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Abstract 

 

Ubiquitous Computing promises to enrich our everyday lives by enabling the 

environment to be enhanced via computational elements.  These elements are 

designed to augment and support our lives, thus allowing us to perform our tasks 

and goals.  The main facet of Ubiquitous Computing is that computational devices 

are embedded in the environment, and interact with users and themselves to 

provide novel and unique applications. 

Ubiquitous Computing requires an underlying architecture that helps to promote 

and control the dynamic properties and structures that the applications require.  In 

this thesis, the Networking package of Communicating Sequential Processes for Java 

(JCSP) is examined to analyse its suitability as the underlying architecture for 

Ubiquitous Computing.  The reason to use JCSP Networking as a case study is that 

one of the proposed models for Ubiquitous Computing, the π-Calculus, has the 

potential to have its abstractions implemented within JCSP Networking. 

This thesis examines some of the underlying properties of JCSP Networking and 

examines them within the context of Ubiquitous Computing.  There is also an 

examination into the possibility of implementing the mobility constructs of the π-

Calculus and similar mobility models within JCSP Networking.  It has been found 

that some of the inherent properties of Java and JCSP Networking do cause 

limitations, and hence a generalisation of the architecture has been made that 

should provide greater suitability of the ideas behind JCSP Networking to support 

Ubiquitous Computing.  The generalisation has resulted in the creation of a verified 

communication protocol that can be applied to any Communicating Process 

Architecture. 
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Chapter 1 Introduction 

 

Computers are everywhere.  From mobile phones and watches, to corporate 

databases and industrial control systems, every day we interact with more and 

more computational devices in our daily lives.  In one morning, between awaking 

and arriving at the office it is possible to interact with a plethora of computational 

devices in one form or another.  Alarm clock, shower, radio, TV, MP3 player, mobile 

phone, bank machine, laptop.  This is but a small list of devices with which we may 

interact with inside the first few hours of the day.  But what does this mean for the 

world at large, and where are we going within this new technological age?  Enter 

the era of Ubiquitous Computing. 

1.1 Motivation 

This motivation for this research came about from initial work within JCSP 

(Communicating Sequential Processes for Java) Networking to incorporate code 

mobility and thus lead to distributed mobile processes within JCSP [1].  By enabling 

code mobility within JCSP Networking in an easier and more concise manner, it 

became possible to investigate mobile agent scenarios with JCSP Networking [2], 

and likewise Ubiquitous Computing scenarios [3].  The ability to augment 

functionality and have dynamic architectural topologies in a distributed 

environment is an enabling factor of Ubiquitous Computing, and thus investigating 

JCSP Networking within the context of Ubiquitous Computing becomes interesting. 

1.2 Ubiquitous Computing 

Ubiquitous Computing is a research area concerned with not only the vast number 

of computational devices in the environment, but also with how they can be made 

to interact with one another.  The introduction of this research field is generally 

attributed to Weiser [4], although the origins are in 1988 at the Xerox Palo Alto 
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Research Centre (PARC) [5].  At this time, an interactive whiteboard was developed 

which encouraged Weiser to look at how people interact with computationally 

enabled physical objects.  This led to various scales of devices being developed, 

ranging from the whiteboard sized to early handheld computers and tags such as 

PARCTAB [6].  Simultaneously, early location aware systems were being developed 

[7] and the amalgamation of these ideas lead to Ubiquitous Computing. 

The main aim of Ubiquitous Computing is to connect the real world with the 

computational, and also interlink the computational on a scale never before seen.  

For example, a door may be made to open (or not) automatically as a person 

approaches it.  This is a simple example, but underlines the key idea of physical and 

computational merging.  The connection of numerous varied devices comes into 

play when it is considered how the door knows who to open for.  Sensors could be 

scattered around the environment and their readings sent to a centralised system 

which identifies the person and their intent and sends a message to the door 

accordingly.  Another approach would be the use of a tag carried by the person 

which the door itself detects and acts upon accordingly. 

1.3 Mobility 

Dynamic interactions enable Ubiquitous Computing environments, due to the 

requirement of adaption within Ubiquitous Computing [8, 9].  Mobility is a key 

factor when considering dynamic interactions, both mobility of devices and logical 

mobility of the individual components of an application.  This thesis focuses on the 

latter form of mobility. 

Software, or logical, mobility requires runtime transfer of components between 

devices.  Formal mobility models, and in particular the π-Calculus [10], have been 

proposed as enabling reasoning of Ubiquitous Computing applications [11].  The π-

Calculus incorporates name passing within a process calculus, which enables 

dynamic topologies of interacting processes by allowing channel connections to be 

migrated between components.  Channel mobility enables process mobility, and 

thus the mobility of channels and processes in a suitable software framework can 

be seen as enabling Ubiquitous Computing environments. 
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There are frameworks available that allow development of channel and process 

mobility models, such as occam-π [12] and JCSP [13, 14].  Both are based on 

another process oriented model – Communicating Sequential Processes [15, 16].  

Work on JCSP has enabled simpler usage of the mobility features [1, 17], and the 

ubiquitous availability of Java – being available on a multitude of devices – 

encourages exploration of JCSP in a Ubiquitous Computing context. 

1.4 Communicating Sequential Processes for Java 

Enabling distributed mobility of channels and processes is difficult [17].  JCSP 

Networking allows construction of distributed channel and process models, and the 

inclusion of the mobility extensions enable basic channel and process mobility.  By 

providing mechanisms to transparently create virtual networked channels across 

communication mechanisms, JCSP Networking provides a good initial platform to 

base an investigation into Ubiquitous Computing. 

1.5 Aims 

The aim of this thesis is to examine JCSP Networking within the context of 

Ubiquitous Computing.  For this, there are two main research questions: 

 Is the current implementation of JCSP Networking a suitable framework for 

the development of Ubiquitous Computing systems? 

 What are the practicalities of implementing the mobility abstractions of the 

π-Calculus within JCSP Networking? 

These two questions can be broken into further objectives. 

1.5.1 Suitability of JCSP Networking for Ubiquitous Computing 

To examine the suitability of JCSP Networking for Ubiquitous Computing, a number 

of properties of interest must be discovered, and experiments conducted to 

examine whether these properties are suitably supported in JCSP Networking.  If 

these properties are not supported, then the problems with JCSP Networking that 

limit usage within Ubiquitous Computing must be discovered.  Furthermore, an 

investigation into whether these problems can be overcome is also required. 



Chapter 1: Introduction 4 

 

1.5.2 Practicalities of Mobility 

To examine mobility, there are three points to consider.  Firstly, what are the 

advantages of taking such an approach to mobility in comparison to standard logical 

mobility models such as object-orientation?  Secondly, can a suitable channel 

mobility model be developed that enables the type of dynamic interactions 

required by Ubiquitous Computing?  Finally, can process mobility be enabled in such 

a manner that allows components to move freely through an environment such as 

Ubiquitous Computing? 

1.6 Contribution 

The work presented within this thesis contributes in a number of areas.  Firstly, an 

examination of the current implementation of JCSP Networking within a resource 

constrained environment has been undertaken and various properties of the 

architecture calculated to provide expected performance of the underlying 

communication mechanism.  The underlying messaging mechanism has been 

examined and layout and structure of sent messages extrapolated. 

This thesis also describes a new implementation of JCSP Networking that overcomes 

the problems of the current implementation of JCSP Networking when considering 

Ubiquitous Computing scenarios.  This new architecture is a reduced and refined 

version of the existing architecture.  Importantly, a new protocol is proposed and 

developed that promotes inter-operability between different communicating 

process architecture frameworks.  The new implementation is also examined by 

repeating the experiments performed on the original implementation, and thus 

showing improvements within the new implementation of JCSP Networking.  The 

protocol has had a SPIN model created to verify its operation. 

Certain properties of the original and new architecture are also examined against 

properties that are of interest to Ubiquitous Computing scenarios, which enables 

examination of the suitability of JCSP Networking for Ubiquitous Computing 

applications. 
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An analysis of different approaches to connection mobility in the context of 

practical distributed channel mobility is also presented.  Seven different models of 

channel mobility are examined against properties of interest, allowing 

categorisation of the different models.  This categorisation allows closer 

examination of the possible suitability of the different connection mobility models 

when considering the dynamic requirements of Ubiquitous Computing. 

Finally, a method to transform JCSP processes into strongly mobile processes is also 

presented.  This method allows active process networks to effectively be paused 

and subsequently resumed at a new location.  The ability to pause process networks 

in this manner is novel, and builds upon existing approaches to capturing process 

network state. 

1.7 Thesis Structure 

This thesis takes the following structure.  In Chapter 2 an investigation into the 

objectives is presented.  Chapter 3 presents the current implementation of JCSP 

Networking and Chapter 4 analyses the current implementation by performing 

experiments within a suitably resource constrained environment.  Chapter 5 

proposes a new implementation of JCSP Networking to overcome highlighted 

problems, and Chapter 6 examines this new implementation by repeating the 

experiments conducted on the original implementation.  Chapter 7 investigates 

possible channel mobility models, highlighting strengths and weaknesses of each 

and reflects these features back into the context of Ubiquitous Computing.  Chapter 

8 reviews techniques that have been proposed to permit process mobility, and then 

proposes an approach that may help processes exhibit the strong mobility aspired 

to by mobile agent systems, which are another proposed approach to Ubiquitous 

Computing.  Finally, in Chapter 9 conclusions are drawn and future work proposed. 

 



 

Chapter 2 Background 

 

In this chapter, an investigation into Ubiquitous Computing is presented.  

Requirements and challenges are presented, and in particular software architecture 

properties are examined.  Mobility, one of the key factors of Ubiquitous Computing, 

is also examined in depth.  Finally, background information into Communicating 

Process Architectures is presented, focusing on JCSP and linking properties of Java 

to Ubiquitous Computing requirements. 

2.1 Ubiquitous Computing 

Historically, Ubiquitous Computing is attributed to Weiser [4, 5], the original focus 

being on computational devices of different scales being embedded within the 

environment.  Ubiquitous Computing is also sometimes referred to as Pervasive 

Computing [18], although there are differences which shall be highlighted presently.  

First, general descriptions of Ubiquitous Computing are presented. 

2.1.1 Describing Ubiquitous Computing 

Numerous descriptions of Ubiquitous Computing exist, partially from the differing 

contexts that the description may come from.  Ubiquitous Computing can be 

considered the availability of computational resources wherever we go [19], an 

extension of the mobile computing paradigm of all the time anywhere, to 

everywhere at all times with any device [20].  A common theme is the 

disappearance of technology into the background [21, 22], which allows focusing on 

the task at hand rather than the technology itself [23].  The general notion is that it 

moves computing forward to many devices to many users [21], a natural 

progression from the many users to one device mainframe era, through the one to 

one relationship of the PC era and the step through the Internet era of hybrid one 

to one and many to one relationships. 
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Ubiquitous Computing can also be considered as Everyday Computing [24], 

occurring within our everyday lives without our knowledge.  This leads to the 

natural progression of Pervasive Computing, which focuses more on smart spaces 

and ambient intelligence [25].  In fact, Pervasive Computing can be thought of as 

the application of Ubiquitous Computing ideas, as Pervasive Computing extends the 

focus from small devices, network protocols and power consumption towards 

remote data access, smart spaces and context awareness [26]. 

However, the terms Ubiquitous Computing and Pervasive Computing are often 

interchanged, Pervasive Computing sometimes being referred to as research into 

mobile connected ubiquitous devices [27], or environments requiring little user 

interaction [28].  For this reason, Pervasive Computing ideas must also be 

considered when discussing Ubiquitous Computing, due to the tight coupling of the 

research areas. 

Pervasive Computing is not only considered the outcome and application of 

Ubiquitous Computing ideas.  It is also considered the natural evolution of 

distributed computing through mobile computing [18], and thus is considered an 

extension of distributed computing with devices augmenting the environment [29].  

There is also the argument that it emerged from requirements for coping with 

heterogeneous mobile devices requiring interconnection, while abstracting from 

the technology required for interconnection [30]. 

It would appear that Ubiquitous Computing therefore comes from a number of 

different areas, but is particularly focused on mobile and distributed systems 

interacting with embedded computational infrastructure.  There is also focus on the 

user being only lightly engaged in the computational environment, although users 

are an integral part of the Ubiquitous Computing infrastructure [11].  These 

descriptions are very vague however, and some more concrete examples are 

necessary to fully appreciate some of the ideas behind Ubiquitous / Pervasive 

Computing. 
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2.1.1.1 Example Scenarios 

Examples of Ubiquitous / Pervasive Computing applications generally focus on 

augmenting existing everyday tasks with computing technology.  Satyanarayanan 

[31] describes a scenario where the application determines that the current 

network infrastructure cannot support transferral of user files prior to a flight 

departing, and therefore finds nearby infrastructure that can support the transferral 

in time.  Another scenario describes editing a presentation at a workstation and 

then taking the work onto a mobile device and editing using voice commands.  

Cheng [32] describes a similar scenario where a user reviewing images on a 

handheld device is automatically given higher resolution and colour depth when 

better network bandwidth is available. 

Banavar [23] describes a scenario where someone attending a meeting 

automatically switches to video conferencing on a mobile device when they leave 

early, and the video feed transferring to a screen in a car from the device when the 

car is entered. 

A common field of interest is healthcare [33, 34].  Accessing patient records 

electronically on mobile devices in a secure manner is foreseen as a goal, so much 

so that it is seen as a foothill project in the Grand Challenge in Ubiquitous 

Computing Research [35]. 

These scenarios and example applications help illustrate the application areas 

where Ubiquitous / Pervasive Computing is aimed at.  From the scenarios it also 

becomes apparent that the current context of the user plays a key role in deciding 

how an application should behave.  In particular, location and the services provided 

in a location are paramount. 

2.1.1.2 Location Awareness 

Location awareness appears to be one of the driving factors behind Ubiquitous / 

Pervasive Computing, particularly from the business point of view [36].  Location 

allows discovery of nearby services [37-39], although determining which service to 
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use and the protocol to discover nearby services are ongoing research problems 

[25, 40]. 

The interest in location can be directly related to the notion of Pervasive Computing 

smart spaces.  A smart space is merely a location that provides services to users, 

and thus the services provided are Location Based Services [36, 37].  The focus on 

locality is important when considering some of the other requirements of 

Ubiquitous / Pervasive Computing. 

2.1.2 Requirements 

Weiser’s initial view of Ubiquitous Computing requirements focussed primarily on 

low power and wireless hardware components [41], with network protocols to 

permit access to media.  Weiser does state that Ubiquitous Computing reaches 

further than normal mobile computing, and incorporates autonomous agent ideas.  

The notion of small lower powered devices is continued further to incorporating 

thin clients and thin servers populating the environment [21], which provide only 

minimal capabilities as standard, and are designed to be augmented during 

operations.  This implies a deal of adaption within the computational environment. 

A number of authors have tried to list the requirements for Ubiquitous Computing.  

Banavar [23] states that dynamic tasks, device heterogeneity, constrained resources 

and social computing are the main requirements.  Kindberg [42] focuses on 

requirements from different aspects of Ubiquitous Computing, mainly looking at 

software challenges.  Again, resource constraints, heterogeneous devices and 

adaption are seen as key requirements, along with scalability, robustness and 

service discovery.  Robustness is also a key concern stated by Sousa [43]. 

Niemela [26] lists interoperability, heterogeneity, mobility, security, adaptability, 

autonomy and scalability as requirements.  Mobility in this sense is more than 

simple device mobility however, and requires mobility of software components 

between devices also.  Software mobility allows dynamic binding of components, 

and thus promotes adaption.  This idea is repeated by Lindberg [44], who states 

that handling heterogeneity and the dynamic nature of users, services and 

environments is a key challenge to overcome. 
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The Grand Challenge in Ubiquitous Computing Research [35] approaches Ubiquitous 

Computing Science, stating that focus should be on system and software 

architectures, mobility, context awareness, language design, protocol design, and 

support tools and verification of these factors.  In particular, a communication 

infrastructure beyond standard TCP/IP protocols is called for.  Milner continues the 

modelling and scientific argument [11], discussing whether the inherent complexity 

and scale of Ubiquitous Computing can be modelled, and what this implies for 

engineering such applications.  Sufficient models of abstraction are required to 

enable understanding of the underlying architectures. 

da Costa [20] lists scalability, heterogeneity, dependability, security, integration, 

invisibility of the underlying infrastructure, and context awareness and 

management as requirements, stating that a sufficient middleware is required to 

support these features.  Many of these requirements can be attributed from 

existing computing fields.  Heterogeneity, scalability, dependability and security can 

be attributed to distributed computing, and spontaneous interoperation, mobility, 

and context awareness and management can be attributed to mobile computing.  

These ideas fit into the idea of Pervasive Computing extending distributed and 

mobile computing. 

Examining requirements for Pervasive Computing repeats the common notion of 

extending distributed and mobile computing.  Satyanarayanan [31] lists remote 

communication, fault tolerance and high availability from distributed systems, and 

mobile networking, adaptive applications and location sensitivity from mobile 

computing as requirements.  These ideas are extended with Pervasive Computing 

requiring smart spaces and invisibility of the environmental architecture. 

Henricksen [8] states that Pervasive Computing requires examination of four key 

areas: devices, software components, users and user interfaces.  Of these four, 

devices require heterogeneous support and mobility, and software components 

require mobility, adaption, interoperability, scalability and component discovery 

and deployment.  Henricksen focuses further on middleware [45], stating that 

support is required for heterogeneity, mobility, scalability, and fault tolerance.  
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Cardoso [29] adds Quality of Service (QoS) requirements also, due largely to the 

scale and user interaction requirements. 

Cheng [32] considers the minimal human oversight requirements of Pervasive 

Computing spaces in relation to the dynamic requirements of user movement and 

changing resources such as bandwidth and service availability, and thus fault 

tolerance is a major consideration.  Saha [18] repeats the call for a suitable 

middleware to interface between the hardware and applications within the 

environment, and also support the heterogeneous nature of these interactions.  

However, Edwards [46] states that total inter-operability between components and 

devices is not possible, due to the inability to predict future requirements and 

standards.  Thus, limited interoperability is required and sensible extensions built 

upon it. 

From the brief overview of requirements for Ubiquitous Computing and Pervasive 

Computing architectures, it can be seen that there are a number of common 

themes.  In particular, the following properties seem to be of interest: 

 Interoperability – to support heterogeneous devices and software 

components. 

 Performance – to support Quality of Service and scalability, although a strict 

requirement on performance is not in itself a requirement. 

 Scalability – due to the large number of device interactions envisioned. 

 Stability – robustness and fault tolerance. 

 Adaptability – the ability to adapt to different operating conditions. 

 Mobility – to help support adaptability, both device and software mobility is 

a consideration. 

Another common argument is the requirement of a software middleware to 

support these properties.  Therefore, an analysis of software architecture 

properties is also required. 
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2.1.3 Software Architecture for Ubiquitous Computing 

Proposals for Ubiquitous / Pervasive Computing software architectures generally 

focus on component oriented architectures.  Garlan discusses the Aura framework 

[47], repeating the calls for mobility, adaptability and resource awareness within 

software components.  The Aura framework works on the idea of tasks which follow 

users throughout the environment, tasks themselves being made of various 

components.  The idea of tasks following users returns to the fundamental ideas 

behind Ubiquitous / Pervasive Computing.  Garlan also calls for refocusing of 

software from monolithic enterprise applications to dynamic components, and 

states that a rethinking of how components are specified and implemented is 

required.  A foreseen challenge is deciding on the types of interactions between low 

level infrastructure and the upper application task layer.  Edwards [46] states that 

this interoperation layer must be minimal, and provide few fixed parameters, 

allowing the user / developer the ability to join devices together in sensible 

manners.  However, Henricksen [45] approaches the problem by creating a 

transparent communication layer that is similar to CORBA, and allows various 

frameworks to create the required connections between components 

automatically. 

Sousa returns to the Aura framework [43], calling for a rethinking towards activity 

oriented computing, which supports the notion of tasks being important.  This 

requires dynamic reconfiguration of software architecture to support user needs, 

which relates to software mobility.  A main argument is that application models 

aimed at Ubiquitous / Pervasive Computing do not consider that user tasks are 

generally defined at runtime, and therefore packaging for all user requirements at 

design time is bound to fail.  The ability to suspend and resume existing tasks is 

simply not enough to support Ubiquitous Computing.  da Costa [20] complements 

the inability to package all possibility at design time by arguing that a common API 

within a single framework will not support heterogeneity due to the lack of a 

common framework that can operate on all devices. 

Hoareau [48] argues on implementing strict hierarchical component architectures 

with well defined interfaces connecting the components together.  By conforming 
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to these requirements, applications can be made to adapt based on architectural 

rules built within an Architectural Description Language (ADL) and observed 

environmental resources. 

A common approach to coping with autonomy and the idea of smart spaces in 

Pervasive Computing is to apply agent oriented architectures to Ubiquitous / 

Pervasive Computing.  Zambonelli [49] promotes the usage of agents in Ubiquitous 

Computing applications, but does also warn of some dangers.  Niemela [26] also 

supports agents as suitable prototypes for Ubiquitous Computing, and Jung [50] 

considers Ubiquitous Computing as a multi-agent system which is targeted at 

everyday life.  This is also supported by the Grand Challenge in Ubiquitous 

Computing Research [35], where agents are considered the base platform to build 

Ubiquitous Computing systems upon.  Molina [51] argues that multi-agent systems 

are becoming more relevant in Pervasive Computing environments, particularly as 

they provide an interface between users and the environment. 

Another common viewpoint on software architecture is the requirement of mobile 

software architectures.  For example, Henricksen [8] argues on transparent mobility 

supported by the underlying software architecture, and Cardoso [29] believes 

mobile agents support the adaption, performance and scalability requirements of 

Pervasive Computing applications.  Milner [11] argues that modelling of Ubiquitous 

Computing applications should also be supported by formal mobility models, 

particularly due to the inherent mobility of users, devices and software 

components.  Mobility of software is considered especially difficult to deal with, due 

to the lack of physical constraints placed on software mobility. 

From a software architecture view point, it can be seen that agents are considered 

an interesting area for Ubiquitous Computing, coupled with mobile and dynamic 

architectures.  These two facets shall be examined in greater detail in Sections 2.2 

and 2.3 respectively.  First a brief analysis of hardware requirements is presented. 

2.1.4 Hardware for Ubiquitous Computing 

Weiser’s initial description of Ubiquitous Computing hardware [41] focussed on 

three different sizes of device – the tab, the pad, and the board.  The tab can be 
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considered a small, pocket sized device, similar to the Active Badge system 

developed by Want [7], which enabled tracking of a badge wearer via infra-red 

sensors, and the PARCTAB device described by Schilit [6], which provided services 

that augmented a small handheld device.  Pad sized devices were envisioned as 

small scrap computers – similar to pieces of paper or notepads – and board sized 

devices covered such items as electronic whiteboards. 

Modern viewpoints on Ubiquitous / Pervasive Computing hardware focus largely on 

small scale devices with wireless connectivity.  Hartwig [52] has argued on 

augmenting the environment with small wireless servers that provide services for 

users as a viable model, whereas Want [53] considers a small personal wireless 

server with no user interface as a more viable option.  Cardoso [29] merely states 

that mobile devices are essential for Pervasive Computing, and Moors [54] 

integrates wireless technology with the service and adaption ideas to control how 

mobile devices behave based on locations determined by wireless beacons.  For 

example, a phone can be made to go into silent mode when a beacon signals that 

the user is within a cinema. 

Thus, modern Ubiquitous Computing hardware seems to focus on small mobile 

devices that are wireless enabled.  The smart phone is seen as the first real world 

Ubiquitous Computing device [55], and mobile telephony and SMS text messaging 

are considered the first real world Ubiquitous Computing applications.  Relating this 

to the software architectural considerations, any proposed framework should at 

least initially be examined within the context of wireless enabled mobile devices. 

2.2 Agent Oriented Systems 

The term agent within software is an often overused term based on the field of 

computing that is examining agent properties.  Tokoro [56] takes a viewpoint where 

agents are concurrent objects that are autonomous so that they can perform tasks.  

The agent is considered capable of reacting to incoming events and reacting 

accordingly.  Lange [57] also takes an object view point of software agents, stating 

that they are autonomous, reactive and goal driven.  Iglesias [58] considers objects 

and agents similar due to both relying on message passing communication. 
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The combination of object ideas and concurrency come together in the description 

provided by Bauer [59, 60], where agents are considered more akin to active 

objects, with autonomy, reactivity (responds to events) and pro-activity (generates 

events) being the fundamental differences between standard objects and agents, or 

adding the ability for an object to autonomously say go and no when 

communicating with other computational entities.  This idea is cemented by 

Wooldridge [61], who states that “objects do it for free; agents do it because they 

want to.” 

2.2.1 Describing Agents 

Agents have a strong background in artificial intelligence.  Nwana [62] distinguishes 

agent types based on three properties – the ability to learn, the ability to cooperate, 

and the ability to be autonomous.  Depending on these capabilities, an agent may 

be considered as smart, collaborative or some other category.  Silva [63] has 

defined that the artificial intelligence capabilities of an agent based framework 

depends on how strong the sense of agency is within the framework.  A strong 

sense of agency provides an AI agent framework, a weak sense of agency is simply 

an agent based framework, and the object-orientated viewpoint of agency is really 

middleware.  Silva considers agents to be active components that perform tasks on 

behalf of others. 

Wooldridge [61] also considers the autonomy of agents as the important 

distinction, and considers this is accomplished by agents having encapsulated state 

and the ability to make decisions based on this state.  Agents are also considered to 

be reactive and proactive, and must have social capabilities, or the ability to 

communicate. 

Kendall [64] also considers the same properties as Wooldridge to be important, and 

also provides a layered model of capabilities of an agent, considering mobility as the 

highest level capability due to the provision of dynamic architectures.  As already 

stated, dynamic architectures are important to Ubiquitous Computing applications. 

Molina [51] takes a Ubiquitous Computing viewpoint on agents, and, as well as 

repeating the need to respond to events and communicate, states that agents 
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provide adaption and reasoning to allow usage within Ubiquitous Computing 

applications. 

2.2.1.1 Autonomous Agents 

When agents are described within the context of artificial intelligence, the 

autonomous behaviour of agents is usually the main focus of interest.  The most 

common architecture for defining agent behaviour is the Belief, Desire and 

Intention (BDI) model [65, 66].  BDI defines that agents are given a set of goals 

(Desires), plans, some of which have been committed to (Intentions), and some 

internal state (Beliefs) that is used to make decisions.  This model follows closely to 

the idea of encapsulated components that are reactive and proactive. 

Another common method to define behaviour is the active object [67], which 

extends object orientation by allowing objects to have their own thread of 

existence.  Behaviour must be added to the object to allow the active object to be 

more proactive.  Garcia [68] attempts to incorporate behaviour by injecting code 

into objects using aspect oriented techniques, which may lead to some form of 

adaptive behaviour. 

2.2.2 Modelling Agents 

Considering agent orientation as a possible architecture for Ubiquitous Computing, 

the question arises on how agent oriented architectures are modelled.  Kinny [66] 

describes an agent as having two models: internal and external.  The internal model 

incorporates the internal state of the agent, and can incorporate such ideas as BDI.  

Externally, an agent utilises services and is also provided with a type based on a 

hierarchy. 

Iglesias [58] focuses on the external service viewpoint of agents, considering the 

similarities between objects and agents when the communication mechanisms are 

compared.  In particular, Iglesias argues that although both utilise message passing, 

agents have the ability to analyse messages and determine whether to execute 

them.  This idea returns to the notion of an agent having the ability to say no, 

although Garcia’s work on applying aspect oriented ideas to implement agent 
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behaviour in object orientation would allow an object some capability to refuse 

messages. 

Bauer [60, 69] utilises UML to try and model agent based systems, providing 

extensions to help model the autonomy and active runtime of agents.  However, 

Bauer does note that UML is not entirely suitable to model agent orientated 

architectures. 

Others have tried a more formal approach to modelling agents.  Luck [70, 71] has 

used Z Specifications to model agent oriented systems, and notes that there is 

difficulty due to the overuse of the term agent.  Luck defines a hierarchy of 

properties that allows an agent to be defined.  An entity is a set of attributes, and 

an object is an entity with a set of actions.  An agent is an object with a set of goals, 

and an autonomous agent is an agent with a set of motivations, which allows goals 

to be modified. 

Duvigneau [72] examines agents by utilising Petri-Nets, and argues that agents form 

hierarchies, thus requiring a “nets within nets” paradigm.  Xu [73] also examines 

Petri-Nets as a method to model agent oriented applications. 

Gonzalez [74] has approached agent development using Communicating Sequential 

Processes (CSP) [15, 16], and has argued that various behavioural aspects can be 

modelled using the CSP formalism.  Gonzalez argues that the notion of agents and 

processes with CSP are strongly related. 

Yu [75] utilises another process calculus, the π-Calculus, to model agent systems.  

Yu’s argument centres on the dynamic architectures that the π-Calculus enables, 

and argues that the π-Calculus process is also very similar to an agent. 

2.2.3 Summary 

Although agents have been proposed as a possible architecture for Ubiquitous 

Computing, the fact that the term agent is over used does lead to questions on 

what Ubiquitous Computing views as an agent.  The common features of agent 

descriptions focus on the ability to perform a task for another entity, autonomy, 

and activeness.  However, autonomy is also ill-defined, and it is unclear whether 
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autonomy simply means being active and performing a task, or whether an agent 

should have intelligence and adapt to its environment.  Considering one of the 

properties of Ubiquitous Computing is adaptability, it is likely the latter description 

that is being used to define Ubiquitous Computing agents. 

The following section examines mobile software architectures, which is the second 

architectural viewpoint considered for Ubiquitous Computing.  Mobility is also one 

of the requirements of Ubiquitous Computing, and therefore requires investigation. 

2.3 Mobility 

Software, or logical, mobility is different from the more commonly thought of 

physical mobility, and has a number of different challenges.  Baude [59] 

distinguishes between mobile computing (physical devices) and mobile 

computation (mobile software components), and in particular looks at mobile active 

object systems.  As Section 2.2 described, active objects have similarities to agents, 

thus there is a commonality between the mobile and agent architectures.  Baude 

also distinguishes between strong and weak mobility, with strong mobility capturing 

the execution state of the component, and weak not doing so. 

Fuggetta [76] argues that there is general confusion on what state mobility actually 

means.  The state of a component may or may not include the current execution 

point, or program counter, of the mobile component.  To be strongly mobile, this 

information must be captured and transferred transparently, without programmer 

intervention.  Data state contains no execution state, and mobile data state allows 

weak component state to be transferred. 

These views on logical mobility generally focus on the component, and the 

following section examines these ideas in greater detail. 

2.3.1 Logical Component Mobility 

Tröger [77] redefines strong and weak mobility to active and passive component 

mobility.  A passive component can be considered one that has no path of 

execution, and can be considered to be data or code library mobility.  Many 

frameworks provide this mechanism using serialization, which allows passive object 
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replication.  Active component mobility describes components that have a path of 

execution, and Tröger mentions the possibilities of such components within 

Pervasive Computing environments. 

Bettini [78] provides a further type of migration beyond weak and strong, that of 

full mobility.  Full mobility allows an entire operating system process to migrate, 

and would be akin more to an entire application migrating rather than just an 

individual component.  Ghezzi [79] considers a different third type of mobility, that 

is communication based rather than component based.  For example, Remote 

Procedure Calls (RPC) can be rebound to enable a component to move and 

reconnect to existing components. 

The idea of RPC enabling mobility is also considered by Cardelli [80], who also 

defines five separate mobile component properties.  A component may provide 

control mobility, which allows the thread of control of a component to virtually 

transfer to another location, using RPC.  Data mobility allows the transfer of data 

from one network host to another, and link mobility allows the migration of a 

connection between two components to be migrated.  Object mobility allows the 

migration of objects, whereas remote evaluation permits an object to migrate to 

another location, execute and return.  The interlinking of location and migration has 

been addressed by Roman [81], who states that location defines the position of the 

logical component, and thus a change of position is a change of location and 

therefore migration. 

Phillips [82] has argued further on the notion of location, stating that a means of 

expressing a process location is required, both physically and logically.  Phillips has 

also argued that the very nature of distributed mobile components requires 

concurrent behaviour, and that communication between components must be 

modelled. 

Roman [81] also considers coordination between components, and believes that 

coordination and location are the two most important factors for a logically mobile 

framework.  The consideration of coordination separately from the components 
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allows a decoupling of the components, and coordination should be considered 

separately to the actual mobile component behaviour. 

2.3.2 Properties and Requirements 

There are a number of considerations when developing a mobile architecture.  

Fortino [83] has argued that existing technologies such as RPC must be considered 

to allow interoperability between frameworks.  As interoperability is seen as a key 

feature of Ubiquitous Computing, the argument is justified within the Ubiquitous 

Computing context.  Openness to new architectures must also be available 

however. 

Roman [81] has argued that component code and component state must be 

considered as first class elements of the component, and Welch [12] agrees that 

some form of passive state must be considered as part of a mobile component for 

there to be a reason for mobility.  Roman has also stated that disconnection of 

components and subsequent reconnection is required to allow mobility, and thus 

algorithms to support message passing between mobile components while they 

move is also required. 

A common requirement for logically mobile components is code mobility, and the 

following section examines this is more detail. 

2.3.2.1 Code Mobility 

Code mobility is the ability to transfer code from one host to another, and allow the 

dynamic loading of this code into an already running process.  Ghezzi [79] has 

summarised a number of different applications of code mobility, providing the 

different behaviours each exhibit.  These applications are: 

 Client-server – server has the knowledge, resources and processors to 

execute the task.  There is really no migration of actual code in this 

application. 

 Remote-evaluation – client has the knowledge, whereas the server has the 

resources and processor. 
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 Code on demand – client has the resources and processor, and the server 

has the knowledge. 

 Mobile agent – client has the knowledge and processor, and the server has 

the resources. 

Fuggetta [76] has taken a view where there are two types of code mobility – 

process migration and object migration.  The former is akin to Bettini’s [78] full 

mobility.  Fuggetta also considers some applications of code mobility, and metions 

location aware programming as an advantage.  As described in Section 2.1, location 

is a key idea within Ubiquitous / Pervasive Computing.  This helps to reaffirm 

mobility as a suitable architecture for Ubiquitous Computing applications. 

Active networks are added as a code mobility application by Brooks [84].  An active 

network is a distributed system with the ability to adapt to environmental 

conditions by modifying the communication structure.  Again, this dynamic nature is 

a requirement for Ubiquitous Computing, reaffirming mobility as a suitable 

Ubiquitous Computing architecture. 

2.3.3 Mobility Architecture 

So far, the discussion on mobility has focused on the description and requirements 

of logical mobility, and this has highlighted two separate mobile constructs – 

component mobility and the mobility of connections between components.  In this 

section, a further analysis of mobile software architectures is presented. 

Fuggetta [76] considers components and their interactions as the architectural 

constructs to consider within a logical mobility architecture, and Lopes [85] has 

stated that a clear separation of components via connectors is required to allow 

adaptation.  Zheng [86] has also called for separate coordination and computation, 

with clear input and output interfaces defined. 

Zheng and similarly Oquendo [87] have utilised Architectural Description Languages 

(ADLs) based on the π-Calculus [10] to help define the dynamic architectures of 

logical mobility systems.  As stated, the π-Calculus has also been used to help 

describe agent based architectures (Section 2.2).  Oquendo also considers a 
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separation of components and connectors within the mobility architecture, and 

considers the configuration of these components and connectors to be the high 

level architectural view of a logical mobility system. 

Connection migration is examined by a number of authors.  Milner [88] has called a 

mature connection mechanism as being able to communicate itself – a 

communication that can communicate another method of communication.  Zhong 

[89] argues that connection migration must accommodate interacting components 

migrating simultaneously, and this should occur transparently and reliably.  Molina 

[51] agrees with the notion of transparency, as well as location transparency as a 

whole.  Molina also argues that mobility and communication are interrelated, 

requiring one another to operate. 

May [90] has analysed the different types of mobility that both components and 

connections can exhibit, and how these effect a communication mechanism.  May 

describes copying, moving and borrowing – copying replicates the sent entity at a 

new location, moving copies an entity and destroys the original, and borrowing is 

similar to moving, but with the mobile entity returning. 

There is therefore a requirement for mobility of both components and connectors 

in the software architecture to support logical mobility.  Mobile and agent oriented 

architectures have both been described as potential models for designing 

Ubiquitous Computing applications, and therefore examining these ideas in unison 

is desirable.  Section 2.4 will discuss mobile agents.  In the following subsection, 

object orientation is examined as logical mobility architecture.  As the argument has 

been made to the similarities between agents and objects, mobile objects require 

further examination. 

2.3.3.1 Object Oriented Architectures 

There are problems when considering objects as mobile.  Barnes [91] has 

highlighted that object orientation naturally supports mobility within the structure 

of its architecture, and mobile design is used extensively in single machine based 

applications.  However, the problem stems from the inability to ensure that a 

mobile object can safely move all its parts. 
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Hoare [92] has highlighted the key problem when considering mobile objects.  

Object orientation allows aliasing of objects, in that an object may be accessible via 

more than one path of references from the root object.  In fact, Hoare has stated 

that there is no method to explicitly name an object, rather just the connections to 

objects.  With this in mind, when examining mobility it can be considered that 

objects are not first class elements, as there is no tangible method to own an 

object. 

Locke [93] has argued that objects also have no location due to this lack of 

ownership.  As mobility and location are intertwined, there is further evidence of a 

problem when considering objects as a mobility architecture.  Vitek [94] goes 

further, and points out security flaws when considering mobile object systems that 

arise from covert channels (aliases) crossing protection domains. 

However, there has been work on trying to protect against aliasing (for example 

[95]) by imposing ownership on objects.  By enforcing strict encapsulation instead 

of weak encapsulation, many of the problems associated with object mobility can 

be overcome. 

2.3.4 Formal Modelling of Mobility 

As objects appear to be unsuitable for distributed mobile architectures, a more 

formal approach to modelling mobile architectures is required.  There are two main 

approaches – state based and communication based.  Mobile UNITY [85, 96, 97] 

provides a state based model of mobility, and is an extension to the CommUNITY 

formalism.  Mobility is modelled by allowing components to change a location state 

variable, and also define behaviour based on this variable [98].  Locations can also 

be transferred between components [99].  Mobile UNITY has been used to model 

mobility protocols such as Mobile IP [100]. 

The π-Calculus [10] promotes the mobility of connections between components to a 

first class construct.  Although the π-Calculus covers only part of the mobile 

capabilities of a mobile architecture, further work on mobility formalisms attempts 

to capture all aspects of mobility (for a summary see [101]).   
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Communication within the π-Calculus is synchronous in nature, and Phillips [102] 

has argued that distributed systems do not exhibit synchronous but asynchronous 

behaviour.  Therefore Phillips proposes an asynchronous version of the π-Calculus 

to model real distributed mobile architectures. 

Cardelli [80, 103] has extended the ideas presented in the π-Calculus and developed 

the Ambient Calculus.  Unlike the π-Calculus, the Ambient Calculus promotes 

ambient as the first class mobile entity.  An ambient is considered to be a bounded, 

nested collection of processes that migrates as a single entity.  The idea of a 

bounded entity assists in modelling protection domains for applications. 

As the π-Calculus has been proposed as both a model for agent orientation and 

mobile architectures, it would appear to provide a suitable model to investigate 

Ubiquitous Computing.  This is also proposed by Milner [11], who states that to 

sufficiently support Ubiquitous Computing, protocols that enable communication 

mobility are required. 

Mobile agents also provide a mechanism to combine the ideas of agents with the 

ideas for mobile architectures.  In the following section, this area is further 

examined to determine the suitability of mobile agents for Ubiquitous Computing. 

2.4 Mobile Agents 

As with agents, the term mobile agent is often overused and lacks a particular 

definition.  Lange [57], in a similar manner to normal agents, considers a mobile 

agent to be a software object that is reactive and proactive, but with the added 

capability of being able to change its execution environment.  Contrary, 

Papastavrou [104] does not consider agent capabilities at all, and states that a 

mobile agent is a process that is dispatched from a source device to perform a task 

within another execution environment, and upon completion returns to the source.  

This description is also followed by Gray [105]. 

Spyrou [106] considers the active object view of agents and applies it to mobile 

agents.  Data can be viewed as a collection of objects, and a mobile active object 

can therefore be seen as a mobile agent, or a mobile set of data with some 
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execution capabilities.  Cabri [107] on the other hand sees data as the unit of 

exchange between several mobile agents which make up an application. 

2.4.1 Using Mobile Agents 

Picco [108] states that the key contribution of mobile agents (and code mobility in 

general) is that they allow location to be considered as a first class construct, and 

promotes functionality based on location.  Returning to the Ubiquitous / Pervasive 

Computing argument, this is rather important as locality is seen as an important 

construct.  Picco also discusses different analogies for mobile agents.  A single move 

agent is simply a migratory service, whereas an agent that migrates many times is 

an actual mobile agent.  Both of these analogies fit within the scope of Ubiquitous / 

Pervasive Computing, where services are also seen as an area of interest.  Picco 

does warn that mobile agents are not always the best solution in all cases however, 

and Lange [57] also states that there has to be a reason for mobility. 

Picco also returns to code mobility when describing mobile agents.  A mobile agent 

consists of code, data state, and behavioural state.  However, most agent systems 

are built utilising Java, which cannot promote strong mobility by capturing 

behavioural state, and modifications are usually required to allow strong mobility.  

Picco also points out that connections to resources can also be a problem, and this 

stems back to the unsuitability of objects for mobility purposes.  Picco does not 

seem to consider connections between agents as being part of the mobile unit. 

A number of authors have also overviewed mobile agent requirements and applied 

them to current mobile agent platforms (for example, Gray [105] and Silva [63]).  In 

general, it has been argued that no mobile agent platform has suitably met all 

required properties, mainly stemming from the lack of strong mobility because of a 

reliance on Java, or lack of interoperability between different frameworks (e.g. Java 

and .NET agents).  Silva does mention that there are commonalities between mobile 

agent platforms, which include usage of agent servers, autonomous active 

components, and distributed agent communication. 
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2.4.2 Advantages of Mobile Agents 

Many authors have listed advantages of mobile agents, although authors such as 

Chess [109] have noted that there is no real application made possible only by 

mobile agents.  Chess argues that the main advantage for mobile agents is a 

software engineering one, as they enable design of development of certain 

applications in a simpler manner. 

Other authors have focussed on implementation advantages of mobile agents.  

Lange [110] lists reduced network load, reduced network latency, protocol 

encapsulation, asynchronous and autonomous execution, dynamic adaptability, 

heterogeneous applications, and robust fault tolerant applications.  Returning to 

the requirements of Ubiquitous Computing, Lange’s advantages of mobile agents 

cover interoperability, performance, stability and adaptability, leaving only 

scalability as an unanswered requirement.  Lange also lists applications suitable for 

mobile agent systems, many of which can fit into the sphere of Ubiquitous / 

Pervasive Computing. 

Gray [105, 111] considers mobile agents useful within dynamic, mobile computing 

environments, and also lists bandwidth conservation and other performance criteria 

as advantages, as does Picco [108].  Molina [51] adds a further advantage, that of 

simplified maintenance.  As Ubiquitous / Pervasive Computing requires easily 

maintainable applications, due to the vast scale and minimal human interaction, 

there is further evidence to support mobile agents as a Ubiquitous / Pervasive 

Computing architecture. 

2.4.3 Problems with Mobile Agents 

There are some perceived problems with mobile agent approaches.  Chess [109] has 

questioned the supposed advantages of efficiency and flexibility, and has also raised 

concerns of the security of mobile agent platforms.  Considering the requirements 

of a mobile architecture, which promotes both component and connection mobility, 

Silva [63] has raised the question on what happens when two connected agents 

move simultaneously.  This problem can be related to the lack of consideration of 
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connection mobility within mobile agent approaches, and code mobility 

applications in general. 

Picco [108] believes that many of the problems within mobile agent applications 

stem from the usage of Java and similar object-oriented platforms.  In particular, 

the reliance on the threading mechanisms in Java leads to problems with scalability, 

and communication between components has been raised as an issue.  

Communication in this respect can be considered as the connections between other 

agents and resources.  Picco notes that this problem is generally overcome by only 

allowing co-located elements the ability to communicate with one another.  This 

does negate some possible applications of mobile agents however.  Picco also 

argues that there is too much focus on how mobile agents can be developed, and 

not on why they should be.  Java is seen as a blessing and curse in this respect, and 

there is generally no willingness to develop applications that interact with existing 

applications. 

The communication and coordination between agents problem has been examined 

by a number of authors.  Cabri [107] believes coordination between agents is 

fundamental, and utilises Linda like coordination to overcome the problem.  Fortino 

[112] defines an event based architecture built upon existing communication 

middleware, including Linda and also RPC. 

2.4.4 Mobile Agent Platforms 

Most mobile agent platforms have been applied within Java.  Lange [57] describes 

the Aglet API for Java, and believes that Java provides a number of characteristics 

that make it advantageous to use.  These include platform independence, secure 

execution, dynamic class loading, multithreaded programming, object serialization 

and reflection.  Many of these advantages focus on allowing simple mobility of 

agents and code (dynamic class loading, object serialization, reflection), and 

execution of agents (platform independence, multithreaded programming).  

However, from a Ubiquitous / Pervasive Computing point of view, platform 

independence is advantageous.  Molina [51] also repeats these advantages when 

considering Ubiquitous Computing. 
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However, Lange does point out some limitations within Java when considering 

mobile agent platforms.  These include inadequate support for resource control, no 

protection of referenced objects, no sense of object ownership, and no strong 

mobility.  Many of these have been discussed already, although the resource 

control does raise questions on scalability when considering Ubiquitous Computing. 

Izatt [113] describes the Ajents platform, which also utilises Java.  Although adding 

little in comparison to Aglets, Izatt does argue against the suitability of Java Remote 

Method Invocation (RMI) for mobile agent communication, due partially to the 

ownership problems imposed by object orientation.  Ajents also tries to overcome 

the strong mobility problem of Java by imposing asynchronous communication and 

allowing an agent to be called and a reply to be waited upon by the caller.  This 

does not solve the two simultaneously migrating agent problem highlighted by 

Silva. 

The JADE Agent Platform [114] focuses on communication and coordination as 

opposed to mobility [115], although it has been shown that various design common 

mobile agent design patterns can be implemented using JADE [116].  JADE provides 

an almost strong approach to mobility, in that execution state is captured without 

extra developer code, but not at any point during execution.  JADE is also 

implemented in Java, and provides its own communication mechanism that utilises 

serialization. 

Gray [111] describes the D’Agents system, which allows agents to be developed 

using multiple languages.  D’Agents appears to be the only attempt at doing this so 

far, although there are limitations when considering communication and migration 

of agents between platforms.  Different language platforms also do not allow the 

same capabilities as others.  For example, Java D’Agents does not attempt to 

overcome the strong mobility problem caused by Java. 

2.4.5 Summary 

Although mobile agents are a promising approach to Ubiquitous Computing, there 

are still a number of disadvantages.  Interoperability has been raised as an issue, 

and there seems to be little regard for promoting connection mobility.  Considering 
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the π-Calculus as a model for Ubiquitous Computing, the mobility of connections is 

seen as more prominent.  Java does appear to be the platform of choice, although 

there are limitations.  However, considering how prominent Java is as a platform, it 

does provide a suitable starting point to investigate Ubiquitous Computing 

middleware. 

In the following section, an approach that incorporates both component and 

connection mobility is discussed, which can incorporate many of the ideas from 

agents, and thus provide a possible platform to support Ubiquitous Computing. 

2.5 Communicating Process Architectures 

Communicating Sequential Processes (CSP) [15, 16] is a formalism that describes a 

set of processes (components) communicating with one another via a set of events 

(connections).  This is similar to the π-Calculus, where processes also communicate 

via events.  There are currently a number of implementations of CSP behaviour, and 

in particular Java has the Communicating Sequential Processes for Java (JCSP) 

library [117], which provides the necessary constructs to build CSP like applications 

within Java.  JCSP also has a package that enables these constructs to operate 

across a communication mechanism [14], thus providing a base mechanism to 

support distributed systems.  At the heart of mobile agents and mobility 

architectures, there is the notion of a distributed architecture, and likewise for 

Ubiquitous / Pervasive Computing. 

2.5.1 Similarities between CSP and Agent Orientation 

Agents have their roots in the actor model, which are self contained, interactive, 

concurrently executing objects, with internal state and respond to messages from 

other agents [62].  This description is similar to that of a CSP process – a 

concurrently executing entity, with internal state, which communicates with other 

processes using channels (message passing). 

The concurrent behaviour of agents and processes also brings a number of 

similarities, and Gonzalez [74] has utilised CSP techniques to describe agents.  

Petitpierre [118, 119] has argued on the similarities of active objects and CSP, and 
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considering the similarities discussed between agents and active objects, there does 

appear to be commonalities between a CSP process and an agent. 

2.5.2 Mobile Processes and Mobile Channels 

Recently, mobility has been of interest within the field of Communicating Process 

Architectures (CPA).  Languages such as occam-π [12] have added channel and 

process mobility, and the distributed framework for occam-π, pony [120], also 

added mobility of networked channels.  Connection mobility is seen as missing from 

mobile agent platforms, so applying these ideas may overcome this problem.  

Previous work on JCSP mobility [1, 17] has also attempted to incorporate both 

channel and process mobility. 

There are advantages when considering mobility in this form and examining 

Ubiquitous Computing ideas.  One of the required properties of Ubiquitous 

Computing is scale, and Milner [11] believes the π-Calculus will enable 

understanding of this scale.  Ritson [121] has shown some of this capability, by 

implementing a system with millions of interacting mobile process components in a 

manner that can be considered simple to comprehend. 

Considering the ideas of mobility presented thus far, it is possible to define how 

practically a mobile process can be defined.  As location is integral to the notion of 

mobility, a mobile process can be considered as a process that has the ability to 

change location.  This description is basically the same as a mobile agent. 

2.5.3 Examining the Capabilities of JCSP Networking 

As mobile processes can be considered similar to mobile agents, and as mobile 

channels enable the connection migration which is considered missing from mobile 

agent definition and application, JCSP Networking can be considered a possible 

architecture for Ubiquitous Computing applications.  JCSP Networking brings 

together a number of strengths from the different fields that have been seen as 

applicable for Ubiquitous Computing, such as distribution and concurrency, and 

work on pony has shown that distributed channel mobility is possible.  However, 

there are still properties that require examination. 
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Firstly, the defined requirements for Ubiquitous Computing (Section 2.1.2) must be 

analysed within the JCSP Networking architecture.  This will require extensive 

analysis of the JCSP Networking architecture and the performance characteristics 

thereof.  Due to the distributed nature of JCSP Networking, the common 

approaches to analyse networking performance of throughput and latency are 

required.  Considering Ubiquitous Computing, these properties require examination 

in a suitably constrained environment, utilising wireless networking and mobile 

devices. 

