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Abstract— The adjustment of the classic three port circulator 
involves an in-phase eigen-network and a pair of split counter-
rotating ones. The purpose of this paper is to use some recent 
relationships to experimentally extract the split susceptances of 
the counter-rotating immittances and the susceptance slope 
parameter of the junction by having recourse to a 1-port 
measurement of its complex gyrator circuit. This is done under 
the assumption that the in-phase eigen-network of the junction 
may be idealized by an electric wall. The split frequencies of the 
counter-rotating eigen-networks of the circulator may also be 
deduced from this characterization and are in good agreement, 
under the same assumption, with those derived from 1-port 
measurements on a terminated circulator. The latter 
arrangement does not, however, allow the split susceptances of 
the counter-rotating eigen-networks to be deduced. 

 
Index Terms—Circulators, non-reciprocal devices, eigenvalues, 

characterization, complex gyrator. 

I. INTRODUCTION 
ne exact 1-port description of a junction circulator 
which is applicable at any frequency, is its complex 

gyrator circuit. It is defined as the input admittance at one 
typical port of the junction with one of the two remaining 
ports decoupled from the input port [1].  A knowledge of this 
quantity is both necessary and sufficient for the synthesis of 
this class of nonreciprocal device and has been used in the 
adjustment of the stripline circulator in [2-8]. It allows the 
gyrator conductance, susceptance slope parameter and quality 
factor of the junction, which enters into the exact synthesis 
problem, to be experimentally deduced. It has not however 
been used to extract the split eigenvalues and the frequencies 
of the counter-rotating eigen-networks that enter into the 
description of the operation of the circulator although means 
of doing so has recently been mentioned [9].  A knowledge of 
these split quantities allows the frequency responses of any 
existing representations of the circulator to be produced. The 
main purpose of this paper is to remedy this situation under 
the assumption that the in-phase eigen-network may be 
idealized by an electric wall at the terminals of the junction.  
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The approximation that the in-phase mode may be represented 
by a frequency independent electric wall is in general quite 
robust. Means of extracting the in-phase eigen-network has 
been separately dealt with in [9-15] and is further extended 
here. Another means of extracting information about the 
complex gyrator circuit at a number of discrete frequencies is 
to have recourse to 1-port measurements on a terminated 
circulator [16-20]. This method readily reveals the split 
frequencies of the counter-rotating eigenvalues but does not 
reveal the split susceptances. It does however allow a 
calculation of the susceptance slope parameter in terms of the 
split frequencies of the gyrator circuit and its gyrator 
conductance using a standard relationship [16,18]. Some early 
circulation solutions based on the immittance at port 1 of a 
terminated circulator are dealt with in [21,22,23].  A scrutiny 
of the experimental results undertaken here, although not the 
main result of this paper, suggests that the two procedures are 
equally good for the circulator under consideration.  
   The frequency variations of the immittance and scattering 
eigenvalues have also been directly experimentally deduced in 
the literature [28-30], but requires that the amplitude and 
phase of all three entries of the scattering matrix are measured 
instead of having recourse to a 1-port measurement as 
articulated here.  

II. COMPLEX GYRATOR IMMITTANCE OF 3-PORT CIRCULATOR  
The complex gyrator immittance of the 3-port junction 

circulator is a fundamental quantity in the description of this 
class of device.  Its definition is a classic result in the literature 
and is reproduced here for completeness sake only [12]. It is 
defined as the input impedance of the junction at port 1 with 
port 3 decoupled from port 1. 
 
The voltage current relationships of the network in terms of its 
open-circuit parameters are 

    
1 11 21 31 1

2 31 11 21 2

21 31 11
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The condition at port 2 is then given by 
*2

2

VZ Zout inI
= =

−
    (5) 

This relationship indicates that terminating each port by *Zin  

in a cyclic manner is sufficient to match the device [1].  
Figure 1 illustrates the schematic diagram of this arrangement. 
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Figure 1.  Definition of complex gyrator circuit of a 3-port circulator 

 
The open-circuit parameters are linear combinations of the 
impedance eigenvalues of the junction in the usual way. 
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0Z , +Z and −Z are the 1-port reactance functions displayed 
by the in-phase and counter-rotating eigen-networks of the 
junction. 
If the frequency variation of the in-phase impedance 
eigenvalue 0Z  may be neglected compared to those of the 
degenerate or split ones then an especially simple model for 
this class of device is available.  Its realization starts by 
simplifying the description of the open-circuit parameters by 
writing  

