* Set up the channel and receiving processes */
 INPUT_CHANNEL_INTERFACE inputInterface[NUMBER_INPUTS];
 chan toInput[NUMBER_INPUTS] =
 [BUFFER_SIZE] of { mtype, byte, chan };
 byte idx = 0;
 do
 :: (idx < NUMBER_INPUTS) ->
 chans[0].channels[idx].vcn = idx;
 chans[0].channels[idx].state = OK_INPUT;
 chans[0].channels[idx].toChannel = toInput[idx];
 run NetChannelInput(inputInterface[idx], toInput[idx],
 chans[0].channels[idx]);
 run Receiver(inputInterface[idx]);
 idx = idx + 1;
 :: else -> break;
 od;
 /* Set any other channels to INACTIVE. */
 do
 :: (idx < TOTAL_OUTPUTS) ->
 chans[0].channels[idx].state = INACTIVE;
 idx = idx + 1
 :: else -> break
 Od
 }
}

/* Outputting Node process */

proctype OutputNode(chan toNetwork; chan fromNetwork)
{
 atomic
 {
 chan toLinkTx = [0] of { mtype, byte, byte };
 /* Set up the Link */
 run Link(toLinkTx, toNetwork, fromNetwork, 1);
 /* Set up the channel and receiving processes */
 OUTPUT_CHANNEL_INTERFACE outputInterface[TOTAL_OUTPUTS];
 chan toOutput[TOTAL_OUTPUTS] = [BUFFER_SIZE] of { mtype };
 byte idx = 0, count = 0;
 do
 :: (idx < TOTAL_OUTPUTS) ->
 do
 :: (count < NUMBER_INPUTS) ->
 chans[1].channels[idx].vcn = idx;
 chans[1].channels[idx].state = OK_OUTPUT;
 chans[1].channels[idx].toChannel = toOutput[idx];
 run NetChannelOutput(outputInterface[idx], toLinkTx,
 toOutput[idx],
 chans[1].channels[idx], count);
 run Sender(outputInterface[idx]);
 idx = idx + 1;
 count = count + 1;
 :: else ->
 count = 0;
 break;
 od;
 :: else -> break;
 Od
 }
}

Appendix F: SPIN Model of New JCSP Network Architecture 286

/* initialisation */

init
{
 atomic
 {
 chan fromNode[2] = [0] of { mtype, byte, byte };
 chan toNode[2] = [0] of { mtype, byte, byte };
 run Network(fromNode[0], fromNode[1], toNode[0], toNode[1]);
 run OutputNode(fromNode[0], toNode[0]);
 run InputNode(fromNode[1], toNode[1]);
 }
}

Appendix G Channel Mobility Models

The state model for channels in the new JCSP architecture is presented in Figure 41.

For all the models presented, channel states which would cause an exception if the

channel were migrated are ignored (DESTROYED, POISONED and BROKEN).

G.1 One-to-One Networked Channel

This model for channel mobility is based on the work of Muller [145]. As a channel

must only have one complement, a networked channel input must be claimed by

the output end. The one-to-one channel model requires presented by Muller

distinguishes between remotely and locally connected channels for optimisation

reasons. JCSP cannot provide optimisation from this standpoint, although a locally

connected networked channel does connect directly to the complement end.

Refining the proposed model in this context provides the state model presented in

Figure 155.

Figure 155: One-to-One Networked Channel Mobility Model State Diagram

There are six new states introduced:

 CLAIMED – an input channel that has an output channel associated with it.

INACTIVEOK_INPUTCLAIMED

INPUTTING

READY

GONE

SELECTING

OK_OUTPUT

OUTPUTTING

GONE

Appendix G: Channel Mobility Models 288

 SELECTING – the input channel is currently being used in a guarded

command.

 INPUTTING – the input channel is waiting for input to arrive.

 OUTPUTTING – the output channel has sent a message to the input channel

and is awaiting acknowledgement.

 READY – the input channel has data ready to be read.

 GONE – the channel end has been moved to another node.

The basic operations for moving a channel end are shown in the sequence diagram

Figure 156. The channel connects C to A. The first operation shows the message

transfer if the input end moves from A to B, and the second operation shows the

message transfer if the output end moves from C to B.

Figure 156: Sequence Diagram for One-to-One Networked Channel Mobility Model

There are three new channel messages introduced:

 MIGRATE_INPUT – signals that an input channel has been moved. This

message must contain the address of the companion output port.

 MIGRATE_OUTPUT – signals that an output channel has been moved. This

message must contain the address of the companion input port.

 MOVED – the message sent by the receiving node of a mobile channel end

to the companion ports location. This message must contain the new

address of the complement channel end.

A B C

MIGRATE_INPUT

MOVED

ACK

ACK

MIGRATE_OUTPUT

MOVED

ACK

ACK

Appendix G: Channel Mobility Models 289

Figure 156 does not show the occurrence when an input channel moves when data

is waiting to be read (it is in the READY state). In this situation, the output end of

the channel must resend the message to the new channel location. The other

approach would be to include it within the data segment of the MIGRATE_INPUT

message. This would require the data segment to contain both the address and the

data, and have a method to flag that data is also contained. The simpler approach is

therefore to have the output end resend the message.