Java utilises serialization to enable transfer of objects between remote machines, 

and thus serialization requires examination (a discussion on Java’s serialization 

mechanism is provided in Appendix A).  JCSP utilises serialization, but the commonly 

utilised communication architecture for distributed Java applications is Java Remote 

Method Invocation (RMI).  Serialization has been examined by a number of authors 

[122, 123] with the focus being on analysing performance based on the complexity 

of the objects.  Analysis of RMI [123] has also shown that examining the individual 

parts of the communication mechanism allows greater insight into the underlying 

architecture.  Applying these concepts to JCSP Networking is therefore worth 

considering. 

The next consideration is the implementation of the distributed mobile channel 

structure.  Although the pony architecture [120] has proposed a method to enable 

distributed channel mobility, a more in depth analysis of the suitability of this model 

within the context of Ubiquitous Computing is required.  pony itself has some 

significant overheads associated with its channel mobility model. 

Finally, it has been noted that strong mobility is a requirement of logical mobility, 

and that Java has problems in permitting this form of mobility.  Therefore, the 

development of a technique to enable the strong mobility of processes is required.  

Due to the restrictions of Java, the actual capabilities of any technique must also be 

brought into question.  Currently, within JCSP, distributed process mobility is only 

allowed at either the start state of the process, or when the process is in a stopped 
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state.  The aim is to permit the same level of process mobility as local JCSP 

processes. 

2.6 Summary 

Within this chapter, an analysis of the requirements of Ubiquitous Computing has 

been presented, and has primarily focused on the underlying software architecture 

requirements for Ubiquitous Computing.  By examining the potential models for 

software to support Ubiquitous Computing, it has been shown that mobility is seen 

as a key feature, and likewise the capabilities of distributed systems due to the 

distributed nature of the applications under consideration.  Although several 

platforms provide some of the properties of interest, there are still limitations when 

considering such approaches as mobile agents when considering Ubiquitous 

Computing, therefore another approach has been proposed as requiring 

examination, utilising JCSP Networking as a test case. 

In the following chapter, the current implementation of JCSP Networking is 

presented.  The existing architecture and functionality are described, and some 

initial observations are made.  These observations are required for further analysis 

of JCSP Networking against Ubiquitous Computing requirements, which is presented 

in Chapter 4. 
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In this chapter, a description is presented of the current implementation of JCSP 

Networking.  From this description, an initial examination of the structure and 

individual components required for the network architecture to operate and some 

initial observations are made prior to a more thorough evaluation of the 

implementation in Chapter 4.  Section 3.1 presents the aim of JCSP Networking, and 

Section 3.2 presents the current architecture.  Section 3.3 examines the 

functionality and Section 3.4 provides a brief analysis before initial observations are 

made in Section 3.5.  

3.1  Aim of JCSP Networking 

The core implementation of JCSP is aimed at providing constructs necessary for a 

CSP based concurrency model in Java.  The network architecture expands JCSP by 

providing channels that operate over a communication mechanism.  Two 

statements of the aim of JCSP Networking have been made.  The first [14] alludes to 

the creation of process networks over a communication medium by interpreting the 

T9000 virtual channel model [124].  The second stated aim [125] is “to build 

efficient, richly functional, scalable, distributed and dynamic evolving systems”.  The 

second interpretation of the aim of JCSP Networking comes from a discussion on 

cluster computing, which is the main application area of JCSP Networking.  The main 

aim of JCSP Networking can therefore be interpreted as the exploitation of 

parallelism in distributed system applications.  This aim does not fit within the 

sphere of Ubiquitous Computing per se, but the scalability and dynamic 

architectures are requirements.  Therefore, it can be claimed that JCSP Networking 

may be a suitable framework for Ubiquitous Computing. 
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3.2 JCSP Network Architecture 

There are a number of components required to achieve the functionality within 

JCSP Networking, and in this section a description of these components shall be 

presented.  Diagrams illustrating component interactions shall also be given.   

The diagrams presented do not reflect previous reporting of JCSP Networking [14] 

as a number of modifications have been made.  The original implementation of JCSP 

Networking utilised service processes for output channels, and the EventProcess 

described in the next section was also not present.  The LoopbackLink was also a 

later addition to allow local channel ends to connect. 

3.2.1 High Level View 

Figure 1 illustrates the high level view of the current JCSP Networking architecture, 

presenting the key components and how they interact.  Solid lines with arrow heads 

represent channel connections, and dashed lines represent object references.  

Ovals represent active components (processes), rounded rectangles represent a 

collection of active components and rectangles represent passive components 

(objects).  Channels with an infinity sign are provided with an infinite buffer. 
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Figure 1: Current JCSP Networking Architecture 
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 Link – the Link component is responsible for connecting a JCSP Node (a 

single JVM) to another JCSP Node.  The Link and its relevant sub-

components are designed to allow operation upon any communication 

mechanism if the necessary addressing and connection functionality is 

developed.  At present only TCP/IP mechanisms are provided within the JCSP 

Networking package.  The Link component has two sub-components which 

provide input and output operations between Nodes: 

o LinkTX – the LinkTX process is responsible for transmitting 

messages to the remote JCSP Node.  LinkTX has little responsibility 

except serialization of the sent message onto the communication 

output stream. 

o LinkRX – the LinkRX process is responsible for receiving messages 

from the remote JCSP Node.  LinkRx interprets incoming messages 

and acts on the message type, accessing the destination channel if 

required. 

 LoopbackLink – the LoopbackLink operates as a normal Link and 

provides a virtual connection within the local Node.  If an output end of a 

channel is connected to an input end within the same JCSP Node, the 

message will travel through this component. 

 LinkServer – the LinkServer process is responsible for receiving 

incoming connection requests for the Node, creating the required Link 

component to service the connection, and interacting with the 

LinkManager to control, store and mange the Links within the Node. 

 LinkManager – the LinkManager process is responsible for managing the 

Links operating within the Node.  This process ensures that only one Link 

to a given Node is active at any time, and retrieves an existing Link to a 

given Node when requested. 

 EventProcess – the EventProcess is spawned by the LinkManager 

and broadcasts LinkLost messages to any interested process.  Whenever a 

Link fails, the Link informs the LinkManager which sends a message to 

the EventProcess.  The EventProcess writes this message to all 
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registered LinkLostEventChannels.  These channels are infinitely 

buffered to avoid deadlock. 

 NetChannelOutput – the NetChannelOutput component provides the 

interface to the writing end of a networked channel, and hides the 

underlying interactions with the Link.  The channel receiving messages 

from the Link is infinitely buffered.  

 NetChannelInput – the NetChannelInput component provides the 

interface to the reading end of a networked channel, although the 

interaction with the Link is handled by a separate process. 

 NetChannelInputProcess – the NetChannelInputProcess services 

communication between the NetChannelInput and the Link.  It receives 

messages from the Link, and either forwards the message to the 

NetChannelInput, or responds to the message directly.  The incoming 

channel to the NetChannelInputProcess from the Link is infinitely 

buffered. 

 IndexManager – the IndexManager is a shared data object which 

manages the networked channel ends within the Node.  This component 

allocates index numbers (Virtual Channel Numbers) [124] to channels and 

allows retrieval of channel objects based on these indices. 

The described components provide the application level channel functionality.  

Some components may have numerous instances in operation.  For example, each 

NetChannelInput created has a front end and a NetChannelInputProcess, 

and each connection to a remote Node requires a Link.  There may be multiple 

LinkServer processes if multiple interfaces or protocols are used. 

The channels connecting the Links with the networked channel components are 

shared at the writing end (they are Any-2-One).  This permits multiple channel ends 

to write to a LinkTX, and any LinkRX to receive incoming messages for any 

channel.  A virtual channel operation can be defined as a number of component 

interactions, as described in the following section. 
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3.3 JCSP Networking Functionality 

Figure 2 presents the component interactions that occur during a normal 

networked channel read/write operation. 

 

Figure 2: Networked Channel 

1. An Application Process calls the write method on the output end of a 

networked channel, passing the data to be sent within the method call. 

2. The NetChannelOutput wraps the data within a ChannelMessage.  The 

ChannelMessage contains the destination index, source index, a flag 

indicating if the message should be acknowledged, and possibly the name of 

the channel on the remote Node.  The NetChannelOutput contains the 

specific channel connected directly to the LinkTX and can write the 

ChannelMessage onto this channel directly. 

3. The LinkTX reads the outgoing ChannelMessage from its input channel 

and streams it to the other Node via the communication stream.  This 

involves serialization of the ChannelMessage via an 

ObjectOutputStream. 

4. The receiving Node’s LinkRX deserializes the incoming ChannelMessage 

from the connection stream, and examines the object to determine its type.  

For an incoming send message, the destination index is extracted and used 

to retrieve the channel to the NetChannelInputProcess.  The LinkRX 

adds the channel connecting to its partner LinkTX process to the 

ChannelMessage to allow the NetChannelInputProcess to send the 

acknowledgement.  The ChannelMessage is then sent to the 

NetChannelInputProcess. 

5. The NetChannelInputProcess reads the incoming ChannelMessage 

from the LinkRX and sends the sent data to the NetChannelInput.  This 
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is a blocking operation, and until the Application Process calls read on the 

NetChannelInput, the NetChannelInputProcess will wait. 

6. The Application Process calls read on the NetChannelInput.  This call 

may have occurred at any stage prior to this step, causing the receiving 

Application Process to block until now. 

7. The NetChannelInput returns the sent data. 

8. The send is completed between the NetChannelInput and 

NetChannelInputProcess, allowing the later to resume. 

9. The NetChannelInputProcess creates an acknowledgement message.  

The destination index of the message is the source index of the original send 

message.  The acknowledgement message is communicated to the LinkTX 

using the channel attached to the incoming ChannelMessage in step 4. 

10. The LinkTX process receives the outgoing acknowledgement and serializes 

it over the connection stream. 

11. The LinkRX process of the original sending Node deserializes the incoming 

ChannelMessage.  As an acknowledgement message has been received, 

the LinkRX retrieves the channel to the NetChannelOutput from the 

IndexManager using the destination index from the ChannelMessage.  

The ChannelMessage is then sent to the NetChannelOutput. 

12. The NetChannelOutput reads the acknowledgement and completes the 

write method call, allowing the writing Application Process to proceed. 

This illustrates the basic read/write operation.  There are a number of different 

message types within JCSP Networking.  A brief description of these is provided 

next. 

3.3.1 JCSP Network Message Hierarchy 

The hierarchy of network messages is presented in Figure 3.  The message types for 

networked channel operations are on the left – ChannelMessage and its children.  

The other messages are of no concern for the rest of this work.  BounceMessage 

was used by MigratableChannels (an original implementation of mobile 

channels), while PingMessage and PingReplyMessage are used during initial 
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Link interactions.  The ConnectionMessages are used by NetConnections, 

and although a consideration for the future, are not examined in detail here. 

 

Figure 3: JCSP Network Message Hierarchy 

Figure 3 helps to illustrate the amount of data sent in a ChannelMessage.  This will 

be examined more fully in Chapter 4.  The brief analysis in the following section 

focuses on previous analysis performed on JCSP Networking and similar 
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3.4 Brief Analysis of the Current Architecture 
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Little performance analysis of the communication mechanisms of JCSP Networking 
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examined similar properties with other Java libraries and different tasks, but 

analysis was again based on parallel performance and not the communication 

mechanism.  Kumar [128] examined JCSP performance in the context of multiplayer 

games, and although providing interesting results on the scalability of JCSP, little 

performance of the communication mechanism is provided. 

3.4.2 Previous Analysis on Other Process Oriented Network Architectures 

Greater analysis of communication performance has been carried out within other 

CSP based architectures.  Brown [129] has examined latency and performance 

overheads in C++CSP, but no extensive testing of the communication mechanism 

was made.  A work allocation method was used, with different packet sizes sent to 

remote machines for processing.  Although this did lead to some information on 

communication performance, it does not go into enough detail to analyse the 

variance between standard communication and C++CSP Networked.  Brown also 

conducted experiments for ping time, but this does not give a good indication to 

communication time on its own.  The problem is message flow, where the 

acknowledgment for the original send is sent and immediately followed by the 

resulting ping reply.  From the point of view of the pinging process, the time taken 

would vary little from the standard send-acknowledge cycle. 

Schweigler [130] has performed extensive analysis on CPU overhead and 

throughput in pony, and provides comparisons to JCSP Networking.  Little analysis is 

made of the communication mechanism in comparison to standard approaches, 

although effort has been made to analyse the performance of the pony networked 

channel.  Comparisons with JCSP are made in a case study, although the main 

conclusions gathered are interpreted from throughput and comparison when 

parallelising a task. 

Analysis of CSP.NET [131] provides only simplistic results thus far, without any 

comparison to other communication approaches.  A brief comparison to JCSP 

Networking has been made however.  The authors themselves note that the tests 

performed are by no means thorough enough to constitute a benchmark. 
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3.4.3 Resource Usage 

If Figure 1 (page 34) is examined, there are a number of processes required for the 

network functionality.  Each connection to another Node involves two processes – 

the LinkTX and LinkRX.  Each NetChannelInput requires a service process (the 

NetChannelInputProcess) and the NetChannelOutput is lightweight in 

comparison.  Link creation and management requires at least three processes: the 

LinkServer, the LinkManager, and the EventProcess, but, as previously 

stated, there may be multiple LinkServer processes in operation within a Node.  

The LoopbackLink is created when a Node is initialised, requiring two processes.  

Finally, although not illustrated in Figure 1, there is a process spawned with the first 

NetChannelOutput.  This process is meant to inform NetChannelOutputs of 

Link failure, although this does not always operate as expected. 

A number of temporary processes are also created during Node initialisation and 

subsequent Link connection.  These processes are used to set up resources and 

perform connection handshaking and are subsequently killed when they have 

completed their task. 

Therefore, there are a number of processes utilised by JCSP Networking prior to 

application processes being considered.  As each process requires a thread to 

operate, it can be seen that an unconnected Node requires six threads – two for the 

LoopbackLink; a LinkManager; a LinkServer; an EventProcess; and the 

main thread.  A Node connected to a Channel Name Server (used as a channel name 

broker) requires 11 processes – two for the new Link; one service process to the 

CNS, the service having an input and output channel; one for a 

NetChannelInputProcess; and the NetChannelOutput Link failure process. 

The required processes increase as the number of Links and NetChannelInputs 

increases.  As an example, a Node connected to five other Nodes, with ten 

networked input ends and an initial CNS connection will require a total of 31 

processes.  On resource constrained devices such as those required in Ubiquitous 

Computing it can be seen that JCSP Networking does not scale well. 
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Unfortunately, these processes are spawned without usage of the JCSP Parallel 

construct.  The Parallel acts as a pool for created threads, and attempts to reuse 

threads whenever possible.  As most of the processes used within JCSP Networking 

are created without the Parallel, the reclamation of resources may be slow.  

Many of these spawned processes are also created outside the application level, 

and therefore cannot easily be stopped.  Methods are in place to destroy the 

NetChannelInputProcess components, but if a reference to the 

NetChannelInput is lost, then the process cannot be reclaimed and is lost. 

The main reason for the heavy resource usage stems from the CSP / occam 

philosophy of using a process whenever possible.  This is an ill advised approach 

when considering Java, particularly within resource constrained devices.  A major 

problem is the use of a process to service a NetChannelInput, as this reduces the 

number of possible input channels into a Node. 

3.4.4 Complexity 

JCSP Networking is a complex architecture.  One of the properties of JCSP 

Networking is that the architecture is removed from the underlying communication 

mechanism, meaning it can be implemented upon any guaranteed packet delivery 

protocol.  The argument is that if the correct addressing and Link creation 

mechanism is provided, JCSP Networking can utilise the communication 

mechanism.  Although this statement is true, it is difficult to achieve, requiring a 

great deal of knowledge of the internal architecture of JCSP Networking.  Without 

the source code it would be difficult for a custom communication mechanism to be 

used. 

3.4.5 Objects Only 

JCSP Networking only permits serializable objects to be transferred between Nodes.  

In principle this is not a problem if JCSP is considered within the context of standard 

Java, but adds difficultly when trying to communicate with other frameworks.  It 

would be useful to send raw data between Nodes as required, which can be done in 

principle as a byte array is an object in Java, but there is an overhead in the 

serialization.  It is also a problem that not all Java platforms support serialization, 
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leading to difficulties when trying to implement JCSP Networking on reduced Java 

platforms [132].   

Depending on serialization means that primitive data must be wrapped in an object 

prior to sending.  This brings an overhead, and limits networked channels to object 

types only.  The core JCSP package for example implements a primitive integer 

channel for increased performance. 

3.5 Initial Observations 

This chapter presented a very high level analysis of the current JCSP Networking 

implementation, and from this some initial observations can be made.  Firstly, there 

has been little in depth analysis of the communication mechanism in JCSP 

Networking, although this is a key indicator of the overall performance of JCSP 

Networking.  Although other frameworks have been examined in greater depth, 

little comparison with standard communication mechanisms has been made.  

Secondly, the resource requirements for JCSP Networking are high, and thus reduce 

scalability.  Thirdly, the complexity of JCSP leads to difficulties when porting the 

architecture to different platforms and communication mechanisms.  Finally, 

allowing only objects for network interactions prevents the interaction with other 

platforms unless they implement Java serialization. 

In the following chapter, a deeper analysis of JCSP Networking is presented.  For 

Ubiquitous Computing, there is a need to understand the properties of JCSP 

Networking to determine how suitable the implementation is for Ubiquitous 

Computing applications.  Performance of networked channel communications is the 

main focus, with other properties examined that are relevant to JCSP Networking 

within the context of Ubiquitous Computing. 
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In this chapter, experimental data is presented that allows examination of the 

current implementation of JCSP Networking in the context of Ubiquitous 

Computing.  The data is gathered from experiments within an environment that is 

restrictive enough to determine the outcome of using JCSP Networking in a 

relatively resource constrained manner similar to the possible scenarios envisioned 

for Ubiquitous Computing.  The aim of the experiments is to produce metrics that 

allow a close approximation of the separate interactions of the individual JCSP 

Networking components that form the basic network channel.  By doing this, it is 

possible to determine where any overheads occur which can be resolved.  Section 

4.1 describes the test framework in which the experiments are conducted, and 

Section 4.2 examines the two Java Virtual Machines in use.  Section 4.3 provides 

experimental results that allow analysis of the network which allows analysis of 

JCSP Networking in Section 4.4.  Section 4.5 examines serialization within the test 

framework, and Section 4.6 illustrates the overhead of JCSP Networking.  Finally 

conclusions are drawn in Section 4.7. 

4.1 Test Framework 

The data presented is gathered from the interactions between a small factor device 

(a PDA) and a desktop PC acting as a server. Communications occur over a wireless 

network.  Various interaction properties are examined that incorporate both raw 

data and objects of different sizes and complexities.  This promotes insight into how 

well JCSP Networking compares to standard communication within the test 

framework.  First, a description of the framework is provided. 
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4.1.1 PDA Specifications 

The mobile device is an HP iPaq 2210, running Windows Mobile 4.2.  It has 64 

MBytes of memory, shared between storage and applications.  The processor is 

Intel XScale based and operates at a maximum frequency of 400 MHz.  The PDA 

only has Bluetooth capabilities to provide wireless communication, and therefore a 

SDIO wireless card has been added to provide 802.11b wireless capabilities.  The 

wireless card is a SafeCom Technologies SDW11B and provides a 100 metre range at 

11 Mbits/s bandwidth. 

4.1.2 PC Specifications 

The PC has a Pentium IV 3 GHz processor and 512 megabytes of memory.  It is 

connected to the network using a standard Ethernet card to a wireless router.  This 

provides the PC with a potential bandwidth of 100 Mbits/s.  The operating system 

installed is Ubuntu Linux 7.10. 

4.1.3 Network Specifications 

The network is controlled via a wireless router – a NetGear WGR614.  The wireless 

interface is 802.11g compatible, and potentially supports 54 Mbits/s bandwidth.  

The PDA restricts bandwidth to 11 Mbits/s due to its wireless interface.  The 

wireless network does not utilise any form of security.  The Ethernet interface 

allows 100 Mbits/s bandwidth for the PC. 

As two separate interfaces are used, there are differing maximum packet sizes 

(Maximum Transmission Unit) in operation.  The Ethernet interface has an MTU of 

1500 bytes and the wireless interface 2272 bytes.  The larger packets are 

fragmented by the router for sending on the Ethernet interface, and are then 

reconstructed by the PC. 

4.1.4 Test Classes 

A collection of classes have been developed to analyse the performance of a 

networked JCSP channel in comparison to Java object streams when considering 

object serialization.  These objects vary in complexity and size to allow examination 

of these properties to determine if they have an effect on communication time.  
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Complexity relates to the number of object references sent against the number of 

unique objects sent.  As Java serialization recreates the sent object graph, there is 

the possibility that the sent object contains multiple references to the same object.  

As this requires the usage of a lookup table, incorporating complexity allows the 

lookup time characteristic to be taken into account. 

The definitions of the test classes are provided in Appendix B.  A brief summary of 

the different classes is presented here: 

 Integer array – an array of Integer objects.  The length of the array ranges 

from 0 to 100. 

 TestObject – an object that contains both an Integer object array and a 

Double object array.  The lengths of these arrays are equal and range from 

0 to 100. 

 TestObject2 – extends TestObject, and thus contains the Integer and 

Double arrays.  TestObject2 declares its own Integer and Double 

array.  All four arrays have equal length. 

 TestObject3 – extends TestObject and contains its own Integer and 

Double arrays.  However, each individual element of the Integer array is 

referenced in the partner Integer array, thus leading to only 100 unique 

Integer objects instead of 200.  Likewise for the Double arrays. 

 TestObject4 – extends TestObject, and has the same array definitions 

as TestObject3.  TestObject4 also contains a reference to another 

TestObject4 which has its own unique arrays and array elements.  The 

second TestObject4 references the original TestObject4, creating a pair 

of objects bound together. 

 TestObject5 – extends TestObject, and is similar to TestObject4.  

However, the other TestObject5 referenced within this object has arrays 

which contain the same elements as this TestObject5.  Thus there are 

only 100 unique Integer objects and 100 unique Double objects. 
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A description of Java serialization is presented in Appendix A.  For clarity, the 

amount of data sent for each object relative to n (the length of the internal array(s)) 

is provided in Table 1.  All values are in bytes. 

Table 1: Test Object Sizes 

Object Type n = 0 n > 0 

Integer array 41 118 + (n – 1)∙10 

TestObject 167 297 + (n – 1)∙24 

TestObject2 247 401 + (n – 1)∙48 

TestObject3 247 387 + (n – 1)∙34 

TestObject4 326 500 + (n – 1)∙68 

TestObject5 326 486 + (n – 1)∙54 

 

The number of references against unique objects is presented in Table 2.  This 

information alludes to the different object complexities, and helps to determine if 

there is an effect on communication performance because of this complexity.  Java 

object streams hold references to all sent/received objects (see Appendix A).  Thus 

lookup tables are kept of all serialized objects and classes.  For serialized object 

graphs with more unique objects, these tables will grow larger than object graphs 

with fewer unique objects.  Serialization time should therefore increase for object 

graphs containing more unique objects.  

Table 2: Test Object Reference Count against Unique Object Count 

 n = 0 n > 0 

Object Type Obj Ref Unique Obj Obj Ref Unique Obj 

Integer array 1 1 n + 1 n + 1 

TestObject 3 3 3 + 2·n 3 + 2·n 

TestObject2 5 5 5 + 4·n 5 + 4·n 

TestObject3 5 5 5 + 4·n 5 + 2·n 

TestObject4 10 10 10 + 8·n 10 + 4·n 

TestObject5 10 10 10 + 8·n 10 + 2·n 

 

These objects have been chosen as it allows examination of the serialization process 

itself.  The largest object size will fit within the buffer JCSP has within its Link 

connection streams (8192 bytes).  Larger data sizes are tested by sending raw data 

without the serialization process. 
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In the following section, the versions of Java used on the different devices are 

examined to allow a better understanding of the results presented later in this 

chapter.  Full results can be found in Appendix D.  Unless otherwise required, only 

the results for TestObject4 are presented within this chapter as the size and 

complexity of TestObject4 allows analysis for the majority of cases. 

4.2 Examining the Java Virtual Machines 

In this section, the two different JVMs are examined.  The specifications of the 

different versions of Java are presented, and benchmarks provided to allow a closer 

comparison. 

4.2.1 Java Versions 

The two Java Virtual Machines in operation are quite different.  The PC has a 

standard Sun Java Development Kit version 1.6 JVM.  The PDA has a reduced IBM J9 

JVM that conforms to the Java 2 Micro Edition (J2ME) Connected Device 

Configuration (CDC) Personal Profile.  This provides a JVM that is approximately Java 

1.3.1 compatible. 

To benchmark the JVMs two methods have been used.  The Java Grande Benchmark 

Suite [133], although designed to benchmark JVMs in the context of high 

performance computing, provides a number of tests that allow comparison of the 

two JVMs.  The second method is aimed at the JCSP implementation specifically by 

performing standard benchmarks used to evaluate performance of CSP based 

frameworks.  A comparison of the two JVMs is provided in Appendix C.  In general, 

the PDA operates between 1 and 2.5 orders of magnitude slower than the PC in 

these tests.  The variance between the different result sets will be largely due to the 

PC having faster I/O and having specialised machine instructions for some 

operations. 

There are some benchmarks that are relevant to the discussion of the performance 

of JCSP Networking in the context of the experiments that have been performed.  

The Java Grande Suite provides object creation and serialization benchmarks, and 
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the CommsTime benchmark in JCSP provides an approximation of the channel 

communication time between two processes. 

4.2.2 Java Grande Object Creation Benchmarks 

The Java Grande Suite object creation benchmarks are performed on small objects 

with certain properties, such as internal fields and sub-classing.  The results are 

based on allocation time, which does not allow enough insight into the time taken 

to create the various object types being examined in this chapter.  Therefore, the 

operation of the benchmark is replicated using the test classes.  The results for the 

PC are presented in Figure 4 and the results for the PDA in Figure 5.  The values 

represented are the average time taken to create a single object of the given size 

(along the x-axis) and type in milliseconds. 

The creation time for the PC is almost negligible, the largest object taking 

approximately 11 microseconds to create.  The PDA performs approximately two 

orders of magnitude slower than the PC.  The Java Grande benchmark for object 

creation (see Figure 80 in Appendix C) shows the PDA performing one order of 

magnitude poorer than the PC with more complicated objects increasing this 

variance.  The increase from 1 to 2 orders of magnitude variance between the PC 

and PDA can be attributed to memory allocation as the test objects are large in 

comparison to the small objects tested using the normal Java Grande benchmark. 

These results indicate that memory allocation time has the greatest impact on 

object creation.  TestObject2 and TestObject5 are approximately equal in size 

for n < 100 (see Table 1, page 47), and take approximately the same time to create.  

TestObject4, which is less complex than TestObject5, takes a greater time to 

create, and TestObject3, which is more complex than TestObject2, takes less 

time to create.  Object complexity due to the number of references appears to have 

little effect on object creation time. 
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Figure 4: PC Test Object Creation Times 

 

Figure 5: PDA Test Object Creation Times 
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milliseconds taken to serialize a single object of the given type, with the x-axis 

ranging over the length of the object’s array(s). 

 

Figure 6: PC Java Grande Test Object Serialization 
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Figure 7: PDA Java Grande Test Object Serialization 

Figure 8 compares the performance of the PDA and PC for (de)serialization of 

TestObject4.  The results present the average time in milliseconds to (de)serialize 

a single TestObject4.  The x-axis represents the object size in bytes as generated 

from Table 1.  These results show the PC performs approximately 2.5 orders of 

magnitude faster than the PDA, which concurs with the general performance 

difference of the two devices.  It is also of note that deserialization is faster than 

serialization on the PDA, while the converse is initially true for the PC.  This may be 

due to the extra lookup required for each serialization of an object prior to it being 

written, whereas the deserialization process only performs a lookup when 

prompted to by a reference signal appearing on the stream.  The PDA may also have 

slower file output performance that input performance. 

 

Figure 8: PC against PDA TestObject4 Java Grande (De)Serialization Benchmark 
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The results presented give some indication to the performance of the 

(de)serialization process on the different devices, but they also incorporate file I/O 

time.  For JCSP network communications, objects are (de)serialized within a 

memory buffer, which incurs a lower I/O overhead.  Therefore, experiments 

involving (de)serialization within memory are performed. 

4.2.4 Serialization within Memory 

The Java Grande serialization benchmark can be modified to use memory streams 

instead of a file stream.  This operation is generally fast, and would require a 

greater number of operations within a timed cycle of operations to avoid noise 

within the results.  The available memory restricts this possibility, as the memory 

stream must be declared prior to any timed operations.  To avoid the buffer within 

the stream requiring expansion during the timed cycle, a 10 million byte allocation 

within the PC and a 1 million byte allocation within the PDA is used.  This restricts 

the maximum number of operations in a timed cycle to 1000 and 100 for the PC and 

PDA respectively. 

Figure 9 presents the results from the PC performing serialization into memory.  

Unlike the file based serialization, the lines are more separated.  TestObject2 and 

TestObject4 are still rising close to uniformly.  Both of these object types increase 

in object size at different rates and therefore the amount of data is not the major 

factor in their close proximity at these data ranges. 

 

Figure 9: PC Memory Test Object Serialization 
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Figure 10 presents the results for the PDA serializing the various test classes into 

memory.  Unlike file based serialization, the PDA has TestObject2 and 

TestObject4 grouped together, and TestObject, TestObject3 and 

TestObject5 grouped together.  These results show the same object complexity 

and lookup attributes as the PC, with time increase based on the number of unique 

objects as opposed to I/O throughput. 

 

Figure 10: PDA Memory Test Object Serialization 
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Figure 11: PC against PDA TestObject4 Memory (De)Serialization Benchmark 
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There are two standard properties to measure network performance – latency and 

bandwidth.  A ping test allows analysis of latency, which is the overhead of the 

communication compared to expected results, and bandwidth allows an 

approximation of throughput.  Various sizes of byte array are passed between the 

two devices to evaluate the network properties.  The smallest possible data size to 

send via a network stream is a single byte.  The smallest data size for an object 

stream is a null value, which also takes up a single byte. 

4.3.1 Simple Ping 

To determine the basic send-acknowledge operation, a simple ping test is used.  A 

single byte or null object is sent from one device to the other and back.  Each 

operation is carried out 10,000 times within a timed cycle, and ten timed cycles are 

performed.  The ten times are trimmed to six by removing the top two and bottom 

two values, and the mean of the six median values calculated.  Times are gathered 

from both devices for when the PC pings the PDA (PC to PDA), and when the PDA 

pings the PC (PDA to PC), using both network streams and object streams.  Tests are 

repeated 2 to 3 times to ensure consistency, and one set of the results chosen for 

representation.  All individual results of the median six are within twenty percent 

variance of the trimmed mean. 

JCSP networking has the Nagle algorithm switched off for underlying TCP/IP 

network connections.  The Nagle algorithm increases performance by buffering 

outgoing messages until either an entire packet of data is ready for transfer, or the 

previous packet is acknowledged.  By default, Nagle is turned on, and turning it off 

is ill advised.  Therefore, for the simple ping test, sockets with Nagle on and off are 

examined.  The usage of Nagle highlights the reason to use 10,000 operations in a 

timed cycle.  For 1,000 operations, the amount of data would fit into a single packet 

on both interfaces, and would therefore give the Nagle based results significant 

improvement.  Therefore, the number of operations is increased by an order of 

magnitude.  Figure 12 presents the results of the simple ping test.  The values are 

the average times in milliseconds to perform a single ping-pong operation using the 

various communication mechanisms. 
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Figure 12: Simple Ping Test 
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communications require acknowledgement, which is a relatively small message size 

of 207 bytes.  It can be estimated that that the PDA takes at least 5 milliseconds to 

send an acknowledgement to the PC.  The PC acknowledgement time is close to 

insignificant in comparison. 

 

Figure 13: Send and Receive Benchmark 
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Figure 14: PDA Bandwidth 

From Figure 14, it can be determined that the PDA can transmit data between 100 

and 225 bytes per millisecond.  There are three interesting points.  At data size 

7,000, the native streams appear to perform better than Java network and object 

streams – sending the data packet 10 ms faster than the other two mechanisms.  
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PDA hardware, or the network infrastructure.  Further analysis of this phenomenon 

is presented in Section 4.5.1.  The reason the object stream does not exhibit this 
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drop in performance for the object streams at 30,000 bytes. 
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the PC performs better for small packet sizes, which is the converse to the PDA.  The 

result for data size 1,000 is not shown as this gives bandwidth in excess of 60,000 

bytes/ms, and would not permit the detail present in Figure 15.  From these results, 

it can be determined that the PC can output data onto the network between 800 

and 300 bytes/ms. 
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Figure 15: PC Bandwidth 

4.3.3 Latency 

Latency refers to the overhead time taken for a message to travel from one device 

to another beyond expected time, and includes any encoding and decoding of 

messages.  A simple method to determine latency is to perform a roundtrip (ping-

pong) message between the two devices and remove the time it should take for the 

two devices to send data to one another.  From the send and receive benchmark 

(Figure 13 – page 58) and ping test (Figure 12 – page 57), it is possible to determine 

latency of approximately 1.5 ms for a roundtrip message on a network stream, and 

approximately 1.7 ms on an object stream for small message sizes.  For a more 

thorough examination, the bandwidth benchmark is repeated using roundtrip 

operations. 
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roundtrip operation.  The expected times are calculated by adding the time taken 

for the send from the PDA to the PC and the send from the PC to the PDA.  Native 

Winsock streams perform approximately as the standard Java streams in this 

experiment and are not presented.  These results are given in Appendix D. 
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Figure 16: Roundtrip PDA to PC 

At certain data sizes within Figure 16 performance drops during the roundtrip 
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performance drop for only sending data (9,000 bytes).  The performance drop at 

9,000 bytes has actually disappeared.  This leads to further evidence that a network 

centric or device centric issue is causing the drop in performance. 

Object streams have the same performance drop at 30,000 bytes, and the actual 

result has a larger peak than expected.  It is unlikely that a serialization issue is 

causing this drop, as after the initial header information for a serialized array, 

performance is based on I/O throughput on the number of bytes. 

Figure 17 presents the roundtrip time for the PC sending to the PDA.  A comparison 

of Figure 16 and Figure 17 show that the results for PDA to PC and PC to PDA to be 

approximately equal, with the same points of poor performance. 

From the roundtrip results, actual roundtrip time and estimated roundtrip time are 

approximately equal, particularly for large data sizes.  Excluding the peaks, only 

smaller packet sizes have latency times noticeable in relation to time taken. 
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Figure 17: Roundtrip PC to PDA 

The network experiments presented within this section show that there is little 

performance overhead incurred by the PDA JVM with respect to network 

bandwidth, and that latency is generally low.  There are some unexplained 

performance issues at certain data sizes, but these are probably due to device or 

network problems as opposed to anything from the JVM on the PDA.  The 

deactivating of the Nagle algorithm in JCSP may be an issue for performance, but 

considering the send-acknowledge communication of network channels, this may 

not strictly be true. 

4.4 Examining JCSP Performance 

With the information from sections 4.2 and 4.3 it is possible to estimate the 

expected performance of JCSP Networking for sending the specified test objects.  If 

Figure 2 (page 37) is examined, there are eleven operations that have measured 

values: 

1. NetChannelOutput writes to the Link (channel communication) 

2. Link serializes sent object message (data plus 249 byte message header 

overhead – see Appendix A). 

3. Link transmits the data to the remote Link 

4. Remote Link deserializes the object message 

5. Link writes the object message to the NetChannelInputProcess 

(channel communication) 
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6. NetChannelInputProcess writes the object to the NetChannelInput 

(channel communication) 

7. NetChannelInputProcess writes the acknowledgement to the Link 

(channel communication) 

8. Link serializes the acknowledgement message 

9. Link transmits the acknowledgement message to the remote Link 

10. Remote Link deserializes the acknowledgement message 

11. Link writes acknowledgment to the NetChannelOutput (channel 

communication) 

A virtual networked channel will have one end on the PDA and one end on the PC, 

and therefore the two channel times will be different.  Separating the above 

interactions into output operations and input operations allows values to be 

entered into a performance calculation.  Thus, there is a formula for channel output 

time and a formula for channel input time.  chan represents channel 

communication time on the device, and the size in bytes of the ack message is 204 

bytes, and a send message incurs a 249 byte overhead for the header: 

𝐶𝑜𝑢𝑡 = 2 ∙ 𝑐𝑎𝑛 + 𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 𝑠𝑖𝑧𝑒𝑜𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 +  249 +  𝑑𝑒𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒(𝑎𝑐𝑘) 

𝐶𝑖𝑛 = 3 ∙ 𝑐𝑎𝑛 + 𝑑𝑒𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 𝑠𝑖𝑧𝑒𝑜𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 +  249 +  𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒(𝑎𝑐𝑘) 

The total time to communicate from across the channel is: 

𝑁𝑒𝑡𝐶𝑎𝑛 =  𝐶𝑜𝑢𝑡 + 𝐶𝑖𝑛 + 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 𝑠𝑖𝑧𝑒𝑜𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 + 249 + 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡(𝑎𝑐𝑘) 

Transmission time is separated as it relies on sender throughput and receiver 

throughput independently, and the network infrastructure.  From Sections 4.2 and 

4.3 approximate values for the properties of interest can be given.  These values are 

presented in Table 3. 

Table 3: Communication Properties 

 Channel 
(ms) 

Serial 
Small 
(bytes/ms) 

Serial 
(bytes/ms) 

Deserial 
Small 
(bytes/ms) 

Deserial 
(bytes/ms) 

Min 
Transfer 
Time 
(ms) 

Transfer 
Throughput 
(bytes/ms) 

PC 0.015 20000 10000 2000 10000 0.001 320 
PDA 0.18 80 20 40 15 5 215 
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Channel is the channel communication time gained from the CommsTime 

benchmark.  Serial Small is the approximate bytes/ms serialization performance for 

small objects, and likewise Deserial Small for deserialization.  Serial is the 

approximate throughput for serialization, and is calculated from the approximate 

value for byte throughput when serializing the test objects at large sizes, gathering 

the mean of these six values and rounding up to one significant digit.  Deserial is 

likewise calculated, but the PDA deserialization value has two significant digits due 

to the closer proximity to 15 and the relatively small value.  Min Transfer Time is the 

send time for small messages gathered from Figure 13.  Finally, throughput is the 

approximate bandwidth values presented in Figure 14 and Figure 15 (pages 59and 

60 respectively). 

JCSP networking has two network channel types: acknowledged synchronous and 

asynchronous without acknowledgement.  The latter channel type is used to 

implement server type connections, where a channel requests a message from a 

server and the server responds.  The unacknowledged channel would appear to be 

an attempt to circumvent the poor exception handling in JCSP networking, which 

could cause deadlock on the server if a connection failed [135].  If a server replies 

asynchronously, there is no issue.  If used for standard communication, the infinite 

buffering in the underlying channel can cause a problem when no synchronization 

occurs.  Unacknowledged channels are tested to ascertain whether they can lead to 

further insight into the overhead of network channel communication caused by the 

acknowledgement signal. 

To evaluate the network performance overhead of JCSP Networking, the ping, 

bandwidth and latency tests are repeated.  The results from these experiments are 

presented in the following subsections. 

4.4.1 Simple Ping 

It is possible to estimate the ping time for a JCSP networked channel based on the 

communication formula NetChan.  As object streams are in operation within the 

JCSP Networking architecture, the smallest data value to send over a networked 

channel is null.  With the 249 byte message header taken into consideration, this 
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provides a 250 byte sent data object, which is considered a small message.  Likewise 

the 204 byte acknowledgement message is considered small.  Applying known 

values to the NetChan formula provides the estimated overhead for JCSP network 

channels within the test framework.  These values are presented in Table 4.  The 

NetChan values are those for the specified device outputting to the other.  All times 

are in milliseconds. 

Table 4: Net Channel Overhead 

 Cout Cin NetChan 

PC Sync 0.1445 0.1802 14.4855 

PC Async 0.0275 0.155 6.6385 

PDA Sync 8.585 9.34 13.7662 

PDA Async 3.305 6.61 8.46 

 

As asynchronous channels are examined, these values are also calculated.  

Removing a channel communication and the (de)serialization and transfer time for 

the acknowledgement provides these values.  With the calculated approximate 

channel communication values, it is possible to evaluate roundtrip time on small 

messages.  These results are presented in Figure 18.  The Object Streams values are 

taken from the No Nagle results in Figure 12. 

 

Figure 18: JCSP Network Channel Ping Test 

For null messages JCSP Networking is six times slower for a ping operation than 

Object Streams when using synchronous channels.  This is a significant overhead, 

attributed to the extra information required for channel messages and the 
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synchronisation during the send.  Asynchronous channels are under three times 

slower than the Object Stream results, and this will be largely due to the message 

header overhead. 

Actual values are greater than the expected values – by 8 ms for synchronous 

channels and 2 ms for asynchronous channels.  There is the extra overhead for 

lookup time with the IndexManager when an incoming message is received to 

consider.  There is also the underlying latency of the network architecture which is 

1.5 ms for a roundtrip message.  This will be doubled for synchronous channels as 

two send and acknowledge interactions are occurring for each roundtrip.  Another 

consideration is actual (de)serialization time, which may be greater than the 

estimated value due to the number of properties within a JCSP Networking channel 

message. 

The asynchronous results are below half the time for synchronous channels.  This 

does point to good performance benefits for having asynchronous message passing 

within JCSP Networking, but the inherent danger due to the infinite buffering within 

the underlying channel requires care. 

4.4.2 Bandwidth 

As Section 4.3.2, both the time to send the smallest possible message (null) and the 

time to send byte arrays of various sizes are gathered within JCSP Networking.  

Small message passing results, with Object Stream and Expected results for 

comparison, are presented in Figure 19. 

In this case, Expected results are approximately 2 ms better than actual results.  

When latency is considered, Expected and actual values are approximately equal.  

From the synchronised channel results, the estimated ping time should be 31.5 ms.  

The actual result is 36 ms in Figure 18, and therefore an approximate latency of 4.5 

ms is present for a JCSP Networking channel roundtrip communication in the test 

framework. 
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Figure 19: JCSP Network Channel Send and Receive Benchmark 

The Asynchronous results for the PC to PDA help illustrate a problem with the 

underlying Link processes in JCSP Networking, which will be analysed further in 

Section 4.6.  The Link processes are given maximum priority within JCSP 

Networking to enable communication to start quickly and data transfer to be 

serviced quickly.  The usage of high priority is due to the aim of JCSP Networking for 

cluster computing scenarios where the computation time to communication time 

ratio is high.  However, this usage of high priority can lead to a problem when a 

slow device is flooded by large data packets sent from a faster device.  Therefore 

the PDA appears to take no time to receive messages from the PC asynchronously 

as the lower priority application process cannot start the timer while the PC 

effectively floods the device with data.  However, unacknowledged channels should 

not really be used in this manner due to the infinite buffering issue, and their 

existence in JCSP is questionable. 

The Expected time to send a message asynchronously from the PC to PDA is greater 

than the actual time, and is due to the channel being able to continuously write to 

the Link to send a message without blocking.  The Link is responsible for I/O and 

therefore the PC application does not register this time fully within its asynchronous 

results. 

To gather throughput information for JCSP Networking, the bandwidth experiments 

are repeated with the synchronous and asynchronous channels.  The expected 

results are calculated using the NetChan formula with the properties in Table 3.  As 
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the bytes within the array are not serialized, the (de)serialization overhead is 

calculated as the message header plus the 23 byte array description.  Figure 20 

presents the bandwidth results for the PDA for synchronous and asynchronous 

channels, with the expected results also given. 

 

Figure 20: PDA Channel Bandwidth 

Synchronous bandwidth is lower than expected, and levels at 205 bytes/ms.  This 

value is 10 bytes/ms lower than expected.  For asynchronous channels, bandwidth 

is as expected.  This suggests that synchronisation inflicts an approximate 10 

bytes/ms overhead within the test framework at large data sizes.  The 

asynchronous results only reach 7x105 bytes, as after this point the PDA cannot 

handle the amount of data being pushed towards it and fails with a memory 

exception.  This is the result of the high priority Link problem, as all the sent 

information requires buffering which is obviously limited on the PDA. 

The channel bandwidth for the PC is presented in Figure 21.  Expected results are 

provided based on the known properties and the NetChan formula. 
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Figure 21: PC Channel Bandwidth 

For the PC, the throughput for sending small (1,000 to 3,000) byte arrays 

asynchronously is not presented on the chart due to the significant large value 

when compared to the other communication results.  These values give throughput 

of up to 60,000 bytes/ms.  The asynchronous results have greater throughput than 

expected, due to the application level channel object outputting to the Link and 

not waiting for the actual I/O to occur.  As the PDA cannot accept the amount of 

data pushed at it by the PC, the PC results also only reach 7x105 bytes. 

Synchronous channels initially provide close to expected performance but drop 

below expected results for data sizes above 8,000 bytes.  Performance levels at 275 

bytes/ms, which is 45 bytes/ms lower than expected.  This will be largely due to the 

expected calculations not considering the time for the PDA to input data, which is 

greater than the time taken for the PC to output data.  Receive time data is 

provided in Appendix D. 

4.4.3 Latency 

The final property to examine within JCSP networking is latency.  The roundtrip 

experiments conducted on network and object streams are repeated with both 

synchronous and asynchronous channels.  The expected results are calculated from 

the properties in Table 3 and the NetChan formula.  As the results presented are 

similar for both PDA to PC and PC to PDA, only the former results are presented.  
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Other data can be found in Appendix D for comparison.  Figure 22 presents the 

channel roundtrip results. 

 

Figure 22: Channel Roundtrip PDA to PC 

There is some variance between expected results and actual results.  Excluding the 

peaks within the Sync results, the mean latency is approximately 25 ms when actual 

results are compared to expected results.  For asynchronous channels, performance 

is initially better than synchronous channels, but does reduce at higher values.  

Figure 23 illustrates the variance between actual and expected results for the 

roundtrip time in milliseconds, with the significant peaks removed, and subsequent 

adjoining points connected. 

 

Figure 23: Variance between Actual and Expected Channel Roundtrip Results 
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As Figure 23 illustrates, Asynchronous channels degrade in performance over time.  

As the same underlying channel mechanism is used for both acknowledged and 

unacknowledged channels, these results do seem to indicate that any initial benefit 

for small message sizes sent asynchronously is balanced by poorer performance for 

large data sizes.  From the expected values, asynchronous channels should have a 

14 ms lower roundtrip time.  Therefore, subtracting 14 ms from the values 

presented in Figure 23 indicates that asynchronous channels have what could be 

considered a severe roundtrip overhead in the test architecture for large packet 

sizes.  As the results presented are similar for both PDA to PC and PC to PDA, and 

the PDA starts its timer before initiating the roundtrip operation, the variance 

cannot be due to the application process being unable to start its timer before the 

PC sends data.  After each timed cycle, a handshake is also performed to ensure 

that the PDA is not flooded with the next cycle of data from the PC.  The variance is 

therefore not the fault of the high priority Link processes. 

From the results presented in this section, it can be ascertained that JCSP 

Networking does have some communication overhead, particularly for small 

message sizes.  For large message sizes, channel bandwidth is not far removed from 

that of Java object streams.  Most of the overhead thus far can be attributed to the 

message header that requires serialization, and the acknowledgement message.  In 

the following section, serialization is examined in greater detail by comparing JCSP 

and object streams for sending the various test objects. 

4.5 Test Object Messages 

To examine serialization and the effect serialization has on JCSP Networking, the 

various test classes are subjected to the sending and roundtrip experiments that 

raw data messages were subjected to.  These experiments operate upon the various 

test objects with sizes ranging from 0 to 100, and examine the different 

communication mechanisms presented thus far.  The mean is gathered from the six 

median values from ten timed cycles. 
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4.5.1 Sending via Object Streams 

The first results present the time taken for the PC to send the test classes using 

networked object streams.  These values are presented in Figure 24.  The x-axis 

represents the length of the Integer and Double object arrays within the 

specified object. 

 

Figure 24: PC Sending Test Objects via Object Streams 

Unfortunately, this does not allow close examination due to significant peaks.  

However, the results for TestObject4 do increase significantly after size 80.  At 

this point, TestObject4 is larger than 6000 bytes, and no other test object 

reaches this size.   

The peaks, unlike those in previous results, are for smaller data sizes and allow 

closer examination.  The seven peaks within the TestObject2 results, for 

example, occur at regular intervals, the size interval between each peak being 4.  

From the data size calculated using the equation for TestObject2 in Table 1, the 

interval between each peak of these seven peaks represents 192 bytes, which is a 

multiple of 16.  This indicates a probable reason internal to the test framework.  

Table 5 presents the data size at all the peaks present in Figure 24, calculated with 

the equations in Table 1 and sorted.  The Interval values are the variance between a 

Peak Value and the previous Peak Value.  The Rounded values are the Interval 

values rounded by 1 to a suitable number. 
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Table 5: Object Sizes at Peaks 

Peak Value Interval Rounded 

1768 - - 

2268 500 500 

2461 193 192 

3024 563 564 

3137 113 112 

3152 15 16 

3281 129 128 

3345 64 64 

3473 128 128 

3665 192 192 

3857 192 192 

4049 192 192 

4050 1 0 

4240 190 192 

4241 1 0 
 

Table 5 indicates a pattern within the peaks, as most variances are multiples of 16 

when rounded, except the large intervals of 500 and 564.  However, the difference 

between these two values is also a multiple of 16, and thus the observation of an 

underlying pattern is strengthened.  Two pairs of values have only a single byte 

variance.  The first pair (4049 and 4050) is from TestObject2 and TestObject5 

respectively, and the second pair (4240 and 4241) is from TestObject4 and 

TestObject2 respectively.  This indicates a data packet size problem and not an 

object complexity problem. 

As the peaks can likely be dismissed, any subsequent presented data will have the 

peaks removed, and the two adjoining value points connected.  Actual data results 

are given in Appendix D.  Figure 25 presents the results from Figure 24 with the 

peaks removed.  The results for TestObject4 are shortened to allow closer 

examination. 



Chapter 4: Analysis of Current JCSP Networking 74 

 

 

Figure 25: Cleaned PC Sending Test Objects via Object Streams 

Figure 25 indicates a number of steps within the results which occur when extra 

packet send operations are required.  Table 6 presents the data size when the steps 

occur.  The MTU for the Ethernet interface is 1500 and for the wireless interface 

2272. 

Table 6: Object Sizes at Steps 

TestObject TestObject2 TestObject3 TestObject4 TestObject5 

1785 1649 2121 2132 2160 

  2945 2937 2948 2970 

  3905   4240 3942 

      5124 5130 

      5736   

      6144   
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TestObject2 have their initial step appearing earlier however.  Four of the test 
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Ethernet packets in size.  TestObject2 and TestObject5 have a step at 

approximately 3900 bytes, which is approximately an Ethernet packet plus a 

wireless packet in size.  TestObject4 has a third step value at 4240, which does 

not conform to a packet size ratio.  Both TestObject4 and TestObject5 have a 
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a wireless packet in size.  TestObject4 has two further steps.  At 5736 bytes, 

there is no conformity to a packet combination.  However, 5736 is approximately 

one Ethernet packet larger than the other TestObject4 value (4240) that did not 

conform to a packet combination.  The final step in the TestObject4 results 

comes at 6144 bytes, approximately one Ethernet and two wireless packets in size. 