 0Z 0=      (9) 
It is advantageous, anticipating the topology of the complex 
gyrator circuit, to proceed in terms of Yin instead of Zin. This 
readily gives  

Y Y Y YY ( ) j 3 ( )in 2 2

+ − + −+ −
= −   (10) 

The imaginary and real parts of Yin  are therefore simple 

linear combinations of the split susceptance eigenvalues of the 
junction.                
One equivalent circuit of the three port junction circulator is 
therefore a simple 1-port LCR network.  This classic result is 
illustrated in Figure 2.  Furthermore, a knowledge of Y+ and 

Y- are sufficient to describe this class of device. 
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Figure 2. Complex gyrator circuit (Z0=0) 

 
Figure 3 gives an experimental Smith chart representation of 
the complex gyrator circuit of one arrangement for parametric 
values of H0/M0 over the frequency range 1.20-2.50 GHz. 
Figures 4 and 5 indicate the same data in Cartesian form. The 
solid lines in these illustrations indicate the best fit on the 
experimental data. 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Smith chart representation of complex gyrator circuit of 2.0GHz 
circulator for different magnetizing fields (Ψ=0.22rad, 2R=25.4mm) 
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Figure 4. Cartesian representation of normalised gyrator conductance of 
circulator for different magnetizing fields using Complex Gyrator Method 
(ψ=0.22 rad, 2R=25.4mm) 

 
 

Figure 5. Cartesian representation of normalised gyrator susceptance of 
circulator for different magnetizing fields using Complex Gyrator Method 
(ψ=0.22rad, 2R=25.4mm) 
 
The experimental arrangement employed in obtaining these 
results has a frequency response akin to a degree-1 filter 
network and is often referred to as a degree-1 junction. Its 
schematic diagram is shown in figure 6. The coupling angle of 
the ports at the terminal of the junction is ψ=0.22 rad; the 

radius of the resonator is R=12.7 mm. The thickness of each 
half-space of the resonator is H=2.0 mm. The garnet material 
is an Aluminum doped Garnet with a magnetization µ0M0 
equal to 0.0400 T and a relative dielectric constant (εf ) of  
14.1 . 
 

Figure 6. Topology of a degree-1stripline circulator 
 
The specifications of a gyromagnetic resonator are not 

complete without a description of the profile of its direct 
magnetic flux density.  For the purposes of simulation the 
electromagnet coil has been replaced by a permanent magnet 
in the back rib of the structure. Figure 7 indicates the magnetic 
flux density at both the position of the probe and through the 
center of the ferrite for one typical value of H0/M0 using a 
commercial FE solver. It indicates that the flux density for the 
physical arrangement employed in this work is essentially 
uniform across the resonator except for some fringing effect 
on the edge. The direct magnetic field in the experimental data 
is taken as that in the air gap of the electromagnetic circuit. 
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Figure 7. Flux density in gyromagnetic resonator  
 

III. SPLIT FREQUENCIES 
One means by which the split frequencies of the counter-
rotating eigen-networks may be deduced from a knowledge of 
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the complex gyrator circuit has been mentioned in [18,19]. It 
has not, however, been verified so far. The derivation is 
repeated here for completeness sake before proceeding with 
some measurements. It begins by writing the real and 
imaginary parts of the complex gyrator admittance in 
normalised form. 

( )3g j y y
2

+ −= − −    (13) 

( )1b y y
2

+ −= +     (14) 

±y and b are pure imaginary numbers and g is a pure real 
number. 
At +ω , +y is zero and 

               ( )3g j y , y 0
2

− += − − =   (15) 

                ( )1b y , y 0
2

− += =   (16) 

These two equations are compatible provided 
g jb , y 0
3

+= + =   (17) 

Likewise at −ω , −y is zero and 
g jb , y 0
3

−= − =   (18) 

The loci associated with these two conditions may be 
separately placed on a standard Smith chart in the manner 
indicated in figure 8. The split frequencies of the counter-
rotating eigen-network, for a typical degree of gyrotropy, now 
correspond to the two intersections between the loci and the 
frequency response of the complex gyrator circuit of the 
device.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.  Loci of split frequencies of counter-rotating eigen-networks of the 
complex gyrator circuit. 
 