G.2 Centralised Server

The centralised server approach to channel mobility is the approach currently taken

in pony [120, 130]. It has also been discussed as a communication method for

agent based systems. To achieve mobility, each channel end is allocated an

identifier by the server, and this identifier is used to check the current location of

the channel end whenever it is not found at its current location. The updated state

model only requires one new state – GONE – to indicate that the channel end is no

longer at that location. The state diagram is presented in

Figure 157: Centralised Server Mobility Model State Diagram

The operation of moving an input channel end and the output end subsequently

trying to send to the original location, and thereby requiring resolution of the new

location with the server is presented in Figure 158, with the channel in question

connecting C to A. Output end mobility is trivial in that in only involves sending the

identifier of the input channel end so that the current address can be resolved with

the server.

INACTIVEOK_INPUT OK_OUTPUTGONE GONE

Appendix G: Channel Mobility Models 290

Figure 158: Sequence Diagram for Centralised Server Mobility Model

There are seven new messages introduced:

 MOVING – is sent from the input channel end location to the Server to

indicate that a channel is about to move. After receiving this message, the

Server changes the state of the channel and buffers any resolution messages

for this channel ID.

 MIGRATE_INPUT – signals that an input end has moved. This need only

contain the ID of the channel relevant to the Server.

 MIGRATE_OUTPUT (not shown) – signals that an output end has moved.

This need only contain the ID of the input end of the channel relevant to the

Server.

 ARRIVED – sent from the receiver of an input channel end to the Server to

indicate the new location.

 MOVED – sent to an output end instead of an acknowledgement to indicate

that the input channel end has moved.

 RESOLVE – sent to the Server to acquire the current location of the input

channel end. This contains the ID of input channel to resolve.

 RESOLVE_REPLY – the reply from the RESOLVE. This contains the current

address of the input channel.

A B C Server

MIGRATE_INPUT

MOVING

ACK

ARRIVED

ACK

ACK

SEND

MOVED

RESOLVE

RESOLVE_REPLY

SEND

ACK

Appendix G: Channel Mobility Models 291

G.3 Message Box

The message box is another model that is commonly used in mobile agent

frameworks. With this approach, messages are always sent and retrieved from a

single location. As the message box is fixed, there is no need to add new states to

the channel model itself as when the channel end is moved the state DESTROYED

can be used to signify that the channel can no longer be used. The message box

itself does require a state model, but this only consists of two states: ENABLED

when the message box is enabled in a guard, and DISABLED for when the message

box is not enabled in a guard.

Figure 159 presents the sequence of messages that can occur within this mobility

model. This diagram represents a mobile input end and subsequent request and

response messages. The diagram also illustrates how a channel is checked to see if

a value is ready in the message box. Mobile output is not shown as it only requires

the address of the message box to be sent.

Figure 159: Sequence Diagram for Message Box Mobility Model

There are five new messages incorporated into this model:

 MIGRATE_INPUT – signals that an input end has moved. This message

contains the address of the message box to allow messages to be requested.

 MIGRATE_OUTPUT – signals that an output end has moved. This message

contains the address of the message box where messages are to be sent.

A B C

MIGRATE_INPUT

ACK

SEND

CHECK

CHECK_RESPONSE

REQUEST

SEND

ACK

Appendix G: Channel Mobility Models 292

 CHECK – sent by the input end to check if any messages are waiting in the

message box. This message contains the current location of the input

channel end to respond to.

 CHECK_RESPONSE – sent from the message box to the input end in response

to the CHECK. There is an immediate response, and also a delayed one. If a

message arrives after a CHECK but prior to a REQUEST then a message is

sent to the input channel end and buffered. If the input channel end moves

or requests prior to the response being utilised, the message can be silently

dropped. If it does not move, then the locally buffered response can be

retrieved instead of sending a new CHECK.

 REQUEST – requests the next available message from the message box. This

message contains the current location of the input end.

G.4 Message Box Server

The message box server model places all message boxes on a centralised server,

thus removing the weakness associated with distributed message boxes. This

model does not add much in comparison to the normal message box approach. The

only extra messages required involve creation and destruction of the message box

with the server. As such, Figure 159 serves to illustrate the sequence of messages,

with requests and sends being directed to a Server instead of a particular node.

G.5 Chain

The chain model of mobility utilises forwarding addresses to allow messages to

reach their intended destination. A migrating input end must inform the previous

location of the new channel input address. Output end mobility only requires that

the address of the previous link in the chain is taken to allow connection to that

link. Thus there are really multiple chains of different length that eventually

connect at the original output location. As the normal buffering and reply

technique for network messages is used, acknowledgements will flow back in the

direction that the original message travelled.

The state diagram for this model is presented in Figure 160.

Appendix G: Channel Mobility Models 293

Figure 160: Chain Mobility Model State Diagram

There are two new states introduced:

 MOVING – indicates that the input channel end is in the process of moving.

In this state the node where the input channel end is located must buffer

messages until the channel has arrived at its new location.

 MOVED – indicates that the channel end has arrived at a new location. Any

incoming message is forwarded to the next link in the chain and buffered to

allow the response to likewise travel back down the chain to the origin

channel end.

Reconfiguration of the architecture to allow the channel to move is fairly trivial.

The sequence of required messages is illustrated in Figure 161. There are only three

new messages introduced:

 MIGRATE_INPUT – indicates that an input channel end has moved. This

message contains the previous input address to allow the chain to be

expanded.

 MIGRATE_OUTPUT – indicates that an output channel end has moved. This

message contains the previous output address to allow the chain to be

expanded.

 ARRIVED – indicates that the input end has arrived at a new location. This

message contains the new input channel end location to allow channel to

forward on messages accordingly.