From these results, I/O time is the key factor for the PC sending objects to the PDA 

in the test framework, due to the extra packet requirement.  Thus, smaller objects 

will be more efficient for the PC.  Large data objects require the PC to send extra 

network packets, and in the test framework each packet takes approximately 2 to 

2.5 ms to send. 

Figure 26 presents the results gathered from the PDA sending the test classes to the 

PC.  No peaks have been removed from this result set. 

 

Figure 26: PDA Sending Test Objects via Object Stream 

Unlike the PC results, the PDA results has grouping based on object complexity.  In 

fact, this chart is almost exactly as Figure 10 (page 54), which indicates that 

serialization is the main contributing factor for the PDA sending the test classes.  

This is of course in line with the lower (de)serialization throughput of the PDA in 

comparison to I/O throughput on the network, as shown in Table 3. 

A possible cause for the PDA being serialization bound is the conversion of numeric 

values into bytes for transmission.  For the test classes, most unique objects wrap a 
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primitive data type.  Analysing primitive data sending illustrates why this is not the 

case. 

Figure 27 presents results for the PDA sending primitive integers using different 

conversion mechanisms.  Int Array is the primitive int[] type sent via an object 

stream.  Ints takes every element in the array and transfers it with the writeInt 

method on a Java DataOutputStream, which is the stream which underlies the 

Java object streams.  Converted Ints has each integer element converted into four 

bytes with bitwise operations, with the subsequent bytes stored in a byte array and 

the byte array transferred as raw data on the network stream.  Only Int Array has a 

result at size 0 as the other methods send nothing at this point.  All streams are 

buffered as with the other experiments, except Converted Ints which sends the 

generated byte array directly on the network stream. 

 

Figure 27: PDA Sending Ints 

There is no significant increase in overhead as more numbers are converted.  If this 

was a major factor in the serialization process, it would be expected that 

performance would change as the Integer array results presented in Figure 26. 

There are other interesting points in Figure 27.  The bitwise conversion of integers 

into bytes appears to give a marginal performance increase when compared to 
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0

2

4

6

8

10

0 25 50 75 100

Ti
m

e
 m

s

Number of Values

Int Array Ints Converted Ints



Chapter 4: Analysis of Current JCSP Networking 77 

 

from the 23 byte serialization header sent with the object, and may in fact be the 

serialization operation time.  If this is true, then it is likely to increase as more 

objects are serialized, as the 0.55 ms per object overhead alone cannot attribute 

the difference between the Integer Array results presented in Figure 26 and the 

primitive int[] results presented in Figure 27. 

Figure 28 compares send times and receive times for TestObject4 taken from the 

PC and PDA with peaks removed.  The x-axis provides the calculated size of the 

object in bytes.  The PDA sending time and the time recorded for the PC receiving 

are equal and the variance between the two results sets never increases above 1 

ms.  Thus it appears as if only three lines are present in Figure 28, as the PC 

Receiving result is imposed upon the PDA Sending results. 

 

Figure 28: Sending and Receiving TestObject4 via Object Streams 

4.5.2 Sending via Channels 

To compare the JCSP Networking against object streams for sending the test 

classes, the results from sending TestObject4 via JCSP networked channels are 

presented.  Other channel result sets are provided in Appendix D.  Expected times 

are generated using the NetChan equation and the performance characteristics 

provided in Table 3 (page 63) and object sizes calculated from Table 1 (page 47).  

Only expected synchronised channel values are calculated as synchronisation has 

little effect on communication time for objects of this complexity.  Figure 29 
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presents these results for the PC.  The x-axis represents the size in bytes of the 

serialized object. 

 

Figure 29: PC Sending TestObject4 via Networked Channels 

Synchronised channels perform better than expected, the variance being between 

30 and 50 ms.  However, not all test classes show improved performance over 

expected results (see Appendix D) and therefore it is deemed that there are no 

adverse performance differences for large serialized objects sent via JCSP 

Networking channels.  Async results are relatively flat until spiking at the end similar 

to Object Streams.  The difference in object sizes at the two spikes is greater than 

the JCSP message overhead, although this will have an effect on the observed 

results. 

Figure 30 presents expected and actual results for the PDA sending TestObject4, 

and no peaks were removed from this data.  As with the PC results, the PDA initially 

shows better than expected results, but as object size increases the variance 

between the two result sets reduces to zero.  As with the PC results, the different 

test classes exhibit either better or worse results than expected based on their type. 

Async channels perform initially as well as Sync channels, but degrade as object size 

increases.  The variance between the Sync results and Object Stream results also 

increases with object size, although initially channels have performance that is 

comparable to object streams. 
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Figure 30: PDA Sending TestObject4 via Networked Channels 

From the TestObject4 sending results presented it is possible to approximate the 

throughput of the networked channel for a complex object.  This value takes into 

consideration the serialization and deserialization time of both devices.  The PC can 

transfer TestObject4 messages at approximately 15 bytes/ms, and the PDA can 

transfer TestObject4 at approximately 17 bytes/ms.  The variance in performance 

is due to the PDA having lower deserialization performance than serialization 

performance, and the PDA (de)serialization process being the significant bottleneck. 

The throughput reduction is concerning, and is attributed to (de)serialization 

performance of the PDA.  If PC channel bandwidth results (Figure 21 – page 69) and 

PDA channel bandwidth results (Figure 20 – page 68) are examined, the serialization 

process for TestObject4 reduces channel performance by 260 bytes/ms and 188 

bytes/ms for the PC and PDA respectively.  However, JCSP performance is better 

than expected, and the PDA results indicate little overhead in comparison to object 

streams. 

Comparing transfer time for large serialized objects gives some indication to the 

overhead associated with the PDA, but PC results are inconclusive due to the lack of 

acknowledgement on the object streams causing significantly better results when 

compared to JCSP Networking.  Therefore, roundtrip results are also presented to 

help compare the object stream and JCSP Networking results further. 
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4.5.3 Roundtrip 

Figure 31 presents the results for the PC performing a roundtrip operation with 

TestObject4 using Sync and Async channels and Object Streams.  The expected 

results are also calculated using the properties from Table 3 and the NetChan 

formula.  The PDA results are not shown as they are similar, and are available in 

Appendix D. 

 

Figure 31: PC to PDA Roundtrip TestObject4 

Figure 31 illustrates that actual channel communication time is better than 

expected, and the expected and actual results increase in unison.  Async results are 

also comparable to Sync results.  Object Streams perform better than networked 

channel communications, and over time the performance gap increases.  This 

highlights a possible problem with complex objects sent over channels, the variance 

between the two result sets reaching approximately 100 ms at TestObject4100
1.  

If results from the PDA sending TestObject4 (Figure 30) are examined, there is an 

approximate 50 ms variance between channels and Object Streams at 

TestObject4100.  The variance between receive times (Figure 32) on the PDA is 

approximately 50 ms.  Therefore, the PC has no significant overhead observed when 

using JCSP Networking to send complex objects within the test framework, and any 

overhead can be attributed to PDA performance. 

 

                                                      
1
 The notation TestObjectn is used to signify the length of the internal arrays within the object in 

question.  e.g. If n = 100, the length of the internal arrays of TestObject is 100. 
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Figure 32: PDA Receiving TestObject4 

4.6 Examining JCSP Networking Overhead 

Experimental data presented thus far has focused on communication overhead 

within JCSP Networking.  Another concern is resource overhead of the JCSP 

Networking architecture.  Section 3.4 highlighted some initial observations 

regarding scalability, and issues with Link priority were highlighted in Section 4.4.  

In this section the latter problem is examined in more depth. 

To investigate the priority problem, a CommsTime benchmark, utilising fast integer 

based channels, is performed on the PDA and PC in conjunction with the roundtrip 

experiment for large data sizes.  The latter experiment involves data being sent and 

received in large blocks, and thus it is possible to examine the computational 

overhead for I/O.  There is a warm up and cool down period when the bandwidth 

experiment is not operating, allowing the base CommsTime result to be 

determined.  The PDA results for the CommsTime benchmark in this scenario are 

presented in Figure 33.  Experiment time increases with the x-axis, and the broken 

horizontal line across the figure is the recorded CommsTime figure at various times 

during the experiment.  Vertical lines indicate a packet size time being recorded at 

that point in time during the experiment, packet sizes increasing as the roundtrip 

experiment (0, 103, 2x103 ... 104, 2x104 ... 105, 2x105 ... 106).  Gaps in the 

CommsTime blue line result indicates that no time was gathered during the packet 

sizes represented by the red lines.  For example, between the times gathered for 

packet size 0 and 10,000 no CommsTime figure is gathered as the relevant packet 
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sizes each record a time while the CommsTime benchmark does not, leading to a 

gap in the blue line representing the CommsTime result.  This is due to the device 

being consumed by I/O operations and is unable to perform computation for the 

CommsTime benchmark. 

 

Figure 33: PDA CommsTime Stressed Network 

Figure 33 illustrates the high priority Link problem as the CommsTime on the PDA 

increases from approximately 680 μs to approximately 70,000 μs during large 

packet size transfer.  The PDA is essentially flooded and has reduced computation 

performance within this period, particularly during the larger packet sizes. 

There is an interesting phenomenon where CommsTime reduces to approximately 

normal levels, and no bandwidth results are recorded.  This valley occurs during 

data size 60,000, where channel roundtrip performance also drops in Figure 22 

(page 70).  It can therefore be judged that the PDA is not performing any operation 

that should be significantly affecting network performance at this stage, which leads 

to the probable cause of the network infrastructure causing a performance drop. 

Roundtrip results recorded during this experiment, and the original recorded results 

for roundtrip operations, are presented in Figure 34.  As can be seen, the results are 

similar, indicating that I/O has not suffered during the CommsTime experiment, and 

I/O has effectively caused the application level CommsTime benchmark to be 

allocated less computation resource.   
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Figure 34: Networked Channel Roundtrip with CommsTime 

The PC results are not presented as CommsTime presents no impact on 

performance and channel roundtrip time results are similar to PDA results. 

4.7 Summary 

A number of performance experiments have been performed that allow an analysis 

of the current JCSP Networking implementation.  Reflecting these characteristics 

and the initial observations in Section 3.5 upon the usage of JCSP Networking in a 

Ubiquitous Computing context raises a number of concerns.  Considering the 

required properties for Ubiquitous Computing highlighted within Chapter 2, the 

following subsections discuss the problems. 

4.7.1 Interoperability 

JCSP Networking relies on Java serialization to the point where it is used internally 

to transfer even non-data messages.  From a Ubiquitous Computing point of view, 

this is a weakness, as not all versions of Java implement serialization, particularly 

versions aimed at small factor devices [132], which will be in operation in a 

Ubiquitous Computing environment.  As reflection is not available in reduced 

versions of Java, it is not possible to implement a custom serialization mechanism to 

overcome the lack of serialization.  JCSP Networking requires modification to permit 

non-serialization interactions, with methods implemented by classes and used to 

convert an object into a byte array, and the serialization header information 
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transferred with the byte array.  The channel message header is a problem, but as a 

structure is present (see Appendix A) it is possible to overcome.   

A separate Link could be developed to allow communication without serialization, 

and a different message header mechanism could also be developed.  Channel 

messages are constructed in the networked channel object however, and thus the 

channel would require modification to communicate with the Link, or the Link 

would require further modification to extract the information to send. 

If either approach is taken, JCSP Networking will require modification to promote 

interoperability between Java versions.  However, there is still consideration for 

interoperability between different frameworks.  Not all computational elements 

within a Ubiquitous Computing environment will be capable of operating a Java 

Virtual Machine.  When this further restriction is placed on requirements, any 

notion of Java serialization becomes a problem.  In particular, the difficulty 

interpreting the sent Java object is a problem, as not all platforms provide reference 

based data structures and object graphs.  Data structures are often interpreted 

differently on different platforms, and thus object based serialization should be 

avoided.  Although work by Ripke [136] has shown that the underlying serialization 

headers can be accommodated for in languages such as occam, the actual 

implementation of data structures within Java does cause problems. 

4.7.2 Performance 

JCSP Networking provides performance in the test framework close to optimal 

performance between the two devices.  When using JCSP networked channels, the 

PC drops to 275 bytes/ms bandwidth from 320 bytes/ms, a 45 bytes/ms reduction.  

The PDA drops to 205 bytes/ms bandwidth from 215 bytes/ms when using JCSP 

network channels.  The low variance in performance for the PDA indicates that no 

significant throughput overhead is observable.  The PC has a greater variance 

between the JCSP Networking channel and networked streams, although this can be 

attributed to the deserialization time for the sent object on the PDA, and 

subsequent serialization of the acknowledgement packet.  From an initial analysis, 
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JCSP Networking has no significant communication overhead to argue against its 

usage in various distributed computing contexts, not just Ubiquitous Computing. 

Bandwidth does drop when complex object serialization is considered; performance 

dropping to 15 bytes/ms.  This highlights another problem with the reliance on 

serialization for message encoding.  Therefore it is argued that reliance on 

serialization is a bad choice for high communication ratio applications, which could 

be prevalent in a Ubiquitous Computing environment. 

Latency is a problem however.  Within the test framework, a ping takes 

approximately 36 ms on a synchronized channel and approximately 16.75 ms on an 

asynchronous channel.  Object streams record ping at approximately 6.75 ms, and 

network streams approximately 6.5 ms.  The comparison to a synchronous channel 

is possibly unfair due to the synchronisation between sender and receiver.  

However, the asynchronous channel indicates a ping overhead of 10 ms for JCSP 

networked channels within the test framework above the object streams.  The 

majority of the overhead can be attributed to serialization of the message header 

on the PDA.  High latency can be a problem in high communication applications, and 

therefore JCSP Networking may not be suitable for such applications. 

Asynchronous channels do provide an initial performance increase, but over time 

the benefit reduces.  Eventually asynchronous channels perform poorer than 

synchronous channels.  The infinite buffering mechanism within the JCSP 

Networking architecture and garbage collection may have an effect.  Therefore 

asynchronous channels do not appear to be a good solution for high latency in all 

scenarios. 

Serialization performance on the PDA is disappointing, and is the greatest 

bottleneck within the test framework.  The PC can serialize objects at approximately 

10,000 bytes/ms.  The PDA can only achieve approximately 20 bytes/ms in 

comparison.  Considering the network throughput recorded on the PC and PDA (320 

bytes/ms and 215 bytes/ms respectively), the PC is I/O bound and the PDA 

serialization bound.  Performance cannot be attributed to conversion of individual 

values within the transferred object (Figure 27 – page 76) and appears to relate to 
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the lookup table internal to the serialization process increasing in size.  Memory 

allocation and I/O time do not indicate a relation to the size of the sent object.  On 

small factor devices the usage of serialization can be considered a severe limitation.  

As Ubiquitous Computing scenarios involve computational elements ranging from 

large to small, there is a further argument against object serialization. 

4.7.3 Resource Usage 

As discussed in Section 3.5, process usage within JCSP Networking increases as the 

number of networked input channels and inter-node connections increases.  

Temporary processes are created and destroyed during operation, and thus 

problems can arise in resource constrained devices.  The PDA has an approximate 

400 thread limit, and although possibly a large number, smaller devices will have 

fewer threads available.  On smaller devices however, a single connection to a 

server and a single input channel may be all that is required, and the excessive 

usage of processes may not be a factor. 

JCSP Networking relies on a JVM capable of object serialization, which some of the 

reduced Java configurations do not accommodate.  As discussed in Section 4.7.1, 

this problem can be overcome, but even a reduced JVM may be too resource heavy 

to operate on some devices.  A reliance on Java in Ubiquitous Computing scenarios 

is therefore a limitation. 

4.7.4 System Overhead 

JCSP Networking was designed operate in cluster computing type scenarios, which 

leads to conflicts when considering other usages.  Link processes are given 

maximum priority, and therefore during intense I/O operations the application and 

device will be allocated less computational resource to accommodate I/O.  For 

applications with high computation to low communication ratios, such as cluster 

computing, high priority I/O enables fast service of communications.  For high 

communication to low computation ratios, the application must wait for I/O to 

complete, and overtime a small device can be flooded.  Small factor devices and 

high communication ratios are possible in Ubiquitous Computing, thus the high 

priority Link can cause a problem. 
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Other overheads in JCSP Networking are attributed to using objects as message 

headers.  The required information in a message packet (type, source and 

destination) is small and therefore 249 and 204 byte headers are excessive.  This is 

another problem with the reliance on serialization for communications. 

4.7.5 Scalability 

Linked to resource usage and system overhead is scalability.  Ubiquitous Computing 

demands large scaled environments, with multitudes of devices interacting.  

Scalability is one of the main arguments for using a formalised mobility model.  JCSP 

Networking does not scale well within these architectures.  Considering the 

capabilities for creating dynamic topologies of interacting components possible with 

JCSP Networking, scalability can be seen as one of the major problems to overcome. 

Java is also a problem for scalability.  A JVM is not available on every device, thus 

reliance on Java and serialization is a limitation.  Thread limitations allow the PDA 

approximately 400 processes and the PC 7,000 processes.  Applications involving 

thousands of agent processes moving through devices become difficult if not 

impossible to achieve.  Reliance on Java to accommodate such scale is therefore a 

limitation. 

4.7.6 Stability 

No evidence of erroneous behaviour within JCSP Networking is presented, but 

usage of the framework highlights a number of problems.  The underlying 

architecture does not accommodate exception handling that is accessible to 

application layer developers.  A process may block while communicating to a 

remote process if the connection between the two Nodes fails.  Ubiquitous 

Computing requires management of failure to enable an environment to stay active 

in the presence of erroneous behaviour.  JCSP Networking does not indicate 

erroneous behaviour reasonably and cannot be considered a suitable framework 

from this perspective. 
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4.7.7 Accessibility and Extensibility 

Properties internal to JCSP Networking are hidden.  The Nagle algorithm being 

turned off improves performance in cluster computing scenarios, but does not for 

scenarios where sending as much data as possible in a packet is more efficient.  

High priority I/O also causes problems for usage of JCSP Networking in domains 

outside cluster computing.  Buffering the underlying network stream increases 

performance, but the size of the buffer cannot be modified to suit individual 

purposes.  Finally, reliance on serialization for communications limits inter-

framework interaction. 

Exposing the underlying mechanisms and attributes would allow modification.  

Unfortunately, many of these properties are hidden and cannot be modified outside 

the source code.  Numerous scenarios are possible in Ubiquitous Computing due to 

differing communication, device and architecture configurations.  Thus, the 

underlying properties should be exposed to allow modification. 

A final consideration is extensibility.  In principle, JCSP Networking can utilise 

different communication mechanisms, and functionality can be extended using the 

networked channels.  However, the existing architecture requires numerous 

resources to allow a networked channel, and therefore resource usage for other 

communication scenarios negates scalability.  The implementation is also complex 

[135], requiring a level of understanding of the internal mechanisms of JCSP 

Networking to allow extensions to be created. 

4.7.8 Conclusion 

In this chapter, weaknesses have been identified within JCSP Networking that 

highlights issues when considering a Ubiquitous Computing scenario.  Many of 

these problems can be linked to Java and serialization, although some are related to 

implementation decisions within JCSP Networking.  Therefore, it is necessary to 

address these problems and modify JCSP Networking to accommodate Ubiquitous 

Computing ideas.  In the following chapter, a new implementation of JCSP 

Networking is presented which aims to rectify many of the highlighted problems.  
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Although performance outside object serialization is not considered a major 

problem, any improvement of performance is also desirable. 



 

Chapter 5 A New Architecture and General Protocol for 
JCSP Networking 

 

Chapters 3 and 4 highlighted limitations of JCSP Networking when considering 

Ubiquitous Computing requirements.  In this chapter, a description of a new 

implementation of JCSP Networking is presented and a definition of a protocol to 

allow communication between various implementations of distributed 

communicating process architectures is provided.  Section 5.1 presents the new 

architecture, and Section 5.2 the underlying protocol.  Section 5.3 discusses the 

operation of the new implementation, and Section 5.4 illustrates why it promotes 

data independence.  Finally, Section 5.5 provides a summary of the new JCSP 

Networking implementation.   

5.1 New Architecture for JCSP Networking 

Two architectural views of the new implementation are presented. The first view 

provides a layered examination of JCSP Networking, allowing separation of 

functionality into different layers.  The second view examines the internal 

components of the layers, discussing how they interact together to support the 

underlying distributed channel mechanism. 

5.1.1 Layered Model 

A basic layered view of the architecture is presented in Figure 35.  It consists of four 

layers: 

 

Figure 35: Basic Layered Architecture 
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 Application Layer – user level processes and applications. 

 Event Layer – networked channel ends and other synchronization primitives.  

Interfaces are provided to the application level processes, and the 

communication functionality of the components encapsulated. 

 Link Layer – connections to other nodes within the system, including receive 

(RX), transmit (TX), server, and manager processes. 

 Communication Layer – the underlying communication mechanism that a 

JCSP Networking system is implemented upon. 

The original implementation of JCSP Networking also has some layered attributes, 

but the new implementation places more restrictions on cross layer 

communication.  Messages travel up and down the layers as far as necessary, and 

this will be discussed further in Section 5.3. 

The layered diagram can be expanded to illustrate how each layer communicates 

with others, and how addressing within each layer is handled.  This diagram is 

presented in Figure 36. 

 

Figure 36: Detailed Layered Architecture 
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 Channel End Interfaces – interfaces defined by the core, non-networked, 

JCSP channels with networked functionality added. 

 Channel & Link Connection Channels – the crossbar allowing multiple Links 

to communicate to multiple channel ends and multiple channel ends to 

communicate to multiple Links.  The crossbar is implemented using Any-2-

One channels in both directions. 

 Connection Stream – Links communicate with the communication 

mechanism using streams.  These streams are communication specific. 

 Communication Specific Messaging – the communication mechanism’s 

specific messaging protocol (e.g. TCP/IP).  This is of no concern to the new 

implementation or the rest of this research. 

Addressing mechanisms between each layer are: 

 Virtual Numbering – number allocated for addressing and lookup purposes.  

These are 4 byte signed integers for an addressing range of -231 to 231-1. 

 Node Addressing – each Node is uniquely identifiable to allow inter-Node 

connections.  Link management relies on addressing to ensure that only 

one Link to a remote Node exists.  An address takes the form 

<Protocol>\\<Address>.  Protocol identifies the underlying communication 

mechanism (e.g. tcpip) and Address is the unique address of the Node based 

on the addressing mechanism of the communication mechanism. 

 Communication Specific Addressing – the addressing mechanism enforced by 

the communication mechanism, for example <IP Address>:<Port>. 

Most interface and addressing concepts are inherited from the original JCSP 

Networking implementation.  Addressing has been modified to allow addresses to 

be easily constructed and deconstructed into strings to promote inter-framework 

interoperability.  For example, a NetChannelLocation (address of a specific 

channel end) of a channel with virtual number 74 on a TCP/IP connected Node takes 

the form tcpip\\192.168.1.100:5000/74. 

Each layer only understands certain message types.  These are: 



Chapter 5: A New Architecture and General Protocol for JCSP Networking 93 

 

 Java Objects – the Application Layer of a Java system operates using Java 

objects.  Therefore this is the type of data it will communicate via the 

networked channel ends. 

 CPA Network Protocol – the responsibility of the Event Layer is to convert 

outgoing messages into Network Protocol messages for communication via 

the Link Layer, and conversion of incoming Network Protocol messages from 

the Link Layer to communicate with the Application Layer.  This protocol will 

be discussed further in Section 5.2. 

 Raw Byte Data – data leaving a Node is sent as bytes, which aids other 

platforms to interpret the incoming message.  In particular protocol 

messages are transmitted as primitive data written directly onto the stream. 

To avoid a reliance on Java objects and serialization, the Application Layer can 

operate using whatever data type it understands.  The Event Layer converts data 

into raw bytes for transmission and subsequent reconstruction on reception.  To do 

this, the Event Layer utilises data encoders and decoders to perform the conversion.  

This will be explained further in Sections 5.3 and 5.4. 

5.1.2 High Level Model 

The individual components and how they are connected is presented in Figure 37, 

which closely resembles Figure 1 (page 34) with changes to the implemented 

components. 

 LoopbackLink has been removed.  This component was unnecessary and 

locally connected NetChannelOutputs now send directly to the 

corresponding NetChannelInput end.  This will be explained further in 

Section 5.3. 

 NetChannelInputProcess has been removed.  The required functionality 

has been folded into the NetChannelInput, and the NetChannelInput 

is now as lightweight as the NetChannelOutput. 

 IndexManager has been renamed ChannelManager. Each 

communication primitive requires its own management component within 

the Event Layer, and the renaming reflects this change. 
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 LinkManager is now a shared data object instead of a process. 

 The EventProcess has been removed.  When the LinkManager is 

informed of Link failure, the event is immediately written to the Link Lost 

Event Channels. These channels are infinitely buffered to avoid deadlock. 

 

Figure 37: High Level Architectural Model 
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reducing the number of processes internal to JCSP Networking.  The removal of the 

NetChannelInputProcesses ensures that channels are more lightweight, and 
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5.2.1 Protocol Definition 

The protocol is based primarily on an examination of the original JCSP Networking 

implementation, the pony Framework [130] and C++CSP Networked [129].  By 

performing this examination, a great deal of common functionality and messaging 

can be deduced.  The key shared feature is a virtual channel across a 

communication mechanism.  Sent messages have a destination, and to permit 

synchronisation the message must be acknowledged, and therefore messages also 

have a source.  Thus there are two attributes for a basic send message.  The type of 

the message must also be included, providing a message triple.  All required 

messages can be defined with a triple.  There is also the optional data segment for 

data messages, providing the following message signature: 

 (<message type>, <attribute 1>, <attribute 2>, [<data>]) 

Each value in the message header is represented by a primitive data type.  The 

message header signature is: 

 (byte, 32 bit signed integer, 32 bit signed integer) 

Inclusion of the data segment depends on <message type>.  A message receiver acts 

accordingly to read data from the communication stream based on the incoming 

message type.  If the size of the data is sent as a header, then the receiver will know 

how many bytes to read.  Therefore, data has the following signature: 

 (<size>, <bytes>) 

or 

 (32 bit signed integer, [1..size] bytes) 

A signed integer is used as Java provides no unsigned value types, although this 

could be changed to avoid negatively sized data messages.  It is not envisioned 

however that a data message will be as large as 231-1 bytes (2 Gbytes), which is 

beyond the limits of allocated data sizes.  The next standard data size is a 16 bit 

unsigned integer, and this would only provide a maximum message size of 64 
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kilobytes.  Although larger data packets could be avoided, they are not 

unimaginable. 

The basic channel message types are: 

 SEND – basic send message, requiring a source, destination, and data 

segment.  (SEND, <destination>, <source>, <data>) 

 ACK - SEND acknowledgement which notifies the sender that the message 

has been read.  Only the destination of the acknowledgement is required.  

(ACK, <destination>, null) 

 REJECT_CHANNEL – when a message is sent to a non-existent or destroyed 

channel, the sending channel is informed with a REJECT_CHANNEL message.  

The term reject is taken from rejectable channels that were used to pass I/O 

exceptions to application processes in the original JCSP Networking 

implementation.  Only a destination is required.  (REJECT_CHANNEL, 

<destination>, null) 

 POISON – poisoning of channels is a new addition to JCSP [137], based on 

work originally by Welch [138] and then Sputh [139].  Poisoning will be 

briefly discussed in Chapter 8 in relation to process mobility.  A POISON 

message requires a destination and a poison strength.  (POISON, 

<destination>, <strength>) 

 LINK_LOST – when a Link fails, NetChannelOutputs connected via the 

Link to their corresponding NetChannelInputs must be informed.  

LINK_LOST messages are sent to each NetChannelOutput by the Link.  

This message is not channel specific as other components in the Event Layer 

will also be informed of this occurrence.  LINK_LOST messages will also 

never be transmitted between Nodes, but by a Link to local components.  

No extra information is required within this message.  (LINK_LOST, null, null) 

 ASYNC_SEND – an unacknowledged SEND message.  Usage of this message 

permits the unacknowledged channel functionality from the existing JCSP 

Networking architecture.  Asynchronous messages are used by the Channel 

Name Server to avoid blocking when servicing name registration or request.  

The requirement for asynchronous messaging was to avoid deadlock caused 
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by connection failure prior to acknowledgement, but this problem has now 

been resolved (Section 5.3).  The ASYNC_SEND message has the same form 

as a SEND.  (ASYNC_SEND, <destination>, <source>, <data>) 

Beyond the networked channels, there are other components within the Event 

Layer.  These include networked Barriers and Connections, but currently not 

networked AltingBarriers.  For completeness, the required message types are 

provided in Appendix E. 

The protocol is not complete, and further work is needed to discover other required 

message types.  For example, occam uses a claiming technique to control access to 

shared channel ends [140].  JCSP has no such technique, but it should be possible to 

enforce on networked channels without modifying the channel interfaces.  

However, claiming of channels may not be a requirement as future versions of 

occam may not utilise explicit claiming.  AltingBarrier [137] is a further 

consideration for networked systems. 

5.2.2 General Nature of the Protocol 

The protocol promotes inter-framework coordination due to how the messages are 

defined.  Message type is represented by a single byte – providing 255 message 

types – and thus a lookup enumeration can be used on the message type on 

reception.  If all frameworks agree on message values, each framework can focus on 

how the architecture can be implemented.  If correct behaviour is emitted by an 

implementation (e.g. each SEND must be given an ACK) then the individual 

implementations are separated.  Addressing of individual synchronisation primitives 

in the Event Layer utilises 32 bit signed integers, allowing interpretation on the 

majority of other frameworks.  There is a concern related to the usage of big-endian 

or little-endian to represent values on a framework [129].  Network byte-order (big-

endian) should therefore be conformed to.  Data within a message has been 

separated from the header, and thus only conversion of data across platforms’ is a 

concern.  This will be discussed in Section 5.4. 
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5.3 Operation 

In this section, basic operations of the new JCSP Networking architecture are 

outlined.  The methods to capture Link failure and data conversion are also 

covered.  First a brief description of the new virtual channel is presented. 

5.3.1 Virtual Channel 

The new implementation of the virtual channel is functionally similar to the original 

implementation with NetChannelInputProcess operations folded into the 

NetChannelInput.  Thus the reading process performs the read operation 

explicitly.  Therefore it is the reading process’ task to recreate the sent data into an 

object (or otherwise). 

Figure 38 illustrates how a virtual channel crosses the layers of one system to 

another, the arrow being the virtual channel. 

 

Figure 38: Layered Virtual Channel 

Figure 39 illustrates how components interact in the new architecture to form a 

networked channel.  Figure 39 is similar to Figure 2 (page 37) with 

NetChannelInputProcess removed.  Messages between components illustrate 

the data that is being communicated, with SEND being represented by 1 in the 

protocol and ACK being represented by 2.  Numbers in parenthesis within the 

NetChannelInput and NetChannelOutput are the virtual channel numbers in 

use. 
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Figure 39: New Networked Channel 

5.3.2 Basic SEND / ACK Operation 

Figure 39 illustrates a normal read-write operation in the new architecture.  A 

description of the operation within the existing architecture was provided in Section 

3.3.  Here the same description is given for the new implementation of JCSP 

Networking, discussing the messages being sent between the components. 

1. An Application Process calls write on a NetChannelOutput, passing an 

Object to send as a parameter. 

2. The NetChannelOutput constructs a network message, setting the type as 

SEND, attribute 1 as the destination value (97) and attribute 2 as the source 

value (45).  The NetChannelOutput then must convert the Object into 

bytes.  This is the only point at which data is copied, and if actual bytes are 

sent then no copying may happen at all.  On creation of the 

NetChannelOutput, an encoding filter was provided to accomplish this, 

and once passed through the filter, an array of bytes is returned.  The 

NetChannelOutput attaches this to the network message and sends the 

message to the LinkTX, and awaits acknowledgement. 

3. The LinkTX reads in the network message and writes the type (1) and two 

attributes (97 and 45) to the stream.  The stream of bytes sent is therefore 

<1, 0, 0, 0, 97, 0, 0, 0, 45>.  The LinkTX examines the type of message, and 

as it is SEND there is a data portion.  The LinkTX writes the size of the byte 

array to the stream, and then the bytes that make up the object. 

4. The receiving Node’s LinkRX reads in the type and the two attributes, 

creating a network message from them.  The LinkRX process then examines 

the message type, which is SEND and thus contains data.  The size is read 

from the stream and used to read the required number of bytes from the 
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stream.  The LinkRX then retrieves the destination channel end from the 

ChannelManager and checks its state.  If the channel is in an OK_INPUT 

state the channel connecting to the partner LinkTX is added to the 

message, and the message sent to the NetChannelInput. 

5. The Application Process calls read to receive the incoming message. 

6. The NetChannelInput reads in the network message and checks the 

message type.  As the type is SEND the message is to be delivered.  The 

NetChannelInput has a decoding filter to convert a sequence of bytes 

back into an object, and retrieves the bytes from the message, passes them 

through the filter to recreate the sent Object and returns this to the 

Application Process.  

7. During step 6, a network message is created with the type ACK.  Attribute 1 

is set to attribute 2 of the incoming message (the original source) and 

attribute 2 is not used and set to -1.  This message is written on the channel 

contained in the original message; the channel to the LinkTX process 

connected to the sending Node. 

8. The LinkTX process reads the network message and writes the type (2) and 

the two attributes (45 and -1) to the stream.  The stream of bytes sent is <2, 

0, 0, 0, 45, -1, -1, -1, -1> or <2, 0, 0, 0, 45, 255, 255, 255, 255> if byte is 

considered unsigned.  The LinkTX examines the type of the message, and 

as the type is ACK there is no data. 

9. The original sending Node’s LinkRX reads in the type and two attributes 

creating a network message from them.  The LinkRX then examines the 

message type, and as it is a type that contains no data there is no need to 

read data from the stream.  The LinkRX retrieves the channel from the 

ChannelManager and checks its state.  If the channel is in an OK_OUTPUT 

state the network message is written to the NetChannelOutput. 

10. The NetChannelOutput reads in the network message and checks the 

message type.  As the type is ACK the write operation completes normally, 

freeing the Application Process. 
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The steps provided describe the operation under normal conditions.  If the 

NetChannelOutput is connected locally to a NetChannelInput, the same 

operations occur although at step 2 the message is sent directly to the 

NetChannelInput object with the acknowledge channel of the 

NetChannelOutput attached for direct acknowledgement.   

As the architecture utilises I/O there is the possibility that erroneous behaviour can 

occur.  The following sub-sections illustrate how this is handled in the new 

architecture. 

5.3.3 SEND / REJECT operation 

As stated in Chapter 3, the existing method for erroneous message delivery was 

implemented by the now deprecated rejectable channel mechanism.  It is obviously 

still possible that erroneous message delivery can occur due to channel destruction 

or I/O operations.  Therefore message rejection is kept, but implemented within the 

Link Layer instead of the NetChannelInputProcess.  Figure 40 illustrates the 

component interactions that occur.  The sequence of operations is: 

 

Figure 40: Reject Channel Operation 
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3. As normal operation 

4. Initially this operation occurs as before.  When the LinkRX attempts to 

retrieve channel 97 from the ChannelManger, the channel may not exist or 
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set to attribute 2 of the original message (45), and attribute 2 is not 

required.  The network message is sent to the partner LinkTX. 

5. As normal operation step 8, the LinkTX writes the message to the stream.  

There is no data segment. 

6. The LinkRX reads in the type and two attributes.  As the type contains no 

data segment, no data is read from the stream.  The LinkRX then retrieves 

the necessary channel from the ChannelManager and checks the channel’s 

state.  If the channel is OK_OUTPUT the message is sent to the 

NetChannelOutput. 

7. The NetChannelOutput reads in the message and checks the message 

type.  As the message type is REJECT_CHANNEL, it is determined that the 

previous send was rejected.  The NetChannelOutput changes its state to 

BROKEN and removes itself from the ChannelManager.  An exception is 

raised and causes the Application Process to continue but with an exception. 

5.3.4 SEND / LINK_LOST 

Another form of erroneous behaviour occurs when the connection to the Node 

where the NetChannelInput resides fails.  As stated in Chapter 3, this is not 

always captured by the original architecture depending on the stage of the 

read/write operation.  To overcome this, a NetChannelOutput registers itself 

with a Link when it is created.  As a NetChannelOutput will only connect to one 

NetChannelInput, a Link can retain a set of all connected output channels.  If 

the connection to the remote Node is lost, the Link can inform all its registered 

channels by sending them a LINK_LOST message.  Link failure may occur at any 

stage and therefore cannot easily be mapped into operational steps.  There are two 

possibilities however: 

 Prior to a write operation, the Link to the remote Node hosting the 

NetChannelInput fails, causing a LINK_LOST message to be sent to the 

NetChannelOutput on its acknowledgement channel.  When write is 

called on the NetChannelOutput, the acknowledgement channel is first 
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checked for pending messages.  As LINK_LOST will be present, the 

NetChannelOutput can behave as if a message was rejected. 

 After performing a write, but prior to receiving the ACK, the Link to the 

NetChannelInput fails.  The Link informs all registered channel ends 

with a LINK_LOST message on their acknowledgement channels.  The 

NetChannelOutput will read in this message, discover it is a LINK_LOST 

message and act as if the message was rejected. 

By having all NetChannelOutputs register with Links, Link failure can be 

transmitted as required, thus avoiding the deadlock problem described in Section 

4.7.6.  NetChannelInputs do not have this requirement as they may service 

multiple incoming connections.  To avoid deadlock, the LinkTX remains active to 

black hole any outgoing messages.  This restriction can be overcome either by 

converting the LinkTX into a passive object which throws an exception when 

closed, or by poisoning the incoming channel. 

5.3.5 Exception Handling 

I/O operations can fail for a number of reasons.  Passing failures to the Application 

Layer is the key to allowing recovery by user level applications.  Passing exceptions 

as I/O exceptions is not an option however, as I/O exceptions must be explicitly 

caught by an application within Java.  JCSP Networking utilises the existing JCSP core 

interfaces for channel ends, and these do not specify I/O exceptions as possible 

failures.  Therefore an exception has been created – JCSPNetworkException – 

which is an unchecked exception and does not have to be explicitly caught by an 

application, allowing existing processes to operate as if networked channel ends 

were not in use.  If the exception is raised, it will cause the program to terminate if 

not explicitly caught, thereby allowing erroneous behaviour to be accommodated 

for if required.  Any underlying I/O exceptions within the new JCSP Networking 

architecture are caught and JCSPNetworkException thrown appropriately. 

5.3.6 Channel States 

Previous operational descriptions have mentioned channel states to determine how 

the Link Layer and Event Layer should behave.  These state objects are shared 
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between separate processes, and access and modification is protected using 

standard Java monitors.  The individual channel states are as follows: 

 INACTIVE – initial channel state.  This occurs prior to initialisation. 

 OK_INPUT – a NetChannelInput willing to receive incoming messages. 

 OK_OUTPUT – a NetChannelOutput willing to send outgoing messages. 

 DESTROYED – the channel end has been destroyed by an Application Layer 

process.  This is usually performed to recover resources. 

 BROKEN – a NetChannelOutput end that has become broken due to some 

form of erroneous behaviour. 

 POISONED – a channel end that has become poisoned, either by receiving a 

POISON message or by an Application Layer process invoking poison. 

Figure 41 illustrates the transitions that occur between states within the channel.  

This diagram is important when verification of the new architecture is presented in 

Chapter 6 and when channel mobility is presented in Chapter 7 and Appendix G. 

 

Figure 41: Channel State Transition 
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objects into bytes for transfer.  The usage of these filters provides a level of data 
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5.4 Data Independence 

Responsibility for conversion of data is now with the components within the Event 

Layer.  These components have filters placed within them to handle encoding to 

(output) and decoding from (input) raw bytes.  The default filter within a JCSP 

Networking channel uses serialization as the existing architecture did, except 

serialization is performed within memory streams instead of buffered 

communication streams.  This is required as Links no longer interpret object 

messages.  Different filters will allow conversion using other techniques; the 

simplest filter sending a byte array and performing no conversion. 

Separating data conversion provides the user with some data independence, which 

is important for cross framework communication.  If two frameworks agree on a 

data transfer mechanism, then inter-framework communication via the 

communication protocol becomes possible.  There are still problems however.  

Brown [129] illustrates the point when considering C++CSP Networked, in that 

different platforms may define data structures differently, endianess of bytes being 

highlighted as a particular problem.  Endianess can be overcome by enforcing the 

network standard byte order, but if other platforms such as pony [120, 130] are 

considered then some standards must be enforced. 

occam has no cyclic data structures as Java, C, and other reference / pointer based 

languages do.  Thus object graphs cannot be faithfully transferred from a JCSP 

Networking system to pony.  The solution is simple although it enforces certain 

constraints on the Java programmer.  If data structures are to be transferred 

between platforms in a manner that can be interpreted by all available platforms, 

then the most restrictive structure of data must be adhered too.  Schweigler’s work 

on pony [120, 130] permitted communication of occam data structures, thus 

providing insight into possible directions.  Providing such a mechanism in Java is left 

for future work. 

As data conversion has been abstracted to the point where the JCSP Networking 

user can implement their own mechanism, then ubiquitous communication 

between devices becomes easier.  There is no requirement of having Java on the 
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target platform, thus opening up the possibilities of communication.  This is a key 

feature to permit JCSP Networking to be considered as an architecture suitable for 

Ubiquitous Computing applications.  The only hurdle lies in graph based data 

structures.  Sending such data structures may be a problem for certain frameworks 

and a question is at what point a cyclic graph becomes a necessary data structure to 

send between two remote Nodes. 

5.5 Summary 

In this chapter a presentation of the new JCSP Networking architecture and protocol 

has been presented.  Architectural diagrams and protocol definition were provided, 

and how separate components communicate.  Where necessary, comparison to the 

original JCSP Networking architecture was provided to illustrate improvements and 

differences.  Exception handling and channel states were also presented.  Finally the 

mechanism for providing data independence was described. 

An implementation of this architecture and is currently available via the JCSP 

repository2.  The current version is the reference version based on the work 

presented in this chapter.  The reference implementation also includes 

implementations of the channel mobility and code mobility models presented in 

previous work [17]. 

In the following chapter, the new architecture is examined from a performance 

point of view, repeating the experiments performed on the original JCSP 

Networking implementation.  A verification of the new model and protocol is also 

presented that illustrates that certain properties are present in the new 

architecture, and that problems in the original architecture have been overcome. 

 

                                                      
2
 The JCSP repository is available from http://www.cs.kent.ac.uk/projects/ofa/jcsp/  

http://www.cs.kent.ac.uk/projects/ofa/jcsp/


 

Chapter 6 Examining the New Architecture 

 

In this chapter, experimental data is presented to compare the new JCSP 

Networking implementation with the original implementation.  Relevant 

experiments conducted in Chapter 4 are repeated to compare the properties of 

interest within the test framework described in Section 4.1.  To check error handling 

and other possible architectural implementation issues, a model of the new 

implementation has been developed using the SPIN model checker [141].  A 

discussion of the model is presented at the end of this chapter.  Section 6.1 

presents the expected performance for the new implementation before actual 

performance is presented in Section 6.2.  Section 6.3 examines object serialization 

and Section 6.4 presents the overhead of the new implementation of JCSP 

Networking.  The verification model is presented in Section 6.5, before conclusions 

are drawn in Section 6.6. 

6.1 Expected Channel Performance 

Section 4.4 described interactions between each component within the original 

JCSP Networking channel and provided formulae to approximate channel 

performance based on known properties.  In this section, new formulae are 

presented based on the new implementation presented in Chapter 5.  There are 

eight operations with values: 

1. NetChannelOutput encodes the sent object message 

2. NetChannelOutput writes the message to the LinkTX (channel 

communication) 

3. Link transmits the message to the remote Link. 

4. Remote Link sends received message to the NetChannelInput (channel 

communication) 
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5. NetChannelInput decodes the sent object 

6. NetChannelInput writes the acknowledgement message to the Link 

(channel communication) 

7. Link transmits the acknowledgement to the original Link 

8. Link sends the acknowledgement to the NetChannelOutput (channel 

communication) 

The channel has two ends.  Both require a formula to determine approximate 

communication time.  These formulae are: 

𝐶𝑜𝑢𝑡 = 2 ∙ 𝑐𝑎𝑛 + 𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒(𝑠𝑖𝑧𝑒𝑜𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 ) 

𝐶𝑖𝑛 = 2 ∙ 𝑐𝑎𝑛 + 𝑑𝑒𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒(𝑠𝑖𝑧𝑒𝑜𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 ) 

Total communication time from output to input is calculated as: 

𝑁𝑒𝑡𝐶𝑎𝑛 =  𝐶𝑜𝑢𝑡 +  𝐶𝑖𝑛 +  𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 𝑠𝑖𝑧𝑒𝑜𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 +  13 +  𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡(9) 

These formulae include object (de)serialization time, but the new implementation 

allows raw data communication without serialization.  In such circumstances, 

(de)serialization time is omitted.  Asynchronous channel operations remove 

acknowledgement time of a channel communication per networked channel end, 

and the transmission of the 9 byte ACK message. 

From Table 3 (page 63) it is possible to estimate channel performance when sending 

a null or single byte value.  These values are presented in Table 7.  All values are in 

milliseconds. 

Table 7: New Net Channel Overhead 

 Cout Cin NetChan 

PC Sync 0.030 0.031 5.404 

PC Async 0.015 0.016 0.221 

PDA Sync 0.373 0.385 5.404 

PDA Async 0.193 0.205 5.208 

 

From an initial comparison of expected results from the original JCSP Networking 

implementation presented in Table 4 (page 65) and expected results of the new 

implementation presented in Table 7, expected communication time has decreased 
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by approximately 9 ms for a synchronised channel.  Asynchronous channels on the 

PC should perform a send in approximately 0.22 ms and on the PDA performance is 

expected to be approximately 5.208 ms.  The significant decrease for the PC 

asynchronous channels is due to the PDA not performing deserialziation on the 

incoming channel message header. 

6.2 New JCSP Networking Performance 

To analyse the new implementation, the ping, bandwidth and roundtrip 

experiments are repeated using large data packets.  Raw byte data can be sent 

directly on a channel with no conversion, thus experimental data representing this 

scenario is also presented.  Unlike the experiments conducted on the original JCSP 

Networking implementation, Links are only given normal priority within the test 

framework. 

6.2.1 Simple Ping 

Figure 42 presents results for a ping benchmark using the new JCSP Networking 

channel implementation.  Original JCSP Networking and Object Stream results are 

provided for comparison.  Expected results are generated with the new NetChan 

formulae.  Times presented are the average time in milliseconds to perform the 

ping operation. 

 

Figure 42: Simple Ping New Network Channel 

Figure 42 indicates an increase in performance for small data packets.  For 

synchronous channels, both the PDA and PC results show an approximate 15 ms 
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improvement.  There is an approximate 10 ms variance from expected results.  

However, taking into account network latency subtracts 3 ms from this figure, 

providing an approximate latency of 7 ms for a network channel roundtrip 

operation, or 3.5 ms for a send operation.  There is an approximate 14 ms variance 

between Sync and Object Stream results. 

Async results are favourable, actual results being approximately 3 ms greater than 

expected.  Taking into account roundtrip latency of the network at 1.5 ms, the 

latency for Async roundtrip can be approximated at 1.5 ms.  Object Stream results 

perform approximately 2 ms better than asynchronous channels under these 

conditions. 

6.2.2 Bandwidth 

Bandwidth experiments consist of single byte messages and large data sizes.  For 

the former, only null value objects are sent via a networked channel using 

serialization, and for the latter, both serialization and raw data results are provided.  

As serialization takes place within the channel, a memory buffer is utilised to 

serialize the object into.  The buffer is allocated 8192 bytes, the same buffer size as 

the Link stream in the new and existing JCSP Networking implementation.  Each 

NetChannelOutput is given its own buffer.  As the size of the data to be serialized 

is greater than 8192 bytes within these experiments, the buffer is doubled as 

required by Java.  At the next serialization operation the buffer is reset to 8192 

bytes.  Increasing the buffer in this manner will have an effect on performance, but 

it is necessary for large data objects.  Giving each channel a large buffer will 

constrain resources and is therefore not a suitable option.  The other approach is to 

use a single large shared buffer.  This could require guarded access which would 

also reduce performance, although is a possible area of investigation in the future. 

Figure 43 presents results for sending null objects via the new JCSP Networking 

channel.  The original network channel and Object Stream results are provided for 

comparison.  Expected values are calculated using the new NetChan formulae.  

Values are the average time in milliseconds to perform a single send or receive 

operation. 
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Figure 43: New Network Channel Send and Receive Benchmark 

Figure 43 illustrates that the time taken to send a null message using the new JCSP 

Networking implementation is approximately half the time taken within the original 

implementation.  Synchronous channels perform approximately 2 ms slower than 

expected, but taking into account the roundtrip latency of 1.5 ms there is an 

approximate 0.5 ms difference.  Discounting PC Object Stream results due to the 
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comparison.  Figure 44 presents PDA synchronous channel results and Figure 45 

presents PDA asynchronous channel results. 

 

Figure 44: PDA New Synchronous Channel Bandwidth 

For synchronous channels there is an initial approximate 50 bytes/ms performance 

improvement with the new implementation.  Performance does converge over time 

however.  Throughput within the new implementation is approximately 2 bytes/ms 

better than the original at the largest packet sizes, which can probably be attributed 

to the removal of the object message header.  Object Streams have approximately 4 

bytes/ms better throughput when compared to the new synchronous channel 

results. 

 

Figure 45: PDA New Asynchronous Channel Bandwidth 
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Asynchronous channels show improved performance before bandwidth values 

converge.  The new implementation does show improved performance for larger 

packets, and this will be due to the reduction of Link priority.  Under these 

conditions, no memory exception occurs due to large packet sizes flooding the PDA, 

and thus results continue to the maximum data size, unlike the original 

implementation.  At large packet sizes, performance is approximately 20 bytes/ms 

better than expected.  This will be due to the Link performing the actual I/O when 

the application process has finished.  This is also why Object Streams show poorer 

performance than the new implementation. 

Results for sending the data without serialization are provided in Appendix D.  There 

is little performance difference between the serialized and raw data results.  

Asynchronous channels perform approximately 8 bytes/ms faster for large data 

sizes, but this will largely be due to the buffering problem described at the start of 

this section. 

Results for PC synchronous channels are presented in Figure 46 and asynchronous 

channels in Figure 47.  Object Stream results are provided for data sizes greater 

than 3,000 bytes due to the large bandwidth value that small packet sizes provide.  

For asynchronous channels, all presented results are for data sizes greater than 

3,000 bytes due to large bandwidth values.  As serialized and non-serialized values 

are similar, the latter are provided in Appendix D. 