 
Figure 9 compares the split frequencies obtained in this way 
with those obtained by measuring the frequencies of the 9.5dB 

return loss points of a terminated circulator. A careful 
examination of the frequency response of the terminated 
circulator indicates that there are, above some value of 
gyrotropy, actually four such frequencies. Figure 10 shows a 
typical calculated response. The two outside ones have been 
utilized for this comparison [9]. 
The complex gyrator circuit procedure outlined here actually 
avoids ambiguity in the 91/2 dB points. 
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Figure 9. Split frequencies of circulator versus normalized direct magnetic 
field (ψ=0.22rad, 2R=25.4mm, f0 = 2GHz) [Complex Gyrator Method (ο); 
Terminated Circulator Method (∆)] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10.  Simulated return loss of terminated circulator showing 91/2 dB 
frequencies (ψ=0.22rad); -0.20 ≤ (f-f0)/f0 ≤ 0.20 
 

IV. SPLIT SUSCEPTANCES OF THE 3-PORT SINGLE JUNCTION 
CIRCULATOR 

The possibility of extracting the split eigen-networks from a 
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statement of the complex gyrator circuit has again also been 
mentioned in the literature although experimental data has not 
been obtained so far. The purpose of this section is to 
recapitulate the same and present some data on these 
quantities. The two conditions are readily obtained by solving 
equations (15) and (16) for y+ and y-. The results are 

 
gy j jb
3

+  
= − + 

 
   (19) 

gy j jb
3

− − 
= − + 

 
   (20) 

 
Figure 11 illustrates the result for one value of H0/M0 in the 
case of the 2.0 GHz arrangement employed in this work.  
The susceptance slope parameters at the midband of the 
junction, and at the split frequencies, may also be evaluated 
without ado from this sort of diagram. The susceptance slope 
parameter of the device is a simple linear combination of the 
split quantities. Figure 12 indicates some data for another 
value of H0/M0.  

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

-10

-8

-6

-4

-2

0

2

4

6

8

10

y+

y
_

b

Frequency (GHz)

2π
3

2π
3

−

0

RΨ

no
rm

al
ise

d 
sp

lit
 su

sc
ep

ta
nc

e 
(b

)

j

j

j

j

j

-j

-j

-j

-j

-j  
 

Figure 11. Normalised split susceptances of circulator using Complex Gyrator 
Method for H0/M0=0.10 (ψ=0.22rad, 2R=25.4mm) 
 
The normalized susceptance slope parameter, b´, of the 
complex gyrator circuit in the vicinity of the midband 
frequency ( )00 f2π=ω , is separately obtained by forming 

0

bb
2 ω=ω

ω ∂′ =
∂ ω

    (21) 

The split normalized quantities are obtained from similar 
relationships. The connection between the susceptance slope 
parameters obtained in this way and the direct magnetic field 
intensity are deduced by taking the slopes of the midband 
susceptances at ω0 and ω±.  These results are indicated in 
Figure 13. 
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Figure 12. Normalised split susceptances of circulator using Complex Gyrator 
Method for H0/M0=0.40 (ψ=0.22rad, 2R=25.4mm) 
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Figure 13. Normalised split susceptance slope parameters (ψ=0.22rad, 
2R=25.4mm) 
 
 
The quality factor of the complex gyrator circuit may be 
calculated in terms of b’ and g without ado.  

L
bQ
g
′

=     (22) 
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V. TERMINATED CIRCULATOR 
g, b´ and QL may also be deduced by measurements at port 1 
with both output ports terminated in matched loads.. The 
experimental procedure connected with the terminated 
circulator is a classic result in the literature [16-18]. It does not 
however permit the extraction of the split counter-rotating 
susceptances and susceptance slope parameters. The 
conductance at port 1 of the terminated circulator is not to be 
confused with that of the gyrator circuit. Figure 14 indicates 
the agreement between the two different processes in the case 
of the gyrator conductance. The agreement between the two is 
excellent. Figure 15 compares the susceptance slope 
parameters of the two processes. The quality factors based on 
each experimental procedure are separately compared in figure 
16. 
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Figure 14. Normalised gyrator conductance of circulator versus normalised 
direct magnetic field at midband frequency (ψ=0.22rad, 2R=25.4mm, f0 = 
2GHz) [Complex Gyrator Method (ο); Terminated Circulator Method (∆)] 
 