INACTIVEOK_INPUT OK_OUTPUTMOVING MOVEDMOVED

Appendix G: Channel Mobility Models 294

Figure 161: Sequence Diagram for Chain Mobility Model

G.6 Reconfiguring Chain

The reconfiguring chain model attempts to overcome the major limitations of the

normal chain model by allowing the chain to shorten itself by checking if any other

link in the chain is directly accessible instead of the immediately previous link. As a

channel has two separate mobile ends, there are essentially two separate chains

that can shorten. If the shared output view is taken for networked channels, then

there are multiple such reconfiguring output chains. This does mean that although

the chain may be shortcut at the output end, all previous links in the chain must

remain in case another mobile output end cannot use the new direct connection.

The previous output ends could be shut down by sending poison down the

redundant input sub-chain.

The state diagram for this model of channel mobility is the same as the one for the

normal chain. The sequence of messages occurring during a migration operation is

presented in Figure 162. C is the original location of the channel input end.

A B C D

MIGRATE_OUTPUT

MIGRATE_INPUT

ARRIVED

SEND

SEND

SEND

ACK

ACK

ACK

ACK

Appendix G: Channel Mobility Models 295

Figure 162: Sequence Diagram for Reconfiguring Chain Mobility Model

There are five new messages:

 MIGRATE_OUTPUT – indicates that a channel out end has moved. This

message must contain all previous locations in the chain to allow

reconnection.

 MIGRATE_INPUT – indicates that a channel input end has moved. This

message must contain all previous locations in the chain to allow

reconnection.

 ARRIVED – sent from the new location of an input channel end to a previous

location in the chain. This might be to the immediately previous link, or it

may be further down the chain.

 PROBE – sent from the new location of a channel end to one of the previous

locations. This is used to shorten the chain whenever possible. In some

cases, the PROBE will never be sent as the relevant link will not be

reachable.

 PROBE_RESPONSE – sent in reply to the PROBE message. This is used to

indicate that a direct path between the previous location and the new one

does exist.

A B C D

MIGRATE_OUTPUT

MIGRATE_INPUT

ARRIVED

SEND

SEND

ACK

ARRIVED

ACK

PROBE

ACK

E

MIGRATE_OUTPUT

PROBE

PROBE_REPLY

ACK

MIGRATE_INPUT

PROBE_RESPONSE

ACK

Appendix G: Channel Mobility Models 296

PROBE and PROBE_RESPONSE may occur multiple times depending on the number

of previous locations that are in the chain. A migrated input end may receive an

ACK message or an ARRIVED message as acknowledgement depending on whether

the link is to be used, or whether a shortcut has been created.

G.7 Mobile IP Model

The Mobile IP model [146] utilises agents within each domain to allow messages to

be routed to the correct destination. In effect, there is a reconfiguring chain

between domain servers which utilise message boxes. This model is sufficiently

more complex than the previous models to require numerous scenarios of mobility.

These are presented in sequence diagram form.

The scenario is best illustrated using a small domain tree. This is presented in

Figure 163. G is the global domain, and A and B are two sub-domains with no

means of direct contact. A has two members – A1 and A2 – and B has two members

– B1 and B2.

Figure 163: Simple Domain Tree

The scenario to be illustrated originally has a channel connecting A1 to A2 (mobile1),

and one connecting B1 to B2 (mobile2). The input channel end of mobile1 is moved

from node A2 to node B2. Then the output end of mobile1 is moved from A1 to B1.

For mobile2 the output channel end is moved first from node B1 to A1 and then the

input end from B2 to A2.

Each agent in the domain maintains a lookup table of where to redirect messages

to. Initially, there are two channels connecting A1 and B1 (one in each direction) and

likewise two channels connecting A2 and B2. How these were created is

G

BA

1

2

1

2

Appendix G: Channel Mobility Models 297

inconsequential. The three separate lookup tables are merged into one and

presented in Table 14.

From this table it becomes possible to define the paths of all the channels in the

system.

 mobile1 – A1 → A #01 → A2 (although these nodes are directly linked)

 mobile2 – B1 → B #01 → B2 (although these nodes are directly linked)

 A1B1 – A1 → A #04 → G #03 → B #02 → B1

 A2B2 – A2 → A #05 → G #04 → B #03 → B2

 B1A1 – B1 → B #04 → G #01 → A #02 → A1

 B2A2 – B2 → B #05 → G #02 → A #03 → A2

Table 14: Initial Channel Destination Table

DOMAIN CHANNEL ID DESTINATION PREVIOUS

A #01 A2 -

A #02 A1 G #01

A #03 A2 G #02

A #04 G #03 -

A #05 G #04 -

B #01 B2 -

B #02 B1 G #03

B #03 B2 G #04

B #04 G #01 -

B #05 G #02 -

G #01 A #02 B #04

G #02 A #03 B #05

G #03 B #02 A #04

G #04 B #03 A #05

G.7.1 Sending a New Input Channel End

To send the input end of mobile1, a MIGRATE_INPUT message is sent via A2B2. The

message must have the ID of the channel relevant to the domain (i.e. A #01), the

previous location if relevant, and the normal source and destination (destination

being A #05, source is the VCN of A2B2 on node 2 – represented by a). Thus, the

message takes the form:

 MIGRATE_INPUT | A #05 | a | A #01 | -1

Appendix G: Channel Mobility Models 298

When the agent for domain A receives this message, it first examines the channel ID

to determine which channel it is moving. As the channel has no previous location,

the agent knows that the channel is unknown at the destination. It buffers the

message in the normal buffer for channel A #05, and recreates the message

accordingly to tunnel it through to the agent for domain G:

 MIGRATE_INPUT | G #04 | A #05 | -1 | A #01

When the agent at node G receives this message, it too examines the channel ID.