 

Figure 46: PC New Synchronous Channel Bandwidth 
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For synchronous channels on the PC there is a performance improvement for all 

data sizes except for a valley at 800,000 bytes.  The new implementation provides 

an approximate 35 bytes/ms improvement, reaching 310 bytes/ms.  This is 10 

bytes/ms lower than expected, which is similar to PDA throughput variance 

between actual and expected results for synchronous channels.  The improvement 

in performance can be attributed to the PDA not having to deserialize the incoming 

message header. 

 

Figure 47: PC New Asynchronous Channel Bandwidth 
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in comparison to the original.  Results converge before the original results end due 
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For closer analysis, large data packets are sent via synchronous and asynchronous 

channels with and without serialization.  The serialization scenario utilises an 8192 

byte buffer within the channel.  Expected and original JCSP Networking results are 

provided for comparison.  As the values recorded for both PC to PDA and PDA to PC 

are similar, only PDA to PC results are presented.  The other results are available in 

Appendix D. 

Figure 48 provides results for a roundtrip operation from the PDA to the PC over the 

various data sizes, using serializing synchronised channels.  Figure 49 presents the 

results serializing asynchronous channels.  Expected times are generated using the 

NetChan formula.  Original and Object Stream results are also provided.  The values 

presented are the average time to perform a single operation in milliseconds. 

 

Figure 48: PDA Synchronous Serialization Channel Roundtrip 
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Figure 49: PDA Asynchronous Serialization Channel Roundtrip 
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performance of the new asynchronous channel is similar to the performance of the 

original synchronous channel under these conditions. 

 

Figure 50: PDA Synchronous Raw Channel Roundtrip 

 

Figure 51: PDA Asynchronous Raw Channel Roundtrip 
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original implementation, and therefore reducing I/O priority may have increased 

latency.  Reducing I/O priority does permit the application to handle incoming and 

outgoing messages, overcoming the problem of a fast device flooding a slower one.  

Thus, exposing the Link priority as a property in the new JCSP Networking 

implementation permits more ubiquitous usage of JCSP Networking within different 

scenarios. 

 

Figure 52: PDA Receiving Asynchronous Raw Channel Roundtrip 

To examine the assumption that lower Link priority is effecting latency, Links are 
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Figure 53: High Priority vs. Normal Priority Link 

6.3 Test Object Messages 

From experimental data presented in Section 4.5.2, transmission time of the various 

test objects was shown to be bound by PDA serialization performance except during 

asynchronous sending by the PC to the PDA.  The new implementation should 

likewise be serialization bound, although improvement should be evident because 

of the removal of the object channel message header.  In this section, the test 

object experiments are repeated within the new implementation, with original and 

expected results provided for comparison.  Only TestObject4 results are 

presented within this section as these provide enough insight into performance.  

Other results are available in Appendix D. 

6.3.1 Sending 

Figure 54 presents results for the PC sending TestObject4 to the PDA via 

synchronous and asynchronous communication within the new implementation of 

JCSP Networking.  Original Sync and Async results are also provided, as are expected 

Sync and the underlying Object Streams.  The values presented are the average 

times taken to perform a single send operation in milliseconds.  The x-axis 

represents the size of the sent object in bytes.  Any significant peaks have been 

removed to allow better analysis, with actual results being provided in Appendix D. 
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Figure 54: PC Sending TestObject4 via New Networked Channel 
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Async results within the PDA only the Sync results are presented here.  No peaks 

have been removed from these results. 

 

Figure 55: PDA Sending TestObject4 via New Networked Channel 
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similar, and Async results show only slight improvement.  Thus these results are 

provided in Appendix D. 

 

Figure 56: PC to PDA TestObject4 Synchronous Roundtrip via New Networked Channel 

For the new implementation, there is some improvement in comparison to the 

original implementation.  This is due to the removal of the object message header.  

Results are better than expected, but this does not hold for all test object types and 
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roundtrip operation for TestObject4 in the new implementation is 60 ms slower 

at TestObject4100 than when performed via an object stream. 
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Figure 57: PDA CommsTime New Stressed Network 

Comparing Figure 57 against Figure 33 (page 82), the maximum CommsTime value 

recorded has been reduced from approximately 70 ms to 55 ms.  This value is still a 

significant increase in the CommsTime figure in comparison to the approximate 680 

μs time without I/O operations. 

Figure 58 presents the recorded roundtrip time on the PDA for large data packets 

while performing CommsTime.  There is little variance between the times recorded 

with CommsTime and without, except towards the larger packet sizes.  Here, 

performance varies, with the roundtrip time With CommsTime sometimes 

performing better, and likewise Without CommsTime.  The variance between the 

two result sets can reach approximately 180 ms. 

 

Figure 58: New Networked Channel Roundtrip with CommsTime 
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It can be judged that the overhead when implementing lower priority I/O has been 

reduced, but can still be considered as significant.  I/O does not appear to suffer 

due to lower priority.  There may be some effect from the removal of the 

(de)serialization of the message header from the original JCSP Networking 

implementation, as on the PDA this has been shown to be a slow operation and 

thus takes some CPU time. 

6.5 Verifying the Protocol and Architecture 

One of the problems highlighted in the original JCSP Networking architecture was 

poor error handling.  NetChannelOutputs can fail due to Link failure when the 

subsequent exception is not passed to the application level.  In the new JCSP 

Networking implementation, NetChannelOutputs are registered with the 

relevant outgoing Link.  If the connection fails, the Link iterates through the list of 

registered channels and signals each in turn. 

To determine whether registering with the Link is enough to avoid the output 

channel hanging, a model of the new architecture and protocol has been developed 

with the SPIN Model Checker [141].  The development of the model also allows 

general verification of the architecture to check that it is deadlock free, as well as 

examination of properties that are of interest. 

6.5.1 SPIN 

SPIN (Simple Promela INterpreter) is a model checker that allows examination of 

properties within a derived model by thoroughly checking the state space of the 

model.  SPIN can verify a number of correctness requirements by usage of 

assertions, checking for deadlock, fairness and liveness of the defined model.  The 

underlying language used to build a SPIN model is Promela (PROcess MEta 

LAnguage), which has similar semantics to CSP (e.g. channels, processes, choice).  

SPIN is similar enough that is possible to almost directly compose a JCSP application 

into a SPIN model for verification. 

To verify a model, SPIN converts the Promela code into C code, which is then 

compiled into an application.  The application attempts to verify the model by 
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creating the entire possible state space of the model, thus visiting every possible 

state that the model can be in.  If at any point it is impossible for the application to 

move to another state and the model is not in a correct end state, then verification 

fails.  This is a basic deadlock check, and other properties can be checked from the 

built state model. 

Normally, CSP based architectures are verified using the FDR tool [142], which 

allows verification of a model based on properties such as deadlock and livelock, 

and also provides refinement checking.  Refinement checking allows comparison of 

a model against expected behaviour.  CSP does not at present incorporate channel 

mobility however, and neither does FDR.  Although it is possible to circumvent 

channel mobility directly by passing values that represent a channel [143], it is not 

strictly channel mobility. 

SPIN does permit channel mobility by passing channels as parameters in a message.  

The SPIN channel is similar to a channel in JCSP, although SPIN permits guarded 

operations on shared channel ends.  As JCSP does not allow these operations, they 

are not used within the new JCSP Networking implementation.  Thus the SPIN 

model of the architecture does not utilise such operations either. 

The full SPIN model of the verified architecture is provided in Appendix F.  Here, a 

high level description is provided.  The model represents only the channel 

operations and architecture within the new implementation.  First a description of 

the protocol messages is provided. 

6.5.2 Protocol Definition 

SPIN uses the mtype keyword to define message types.  From the discussion 

presented in Section 5.2, six message types within the protocol are relevant to 

channels.  The ASYNC_SEND operation cannot be modelled as it can occur at any 

point during execution and requires no synchronisation between communicating 

components.  This would increase the state space of the model beyond the 

capabilities of the model checker.  An argument on its verification shall be 

presented at the end of this section. 
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Discounting the ASYNC_SEND message, mtype is defined as follows: 

 mtype = {SEND, ACK, REJECT_CHANNEL, POISON, LINK_LOST}; 
 

6.5.3 Channel 

A networked channel has a number of required definitions: the possible channel 

states, the data structure representing a channel, and the processes that represent 

NetChannelInput and NetChannelOutput. 

6.5.3.1 Channel States 

Figure 41 (page 104) presented the possible states and state transitions of the new 

networked channel.  These states are given constant values and added to the 

model. 

6.5.3.2 Channel Data Structure 

Each channel is provided with a data structure that contains the Virtual Channel 

Number, the state and the channel that the Link uses to communicate with the 

channel object.  This is defined as follows: 

 typedef CHANNEL_DATA 
 { 
  byte vcn; 
  byte state = INACTIVE; 
  chan toChannel; 
 } 
 

6.5.3.3 Channel Process 

SPIN uses processes to represent components, thus a networked channel must be 

represented by a process.  The process is given a CHANNEL_DATA structure to 

represent the channel, and an interface of channels that represent the possible 

method calls that can be made on the channel.  There are two channel types, 

NetChannelInput and NetChannelOutput.  Figure 59 presents the 

NetChannelOutput process. 
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NetChannelOutput

write

poison

destroy

callReturn

toLinkTx

ackChannel

 

Figure 59: NetChannelOutput Process 

On the left of Figure 59 the interface channels are provided.  Each channel 

represents the calling of a method on NetChannelOutput, except callReturn 

which is read to simulate the end of a method call on the process. 

On the right of Figure 59 are the channels connecting the channel process to the 

Link process.  toLinkTx is a fixed channel that connects to the LinkTx where the 

input end of the virtual channel is connected.  ackChannel is the channel coming 

from the Link, and is the channel defined in the CHANNEL_DATA type. 

Figure 60 presents the NetChannelInput process.  The method interface is on the 

left, and includes extended rendezvous and poison operations which were added to 

JCSP in version 1.1 [137], and thus require addition to the new JCSP Networking 

implementation.  For completeness these operations are added to the SPIN model. 

The NetChannelInput process has only one connection to the Link processes, 

the fromLink channel.  This channel is the same as declared in the 

CHANNEL_DATA type.  When a Link sends the NetChannelInput a message, it 

also sends the channel to send the response back to the Link.  This is where 

channel mobility is required. 
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Figure 60: NetChannelInput Process 

6.5.4 Link Processes 

Link contains two processes: LinkTx and LinkRx.  LinkTx receives messages 

from the channel processes and sends them to the remote LinkRx.  Figure 61 

represents the LinkTx process. 

LinkTx

input txStream

 

Figure 61: LinkTx Process 

input receives messages from the channel processes.  txStream represents the 

connection to the remote LinkRx process.   

LinkRx receives messages from a remote LinkTx and sends them to the correct 

channel.  It is represented in Figure 62. 

LinkRx

rxStream toLinkTx

 

Figure 62: LinkRx Process 

rxStream represents the incoming stream from the remote LinkTx.  toLinkTx 

connects to the complement LinkTx, and is used to send messages directly to the 

LinkTx and to attach to incoming messages to allow a subsequent 

acknowledgement to be sent directly to the LinkTx. 
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A Link represents a connection to another node, and is composed of a LinkTx 

and a LinkRx.  Figure 63 represents the Link process.   

Link

toLinkTx

toNetwork

fromNetwork

 

Figure 63: Link Process 

6.5.5 Application Processes 

There are two types of application process: an outputting application and an 

inputting application.  These processes operate on the complement end interface 

channels that connect to a NetChannelInput or NetChannelOutput.  The 

application process chooses non-deterministically to write to one of the method call 

channels and then reads from the callReturn channel, thus waiting for the 

operation to complete.  callReturn returns either 0 or 1 to represent either an 

EXCEPTION or an OK return message.  If an EXCEPTION is returned, then the 

application process terminates. 

Full details of these processes are available in Appendix F, and are named Sender 

for an outputting application and Receiver for an inputting application. 

6.5.6 Node 

Within the model, two node types are defined: InputNode and OutputNode.  An 

InputNode starts a number of Receiver processes with relevant 

NetChannelInput processes.  An OutputNode starts a number of Sender 

processes and relevant NetChannelOutput processes.  Figure 64 presents the 

InputNode process.  The connection between the Link process(es) and the 

NetChannelInput process(es) is shown, although this is dynamic.   

NetChannelInput ReceiverLink

InputNode

 

Figure 64: InputNode Process 
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Figure 65 illustrates the OutputNode process.  In this circumstance, the connection 

between the NetChannelOutput and Link is static.   

Sender NetChannelOutput Link

OutputNode

 

Figure 65: OutputNode Process 

For both Nodes, the toNetwork and fromNetwork channels represent the 

txStream and rxStream across the network connecting the two remote Nodes.  A 

process is also added that allows simulation of the network connection itself. 

6.5.7 Network Process 

To simulate network failure, a simple process to represent the network is added to 

the model.  The process non-deterministically chooses to either send a message 

from the OutputNode to the InputNode, from the InputNode to the 

OutputNode, or fail and break the connection.  In the later case, a LINK_LOST 

signal is sent to the two corresponding LinkRx processes, and a flag is set which 

the LinkTx processes check to determine if they should fail.  Within the JCSP 

Networking implementation, the latter occurrence is detected when the LinkTX 

process tries to write to a closed stream.  The setting of a flag achieves the same 

outcome. 

Figure 66 presents the overall SPIN model developed for JCSP Networking.  The two 

nodes are connected via the Network process. 

OutputNode Network InputNode

 

Figure 66: Simple JCSP Networking Model 

6.5.8 Global Values 

There are a number of global values within the model, and these are summarised 

below: 
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 NUMBER_INPUTS – the total number of input channels within the model. 

 NUMBER_OUTPUTS – the number of output channels connected to a single 

input channel 

 TOTAL_OUTPUTS – the total number of output channels – 

NUMBER_OUTPUTS * NUMBER_INPUTS 

 BUFFER_SIZE – the size of the buffer to the channel processes.  This is used 

to simulate the infinite buffer within the actual application.  For the 

application to operate, BUFFER_SIZE should equal NUMBER_OUTPUTS.  This 

value is manipulated to verify this assumption 

 CHANNEL_ARRAY – a type declaration for the array of channel ends on a 

particular node – CHANNEL_DATA channels[TOTAL_OUTPUTS].  SPIN does 

not permit arrays to be passed as parameters into processes, therefore this 

must be declared globally.  For channels above NUMBER_INPUTS on the 

InputNode, the channel state is set to INACTIVE.  

 chans – all the channels within the model.  As CHANNEL_ARRAY cannot be 

passed as a parameter to an individual process, this is declared globally – 

CHANNEL_ARRAY chans[2]. 

 linkLost – the flag used to indicate Link failure.  This is initially set to 

false. 

6.5.9 Basic Verification 

Simple verification can be carried on a model comprising of a single 

NetChannelOutput connected to a NetChannelInput with BUFFER_SIZE = 1.  

This is the default assumption that for every connected output channel end to an 

input channel end, there is required a single place in the buffer to avoid deadlock.  

When passed through SPIN, the model is verified with no deadlock errors.  This is 

enough to reasonably assume that having the Link processes inform the relevant 

output channels of connection failure overcomes the deadlock problem in the 

original JCSP Networking implementation. 

The model also allows some indication of other problems in the original JCSP 

Networking implementation.  In the new implementation, the LinkRX process 
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retrieves a channel from the ChannelManager and locks the state object of the 

channel before checking said state.  Thereby, LinkRX is the only process acting on 

the channel state at any one time.  This allows various behaviours to occur based on 

the state of the channel object.  This feature was added to the new implementation 

when the model originally pointed out deadlock due to this occurrence not being 

taken into consideration.  As the channel object can change state based on certain 

calls (poison, destroy), this would have caused inconsistent behaviour within the 

implementation. 

The original implementation used no such state variable, and LinkRx would send a 

message to a channel object based purely on availability within the 

IndexManager.  The IndexManager would only return the connecting output 

channel end connected to the networked channel object.  When a channel object 

was destroyed, it was removed from the IndexManager prior to any clean up 

operations (rejection of pending messages).  Therefore, a channel either existed 

within the IndexManager or it did not.  There were no other possible states as no 

common protected state value was exposed.  This meant that much of the 

behaviour required for more advanced functionality (poison, mobility, barriers) was 

not possible as there was no method to expose these states without 

reimplementation of the underlying mechanisms of JCSP Networking.  As the new 

implementation exposes these properties, this problem has been overcome. 

6.5.10 Advanced Verification 

The simple verified model does not allow analysis of the common assumption of 

JCSP Networking that the channel connected to the NetChannelInput requires 

exactly one buffer space for each connected NetChannelOutput.  With 

manipulation of the BUFFER_SIZE value, this can be analysed to provide a stronger 

insight into this assumption.  Table 8 presents results from different verification 

scenarios.  To enable verification of the model, the option within SPIN to use 

minimal automata to search is activated. 
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Table 8: SPIN Verification Results 

NUMBER_OUTPUTS 1 2 3 4 

BUFFER_SIZE     

0 FAIL FAIL FAIL FAIL 

1 3.06x105 states 
351 depth 

FAIL FAIL FAIL 

2 2.78x105 states 
351 depth 

3.71x107 states 
3264 depth 

FAIL FAIL 

3 2.78x105 states 
351 depth 

3.71x107 states 
3264 depth 

PASS*3 FAIL 

4 2.78x105 states 
351 depth 

3.71x107 states 
3264 depth 

PASS* PASS* 

 

Table 8 illustrates that a NetChannelInput requires one buffer space for each 

connected NetChannelOutput for connected NetChannelOutputs less than 

four.  The number of states does not increase when the buffer size is increased 

beyond the required buffer size, except when a single NetChannelOutput to 

NetChannelInput has the buffer increased from 1 to 2, although search depth 

does not increase.  The reason for the reduction in state space could be the usage 

of the minimal automata search option within SPIN, or that the 

NetChannelOutput requires less state space in conjunction with the Link 

processes at BUFFER_SIZE = 2.  The NetChannelOutput also utilises the same size 

buffer as the NetChannelInput in the model, and this could have an effect in 

total required states. 

6.6 Summary 

The performance experiments performed on the original implementation of JCSP 

Networking have been repeated on the new implementation of JCSP Networking.  

Analysing the results from the new implementation, and the description of the new 

architecture presented within Chapter 5, against the original implementation within 

the context of the problems highlighted in Section 4.7, a number of observations 

can be made.  These are summarised in the following subsections. 

                                                      
3
 Results marked with a * are gathered using the bit state compression technique due to the state 

space size.  Thus, these results are deemed as approximations. 
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6.6.1 Interoperability 

JCSP Networking no longer relies on Java serialization, although it can utilise this 

functionality for convenience when necessary.  As channels now have the 

responsibility of converting data using a specific encoder/decoder, applications can 

be tailored to their context.  By implementing this mechanism, it is now possible to 

implement a reduced version of JCSP Networking on reduced versions of Java.  The 

lack of serialization capabilities is no longer a factor for basic communication. 

Removing the object message header allows interoperability beyond Java.  

Communication is implemented on a base protocol which can be interpreted by 

numerous frameworks.  Data transfer is a problem due to the different approaches 

taken to represent data in different frameworks, but the abstraction of encoding 

and decoding into a user customizable manner permits mechanisms to be 

developed to allow inter-framework communication of data if well defined data 

conversion is created. 

For Ubiquitous Computing interoperability is important, and JCSP Networking now 

exhibits a level of interoperability which enables usage within various versions of 

Java and, if the same communication protocol is utilised, within different 

frameworks. 

6.6.2 Performance 

The performance of the new implementation in comparison to the original 

implementation shows slight improvement, but this can largely be attributed to the 

removal of the object based message header in the original implementation.  PC 

networked channel bandwidth has increased from 275 bytes/ms to 310 bytes/ms, 

10 bytes/ms lower than the optimum 320 bytes/ms throughput of the network.  

The PDA shows only a 2 bytes/ms improvement, which is considered insignificant.  

Therefore, no adverse loss in performance is observed in the new implementation. 

As expected, for complex object serialization there is still a significant drop in 

performance.  The removal of the object message header has improved 

performance, but not significantly. 
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Latency has been reduced, and specifically simple message transfer time is 

approximately half of the original implementation within the test framework.  For a 

ping experiment, there has been a further reduction from approximately 36 ms to 

approximately 20.5 ms for synchronous message passing.  For asynchronous 

messaging, the figure is approximately 8.25 ms.  Object Streams record a ping time 

of approximately 6.75 ms, thus asynchronous channels have a 1.5 ms overhead.  

Original channels had an approximate 10 ms overhead.  Latency for larger data 

packets has increased however, and is likely due to the removal of the 

NetChannelInputProcess.  The increase of 70 ms for a roundtrip of 1 million 

bytes is not a significant increase in latency however. 

Asynchronous channels perform uniformly better than synchronous channels within 

the new implementation, which is unlike the original implementation of JCSP 

Networking.  The increase in performance is only slight, and as I/O priority has been 

reduced within the new experiments this allows the application to service I/O and 

thus not inflict problems due to buffering.  Asynchronous channels now enable the 

high latency to be overcome, if the priority of the I/O is suitably set.  As priority has 

been exposed to the JCSP Networking user, this problem has been overcome. 

Lower priority I/O has not affected performance observably, although there is 

variance when running other operations with I/O.  Considering serialization as a 

CPU intensive operation, particularly on the PDA, reducing I/O priority enables 

improvement for other computation at the expense of I/O but not at the expense of 

(de)serialization.  The (de)serialization process is performed by the application 

process engaging in the I/O, and as this functionality has been folded into the 

passive NetChannelInput object, (de)serialization time depends on the 

application process performing the (de)serialization.  Thus, (de)serialization is 

prioritised based on the priority of the application process. 

As there were no adverse performance problems within the original 

implementation of JCSP Networking when considering Ubiquitous Computing, 

besides low serialization performance on the PDA, then the new implementation 
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can likewise be argued that the new implementation has no adverse performance 

problems when considering Ubiquitous Computing. 

6.6.3 Resource Usage 

Process usage in the new implementation of JCSP Networking has been reduced, 

specifically by removing the NetChannelInputProcess and various management 

processes within the original architecture.  No temporary processes are created for 

handshaking, and therefore the only process increases come from application 

processes and inter-Node connections requiring Link processes.  The latter is still a 

problem, and can be overcome by using polling statements on incoming 

connections, which has been shown to further improve performance [144].  This 

feature is not available in reduced Java versions, therefore cannot be implemented 

as a solution for resource constrained devices in all occurrences.  However, as 

stated, it may be that small devices exhibit only a single incoming connection from 

another device, and Link processes are no longer a factor. 

JCSP Networking no longer relies on a JVM capable of object serialization, and thus 

an initial problem of requiring a resource heavy JVM has been reduced.  However, 

JCSP Networking is still implemented within Java, and as argued, Java may not be 

available within all devices.  The introduction of a communication protocol which 

does not require Java serialization enables native applications to communicate with 

a JCSP Networking system utilising the same communication methods, but data 

encoding would still need to be agreed upon.  Reliance on Java is therefore reduced, 

which is more practical for Ubiquitous Computing on a larger scale. 

6.6.4 System Overhead 

As the new implementation of JCSP Networking does not have fixed, high priority 

I/O, intense I/O operations do not impose as large an overhead when other 

computation is occurring.  As the priority of the I/O is now flexible, higher priority 

I/O can be enabled for high computation to low communication scenarios, whereas 

lower priority I/O can be utilised in high communication to low computation 

scenarios.  This reduces the risk of smaller devices being flooded, and enables a 
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more ubiquitous use of JCSP Networking beyond the cluster computing scenarios 

originally designed for. 

Overheads associated with the object message header have been removed.  

Message headers are now relatively small, being at most 13 bytes in size, reduced 

from 249 bytes. 

6.6.5 Scalability 

As resource usage and system overhead has been reduced within the new 

implementation of JCSP Networking, it can be argued that scalability has likewise 

improved.  There may still be scalability issues when considering multiple incoming 

connections into a single Node, although it may be possible to reduce this 

overhead.  JCSP Networking is now more suitable for Ubiquitous Computing 

architectures, but not necessarily ideal.  Java is still considered a problem, although 

the introduction of a protocol means that Java is not necessary on every device.  As 

argued, applications with thousands of mobile agent processes are still difficult for 

Java to accommodate. 

6.6.6 Stability 

Error handling within the new implementation of JCSP Networking has been 

improved in comparison to the original implementation.  Exceptions are now passed 

to the application level processes, and the problem of a NetChannelOutput 

becoming blocked while awaiting an acknowledgement from a disconnected Node 

has been overcome.  By permitting better error handling, the usage of JCSP 

Networking within a Ubiquitous Computing environment has been improved, 

although further experiments will be required to fully analyse potential failures and 

how they are handled by the JCSP Networking architecture or passed to the 

application level processes. 

6.6.7 Accessibility and Extensibility 

Internal properties within JCSP Networking have now been exposed.  This allows 

some modification of the architecture to suit individual purposes.  The exposing of 

data encoding to the user also enables user specified data transfer.  The 
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enablement of multiple configurations allows ubiquitous usage of JCSP Networking, 

and allows the numerous scenarios Ubiquitous Computing requires. 

Extensibility has also been improved, and the interfaces allowing custom 

communication mechanisms have been simplified.  However, adding new primitives 

to the Event Layer still requires access to the source code and modification of the 

Link processes.  The layered architecture makes this simpler to achieve. 

6.6.8 Conclusion 

In this chapter, the experiments conducted on the original implementation of JCSP 

Networking have been repeated within the new implementation.  Many of the 

issues raised about the original implementation have been overcome, without any 

adverse effects on performance.  There are still problems when considering JCSP 

Networking within the context of Ubiquitous Computing, but these are now centred 

on limitations of Java and JVMs available on resource constrained devices.  The 

introduction of a protocol enables communication outside Java, and the abstraction 

of data encoding further enables inter-framework communication. 



 

Chapter 7 Channel Mobility 

 

Previous chapters have focused on the properties of JCSP Networking when applied 

to a resource constrained environment.  Consideration of JCSP Networking as a 

Ubiquitous Computing framework must also take into account the dynamic 

topologies required, with consideration on the practicalities of distributed process 

and channel mobility.  In the following two chapters mobility is examined in this 

context.  Mobility is seen as a key feature when considering JCSP Networking as an 

architecture for Ubiquitous Computing, as it provides the dynamic capabilities that 

are considered important in such an implementation context.  Thus far the 

information presented has shown that JCSP Networking has no significant 

communication overhead in comparison to standard networking when considering 

the reduced framework the experiments have been conducted in, although 

resource usage over time may be a concern.  In this chapter, various approaches to 

channel mobility are presented, with various properties examined in the context of 

each model.  In Section 7.1 a definition of channel mobility is provided.  Section 7.2 

summarises potential channel mobility models, and Section 7.3 analyses properties 

of these models, Section 7.4 summarising these properties.  Finally, Section 7.5 

draws some conclusions on the suitability of these models within a Ubiquitous 

Computing scenario. 

7.1 Defining Channel End Mobility 

As discussed, channel mobility is the capability to migrate a connection from one 

component to another.  The π-Calculus [10] models channel mobility by allowing 

names to be passed between process contexts.  Mobility in the π-Calculus allows 

channel identifiers to be copied from one process to another, rather than strictly 

moved.  However, if the location that a name is migrating from no longer utilises 

the name, then the channel name becomes unbound from the original location, and 
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thus is moved rather than copied.  When a name arrives at a process, it becomes 

bound at that location.  For example, Figure 67 presents a process tree, with the 

output end of channel a communicated from V to R via channel b.  If V no longer 

uses a then it becomes unbound in V.  Within R, a becomes bound.  W has no 

knowledge of the migration of a, and R now has a new connection to W. 

P

V WUT

SRQ

a

a

b

 

Figure 67: Channel Mobility 

Figure 67 indicates how channel end mobility is achieved.  It requires a channel end 

to be passed by another channel, or a communication that is communicable via 

another form of communication [88].  A simple analogy is that R has been provided 

with an address to communicate to W.  As Chapter 5 discussed, the underlying 

mechanism of JCSP Networking relies on channel addresses, thus mobility is 

occurring on a very basic level as addresses are passed between Nodes.   

From this description, it is possible to define what a mobile channel looks like at a 

basic level, which is essentially an address.  As JCSP Networking utilises a channel 

end mechanism, it can be argued that output channel mobility is a case of migrating 

the address of the input end of a channel to another location.  Input channel 

migration is more complicated, and this chapter focuses more on mechanisms to 

enable input channel mobility.  Most models allow input channel mobility via 

address mobility also, although there are exceptions as highlighted in Appendix G. 

7.2 Channel Mobility Models 

Analysing current techniques for connection mobility, it is possible to extract seven 

different models that enable channel mobility.  In this section, these seven models 



Chapter 7: Channel Mobility 141 

 

are presented.  The relevant interaction sequences, state diagrams and new 

protocol messages for these models are available in Appendix G and can be used to 

help illustrate exactly how these models operate.  For the discussion presented 

here this is not necessary, and the general description is enough to analyse 

interesting properties. 

7.2.1 One-to-One Networked Channels 

Networked channels are generally considered to be Any-to-One in that any output 

end may connect to an input end.  This makes mobility difficult as it is unknown 

how many output ends may be connected to an input end, and therefore informing 

output ends of the movement of an input end is not a one-to-one communication. 

Muller [145] has presented a mobile channel protocol that utilises a one-to-one 

channel mobility model.  Channel end (port) states vary based on whether the port 

is locally connected or remotely connected, and ports are aware of the address of 

their companion port.  A full explanation of channel states can be found in [145].  A 

port is aware of the location of its companion and informs the companion of the 

new location on arrival.  Mobility is easier in comparison to the Any-to-One model 

of networked channels as it can be guaranteed that the companion port has been 

notified of the new location. 

The main disadvantage with this model is that networked channels become One-to-

One connections instead of Any-to-One.  This is not a major drawback as, if an Any-

to-One architecture is required, a multiplexing process can receive from multiple 

processes and send to a single process.  This incurs an overhead for transmission 

time, and requires a fixed process for each such channel.  If there are few such 

channels required these limitations may be considered inconsequential. 

7.2.2 Centralised Server 

Mobile channel ends controlled by a server is the approach taken in the pony 

framework [120, 130].  Each channel is allocated an identifier unique to the 

application context (the set of Nodes that make up a single pony application).  

These identifiers are managed by a server which keeps the current location of the 
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channel.  As the channel end is migrated, this location is updated.  An output end 

connected to an input end can resolve this location, and then connect directly to 

the input end.  If the input end should later move, the output end retrieves the new 

location from the central server.  Therefore a channel end can be thought of as 

either being at the given location or not – in which case the server is checked for 

the new location. 

The server requires messages to allow registration, resolution and updating of 

channel locations.  The current JCSP Networking Channel Name Server implements 

most of these functions.  pony has separated the functionality into two separate 

components, an Application Name Server, which allows registration and resolution 

of applications as opposed to channels, and a main node for each application.  The 

main node is responsible of controlling channel mobility. 

7.2.3 Message Box 

Message boxes are the approach used for mobile agents [89], and was previously 

proposed as the model for JCSP Networking channel mobility [17].  The Node 

declaring the NetChannelInput creates a message box, which allows the 

NetChannelOutput to send to a single address, and the NetChannelInput to 

request the next message from the message box.  The message box is fixed, so 

there are no new channel states, although the message box will require its own 

state model. 

The main disadvantage of message boxes is that the Node declaring the message 

box must remain operational.  As the declaring Node’s execution may complete 

before the mobile channel end is no longer required, this can be a severe limitation. 

7.2.4 Message Box Server 

Message box and server models can be combined by creating message boxes on a 

server instead of locally [63].  Apart from the requirement of server creation, the 

operation of the message box is identical to the message box. 

Utilising a server overcomes the main disadvantage of the message box, but does so 

by having all messages channels pass through the server node.  Thus there is a 
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bottleneck in the architecture.  This can put strain on a server Node, although 

multiple servers may overcome the problem. 

7.2.5 Chain 

The chain approach to mobility [51] requires each previous location of a channel 

end to forward messages on to the next location.  When an input end arrives at a 

new location it informs the previous location of the new location.  When an output 

end moves the previous location is sent with the migration message, which is used 

to send to the previous location.  Thus a chain of connections is created, and any 

message must traverse the entire chain to get from one end to the other. 

In the Any-to-One network channel architecture, there will be chains of various 

lengths in operation.  The length from the original input location to the current 

input location is always determined by the number of migrations that the input end 

has made.  The length of the output end(s) depends how far the outputting end has 

moved from its original location.  Thus, as different output ends may traverse 

different distances, there will be multiple chain lengths in operation. 

The main disadvantage of the chain model is the distance travelled for each 

message.  The chain may also contain loops.  A loop occurs when a message travels 

through the same node more than once.  Each previous location of a channel end is 

a link in the chain and a channel end may move to any location during operation, 

therefore loops can be formed if a channel end moves through a Node where a link 

in the chain already exists.  A further disadvantage occurs when a Node fails, which 

can cause multiple chains to break. 

7.2.6 Reconfiguring Chain 

To overcome the loop and transmission time problems of the chain model [59], the 

chain can reconfigure itself by finding shortcuts to a previous link if it is accessible.  

Any loop is therefore removed, and transmission time may become reduced 

whenever the chain is shortened. 

To achieve reconfiguration, a migrating channel end takes all previous locations in 

the chain.  On arrival, the locations are iterated through and reconnection is 
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attempted to the oldest possible link in the chain.  Loops are removed as a Node 

can always shortcut to itself.  Transmission time for messages can be reduced as the 

most direct route between two nodes is used instead of the total distance covered 

by the mobile end. 

7.2.7 Mobile IP Model 

Mobile IP [146] is used for physical device mobility within IP based networks.  

Connections are registered with a home agent which is responsible for forwarding 

messages onto the current location of the connection.  When a connection 

migrates, it informs the home agent, which buffers messages until the new location 

is resolved.  The new location address is generated by a foreign agent within the 

domain of the connection’s new location.  The home agent forwards received 

messages to the foreign agent, which forwards messages to the connection’s new 

location.  Whenever the mobile end moves, the foreign agent informs the home 

agent, and the same migration process occurs. 

To enable mobility between sub-domains, tunnelling is used to allow messages to 

be sent to the new foreign agent.  Tunnelling can be reproduced in a mobile 

channel context by utilising a chain of foreign agents that forward messages to the 

respective channel end location or next foreign agent.  In effect, this creates a 

hybrid model of chaining, server and message box.  The foreign agents act as 

gateways between domains. 

The main disadvantage of this model is that there may still be loops within the chain 

of foreign agents.  A mobile node may send to another mobile node within the 

same domain, but the message would travel to the home agent first – which may be 

within another domain.  Intelligence built into the foreign agent may remove these 

loops, providing direct connection, but would require more complex 

reconfiguration of the architecture. 

7.3 Analysing Channel Mobility Models 

For analysis of the different channel mobility models, the layout of standard TCP/IP 

based communication networks is used.  A network domain may consist of several 
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sub-domains, which may themselves consist of sub-domains.  At the root of the 

domain tree is the global domain.  Each node in the tree can be allocated an 

identifier to represent the domain in the hierarchy.  Messages are sent between 

members of domains; messages being the communication from one machine to 

another.  Figure 68 presents an example domain tree. 

G

A B

C D

E F

 

Figure 68: Domain Tree 

Each node in the tree has an identifier based on its domain branch.  For example, 

leaf E has the identifier G.A.C.E.  A simplistic viewpoint is taken to connectivity in 

that members of a sub-domain may connect to a member of its parent domain.  

Thus any leaf in the tree can connect to any domain further up its branch until the 

global domain root node is reached.  For example, a member of leaf G.A.C.E can 

connect to a member in three other domain nodes: G.A.C, G.A and G.  This form of 

connectivity will be called addressability, implying that the node can address a 

member in a given domain unambiguously. 

This view of addressability is taken to represent the fact that members of a given 

sub-domain may be given addresses which are also used in another sub-domain.  

For example, domain G.A.C.E may provide members with IP addresses in the 

standard local domain form 192.168.x.x.  Domain G.A.C.F may also use the local 

domain addressing mechanism.  Thus, a member of G.A.C.E may have an IP address 

192.168.1.1, and so might a member of G.A.C.F.  The domain tree structure ensures 

that this is not a problem. 

As a sub-domain may address its parent domain, then it becomes obvious that a 

member of the parent domain may be connected to a member of a sub-domain.  
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However, this form of connection must be initiated by the member of the sub-

domain.  Therefore, connectivity is permitted down the domain tree, but not 

addressability.  For the purposes of discussion, messages can travel either up or 

down the tree, but not both in a single operation.  A message travelling up or down 

must be received by a domain member before it is sent in a different direction 

through the tree. 

The analysis presented represents input channel end mobility, as this is the most 

complicated to achieve.  For an output end, the majority of models permit the 

address or some other representation of the input channel end to be sent and a 

new output end to be created, effectively copying the output end at a new location.  

The π-Calculus [10] permits this form of copy name passing, and therefore can be 

considered to not be incorrect from the modelling viewpoint either.  There are 

some exceptions which are presented in Appendix G. 

To aid in analysis, a number of values are defined: 

 PROTOCOL – a message in the protocol without data.  This includes 

acknowledgement messages.  As these messages should be of fixed size, the 

time taken to communicate one should be fixed. 

 ADDR – the size of a channel location address structure.  These structures 

are used to permit the output end of a channel to connect to a 

corresponding input end.  ADDR may vary based on implementation, but not 

enough to be considered unfixed. 

 MESSAGE – a message sent in a communication from one domain member 

to another.  The size of MESSAGE is variable. 

To represent mobility, Mn is used.  The parameter n is the number of movement 

operations that have occurred from initial setup – M0 representing a channel end 

that has not migrated. 

There are four properties that are of interest.  These are Transmission time, 

Reconfiguration time, Reachability and Strength.  When defining an equation that 



Chapter 7: Channel Mobility 147 

 

has an optional value based on circumstance, the optional value will be enclosed 

within square brackets [ ]. 

7.3.1 Transmission Time 

Transmission time is the time taken for a sent data message to arrive at its 

destination.  The time taken to transfer a message of a particular type (PROTOCOL, 

ADDR or MESSAGE) can be expressed using the function t and is based on the 

amount of data sent in the message.  For discussion purposes, for a single 

communication between two members of any two domains, t is not affected by the 

actual distance up or down the domain tree travelled. 

 One-to-One networked channel – transmission time in this model is the 

normal communication time between two domain members.  Therefore, for 

any n, transmission time for Mn = t(MESSAGE) + t(PROTOCOL). 

 Centralised server – the connection between an input end and an output 

end is always direct.  The only exception is when the input end has moved, 

leading to a message that must be resent, a message to indicate that the 

channel end has moved and a query for the new address from the server.  

Thus, transmission time for Mn = t(MESSAGE) + t(PROTOCOL) [+ t(MESSAGE) 

+ 2·t(PROTOCOL) + t(ADDR)]. 

 Message box – a message is transferred twice – once to the message box 

and once to the input channel end proper.  The requesting message contains 

the current input channel end location.  Prior to the first move of the 

channel, the request and subsequent send is local, as the input end is co-

located with the message box.  Thus, transmission time for M0 = t(MESSAGE) 

+ t(PROTOCOL) and for Mn>0 = 2·t(MESSAGE) + t(ADDR) + t(PROTOCOL). 

 Message box server – has the same transmission overhead as the message 

box, although the message box is always remote to the input end, thus there 

is no initial direct communication.  Transmission time for Mn = 2·t(MESSAGE) 

+ t(ADDR) + t(PROTOCOL). 

 Chain – sent messages must travel the entire length of the chain.  As the 

length of the chain increases with each migration, transmission time also 
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increases.  Acknowledgement and other protocol messages must also travel 

the entire length of the chain.  Therefore, transmission time for Mn = 

n·t(MESSAGE) + n·t(PROTOCOL). 

 Reconfiguring chain – the chain has the ability to shorten whenever possible, 

thus there are worst and best case scenarios for transmission time.  For the 

worst case scenario, any message must travel the entire length of the chain, 

so transmission time is the same as chain – for Mn = n·t(MESSAGE) + 

n·t(PROTOCOL).  For the best case scenario, the chain may connect directly 

between two domain members, thus providing optimum transmission time 

– for Mn = t(MESSAGE) + t(PROTOCOL). 

 Mobile IP – transmission time is based on the number of foreign agents to 

reach the destination.  This is based on the number of nodes up and down a 

sub-tree that are traversed by the message.  These values are represented 

by up and down respectively.  Transmission time for Mn = 

up·down·t(MESSAGE) + up·down·t(PROTOCOL). 

7.3.2 Reconfiguration Time 

Reconfiguration time is the time taken to reconfigure the communication 

architecture to permit the new communication path created by the migration of a 

channel.  Reconfiguration complexity is represented by a function, r.  r takes three 

possible values: EASY for an architecture requiring little reconfiguration to allow 

two mobile channel ends to connect; MODERATE for an architecture that takes 

some extra functionality and link creation; and HARD for an architecture that 

requires a great deal of reconfiguration to allow mobility.  The time represented by 

r will generally be small in comparison to the time taken to transfer messages 

between Nodes to allow reconfiguration.  Message transfer time is taken into 

consideration for message transfer and acknowledgement.  Channel transfer time 

for all models is either a protocol message or an address message.  Further details 

are provided in Appendix G. 

 One-to-One networked channel – reconfiguration of the underlying 

architecture involves changing the channel state and informing the 
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complement channel end of the new address.  Messages sent involve the 

new address and possibly any message waiting on an input channel when it 

migrates.  Thus, reconfiguration time for Mn = r(EASY) + 2·t(ADDRESS) + 

2·t(PROTOCOL) [+ t(MESSAGE)]. 

 Centralised server – reconfiguration involves sending an acknowledged 

message informing the server that the input channel end is about to 

migrate, sending an acknowledged message to the server with the new 

address, and a protocol message from the output end to enquire on the new 

address, and the address sent back as a response.  Therefore, 

reconfiguration time for Mn = r(EASY) + 6·t(PROTOCOL) + 2·t(ADDR). 

 Message box – as messages are always sent and requested from the same 

location, and reconfiguration is a matter of sending the address of the 

message box to the new location.  Thus reconfiguration time for Mn = 

r(EASY) + t(ADDR) + t(PROTOCOL). 

 Message box server – reconfiguration time for the message box server is the 

same as message box mobility.  For Mn = r(EASY) + t(ADDR) + t(PROTOCOL). 

 Chain – the chain is similar to the message box, and requires redirection of 

the receiving channel (the channel linking the LinkRX to the channel object 

in Figure 37 of Section 5.1) to point to the new outgoing Link.  A migration 

message contains the previous location, and the acknowledgement message 

contains the new address.  Thus, reconfiguration time for Mn = r(EASY) + 

2·t(ADDR). 

 Reconfiguring chain – there are best and worst case scenarios for 

reconfiguring the chain.  When migrating, the channel end must take every 

previous location of the channel end and on arrival iterate through the list, 

checking connectivity to these previous locations.  Therefore, the channel 

end must take at least one previous location, and may in fact take all 

previous locations.  The best case scenario for Mn = r(EASY) + 2·t(ADDR) and 

the worst case scenario is Mn = r(HARD) + (n + 1)·t(ADDR). 

 Mobile IP – reconfiguration is based on how quickly the communication path 

through the foreign agents can be created.  A mobile channel is sent via an 

existing channel, thus the backbone links between the foreign agents must 



Chapter 7: Channel Mobility 150 

 

already exist.  Reconfiguration therefore involves the foreign agent 

examining the migration message and determining where the registered 

channel must be redirected.  The number of domains travelled is a 

consideration – these values can be represented by up and down 

respectively.  Each migration message contains two addresses, and has a 

complement ARRIVED message with two addresses in most cases.  The 

migration message must also be acknowledged through the communication 

path back to the sender of the migrating end.  Thus, reconfiguration time for 

Mn = r(MODERATE) + 2·up·down·2·t(ADDR) + up·down·t(ADDR). 

7.3.3 Reachability 

Reachability is the set of domains within which a channel output end can 

successfully communicate to an input end using the specified mobility model.  

There are three sets of interest: 

 DOMAIN – the domain in which the input end of the channel is located and 

all the sub-domains of this domain. 

 BRANCH – the set of domains within the same branch as the input end, 

implying both up and down traversal of the domain tree. 

 GLOBAL – is the set of all domains. 

As it is possible for a node within a domain to connect up the tree, any model that 

allows such a connection is deemed to permit an output channel end that has 

migrated using such an existing connection to be connected to an input channel end 

down the tree via this connection.  This is a generalisation.  If the input or output 

ends were to move further, then the link would be broken in many cases. 

 One-to-One networked channel – ports are sent via an existing connection to 

a new node, thus the new host is reachable from the existing one.  

Therefore, the first interaction allows connection into a sub-domain from 

the parent domain if the migrated port and its complement are on the same 

node.  After this migration, then this is no longer the case as the port may 

have moved to a node not addressable from the new location.  This can be 
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overcome by the sender of the port determining which node could connect 

to the other.  Therefore, reachability is given as BRANCH. 

 Centralised server – the server is used to maintain channel locations, 

therefore only domain members can connect directly to the server.  Thus, 

normal reachability is DOMAIN.  However, this would imply that two distinct 

sub-domains of the server’s domain could communicate via a mobile 

channel, which is not the case.  Thus, reachability is actually DOMAIN ∩ 

BRANCH. 

 Message box – any node that can connect to the host of the mailbox can 

form an end of the mobile channel.  Therefore, reachability can be initially 

thought of as DOMAIN.  However, as the sender of a channel end may 

connect up the branch of the domain tree, it is possible that the host of the 

message box be told likewise to connect up the tree.  This gives reachability 

of DOMAIN ∪ BRANCH. 

 Message box server – as a server is being used, it must be possible for any 

receiver of a mobile channel end to be able to connect to the server.  Unlike 

the centralised server approach, channel ends in two distinct sub-domains 

may communicate as the message is sent and retrieved from the server.  

Thus reachability is DOMAIN. 

 Chain – as every location which the channel visits leaves a forwarding 

address, anywhere the channel migrates can be reached from the previous 

location.  As a connection between any sub-domain and its parent is 

possible, the chain can effectively stretch anywhere through the tree.  

Reachability is therefore GLOBAL. 

 Reconfiguring chain – as the chain only reconfigures itself based on 

connectivity to previous locations, the reachability of the reconfiguring chain 

is the same as that of the chain.  Reachability is thus GLOBAL. 

 Mobile IP – as messages are passed between domains via the agents within 

each domain, a channel end can effectively move anywhere.  The path is 

created dynamically as a channel end is migrated.  Thus, reachability is 

GLOBAL. 
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7.3.4 Strength 

The strength of the mobility model relates to the robustness of the connection 

between the input and the output end.  Robustness includes reliance on external 

elements; thus a server type system is considered to be relatively robust in 

comparison to an individual node.  This is due to the possibility of multiple servers 

being used and servers being dedicated to specific tasks, as opposed to a single 

node which may terminate when computation is complete. 

For strength there are three values: 

 WEAK – a connection relying on a number of external entities. 

 MODERATE – a connection relying on some external entities. 

 STRONG – a direct connection between two nodes, requiring no external 

entities.  All direct connections between two nodes within the same domain 

are considered STRONG. 

The strengths of the different mobility models are: 

 One-to-One networked channel – a port and its complement are always 

directly connected.  Thus, the strength of the model is STRONG. 

 Centralised server – as the connection between input and output ends is 

direct, the channel strength can be considered STRONG in most 

circumstances.  The reliance on an external server does reduce the strength 

slightly.  Strength is therefore MODERATE to STRONG. 

 Message box – each channel requires that the original declarer of the input 

end remains operational and connected until the channel is no longer 

required.  This does not lend itself well to standard distributed systems 

architectures as a node may disconnect when it has finished its own 

operations.  The channel itself only requires two inter-node links, and is 

therefore reasonably strong in that respect.  The strength of this model is 

therefore MODERATE. 
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 Message box server – the usage of a server removes the requirement of the 

node creating the input end remaining operational.  Thus, strength is the 

same as the centralised server model – MODERATE to STRONG. 

 Chain – the chain relies on every previous channel end location remaining 

active during the lifetime of the system.  This is a serious weakness, as any 

one of these domain members may fail or disconnect for reasons outside 

the control of the nodes containing the channel ends.  Strength is therefore 

WEAK. 

 Reconfiguring chain – as the chain can potentially be shortened to the point 

where the output and input ends of the channel are directly connected; 

there is the potential for this model to be STRONG.  Conversely, there is the 

potential that all previous locations are required for the chain to deliver 

messages.  Strength is therefore WEAK to STRONG. 

 Mobile IP – a reliance on domain agents routing messages to the correct 

location does mean that the inter-domain connections must remain 

operational.  However, as these agents are effectively servers, dedicated to 

routing and reconfiguration, the strength of the model can be considered 

MODERATE. 

7.4 Summary of Model Properties 

Table 9 summarises the different mobile channel models by placing them in order 

from best to worst under the respective property headings. 

Table 9: Summary of Mobile Channel Models 

Transmission Time Reconfiguration 
Time 

Reachability Strength 

One-to-One 
networked channel 

One-to-One 
networked channel 

Chain One-to-One 
networked channel 

Centralised server Message box server Reconfiguring chain Centralised server 

Message box Message box Mobile IP Message box server 

Message box server Chain Message box Mobile IP 

Reconfiguring chain Centralised server Message box server Message box 

Mobile IP Mobile IP One-to-One 
networked channel 

Reconfiguring chain 

Chain Reconfiguring chain Centralised server Chain 
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For transmission time, the one-to-one networked channel model provides the best 

scenario, followed closely by the centralised server model which is also normally 

directly connected.  The two message box models allow transmission time that is 

fixed at twice the normal transmission time; the normal message box having an 

initial interaction advantage.  The reconfiguring chain has the potential of directly 

connected channel ends, but may in fact have a greater transmission time if the 

chain cannot be reconfigured.  The Mobile IP model also has the potential of direct 

connections, but may involve transmission via a number of domains.  The 

reconfiguring chain model allows domains to be jumped if a direct connection up or 

down can be created, and thus the Mobile IP model is considered to have greater 

transmission time due to the number of intermediate domain agents that must be 

passed through.  Finally, the chain model increases transmission time with each 

migration, with no potential for reconfiguration. 

For reconfiguration time the one-to-one model provides the best case, followed by 

the two message box approaches which only require address transmission for 

migration.  The chain requires an address for transmission, although a 

reconfiguration message to the previous location is required.  As the centralised 

server model does not permit easy input end migration without the output end 

requiring reconfiguration, this model comes next.  The Mobile IP model requires 

reconfiguring at multiple domain agents, whereas the reconfiguring chain attempts 

to shorten the chain by linking to the furthest location back in the chain possible. 

For reachability, only three models allow a channel end to potentially move 

anywhere and remain connected to its complement.  The chain models require no 

server to achieve this, and are therefore given a better reachability.  The Mobile IP 

model requires the domain to have an agent to permit mobility.  As the message 

box approaches allow a channel end and its complement to be in two separate sub-

domains, these models come next.  The one-to-one model potentially allows 

connection the entire length of a branch.  The centralised server only allows two 

channel ends to be within the same branch below the server. 
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The directly connected models, one-to-one networked channel and centralised 

server, provide the strongest connection.  The message box server, with the server 

managing the message box, provides the next strongest connection.  As the Mobile 

IP model utilises server agents, it provides a fairly robust channel structure.  The 

standard message box’s reliance on nodes that may disconnect comes next.  As the 

reconfiguring chain may rely on some external nodes, it is stronger than the chain 

model which gets weaker with every movement. 