VI. THE SYNTHESIS PROBLEM 
One task of the paper is to characterize the complex gyrator 
circuit of a typical stripline junction using a disk gyromagnetic 
resonator. A knowledge of the gyrator conductance, 
susceptance slope parameter and quality factor is both 
necessary and sufficient in order to fix the gain-bandwidth of 
the circuit once the degree of the matching network is 
specified. This problem is well understood and is also 
included for completeness sake [28,29,30]. 
The complex gyrator circuit measured in this work at 

70.0MH 00 = is typically specified by 

89.1Q
96.8b

75.4g

L

'

=
=

=

 

 
 
 

             

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

12

14

16

18

20

Η0 Μ0

no
rm

al
ise

d 
su

sc
ep

ta
nc

e 
slo

pe
 p

ar
am

et
er

 (b
')

 
Figure 15. Normalised susceptance slope parameter of circulator versus 
normalised direct magnetic field at midband frequency (ψ=0.22rad, 
2R=25.4mm, f0 = 2GHz) [Complex Gyrator Method (ο); Terminated 
Circulator Method (∆)] 
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Figure 16. Quality factor of circulator versus normalised direct magnetic field 
(ψ=0.22rad, 2R=25.4mm, f0 = 2GHz) [Complex Gyrator Method (ο); 
Terminated Circulator Method (∆)] 
 
 
 

 
A degree-2 frequency response which is compatible with this 
complex gyrator circuit is  
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maxVSWR  is the maximum voltage standing wave ratio of 
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the frequency response, minVSWR  is the minimum value and 
2δ0 is the normalised bandwidth. The above specification is 
compatible with many commercial requirements and is in 
keeping with practice. 

VII. IN-PHASE EIGEN-NETWORK 
The assumptions throughout this work is that the in-phase 
eigen-network of the circulator may be idealized by an ideal 
electric wall at the terminals of the junction and that the 
counter-rotating eigen-networks establish magnetic walls 
everywhere except over the ports of the junction.  
If the in-phase eigen-network cannot be neglected then it may 
be shown that [13] 

in 1
2

1Z Z
Y

= +     (22) 

where 

 
0

1
4ZZ

3
=     (23) 

and 

2
Y YY j 3

2

+ − −
= −   

 
   (24) 

 
This immittance can be realised as a series impedance in terms 
of the impedance of the in-phase eigen-network 0Z  in cascade 
with a shunt circuit involving simple linear combinations of 
the counter-rotating split admittances. It is reproduced in 
figure 17. 
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Figure 17. Complex gyrator circuit (Z0≠0) 

 
The series element 0Z  may be extracted experimentally 

from the frequency response of the complex gyrator 
admittance in figure 3. The normalized in-phase eigenvalue 
obtained in this way is 0375.0ZZ 0

0 ≈ . This quantity is 
obtained by equalizing the locus of the frequency response of 
the gyrator impedance about the midband frequency. 
The extent that the in-phase eigen-network displays an electric 
wall at the terminals of the junction may be separately tested 
by extracting its impedance eigenvalue there. This quantity is 
related to the in-phase poles of the junction 
 

 0
0 3 3Z Z Z Z+ −= + +  

Figure 18 indicates one typical calculation in the case of a so-
called weakly magnetized device. The in-phase poles used in 
the construction of the corresponding eigenvalue are shown in 
figure 18.   
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Figure 18. Normalised in-phase poles of junction circulator (calculation), 
(ψ=0.22rad, κ/µ=0.25, kR=1.0953) 
 
This sort of plot is of course dependent upon both the 
gyrotropy and the coupling angle defined by the strips at the 
terminals of the junction. The value of the gyrotropy utilized 
in this calculation is κ/µ equal to 0.25 and the coupling angle 
is 0.22 rad. 

VIII. CONCLUSION 
The split susceptances and split susceptance slope 

parameters of the counter-rotating eigen-networks of the 3-
port junction circulator have, in this paper, been evaluated for 
the first time from a measurement of its complex gyrator 
circuit. This has been done under the assumption that the in-
phase eigen-network may be idealized by an ideal electric 
wall. The paper has also compared the midband elements of 
the complex gyrator circuit based on a direct evaluation of its 
complex gyrator circuit with those based on the more simple 
1-port measurements of a terminated junction. The two 
procedures are in good agreement.  
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