As this time the value is -1, it knows that the channel is new in this domain context,

and creates a new entry:

G #05 - A #01

As the agent does not know the destination of this channel yet, the destination field

is left blank. The agent now sends an ARRIVED signal back to the agent for domain

A with the new destination:

 ARRIVED | A #01 | G #05

The first attribute is the destination of the message, and the second is the new ID

destination of the channel on the domain agent for G. The agent for A now updates

this field in its table:

A #01 G #05 -

The agent for domain G now modifies the migration message:

 MIGRATE_INPUT | B #03 | G #04 | -1 | G #05

When the agent for domain B receives this message, it checks the channel ID and

finds it to be -1. Therefore the channel is new in this context and a new entry is

created accordingly.

B #06 - G #05

Appendix G: Channel Mobility Models 299

An arrived message is generated, and sent back to the agent for domain G.

 ARRIVED | G #05 | B #06

The agent for B now modifies the migration message and sends it to node B2 on,

using the relevant VCN – represented by b:

 MIGRATE_INPUT | b | B #02 | -1 | B #05

When node B2 receives this message, it creates a new channel and sends the

ARRIVAL message back to the agent for the domain. When the receiving process

reads the message, it is given the newly created channel, and the ACK is sent back

down the path. The new channel path is now:

 mobile1 – A1 → A #01 → G #05 → B #06 → B2

G.7.2 Sending the Complement Output End

To send the output end of mobile1, a MIGRATE_OUTPUT message is sent via A1B1.

As with the MIGRATE_INPUT channel, a channel ID must be sent relevant to the

domain. However, this time the ID is where the output channel end is pointing –

which is A #01. The previous location is not filled in, as it is not required for

shortening the connection. Let the VCN of A1B1 on node A1 be represented by c.

Thus, the message created for the send is:

 MIGRATE_OUTPUT | A #04 | c | A #01 | -1

When the agent for domain A receives this message, it retrieves the destination of

the message (G #03) and the current destination of the migrating channel (G #05).

As these destinations are on the same domain – G – the agent determines the chain

is shortening and it does not have to update its table. It buffers the sent message

for future acknowledgement, and creates a new MIGRATE_OUTPUT message, using

the next destination link of the migrating output. As there is no previous location,

there is no need to send an ARRIVED message.

 MIGRATE_OUTPUT | G #03 | A #04 | G #05 | -1

Appendix G: Channel Mobility Models 300

When the agent at domain G receives this message, it too extracts the destination

(B #02) and the destination of the migrating end (B #06). As these are on the same

node, and there is no previous location, there is no table updates required. The

message is buffered, and a new MIGRATE_OUTPUT generated:

 MIGRATE_OUTPUT | B #02 | G #03 | B #06 | -1

When the agent of domain B receives this message, it retrieves the destination (B1)

and the destination of the migrating end (B2). As both of these destinations are

within this domain, the domain specific ID is used for the final MIGRATE_OUTPUT

message to B1. Thus the message sent to B1 (let the destination VCN be d) is:

 MIGRATE_OUTPUT | d | B #02 | B #06 | -1

The updated channel path for mobile1 is:

 mobile1 – B1 → B #06 → B2

When the new channel is first used, B1 can connect directly to B2.

G.7.3 Sending a New Output End

To send the output end of mobile2, a new MIGRATE_OUTPUT is sent via B1A1. The

message has the channel ID currently connected to:

 MIGRATE_OUTPUT | B #04 | e | B #01 | -1

e is the VCN of B1A1 on node B1. When the agent for domain B receives this

message, it retrieves the destination of the message (G #01) and the destination of

the migrating end (B2). As the destination of the migrating end is within this

domain, whereas the destination of the message is not, then the agent checks the

previous destination of the channel to see if the channel has previously come from

the destination domain. As it has not, the agent knows that the channel is new

within G, and creates a new message with -1 as the channel ID at the destination

domain, and B #01 as the previous destination.

 MIGRATE_OUTPUT | G #01 | B #04 | -1 | B #01

Appendix G: Channel Mobility Models 301

When the agent for domain G receives this message, it extracts the next destination

(A #02) and the migrating end’s destination (-1). As the migrating end has -1 as its

destination, the agent knows the channel is new in this context, and thus creates a

new entry in its table, with the destination from previous destination attribute:

G #06 B #01 -

The agent for domain G then sends an ARRIVED message to the agent on domain B:

 ARRIVED | B #01 | G #06

The agent for domain B uses this message to fill the previous location entry for

channel B #01:

B #01 B2 G #06

The agent then creates a new MIGRATE_OUTPUT message:

 MIGRATE_OUTPUT | A #02 | G #01 | -1 | G #06

When the agent for domain A receives this message, it extracts the next destination

(A1) and the destination of the migrating end (-1). As the migrating end has -1 as its

destination, the agent at A knows this is a new channel in this context. A new entry

in the table is created, and an ARRIVED message sent to the agent for domain G,

updating the entry for G #06:

A #06 G #06 -

 ARRIVED | G #06 | A #06

The final MIGRATE_OUTPUT is sent to A1, with the location of the relevant channel

ID:

 MIGRATE_OUTPUT | f | A #02 | A #06 | -1

The updated channel path for mobile2 is:

Appendix G: Channel Mobility Models 302

 mobile2 – A1 → A #06 → G #06 → B #01 → B2

G.7.4 Sending the Complement Input End

Sending the input end of mobile2 requires a MIGRATE_INPUT message sent via B2A2.