7.5 Conclusions 

Examining these properties, it can be seen that the one-to-one networked channel 

model has the best transmission time, reconfiguration time and strength, although 

it does fair badly for reachability.  The main drawback for the one-to-one model is 

the removal of the Any-2-One communication architecture present in standard 

networked channels.  This problem is not an issue for a Ubiquitous Computing per 

se, but the π-Calculus does permit this form of name sharing.  If the π-Calculus is 

seen as a formal mobility model for modelling Ubiquitous Computing architectures, 

then having a shared channel end is advantageous.  The reachability problem is of 

more concern, as it means that channel ends cannot migrate too far from their 

complement.  A further consideration is how the one-to-one architecture is 

enforced.  This can be done by adding registration and deregistration messages to 

the protocol, and adding channel states for a channel that is registered (and thus 

only accepts messages from the correct output channel end). 

The centralised server has low transmission time and high strength, although 

reachability is an issue.  Reconfiguration time is poor compared to the majority of 

other models, although the difference between this approach and the one-to-one 

model is not great.  This model is well suited for controlled environments such as 

cluster computing, which is where the pony framework [120, 130] is aimed.  For 

Ubiquitous Computing however, it does not provide the potential reachability that 

may be required. 

The message box approaches have reasonable, and predictable, transmission time 

and reconfiguration time.  Strength is good, although the normal message box has 
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weaknesses.  Reachability is better than the server and one-to-one channel models 

due to the two step transmission process, thus the message box offers greater 

potential.  Reachability is still not global, and therefore certain models of interaction 

are not possible. 

The chain based approaches provide global reachability, but do so at the detriment 

of transmission time and strength.  Reconfiguration time is good however.  

Although the reachability permits the interactions that may be required in 

Ubiquitous Computing, the increased transmission time and weakness nullifies this 

advantage, leading to channels that are not suitable for systems requiring service 

guarantees.  Ubiquitous Computing does have the constraint of stability placed 

upon it.  Potentially, the reconfiguring chain provides a model that may be suitable 

for Ubiquitous Computing connection mobility. 

The Mobile IP model provides global mobility within domains that have agents 

controlling channels.  Transmission time may be slow, but it is more predictable 

than the chain based approaches, and potentially allows direct connections.  

Reconfiguration time is poor, although it is significantly better than the 

reconfiguring chain model.  This model is also stronger than the chain based 

models.  Therefore, the Mobile IP model provides a good model for connection 

mobility in many scenarios, including Ubiquitous Computing. 

Therefore, there are two models that appear to provide the mobility required to 

support truly dynamic architectures within a global architecture.  However, this is 

assuming that channel ends require this level of migration within Ubiquitous 

Computing.  As Chapter 2 described, the idea of the global Ubiquitous Computer is 

possibly incorrect, and individually controlled ubiquitous domains may be a more 

suitable approach.  Therefore, the server based approaches may be more suitable 

due to the control they provide. 

What is apparent from these different models is that mobility may not be possible 

at the protocol level, due to the different requirements for different application 

contexts.  For example, the cluster computing scenarios that pony is aimed at 

require a model that has good transmission time, and strong connections.  This 
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server approach may not suit Ubiquitous Computing.  Any protocol implemented 

across the various CSP based network environments must be general enough to 

provide the application context required for different scenarios.  Picking one of the 

models described does not provide this.  A focus could be placed on Ubiquitous 

Computing only however. 

A potential solution is to adopt both the centralised server and Mobile IP model.  As 

a node must resolve a new location if the input end moves in both models, the 

potential of either a domain agent forwarding the message or a server that merely 

provides a new address does not change how the node acts after the complement 

end of a channel has migrated.  Although this may permit many scenarios, further 

research is required to discover if it satisfies them all. 

Another consideration not discussed is the handover between local and networked 

channels that is caused by migration.  If a networked channel and a local JCSP 

channel are to behave similarly, then it should be possible to send a local channel 

end down a networked channel, and for the local channel to become networked.  

The main difference between a local channel and a networked channel is that a 

networked channel has a location, and this must transparently be created and the 

required network infrastructure put in place to handle the new networked channel. 

In summary, there are models of channel mobility that are suitable for Ubiquitous 

Computing but which are not suitable for other applications.  Therefore, building a 

mobility model directly into the protocol and architecture is only reasonable within 

individual application contexts.  This is a limitation to the different possible 

scenarios even Ubiquitous Computing promotes.  Any framework with which JCSP 

Networking interacts with must also adopt the same channel mobility model if used 

in a Ubiquitous Computing scenario. 

A problem also exists with channels that are sent as part of another data structure, 

as any protocol will have to take into account that a channel is sent with other data.  

The most probable candidate for this operation is a mobile process.  The following 

chapter discusses potential process mobility, and notes why this is far more difficult 

to achieve between different platforms. 



 

Chapter 8 Process Mobility 

 

In this chapter, a discussion of how process mobility in JCSP Networking can be 

achieved is presented.  Channel mobility models have been presented in the 

previous chapter, with potential models of channel mobility that suit Ubiquitous 

Computing scenarios highlighted.  Consideration of how distributed mobility can be 

achieved allows a discussion on how suitable JCSP Networking is for the dynamic 

architectures of Ubiquitous Computing.  Process mobility is enabled by channel 

mobility, although the migration of an actively running component is considered 

difficult.  In this chapter, an approach to enable process mobility is discussed.  

Section 8.1 introduces process mobility in more detail, and Section 8.2 reviews 

other attempts at active component mobility.  Section 8.3 discusses a technique to 

enable strong process mobility, and Section 8.4 illustrates a practical 

implementation of the approach.  Finally Section 8.5 summarises the technique 

developed. 

8.1 Introduction 

Chapter 2 provided an abstract definition of process mobility.  This was: 

Process mobility is the ability to change the location of an actively running 

process. 

The key concept is “actively running”.  Previous work on JCSP mobility [17] has 

focussed on single stopped processes, providing code mobility mechanisms 

necessary to move a process transparently from one system to another.  Code 

mobility is not difficult in a framework such as Java, however work previously 

presented within this thesis has argued against reliance on Java as a platform.  This 

negates the code mobility argument.  Currently it is not possible to define a process 

for one framework and send the code for execution in another without some form 
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of virtualisation technology, or relying on typed processes and no mobility of code.  

Therefore, code mobility will not form any further discussion on process mobility 

presented here. 

8.1.1 Defining a Mobile Process 

Removing code mobility from strong mobility modifies what a strongly mobile 

component comprises.  From the argument presented thus far, there is also the 

consideration of channel or connection mobility.  Finally, the removal of code 

highlights that a mobile component can be partially defined by its type.  Thus it is 

possible to redefine strong component mobility when considering process mobility: 

 Type – the type of the process, defining its structure and behaviour. 

 State – the state of the mobile component.  This comprises of three parts: 

o Connections – the inter-component connections that are contained 

within the mobile component. 

o Data – the variables that are contained within the component.  This 

also includes any sub-components. 

o Behaviour – the current execution state of the component. 

Code can be considered as part of the type information if this is not known at the 

receiving Node of a mobile component, although the receiving Node will require 

some knowledge of the component in an abstract manner. 

Connections form part of the state and due to channel mobility can also be 

considered variable.  Thus, although initially a host process will know all external 

connections, it must be the case that all sub-components take their own 

connections with them.  This is due to the dynamic nature of the connections within 

a component. 

How the process executes can also define how the process can be viewed.  If a 

process is migrated to a new location, and then executed in sequence with the new 

host process, the mobile process can be considered as a mobile service [108].  This 

is because the process has added functionality to the actively running host process.  

If the mobile process is to run in parallel with the host process, then this process 
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can be considered a mobile agent.  This view is due to the idea of an agent 

performing a task on behalf of another component, and thus executing outside the 

normal running of another component. 

The definition of strong mobility might also not be what we wish to achieved.  

Although strong mobility originally referred to a component which took its 

execution state with it, the current direction is a component that can move at any 

point in its execution and take its execution state with it.  In this chapter, the latter 

definition is approached, as achieving this goal permits achievement of the former. 

8.1.2 Transferring a Process 

The ability to transfer an actively running process has been discussed previously in 

[17].  In particular the argument was made that complex process mobility is 

difficult.  Complex process mobility involves the suspension of a network of 

interacting processes, the transfer of said process network, and the resumption of 

the process network at the receiving location at the same execution state that the 

network was suspended at.  The problem with suspending a process network has 

been evident in process oriented architectures for some time (for example [138]).  

Complex process migration can also be related to strong mobility of code / agents 

[76], which is the mobility of execution and data state within a mobile component. 

Process networks can be viewed in a tree structure.  The initial process has a 

number of child processes, which have child processes, etc.  Figure 69 illustrates a 

process tree view of a process network, and illustrates how process mobility is 

viewed in such a context. 

Figure 69 shows the migration of process T from the context of Q to the context of 

R.  As indicated, it is actually migration of a branch of the tree that is occurring, with 

the connection from Q to T migrated to form the connection from R to T. 
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Figure 69: Process Branch Mobility 

Examining process mobility from this view illustrates where a migration signal must 

come from, which is the connection between Q and T.  Thus, either Q can transfer T 

to R, or if self referential processes are allowed, T can copy itself to R.  The latter 

case does raise the question of whether the original copy should remain active.  For 

the argument presented in this chapter, it is considered that strict mobility and not 

copying is in effect for processes. 

The ability to move an entire branch of a process network to a new location is 

considered complex process mobility, whereas the ability to move a single leaf 

process is considered simple process mobility.  The latter can be achieved by 

supplying a signal to the process to suspend.  The former requires a mechanism that 

ensures that externally the process behaves as expected, but also appears willing to 

migrate at any point.  If this idea is imposed within the migratory process, then it 

can be seen that each individual process must also appear to be willing to migrate 

at any point. 

This chapter presents a method for allowing complex process mobility by capturing 

the behaviour of currently running processes.  The methodology is by no means 

complete and verified, and some problems are highlighted.  Some of these 

problems are related to current methods used to achieve primitives in architectures 

such as JCSP, and a proof of this shall be given.  First, some information on other 
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approaches used to achieve strong mobility and process network suspension is 

presented. 

8.2 Related Work 

Picco [108] has defined strong mobility as the execution state of the mobile 

component being transferred transparently without specific coding to handle the 

mobility.  Unfortunately, many mobility systems utilise Java, and thus do not offer 

this capability due to the inability to capture thread state in Java.  Other approaches 

are used to attempt to artificially capture the execution state at a fixed point of 

execution, with the possibility of rolling back execution to the previously stored 

fixed point if migration occurs between capture points.  This technique is referred 

to as checkpointing [147]. 

8.2.1 Java Based Approaches 

Howell [148] has used checkpointing to capture execution state of programs by 

capturing the state of an entire JVM.  This involves a modified Java Runtime 

Environment (JRE) but no actual modification to code or compiler.  Although thread 

state is captured, it is the entire JVM that is checkpointed and not individual 

threads.  The approach is also not portable as it requires a modified JRE.  Although 

inter-framework mobility is negated by the lack of code mobility, an approach that 

can be replicated between platforms is better for Ubiquitous Computing. 

Truyen [149] captured individual thread state by manipulating bytecode to insert 

code blocks to capture and resume execution state.  By doing this, and abstracting 

Java Threads into tasks and creating their own scheduler, Truyen successfully 

captured thread behaviour without manipulating the JVM or JRE.  The approach 

works on individual threads, not numerous interacting ones.  Work was expanded 

[150] to accommodate remote object systems, where multiple threads are 

coordinating via Java RMI.  Although interesting from a connection mobility point of 

view, no work on threads with internal threads was undertaken.  The problem 

solved is particular to distributed object systems, where there is no encapsulated 

ownership of individual remote objects. 
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Zhu [151] developed a method that modified Java’s Just-In-Time (JIT) compilation to 

capture individual thread states transparently.  This approach is complicated due to 

some Java bytecode instructions having no direct correlation on the native machine.  

The method is also restrictive as it is Java specific, only captures individual thread 

state, and requires a modified JRE to operate. 

Bouchenak [152-154] has proposed a solution that requires modification of the 

JVM, one of the main goals being elimination of overhead incurred by other 

approaches to thread migration.  Bouchenak’s approach gathered type information 

within the JVM for correct and complete reinterpretation of the thread at its 

destination.  This approach is restricted by reliance on a modified JVM and allows 

migration of single threads only. 

Sakamoto [155] applied a technique that used bytecode transformation to modify 

method calls to throw exceptions that would emit the execution state of a method.  

Points within method bodies are marked as possibly migratory and the resultant 

exception added to the surrounding method.  The approach is interesting as it could 

be manipulated to mark methods as migration guarded in the same manner that 

methods can be guarded against multiple thread access.  There is an overhead 

incurred, and the authors note limitations to their approach.  There is also the 

limitation of single thread migration, and reliance on threads entering marked 

methods to allow the migration. 

Ma [156] has provided strong process migration within Java-MPI (Message Passing 

Interface) using the Java debugging interface.  No modified JVM or bytecode 

manipulation is required, and there is little overhead.  A migration layer within the 

MPI framework is utilised to achieve strong migration.  However, features of Java 

are still required and there is no capturing of multiple thread state. 

Java mobile agent systems also attempt to capture execution state for transferral.  

The D’Agents framework [111] provides strong migration of threads, but does not 

allow multi-threaded migration – the authors noting that it is unclear whether this 

should be a necessity.  As the term agent is itself ambiguous this is understandable. 
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The NOMADS system [157] provides strong mobility of multiple threads by allowing 

migration of Java thread groups, which allows migration of multiple mobile agents 

in a group.  NOMADS executes within a Java-compatible virtual machine. 

Java has a problem when considering thread migration.  There is the problem that 

thread state is not explicitly exposed to the user, thus negating any simple method 

to allow thread migration.  There is no concept of thread ownership, and thus it 

becomes difficult to decide whether a single thread or multiple threads should be 

migrated.  This is not just a problem for threads, but for passive objects also.  Java 

only provides weak encapsulation, thus an object may be owned by more than one 

thread.  No consideration of object ownership has been taken in the above 

approaches except when involving Java RMI [150], the only solution that appears to 

consider connection mobility.  For CSP / occam based approaches, strict 

encapsulation and boundaries are in place, with connectivity controlled via well 

defined channel interfaces.  If adhered to, this removes many limitations Java only 

approaches face. 

Serialization does provide mechanisms to enable transfer of object references by 

allowing aliasing within the object stream.  However, the mechanisms do not 

support the type of migration required for mobility in this context.  If an object is 

migrated as part of another object graph, and then modified at the original location 

and subsequently transferred, updates to the data state are lost in transfer due to 

the aliasing within the object stream.  The lack of ownership of an object causes this 

to be a significant problem when considering both data and behavioural objects. 

8.2.2 Generic Approaches 

Fortino [158] has proposed mobile agent design using statecharts.  A mobile agent 

retains its current historical state when migrated, and reintroduces this state on 

arrival.  During execution, the mobile agent explicitly changes its execution state 

between state points.  These state points can be considered checkpoints.  Only at a 

checkpoint can a mobile agent choose to migrate.  This is enforced by the agent 

interacting using events instead of standard methods.  The weakness of this 



Chapter 8: Process Mobility 165 

 

approach is that the state points have to be created and stored to allow transfer.  

The authors also note that this approach is only suitable for single threaded agents. 

Bettini [78] proposes making a procedure strongly mobile via the introduction of 

mark points, mark points being similar to checkpoints or state points.  This 

approach is platform independent, modifying the design of a procedure as opposed 

to a specific implementation.  The method is limited in that it does not consider 

multiple internally interacting components, and the method produces significantly 

more code for choice and iteration primitives. 

Phillips [102] has developed a mobile ambient implementation within Java, 

although the technique to achieve mobility of agents is transferable.  Between 

computations and communications, an agent checks if it has been called to move, 

and after migration the agent continues execution at this point.  The technique is 

similar to introducing checkpoints, and takes into account child agents with a parent 

agent requesting that child agents migrate also.  The technique is based on the 

asynchronous π-Calculus, and therefore does not consider committed events in a 

synchronous architecture.  Recent work in this area [82] no longer discusses this 

approach, so it is unclear whether it has been expanded upon. 

Generic approaches provide more insight into how a method to capture process 

network state can be developed.  This is due to the view beyond threads, and Java 

in particular.  The ability to place points within code at which processes must check 

whether or not they should migrate is of most interest, but consideration of CSP 

semantics must be taken into consideration.  For further insight, approaches 

specific to CSP inspired platforms are examined. 

8.2.3 CSP Based Approaches 

Stopping a process network is not a new problem [138].  Welch discussed different 

approaches to terminate a process network and in particular how not to do it.  

Resetting is seen as practically what is required as opposed to stopping a process 

network, and resetting is more related to the capturing of state for migration.  

Resetting of a process network involves sending a reset signal through the network, 
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which each process receives and thus places itself into the reset state.  This 

approach was prior to new additions to JCSP [137], which enables another solution. 

Sputh [139] has criticised Welch’s approach.  The criticisms are somewhat JCSP 

specific, but computational processing and increased complexity are cited as 

problems, and also the handling of shared channel ends.  Another problem 

overcome by Sputh’s work not specifically highlighted is the black holing of 

incoming messages to prevent deadlock.  Sputh overcomes this problem by allowing 

reset signals to travel both backwards and forwards through a process network.  

The reason that this is a problem is that black holing a message implies that the 

message is lost, which does not effectively capture the current execution state.  

Within an entire system this is not a problem, but a mobile process will only form 

part of a system and thus messages entering the mobile may be lost.   

Sputh mentioned some problems with trying to reset a sub-network of processes 

using the JCSP-Poison technique.  As a mobile process will be a sub-network this 

problem is imposed on process mobility also.  Sputh has mentioned the problem of 

having two resetting process networks connected together via a channel, but the 

two process networks themselves having the possibility of being terminated 

independently.  The problem scales, and resetting and terminating n process sub-

networks is a problem if each may be terminated individually. 

Welch [12] has expanded resetting to incorporate the suspension of mobile 

processes.  This approach is the most complete solution thus far, but only suggests 

how suspension can be achieved with examples.  A process must handle an 

incoming suspension signal externally from the process network, although only at 

certain points in execution.  Strong mobility requires migration at any point during 

execution.  Agent mobility implies externally and internally activated migration, 

thus relying solely on external signals may be a problem.  Barnes does use a 

technique that retains current execution state via a state variable. 

When considering mobility, using poison is not a suitable approach in all cases due 

to the different problem poison was meant to overcome.  Poison is invariably 

injected into a process network from one of the leaves of the process tree (e.g. X in 
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Figure 67, page 140).  It has been argued that a migration signal must come from 

the parent process or from the process itself, and travel down into all sub-

processes.  Poison flows through a system via channels, and sub-processes might 

not be connected, implying multiple poison signals entering the process network.  

Thus, poison does not enable complex process mobility in all circumstances. 

Specific approaches within CSP based frameworks have been used to attempt to 

reset a network of processes.  However, none of these approaches is sufficiently 

generic enough for the problem of capturing the current behavioural state of an 

actively running process network at any point.  The solution presented in the 

following section attempts to overcome this problem. 

8.3 Observably Strongly Mobile Processes 

The approach proposed builds on the idea of strong mobility, checkpointing, state 

capture and processes having the choice to migrate at certain points.  It builds upon 

the newer ideas presented by Welch [12], but does not use the graceful resetting 

technique originally proposed by Welch [138].  It exploits recent additions to JCSP 

[137], in particular the multi-way synchronisation capability provided by the 

AltingBarrier.  We are not going to discuss how channel mobility is modelled 

here.  To help illustrate, a small subset of CSP notation shall be used: 

𝑃𝑅𝑂𝐶𝐸𝑆𝑆 ∶=  𝐴, 𝐵, 𝐶, … 

𝐸𝑉𝐸𝑁𝑇 ∶=  𝑎, 𝑏, 𝑐, … 

𝑃𝑟𝑒𝑓𝑖𝑥 ∶=  𝑎 → 𝑃 

𝐶𝑜𝑖𝑐𝑒 ∶=   𝑎  → 𝑃)   (𝑏 → 𝑄) 

𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 ∶=  𝐴 ∥ 𝐵 

𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 ∶=  𝐴 ; 𝐵 

𝑅𝑒𝑛𝑎𝑚𝑖𝑛𝑔 ∶=  𝑃  𝑎 𝑏   

𝐻𝑖𝑑𝑖𝑛𝑔 ∶=   𝑎 → 𝑃 ∖ {𝑎} 

Processes are declared in upper case, and events in lower case.  Prefix defines a 

new process from an event and process definition.  For example, Prefix above 

means synchronise on a then behave as P.  Specific input and output events 

(channel operations) are not defined as they are of no consequence as all events 
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must be usable as guards.  Choice allows a process to choose between two possible 

guarded communications (e.g. a or b), and choice affects process behaviour 

depending on the chosen event.  This is a generalised guarded alternative; more 

specific choices are used but are not examined here.  A migration may be caused 

internally due to the process causing the move, or externally from the parent 

process.  The Parallel operator yields a process in which its operand processes 

operate in parallel and which does not terminate until both its operand processes 

terminate.  Parallel is normally defined with the events used to synchronise the 

processes, but this is of no consequence for the discussion presented.  It is assumed 

that processes will only synchronise on shared events.  Sequential means that once 

one process has finished the next process should be performed.  Renaming allows 

an event name to be changed within a Process.  For example, the above Renaming 

operation replaces event b with a in process P.  Finally, Hiding is used to hide an 

event from being externally visible.  For example, the above Hiding operation states 

that the event a is not observable outside of the defined process, and therefore 

externally the process behaves as P. 

8.3.1 Simple Process Migration 

Consider the definitions given for process mobility and strong mobility: 

 Process mobility is the ability to change the location of an actively running 

process. 

 Strong mobility is the ability to migrate a mobile component at any given 

point in its execution. 

The goal is to allow processes to migrate at any point in their execution to another 

location and resume execution at the point of migration.  To achieve this, a process 

is offered the choice to migrate at any point.  Consider process P defined as: 

𝑃 ∶=  𝑎 → 𝑏 → 𝑃 

P synchronises on a, then b, and then behaves as P (a then b then P).  To offer 

migration, a new event is introduced called migrate.  This event must be possible at 

any point in execution.  Thus, P becomes: 
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𝑃𝑚𝑜𝑏𝑖𝑙𝑒  ∶=  𝑃𝑎  

𝑃𝑎  ∶=   𝑎 →  𝑃𝑏  | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) 

𝑃𝑏  ∶=   𝑏 →  𝑃𝑎  | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) 

Pmobile emits the same behaviour as P, but also has the opportunity to migrate.  SKIP 

indicates successful completion of the process.  This example does not outline how 

migrate is fired.  migrate will normally occur from outside the process or process 

network, but as shall be shown is particular to where the migration attempt occurs 

and what exactly is to be migrated. 

The problem is to retain the execution state of Pmobile after migration.  As the 

process has been split into two separate process definitions, it becomes possible to 

start the process at any one of these definitions.  What must occur is that the 

current execution state of the process must be stored or emitted somehow.  This 

depends on the implementation platform (for example, Java would retain it as an 

internal attribute to the object), so specific details are left. 

This shows how a simple process can be given the option to migrate, but this in 

itself is not new.  All that is occurring here is that an option of a migration signal is 

given to the mobile.  To expand this, consider two interacting processes: 

𝑃 ∶=  𝑎 → 𝑏 → 𝑃 

𝑄 ∶=  𝑏 → 𝑐 → 𝑄 

𝑅 ∶=  𝑃 ∥ 𝑄 

Introducing mobility into these processes gives us the following: 

𝑃𝑚𝑜𝑏𝑖𝑙𝑒  ∶=  𝑃𝑎  

𝑃𝑎  ∶=   𝑎 →  𝑃𝑏  | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) 

𝑃𝑏  ∶=   𝑏 →  𝑃𝑎  | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) 

𝑄𝑚𝑜𝑏𝑖𝑙𝑒 ∶=  𝑄𝑏  

𝑄𝑏  ∶=   𝑏 →  𝑄𝑐  | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) 

𝑄𝑐  ∶=   𝑐 →  𝑄𝑏  | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) 

𝑅𝑚𝑜𝑏𝑖𝑙𝑒  ∶= (𝑃𝑚𝑜𝑏𝑖𝑙𝑒 ∥ 𝑄𝑚𝑜𝑏𝑖𝑙𝑒 ) 



Chapter 8: Process Mobility 170 

 

CSP enforces that an event can only be fired when all relevant processes agree to 

synchronise, thus for migrate to fire both P and Q must be willing to participate.  

For Rmobile, parallel execution of P and Q completes before the SKIP is reached.  This 

can only occur when both P and Q have finished, thus migrate must have been fired 

bringing P and Q to a successful termination. 

8.3.2 Parallelised Process Migration 

A more complicated situation occurs when a process starts and then goes parallel 

before or after performing other interactions.  This occurrence has been highlighted 

numerous times within the context of poison and resetting [138, 159].  The simple 

technique of synchronising on an event does not work in all circumstances, as there 

is no way of knowing whether or not the parallel completed successfully without 

migration or was paused due to migration.  Consider two possibilities for internally 

parallel processes.  A process may perform some events and then go parallel as the 

last operation, or the parallel may occur prior to other events.  Both these 

eventualities cover any combination of events and parallelisation. 

8.3.2.1 Processes Ending Parallelised 

Consider the following process definition: 

𝑃 ∶=  𝑎 → 𝑏 → (𝑄 ∥ 𝑅) 

From the previous definition of creating mobile processes, P can be converted to 

the following: 

𝑃𝑚𝑜𝑏𝑖𝑙𝑒  ∶=  𝑃𝑎  

𝑃𝑎  ∶=   𝑎 →  𝑃𝑏  | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) 

𝑃𝑏  ∶=   𝑏 →  𝑃𝑝𝑎𝑟   | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) 

𝑃𝑝𝑎𝑟  ∶=  (𝑄𝑚𝑜𝑏𝑖𝑙𝑒 ∥ 𝑅𝑚𝑜𝑏𝑖𝑙𝑒 ) 

Qmobile and Rmobile will synchronise on migrate if they are made mobile in the manner 

described, thus it becomes evident that Ppar will only terminate when migrate 

occurs.  This is all that is needed for a process that ends internally parallel. 
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8.3.2.2 Processes Beginning Parallelised 

Processes that begin internally parallelised before performing other operations are 

more difficult.  Consider the following: 

𝑃 ∶=  (𝑄 ∥ 𝑅) ;  (𝑎 → 𝑏 → 𝑃) 

𝑄 ∶=  𝑐 → 𝑑 → 𝑆𝐾𝐼𝑃 

𝑅 ∶=  𝑐 → 𝑒 →  𝑆𝐾𝐼𝑃 

P begins by performing both Q and R together, and then performing a then b.  The 

problem faced is that (Q ‖ R) can terminate due to migrate or normal operations.  It 

must be possible to distinguish between successful termination of parallelised 

processes and migration termination of parallelised processes.  The subtlety of the 

example presented is that Q may successfully terminate prior to R if d is executed 

first and vice versa if e is executed first.  To check completion, the introduction of a 

further event, finished, is required to check successful completion of the parallelised 

processes.  This event is not observable from outside P and is therefore hidden.  By 

doing this, the following process definitions are generated: 

𝑄𝑚𝑜𝑏𝑖𝑙𝑒  ∶=  𝑄𝑐  

𝑄𝑐  ∶=  𝑐 →  𝑄𝑑  | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) 

𝑄𝑑  ∶=  (𝑑 →  𝑄𝑓𝑖𝑛𝑖𝑠 𝑒𝑑 ) | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) 

𝑄𝑓𝑖𝑛𝑖𝑠 𝑒𝑑  ∶=  (𝑓𝑖𝑛𝑖𝑠 → 𝑆𝐾𝐼𝑃) | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) 

𝑃𝑚𝑜𝑏𝑖𝑙𝑒  ∶=  𝑃𝑝𝑎𝑟  

𝑃𝑝𝑎𝑟  ∶= ( 𝑄𝑚𝑜𝑏𝑖𝑙𝑒 ∥ 𝑅𝑚𝑜𝑏𝑖𝑙𝑒  ∥ ((𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) | (𝑓𝑖𝑛𝑖𝑠𝑒𝑑 →  𝑃𝑎))) 

∖  𝑓𝑖𝑛𝑖𝑠𝑒𝑑                                                                                  

𝑃𝑎 ∶=  𝑎 →  𝑃𝑏  | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) 

𝑃𝑏 ≔  𝑏 →  𝑃𝑝𝑎𝑟   | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) 

The definition of Rmobile is similar to Qmobile and not given.  The rest of the definition 

of P is straightforward.  To handle parallelisation, a separate process interacts with 

both Q and R via migrate and finished.  Qmobile operates as a standard mobile except 

when it reaches completion.  At this point there are two options. 



Chapter 8: Process Mobility 172 

 

1. If Rmobile successfully completes, finished is selected, thus completing Qmobile, 

Rmobile and the manager process within Pmobile, allowing Pmobile to continue.   

2. migrate may occur, thus triggering the migration within all processes and 

not allowing Pmobile to continue to the next state point.   

In either case, all the processes are terminated, and the relevant execution states 

either captured or continued. 

8.3.3 Connected Mobiles 

Another subtle problem with capturing the current behaviour of process networks 

is ensuring that any other connected process networks do not deadlock due to 

incorrect behaviour.  Capturing the current state of the network, and the 

assumption that channels / events are also mobile overcomes some of the initial 

problems.  However, if sub-process networks are independently mobile within a 

mobile process, more care must be taken.  Consider the following: 

𝑃 ∶=  𝑎 → 𝑏 → 𝑃 

𝑄 ∶=  𝑏 → 𝑐 → 𝑄 

𝑅 ∶=  𝑃 ∥ 𝑄 

If P and Q are independently mobile, then they cannot share the same migrate 

event as this will enforce the two processes to terminate.  migrate can be renamed 

to overcome this. 

𝑅 ∶=  𝑃𝑚𝑜𝑏𝑖𝑙𝑒  𝑚𝑖𝑔𝑟𝑎𝑡𝑒_𝑝 𝑚𝑖𝑔𝑟𝑎𝑡𝑒  ∥ 𝑄𝑚𝑜𝑏𝑖𝑙𝑒  𝑚𝑖𝑔𝑟𝑎𝑡𝑒_𝑞 𝑚𝑖𝑔𝑟𝑎𝑡𝑒   

This allows both P and Q to be independently mobile.  If R must be mobile as well, 

then a further consideration must be taken into account where R receives a 

migration signal, subsequently signal that the sub-processes P and Q should 

terminate, and then signal that R has terminated.  To do this, another process and 

the finished event are used again: 

𝑅𝑚𝑜𝑏𝑖𝑙𝑒  ∶=  ( 𝑃𝑚𝑜𝑏𝑖𝑙𝑒   𝑚𝑖𝑔𝑟𝑎𝑡𝑒_𝑝 𝑚𝑖𝑔𝑟𝑎𝑡𝑒  ∥ 𝑄𝑚𝑜𝑏𝑖𝑙𝑒  𝑚𝑖𝑔𝑟𝑎𝑡𝑒_𝑞 𝑚𝑖𝑔𝑟𝑎𝑡𝑒    

∥ (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 →  𝑚𝑖𝑔𝑟𝑎𝑡𝑒_𝑝 →  𝑚𝑖𝑔𝑟𝑎𝑡𝑒_𝑞 →  𝑓𝑖𝑛𝑖𝑠𝑒𝑑 → 𝑆𝐾𝐼𝑃))  ∖ {𝑓𝑖𝑛𝑖𝑠𝑒𝑑} 



Chapter 8: Process Mobility 173 

 

As Pmobile and Qmobile are independently mobile, they can be terminated in sequence 

within the new process.  Once all processes have been terminated, the finished 

event is fired, thus signalling that Rmobile is ready for migration. 

Giving each sub-process a unique migrate event and signalling each process in turn 

could also be used to shut down internally parallel processes.  The reason not to do 

this is that it would involve an extra manger process for each sub-process network.  

Although shutting down processes in sequence is cautioned against [138], this was 

due to a lack of output guards and multi-way events being available.  As this 

problem has recently been resolved [137], there is no longer the same concern. 

8.3.4 Example – Numbers Process 

The Numbers Process is used for the CommsTime benchmark [134], and consists of 

three processes: PREFIX, SUCCESSOR, and DELTA2.  These processes are defined as: 

𝑃𝑅𝐸𝐹𝐼𝑋(𝑥)  ∶=  𝑎! 𝑥 → 𝐼𝐷𝐸𝑁𝑇𝐼𝑇𝑌 

𝐼𝐷𝐸𝑁𝑇𝐼𝑇𝑌 ∶=  𝑏? 𝑥 → 𝑎! 𝑥 → 𝐼𝐷𝐸𝑁𝑇𝐼𝑇𝑌 

𝑆𝑈𝐶𝐶𝐸𝑆𝑆𝑂𝑅 ∶=  𝑐? 𝑥 → 𝑏!  𝑥 + 1 → 𝑆𝑈𝐶𝐶𝐸𝑆𝑆𝑂𝑅 

𝐷𝐸𝐿𝑇𝐴2 ∶=  𝑎? 𝑥 → (𝑐! 𝑥 → 𝑆𝐾𝐼𝑃 ∥ 𝑑! 𝑥 → 𝑆𝐾𝐼𝑃) ;  𝐷𝐸𝐿𝑇𝐴2 

𝑁𝑈𝑀𝐵𝐸𝑅𝑆 ∶= (𝑃𝑅𝐸𝐹𝐼𝑋 0 ∥ 𝑆𝑈𝐶𝐸𝑆𝑆𝑂𝑅 ∥ 𝐷𝐸𝐿𝑇𝐴2) ∖ {𝑎, 𝑏, 𝑐} 

Channel communication is defined using ! for output and ? for input.  For this 

example, no consideration on how the states of the processes are retained is given, 

and it is assumed that when a process is restarted, the correct state is used.  The 

NUMBERS process has channels a, b and c hidden, thus leaving d exposed as an 

external channel from NUMBERS, the others being internal.  First consider PREFIX: 

𝑃𝑅𝐸𝐹𝐼𝑋𝑚𝑜𝑏𝑖𝑙𝑒  𝑥 ∶= 𝑃𝑅𝐸𝐹𝐼𝑋𝑤𝑟𝑖𝑡𝑖𝑛𝑔 (𝑥) 

𝑃𝑅𝐸𝐹𝐼𝑋𝑤𝑟𝑖𝑡𝑖𝑛𝑔  𝑥 ∶=  (𝑎! 𝑥 →  𝑃𝑅𝐸𝐹𝐼𝑋𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 ) | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) 

𝑃𝑅𝐸𝐹𝐼𝑋𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦  ∶=  𝐼𝐷𝐸𝑁𝑇𝐼𝑇𝑌𝑚𝑜𝑏𝑖𝑙𝑒  

This allows termination of PREFIX and subsequent restarting at any point.  If the 

internal IDENTITY process is to be restarted, it is assumed that the correct execution 

state of the internal process is chosen.  IDENTITY itself is simple: 
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𝐼𝐷𝐸𝑁𝑇𝐼𝑇𝑌𝑚𝑜𝑏𝑖𝑙𝑒  ∶= 𝐼𝐷𝐸𝑁𝑇𝐼𝑇𝑌𝑟𝑒𝑎𝑑𝑖𝑛𝑔  

𝐼𝐷𝐸𝑁𝑇𝐼𝑇𝑌𝑟𝑒𝑎𝑑𝑖𝑛𝑔  ∶=  (𝑏? 𝑥 →  𝐼𝐷𝐸𝑁𝑇𝐼𝑇𝑌𝑤𝑟𝑖𝑡𝑖𝑛𝑔 (𝑥)) | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) 

𝐼𝐷𝐸𝑁𝑇𝐼𝑇𝑌𝑤𝑟𝑖𝑡𝑖𝑛𝑔 (𝑥)  ∶=  (𝑎! 𝑥 →  𝐼𝐷𝐸𝑁𝑇𝐼𝑇𝑌𝑟𝑒𝑎𝑑𝑖𝑛𝑔 ) | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) 

It is assumed that when the IDENTITYwriting process is terminated, it retains the last 

read value (x) for subsequent sending when the process is restarted.  

SUCCESSORmobile is similar to IDENTITYmobile and is not provided. 

DELTA2 requires more care due to the internal parallel.  To ease the problem, a new 

process definition is introduced which is responsible for outputting a value on a 

channel: 

𝑊𝑅𝐼𝑇𝐸(𝑥)  ∶=  𝑜𝑢𝑡! 𝑥 → 𝑆𝐾𝐼𝑃 

DELTA2 is now redefined as: 

𝐷𝐸𝐿𝑇𝐴2 ∶=  𝑎? 𝑥 → (𝑊𝑅𝐼𝑇𝐸(𝑥) 𝑐/𝑜𝑢𝑡 ∥ 𝑊𝑅𝐼𝑇𝐸(𝑥) 𝑑/𝑜𝑢𝑡 ) ;  𝐷𝐸𝐿𝑇𝐴2 

Converting this into a mobile process requires a mobile version of the WRITE 

process, which must incorporate the finished and migrate events (Section 8.3.2.2).  

Thus: 

𝑊𝑅𝐼𝑇𝐸𝑚𝑜𝑏𝑖𝑙𝑒 (𝑥)  ∶= 𝑊𝑅𝐼𝑇𝐸𝑤𝑟𝑖𝑡𝑖𝑛𝑔 (𝑥) 

𝑊𝑅𝐼𝑇𝐸𝑤𝑟𝑖𝑡𝑖𝑛𝑔 (𝑥)  ∶=  (𝑜𝑢𝑡! 𝑥 →  𝑊𝑅𝐼𝑇𝐸𝑓𝑖𝑛𝑖𝑠 𝑖𝑛𝑔 ) | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) 

𝑊𝑅𝐼𝑇𝐸𝑓𝑖𝑛𝑖𝑠 𝑖𝑛𝑔  ∶=  (𝑓𝑖𝑛𝑖𝑠𝑒𝑑 → 𝑆𝐾𝐼𝑃) | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) 

Now DELTA2mobile can be defined: 

𝐷𝐸𝐿𝑇𝐴2𝑚𝑜𝑏𝑖𝑙𝑒  ∶= 𝐷𝐸𝐿𝑇𝐴2𝑟𝑒𝑎𝑑𝑖𝑛𝑔  

𝐷𝐸𝐿𝑇𝐴2𝑟𝑒𝑎𝑑𝑖𝑛𝑔  ∶= (𝑎? 𝑥 →  𝐷𝐸𝐿𝑇𝐴2𝑤𝑟𝑖𝑡𝑖𝑛𝑔 (𝑥)) | (𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) 

𝐷𝐸𝐿𝑇𝐴2𝑤𝑟𝑖𝑡𝑖𝑛𝑔  𝑥 ∶= ((𝑊𝑅𝐼𝑇𝐸𝑚𝑜𝑏𝑖𝑙𝑒 (𝑥) 𝑐/𝑜𝑢𝑡 ∥ 𝑊𝑅𝐼𝑇𝐸𝑚𝑜𝑏𝑖𝑙𝑒 (𝑥) 𝑑/𝑜𝑢𝑡 ) 

 ∥ ((𝑚𝑖𝑔𝑟𝑎𝑡𝑒 → 𝑆𝐾𝐼𝑃) | (𝑓𝑖𝑛𝑖𝑠𝑒𝑑 → 𝐷𝐸𝐿𝑇𝐴2𝑟𝑒𝑎𝑑𝑖𝑛 𝑔))) ∖ {𝑓𝑖𝑛𝑖𝑠𝑒𝑑} 

The definition of the NUMBERSmobile is now straight forward: 

𝑁𝑈𝑀𝐵𝐸𝑅𝑆𝑚𝑜𝑏𝑖𝑙𝑒 ∶=   𝑃𝑅𝐸𝐹𝐼𝑋𝑚𝑜𝑏𝑖𝑙𝑒  0 ∥ 𝑆𝑈𝐶𝐶𝐸𝑆𝑆𝑂𝑅𝑚𝑜𝑏𝑖𝑙𝑒 ∥ 𝐷𝐸𝐿𝑇𝐴2𝑚𝑜𝑏𝑖𝑙𝑒   

∖  𝑎, 𝑏, 𝑐                                                        
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8.3.5 Limitations 

The methodology described here is by no means complete, and there are 

limitations from the theoretical point of view.  Limitations from an implementation 

point of view also exist, and shall be described presently.  It first must be considered 

that this technique has been developed with practical implementation of JCSP 

process network mobility in mind, and no formal analysis has been undertaken to 

verify that the technique is correct in all circumstances. 

The first limitation is the generalisation of choice.  There are three choice types 

within CSP: external choice, non-deterministic choice and conditional choice.  With 

this method, it is external choice that is the most likely to be considered, as migrate 

will likely be fired from outside the process.  Non-deterministic choice of migrate 

implies that the process has itself decided to migrate.  From a CSP point of view this 

is complicated as it implies that the external process is willing to migrate the mobile 

process.  This may not be the case, and the external process may be performing 

other actions that do not consider migration.  From an implementation point of 

view, especially in Java, a process may move itself as Java objects can reference 

themselves.  Care would have to be taken to ensure that the inner process is 

terminated independently and moved without requiring the external process to 

interact with it. 

Priority of choice has also not been taken into account.  If migrate is offered at any 

point another event is offered, then the environment may not choose migrate over 

the other offered event.  As the process must be willing to migrate at any point, no 

guaranteed selection of migrate is a problem.  In implementation terms, priority of 

choice can be provided, although it is not always guaranteed [137].  This has some 

repercussions for implementation which shall be discussed shortly.  migrate must 

always be possible when considering this approach to process state capture, and 

should not be arbitrary. 

Interleaving has not been taken into account.  Interleaving of processes means that 

the processes do not interact together.  It can be considered as a parallel without 
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any shared events, and therefore interleaving could be converted into a parallel 

sharing the migrate event. 

No consideration has been taken for how current execution and data state of a 

process is stored.  This is implementation specific.  The method described here 

could add such information emitted on a channel (status) after migrate and prior to 

successful termination.  However, for a Java implementation, this status can be 

stored within the object. 

No indication as to where migrate is fired from is given, and this relates back to the 

use of generalised choice.  As processes can be considered strictly owned by a 

parent (or starting) process, it is the parent process or the process itself that has the 

ability to migrate the mobile.  An ancestor of the parent process should not have 

access to the individual sub-processes of one of its children. 

It has also been assumed that processes can be sent via channels, and that they can 

be successfully restarted within the context of the receiving process.  None of these 

features are present in CSP, and therefore it is currently difficult to verify that this 

approach will work.  Future work will hopefully lead to verification that the mobile 

version of a process emits the same behaviour as the non-mobile, and that the 

mobile process is also willing to offer migrate at any point in its execution. 

8.4 Implementation 

The method described in Section 8.3 takes an abstract view of process network 

mobility via state capture.  In this section, an implementation of the NUMBERS 

process in JCSP shall be presented and modified to allow migration.  An examination 

of specific features available within Java to aid the migration process and limitations 

due to the current implementation of JCSP are also presented. 

8.4.1 NumbersInt Process in JCSP 

The NumbersInt process in JCSP is an implementation of the NUMBERS process 

described in Section 8.3.4.  Full code listings of this process and the mobile process 

version can be found in Appendix H.  Here only necessary code segments are 

presented for discussion. 
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The JCSP implementation of NumbersInt is similar to the CSP definition, and has 

the same processes in operation: PrefixInt, SuccessorInt, and Delta2Int.  

There are also IdentityInt and ProcessWriteInt processes for necessary 

internal processes.  The run methods (modified for clarity) of these processes are: 

public class PrefixInt  
{ 
 int prefix; 
 ChannelInputInt b; 
 ChannelOutputInt a; 
 
 public void run() 
 { 
  a.write(prefix); 
  new IdentityInt(a, b).run(); 
 } 
} 
 
public class IdentityInt  
{ 
 ChannelInputInt b; 
 ChannelOutputInt a; 
 
 public void run() 
 { 
  while (true)  
  { 
   int x = b.read(); 
   a.write(x);  
  } 
 } 
} 
 
public class SuccessorInt  
{ 
 ChannelInputInt c; 
 ChannelOutputInt b; 
 
 public void run() 
 { 
  while (true)  
  { 
   int x = c.read(); 
   b.write(x);  
  } 
 } 
} 
 
public class Delta2Int 
{ 
 ChannelInputInt a; 
 ChannelOutputInt c; 
 ChannelOutputInt d; 
 
 public void run() 
 { 
  ProcessWriteInt[] parWrite =  
   {new ProcessWriteInt(c), new ProcessWriteInt(d)}; 
  Parallel par = new Parallel(parWrite); 
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  while (true)  
  { 
   int x = a.read(); 
   parWrite[0].value = x; 
   parWrite[1].value = x; 
   par.run();  
  } 
} 
 
public class ProcessWriteInt  
{ 
 ChannelOutputInt out; 
 
 public void run() 
 { 
  out.write(value); 
 } 
} 
 
public class Numbers 
{ 
 ChannelOutputInt d; 
 
 public void run() 
 { 
  One2OneChannelInt a = Channel.one2one(); 
  One2OneChannelInt b = Channel.one2one(); 
  One2OneChannelInt c = Channel.one2one(); 
  new Parallel(new CSProcess[]  
  { 
   new PrefixInt(0, b.in(), a.out()), 
   new SuccessorInt(c.in(), b.out()), 
   new Delta2Int(a.in(), c.out(), d) 
  }).run(); 
 } 
} 
 
 

The Delta2Int process is defined in such a manner due to Java constraints, as the 

individual ProcessWriteInt processes are required to provide parallel output.  

The other approach would be to use inline code to represent the processes.  The 

handler for the finished event is likewise implemented in this fashion in the mobile 

version of Delta2Int described in the next question. 

8.4.2 MobileNumbersInt Process 

Recent additions to JCSP [137] have added multi-way synchronisation via 

AltingBarrier, and guarded output (AltingChannelOutputInt) is offered 

with One2OneChannelSymmetricInt.  This channel operates with an internal 

AltingBarrier to enable guarded output.  Mobile PrefixInt is simple: 
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public class MobilePrefixInt  
{ 
 int prefix; 
 AltingChannelInputInt b; 
 AltingChannelOutputInt a; 
 AltingBarrier migrate; 
 MobileIdentity identity; 
 
 public void run() 
 { 
  Guard[] guards = {migrate, a}; 
  Alternative alt = new Alternative(guards); 
  switch (state)   
  { 
   case WRITING: 
   int selected = alt.priSelect(); 
   switch (selected)  
   { 
    case 0: break; // migrate 
    case 1: // a 
     a.write(prefix); 
     state = IDENTITY; 
     identity.run();  
   } 
   break; 
   case IDENTITY: 
    identity.run(); 
  }  
  } 
} 
 

state holds the current execution state of the process, and is initially set to 

WRITING.  If the first value (prefix) is successfully written, the state changes to 

IDENTITY and IdentityInt is executed.  The IdentityInt process is just run, 

as this process will have been initialised within the constructor, or will have state 

based on the previous run of the process.  Mobile IdentityInt is also trivial: 

public class MobileIdentityInt  
{ 
 AltingChannelInputInt b; 
 AltingChannelOutputInt a; 
 AltingBarrier migrate; 
 
 public void run() 
 { 
  Guard[] guards = {migrate, b, a}; 
  Alternative alt = new Alternative(guards); 
  boolean running = true; 
  while (running)  
  { 
   switch (state) 
   { 
    case READING: 
     boolean[] active = {true, true, false}; 
     int selected = alt.priSelect(active); 
     switch (selected)  
     { 
      case 0: // migrate 
       running = false;  
       break; 
      case 1: // b 
       x = b.read(); 
       state = WRITING;  



Chapter 8: Process Mobility 180 

 

        } 
     break; 
    case WRITING:  
     boolean[] active = {true, false, true}; 
     int selected = alt.priSelect(active); 
     switch (selected)  
     { 
      case 0: // migrate 
       running = false;  
       break; 
      case 2: // a 
       a.write(x); 
       state = READING;  
     } 
     break;  
   }  
  } 
 } 
} 
 
 

The usage of flagged guards in this process is to allow simplicity of implementation, 

and two separate Alternative objects could have been used instead.  This is a 

requirement enforced by Java / JCSP.  MobileSuccessorInt is similar to 

MobileIdentityInt and its full code listing can be found in Appendix H. 

Mobile Delta2Int is more complicated.  First, consider the mobile version of 

ProcessWriteInt: 

public class MobileProcessWriteInt 
{ 
 AltingChannelOutputInt out; 
 AltingBarrier migrate; 
 AltingBarrier finished; 
 
 public void run() 
 { 
  Guard[] guards = {migrate, out, finished}; 
  Alternative alt = new Alternative(guards); 
  switch (state)  
  { 
   case WRITING: 
    boolean[] active = {true, true, false}; 
    int selected = alt.priSelect(active); 
    switch (selected)  
    { 
     case 0: break; // migrate 
     case 1: // out 
      out.write(value); 
      state = FINISHING;  
    } 
    break; 
   case FINISHING: 
    boolean[] active = {true, false, true}; 
    int selected = alt.priSelect(active); 
    switch (selected)  
    { 
     case 0: break; // migrate 
     case 2: // finished 
      state = WRITING;  
    } // For reuse purposes 
    break;  
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  } 
 } 
} 
 

To capture that a process may be finished or not, a new process is defined: 

public class CheckFinished 
{ 
 AltingBarrier migrate; 
 AltingBarrier finished; 
 boolean isFinished; 
 
 public void run() 
 { 
  Guard[] guards = {migrate, finished}; 
  Alternative alt = new Alternative(guards); 
  isFinished = false; 
  int selected = alt.priSelect(); 
  if (selected != 0) 
   isFinished = true; 
 } 
} 
 
 

The attribute isFinished is used to check if the process completed via the 

migrate event or the finished event.  This value remains false unless 

finished is selected within the Alternative.  With this process defined, 

MobileDelta2Int can now be defined: 

public class MobileDelta2Int  
{ 
 AltingChannelInputInt a; 
 AltingChannelOutputInt c; 
 AltingChannelOutputInt d; 
 AltingBarrier migrate; 
 MobileProcessWrite[] parWrite; 
 CheckFinished checkFinished; 
 AltingBarrier[] barrier = migrate.expand(2); 
 
 public void run() 
 { 
  Guard[] guards = {migrate, a}; 
  Alternative alt = new Alternative(guards); 
  CSProcess[] processes =  
      {parWrite[0], parWrite[1], checkFinished}; 
  Parallel par = new Parallel(processes); 
  boolean running = false; 
  while (running)  
  { 
   switch (state)  
   { 
    case READING: 
     int selected = alt.priSelect(); 
     switch (selected)  
     { 
      case 0: 
       finished = false; 
       break; 
      case 1: 
       x = a.read(); 
       state = WRITING;  
     } 
     break; 
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    case WRITING: 
     parWrite[0].value = x; 
     parWrite[1].value = x; 
     barrier[0].enroll(); 
     barrier[1].enroll(); 
     par.run(); 
     if (!checkFinished.isFinished) 
      running = false; 
     else  
     { 
      state = READING; 
      barrier[0].resign(); 
      barrier[1].resign();  
     } 
     break; 
   } 
  } 
 } 
} 
 
 

The reason for starting the ProcessWrite and CheckFinished processes in 

parallel is to ensure that the underlying threads have finished before trying to 

restart the processes, which may not be the case in Java.  Using a 

ProcessManager to spawn the MobileProcessWrite processes and allowing 

MobileNumbersInt to guard on migrate and finished can lead to exceptions 

caused by spawning too many threads.  The process enrols and then resigns from 

the AltingBarriers of the MobileProcessWrites prior to activation and after 

termination.  This is to ensure that the other processes can synchronise on migrate 

independently of the MobileProcessWriteInt being in operation.  Whenever 

the process is started it must be enrolled on the AltingBarrier, and once it has 

successfully terminated, it must resign. 

It is now possible to define a mobile NumbersInt process: 

MobileNumbersInt(AltingChannelOutputInt d)  
{ 
 AltingChannelOutputInt d; 
 
 public void run() 
 { 
  AltingBarrier[] migrate = AltingBarrier.create(4); 
  One2OneChannelSymmetricInt a = Channel.one2oneSymmetricInt(); 
  One2OneChannelSymmetricInt b = Channel.one2oneSymmetricInt(); 
  One2OneChannelSymmetricInt c = Channel.one2oneSymmetricInt(); 
  AltingBarrier innerMigrate = migrate[3]; 
  prefix = new MobilePrefixInt(0, b.out(), a.in(), migrate[0]); 
  successor =  
   new MobileSuccessorInt(c.in(), b.out(), migrate[1]); 
  delta = new MobileDelta2Int(a.in(), c.out(), d, migrate[2]); 
  new Parallel(new CSProcess[] {prefix, successor,delta}).run(); 
 } 
} 
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The innerMigrate AltingBarrier is used to trigger the migration process 

externally, as shall be described in the following subsection. 

8.4.3 Java Serialization to Help Migration 

Customisation of the serialization process can be exploited to enable the 

suspension process.  A class can be declared Externalizable, or specific 

methods overridden to customise the serialization behaviour.  Whenever an 

instance of the class is written to or read from an object stream, these methods are 

called instead of the standard mechanism used.  For example, the method called to 

serialize an instance of MobileNumbersInt is: 

private void writeObject(ObjectOutputStream out) throws IOException 
{ 
 innerMigrate.sync(); 
 out.writeObject(prefix); 
 out.writeObject(successor); 
 out.writeObject(delta); 
} 
 
 

The innerMigrate is waited upon by the writing process, thus it can be judged 

that the processes are in such a state that they can be written to the stream safely. 

8.4.4 Implementation Limitations 

There are implementation problems when considering this method within the 

context of JCSP.  The first relates to certain assumptions made on the mobility of 

events and channels.  As Chapter 7 described, distributed channel mobility is not a 

guaranteed feature, and still requires finalisation.  General guarded events provided 

by the AltingBarrier also do not have a networked equivalent.  Careful design 

may get round these problems. 

The second problem comes from the lack of a networked AltingBarrier.  As 

guarded output is currently implemented using an AltingBarrier, there is no 

such method to allow guarded network output.  This means that networked output 

must be committed to, and the general approach of guarding all events cannot be 

used.  However, as the mobile process will not span local machine boundaries, this 

is not an issue.  The remote process communicated to via the network channel shall 

not be part of the mobile and should be unaware of the migration of the process.  
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Thus the networked output can be committed to in a write operation without fear 

of deadlock, only input need be guarded upon. 

Another limitation comes from the lack of shared input and output guards (from the 

Any-2-One, One-2-Any and Any-2-Any channels).  Therefore, certain forms of input 

and output cannot be guarded.  A simple method to overcome this is to place a 

multiplex / demultiplex process within the channel to handle the relative input and 

output transactions.  This comes at a cost of resources and performance for 

expansion / contraction of the shared end, the selection sequence within the 

process, and the need of an extra process. 

A limitation also exists for this approach when using the current implementation of 

AltingBarrier, a possibility hinted at in [160].  This is not an error in the 

AltingBarrier itself, as it provides the mechanism required for multi-way 

synchronous event.  However, for the approach to process mobility described, a 

prioritised AltingBarrier is required.  The AltingBarrier operates by only 

allowing one process in the system to be in operation within an AltingBarrier at 

any one time, using a coordination object [137].  This leads to the following 

problem: 

Given a set of processes A that synchronise on AltingBarrier a, if there are 

two or more disjoint subsets of A that always offer choice between their own 

AltingBarrier and a, then a can never be selected. 

For example consider Figure 70. 

 

Figure 70: AltingBarrier Sample Process Network 

The processes can be defined as follows: 

B

B’

C

C’

a
b c
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𝐵 ∶=  𝑎 → 𝐵 | 𝑏 → 𝐵 

𝐵′ ∶=  𝑎 → 𝐵′ | 𝑏 → 𝐵′ 

𝐶 ∶=  𝑎 → 𝐶 | 𝑐 → 𝐶 

𝐶′ ∶=  𝑎 → 𝐶′  | 𝑐 →  𝐶′ 

a, b and c are AltingBarriers.  To operate, a count on the number of required 

synchronisations within the AltingBarrier is kept.  When this reaches 0 the 

relevant AltingBarrier is fired.  In the above example, a has a count of 4 and b 

and c both have a count of 2.  As only one process can operate on 

AltingBarriers at any one time, there are determinable outcomes. 

B activates first and offers a and b, taking the counts down to 3 and 1 respectively.  

There are three possible outcomes: 

1. B’ activates next and offers a and b.  The count on b reaches 0 and it is 

selected.  Thus the offers on a are removed taking the count back to 4. 

2. Either C or C’ activates and offers a and c, taking their respective counts to 2 

and 1.  B’ activates next and offers a and b, taking the count on b to 0 and 

selecting it.  Thus two offers on a are removed taking the count back to 3. 

3. C then C’ are activated in succession (or vice-versa), thus taking the count on 

a to 1, but the count on c to 0.  Thus c is selected and two offers on a are 

removed, taking the count on a back to 3. 

Similar arguments can be given for B’, C and C’ activating first.  Thus it can be seen 

that it is impossible for a to ever be selected.  This leads to a problem when 

implementing the migration method.  As all processes must synchronise on migrate 

for migration to occur, no more than one disjoint set of sub processes can offer 

another guarded synchronisation among them.  As the guarded input and output 

One2OneChannelSymmetricInt channel does this to provide guarded output, 

there is a danger that the internal processes will never sync on migrate.  In fact, the 

MobileNumbersInt will suffer from this problem if the output channel (d) is 

always willing to accept messages. 

To overcome this problem, the technique for making individual parts of the process 

network mobile can be used (Section 8.3.3).  Effectively, this approach can be used 
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to the point where each individual process is given its own AltingBarrier that 

acts as a switch to turn off a process.  However, this will come at a greater overhead 

for normal process operations and migration operations. 

Relative overhead in comparison to normal operation is also a consideration.  As 

each communication / synchronisation event must be guarded upon, there is the 

added overhead of performing Alternation on these events.  For example, consider 

Table 10 which presents the CommsTime benchmark with fast integer channels 

performed normally, using guarded channels, and with mobile processes.  

Communication overhead alone is significant without considering the migration 

process itself.  The times presented are the iteration times in microseconds. 

Table 10: CommsTime for Mobiles 

 CommsTime CommsTime 
Symmetric 

Mobile CommsTime 
Parallel Shutdown 

Mobile CommsTime 
Sequential Shutdown 

PC 62 micros 123 micros 168 micros 168 micros 

PDA 681 micros 1922 micros 2915 micros 2920 micros 

 

The other time to consider is the time taken to shutdown processes using these 

methods.  This is presented in Table 11, which provides the shutdown times in 

milliseconds of MobileNumbersInt processes using the normal technique (Par) 

and the sequential technique (Seq).  As a Numbers process consists of numerous 

internal processes, the number of processes suspended is up to five times the 

number of Numbers processes.  Note that this time also incorporates the time 

taken to reclaim any threads used within the internal processes. 

Table 11: Suspending Numbers Processes 

Numbers Processes 1 2 4 8 16 32 64 

PC Par Shutdown 0.14 0.36 0.76 1.03 1.32 2.22 3.88 

PC Seq Shutdown 0.21 0.67 1.61 2.94 6.35 12.94 29.26 

PDA Par Shutdown 3.2 9.58 20.57 42.03 53.51 95.79 103.33 

PDA Seq Shutdown 2.04 14.23 41.69 96.63 183.2 371.02 752 
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Table 11 indicates that the time to shutdown processes increases in an 

approximately linear fashion when using the parallel shutdown technique.  The 

sequential shutdown does have a higher overhead, as expected. 

Another overhead incurred by implementation of this approach is the addition of 

extra processes to handle internal parallelisation.  Much of the argument presented 

thus far has been on the removal of processes whenever necessary when using JCSP 

in a Ubiquitous Computing context.  Therefore, careful consideration must be taken 

when designing a process network that is intended to be mobile. 

8.5 Summary 

In this chapter, a discussion on how process mobility can be achieved in JCSP and 

other process oriented architectures has been presented.  Initially, other 

approaches to capture process state were analysed and found to have certain 

limitations.  In particular, the approach of capturing thread state is found to be 

limited due to the lack of understanding of thread boundaries, which reflect on the 

fact that it is difficult to decide what should be migrated in a thread orientated 

system.  These are the same problems that are apparent in Java object serialization, 

where aliasing problems highlight the issues with self referential and circular graph 

topologies.  Process based approaches are more promising because of strict 

boundaries and ownership of processes and data, meaning that there is no 

ambiguity over what should be migrated.  However, many of the proposed solutions 

for shutting down process networks lack capabilities when considering mobile 

process models. 

A solution to these limitations has been proposed which should overcome many of 

the issues presented.  However, it also has limitations.  Due to subtleties within 

some designs, and certain limitations within current process oriented 

implementations, the method is currently not mechanical except in a specification 

point of view.  Future work on implementing prioritised multi-way synchronisation 

that can be used in any context will overcome many of these problems. 

A question is raised however on whether this is the type of mobility of a process 

that is required.  Strong mobility (the ability to capture execution state at any point) 
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is probably not required and may indeed be impractical, especially as a process can 

take any of its external connections (channels) with it as it migrates and alting on 

every possible event incurs an overhead.  CSP processes are generally defined by 

their external behaviour, so it is possible for a process to move at any point without 

concern over whether it behaves as expected.  The only external communications to 

a process to consider are channels connected to the local execution environment.  

In other words, it is possible to limit the type of mobility to constrained mobility.  

Constrained mobility allows migration with execution state, but only at certain well 

defined state points.  Ensuring that an entire process network does shutdown 

correctly prior to migration is therefore still considered difficult from this point of 

view. 

 



 

Chapter 9 Conclusions and Future Work 

 

In this chapter, final conclusions are drawn from the work presented in the rest of 

this thesis, and some future work presented.  Section 9.1 discusses the suitability of 

JCSP Networking as a framework for Ubiquitous Computing, and Section 9.2 

discusses mobility within the context of JCSP Networking and Ubiquitous 

Computing.  Finally, Section 9.4 presents future work. 

9.1 Suitability of JCSP Networking for Ubiquitous Computing 

The major question asked was the suitability of JCSP Networking as a framework for 

Ubiquitous Computing.  There are a number of different facets of JCSP Networking 

that have been examined, in particular towards performance in a more resource 

constrained environment than JCSP Networking was originally designed for.  From 

the examination of the original architecture in Chapter 3 and the experimental data 

presented in Chapter 4 it can be judged that the original implementation of JCSP 

Networking had some fair performance characteristics, providing throughput on a 

PDA similar to the throughput from the underlying network connection. 

Other features available or easily implemented within JCSP Networking also 

promote possible usage within the context of Ubiquitous Computing.  In particular, 

Ubiquitous Computing requires a sense of adaptability and dynamic interactions 

which are possible in JCSP Networking utilising channel mobility and code mobility.  

The partially transparent interface between networked and local interaction 

provided by the channel mechanism within JCSP Networking allow much of this 

dynamic architecture to be implemented either locally or remotely, thus increasing 

the usefulness of the dynamic architectures beyond what the Java object model can 

provide. 
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However, the original implementation of JCSP Networking had some issues when 

considering some of the other requirements of Ubiquitous Computing 

architectures, particularly when considering more resource constrained and 

heterogeneous application areas. 

9.1.1 Problems with the Current Implementation 

Chapter 2 uncovered a number of properties that are desirable within a Ubiquitous 

Computing framework, beyond the dynamic architectures that mobility helps to 

support.  To examine the problems within the original JCSP Networking 

implementation, some of these properties are returned to and examined within the 

context of Ubiquitous Computing.  Other issues relating to these properties are also 

examined individually. 

9.1.1.1 Interoperability 

A key feature of Ubiquitous Computing is a sense of interoperability between 

numerous, heterogeneous platforms.  Any feature of a framework that reduces 

inter-platform communication should be considered as a serious problem when 

considering Ubiquitous Computing.  With JCSP Networking, such a problem exists 

with the heavy reliance on object serialization, which makes inter-framework 

communication difficult. 

The main problem when considering interoperability and JCSP Networking is the 

usage of objects to describe messages.  As these objects are serialized upon the 

outgoing stream, any framework wishing to communicate with JCSP Networking 

requires a method to interpret these object message headers.  Although this can be 

built into a framework, it would require extra computational resources to do so.  

Not every version of Java supports object serialization and thus there is even a 

limitation for cross-Java communication. 

Another issue relating to the reliance on object serialization is that data sent 

between two communicating systems within JCSP must be a Java object.  This again 

requires other communicating platforms to be able to interpret serialized Java 

objects to allow communication.  This limitation can be circumvented by converting 
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the data to be sent into a byte array, and providing the receiving framework the 

ability to strip the object header for the byte array, and reconstruct the data as 

required.  This requires extra functionality and computation, and limits the overall 

interoperability between heterogeneous frameworks. 

For ubiquity between frameworks, a ubiquitous protocol is required that enables 

the communication functionality within JCSP Networking to be replicated.  The 

protocol should not be locked into a particular platform, but should permit inter-

platform communication.  Thus, data transfer becomes the key problem, unless a 

well defined data transfer mechanism is likewise developed.  Common data transfer 

negates the usage of common data structures usually implemented in Java (i.e. 

cyclic graphs) as not all frameworks will allow such complex data structures.  This 

problem is therefore hard, due to the different data structures and encoding 

mechanisms in place.  The usage of existing data transfer techniques such as XML 

may overcome this problem somewhat, but this will reduce communication 

performance and require a greater amount of computational resources to achieve.  

On resource constrained devices, this will cause a problem. 

In general, interoperability between diverse frameworks is hampered by the sole 

reliance within the original implementation of JCSP Networking on Java object 

serialization.  Any such reliance on a specific framework feature is to be avoided 

whenever possible, and thus Java object serialization must be avoided. 

9.1.1.2 Performance 

The performance of JCSP Networking from a communication viewpoint is not far 

removed from the bare network communication mechanism on a small device.  The 

experimental data presented has shown that a PDA performs at close to optimum 

throughput for large data sizes.  Smaller data sizes show a performance reduction, 

but this is largely due to the extra message overhead in the original implementation 

of JCSP Networking, and the synchronisation that occurs when using a standard 

networked channel. 

However, serialization on small devices can reduce throughput due to the extra 

computation time required to convert a Java object into an array of bytes.  For 
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sufficiently complex objects, performance can drop significantly.  Thus, serialization 

should be avoided whenever possible.  Throughput is bound by the (de)serialization 

performance of the PDA used within the experiments presented, and therefore 

removing serialization will increase performance for basic communication.  This 

argument against the usage of Java serialization in small devices leads to the 

question of Java’s usage in general for communicating systems on resource 

constrained frameworks.  If the sending of object data between two small devices 

should be avoided, then applications can be developed outside Java.  Thus, the 

general argument that Java supports Ubiquitous Computing due to its ubiquity 

across platforms is weakened. 

The bounding of the performance of object message communication by serialization 

may appear initially as incorrect.  However, the performance characteristics of the 

PC and PDA show that serialization performance is within the bounds of the 

variance between the two devices.  Thus, it can be deemed that serialization time is 

the largest contributor to object communication within the experimental 

framework. 

Serialization does not appear to be related to object creation time.  Object creation 

time is related to the amount of memory required for the object, and is thus based 

on memory allocation time.  Serialization, and in particular deserialization, should 

also be related to memory allocation time as the object must be re-created.  On 

small devices, this does not appear to be the case.  The JVM utilised on the PDA 

within the experiments showed serialization performance below both I/O 

throughput of the network, and object creation time. 

9.1.1.3 Resource Usage 

Except for the reliance on Java serialization within the original implementation of 

JCSP Networking and the problems this causes, the major issue when considering 

JCSP Networking within Ubiquitous Computing environments is the high resource 

usage.  The number of created processes within the original JCSP Networking 

architecture limits the usage of JCSP Networking on resource constrained devices.  

Numerous processes were spawned to service the architecture, and subsequently 
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this caused a limitation on the usage of JCSP Networking for large scaled, 

distributed systems with numerous small devices.  Some processes were spawned 

and subsequently destroyed during connection between devices, and this process 

could also occur when a connection between the two devices already existed.  

Considering the limited resources on small devices, temporary process creation 

could cause the application to run out of memory. 

Considering JCSP as a whole, it is arguable that any requirement of Ubiquitous 

Computing on Java is a limitation.  A JVM requires extra resources to operate, and 

for the smallest scale devices this will likely negate the possibility of running Java 

and subsequently JCSP.  Therefore, if the fundamental ideas of JCSP and JCSP 

Networking are of importance, then the requirement is to replicate these ideas 

within other frameworks but allow interaction with JCSP Networking. 

9.1.1.4 System Overhead 

Within the original implementation of JCSP Networking, system overhead is a 

problem.  Throughput performance is reasonable, but resource usage is high.  

Another factor is the high priority given to I/O operations, which can lead to 

computation being starved of resources as I/O is serviced.  This may or may not be 

an issue depending on the application context.  However, the inability to modify this 

property causes a limitation.  It has been shown that it is possible to flood a small 

device with messages, and thus break an application.  Although the experimental 

data gathered utilises functionality within JCSP Networking which should not be 

used in such a manner, the same outcome could occur by having multiple fast 

devices communicating to a single slow device. 

9.1.1.5 Scalability 

An important characteristic of Ubiquitous Computing is the sense of scale 

envisioned within such environments.  From the observations of resource usage and 

system overhead within the original implementation of JCSP Networking, it can be 

argued that scalability is a problem.  As the number of inter-device connections 

increase, and likewise the abstractions used to communicate within those devices 

increases in number, resource usage and system overhead will increase.  For 
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Ubiquitous Computing scenarios, JCSP Networking is unlikely to be useful for larger 

scaled applications. 

9.1.1.6 Stability 

JCSP Networking suffers from a number of stability problems.  In particular, poor 

error handling within the underlying architecture causes a problem for error prone 

applications.  Within Ubiquitous Computing, error handling is seen as a key feature, 

and JCSP Networking cannot provide a reliable level of error protection.  Ubiquitous 

Computing environments envision numerous small devices interacting together, 

and these devices may fail.  As user interaction is considered to be minimal and 

abstracted, it is unlikely that these devices can be easily reset.  The main issue with 

JCSP Networking when considered in such a context is that a device failing could 

cause another device to fail due to the poor error handling to detect the 

disconnection of the device.  This could spread across an entire Ubiquitous 

Computing environment. 

Another stability problem relates to the high priority I/O.  It has been shown that a 

device can be caused to fail due to flooding as I/O is serviced while the application 

cannot actually complete the I/O operation, thus leading to the internal buffering 

increasing beyond the capabilities of the device. 

9.1.1.7 Accessibility and Extensibility 

A key problem with JCSP Networking, related to many of the issues discovered 

when considering JCSP Networking in the context of Ubiquitous Computing, is the 

accessibility and extensibility of the architecture.  The tightly coupled 

implementation leads to difficulties when attempting to add new features to JCSP 

Networking, or extend upon existing features.  This leads to extensions being built 

using existing abstractions, and it has been shown that the existing architecture 

utilises numerous resources to achieve these abstractions.  If extensions are built 

upon the existing primitives, then required resources for these extensions will also 

be high. 
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Access to low level properties within the original JCSP Networking implementation 

is limited, and thus JCSP Networking cannot be adapted to suit differing application 

areas.  This is not a problem if JCSP Networking is utilised within its designed 

application area of cluster computing, but Ubiquitous Computing scenarios dictate 

versatility.  The hiding of these properties from manipulation by application 

developers is a limitation. 

9.1.1.8 Usage of Java Serialization 

JCSP Networking relies heavily on Java object serialization, and this is a limitation 

across a number of properties of interest within Ubiquitous Computing.  On small 

devices, serialization is slow, and the device is bound by the serialization process 

rather than I/O performance.  Object messages in resource constrained scenarios 

should therefore be avoided. 

The communication mechanism in JCSP Networking relies on Java serialization 

without consideration for the sent data.  This inhibits communication between 

disparate frameworks as each requires functionality to be able to interpret the 

message header.  Although it is possible to work round this limitation, it is not ideal.  

Also, the extra overhead associated with the (de)serialization of the message 

header could be reduced. 

9.1.1.9 Usage of Java 

Reliance on Java is also considered a problem.  It cannot be considered that a JVM 

will be available for every possible device in a Ubiquitous Computing environment, 

particularly for the smallest factor devices.  The argument that Java is the key 

platform for Ubiquitous Computing due to the ubiquity of Java is a weak one.  

Ubiquitous Computing should not rely solely on any platform, and it has been 

shown that object serialization reduces performance on small factor devices, and 

also inhibits inter-framework communication.  This raises a question on why Java 

should be seen as the key Ubiquitous Computing platform when communication is 

better suited to mechanisms possible without Java. 
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A probable answer to Java being seen as the key platform is the code mobility 

mechanisms that enable some of the more dynamic architectures by utilising 

mobile components.  However, research in the mobile agent field has also 

highlighted problems when viewing Java as the desirable method for such 

application areas.  When considering numerous frameworks, code mobility 

becomes difficult to impossible. 

9.1.1.10 Lack of Communication Protocol 

A key problem when considering inter-framework communication relying on the 

ideas within JCSP Networking is the lack of a well defined and documented 

protocol.  Although there are numerous implementations across different 

frameworks of the virtual channel model that is utilised within JCSP Networking, 

none of these frameworks can communicate as there is no universal protocol to 

determine how they should communicate.  If the basic channel mechanism is seen 

as a suitable abstraction for Ubiquitous Computing, then a protocol to enable the 

channel abstraction between frameworks is required. 

The lack of a protocol also inhibits mobility.  Connection mobility protocols are 

required to enable the dynamic topologies within Ubiquitous Computing 

environments.  If the base communication mechanism in JCSP Networking does not 

have a well defined protocol, then adding channel mobility to JCSP Networking 

becomes a problem. 

9.1.2 Overcoming the Problems in JCSP Networking 

To overcome the limitations and problems of JCSP Networking when considering 

the framework within a Ubiquitous Computing context, a new implementation of 

JCSP Networking has been developed.  This new implementation overcomes the 

limitations of the original implementation in a number of ways. 

9.1.2.1 Reduced Architecture 

To overcome the resource overhead, the new implementation has reduced the 

number of required resources.  By removing processes and either replacing them 

with shared data objects or folding the functionality into existing components, the 
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basic architecture is now more lightweight.  There are still processes that could 

possibly be removed, although there are limitations when considering reduced Java 

implementations in this respect. 

The basic networked channel mechanism is now lightweight, and utilises no extra 

processes beyond those required for the inter-device connection.  By doing this, 

there is less chance of processes being left operational when references to channels 

are lost, and the removal of the NetChannelInputProcess is one of the key 

factors to resource usage reduction. 

9.1.2.2 Removal of Reliance on Serialization 

There is no longer reliance within the new architecture upon Java object 

serialization.  By abstracting data encoding functionality into a user manipulative 

manner, and by removing the usage of objects as message headers, serialization is 

no longer required within JCSP Networking.  It is still possible to utilise serialization 

if this is seen as a suitable mechanism for data transfer between two devices. 

9.1.2.3 Abstraction of Data Encoding 

As data encoding has been abstracted, it is possible to implement custom 

mechanisms to convert data when transferring between devices.  If two devices 

agree upon the data encoding mechanism to be used, then it becomes possible to 

have inter-framework interoperability, and thus reliance on Java and JCSP 

Networking is removed.  If other implementations of JCSP Networking on different 

frameworks exhibit similar behaviour while communicating with one another, then 

agreement on data encoding becomes the sole problem for inter-framework 

communication. 

9.1.2.4 Communication Protocol 

By developing a communication protocol in a platform independent manner, inter-

framework communication has become further enabled.  By defining the message 

types and headers, replication within other frameworks becomes possible.  This 

strengthens the usage of JCSP Networking and communicating process 

architectures in general when considering Ubiquitous Computing.  As devices can 
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have the protocol built into their functionality, data encoding mechanisms become 

the core problem for inter-device communication within a virtual channel model. 

9.1.2.5 Performance 

As reliance on serialization has been removed, performance has increased 

somewhat.  Although communication performance within the original JCSP 

Networking implementation was not seen as a problem when considering the 

synchronous nature of the communication, any increase in performance should be 

seen as favourable. 

9.1.2.6 Verified Model 

To overcome the erroneous behaviour exhibited by JCSP Networking, a model has 

been developed using the SPIN model checker.  The model has been verified with 

no errors, thus some of the erroneous behaviour of JCSP Networking has been 

removed.  However, further work needs to be undertaken to further examine JCSP 

Networking in a larger Ubiquitous Computing context to investigate other possible 

problems that may occur. 

In summary, the development of a new implementation of JCSP Networking and the 

creation of a communication protocol to enable inter-framework communication 

has improved the usefulness of JCSP Networking and possibly other communicating 

process architecture based frameworks within the context of Ubiquitous 

Computing. 

9.2 Mobility 

The key reason to investigate JCSP Networking within the context of Ubiquitous 

Computing was the potential availability of distributed mobility.  Channel and 

process mobility models have been proposed as likely architectures to enable 

development of the complex and dynamic topologies that Ubiquitous Computing 

exhibits, and the possibility of implementing these constructs within JCSP 

Networking would enable construction of systems based on the channel and 

process mobility models. 
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9.2.1 Advantages of Communicating Process Architecture Mobility 

What are the practical advantages of communicating process architectures in 

comparison to the common object-oriented approaches used in agent based 

systems when considering mobility?  The clear advantage of using a process 

oriented approach to mobility is that there is no question about what should be 

moved during a migrate operation.  As a process completely encapsulates 

everything internal to the process, then when a process migrates everything it owns 

should move with it.  Thus, the definition of a mobile process can easily be 

described, and contains the channel connections, internal processes and data 

relevant to the process.  This is unlike object-oriented mobility, where it is unclear 

whether an object should or should not move when it is shared, or how the 

connection between a stationary object and a mobile one should be managed. 

Within communicating process architecture mobility, connection and component 

mobility are completely independent, which is unlike object based systems.  If an 

object moves, then if it is to move everything it owns, a question is raised on how to 

handle shared objects.  If a shared object is moved, should the remaining objects be 

linked to the object via, now networked, references, or should the remaining 

objects completely disconnect from the shared object or likewise the migrating 

object disconnect from the stationary shared object?  If the migrating shared object 

is copied, what occurs when a previously connected object arrives at the new 

location of the migrating shared object?  As object-orientation does not distinguish 

between connection and component, this becomes a problem.  As communicating 

process architectures treat connections (channels) and components (processes) 

separately, there is no such problem.  Any shared resource is protected within a 

process and accessed via a channel interface.  If the shared resource is moved, then 

the channel interface owned by the process would be moved, but the other 

connection ends would not.  If a process connected to the resource were to move, it 

would take its connection to the resource with it.  Thus, there is no question of 

what to migrate and how to handle shared resources. 

The notion of strong code mobility does not in essence capture process mobility.  

Data and behaviour state are similar, but strong code mobility centres on the code 
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rather than the component.  Code may not be required in a migration, and is 

arbitrary.  Much can be inferred by the type of the process, and this can be carried 

between different frameworks where code cannot.  There are dangers if the 

definition of the type is different however.  Connection migration is also not 

considered in code migration.  Thus, strong component mobility should be 

considered separate from code mobility and include connection mobility, and code 

mobility considered arbitrary depending on circumstance. 

9.2.2 Channel Mobility 

Chapter 7 discussed possible options for channel mobility, the question being 

whether a suitable model of channel mobility can be developed that allows the 

dynamic topologies envisioned by Ubiquitous Computing.  The call for protocols to 

enable mobility requires a decision on the type of mobility model best suited for 

Ubiquitous Computing.  A general agreement is required to enable channel mobility 

across frameworks.  From a Ubiquitous Computing context, many differing models 

may be suitable.  If channel mobility is examined in a larger context, then a suitable 

model for Ubiquitous Computing may not be suitable for cluster based computing. 

To develop a suitable protocol for channel mobility, a number of considerations 

must be taken.  In particular, if a suitable mobility protocol is developed, the 

description of a mobile channel and a suitable model must be developed.  A general 

description of a mobile channel can be developed based on the location of the 

channel end, but extra information may be required for certain models. 

9.2.3 Process Mobility 

The aim was to provide the strong mobility behaviour required for agent mobility 

with JCSP Networking, and thus permit the adaption and dynamic architectures for 

Ubiquitous Computing.  Some work towards providing a suitable technique to 

enable strong process mobility within JCSP Networking has been developed, 

although usage across all possible applications is still questionable.  By examining 

behaviour from an event viewpoint, instead of focusing on individual Java 

statements, it becomes easier to handle migration.  In particular, the agreement of 

the mobile process to move is seen as a key property, instead of the migrating unit 
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being forced to move thus causing inconsistent state.  As overzealous usage of the 

strong mobility idea is partially to blame for the attempts at forcing component 

migration like this. 

Capturing process state should be possible based on event behaviour.  It is also 

possible to discern what should be moved and when.  Committing to external 

events of the mobile does not actually cause a problem, but internal events must be 

deactivated.  However, the externally observable behaviour of a process dictates 

whether a process is strongly mobile. 

Multi-framework applications make code mobility a problem, and thus behaviour 

mobility is limited.  Therefore, code mobility should not be relied upon to enable 

the migration of events between frameworks.  If code mobility is required, then 

limitations must be placed upon its usage to avoid problems when communicating 

with differing frameworks.  The usage of a ubiquitous communication protocol 

overcomes inter-framework communication to a certain degree.  Code mobility 

requires a framework such as Java which enables dynamic code loading, but if code 

mobility is limited then the argument of Java as the Ubiquitous Computing language 

is limited. 

It is also questionable whether strictly strong mobility of processes is required in an 

application.  Considering the overheads and other difficulties when migrating a 

process at any point during its execution, a much better approach to process 

mobility is constrained mobility.  With this viewpoint of mobility, only at certain well 

defined points in execution is it possible to migrate a process.  The requirement is 

that the process must be in a consistent state to allow migration, and many of the 

other problems associated with other software models when dealing with 

component mobility are overcome by enabling connection mobility.  Further 

considerations on what should be taken with a mobile process are also required 

before deciding when and how to migrate a mobile process. 

9.3 Summary 

The two questions posed at the start of this thesis questioned two different aspects 

of JCSP Networking in the context of Ubiquitous Computing.  The first question was 
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the suitability of JCSP Networking as a framework for Ubiquitous Computing 

applications, and this has both a positive and negative answer.  The original 

implementation of JCSP Networking was not a suitable framework for developing 

Ubiquitous Computing applications, particularly due to the scalability problems 

caused by excessive resource usage and reliance on Java serialization.  The new 

implementation overcomes these issues, but requiring a Java Virtual Machine to 

operate the JCSP Networking architecture is still seen as a problem.  The 

implementation of the new communication protocol alleviates some of this 

problem. 

The second question focused on the ability to build suitable mobility models to 

allow practical implementation of distributed channel and process mobility within 

JCSP Networking, and this question is left unanswered.  Channel mobility models 

have been examined, and while possible suitable models for channel mobility within 

Ubiquitous Computing have been identified, further examination of these models 

within different contexts and frameworks is required.  A possible method of process 

mobility has also been proposed, but it too requires further examination to 

determine how practical this method is in all circumstances. 

9.4 Future Work 

There are a number of future directions that have been opened from the work 

presented in this thesis.  Firstly, it must be considered that the second posed 

research question has not been answered, which is due to further work required in 

the areas of implementable channel and process mobility models.  For channel 

mobility, actual implementation of the proposed models is required for examination 

within the context of both Ubiquitous Computing and other usages of JCSP 

Networking principles.  Possible solutions lie with providing hybrid approaches that 

accommodate both Ubiquitous Computing and cluster computing, such as utilising 

server based mobility which utilises message box or mobile IP style mobility when 

channels must stretch across domains.  For process mobility, further analysis on 

what is actually required for component mobility needs to be conducted.  This 

further analysis will enable a more concrete approach towards constrained process 
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mobility – process mobility that allows capturing of execution state but at fixed 

points. 

One of the key areas of future work highlighted in this thesis is the further 

development of a generalised protocol and architecture for CSP based distributed 

computing.  Further analysis of the requirements of the general protocol will enable 

the discovery of other message types and further development of the message 

header structure to incorporate these message types.  Development of the protocol 

and architecture has benefits far outside the area of Ubiquitous Computing and will 

enable levels of communication between CSP frameworks which is currently 

severely lacking.  Languages such as occam, Erlang, C++ and Python can all benefit 

from a unified approach to distributed channel based applications.  Analysis and 

comparison of the protocol against existing approaches such as the session layer 

protocol Remote Procedure Call (RPC) can provide insight into further 

requirements.  Further refinement of the architecture may also lead to further 

performance improvements and resource usage reduction, and the possibility of 

building a generic reference architecture library usable by all frameworks would be 

advantageous. 

Further consideration within the architecture and protocol for channel mobility is 

another key direction highlighted in this work.  A number of possible approaches to 

channel mobility have been discussed in Chapter 7, and further analysis of these 

approaches is required to discover which is the most suitable across a broad range 

of application areas.  This further analysis includes implementation and case study 

work to examine the different models within different application areas.  Also, it will 

enable development of the necessary structures within the architecture required to 

permit channel mobility.  The discovery of the necessary protocol messages 

required to support channel mobility will enable the protocol to be updated to 

accommodate the necessary channel mobility model between the different CSP 

based frameworks.  The development of such a channel mobility mechanism will 

provide a great deal of high level functionality which can be utilised in a number of 

contexts, and is itself an interesting area of future research. 
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Further work within the area of process mobility will enable a better understanding 

of the requirements for constrained process mobility.  Although current work within 

the area of strong code mobility is leading towards the capturing of active 

component state at any point in its execution, this is largely due to the lack of 

sufficient connection mobility structures that enable a migrating component to stay 

connected to its communication partners.  Therefore, process mobility should not 

aim for such strength, as it is likely to be difficult to achieve efficiently.  Instead, 

further work in this area requires analysis of when a process should be able to 

move, and how complex process mobility can be achieved safely.  The possibility of 

enabling process mobility between different frameworks is also an area of interest; 

this cannot be directly supported by of code mobility however. 

With a generalised protocol and architecture, along with mechanisms for providing 

channel and process mobility, work into developing mechanisms that will enable 

transparent channel and process mobility is required.  The ability of local channels 

or processes to be sent across a networked channel and for the necessary 

architecture put in place to support the now distributed application would provide 

transparent functionality.  Although pony does provide some of this capability, it 

does so at a cost to performance, and a better approach is required.  Enabling this 

functionality within the protocol and architecture will be advantageous, and may 

allow transparent handover of processes and channels between frameworks. 

Another addition to the general CSP network protocol and architecture is the 

support for distributed multi-way synchronisation events.  A networked 

AltingBarrier would enable distributed choice on multi-way events, and the 

addition of such a construct would bring JCSP Networking to the same level of 

functionality as the core package of JCSP.  Such a construct cannot utilise the 

current approach to multi-way synchronisation within a single running application, 

due to the nature of the AltingBarrier implementation.  This is due to the 

construct not permitting parallel access to the AltingBarrier by multiple 

processes.  Although on a single machine, concurrent behaviour implies only one 

process may run, and hence single access is not considered an issue, with 

distributed parallel architectures, the implication is that only one device on the 
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network can be in engaged in the selection sequence at a time, although other 

processes may still be in operation.  Further work in this area must focus on the 

necessary architecture to permit distributed multi-way synchronisation, and the 

necessary messages within the protocol to support these constructs.  A centralised 

coordinator will not be sufficient to control all multi-way synchronisations within 

the network, and a method that performs some of the work on a local machine is 

required.  This approach implies a two layered method of coordination (local and 

remote), with the local step consolidating and controlling as many local messages as 

possible prior to coordination with a server.  However, there will still be an issue 

with a single process being in coordination with the main networked coordinator at 

a time. 

With a suitable architecture for general CSP networking in place, further work 

within the area of Ubiquitous / Pervasive Computing is required to analyse the 

suitability of such an approach for Ubiquitous Computing applications.  This work 

requires case study type analysis, and certain features of Ubiquitous / Pervasive 

Computing must be taken into consideration.  The sheer scale of Ubiquitous 

Computing requires careful decisions and analysis into how a CSP based approach 

can help understanding and reasoning, and careful consideration must also be 

taken into the resource constrained nature of many Ubiquitous Computing devices.  

Possible comparison with other approaches to Ubiquitous Computing is also 

required, such as comparing the mobility features of a general CSP networking 

architecture to mobile agent approaches.  When considering resource constraints, 

further analysis of smaller runtimes, such as the Transterpreter [161], may show 

more suitability, and therefore work in this area to implement and examine the 

network architecture and possible code mobility requirements is a further future 

area of interest. 

Further work within the core functionality of JCSP is also required.  During the 

development of a process mobility mechanism, it was highlighted that the current 

implementation of the AltingBarrier could not achieve the functionality 

required by the approach.  This requires the development of a prioritised version of 

a multi-way synchronous event, which would allow certain event combinations to 
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be chosen.  The ability to know when to wait for further offers, and when to chose 

an event with a waiting count of zero is an open question, and is difficult to achieve, 

considering that certain further offers may contain higher priority events. 

Another problem highlighted when process mobility was considered was the 

current lack of shared channel guards.  Adding this functionality to the core package 

of JCSP would enable all channels to be used guards within an alternative.  

Consideration must also be taken to how well the problem to this solution will 

scale.  Developing a shared channel guard is possible using multiple 

AltingBarrier events, but would require an AltingBarrier for each shared 

end.  A solution that provides fast resolution of choice on shared events is more 

suitable.  Possible areas of investigation include utilising the other capabilities in the 

Java concurrency library to allow the level of functionality that is required. 

In summary, the work highlighted within this thesis has shown that there is still a 

great deal of future areas that require further examination and development before 

the required functionality to support Ubiquitous Computing can be suitable 

achieved. 
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Appendix A Serialization in Java 

 

The information presented in this appendix is gathered from the Java SDK 

documentation [162] and Java API [163]. 

A.1 Serialization Components 

Serialization in Java is provided by the use of a number of different interfaces and 

objects.  The most important of these are the Serializable interface and the 

ObjectInputStream and ObjectOutputStream objects.  The former is used to 

mark a class as being capable of serialization, and is inherited by all subclasses.  

Marking a class as serializable does not guarantee serialization, as there may be 

other objects within the sent object graph that are not serializable.  In this situation, 

an exception will be thrown. 

The object streams perform the encoding and decoding of object information.  

These objects are placed on other I/O streams that are responsible for the transfer / 

storage of the object information.  Two methods are added to standard streams, 

readObject to read an object from an ObjectInputStream, and writeObject 

to write an object to an ObjectOutputStream.  All sent classes and objects are 

recorded in a lookup table.  If an object of an already sent class, or an already sent 

object, is written to the stream then a reference to the relevant class or object is 

sent instead of full details.  As this lookup table can become large over time, it is 

possible to call reset on the output stream to clear this table, which also sends a 

signal to the input end.  Another method to reduce the lookup table size is to use 

the writeUnshared method, which means that an object is always written as new 

on the stream, but the class definition is retained.  Over time the lookup table will 

increase, but not significantly.  The writeUnshared method was added in Java 1.4, 

and is therefore not supported by the JVM on the PDA. 
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The serialization of an object implementing Serializable is automatic unless the 

class implements specific methods.  The writeObject method is called when an 

object is written to an ObjectOutputStream, and readObject is called when an 

object is read from an ObjectInputStream.  This allows customisable 

serialization behaviour.  Two other methods – writeReplace and readResolve 

– allow an object to be replaced by another when written to or read from the 

stream. 

Serialization can also be controlled by classes implementing the Externalizable 

interface.  Externalizable requires two methods to be implemented by the 

implementing class, writeExternal and readExternal.  It is also the 

responsibility of the implementing class to coordinate with its super class to 

externalize its attributes, and also provide a no argument constructor for use by any 

sub classes which will also be externalizable.  Externalization can perform better 

than serialization, due to the greater control provided to the developer, but it does 

require more development and care to implement. 

A.2 Serialization Functionality 

A number of control signals are used to control object serialization upon a stream.  

As a case study, the serialized representation of an Integer object is presented here, 

with the relevant control signals highlighted. 

Aside from the serialization functionality proper, Java Reflection (the ability to 

interrogate an object to discover its properties and methods) is also used to gather 

the values within the object and the subsequent recreation of the object from its 

full name (e.g. java.lang.Integer).  Reflection does have an overhead, but not 

on the data sent on the stream. 

The control signals and flags used by Java serialization are available in the Java API 

documentation [163].  The values are repeated in Table 12 to allow easier 

presentation of the serialization operation. 
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Table 12: Serialization Control Signals and Flags 

Signal Type Value 

baseWireHandle int 8257536 

PROTOCOL_VERSION_1 int 1 

PROTOCOL_VERSION_2 int 2 

SC_BLOCK_DATA byte 8 

SC_ENUM byte 16 

SC_EXTERNALIZABLE byte 4 

SC_SERIALIZABLE byte 2 

SC_WRITE_METHOD byte 1 

STREAM_MAGIC short -21267 

STREAM_VERSION short 5 

TC_ARRAY byte 117 

TC_BASE byte 112 

TC_BLOCKDATA byte 119 

TC_BLOCKDATALONG byte 122 

TC_CLASS byte 118 

TC_CLASSDESC byte 114 

TC_ENDBLOCKDATA byte 120 

TC_ENUM byte 126 

TC_EXCEPTION byte 123 

TC_LONGSTRING byte 124 

TC_MAX byte 126 

TC_NULL byte 112 

TC_OBJECT byte 115 

TC_PROXYCLASSDESC byte 125 

TC_REFERENCE byte 113 

TC_RESET byte 121 

TC_STRING byte 116 

 

When a new ObjectOutputStream is created, an initial handshake message is 

sent to allow correct behaviour at the receiving end.  This message consists of two 

16-bit values, STREAM_MAGIC and STREAM_VERSION.  These signals are only sent 

once, and are therefore not considered part of a sent object. 

When reset is called on an ObjectOutputStream a signal is sent to the 

complement ObjectInputStream to inform it of the reset.  This is the TC_RESET 

signal.  Again, this is not considered as part of normal serialized data. 

Figure 71 presents the serialized form of an Integer object.  Red signifies a control 

signal, yellow a string (prefixed with a two byte length header in white), and green 

signifies values defining the class.  The data part of the object is given in blue. 
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Figure 71: Serialized Integer Object 

The first value is TC_OBJECT, which is used to represent the type of object being 

sent.  The other possible data types are TC_ARRAY (array), TC_CLASS (class), 

TC_ENUM (enum constant), TC_LONGSTRING (long string), TC_NULL (null value), 

TC_REFERENCE (reference to previous item on stream), and TC_STRING (a string).  

After the TC_OBJECT signal, a TC_CLASSDESC is sent to indicate the start of a 

new class description.  If the class has previously been used on the stream, 

TC_REFERENCE is used instead. 

The name of the class (bytes 4 to 20) is sent next, with a 16-bit string length header 

(2 - 3).  An Integer object has the full name java.lang.Integer.  Bytes 21 to 28 

represent the 64-bit serialization identifier for the class, and this is used to ensure 

the correct class type is being used by each end of the stream.  A byte representing 

flag values is then sent to allow correct interpretation of the serialization process.  

The flag values are SC_WRITE_METHOD, SC_SERIALIZABLE, 

SC_EXTERNALIZABLE, SC_BLOCKDATA and SC_ENUM.  These indicate whether 

the class uses a writeObject method, uses normal serialization, uses 

externalization, uses block data externalization, or is an enum type. 

The number of internal fields within the class is then sent as a 16-bit value (30 – 31).  

Integer only has a single internal field, the value of the primitive int.  The types of all 

the internal fields are sent, which may involve further class descriptions, thus 

starting the description process for these classes.  For the primitive int in the 

Integer object, the type is represented by the letter I (ASCII 73).  The name of the 

field is then sent as a string (5 – 9) with a 16-bit length header.  The name of the 

int field is value in the Integer object.  A control signal (TC_ENDBLOCKDATA) is 

then sent to indicate the end of the class description. 

0 1 2 3 4 5 6 7 8 9

0 TC_OBJECT TC_CLASSDESC Name length (17) j a v a . l

10 a n g . I n t e g e

20 r Class Serialization Identifier (1360826667806853064) Flags

30 Variable count (1) I(nteger) Name length (5) v a l u e

40 TC_ENDBLOCKDATA TC_CLASSDESC Name length (16) j a v a . l

50 a n g . N u m b e r

60 Class Serialization Identifier (-8742448824652078987) Flags Variable count (0)

70 TC_ENDBLOCKDATA TC_BASE value
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If the class has a parent, then the description of this class is also sent on the stream 

using the aforementioned method.  This is required as the parent class may declare 

fields of its own not visible to the child object, but are still used by methods from 

the parent class.  Integer extends Number (java.lang.Number) which has no 

declared fields.  Finally, a signal is sent to indicate that the field values are to be 

sent (TC_BASE) followed by the field values.  For the Integer object, this is a four 

byte value representing the int. 

Serialized representations of commonly used objects are provided here with no 

description.  These objects are byte array, Integer array, the JCSP data message, the 

acknowledge message, and the various test classes. 

Each data type in Java has a signature letter to distinguish it within a serialization 

stream.  These are provided in Table 13 to allow clearer understanding of the 

serialization data presented. 

Table 13: Java Data Type Signatures 

Data Type Signature 

boolean Z 

byte B 

char C 

short S 

int I 

long J 

float F 

double D 

Object L 

Object name L<name>; 

Array [<type> 

 

A.3 Byte Array 

 

Figure 72: Serialized Byte Array 

0 1 2 3 4 5 6 7 8 9

0 TC_ARRAY TC_CLASSDESC Name length (2) [ B Class Serialization Identifier
10 Flags Variable count (0) TC_ENDBLOCKDATA TC_BASE Length
20 Elements
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A.4 ChannelMessage.Data 

 

Figure 73: Serialized ChannelMessage.Data 

A.5 ChannelMessage.Ack 

 

Figure 74: Serialized ChannelMessage.Ack 

A.6 Integer Array 

 

Figure 75: Serialized Integer Array 

0 1 2 3 4 5 6 7 8 9

0 TC_OBJECT TC_CLASSDESC Name length (32) o r g . j c

10 s p . n e t . C h a

20 n n e l M e s s a g

30 e $ D a t a Class Serialization Identifier

40 Flags Variable count (2) Z (boolean) Name length (12)

50 a c k n o w l e d g

60 e d L (Object) Name length (4) d a t a TC_STRING

70 Name length (18) L j a v a / l a

80 n g / O b j e c t ;

90 TC_ENDBLOCKDATA TC_CLASSDESC Name length (27) o r g . j c

100 s p . n e t . C h a

110 n n e l M e s s a g

120 e Class Serialization Identifier Flags

130 Variable count (0) TC_ENDBLOCKDATA TC_CLASSDESC Name length (20) o r g .

140 j c s p . n e t . M

150 e s s a g e Class Serialization Identifier

160 Flags Variable count (3) J (long) Name length (9)

170 d e s t I n d e x J (long)

180 Name length (11) s o u r c e I n

190 d e x L (Object) Name length (12) d e s t

200 V C N L a b e l TC_STRING Name length (18)

210  L j a v a / l a n

220 g / S t r i n g ; TC_ENDBLOCKDATA

230 TC_BASE destIndex sourceIndex

240 destVCNLabel acknowledged data

0 1 2 3 4 5 6 7 8 9

0 TC_OBJECT TC_CLASSDESC Name length (31) o r g . j c

10 s p . n e t . C h a

20 n n e l M e s s a g

30 e $ A c k Class Serialization Identifier

40 Flags Variable count (0) TC_ENDBLOCKDATA TC_CLASSDESCName length (27)

50 o r g . j c s p . n

60 e t . C h a n n e l

70 M e s s a g e Class Serialization Identifier

80 Flags Variable count (0) TC_ENDBLOCKDATA TC_CLASSDESC

90 Name length (20) o r g . j c s p

100 . n e t . M e s s a

110 g e Class Serialization Identifier

120 Flags Variable Count (3) J (Long) Name length (9) d e s t

130 I n d e x J (Long) Name length (11) s o

140 u r c e I n d e x L (Object)

150 Name length (12) d e s t V C N L

160 a b e l TC_STRING Name length (18) L j a

170 v a / l a n g / S t

180 r i n g ; TC_ENDBLOCKDATA TC_BASE destIndex

190 sourceIndex

200 destVCNLabel

0 1 2 3 4 5 6 7 8 9

0 TC_ARRAY TC_CLASSDESC Name length (20) [ L j a v a

10 . l a n g . I n t e

20 g e r ; Class Serialization Identifier

30 Flags Variable count (0) TC_ENDBLOCKDATA TC_BASE Length

40 Elements



Appendix A: Serialization in Java 226 
 

A.7 TestObject 

 

Figure 76: Serialized TestObject 

A.8 TestObject2 and TestObject3 

TestObject2 and TestObject3 are identical in description except for their name.  The 

difference is only in byte 14, which will be 2 or 3 respectively. 

 

Figure 77: Serialized TestObject2 and TestObject3 

A.9 TestObject4 and TestObject5 

TestObject4 and TestObject5 are identical in description except for their name.  The 

difference is only in byte 14, which will be 4 or 5 respectively. 