This message requires the relevant channel ID within the domain (B #01). The

previous location is not relevant initially:

 MIGRATE_INPUT | B #05 | g | B #01 | -1

When the agent for domain B receives this message, it extracts the previous

destination from the table for the channel ID (G #06). As the channel has a previous

location, the agent checks the destination (G #02) and discovers them to be the

same. Thus, the agent determines that the table must be updated so that B #01

points towards G #06 instead of from. As the previous destination attribute is -1, it

is determined that there is no new previous destination to be set for the entry:

B #01 G #06 -

The agent then creates a new MIGRATE_INPUT message and sends it to the agent

for domain G:

 MIGRATE_INPUT | G #02 | B #05 | G #06 | B #01

When the agent for domain G receives this message, it extracts the channel ID, and

from this the previous destination of the channel (A #06). As the channel has a

previous location, the agent checks the destination (A #03) and as they are on the

same node, determines that the channel must be redirected. As the previous

destination attribute has a value, the previous destination value for the entry is set

to the current destination of the channel.

G #06 A #06 B #01

An ARRIVED message is generated and sent to the agent for domain B allowing the

agent to forward messages onto the new destination. The agent then creates a

new MIGRATE_INPUT message to send to the agent for domain A:

Appendix G: Channel Mobility Models 303

 MIGRATE_INPUT | A #03 | G #02 | A #06 | G #06

When the agent for domain A receives this message, it retrieves the relevant

previous destination of the channel which is empty. Therefore, the channel is

unknown at the destination. The agent checks the destination, and finds it to be for

domain A (A2). Therefore, the table is updated so that A #06 points towards A2. As

the previous destination has a value, the previous destination for A #06 is set to the

current destination (G #06):

A #06 A2 G #06

The agent informs the agent for domain G that the channel has arrived, and then

sends the final MIGRATE_INPUT message to A2:

 MIGRATE_INPUT | g | A #03 | -1 | A #06

g is the VCN of B2A2 on node A2. The new path of mobile2 is:

 mobile2 – A1 → A #06 → A2

G.7.5 Protocol Messages

From these examples, we can determine that three new messages are required:

 MIGRATE_INPUT – sent when an input channel migrates. This contains two

addresses or ID constructs, identifying the channel and its previous location.

 MIGRATE_OUTPUT – sent when an output channel migrates. This contains

two addresses or ID constructs, indentifying the channel and its previous

location.

 ARRIVED – sent to indicate a channel end has arrived at its destination. This

contains the old address and new address of the channel.

Appendix H Numbers and Mobile Numbers Processes

The standard versions of these processes are taken from the JCSP release, and

where originally created by P. D. Austin.

H.1 IdentityInt

H.1.1 Normal

public class IdentityInt implements CSProcess
{
 private ChannelInputInt in;
 private ChannelOutputInt out;

 public IdentityInt(ChannelInputInt in, ChannelOutputInt out)
 {
 this.in = in;
 this.out = out;
 }

 public void run()
 {
 while (true)
 out.write(in.read());
 }
}

H.1.2 Mobile

public class MobileIdentityInt implements CSProcess, Serializable
{
 private static final int READING = 0;
 private static final int WRITING = 1;
 private transient AltingChannelInputInt input;
 private transient AltingChannelOutputInt output;
 private transient AltingBarrier migrate;
 private int state = READING;
 private int x;

 public void init(AltingChannelInputInt input,
 AltingChannelOutputInt output,
 AltingBarrier migrate)
 {
 this.input = input;
 this.output = output;
 this.migrate = migrate;
 }

Appendix H: Numbers and Mobile Numbers Processes 305

 public MobileIdentityInt(AltingChannelInputInt input,
 AltingChannelOutputInt output,
 AltingBarrier migrate)
 {
 this.input = input;
 this.output = output;
 this.migrate = migrate;
 }

 private void writeObject(ObjectOutputStream out)
 throws IOException
 {
 out.writeInt(state);
 out.writeInt(x);
 }

 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException
 {
 this.state = in.readInt();
 this.x = in.readInt();
 }

 public void run()
 {
 Guard[] guards = {migrate, input, output};
 Alternative alt = new Alternative(guards);
 boolean running = true;
 while (running)
 {
 switch (state)
 {
 case READING:
 {
 // migrate and input
 boolean[] active = {true, true, false};
 int selected = alt.priSelect(active);
 switch (selected)
 {
 case 0: // migrate
 running = false;
 break;
 case 1: // input
 x = input.read();
 state = WRITING;
 break;
 }
 }
 break;
 case WRITING:
 {
 // migrate and output
 boolean[] active = {true, false, true};
 int selected = alt.priSelect(active);
 switch (selected)
 {
 case 0: // migrate
 running = false;
 break;
 case 2: // output
 output.write(x);
 state = READING;
 break;
 }
 }
 break;
 }
 }
 }
}