0 1 2 3 4 5 6 7 8 9

0 TC_OBJECT TC_CLASSDESC Name length (10) T e s t O b

10 j e c t Class Serialization Identifier

20 ? u Flags Variable Count (2) [ (array) Name length (4) d b

30 l s TC_STRING Name length (19) [ L j a v

40 a / l a n g / D o u

50 b l e ; [ (array) Name length (4) i n t

60 s TC_STRING Name length (20) [ L j a v a

70 / l a n g / I n t e

80 g e r ; TC_ENDBLOCKDATATC_BASE TC_ARRAY TC_CLASSDESC Name length (19)

90 [ L j a v a . l a n

100 g . D o u b l e ; Class

110 Serialization Identifier Flags Variable Count (0)

120 TC_ENDBLOCKDATATC_BASE Length TC_ARRAY TC_CLASSDESC Name length (20)

130 [ L j a v a . l a n

140 g . I n t e g e r ;

150 Class Serialization Identifier Flags Variable

160 Count (0) TC_ENDBLOCKDATA TC_BASE Length

0 1 2 3 4 5 6 7 8 9

0 TC_OBJECT TC_CLASSDESC Name length (11) T e s t O b

10 j e c t 2 Class Serialization Identifier

20 Flags Variable Count (2) [ (array) Name length (9) l

30 o c a l D b l s TC_STRING Name

40 length (19) [ L j a v a / l a

50 n g / D o u b l e ;

60 [ (array) Name length (9) l o c a l I n

70 t s TC_STRING Name length (20) [ L j a v

80 a / l a n g / I n t

90 e g e r ; TC_ENDBLOCKDATA TC_CLASSDESC Name length (10) T

100 e s t O b j e c t Class

110 Serialization Identifier Flags Variable Count (2)

120 [ (array) Name length (4) d b l s TC_REFERENCE Reference in Stream

130 [ (array) Name length (4) i n t s TC_REFERENCE

140 Reference in Stream TC_ENDBLOCKDATA TC_BASE TC_ARRAY TC_CLASSDESC Name length (19)

150 [ L j a v a . l a n

160 g . D o u b l e ; Class

170 Serialization Identifier Flags Variable Count (0)

180 TC_ENDBLOCKDATATC_BASE Length TC_ARRAY TC_CLASSDESC Name length (20)

190 [ L j a v a . l a n

200 g . I n t e g e r ;

210 Class Serialization Identifier Flags Variable

220 Count (0) TC_ENDBLOCKDATA TC_BASE Length TC_ARRAY TC_REFERENCE Reference in

230 Stream Length TC_ARRAY TC_REFERENCE Reference in

240 Stream  Length 
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Figure 78: Serialized TestObject4 and TestObject5 

 

0 1 2 3 4 5 6 7 8 9

0 TC_OBJECT TC_CLASSDESC Name length (11) T e s t O b

10 j e c t 4 Class Serialization Identifier

20 Flags Variable Count (3) [ (array) Name length (9) l

30 o c a l D b l s TC_STRING Name

40 length (19) [ L j a v a / l a

50 n g / D o u b l e ;

60 [ (array) Name length (9) l o c a l I n

70 t s TC_STRING Name length (20) [ L j a v

80 a / l a n g / I n t

90 e g e r ; L (Object) Name length (10) t e

100 s t O b j e c t TC_STRING Name

110 length (12) L T e s t O b j e

120 c t ; TC_ENDBLOCKDATA TC_CLASSDESC Name length (10) T e s

130 t O b j e c t Class Serialization Identifier

140  Flags Variable Count (2) [ (array) Name

150 length (4) d b l s TC_REFERENCEReference in stream

160 [ (array) Name length (4) i n t s TC_REFERENCE Reference in stream

170 TC_ENDBLOCKDATATC_BASE TC_ARRAY TC_CLASSDESCName length (19) [ L

180 j a v a . l a n g .

190 D o u b l e ; Class Serialization Identifier

200 Flags Variable Count (0) TC_ENDBLOCKDATA TC_BASE

210 Length TC_ARRAY TC_CLASSDESCName length (20) [ L

220 j a v a . l a n g .

230 I n t e g e r ; Class Serialization

240 Identifier Flags Variable Count (0) TC_ENDBLOCKDATA

250 TC_BASE Length TC_ARRAY TC_REFERENCE Reference in stream

260 Length TC_ARRAY TC_REFERENCE Reference in stream

270 Length TC_OBJECT TC_REFERENCE Reference in stream

280 TC_ARRAY TC_REFERENCE Reference in Stream Length

290 TC_ARRAY TC_REFERENCE Reference in Stream Length

300 TC_ARRAY TC_REFERENCE Reference in Stream Length

310 TC_ARRAY TC_REFERENCE Reference in Stream Length

320 TC_REFERENCE Reference in Stream



 

Appendix B Test Object Class Definitions 

 

B.1 TestObject 

public class TestObject implements Serializable 
{ 
    protected Integer[] ints; 
    protected Double[] dbls; 
  
    public TestObject() 
    { 
    } 
  
    public TestObject(int size) 
    { 
        ints = new Integer[size]; 
        dbls = new Double[size]; 
        for (int i = 0; i < size; i++) 
        { 
            ints[i] = new Integer(i); 
            dbls[i] = new Double(i * 1000); 
        } 
    } 
         
    public static TestObject create(int size) 
    { 
        return new TestObject(size); 
    } 
} 

B.2 TestObject2 

public class TestObject2 extends TestObject 
{ 
    private Integer[] localInts; 
    private Double[] localDbls; 
  
    public TestObject2() 
    { 
    } 
  
    public TestObject2(int size) 
    { 
        ints = new Integer[size]; 
        dbls = new Double[size]; 
        localInts = new Integer[size]; 
        localDbls = new Double[size]; 
        for (int i = 0; i < size; i++) 
        { 
            ints[i] = new Integer(i); 
            dbls[i] = new Double(i * 1000); 
            localInts[i] = new Integer(i * 1000000); 
            localDbls[i] = new Double(i * 1000000000); 
        } 
    } 
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    public static TestObject create(int size) 
    { 
        return new TestObject2(size); 
    } 
} 

B.3 TestObject3 

public class TestObject3 extends TestObject 
{ 
    private Integer[] localInts; 
    private Double[] localDbls; 
  
    public TestObject3() 
    { 
    } 
  
    public TestObject3(int size) 
    { 
        ints = new Integer[size]; 
        dbls = new Double[size]; 
        localInts = new Integer[size]; 
        localDbls = new Double[size]; 
        for (int i = 0; i < size; i++) 
        { 
            ints[i] = localInts[i] = new Integer(i); 
            dbls[i] = localDbls[i] = new Double(i * 1000); 
        } 
    } 
         
    public static TestObject create(int size) 
    { 
        return new TestObject3(size); 
    } 
} 

B.4 TestObject4 

public class TestObject4 extends TestObject 
{ 
    private TestObject testObject; 
    private Integer[] localInts; 
    private Double[] localDbls; 
  
    public TestObject4() 
    { 
    } 
  
    public TestObject4(int size) 
    { 
        ints = new Integer[size]; 
        dbls = new Double[size]; 
        localInts = new Integer[size]; 
        localDbls = new Double[size]; 
        for (int i = 0; i < size; i++) 
        { 
            ints[i] = localInts[i] = new Integer(i); 
            dbls[i] = localDbls[i] = new Double(i * 1000); 
        } 
    } 
  
 
    public void setTest(TestObject testObject) 
    { 
        this.testObject = testObject; 
    } 
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    public static TestObject create(int size) 
    { 
        TestObject4 tObj1 = new TestObject4(size); 
        TestObject4 tObj2 = new TestObject4(size); 
        tObj1.setTest(tObj2); 
        tObj2.setTest(tObj1); 
        return tObj1; 
    } 
} 

B.5 TestObject5 

public class TestObject5 extends TestObject 
{ 
    private TestObject testObject; 
    private Integer[] localInts; 
    private Double[] localDbls; 
  
    public TestObject5() 
    { 
    } 
  
    public TestObject5(int size) 
    { 
        ints = new Integer[size]; 
        dbls = new Double[size]; 
        localInts = new Integer[size]; 
        localDbls = new Double[size]; 
        for (int i = 0; i < size; i++) 
        { 
            ints[i] = localInts[i] = new Integer(i); 
            dbls[i] = localDbls[i] = new Double(i * 1000); 
        } 
    } 
  
    public TestObject5(TestObject5 testObject) 
    { 
        int size = testObject.ints.length; 
        ints = new Integer[size]; 
        dbls = new Double[size]; 
        localInts = new Integer[size]; 
        localDbls = new Double[size]; 
        this.testObject = testObject; 
        for (int i = 0; i < size; i++) 
        { 
            ints[i] = localInts[i] = testObject.ints[i]; 
            dbls[i] = localDbls[i] = testObject.dbls[i]; 
        } 
    } 
  
    public void setTest(TestObject testObject) 
    { 
        this.testObject = testObject; 
    } 
         
    public static TestObject create(int size) 
    { 
        TestObject5 tObj1 = new TestObject5(size); 
        TestObject5 tObj2 = new TestObject5(tObj1); 
        tObj1.setTest(tObj2); 
        return tObj1; 
    } 
} 
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C.1 Java Grande Benchmark Arithmetic Operations 

Figure 79 presents the results from the Java Grande Benchmark Suite arithmetic 

tests. 

 

Figure 79: Arithmetic Benchmark Results 

The results presented are in operations per second across the various arithmetic 

operations and across the four primitive numeric types of Java.  In general, the ratio 

between the results for the PDA and the PC ranges between 1.5 (division 

operations) and 2.5 (addition operations) orders of magnitude. 

C.2 Object Creation Time 

Figure 80 presents the results from the Java Grande Benchmark Suite object 

creation tests.  The different object creation methods are: 

 Base – the base Java Object. 

 Simple – simple object. 

 Simple:Constructor – simple object with a defined constructor. 
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 Simple:1Field – simple object with one field. 

 Simple:2Field – simple object with two fields. 

 Simple:4Field – simple object with four fields. 

 Simple:4fField – simple object with four float fields. 

 Simple:4LField – simple object with four long fields. 

 Subclass – an object that extends another object. 

 Complex – an object that contains another object. 

 Complex:Constructor – an object that contains another object using a 

constructor. 

 

Figure 80: Object Creation Benchmark Results 

Aside from the time taken to create a base Java object and a complex object, the 

difference in creating objects between the PDA and PC is just below one order of 

magnitude.  The PDA takes roughly the same time to allocate an object without 

consideration for internal fields.  This accounts for the time taken to create a 

complex object. 

C.3 Array Creation Time 

Figure 81 presents the results from creating various array types of various sizes.  

The three primitive numeric types int, long, and float are provided.  The object array 

is an array of the base Java Object.  The time taken to allocate the object array does 

100

1000

10000

100000

1000000

Th
o

u
sa

n
d

s 
o

b
je

ct
s 

/ 
se

co
n

d

PDA PC



Appendix C: Performance Characterisation Data 233 

 

not incorporate object creation time, therefore each element in the array will be set 

to null. 

 

Figure 81: Array Creation Benchmark Results 

The results show similar patterns within the PDA and the PC for allocating the 

arrays, although the PC has close to linear performance decline, whereas the PDA 

has exponential decline.  The difference in performance is about 1.5 orders of 

magnitude between the PDA and PC. 

C.4 Serialization 

Figure 82 presents the results from the Java Grande Suite serialization tests.  In 

these tests, various objects are serialized into a file and the throughput in bytes per 

second recorded.  Therefore, these results are not only the time taken to convert 

the object into bytes via serialization, but also the time taken to write said bytes to 

file. 

The PC generally has serialization throughput 2.5 orders of magnitude greater than 

that of the PDA.  Part of this throughput difference will be due to the I/O time for 

writing the bytes to the file. 
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Figure 82: Serialization Benchmark Results 

C.5 Multithreaded Benchmarks 

C.5.1 Fork / Join Time 

Figure 83 presents the results from the Java Grande Benchmark Suite fork / join 

test.  The fork / join test measures the time taken to fork the number of threads, 

and subsequently join the threads after they have all been forked.  Thus thread 

creation and subsequent destruction is captured.  The run method of each thread is 

trivial, and the benchmark removes this time from the results. 

 

Figure 83: Fork / Join Benchmark Results 
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scale used in the figure, which is as expected.  The decline is therefore exponential 

based on the number of threads increasing by a factor of two per test. 

C.5.2 Thread Synchronisation Time 

Figure 84 presents the results from the thread synchronisation tests within the Java 

Grande Benchmark Suite.  In these tests, the relative threads compete for access to 

a shared data object, either by using a synchronised method, or by using an object 

as a monitor lock. 

 

Figure 84: Synchronisation Benchmark Results 

As these results show, the PC performs these operations approximately two orders 

of magnitude faster than the PDA.  However, the result for 256 threads is 

considerably off scale in comparison to the others.  This feature is deemed to be an 

issue of the PDA trying to deal with too many threads competing for the shared 

resource, and is considered a false result. 

C.6 JCSP Specific Test Results 

C.6.1 CommsTime 

Figure 85 presents the results for the standard CommsTime test in JCSP.  The results 

represent the time – in microseconds – it takes for a Prefix, Parallel Delta and 

Successor process to produce a number.  These processes are connected together 

such that the sequence of natural numbers is produced.  The actual code definitions 

for these processes are available in Appendix H. 
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These processes can be used to test the communication time between two 

processes via a channel.  The figures presented represent the communication time 

over four channels, and thus the communication time per channel is this figure 

divided by four.  This can also lead to an approximation of the context switch time 

by further dividing this figure by two.  This does not take into consideration any 

time it might take for the internal processes of the Parallel Delta being started and 

subsequently completed, which incurs an internal synchronisation. 

 

Figure 85: CommsTime Benchmark Results 

Three separate CommsTime tests are presented: 

 CommsTime – is the CommsTime test performed using channels that 

communicate primitive int data. 

 CommsTimeSymmetric – is the CommsTime test performed using channels 

that communicate primitive int data and also have guarded output.  This is 

incorporated using an internal AltingBarrier within the channel. 

 CommsTimeObject – is the CommsTime test performed using Integer objects 

rather than primitive integers.  This incurs an overhead due to boxing and 

unboxing the value to allow arithmetic operations upon the internal 

primitive integer of the Integer object. 
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communicating an object and communicating a primitive integer using a channel.  

There is an overhead incurred by using an AltingBarrier within a channel however. 

C.6.2 Stressed Alternative 

Figure 86 presents results from various configurations of the Stress Alternative test 

within the PDA and the PC.  The configurations on the x-axis are the number of 

channels and the number of processes per channel.  Thus, 5 x 10 implies 5 channels 

connected to the reader, with each having 10 processes, for a total of 50 processes.  

The value presented is the time taken to select a ready channel fairly in an 

Alternative. 

 

Figure 86: Stressed Alt Benchmark Results 
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D.1 Serialization of Test Objects 

D.1.1 Java Grande Serialization Benchmarks 

Figure 87 through Figure 90 present the times taken to serialize and deserialize 

Integer object arrays of size 0 to 100, and the different test object types also 

ranging in size from 0 to 100.  These results are the Java Grande benchmark results, 

and thus include file I/O time.  The results represent the average time taken to 

serialize or deserialize an object in milliseconds. 

The phenomena in the PC serialization results (Figure 87), where TestObject2 and 

TestObject4 increase together and TestObject, TestObject3, and TestObject4 

increase together is directly attributable to the complexities of the different objects 

(see Table 2).  The number of unique objects for both TestObject2 and TestObject4 

increase by a factor of 4 relative to the size of the arrays, whereas the others only 

increase by a factor of 2. 

 

Figure 87: PC Java Grande Serialization Time 
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Figure 88: PC Java Grande Deserialization Time 

 

Figure 89: PDA Java Grande Serialization Time 

 

Figure 90: PDA Java Grande Deserialization Time 
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D.1.2 Serialization into Memory 

Figure 91 to Figure 94 presents the results from serializing and deserializing the test 

objects in memory.  The results presented are the average time in milliseconds to 

perform a single operation on the relevant object type and size. 

 

Figure 91: PC Memory Serialization Time 

 

 

Figure 92: PC Memory Deserialization Time 
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Figure 93: PDA Memory Serialization Time 

 

Figure 94: PDA Memory Deserialization Time 
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Figure 95: PC Sending Data 

 

 

 

 

Figure 96: PC Receiving Data 
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Figure 97: PDA Sending Data 

 

Figure 98: PDA Receiving Data 

D.2.2 New Send and Receive 

Figure 99 presents the times recorded for the PC to send large data packets using 

the new implementation of JCSP Networking, and Figure 100 presents the recorded 

times for the PC receiving large data sizes using the new JCSP Networking 

implementation.  Similarly, Figure 101 presents the times recorded for the PDA to 

send large data packets and Figure 102 presents the times for the PDA to receive 

large data packets. 
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Figure 99: PC Sending Data New JCSP 

 

 

 

 

Figure 100: PC Receiving Data New JCSP 
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Figure 101: PDA Sending Data New JCSP 

 

Figure 102: PDA Receiving Data New JCSP 

D.2.3 Roundtrip 

Figure 103 presents the times recorded on the PC during a roundtrip operation of 

large data sizes from the PC to the PDA and back.  Figure 104 presents the times 

recorded on the PC for this operation, but from the PDA to PC and back.  Figure 105 

presents the times recorded on the PDA during a roundtrip operation from the PDA 

to the PC and back, and Figure 106 presents the times recorded on the PDA for a 

roundtrip operation from the PC to the PDA and back. 
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Figure 103: PC Time PC to PDA Roundtrip Data 

 

 

 

 

Figure 104: PC Time PDA to PC Roundtrip Data 
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Figure 105: PDA Time PDA to PC Roundtrip Data 

 

Figure 106: PDA Time PC to PDA Roundtrip Data 

D.2.4 New Roundtrip 

Figure 107 presents the times recorded on the PC for a roundtrip operation of large 

data packets from the PC to the PDA using the new JCSP Networking 

implementation.  Figure 108 presents the times recorded on the PC for a roundtrip 

operation from the PDA to the PC and back using the new JCSP Networking 

implementation.  Figure 109 presents the times recorded on the PDA for a 

roundtrip from the PDA to the PC, whereas Figure 110 presents the times recorded 

on the PDA for a roundtrip operation from the PC to the PDA and back using the 

new JCSP Networking implementation. 
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Figure 107: PC Time PC to PDA New JCSP Roundtrip Data 

 

 

 

 

Figure 108: PC Time PDA to PC New JCSP Roundtrip Data 
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Figure 109: PDA Time PDA to PC New JCSP Roundtrip Data 

 

Figure 110: PDA Time PC to PDA New JCSP Roundtrip Data 
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Figure 111: PC Sending TestObject via Object Streams 

 

Figure 112: PDA Sending TestObject via Object Streams 

D.3.1.2 Networked Channels 

Figure 113 presents the expected sending time for the PC sending the various test 

objects using synchronous channels, and Figure 114 and Figure 115 present the 

actual recorded results for synchronous and asynchronous channels respectively.  

Likewise, Figure 116 presents the expected send times for the PDA using 

synchronous networked channels, with Figure 117 and Figure 118 presenting the 

actual results for synchronous and asynchronous channels respectively. 
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Figure 113: Expected PC Sending TestObject via Synchronous Networked Channels 

 

Figure 114: PC Sending TestObject via Synchronous Networked Channels 

 

Figure 115: PC Sending TestObject via Asynchronous Networked Channels 
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Figure 116: Expected PDA Sending TestObject via Synchronous Networked Channels 

 

Figure 117: PDA Sending TestObject via Synchronous Networked Channels 

 

Figure 118: PDA Sending TestObject via Asynchronous Networked Channels 
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D.3.1.3 New Networked Channels 

Figure 119 presents the expected results for the PC to synchronously send the test 

objects using the new JCSP Networking implementation, with Figure 120 and Figure 

121 presenting the actual recorded results for the PC sending via synchronous and 

asynchronous channels respectively.  Figure 122 presents the expected times for 

the PDA to send the test objects within the new JCSP Networking implementation, 

and Figure 123 and Figure 124 present the actual results for synchronous and 

asynchronous channels respectively. 

 

Figure 119: Expected PC Sending TestObject via New Synchronous Networked Channels 

 

Figure 120: PC Sending TestObject via New Synchronous Networked Channels 
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Figure 121: PC Sending TestObject via New Asynchronous Networked Channels 

 

Figure 122: Expected PDA Sending TestObject via New Synchronous Networked Channels 

 

Figure 123: PDA Sending TestObject via New Synchronous Networked Channels 
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Figure 124: PDA Sending TestObject via New Asynchronous Networked Channels 

D.3.2 Receiving  

D.3.2.1 Object Streams 

Figure 125 presents the results recorded for the PC to receive the test objects 

utilising object streams, whereas Figure 126 presents the times recorded for the 

PDA to receive the various test objects via object streams. 

 

Figure 125: PC Receiving TestObject via Object Streams 
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Figure 126: PDA Receiving TestObject via Object Streams 

D.3.2.2 Networked Channels 

Figure 127 presents the recorded times for the PC to receive the test objects via 

synchronous networked channels in the original JCSP Networking implementation, 

and Figure 128 presents the recorded times for the PC to receive the test objects via 

asynchronous channels.  Figure 129 presents the recorded times for the PDA to 

receive the test objects using synchronous channels, whereas Figure 130 presents 

the times recorded for the PDA to receive the test objects via asynchronous 

channels. 

 

Figure 127: PC Receiving TestObject via Synchronous Networked Channels 

0

100

200

300

400

500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

100

200

300

400

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5



Appendix D: Experimentation Results 257 

 

 

Figure 128: PC Receiving TestObject via Asynchronous Networked Channels 

 

Figure 129: PDA Receiving TestObject via Synchronous Networked Channels 

 

Figure 130: PDA Receiving TestObject via Asynchronous Networked Channels 

0

100

200

300

400

500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

500

1000

1500

2000

2500

3000

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

200

400

600

800

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5



Appendix D: Experimentation Results 258 

 

D.3.2.3 New Networked Channels 

Figure 131 presents the recorded times for the PC to receive the test objects via 

synchronous channels in the new JCSP Networking implementation, and Figure 132 

presents the results for the PC to receive the test objects asynchronously.  Figure 

133 presents the results for the PDA to receive the test objects synchronously 

within the new JCSP Networking implementation, whereas Figure 134 presents the 

times recorded for the PDA to receive the test objects using asynchronous channels. 

 

Figure 131: PC Receiving TestObject via Synchronous New Networked Channels 

 

Figure 132: PC Receiving TestObject via Asynchronous New Networked Channels 
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Figure 133: PDA Receiving TestObject via Synchronous New Networked Channels 

 

Figure 134: PDA Receiving TestObject via Asynchronous New Networked Channels 

D.3.3 Roundtrip  
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Figure 135: PC Time PC to PDA TestObject Roundtrip via Object Streams 

 

Figure 136: PC Time PDA to PC TestObject Roundtrip via Object Streams 

 

Figure 137: PDA Time PDA to PC TestObject Roundtrip via Object Streams 
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Figure 138: PDA Time PC to PDA TestObject Roundtrip via Object Streams 

D.3.3.2 Networked Channels 

Figure 139 presents the times recorded on the PC for a synchronous networked 

channel roundtrip operation with the test objects from the PC to PDA and back, 

whereas Figure 140 presents the times recorded on the PC for the same operation 

asynchronously.  Figure 141 presents the times recorded for a synchronous 

networked channel roundtrip operation with the test objects from the PDA to PC 

and back, with Figure 142 presenting the results for this operation using 

asynchronous channels.  

 

Figure 139: PC Time PC to PDA TestObject Roundtrip via Synchronous Networked Channels 
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Figure 140: PC Time PC to PDA TestObject Roundtrip via Asynchronous Networked Channels 

 

Figure 141: PC Time PDA to PC TestObject Roundtrip via Synchronous Networked Channels 

 

Figure 142: PC Time PDA to PC TestObject Roundtrip via Asynchronous Networked Channels 
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Figure 143 presents the times recorded on the PDA for a synchronous networked 

channel roundtrip operation from the PDA to PC and back using the test objects, 

with Figure 144 presenting the results for this operation performed asynchronously.  

Figure 145 presents the results recorded on the PDA for a synchronous roundtrip 

operation from the PC to the PDA and back, and Figure 146 presents the recorded 

times for this operation performed asynchronously. 

 

Figure 143: PDA Time PDA to PC TestObject Roundtrip via Synchronous Networked Channels 

 

Figure 144: PDA Time PDA to PC TestObject Roundtrip via Asynchronous Networked Channels 
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Figure 145: PDA Time PC to PDA TestObject Roundtrip via Synchronous Networked Channels 

 

Figure 146: PDA Time PC to PDA TestObject Roundtrip via Asynchronous Networked Channels 
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Figure 147: PC Time PC to PDA TestObject Roundtrip via Synchronous New Networked Channels 

 

Figure 148: PC Time PC to PDA TestObject Roundtrip via Asynchronous New Networked Channels 

 

Figure 149: PC Time PDA to PC TestObject Roundtrip via Synchronous New Networked Channels 
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Figure 150: PC Time PDA to PC TestObject Roundtrip via Asynchronous New Networked Channels 

Figure 151 presents the results recorded on the PDA for a synchronous roundtrip 

operation from the PDA to the PC and back, using the new implementation of JCSP 

Networking and the test objects.  Figure 152 provides the asynchronous results for 

this operation.  Figure 153 presents the PDA recorded times for synchronous test 

object roundtrip operations from the PC to PDA and back using the new JCSP 

Networking implementation, whereas Figure 154 presents the times recorded for 

these operations performed asynchronously. 

 

Figure 151: PDA Time PDA to PC TestObject Roundtrip via Synchronous New Networked Channels 
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Figure 152: PDA Time PDA to PC TestObject Roundtrip via Asynchronous New Networked Channels 

 

Figure 153: PDA Time PC to PDA TestObject Roundtrip via Synchronous New Networked Channels 

 

Figure 154: PDA Time PC to PDA TestObject Roundtrip via Asynchronous New Networked Channels 

 

0

1000

2000

3000

4000

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

500

1000

1500

2000

2500

3000

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5

0

500

1000

1500

2000

2500

0 25 50 75 100

Ti
m

e
 m

s

Size of Internal Object Arrays

Integers TestObject TestObject2

TestObject3 TestObject4 TestObject5



 

Appendix E Network Protocol Definition 

 

E.1 Channel Messages 

Message Value Description 

SEND 1 A data message sent from a NetChannelOutput to a 
NetChannelInput.  This takes the form (SEND, <destination>, 
<source>, <size>, <bytes>). 

ACK 2 The acknowledgement sent from a NetChannelInput to the 
sending NetChannelOutput.  This takes the form (ACK, 
<destination>, -1). 

REJECT_CHANNEL 8 Sent to a Node to indicate that a previous SEND message was 
rejected at the receiving Node for some reason.  This takes the 
form (REJECT_CHANNEL, <destination>, -1). 

POISON 12 A message sent to indicate that a channel end should 
poisoned.  The message needs to indicate the destination and 
the strength of the poison.  This takes the form (POISON, 
<destination>, <strength>). 

ASYNC_SEND 13 An unacknowledged send message.  This is kept in for legacy 
reasons at present, and will likely be removed in the future.  
This takes the form (ASYNC_SEND, <destination>, <source>, 
<size>, <bytes>). 

E.2 Barrier Messages 

Message Value Description 

SYNC 5 A synchronisation from a NetBarrier client to a NetBarrier 
server.  This takes the form (SYNC, <destination>, <source>). 

RELEASE 6 A message sent from the NetBarrier server end to a NetBarrier 
client end to indicate that all client ends have synchronised and 
can now continue.  This takes the form (RELEASE, <destination>, 
-1). 

ENROLL 3 Sent from a NetBarrier client end to a NetBarrier server end to 
indicate that it is joining the set of synchronising NetBarrier 
ends.  This takes the form (ENROLL, <destination>, -1). 

RESIGN 4 Sent from a NetBarrier client end to a NetBarrier server end to 
indicate that it is resigning from the set of synchronising 
NetBarrier ends.  This takes the form (RESIGN, <destination>, -
1). 

REJECT_BARRIER 7 Sent to a Node to indicate that a previous barrier message was 
rejected at the receiving Node for some reason.  This can be 
sent to both server and client NetBarrier ends.  This takes the 
form (REJECT_BARRIER, <destination>, -1). 
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E.3 Connection Messages 

Message Value Description 

OPEN 14 Opens a connection communication from a client 
connection end to a server connection end.  This 
includes a data message that is the initial request to 
the connection.  This takes the form (OPEN, 
<destination>, <source>, <size>, <bytes>). 

REQUEST 15 A request data message sent from the connection 
client end to the connection server end.  This is 
basically the same as the OPEN message, but is used 
when an ongoing communication is occurring.  This 
takes the form (REQUEST, <destination>, <source>, 
<size>, <bytes>). 

REPLY 16 A reply data message sent from the connection server 
end to the connection client end.  This takes the form 
(REPLY, <destination>, <source>, <size>, <bytes>). 

REPLY_AND_CLOSE 17 A reply message sent from the server end to the 
connection end, and also closes the communication.  
This takes the form (REPLY_AND_CLOSE, 
<destination>, <source>, <size>, <bytes>). 

REQUEST_ACK 22 An acknowledgement sent from the server 
connection end to the client end.  This message is 
used to acknowledge both OPEN and REQUEST 
messages.  It takes the form (REQUEST_ACK, 
<destination>, -1). 

REPLY_ACK 23 An acknowledgement sent from the client connection 
end to the server end.  This message is used to 
acknowledge both REPLY and REPLY_AND_CLOSE 
messages.  It takes the form (REPLY_ACK, 
<destination>, -1). 

ASYNC_OPEN 18 An unacknowledged open connection message.  As 
any connection interaction takes the form request-
reply, there is no risk of infinite buffer increasing as 
the NetConnectionClient must call reply before 
performing another ASYNC_OPEN.  This takes the 
form (ASYNC_OPEN, <destination>, <source>, <size>, 
<bytes>). 

ASYNC_REQUEST 19 An unacknowledged request message.  This takes the 
form (ASYNC_REQUEST, <destination>, <source>, 
<size>, <bytes>). 

ASYNC_REPLY 20 An unacknowledged reply message.  This takes the 
form (ASYNC_REPLY, <destination>, <source>, <size>, 
<bytes>). 

ASYNC_REPLY_AND_CLOSE 21 An unacknowledged reply message that closes the 
connection.  (ASYNC_REPLY_AND_CLOSE, 
 <destination>, <source>, <size>, <bytes>). 

REJECT_CONNECTION 24 Sent to a Node to indicate that a previous connection 
message was rejected.  This can be sent from both 
the client and server end.  It takes the form 
(REJECT_CONNECTION, <destination>, -1). 
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E.4 Miscellaneous Messages 

Message Value Description 

LINK_LOST 9 Sent to an event component to indicate that the Link it was operating 
on has failed for some reason.  All event component types use this 
message in some form.  A NetChannelOutput is sent LINK_LOST to 
indicate that the Link to the NetChannelInput has failed.  The 
NetBarrier client end is sent this message to indicate that the 
connection to the server end has gone, and therefore the NetBarrier 
fails.  The NetBarrier server end receives this message when one of its 
client ends has become disconnected, and the server end should act 
accordingly.  A connection end receives this message if the other end 
of the connection has gone.  A client end is broken, whereas the 
server end may continue after disassociating itself from the client. 

 

 



 

Appendix F SPIN Model of New JCSP Network 
Architecture 

 

/* Define the possible states of the channel. 
   These are set constants. */ 
 
#define INACTIVE  0 
#define OK_INPUT 1 
#define OK_OUTPUT 2 
#define DESTROYED 3 
#define BROKEN 4 
#define POISONED 5 
 
/* Define return values from a call on a channel. 
   These are set constants. */ 
 
#define OK 1 
#define EXCEPTION 0 
 
/* Define number of of input channels, number outputs to inputs 
   and buffer size of the channels. */ 
 
#define NUMBER_INPUTS 1 
#define NUMBER_OUTPUTS 1 
#define TOTAL_OUTPUTS 1 
#define BUFFER_SIZE 1 
 
/* Protocol definition */ 
 
mtype = { 
  SEND,    /* A standard send message to a ChannelInput */ 
  ACK,     /* An acknowledgement for a SEND */ 
  REJECT_CHANNEL,    /* Rejection of a channel message */ 
  LINK_LOST,    /* Link to Node lost */ 
  POISON};      /* Poison message */  
 
/* ********** TYPE DEFINITIONS ********** */ 
 
/* The channel data state object.  This retains information  
about a channel to allow operation. */ 
 
typedef CHANNEL_DATA 
{ 
  byte vcn;    /* The Virtual Channel Number of the channel.  
                  Used to uniquelly identify the channel in  
                  the Node. */ 
  byte state = INACTIVE;    /* The current state of the channel. 
                               Initially the channel is set to 
                               INACTIVE. */ 
  chan toChannel;    /* The channel connecting the Link level with 
                        the Net Channel. The Net Channel reads 
                        from this channel, whereas the Link writes  
                        to it. */ 
}; 
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/* The input channel interface.  We bundle this together to make 
   things easier. */ 
 
typedef INPUT_CHANNEL_INTERFACE 
{ 
  /* Channel written to when a read operation occurs */ 
  chan read = [0] of { bool }; 
  /* Channel written to when an extended read operation is begun */ 
  chan startRead = [0] of { bool }; 
  /* Channel written to when an extended read operation is  
     completed */ 
  chan endRead = [0] of { bool }; 
  /* Channel written to when the channel is poisoned by the  
     application */ 
  chan poison = [0] of { bool }; 
  /* Channel written to when the channel is destroyed by the 
     application */ 
  chan destroy = [0] of { bool }; 
  /* Channel read from to simulate the return from the method 
     call */ 
  chan callReturn = [0] of { bit }; 
}; 
 
/* The output channel interface.  We bundle this together to make  
   things easier */ 
 
typedef OUTPUT_CHANNEL_INTERFACE 
{ 
  /* Channel written to when a write operation occurs */ 
  chan write = [0] of { bool }; 
  /* Channel written to when the channel is poisoned by  
     the application */ 
  chan poison = [0] of { bool }; 
  /* Channel written to when the channel is destroyed by  
     the application */ 
  chan destroy = [0] of { bool }; 
  /* Channel read from to simulate the return from the method  
     call */ 
  chan callReturn = [0] of { bit }; 
}; 
 
/* The channels declared for a Node */ 
 
typedef CHANNEL_ARRAY 
{ 
  CHANNEL_DATA channels[TOTAL_OUTPUTS]; 
}; 
 
/* ********** GLOBALS ********** */ 
 
/* Global flag used to signal link failure to the Application 
   processes.  We use this to get round the problem if a Link fails 
   while a channel input is committed in a read operation. We 
   essentially know that this will cause the application process to 
   break, as it has no one to read from.  However, this should not  
   be seen as a fault of the architecture, as the net channels are 
   any-2-one, so another connection might later be established. 
   The flag is false and is set to true when the Network fails, and 
   the input channels can safely die. */ 
 
byte linkLost = false; 
 
/* The channels for each Node.  The writing Node has one, and the 
   reading Node also has one */ 
 
CHANNEL_ARRAY chans[2]; 
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/* ********** PROCESSES ********** */ 
 
/* A network connection, simulated by a process to allow network 
   failure and network buffering to occur. */ 
 
proctype Network(chan in0; chan in1; chan out0; chan out1) 
{ 
  /* Network reads in message type and two attributes. */ 
  mtype type; 
  byte attr1; 
  byte attr2; 
  /* Either read in a message and output it, or break  
     the connection */ 
  /* Valid end state for network.  Waiting to stream message */ 
end_network: 
  do 
  /* Stream message */ 
  :: atomic  
     {  
       in0 ? type, attr1, attr2 -> out1 ! type, attr1, attr2  
     } 
  /* Stream message */ 
  :: atomic  
     {  
       in1 ? type, attr1, attr2 -> out0 ! type, attr1, attr2  
     } 
  /* Non deterministically choose to break link.  Connection  
     down */ 
  :: atomic 
     { 
       linkLost = true -> 
       /* Send connected Nodes the LINK_LOST message */ 
       out0 ! LINK_LOST(-1, -1); 
       out1 ! LINK_LOST(-1, -1); 
       /* End network process */ 
     } 
     break; 
  od 
} 
 
/* A NetChannelOutput */ 
 
proctype NetChannelOutput(OUTPUT_CHANNEL_INTERFACE interface;  
                          chan toLinkTx; chan ackChannel; 
                          CHANNEL_DATA data; byte remoteVCN) 
{ 
  /* The response from the Link */ 
  mtype response; 
 
  /* Valid end state for output channel.  Channel is awaiting a 
     method call */ 
end_nco: 
  do 
  /* Write operation */ 
  :: interface.write ? _ -> 
      /* Check the channel state first, and return exception if 
         necessary */ 
    if 
    :: atomic  
       {  
         (data.state == DESTROYED) ->  
           interface.callReturn ! EXCEPTION  
       } 
    :: atomic  
       {  
         (data.state == BROKEN) ->  
           interface.callReturn ! EXCEPTION  
       } 
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    :: atomic  
       {  
         (data.state == POISONED) ->  
           interface.callReturn ! EXCEPTION  
       } 
    /* Otherwise channel in OK state.  Continue write operation */ 
    :: else -> 
         if 
         /* Check if there are any residual messages.  The 
            channel may have been rejected, or the Link might 
            have failed */ 
         :: atomic 
            { 
              (nempty(ackChannel)) -> 
                /* There is a residual message.  Process it. */ 
                ackChannel ? response; 
                if 
                /* A previous send was rejected.  Break channel */ 
                :: (response == REJECT_CHANNEL) ->  
                     data.state = BROKEN; 
                     interface.callReturn ! EXCEPTION 
                /* The network has gone down.  Break channel */ 
                :: (response == LINK_LOST) ->  
                     data.state = BROKEN; 
                     interface.callReturn ! EXCEPTION 
                /* Poison received.  Poison channel */ 
                :: (response == POISON) ->  
                     data.state = POISONED; 
                     interface.callReturn ! EXCEPTION 
                /* Otherwise an unexpected message has been  
                   received.  Fail */ 
                :: else -> assert(false) 
                fi 
            } 
         /* There are no residual messages.  Continue write  
            operation. */ 
         :: else -> 
              /* Send message to the Link.  Destination at 
                 receiving Node is remoteVCN and local 
                 sender is data.vcn */ 
              toLinkTx ! SEND(remoteVCN, data.vcn); 
              /* Now wait for a response */ 
              atomic 
              { 
                ackChannel ? response; 
                /* Now process the message */ 
                if 
                /* SEND was rejected.  Break channel */ 
                :: (response == REJECT_CHANNEL) -> 
                     data.state = BROKEN;  
                     interface.callReturn ! EXCEPTION 
                /* Network has gone down.  Return exception */ 
                :: (response == LINK_LOST) ->  
                     data.state = BROKEN; 
                     interface.callReturn ! EXCEPTION 
                /* Channel has been poisoned. */ 
                :: (response == POISON) ->  
                     data.state = POISONED;  
                     interface.callReturn ! EXCEPTION 
                /* ACK received. */ 
                :: (response == ACK) -> 
                     interface.callReturn ! OK 
                /* Unexpected message.  Fail */ 
                :: else -> assert(false) 
                fi 
              } 
         fi; 
    fi; /* End of write operation */ 
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  /* The application has poisoned the channel */ 
  :: interface.poison ? _ -> 
       /* First check the status of the channel.  If the channel is 
          BROKEN, DESTROYED, or POISONED we simply return */ 
       if 
       :: atomic  
          {  
            (data.state == DESTROYED) -> 
              interface.callReturn ! OK  
          } 
       :: atomic  
          {  
            (data.state == BROKEN) -> 
              interface.callReturn ! OK  
          } 
       :: atomic  
          {  
            (data.state == POISONED) -> 
              interface.callReturn ! OK  
          } 
       /* Otherwise channel in OK state.  Continue with poisoning */ 
       :: else -> 
            /* Check for pending messages.  This could mean the 
               channel is broken, in which case poisoning can  
               be ignored */ 
            if 
            :: atomic 
               { 
                 (nempty(ackChannel)) -> 
                   /* There is a residual message. Process it. */ 
                   ackChannel ? response; 
                   if 
                   /* A previous send was rejected. Break channel, 
                      and return OK */ 
                   :: (response == REJECT_CHANNEL) ->  
                        data.state = BROKEN;  
                        interface.callReturn ! OK 
                   /* The network has gone down.  Break channel and 
                      return OK. */ 
                   :: (response == LINK_LOST) ->  
                        data.state = BROKEN;  
                        interface.callReturn ! OK 
                   /* Poison received.  Poison channel as this was 
                      going to happen anyway, and then return */ 
                   :: (response == POISON) ->  
                        data.state = POISONED;  
                        interface.callReturn ! OK 
                   /* Otherwise an unexpected message has been 
                      received.  Fail */ 
                   :: else -> assert(false) 
                   fi 
               } 
            /* There are no residual messages.  Continue poison 
               operation. */ 
            :: atomic 
               { 
                  empty(ackChannel) -> 
                    /* Set state to POISONED, send poison to input  
                       end, and return */ 
                    data.state = POISONED; 
                    toLinkTx ! POISON(remoteVCN, -1); 
                    interface.callReturn ! OK 
               } 
            fi; 
       fi; /* End of poison operation */ 
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  /* Channel is being destroyed by the application */ 
  :: interface.destroy ? _ -> 
       /* First check the status of the channel.  We may not need to 
          do anything */ 
       if 
       :: atomic  
          {  
            (data.state == DESTROYED) ->  
              interface.callReturn ! OK  
          } 
       :: atomic  
          {  
            (data.state == BROKEN) ->  
              data.state = DESTROYED;  
              interface.callReturn ! OK  
          } 
       :: atomic  
          {  
            (data.state == POISONED) ->  
              data.state = DESTROYED;  
              interface.callReturn ! OK  
          } 
       /* Otherwise we need to set the state to destroyed, remove  
          any pending messages, and return OK */ 
       :: else -> 
            atomic 
            { 
              data.state = DESTROYED; 
              do 
              :: (nempty(ackChannel)) -> ackChannel ? response 
              :: (empty(ackChannel)) -> break 
              od; 
              interface.callReturn ! OK 
            } 
       fi; /* End of destroy operation */ 
  od 
} 
 
/* A networked input channel */ 
 
proctype NetChannelInput(INPUT_CHANNEL_INTERFACE interface;  
                         chan fromLink; CHANNEL_DATA data) 
{ 
  /* Variables used to store incoming message */ 
  mtype type; 
  byte returnIdx; 
  chan toLink; 
 
  /* Flag to indicate if the channel is in an extended read state.  
     In the implementation we are actually testing for nullity of  
     the last read message, but this flag serves the same purpose */ 
  bool extended = false; 
  /* Valid end state for channel input.  Channel waiting for  
     application call */ 
end_nci: 
  do 
  /* Read operation */ 
  :: interface.read ? _ -> 
      /* First check state of channel and act accordingly */ 
      if 
      :: atomic  
         {  
           (data.state == DESTROYED) ->  
             interface.callReturn ! EXCEPTION  
         } 
      :: atomic  
         {  
           (data.state == POISONED) ->  
             interface.callReturn ! EXCEPTION  
         } 
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       :: atomic  
          {  
            (data.state == BROKEN) ->  
              interface.callReturn ! EXCEPTION  
          } 
       :: atomic  
          {  
            extended -> interface.callReturn ! EXCEPTION  
          } 
       /* Otherwise continue read operation */ 
       :: else -> 
            if 
            /* Read in next message */ 
            :: atomic 
               { 
                  fromLink ? type, returnIdx, toLink -> 
                    /* Check message type and act accordingly */ 
                    if 
                    /* SEND received.  Complete read operation */ 
                    :: (type == SEND) -> 
                         /* Send back ACK message */ 
                         toLink ! ACK(returnIdx, -1); 
                         /* Return OK */ 
                         interface.callReturn ! OK; 
                    /* Poison received.  Poison the channel */ 
                    :: (type == POISON) -> 
                         /* Change state to poisoned */ 
                         data.state = POISONED; 
                         /* Send poison to any incoming messages */ 
                         do 
                         :: (nempty(fromLink)) -> 
                              /* There is an incoming message. 
                                 Process it */ 
                              fromLink ? type, returnIdx, toLink; 
                              if 
                              :: (type == SEND) ->  
                                   toLink ! POISON(returnIdx, -1) 
                              :: else -> skip 
                              fi; 
                         :: (empty(fromLink)) ->  
                              break /* No more pending messages */ 
                         od; 
                         /* Return EXCEPTION */ 
                         interface.callReturn ! EXCEPTION; 
                    /* Otherwise an unknown message has been 
                       received.  Fail */ 
                    :: else -> assert(false) 
                    fi; 
                } 
             /* All incoming Links are gone.  Read cannot complete, 
                so set state to broken and return */ 
            :: atomic  
               {  
                 linkLost ->  
                   data.state = BROKEN;  
                   interface.callReturn ! EXCEPTION  
               } 
            fi;  
       fi; /* End of read operation */ 
  /* Start extended read operation */ 
  :: interface.startRead ? _ -> 
       /* First check the state of the channel and act  
          accordingly */ 
       if 
       :: atomic  
          {  
            (data.state == DESTROYED) ->  
              interface.callReturn ! EXCEPTION  
          } 
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       :: atomic  
          {  
            (data.state == POISONED) ->  
              interface.callReturn ! EXCEPTION  
          } 
       :: atomic  
          {  
            (data.state == BROKEN) ->  
              interface.callReturn ! EXCEPTION  
          } 
       :: atomic  
          {  
            extended -> interface.callReturn ! EXCEPTION  
          } 
       /* Otherwise continue extended read operation */ 
       :: else -> 
            if 
            /* Read in next message */ 
            :: atomic 
               { 
                 fromLink ? type, returnIdx, toLink -> 
                   /* Check message type and act accordingly */ 
                   if 
                   /* SEND received.  Complete read operation */ 
                   :: (type == SEND) -> 
                        /* Set extended to true and return */  
                        extended = true; 
                        /* Return OK */ 
                        interface.callReturn ! OK; 
                   /* Poison received.  Poison the channel */ 
                   :: (type == POISON) -> 
                        /* Change state to poisoned */ 
                        data.state = POISONED; 
                        /* Send poison to any incoming messages */ 
                        do 
                        :: (nempty(fromLink)) -> 
                             /* There is an incoming message. 
                                Process it */ 
                             fromLink ? type, returnIdx, toLink; 
                             if 
                             :: (type == SEND) ->  
                                  toLink ! POISON(returnIdx, -1) 
                             :: else -> skip 
                             fi; 
                       :: (empty(fromLink)) ->  
                            break /* No more pending messages */ 
                       od; 
                       /* Return EXCEPTION */ 
                       interface.callReturn ! EXCEPTION; 
                       /* Otherwise an unknown message has been  
                          received.  Fail */ 
                  :: else -> assert(false) 
                  fi; 
              } 
           /* All incoming Links are gone.  Extended read cannot 
              complete, so set state to broken and return */ 
           :: atomic  
              {  
                linkLost ->  
                  data.state = BROKEN;  
                  interface.callReturn ! EXCEPTION  
              } 
           fi;  
      fi; /* End of start read operation */ 
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  /* End extended read operation */ 
  :: interface.endRead ? _ -> 
       /* First check state of channel. */ 
       if 
       :: atomic  
          {  
            (data.state == DESTROYED) ->  
              interface.callReturn ! EXCEPTION  
          } 
       :: atomic  
          {  
            (data.state == POISONED) ->  
              interface.callReturn ! EXCEPTION  
          } 
       :: atomic  
          {  
            (data.state == BROKEN) ->  
              interface.callReturn ! EXCEPTION  
          } 
       :: atomic  
          {  
            (!extended) ->  
              interface.callReturn ! EXCEPTION  
          } 
       /* Otherwise send acknowledgement message */ 
       :: atomic  
          {  
            else ->  
              extended = false;  
              toLink ! ACK(returnIdx, -1);  
              interface.callReturn ! OK  
          } 
       fi; /* End of end extended read operation */ 
  /* Poison channel operation */ 
  :: interface.poison ? _ -> 
       /* First check the state of the channel.  Nothing may need  
          to be done */ 
       if 
       :: atomic  
          {  
            (data.state == DESTROYED) -> interface.callReturn ! OK  
          } 
       :: atomic  
          {  
            (data.state == POISONED) -> interface.callReturn ! OK  
          } 
       :: atomic  
          {  
            (data.state == BROKEN) -> interface.callReturn ! OK  
          } 
       /* Otherwise continue poison operation */ 
       :: else -> 
            atomic 
            { 
              /* If the channel is extended, the previous message 
                 needs to be acked by poison */ 
              if 
              :: extended -> toLink ! POISON(returnIdx, -1) 
              :: else -> skip 
              fi; 
              /* Set state to poisoned and process any pending 
                 messages */ 
              /* Change state to poisoned */ 
              data.state = POISONED; 
              /* Send poison to any incoming messages */ 
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              do 
              :: (nempty(fromLink)) -> 
                   /* There is an incoming message.  Process it */ 
                   fromLink ? type, returnIdx, toLink; 
                   if 
                   :: (type == SEND) ->  
                        toLink ! POISON(returnIdx, -1) 
                   :: else -> skip 
                   fi; 
              :: (empty(fromLink)) ->  
                   break /* No more pending messages */ 
              od; 
              /* Return OK */ 
              interface.callReturn ! OK; 
            } 
       fi; /* End of poison operation */ 
  /* Destroy channel operation operation */ 
  :: interface.destroy ? _ -> 
       /* First check the state of the channel.  Nothing may need to 
          be done */ 
       if 
       :: atomic  
          {  
            (data.state == DESTROYED) -> interface.callReturn ! OK  
          } 
       :: atomic  
          {  
            (data.state == POISONED) ->  
              data.state = DESTROYED;  
              interface.callReturn ! OK  
          } 
       :: atomic  
          {  
            (data.state == BROKEN) ->  
              data.state = DESTROYED;  
              interface.callReturn ! OK  
          } 
       /* Otherwise continue destroy operation */ 
       :: else -> 
            atomic 
            { 
              /* If the channel is extended, the previous message 
                 needs to be rejected */ 
              if 
              :: extended -> toLink ! REJECT_CHANNEL(returnIdx, -1)  
              :: else -> skip 
              fi; 
              /* Set state to destroyed and process any pending 
                 messages */ 
              /* Change state to destroyed */ 
              data.state = DESTROYED; 
              /* Send rejection to any incoming messages */ 
              do 
              :: (nempty(fromLink)) -> 
                   /* There is an incoming message.  Process it */ 
                   fromLink ? type, returnIdx, toLink; 
                   if 
                   :: (type == SEND) ->  
                        toLink ! REJECT_CHANNEL(returnIdx, -1) 
                   :: else -> skip 
                   fi; 
              :: (empty(fromLink)) ->  
                   break /* No more pending messages */ 
              od; 
              /* Return OK */ 
              interface.callReturn ! OK; 
            } 
       fi; /* End of destroy operation */ 
  od 
} 
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/* The TX process of the Link */ 
 
proctype LinkTx(chan input; chan txStream) 
{ 
  mtype type; 
  byte attr1; 
  byte attr2; 
 