Appendix H: Numbers and Mobile Numbers Processes 306

H.2 PrefixInt

H.2.1 Normal

public class PrefixInt implements CSProcess
{
 private ChannelInputInt in;
 private ChannelOutputInt out;
 private int n;

 public PrefixInt(int n, ChannelInputInt in,
 ChannelOutputInt out)
 {
 this.in = in;
 this.out = out;
 this.n = n;
 }

 public void run()
 {
 out.write(n);
 new IdentityInt(in, out).run();
 }
}

H.2.2 Mobile

public class MobilePrefixInt implements CSProcess, Serializable
{
 private static final int WRITING = 0;
 private static final int IDENTITY = 1;
 private int state = WRITING;
 private int prefix = 0;
 private MobileIdentityInt identity;
 private transient AltingChannelInputInt input;
 private transient AltingChannelOutputInt output;
 private transient AltingBarrier migrate;

 public void init(AltingChannelInputInt input,
 AltingChannelOutputInt output,
 AltingBarrier migrate)
 {
 this.input = input;
 this.output = output;
 this.migrate = migrate;
 this.identity.init(input, output, migrate);
 }

 public MobilePrefixInt(int prefix, AltingChannelInputInt input,
 AltingChannelOutputInt output,
 AltingBarrier migrate)
 {
 this.prefix = prefix;
 this.input = input;
 this.output = output;
 this.migrate = migrate;
 this.identity =
 new MobileIdentityInt(input, output, migrate);
 }

 private void writeObject(ObjectOutputStream out)
 throws IOException
 {
 out.writeInt(state);
 out.writeInt(prefix);
 out.writeObject(identity);
 }

Appendix H: Numbers and Mobile Numbers Processes 307

 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException
 {
 this.state = in.readInt();
 this.prefix = in.readInt();
 this.identity = (MobileIdentityInt)in.readObject();
 }

 public void run()
 {
 boolean running = true;
 Guard[] guards = {migrate, output};
 Alternative alt = new Alternative(guards);
 while (running)
 {
 switch (state)
 {
 case WRITING:
 int selected = alt.priSelect();
 switch (selected)
 {
 case 0:
 running = false;
 break;
 case 1:
 output.write(prefix);
 state = IDENTITY;
 identity.run();
 break;
 }
 break;
 case IDENTITY:
 identity.run();
 running = false;
 }
 }
 }
}

H.3 SuccessorInt

H.3.1 Normal

public class SuccessorInt implements CSProcess
{
 private ChannelInputInt in;
 private ChannelOutputInt out;

 public SuccessorInt(ChannelInputInt in, ChannelOutputInt out)
 {
 this.in = in;
 this.out = out;
 }

 public void run()
 {
 while (true)
 out.write(in.read() + 1);
 }
}

Appendix H: Numbers and Mobile Numbers Processes 308

H.3.2 Mobile

public class MobileSuccessorInt implements CSProcess, Serializable
{
 private static final int READING = 0;
 private static final int WRITING = 1;
 private int lastRead = 0;
 private int state = READING;
 private transient AltingChannelInputInt input;
 private transient AltingChannelOutputInt output;
 private transient AltingBarrier migrate;

 public void init(AltingChannelInputInt input,
 AltingChannelOutputInt output,
 AltingBarrier migrate)
 {
 this.input = input;
 this.output = output;
 this.migrate = migrate;
 }

 public MobileSuccessorInt(AltingChannelInputInt input,
 AltingChannelOutputInt output,
 AltingBarrier migrate)
 {
 this.input = input;
 this.output = output;
 this.migrate = migrate;
 }

 private void writeObject(ObjectOutputStream out)
 throws IOException
 {
 out.writeInt(state);
 out.writeInt(lastRead);
 }

 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException
 {
 state = in.readInt();
 lastRead = in.readInt();
 }

 public void run()
 {
 boolean running = true;
 Guard[] guards = {migrate, input, output};
 Alternative alt = new Alternative(guards);
 while (running)
 {
 switch (state)
 {
 case READING:
 {
 boolean[] active = {true, true, false};
 int selected = alt.priSelect(active);
 switch (selected)
 {
 case 0:
 running = false;
 break;
 case 1:
 lastRead = input.read();
 state = WRITING;
 break;
 }
 break;
 }

Appendix H: Numbers and Mobile Numbers Processes 309

 case WRITING:
 {
 boolean[] active = {true, false, true};
 int selected = alt.priSelect(active);
 switch (selected)
 {
 case 0:
 running = false;
 break;
 case 2:
 int toOutput = lastRead + 1;
 output.write(toOutput);
 state = READING;
 break;
 }
 break;
 }
 }
 }
 }
}

H.4 ProcessWriteInt

H.4.1 Normal

public class ProcessWriteInt implements CSProcess
{
 public int value;
 private ChannelOutputInt out;

 public ProcessWriteInt(ChannelOutputInt out)
 {
 this.out = out;
 }

 public void run()
 {
 out.write(value);
 }
}

H.4.2 Mobile

public class MobileProcessWriteInt
implements CSProcess, Serializable
{
 private static final int WRITING = 0;
 private static final int FINISHED = 1;
 private transient AltingChannelOutputInt output;
 private transient AltingBarrier migrate;
 private transient AltingBarrier finished;
 public int value = 0;
 private int state = WRITING;

 public void init(AltingChannelOutputInt out,
 AltingBarrier migrate,
 AltingBarrier finished)
 {
 this.output = out;
 this.migrate = migrate;
 this.migrate.resign();
 this.finished = finished;
 }

Appendix H: Numbers and Mobile Numbers Processes 310

 public MobileProcessWriteInt(AltingChannelOutputInt out,
 AltingBarrier migrate,
 AltingBarrier finished)
 {
 this.output = out;
 this.migrate = migrate;
 this.migrate.resign();
 this.finished = finished;
 }

 private void writeObject(ObjectOutputStream out)
 throws IOException
 {
 out.writeInt(state);
 out.writeInt(value);
 }

 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException
 {
 this.state = in.readInt();
 this.value = in.readInt();
 }

 public void run()
 {
 Guard[] guards = {migrate, output, finished};
 Alternative alt = new Alternative(guards);
 boolean running = true;
 while (running)
 {
 switch (state)
 {
 case WRITING:
 {
 boolean[] active = {true, true, false};
 int selected = alt.priSelect(active);
 switch (selected)
 {
 case 0:
 running = false;
 break;
 case 1:
 output.write(value);
 state = FINISHED;
 break;
 }
 }
 break;
 case FINISHED:
 {
 boolean[] active = {true, false, true};
 int selected = alt.priSelect(active);
 switch (selected)
 {
 case 0:
 running = false;
 break;
 case 2:
 running = false;
 state = WRITING;
 break;
 }
 }
 break;
 }
 }
 }
}

Appendix H: Numbers and Mobile Numbers Processes 311

H.5 Delta2Int

H.5.1 Normal

public class Delta2Int implements CSProcess
{
 private ChannelInputInt in;
 private ChannelOutputInt out0;
 private ChannelOutputInt out1;

 public Delta2Int(ChannelInputInt in, ChannelOutputInt out0,
 ChannelOutputInt out1)
 {
 this.in = in;
 this.out0 = out0;
 this.out1 = out1;
 }

 public void run()
 {
 ProcessWriteInt[] parWrite = {new ProcessWriteInt(out0),
 new ProcessWriteInt(out1)};
 Parallel par = new Parallel(parWrite);
 while (true)
 {
 int value = in.read();
 parWrite[0].value = value;
 parWrite[1].value = value;
 par.run();
 }
 }
}

H.5.2 Mobile and CheckFinished

public class MobileDelta2Int implements CSProcess, Serializable
{
 private static final int READING = 0;
 private static final int WRITING = 1;
 private transient AltingChannelInputInt input;
 private transient AltingChannelOutputInt out0;
 private transient AltingChannelOutputInt out1;
 private transient AltingBarrier migrate;
 private int lastRead = 0;
 private int state = READING;
 private MobileProcessWriteInt[] procs;

 public void init(AltingChannelInputInt input,
 AltingChannelOutputInt out0,
 AltingChannelOutputInt out1,
 AltingBarrier migrate)
 {
 this.input = input;
 this.out0 = out0;
 this.out1 = out1;
 this.migrate = migrate;
 }

Appendix H: Numbers and Mobile Numbers Processes 312

 public MobileDelta2Int(AltingChannelInputInt input,
 AltingChannelOutputInt out0,
 AltingChannelOutputInt out1,
 AltingBarrier migrate)
 {
 this.migrate = migrate;
 this.input = input;
 this.out0 = out0;
 this.out1 = out1;
 }

 public void writeObject(ObjectOutputStream out)
 throws IOException
 {
 out.writeInt(state);
 out.writeInt(lastRead);
 out.writeObject(procs);
 }

 public void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException
 {
 this.state = in.readInt();
 this.lastRead = in.readInt();
 this.procs = (MobileProcessWriteInt[])in.readObject();
 }

 public void run()
 {
 AltingBarrier[] barriers = migrate.expand(2);
 AltingBarrier[] finished = AltingBarrier.create(3);
 if (procs == null)
 {
 procs = new MobileProcessWriteInt[2];
 procs[0] =
 new MobileProcessWriteInt(out0, barriers[0],
 finished[0]);
 procs[1] =
 new MobileProcessWriteInt(out1, barriers[1],
 finished[1]);
 }
 else
 {
 procs[0].init(out0, barriers[0], finished[0]);
 procs[1].init(out1, barriers[1], finished[1]);
 }
 Guard[] guards = {migrate, input};
 Alternative alt = new Alternative(guards);
 CheckFinished check =
 new CheckFinished(migrate, finished[2]);
 CSProcess[] processes = {procs[0], procs[1], check};
 Parallel par = new Parallel(processes);
 boolean running = true;
 while (running)
 {
 switch (state)
 {
 case READING:
 {
 int selected = alt.priSelect();
 switch (selected)
 {
 case 0:
 running = false;
 break;
 case 1:
 lastRead = input.read();
 state = WRITING;
 break;
 }

Appendix H: Numbers and Mobile Numbers Processes 313

 break;
 }
 case WRITING:
 {
 procs[0].value = lastRead;
 procs[1].value = lastRead;
 barriers[0].enroll();
 barriers[1].enroll();
 par.run();
 if (!check.isFinished)
 {
 running = false;
 break;
 }
 else
 {
 state = READING;
 barriers[0].resign();
 barriers[1].resign();
 }
 }
 }
 }
 par.releaseAllThreads();
 }
}

public class CheckFinished implements CSProcess
{
 private AltingBarrier migrate;
 private AltingBarrier finished;
 public boolean isFinished = false;

 public CheckFinished(AltingBarrier migrate,
 AltingBarrier finished)
 {
 this.migrate = migrate;
 this.finished = finished;
 }

 public void run()
 {
 Guard[] guards = {migrate, finished};
 Alternative alt = new Alternative(guards);
 isFinished = false;
 int selected = alt.priSelect();
 if (selected != 0)
 isFinished = true;
 }
}

H.6 NumbersInt

H.6.1 Normal

public class NumbersInt implements CSProcess
{
 private ChannelOutputInt out;

 public NumbersInt(ChannelOutputInt out)
 {
 this.out = out;
 }

Appendix H: Numbers and Mobile Numbers Processes 314

 public void run()
 {
 One2OneChannelInt a = ChannelInt.createOne2One();
 One2OneChannelInt b = ChannelInt.createOne2One();
 One2OneChannelInt c = ChannelInt.createOne2One();
 new Parallel(new CSProcess[]
 {
 new Delta2Int(a.in(), b.out(), out),
 new SuccessorInt(b.in(), c.out()),
 new PrefixInt(0, c.in(), a.out())
 }).run();
 }
}