  /* The point of this process is to forward whatever message it 
     receives onto the network *EXCEPT* when the network has gone 
     down.  We simulate this with the linkFailed flag, so the LinkTx 
     must also check this flag when it tries to send */ 
  /* Valid end state for LinkTx.  Waiting for message to forward */ 
end_ltx1: 
  do 
  :: input ? type, attr1, attr2 -> 
       if 
       /* Network still up, we can send */ 
       :: txStream ! type, attr1, attr2 
       /* Network is down. We now accept any incoming messages, but 
          do not forward them onto the stream. The sender should be 
          informed by the LinkRx.  Valid end state, waiting for 
          message to black hole */ 
       :: linkLost -> 
end_ltx2: 
            do 
            :: input ? type, attr1, attr2 
            od 
       fi 
  od 
} 
 
/* The RX process of the Link */ 
 
proctype LinkRx(chan toTxProcess; chan rxStream; bit nodeNumber) 
{ 
  /* Attributes read in with incoming message */ 
  byte attr1; 
  byte attr2; 
 
  /* This process reads an incoming message from the message and 
     processes it.  Generally the message is forwarded onto the 
     correct destination, although erroneous behaviour must be dealt 
     with */ 
  /* Valid end state.  Waiting for input from the network */ 
end_lrx: 
  do 
  /* SEND received.  */ 
  :: atomic 
     { 
       rxStream ? SEND(attr1, attr2) -> 
         /* First check if the message is going to a valid  
            channel */ 
         if 
         /* Destination channel is outside range.  Reject message */ 
         :: (attr1 > TOTAL_OUTPUTS) ->  
              toTxProcess ! REJECT_CHANNEL(attr2, -1) 
         :: else -> 
              /* Message is for a valid channel.  Check channel 
                 state and deal with accordingly */ 
              if 
              :: (chans[nodeNumber].channels[attr1].state  
                                              == OK_INPUT) -> 
                   /* Channel is OK to receive messages.  Forward 
                      the message onto the channel process */ 
                   chans[nodeNumber].channels[attr1].toChannel  
                                     ! SEND(attr2, toTxProcess) 
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              :: (chans[nodeNumber].channels[attr1].state  
                                              == POISONED) -> 
                   /* Channel has been poisoned.  Propagate the  
                      poison back to the writer */ 
                   toTxProcess ! POISON(attr2, 0) 
              :: (chans[nodeNumber].channels[attr1].state  
                                             == DESTROYED) -> 
                   /* Channel has been destroyed.  Reject the 
                      message */ 
                   toTxProcess ! REJECT_CHANNEL(attr2, 0) 
              :: (chans[nodeNumber].channels[attr1].state  
                                                == BROKEN) -> 
                   /* Channel is broken.  This should only happen 
                      during Link failure, but be safe and reject */ 
                   toTxProcess ! REJECT_CHANNEL(attr2, 0) 
              :: else -> 
                   /* Channel is in some other state.  This could be 
                      a channel trying to send to an output or some 
                      other problem.  We reject the message in this 
                      instance and continue */ 
                   toTxProcess ! REJECT_CHANNEL(attr2, 0) 
              fi 
         fi 
     } 
  /* Acknowledgement operation */ 
  :: atomic 
     { 
       rxStream ? ACK(attr1, attr2) -> 
         /* First check if the message is going to a valid  
            channel */ 
         if 
         /* Destination channel is outside range.  Ignore message */ 
         :: (attr1 > TOTAL_OUTPUTS) -> skip 
         :: else -> 
              /* Message is for a valid channel.  Check channel 
                 state and deal with accordingly */ 
              if 
              :: (chans[nodeNumber].channels[attr1].state  
                                             == OK_OUTPUT) -> 
                   /* ACK being sent to an output channel.  Forward 
                      the message onto the channel process */ 
                   chans[nodeNumber].channels[attr1].toChannel ! ACK 
                   /* In all other cases, we drop the message. The 
                      message has been sent to a channel that was 
                      not in a state to accept it. */ 
              :: else -> skip                      
              fi 
         fi 
     } 
  /* Reject channel message received */ 
  :: atomic 
     { 
       rxStream ? REJECT_CHANNEL(attr1, attr2) -> 
         /* First check if the message is going to a valid 
            channel */ 
         if 
         /* Destination channel is outside range.  No point in 
            rejecting (we could end up with a continuous cycle of 
            rejects). Simply ignore the message. */ 
         :: (attr1 > TOTAL_OUTPUTS) -> skip 
         :: else -> 
              /* Message is for a valid Channel.  Check channel 
                 state and deal with accordingly */ 
              if 
              :: (chans[nodeNumber].channels[attr1].state  
                                             == OK_OUTPUT) -> 
                   /* Channel can accept the reject message.  Pass 
                      onto the channel process */ 
                   chans[nodeNumber].channels[attr1].toChannel  
                                              ! REJECT_CHANNEL 



Appendix F: SPIN Model of New JCSP Network Architecture 283 

 

              /* In all other cases ignore the message.  The channel  
                 is in no state to receive it */ 
              :: else -> skip 
              fi 
         fi 
     } 
  /* Poison message received */ 
  :: atomic 
     { 
       rxStream ? POISON(attr1, attr2) -> 
         /* First check if the message is going to a valid  
            channel */ 
         if 
         /* Destination channel is outside range.  No point in 
            rejecting (we could end up with a continuous cycle of 
            rejects). Simply ignore the message. */ 
         :: (attr1 > TOTAL_OUTPUTS) -> skip 
         :: else -> 
              /* Message is for a valid Channel.  Check channel 
                 state and deal with accordingly */ 
              if 
              :: (chans[nodeNumber].channels[attr1].state  
                                             == OK_OUTPUT) -> 
                   /* Channel is an output.  Simply send POISON to 
                      it. */ 
                   chans[nodeNumber].channels[attr1].toChannel  
                                                      ! POISON 
              :: (chans[nodeNumber].channels[attr1].state  
                                              == OK_INPUT) -> 
                   /* Channel is an input.  Simply send POISON to  
                      it */ 
                   chans[nodeNumber].channels[attr1].toChannel  
                                         ! POISON(attr1, attr2) 
              /* In all other cases we ignore the poison. Either the 
                 channel is poisoned, and in the Model nothing else 
                 needs to be done (in the implementation we increase 
                 the poison strength if necessary), or it is 
                 destroyed or broken, which is considered to be 
                 greater than poison */ 
              :: else -> skip 
              fi 
         fi 
     } 
  /* Link lost received */ 
  :: rxStream ? LINK_LOST(attr1, attr2) -> 
       atomic 
       { 
         /* Inform all output ends */ 
         byte idx = 0; 
         do 
         :: (idx < TOTAL_OUTPUTS) -> 
              if 
              :: (chans[nodeNumber].channels[idx].state  
                                           == OK_OUTPUT) -> 
                   chans[nodeNumber].channels[idx].toChannel  
                                                 ! LINK_LOST 
              :: else -> skip 
              fi; 
              idx = idx + 1; 
         :: else -> break 
         od; 
       } 
       break; 
  od; 
} 
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/* The complete Link process */ 
 
proctype Link(chan toLinkTx; chan toNetwork; chan fromNetwork;  
              bit nodeNumber) 
{ 
  atomic 
  { 
    run LinkRx(toLinkTx, fromNetwork, nodeNumber); 
    run LinkTx(toLinkTx, toNetwork); 
  } 
} 
 
/* A receiving application process */ 
 
proctype Receiver(INPUT_CHANNEL_INTERFACE chanIn) 
{ 
  /* Response from the method call */ 
  bit response; 
  /* Non deterministically choose an operation to perform on the 
     channel */ 
  /* Valid end state for the process */ 
end_receiver: 
  do 
  :: atomic 
     { 
       if 
       :: chanIn.read ! true -> chanIn.callReturn ? response 
       :: chanIn.startRead ! true -> chanIn.callReturn ? response 
       :: chanIn.endRead ! true -> chanIn.callReturn ? response 
       :: chanIn.poison ! true -> chanIn.callReturn ? response 
       :: chanIn.destroy ! true -> chanIn.callReturn ? response 
       fi; 
       if 
       :: (response == EXCEPTION) -> goto end_receiverStop 
       :: else -> skip 
       fi 
     } 
  Od; 
end_receiverStop: 
  skip 
} 
 
/* A sending application process */ 
 
proctype Sender(OUTPUT_CHANNEL_INTERFACE chanOut) 
{ 
  /* Response from the method call */ 
  bit response; 
  /* Non deterministically choose an operation to perform on 
     the channel */ 
  /* Valid end state for the process */ 
end_sender: 
  do 
  :: atomic 
     { 
       if 
       :: chanOut.write ! true -> chanOut.callReturn ? response 
       :: chanOut.poison ! true -> chanOut.callReturn ? response 
       :: chanOut.destroy ! true -> chanOut.callReturn ? response 
       fi; 
       if 
       :: (response == EXCEPTION) -> goto end_senderStop 
       :: else -> skip 
       fi 
     } 
  od; 
end_senderStop: 
    skip 
} 
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/* Inputting Node process */ 
 
proctype InputNode(chan toNetwork; chan fromNetwork) 
{ 
  atomic 
  { 
    chan toLinkTx = [0] of { mtype, byte, byte }; 
    /* Set up the Link */ 
    run Link(toLinkTx, toNetwork, fromNetwork, 0); 
    /* Set up the channel and receiving processes */ 
    INPUT_CHANNEL_INTERFACE inputInterface[NUMBER_INPUTS]; 
    chan toInput[NUMBER_INPUTS] =  
      [BUFFER_SIZE] of { mtype, byte, chan }; 
    byte idx = 0; 
    do 
    :: (idx < NUMBER_INPUTS) -> 
         chans[0].channels[idx].vcn = idx; 
         chans[0].channels[idx].state = OK_INPUT; 
         chans[0].channels[idx].toChannel = toInput[idx]; 
         run NetChannelInput(inputInterface[idx], toInput[idx], 
                             chans[0].channels[idx]); 
         run Receiver(inputInterface[idx]); 
         idx = idx + 1; 
    :: else -> break; 
    od; 
    /* Set any other channels to INACTIVE. */ 
    do 
    :: (idx < TOTAL_OUTPUTS) -> 
         chans[0].channels[idx].state = INACTIVE; 
         idx = idx + 1 
    :: else -> break 
    Od 
  } 
} 
 
/* Outputting Node process */ 
 
proctype OutputNode(chan toNetwork; chan fromNetwork) 
{ 
  atomic 
  { 
    chan toLinkTx = [0] of { mtype, byte, byte }; 
    /* Set up the Link */ 
    run Link(toLinkTx, toNetwork, fromNetwork, 1); 
    /* Set up the channel and receiving processes */ 
    OUTPUT_CHANNEL_INTERFACE outputInterface[TOTAL_OUTPUTS]; 
    chan toOutput[TOTAL_OUTPUTS] = [BUFFER_SIZE] of { mtype }; 
    byte idx = 0, count = 0; 
    do 
    :: (idx < TOTAL_OUTPUTS) -> 
         do 
         :: (count < NUMBER_INPUTS) -> 
              chans[1].channels[idx].vcn = idx; 
              chans[1].channels[idx].state = OK_OUTPUT; 
              chans[1].channels[idx].toChannel = toOutput[idx]; 
              run NetChannelOutput(outputInterface[idx], toLinkTx, 
                                   toOutput[idx], 
                                   chans[1].channels[idx], count); 
              run Sender(outputInterface[idx]); 
              idx = idx + 1; 
              count = count + 1; 
         :: else -> 
              count = 0; 
              break; 
         od; 
    :: else -> break; 
    Od 
  } 
} 
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/* initialisation */ 
 
init 
{ 
  atomic 
  { 
    chan fromNode[2] = [0] of { mtype, byte, byte }; 
    chan toNode[2] = [0] of { mtype, byte, byte }; 
    run Network(fromNode[0], fromNode[1], toNode[0], toNode[1]); 
    run OutputNode(fromNode[0], toNode[0]); 
    run InputNode(fromNode[1], toNode[1]); 
  } 
} 

 

 

 



 

Appendix G Channel Mobility Models 

 

The state model for channels in the new JCSP architecture is presented in Figure 41.  

For all the models presented, channel states which would cause an exception if the 

channel were migrated are ignored (DESTROYED, POISONED and BROKEN). 

G.1 One-to-One Networked Channel 

This model for channel mobility is based on the work of Muller [145].  As a channel 

must only have one complement, a networked channel input must be claimed by 

the output end.  The one-to-one channel model requires presented by Muller 

distinguishes between remotely and locally connected channels for optimisation 

reasons.  JCSP cannot provide optimisation from this standpoint, although a locally 

connected networked channel does connect directly to the complement end.  

Refining the proposed model in this context provides the state model presented in 

Figure 155. 

 

Figure 155: One-to-One Networked Channel Mobility Model State Diagram 

There are six new states introduced: 

 CLAIMED – an input channel that has an output channel associated with it. 

INACTIVEOK_INPUTCLAIMED

INPUTTING
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GONE

SELECTING

OK_OUTPUT
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 SELECTING – the input channel is currently being used in a guarded 

command. 

 INPUTTING – the input channel is waiting for input to arrive. 

 OUTPUTTING – the output channel has sent a message to the input channel 

and is awaiting acknowledgement. 

 READY – the input channel has data ready to be read. 

 GONE – the channel end has been moved to another node. 

The basic operations for moving a channel end are shown in the sequence diagram 

Figure 156.  The channel connects C to A.  The first operation shows the message 

transfer if the input end moves from A to B, and the second operation shows the 

message transfer if the output end moves from C to B. 

 

Figure 156: Sequence Diagram for One-to-One Networked Channel Mobility Model 

There are three new channel messages introduced: 

 MIGRATE_INPUT – signals that an input channel has been moved.  This 

message must contain the address of the companion output port. 

 MIGRATE_OUTPUT – signals that an output channel has been moved.  This 

message must contain the address of the companion input port. 

 MOVED – the message sent by the receiving node of a mobile channel end 

to the companion ports location.  This message must contain the new 

address of the complement channel end. 
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Figure 156 does not show the occurrence when an input channel moves when data 

is waiting to be read (it is in the READY state).  In this situation, the output end of 

the channel must resend the message to the new channel location.  The other 

approach would be to include it within the data segment of the MIGRATE_INPUT 

message.  This would require the data segment to contain both the address and the 

data, and have a method to flag that data is also contained.  The simpler approach is 

therefore to have the output end resend the message. 

G.2 Centralised Server 

The centralised server approach to channel mobility is the approach currently taken 

in pony [120, 130].  It has also been discussed as a communication method for 

agent based systems.  To achieve mobility, each channel end is allocated an 

identifier by the server, and this identifier is used to check the current location of 

the channel end whenever it is not found at its current location.  The updated state 

model only requires one new state – GONE – to indicate that the channel end is no 

longer at that location.  The state diagram is presented in  

 

Figure 157: Centralised Server Mobility Model State Diagram 

The operation of moving an input channel end and the output end subsequently 

trying to send to the original location, and thereby requiring resolution of the new 

location with the server is presented in Figure 158, with the channel in question 

connecting C to A.  Output end mobility is trivial in that in only involves sending the 

identifier of the input channel end so that the current address can be resolved with 

the server. 

INACTIVEOK_INPUT OK_OUTPUTGONE GONE
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Figure 158: Sequence Diagram for Centralised Server Mobility Model 

There are seven new messages introduced: 

 MOVING – is sent from the input channel end location to the Server to 

indicate that a channel is about to move.  After receiving this message, the 

Server changes the state of the channel and buffers any resolution messages 

for this channel ID. 

 MIGRATE_INPUT – signals that an input end has moved.  This need only 

contain the ID of the channel relevant to the Server. 

 MIGRATE_OUTPUT (not shown) – signals that an output end has moved.  

This need only contain the ID of the input end of the channel relevant to the 

Server. 

 ARRIVED – sent from the receiver of an input channel end to the Server to 

indicate the new location. 

 MOVED – sent to an output end instead of an acknowledgement to indicate 

that the input channel end has moved. 

 RESOLVE – sent to the Server to acquire the current location of the input 

channel end.  This contains the ID of input channel to resolve. 

 RESOLVE_REPLY – the reply from the RESOLVE.  This contains the current 

address of the input channel. 
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G.3 Message Box 

The message box is another model that is commonly used in mobile agent 

frameworks.  With this approach, messages are always sent and retrieved from a 

single location.  As the message box is fixed, there is no need to add new states to 

the channel model itself as when the channel end is moved the state DESTROYED 

can be used to signify that the channel can no longer be used.  The message box 

itself does require a state model, but this only consists of two states:  ENABLED 

when the message box is enabled in a guard, and DISABLED for when the message 

box is not enabled in a guard. 

Figure 159 presents the sequence of messages that can occur within this mobility 

model.  This diagram represents a mobile input end and subsequent request and 

response messages.  The diagram also illustrates how a channel is checked to see if 

a value is ready in the message box.  Mobile output is not shown as it only requires 

the address of the message box to be sent. 

 

Figure 159: Sequence Diagram for Message Box Mobility Model 

There are five new messages incorporated into this model: 

 MIGRATE_INPUT – signals that an input end has moved.  This message 

contains the address of the message box to allow messages to be requested. 

 MIGRATE_OUTPUT – signals that an output end has moved.  This message 

contains the address of the message box where messages are to be sent. 
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 CHECK – sent by the input end to check if any messages are waiting in the 

message box.  This message contains the current location of the input 

channel end to respond to. 

 CHECK_RESPONSE – sent from the message box to the input end in response 

to the CHECK.  There is an immediate response, and also a delayed one.  If a 

message arrives after a CHECK but prior to a REQUEST then a message is 

sent to the input channel end and buffered.  If the input channel end moves 

or requests prior to the response being utilised, the message can be silently 

dropped.  If it does not move, then the locally buffered response can be 

retrieved instead of sending a new CHECK. 

 REQUEST – requests the next available message from the message box.  This 

message contains the current location of the input end. 

G.4 Message Box Server 

The message box server model places all message boxes on a centralised server, 

thus removing the weakness associated with distributed message boxes.  This 

model does not add much in comparison to the normal message box approach.  The 

only extra messages required involve creation and destruction of the message box 

with the server.  As such, Figure 159 serves to illustrate the sequence of messages, 

with requests and sends being directed to a Server instead of a particular node. 

G.5 Chain 

The chain model of mobility utilises forwarding addresses to allow messages to 

reach their intended destination.  A migrating input end must inform the previous 

location of the new channel input address.  Output end mobility only requires that 

the address of the previous link in the chain is taken to allow connection to that 

link.  Thus there are really multiple chains of different length that eventually 

connect at the original output location.  As the normal buffering and reply 

technique for network messages is used, acknowledgements will flow back in the 

direction that the original message travelled. 

The state diagram for this model is presented in Figure 160. 
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Figure 160: Chain Mobility Model State Diagram 

There are two new states introduced: 

 MOVING – indicates that the input channel end is in the process of moving.  

In this state the node where the input channel end is located must buffer 

messages until the channel has arrived at its new location. 

 MOVED – indicates that the channel end has arrived at a new location.  Any 

incoming message is forwarded to the next link in the chain and buffered to 

allow the response to likewise travel back down the chain to the origin 

channel end. 

Reconfiguration of the architecture to allow the channel to move is fairly trivial.  

The sequence of required messages is illustrated in Figure 161.  There are only three 

new messages introduced: 

 MIGRATE_INPUT – indicates that an input channel end has moved.  This 

message contains the previous input address to allow the chain to be 

expanded. 

 MIGRATE_OUTPUT – indicates that an output channel end has moved.  This 

message contains the previous output address to allow the chain to be 

expanded. 

 ARRIVED – indicates that the input end has arrived at a new location.  This 

message contains the new input channel end location to allow channel to 

forward on messages accordingly. 

INACTIVEOK_INPUT OK_OUTPUTMOVING MOVEDMOVED
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Figure 161: Sequence Diagram for Chain Mobility Model 

G.6 Reconfiguring Chain 

The reconfiguring chain model attempts to overcome the major limitations of the 

normal chain model by allowing the chain to shorten itself by checking if any other 

link in the chain is directly accessible instead of the immediately previous link.  As a 

channel has two separate mobile ends, there are essentially two separate chains 

that can shorten.  If the shared output view is taken for networked channels, then 

there are multiple such reconfiguring output chains.  This does mean that although 

the chain may be shortcut at the output end, all previous links in the chain must 

remain in case another mobile output end cannot use the new direct connection.  

The previous output ends could be shut down by sending poison down the 

redundant input sub-chain. 

The state diagram for this model of channel mobility is the same as the one for the 

normal chain.  The sequence of messages occurring during a migration operation is 

presented in Figure 162.  C is the original location of the channel input end. 
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Figure 162: Sequence Diagram for Reconfiguring Chain Mobility Model 

There are five new messages: 

 MIGRATE_OUTPUT – indicates that a channel out end has moved.  This 

message must contain all previous locations in the chain to allow 

reconnection. 

 MIGRATE_INPUT – indicates that a channel input end has moved.  This 

message must contain all previous locations in the chain to allow 

reconnection. 

 ARRIVED – sent from the new location of an input channel end to a previous 

location in the chain.  This might be to the immediately previous link, or it 

may be further down the chain. 

 PROBE – sent from the new location of a channel end to one of the previous 

locations.  This is used to shorten the chain whenever possible.  In some 

cases, the PROBE will never be sent as the relevant link will not be 

reachable. 

 PROBE_RESPONSE – sent in reply to the PROBE message.  This is used to 

indicate that a direct path between the previous location and the new one 

does exist. 
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PROBE and PROBE_RESPONSE may occur multiple times depending on the number 

of previous locations that are in the chain.  A migrated input end may receive an 

ACK message or an ARRIVED message as acknowledgement depending on whether 

the link is to be used, or whether a shortcut has been created. 

G.7 Mobile IP Model 

The Mobile IP model [146] utilises agents within each domain to allow messages to 

be routed to the correct destination.  In effect, there is a reconfiguring chain 

between domain servers which utilise message boxes.  This model is sufficiently 

more complex than the previous models to require numerous scenarios of mobility.  

These are presented in sequence diagram form. 

The scenario is best illustrated using a small domain tree.  This is presented in 

Figure 163.  G is the global domain, and A and B are two sub-domains with no 

means of direct contact.  A has two members – A1 and A2 – and B has two members 

– B1 and B2. 

 

Figure 163: Simple Domain Tree 

The scenario to be illustrated originally has a channel connecting A1 to A2 (mobile1), 

and one connecting B1 to B2 (mobile2).  The input channel end of mobile1 is moved 

from node A2 to node B2.  Then the output end of mobile1 is moved from A1 to B1.  

For mobile2 the output channel end is moved first from node B1 to A1 and then the 

input end from B2 to A2. 

Each agent in the domain maintains a lookup table of where to redirect messages 

to.  Initially, there are two channels connecting A1 and B1 (one in each direction) and 

likewise two channels connecting A2 and B2.  How these were created is 
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inconsequential.  The three separate lookup tables are merged into one and 

presented in Table 14. 

From this table it becomes possible to define the paths of all the channels in the 

system. 

 mobile1 – A1 → A #01 → A2 (although these nodes are directly linked) 

 mobile2 – B1 → B #01 → B2 (although these nodes are directly linked) 

 A1B1 – A1 → A #04 → G #03 → B #02 → B1 

 A2B2 – A2 → A #05 → G #04 → B #03 → B2 

 B1A1 – B1 → B #04 → G #01 → A #02 → A1 

 B2A2 – B2 → B #05 → G #02 → A #03 → A2 

Table 14: Initial Channel Destination Table 

DOMAIN CHANNEL ID DESTINATION PREVIOUS 

A #01 A2  - 

A #02 A1 G #01 

A #03 A2  G #02 

A #04 G #03 - 

A #05 G #04 - 

B #01 B2 - 

B #02 B1 G #03 

B #03 B2 G #04 

B #04 G #01 - 

B #05 G #02 - 

G #01 A #02 B #04 

G #02 A #03 B #05 

G #03 B #02 A #04 

G #04 B #03 A #05 

 

G.7.1 Sending a New Input Channel End 

To send the input end of mobile1, a MIGRATE_INPUT message is sent via A2B2.  The 

message must have the ID of the channel relevant to the domain (i.e. A #01), the 

previous location if relevant, and the normal source and destination (destination 

being A #05, source is the VCN of A2B2 on node 2 – represented by a).  Thus, the 

message takes the form: 

 MIGRATE_INPUT | A #05 | a | A #01 | -1 
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When the agent for domain A receives this message, it first examines the channel ID 

to determine which channel it is moving.  As the channel has no previous location, 

the agent knows that the channel is unknown at the destination.  It buffers the 

message in the normal buffer for channel A #05, and recreates the message 

accordingly to tunnel it through to the agent for domain G: 

 MIGRATE_INPUT | G #04 | A #05 | -1 | A #01 

When the agent at node G receives this message, it too examines the channel ID.  

As this time the value is -1, it knows that the channel is new in this domain context, 

and creates a new entry: 

G #05 - A #01 

 

As the agent does not know the destination of this channel yet, the destination field 

is left blank.  The agent now sends an ARRIVED signal back to the agent for domain 

A with the new destination: 

 ARRIVED | A #01 | G #05 

The first attribute is the destination of the message, and the second is the new ID 

destination of the channel on the domain agent for G.  The agent for A now updates 

this field in its table: 

A #01 G #05 - 

 

The agent for domain G now modifies the migration message: 

 MIGRATE_INPUT | B #03 | G #04 | -1 | G #05 

When the agent for domain B receives this message, it checks the channel ID and 

finds it to be -1.  Therefore the channel is new in this context and a new entry is 

created accordingly. 

B #06 - G #05 
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An arrived message is generated, and sent back to the agent for domain G. 

 ARRIVED | G #05 | B #06 

The agent for B now modifies the migration message and sends it to node B2 on, 

using the relevant VCN – represented by b: 

 MIGRATE_INPUT | b | B #02 | -1 | B #05 

When node B2 receives this message, it creates a new channel and sends the 

ARRIVAL message back to the agent for the domain.  When the receiving process 

reads the message, it is given the newly created channel, and the ACK is sent back 

down the path.  The new channel path is now: 

 mobile1 – A1 → A #01 → G #05 → B #06 → B2 

G.7.2 Sending the Complement Output End 

To send the output end of mobile1, a MIGRATE_OUTPUT message is sent via A1B1.  

As with the MIGRATE_INPUT channel, a channel ID must be sent relevant to the 

domain.  However, this time the ID is where the output channel end is pointing – 

which is A #01.  The previous location is not filled in, as it is not required for 

shortening the connection.  Let the VCN of A1B1 on node A1 be represented by c.  

Thus, the message created for the send is: 

 MIGRATE_OUTPUT | A #04 | c | A #01 | -1 

When the agent for domain A receives this message, it retrieves the destination of 

the message (G #03) and the current destination of the migrating channel (G #05).  

As these destinations are on the same domain – G – the agent determines the chain 

is shortening and it does not have to update its table.  It buffers the sent message 

for future acknowledgement, and creates a new MIGRATE_OUTPUT message, using 

the next destination link of the migrating output.  As there is no previous location, 

there is no need to send an ARRIVED message. 

 MIGRATE_OUTPUT | G #03 | A #04 | G #05 | -1 
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When the agent at domain G receives this message, it too extracts the destination 

(B #02) and the destination of the migrating end (B #06).  As these are on the same 

node, and there is no previous location, there is no table updates required.  The 

message is buffered, and a new MIGRATE_OUTPUT generated: 

 MIGRATE_OUTPUT | B #02 | G #03 | B #06 | -1 

When the agent of domain B receives this message, it retrieves the destination (B1) 

and the destination of the migrating end (B2).  As both of these destinations are 

within this domain, the domain specific ID is used for the final MIGRATE_OUTPUT 

message to B1.  Thus the message sent to B1 (let the destination VCN be d) is: 

 MIGRATE_OUTPUT | d | B #02 | B #06 | -1 

The updated channel path for mobile1 is: 

 mobile1 – B1 → B #06 → B2 

When the new channel is first used, B1 can connect directly to B2. 

G.7.3 Sending a New Output End 

To send the output end of mobile2, a new MIGRATE_OUTPUT is sent via B1A1.  The 

message has the channel ID currently connected to: 

 MIGRATE_OUTPUT | B #04 | e | B #01 | -1 

e is the VCN of B1A1 on node B1.  When the agent for domain B receives this 

message, it retrieves the destination of the message (G #01) and the destination of 

the migrating end (B2).  As the destination of the migrating end is within this 

domain, whereas the destination of the message is not, then the agent checks the 

previous destination of the channel to see if the channel has previously come from 

the destination domain.  As it has not, the agent knows that the channel is new 

within G, and creates a new message with -1 as the channel ID at the destination 

domain, and B #01 as the previous destination. 

 MIGRATE_OUTPUT | G #01 | B #04 | -1 | B #01 



Appendix G: Channel Mobility Models 301 

 

When the agent for domain G receives this message, it extracts the next destination 

(A #02) and the migrating end’s destination (-1).  As the migrating end has -1 as its 

destination, the agent knows the channel is new in this context, and thus creates a 

new entry in its table, with the destination from previous destination attribute: 

G #06 B #01 - 

 

The agent for domain G then sends an ARRIVED message to the agent on domain B: 

 ARRIVED | B #01 | G #06 

The agent for domain B uses this message to fill the previous location entry for 

channel B #01: 

B #01 B2 G #06 

 

The agent then creates a new MIGRATE_OUTPUT message: 

 MIGRATE_OUTPUT | A #02 | G #01 | -1 | G #06 

When the agent for domain A receives this message, it extracts the next destination 

(A1) and the destination of the migrating end (-1).  As the migrating end has -1 as its 

destination, the agent at A knows this is a new channel in this context.  A new entry 

in the table is created, and an ARRIVED message sent to the agent for domain G, 

updating the entry for G #06: 

A #06 G #06 - 

 

 ARRIVED | G #06 | A #06 

The final MIGRATE_OUTPUT is sent to A1, with the location of the relevant channel 

ID: 

 MIGRATE_OUTPUT | f | A #02 | A #06 | -1 

The updated channel path for mobile2 is: 
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 mobile2 – A1 → A #06 → G #06 → B #01 → B2 

G.7.4 Sending the Complement Input End 

Sending the input end of mobile2 requires a MIGRATE_INPUT message sent via B2A2.  

This message requires the relevant channel ID within the domain (B #01).  The 

previous location is not relevant initially: 

 MIGRATE_INPUT | B #05 | g | B #01 | -1 

When the agent for domain B receives this message, it extracts the previous 

destination from the table for the channel ID (G #06).  As the channel has a previous 

location, the agent checks the destination (G #02) and discovers them to be the 

same.  Thus, the agent determines that the table must be updated so that B #01 

points towards G #06 instead of from.  As the previous destination attribute is -1, it 

is determined that there is no new previous destination to be set for the entry: 

B #01 G #06 - 

 

The agent then creates a new MIGRATE_INPUT message and sends it to the agent 

for domain G: 

 MIGRATE_INPUT | G #02 | B #05 | G #06 | B #01 

When the agent for domain G receives this message, it extracts the channel ID, and 

from this the previous destination of the channel (A #06).  As the channel has a 

previous location, the agent checks the destination (A #03) and as they are on the 

same node, determines that the channel must be redirected.  As the previous 

destination attribute has a value, the previous destination value for the entry is set 

to the current destination of the channel. 

G #06 A #06 B #01 

 

An ARRIVED message is generated and sent to the agent for domain B allowing the 

agent to forward messages onto the new destination.  The agent then creates a 

new MIGRATE_INPUT message to send to the agent for domain A: 
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 MIGRATE_INPUT | A #03 | G #02 | A #06 | G #06 

When the agent for domain A receives this message, it retrieves the relevant 

previous destination of the channel which is empty.  Therefore, the channel is 

unknown at the destination.  The agent checks the destination, and finds it to be for 

domain A (A2).  Therefore, the table is updated so that A #06 points towards A2.  As 

the previous destination has a value, the previous destination for A #06 is set to the 

current destination (G #06): 

A #06 A2 G #06 

 

The agent informs the agent for domain G that the channel has arrived, and then 

sends the final MIGRATE_INPUT message to A2: 

 MIGRATE_INPUT | g | A #03 | -1 | A #06 

g is the VCN of B2A2 on node A2.  The new path of mobile2 is: 

 mobile2 – A1 → A #06 → A2 

G.7.5 Protocol Messages 

From these examples, we can determine that three new messages are required: 

 MIGRATE_INPUT – sent when an input channel migrates.  This contains two 

addresses or ID constructs, identifying the channel and its previous location. 

 MIGRATE_OUTPUT – sent when an output channel migrates.  This contains 

two addresses or ID constructs, indentifying the channel and its previous 

location. 

 ARRIVED – sent to indicate a channel end has arrived at its destination.  This 

contains the old address and new address of the channel. 

 

 



 

Appendix H Numbers and Mobile Numbers Processes 

 

The standard versions of these processes are taken from the JCSP release, and 

where originally created by P. D. Austin. 

H.1 IdentityInt 

H.1.1 Normal 

public class IdentityInt implements CSProcess 
{ 
    private ChannelInputInt in; 
    private ChannelOutputInt out; 
    
    public IdentityInt(ChannelInputInt in, ChannelOutputInt out) 
    { 
        this.in = in; 
        this.out = out; 
    } 
    
    public void run() 
    { 
        while (true) 
            out.write(in.read()); 
    } 
} 

H.1.2 Mobile 

public class MobileIdentityInt implements CSProcess, Serializable 
{ 
    private static final int READING = 0; 
    private static final int WRITING = 1; 
    private transient AltingChannelInputInt input; 
    private transient AltingChannelOutputInt output; 
    private transient AltingBarrier migrate; 
    private int state = READING; 
    private int x; 
  
    public void init(AltingChannelInputInt input, 
                     AltingChannelOutputInt output, 
                     AltingBarrier migrate) 
    { 
        this.input = input; 
        this.output = output; 
        this.migrate = migrate; 
    } 
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    public MobileIdentityInt(AltingChannelInputInt input, 
                             AltingChannelOutputInt output, 
                             AltingBarrier migrate) 
    { 
        this.input = input; 
        this.output = output; 
        this.migrate = migrate; 
    } 
  
    private void writeObject(ObjectOutputStream out)  
    throws IOException 
    { 
        out.writeInt(state); 
        out.writeInt(x); 
    } 
  
    private void readObject(ObjectInputStream in)  
    throws IOException, ClassNotFoundException 
    { 
        this.state = in.readInt(); 
        this.x = in.readInt(); 
    } 
  
    public void run() 
    { 
        Guard[] guards = {migrate, input, output}; 
        Alternative alt = new Alternative(guards); 
        boolean running = true; 
        while (running) 
        { 
            switch (state) 
            { 
            case READING: 
            { 
                // migrate and input 
                boolean[] active = {true, true, false};  
                int selected = alt.priSelect(active); 
                switch (selected) 
                { 
                case 0: // migrate 
                    running = false; 
                    break; 
                case 1: // input 
                    x = input.read(); 
                    state = WRITING; 
                    break; 
                } 
            } 
            break; 
            case WRITING: 
            { 
                // migrate and output 
                boolean[] active = {true, false, true};  
                int selected = alt.priSelect(active); 
                switch (selected) 
                { 
                case 0: // migrate 
                    running = false; 
                    break; 
                case 2: // output 
                    output.write(x); 
                    state = READING; 
                    break; 
                } 
            } 
            break; 
            } 
        } 
    } 
} 
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H.2 PrefixInt 

H.2.1 Normal 

public class PrefixInt implements CSProcess 
{ 
    private ChannelInputInt in; 
    private ChannelOutputInt out; 
    private int n; 
    
    public PrefixInt(int n, ChannelInputInt in,  
                     ChannelOutputInt out) 
    { 
        this.in = in; 
        this.out = out; 
        this.n = n; 
    } 
 
    public void run() 
    { 
        out.write(n); 
        new IdentityInt(in, out).run(); 
    } 
} 

H.2.2 Mobile 

public class MobilePrefixInt implements CSProcess, Serializable 
{ 
    private static final int WRITING = 0; 
    private static final int IDENTITY = 1; 
    private int state = WRITING; 
    private int prefix = 0; 
    private MobileIdentityInt identity; 
    private transient AltingChannelInputInt input; 
    private transient AltingChannelOutputInt output; 
    private transient AltingBarrier migrate; 
  
    public void init(AltingChannelInputInt input, 
                     AltingChannelOutputInt output, 
                     AltingBarrier migrate) 
    { 
        this.input = input; 
        this.output = output; 
        this.migrate = migrate; 
        this.identity.init(input, output, migrate); 
    } 
  
    public MobilePrefixInt(int prefix, AltingChannelInputInt input, 
                           AltingChannelOutputInt output,  
                           AltingBarrier migrate) 
    { 
        this.prefix = prefix; 
        this.input = input; 
        this.output = output; 
        this.migrate = migrate; 
        this.identity =  
            new MobileIdentityInt(input, output, migrate); 
    } 
  
    private void writeObject(ObjectOutputStream out)  
    throws IOException 
    { 
        out.writeInt(state); 
        out.writeInt(prefix); 
        out.writeObject(identity); 
    } 
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    private void readObject(ObjectInputStream in)  
    throws IOException, ClassNotFoundException 
    { 
        this.state = in.readInt(); 
        this.prefix = in.readInt(); 
        this.identity = (MobileIdentityInt)in.readObject(); 
    } 
  
    public void run() 
    { 
        boolean running = true; 
        Guard[] guards = {migrate, output}; 
        Alternative alt = new Alternative(guards); 
        while (running) 
        { 
            switch (state) 
            { 
            case WRITING: 
                int selected = alt.priSelect(); 
                switch (selected) 
                { 
               case 0: 
                    running = false; 
                    break; 
                case 1: 
                    output.write(prefix); 
                    state = IDENTITY; 
                    identity.run(); 
                    break; 
                } 
                break; 
            case IDENTITY: 
                identity.run(); 
                running = false; 
            } 
        } 
    } 
} 

H.3 SuccessorInt 

H.3.1 Normal 

public class SuccessorInt implements CSProcess 
{ 
    private ChannelInputInt in; 
    private ChannelOutputInt out; 
 
    public SuccessorInt(ChannelInputInt in, ChannelOutputInt out) 
    { 
        this.in = in; 
        this.out = out; 
    } 
 
    public void run() 
    { 
        while (true) 
            out.write(in.read() + 1); 
    } 
} 
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H.3.2 Mobile 

public class MobileSuccessorInt implements CSProcess, Serializable 
{ 
    private static final int READING = 0; 
    private static final int WRITING = 1; 
    private int lastRead = 0; 
    private int state = READING; 
    private transient AltingChannelInputInt input; 
    private transient AltingChannelOutputInt output; 
    private transient AltingBarrier migrate; 
  
    public void init(AltingChannelInputInt input,  
                     AltingChannelOutputInt output, 
                     AltingBarrier migrate) 
    { 
        this.input = input; 
        this.output = output; 
        this.migrate = migrate; 
    } 
  
    public MobileSuccessorInt(AltingChannelInputInt input,  
                              AltingChannelOutputInt output, 
                              AltingBarrier migrate) 
    { 
        this.input = input; 
        this.output = output; 
        this.migrate = migrate; 
    } 
  
    private void writeObject(ObjectOutputStream out)  
    throws IOException 
    { 
        out.writeInt(state); 
        out.writeInt(lastRead); 
    } 
  
    private void readObject(ObjectInputStream in)  
    throws IOException, ClassNotFoundException 
    { 
        state = in.readInt(); 
        lastRead = in.readInt(); 
    } 
  
    public void run()  
    { 
        boolean running = true; 
        Guard[] guards = {migrate, input, output}; 
        Alternative alt = new Alternative(guards); 
        while (running) 
        { 
            switch (state) 
            { 
            case READING: 
            { 
                boolean[] active = {true, true, false}; 
                int selected = alt.priSelect(active); 
                switch (selected) 
                { 
                case 0: 
                   running = false; 
                   break; 
                case 1: 
                   lastRead = input.read(); 
                   state = WRITING; 
                   break; 
                } 
                break; 
            } 
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            case WRITING: 
            { 
                boolean[] active = {true, false, true}; 
                int selected = alt.priSelect(active); 
                switch (selected) 
                { 
                case 0: 
                    running = false; 
                    break; 
                case 2: 
                    int toOutput = lastRead + 1; 
                    output.write(toOutput); 
                    state = READING; 
                    break; 
                } 
                break; 
            } 
            } 
        } 
    }  
} 

H.4 ProcessWriteInt 

H.4.1 Normal 

public class ProcessWriteInt implements CSProcess 
{ 
    public int value; 
    private ChannelOutputInt out; 
 
    public ProcessWriteInt(ChannelOutputInt out) 
    { 
        this.out = out; 
    } 
 
    public void run() 
    { 
        out.write(value); 
    } 
} 

H.4.2 Mobile 

public class MobileProcessWriteInt  
implements CSProcess, Serializable 
{ 
    private static final int WRITING = 0; 
    private static final int FINISHED = 1; 
    private transient AltingChannelOutputInt output; 
    private transient AltingBarrier migrate; 
    private transient AltingBarrier finished; 
    public int value = 0; 
    private int state = WRITING; 
  
    public void init(AltingChannelOutputInt out,  
                     AltingBarrier migrate,  
                     AltingBarrier finished) 
    { 
        this.output = out; 
        this.migrate = migrate; 
        this.migrate.resign(); 
        this.finished = finished; 
    } 
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    public MobileProcessWriteInt(AltingChannelOutputInt out, 
                             AltingBarrier migrate,  
                             AltingBarrier finished) 
    { 
        this.output = out; 
        this.migrate = migrate; 
        this.migrate.resign(); 
        this.finished = finished; 
    } 
  
    private void writeObject(ObjectOutputStream out)  
    throws IOException 
    { 
        out.writeInt(state); 
        out.writeInt(value); 
    } 
  
    private void readObject(ObjectInputStream in)  
    throws IOException, ClassNotFoundException 
    { 
        this.state = in.readInt(); 
        this.value = in.readInt(); 
    } 
  
    public void run() 
    { 
        Guard[] guards = {migrate, output, finished}; 
        Alternative alt = new Alternative(guards); 
        boolean running = true; 
        while (running) 
        { 
            switch (state) 
            { 
            case WRITING: 
            { 
                boolean[] active = {true, true, false}; 
                int selected = alt.priSelect(active); 
                switch (selected) 
                { 
                case 0: 
                    running = false; 
                    break; 
                case 1: 
                    output.write(value); 
                    state = FINISHED; 
                    break; 
                } 
            } 
            break; 
            case FINISHED: 
            { 
                boolean[] active = {true, false, true}; 
                int selected = alt.priSelect(active); 
                switch (selected) 
                { 
                case 0: 
                    running = false; 
                    break; 
                case 2: 
                    running = false; 
                    state = WRITING; 
                    break; 
                } 
            } 
            break; 
            } 
        } 
    } 
} 
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H.5 Delta2Int 

H.5.1 Normal 

public class Delta2Int implements CSProcess 
{ 
    private ChannelInputInt  in; 
    private ChannelOutputInt out0; 
    private ChannelOutputInt out1; 
    
    public Delta2Int(ChannelInputInt in, ChannelOutputInt out0, 
                     ChannelOutputInt out1) 
    { 
        this.in   = in; 
        this.out0 = out0; 
        this.out1 = out1; 
    } 
    
    public void run() 
    { 
        ProcessWriteInt[] parWrite = {new ProcessWriteInt(out0),  
                                      new ProcessWriteInt(out1)}; 
        Parallel par = new Parallel(parWrite); 
        while (true) 
        { 
            int value = in.read(); 
            parWrite[0].value = value; 
            parWrite[1].value = value; 
            par.run(); 
        } 
    } 
} 

H.5.2 Mobile and CheckFinished 

public class MobileDelta2Int implements CSProcess, Serializable 
{ 
    private static final int READING = 0; 
    private static final int WRITING = 1; 
    private transient AltingChannelInputInt input; 
    private transient AltingChannelOutputInt out0; 
    private transient AltingChannelOutputInt out1; 
    private transient AltingBarrier migrate; 
    private int lastRead = 0; 
    private int state = READING; 
    private MobileProcessWriteInt[] procs; 
  
    public void init(AltingChannelInputInt input, 
                     AltingChannelOutputInt out0, 
                     AltingChannelOutputInt out1, 
                     AltingBarrier migrate) 
    { 
        this.input = input; 
        this.out0 = out0; 
        this.out1 = out1; 
        this.migrate = migrate; 
    } 
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    public MobileDelta2Int(AltingChannelInputInt input,  
                           AltingChannelOutputInt out0, 
                           AltingChannelOutputInt out1,  
                           AltingBarrier migrate) 
    { 
        this.migrate = migrate; 
        this.input = input; 
        this.out0 = out0; 
        this.out1 = out1; 
    } 
  
    public void writeObject(ObjectOutputStream out)  
    throws IOException 
    { 
        out.writeInt(state); 
        out.writeInt(lastRead); 
        out.writeObject(procs); 
    } 
  
    public void readObject(ObjectInputStream in)  
    throws IOException, ClassNotFoundException 
    { 
        this.state = in.readInt(); 
     this.lastRead = in.readInt(); 
        this.procs = (MobileProcessWriteInt[])in.readObject(); 
    } 
  
    public void run() 
    { 
        AltingBarrier[] barriers = migrate.expand(2); 
        AltingBarrier[] finished = AltingBarrier.create(3); 
        if (procs == null) 
        { 
            procs = new MobileProcessWriteInt[2]; 
            procs[0] =  
                new MobileProcessWriteInt(out0, barriers[0], 
                                          finished[0]); 
            procs[1] =  
                new MobileProcessWriteInt(out1, barriers[1], 
                                          finished[1]); 
        } 
        else 
        { 
            procs[0].init(out0, barriers[0], finished[0]); 
            procs[1].init(out1, barriers[1], finished[1]); 
        } 
        Guard[] guards = {migrate, input}; 
        Alternative alt = new Alternative(guards); 
        CheckFinished check =  
            new CheckFinished(migrate, finished[2]); 
        CSProcess[] processes = {procs[0], procs[1], check}; 
        Parallel par = new Parallel(processes); 
        boolean running = true; 
        while (running) 
        { 
            switch (state) 
            { 
            case READING: 
            { 
                int selected = alt.priSelect(); 
                switch (selected) 
                { 
                case 0: 
                    running = false; 
                    break; 
                case 1: 
                    lastRead = input.read(); 
                    state = WRITING; 
                    break; 
                } 
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                break; 
            } 
            case WRITING: 
            { 
                procs[0].value = lastRead; 
                procs[1].value = lastRead; 
                barriers[0].enroll(); 
                barriers[1].enroll(); 
                par.run(); 
                if (!check.isFinished) 
                { 
                    running = false; 
                    break; 
                } 
                else 
                { 
                    state = READING; 
                    barriers[0].resign(); 
                    barriers[1].resign(); 
                } 
            } 
            } 
        } 
        par.releaseAllThreads(); 
    } 
} 
 
public class CheckFinished implements CSProcess 
{ 
    private AltingBarrier migrate; 
    private AltingBarrier finished; 
    public boolean isFinished = false; 
 
    public CheckFinished(AltingBarrier migrate,  
                         AltingBarrier finished) 
    { 
        this.migrate = migrate; 
        this.finished = finished; 
    } 
  
    public void run() 
    { 
        Guard[] guards = {migrate, finished}; 
        Alternative alt = new Alternative(guards); 
        isFinished = false; 
        int selected = alt.priSelect(); 
        if (selected != 0) 
            isFinished = true; 
    } 
} 

H.6 NumbersInt 

H.6.1 Normal 

public class NumbersInt implements CSProcess 
{ 
    private ChannelOutputInt out; 
 
    public NumbersInt(ChannelOutputInt out) 
    { 
        this.out = out; 
    } 
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    public void run() 
    { 
        One2OneChannelInt a = ChannelInt.createOne2One(); 
        One2OneChannelInt b = ChannelInt.createOne2One(); 
        One2OneChannelInt c = ChannelInt.createOne2One(); 
        new Parallel(new CSProcess[]  
                     { 
                         new Delta2Int(a.in(), b.out(), out), 
                         new SuccessorInt(b.in(), c.out()), 
                         new PrefixInt(0, c.in(), a.out()) 
                     }).run(); 
    } 
} 

H.6.2 Mobile 

public class MobileNumbersInt implements CSProcess, Serializable 
{ 
    private transient AltingBarrier migrate; 
    private transient AltingBarrier innerMigrate; 
    private boolean localMigrate = false; 
    private transient AltingChannelOutputInt output; 
    private MobileSuccessorInt succ; 
    private MobilePrefixInt pre; 
    private MobileDelta2Int delta; 
  
    public void init(AltingChannelOutputInt output) 
    { 
        this.output = output; 
        AltingBarrier[] bars = AltingBarrier.create(2); 
        this.migrate = bars[0]; 
        this.innerMigrate = bars[1]; 
    } 
  
    public void init(AltingChannelOutputInt output,  
                     AltingBarrier barrier) 
    { 
        this.output = output; 
        this.migrate = barrier; 
    } 
  
    public MobileNumbersInt(AltingChannelOutputInt output, 
                            AltingBarrier migrate) 
    { 
        this.output = output; 
        this.migrate = migrate; 
    } 
  
    public MobileNumbersInt(AltingChannelOutputInt output) 
    { 
        this.output = output; 
        AltingBarrier[] bars = AltingBarrier.create(2); 
        this.migrate = bars[0]; 
        this.innerMigrate = bars[1]; 
    } 
  
    private void writeObject(ObjectOutputStream out)  
    throws IOException 
    { 
        if (innerMigrate != null) 
            innerMigrate.sync(); 
        out.writeObject(succ); 
        out.writeObject(pre); 
        out.writeObject(delta); 
    } 
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    private void readObject(ObjectInputStream in)  
    throws IOException, ClassNotFoundException 
    { 
        this.succ = (MobileSuccessorInt)in.readObject(); 
        this.pre = (MobilePrefixInt)in.readObject(); 
        this.delta = (MobileDelta2Int)in.readObject(); 
    } 
  
    public void run() 
    {  
        AltingBarrier[] barriers = migrate.expand(2); 
        One2OneChannelSymmetricInt a =  
            Channel.one2oneSymmetricInt(); 
        One2OneChannelSymmetricInt b =  
            Channel.one2oneSymmetricInt(); 
        One2OneChannelSymmetricInt c =  
            Channel.one2oneSymmetricInt(); 
        if (succ == null) 
        { 
            succ = new MobileSuccessorInt(a.in(), b.out(),  
                                          barriers[0]); 
            pre = new MobilePrefixInt(0, c.in(), a.out(), 
                                      barriers[1]); 
            delta = new MobileDelta2Int(b.in(), output, c.out(), 
                                        migrate); 
        } 
        else 
        { 
            this.succ.init(a.in(), b.out(), barriers[0]); 
            this.pre.init(c.in(), a.out(), barriers[1]); 
            this.delta.init(b.in(), output, c.out(), migrate); 
        } 
        CSProcess[] processes = {succ, pre, delta}; 
        Parallel par = new Parallel(processes); 
        par.run(); 
        par.releaseAllThreads(); 
    } 
} 
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