H.6.2 Mobile

public class MobileNumbersInt implements CSProcess, Serializable
{
 private transient AltingBarrier migrate;
 private transient AltingBarrier innerMigrate;
 private boolean localMigrate = false;
 private transient AltingChannelOutputInt output;
 private MobileSuccessorInt succ;
 private MobilePrefixInt pre;
 private MobileDelta2Int delta;

 public void init(AltingChannelOutputInt output)
 {
 this.output = output;
 AltingBarrier[] bars = AltingBarrier.create(2);
 this.migrate = bars[0];
 this.innerMigrate = bars[1];
 }

 public void init(AltingChannelOutputInt output,
 AltingBarrier barrier)
 {
 this.output = output;
 this.migrate = barrier;
 }

 public MobileNumbersInt(AltingChannelOutputInt output,
 AltingBarrier migrate)
 {
 this.output = output;
 this.migrate = migrate;
 }

 public MobileNumbersInt(AltingChannelOutputInt output)
 {
 this.output = output;
 AltingBarrier[] bars = AltingBarrier.create(2);
 this.migrate = bars[0];
 this.innerMigrate = bars[1];
 }

 private void writeObject(ObjectOutputStream out)
 throws IOException
 {
 if (innerMigrate != null)
 innerMigrate.sync();
 out.writeObject(succ);
 out.writeObject(pre);
 out.writeObject(delta);
 }

Appendix H: Numbers and Mobile Numbers Processes 315

 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException
 {
 this.succ = (MobileSuccessorInt)in.readObject();
 this.pre = (MobilePrefixInt)in.readObject();
 this.delta = (MobileDelta2Int)in.readObject();
 }

 public void run()
 {
 AltingBarrier[] barriers = migrate.expand(2);
 One2OneChannelSymmetricInt a =
 Channel.one2oneSymmetricInt();
 One2OneChannelSymmetricInt b =
 Channel.one2oneSymmetricInt();
 One2OneChannelSymmetricInt c =
 Channel.one2oneSymmetricInt();
 if (succ == null)
 {
 succ = new MobileSuccessorInt(a.in(), b.out(),
 barriers[0]);
 pre = new MobilePrefixInt(0, c.in(), a.out(),
 barriers[1]);
 delta = new MobileDelta2Int(b.in(), output, c.out(),
 migrate);
 }
 else
 {
 this.succ.init(a.in(), b.out(), barriers[0]);
 this.pre.init(c.in(), a.out(), barriers[1]);
 this.delta.init(b.in(), output, c.out(), migrate);
 }
 CSProcess[] processes = {succ, pre, delta};
 Parallel par = new Parallel(processes);
 par.run();
 par.releaseAllThreads();
 }
}

Appendix I Published Work

K. Chalmers and J. Kerridge, "jcsp.mobile: A Package Enabling Mobile Processes and
Channels," in J. F. Broenink, H. Roebbers, J. Sunter, P. H. Welch, and D. Wood (Eds.),
Communicating Process Architectures 2005, pp. 109-127, IOS Press, Amsterdam,
2005.

K. Chalmers and S. Clayton, "CSP for .NET Based on JCSP," in P. H. Welch, J. Kerridge,
and F. R. M. Barnes (Eds.), Communicating Process Architectures 2006, pp. 59-76,
IOS Press, Amsterdam, 2006.

K. Chalmers, J. Kerridge, and I. Romdhani, "Performance Evaluation of JCSP Micro
Edition: JCSPme," in P. H. Welch, J. Kerridge, and F. R. M. Barnes (Eds.),
Communicating Process Architectures 2006, pp. 31-40, IOS Press, Amsterdam, 2006.

J. Kerridge and K. Chalmers, "Ubiquitous Access to Site Specific Services," in P. H.
Welch, J. Kerridge, and F. R. M. Barnes (Eds.), Communicating Process Architectures
2006, pp. 41-58, IOS Press, Amsterdam, 2006.

K. Chalmers, J. Kerridge, and I. Romdhani, "Mobility in JCSP: New Mobile Channel
and Mobile Process Models," in A. McEwan, S. Schneider, W. Ifill, and P. H. Welch
(Eds.), Communicating Process Architectures 2007, pp. 163-182, IOS Press,
Amsterdam, 2007.

K. Chalmers, I. Romdhani, and J. Kerridge, "Mobile Processes and Mobile Channels,"
in D. Tanier (Ed.), Encyclopedia of Mobile Computing and Commerce (EMCC)
Volume 2, Idea Group Reference, 2007.

K. Chalmers, J. Kerridge, and I. Romdhani, "A Critique of JCSP Networking," in P. H.
Welch, S. Stepney, F. A. C. Polack, F. R. M. Barnes, A. McEwan, G. S. Stiles, J. F.
Broenink, and A. T. Sampson (Eds.), Communicating Process Architectures 2008, pp.
271-291, IOS Press, Amsterdam, 2008.

J. Kerridge, J.-O. Haschke, and K. Chalmers, "Mobile Agents and Processes using
Communicating Process Architectures," in P. H. Welch, S. Stepney, F. A. C. Polack, F.
R. M. Barnes, A. McEwan, G. S. Stiles, J. F. Broenink, and A. T. Sampson (Eds.),
Communicating Process Architectures 2008, pp. 397-409, IOS Press, Amsterdam,
2008.

