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Summary 

The paper describes the development of a bespoke Finite Element program to model timber with a 
three dimensional lattice of single spring elements. These springs mimic meso-scale timber 
behaviour, namely the crushing and separation of fibre bunches by following a tri-linear load-
displacement curve. Strength and stiffness parameters for longitudinal, lateral and diagonal 
elements are randomised for heterogeneity. To save computing time, two specialised algorithms 
have been implemented to perform a nonlinear analysis faster than an iterative Newton-Raphson 
algorithm. The algorithms have been adopted and extended to suit a 3D lattice model for timber. 
Furthermore lattice elements have only been used in areas where plasticity and fracture is expected, 
with transverse isotropic continuum elements elsewhere. The general calibration procedure of this 
hybrid model to tested timber specimens of Sitka spruce (Picea sitchensis) is described. 

1. Concept Lattice Model 

Lattice models have been used widely for concrete, but have only recently been applied to timber, 
e.g. [1][2][3]. A clear advantage of modelling timber with a lattice is the possibility to predict brittle 
failure without prior knowledge of the failure location and therefore with no need for re-meshing 
the Finite Element (FE) model.  

The basic unit cell in a lattice has to be constructed to be periodically repeating in space (Fig. 1). In 
this lattice, each cell consists of six different types of elements. Longitudinally orientated springs 
transfer load in the X direction (grain direction) and lateral springs in the Y and Z direction. 
Diagonal springs resist shear in the XY, XZ and YZ plane, as well as providing additional X, Y and 
Z components. This can be simplified by the assumption of transverse isotropy, to four independent 
elements by equating the Y and the Z direction. Thus, elements in the XY plane are the same as 

Fig. 1  Lattice structure with longitudinal (red), lateral (green/blue) and diagonal (grey) 
“half” springs in one unit cell (left), load-displacement curve for spring i (top, 
right) and a definition of cv with mean and standard deviation (bottom, right) 
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their respective elements in the XZ plane. A complete nomenclature can be found at the end of this 
paper. 

In order to create a lattice with as few nodes as possible, they have been arranged in a diagonal 
checked pattern. Thus, instead of constructing nodes at each potential junction of springs only every 
second one is used. Each element follows a tri-linear load-displacement curve with limit strength 
and yield strength values respectively under tension and compression, followed by a softening or 
fracture line. 

Material heterogeneity can be implemented by assigning randomised strength (SC,j and ST,j) and 
stiffness (Kj) properties to springs based on a mean value for each spring type j (x, y/z, xy/xz and 
yz) and a coefficient of variation (cv). This coefficient is assumed to be 0.2 since it has only minor 
influence on the bulk model behaviour [2]. The growth rings can be taken into account as structured 
variation of properties in the lattice. This is implemented by mapping generated growth rings on the 
lattice and changing the mean strength and stiffness properties of lattice members according to their 
assumed position within these rings (section 1.2). 

1.1 Nonlinear Solution 

Former lattice models for timber, e.g. [1][2][3], adopted a simple technique to solve for the 
nonlinear solution: After assembling the global stiffness matrix, this system of equations is solved 
for a fixed displacement step. The resulting stress for each element is computed and checked if it 
exceeds its predefined maximum strength. Elements are removed accordingly and the process is 
repeated until no element fails. Then the next displacement is assigned. This algorithm is repeated 
until the final displacement step assigned or the system becomes singular. However, with this 
technique any accumulated elastic work stored in the lattice before breaking occurs is neglected. 
Since the model described in this paper will be used to perform contact and geometric nonlinear 
analysis in the future, the solution algorithm required a more general approach, as for example the 
Newton-Raphson algorithm. 

To further save computation time, a specialised technique [4] has been adopted. Jirásek and Bažant 
call it the “Method of Inelastic Forces” (MIF) and the “Step Size Control” (SSC) algorithm. The 
latter allows for faster computation by following the solution path through single linear steps from 
one element changing its stiffness to the next element changing. Thus, no additional iteration is 
necessary. Further, the MIF treats any change that would occur in the matrix due to a change in the 
element’s stiffness, as an added inelastic force that represents the difference between the system 
with changed stiffness and the elastic one. Thus, only the force vector has to be modified and it is 

not necessary to solve the global stiffness matrix 
again. The interested reader is referred to a more 
detailed description of this algorithm in the 
original paper [4]. For this research, the SSC 
method has been modified to allow for a tri-linear 
load-displacement definition of the spring 
elements as depicted in Fig. 1. 

1.2 Structured Heterogeneity 

Heterogeneity, on the level of the growth ring 
structure, is mapped on a lattice of the cell size  
of 2 x 1 x 1 mm (dx x dy x dz). This size results 
from a balance between acceptable computational 
effort for larger lattices and represented detail of 
the growth ring structure. The mean ring width 
measured from test specimens has been 5.47 mm, 
with a cv of 24.8%. Specimens with ring width less 
than 2 mm were discarded. This ensures that one 
growth ring encompasses at least two lattice cells. 

Several measurements were taken from the tested 
specimens. The cross section of each one (front 
and back) was scanned with an ordinary flatbed Fig. 2 Measured parameters for recreating 

a growth ring structure in the model 
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scanner. A programme was written that enables the user to draw 3-point circles onto the latewood 
of each growth ring in these images. By averaging the centre points of each circle, the assumed 
position of the pith can be determined. With this information the following parameters can be 
obtained from one specimen (Fig. 2): α, rpith, shiftr , mean ∆rdiff and mean rvar. 

Mean values are calculated along with their coefficients of variation from the specimens of one test 
series. This serves then as input parameters to create a random ring structure for the lattice model, 
based on the characteristics of tested specimens.  

1.3 Mapping the Density Profile 

In order to map the ring structure on the lattice, the 
simplest assumption would be to correlate stiffness 
and strength variation directly with density variation 
within a growth ring. Therefore, density 
measurements from Sitka spruce samples were taken 
and have been normalised. The experimental work 
was done by the chemistry department in the 
University of Glasgow, which used an Itrax density 
scanner [7]. Fig. 3 shows a density profile for one 
radial strip, plotted from pith to bark (blue line). Each 
peak represents the end of one growth ring. A good 
approximation of these lines is a fitted power function 
curve (red line) that encompasses one growth ring 
from one peak to the next one. The equation for these 
approximated curves is given in the left box of Fig. 4. 
The right box depicts the resulting curve for this 
equation for three rings. From several of these radial 
specimens mean values of min,iρ , idiff ,ρ , iexp,ρ  and their 
cv can be calculated, serving as further input 
parameters to generate a density profile for the model. 

Each individual full spring encompasses an area of the cross section of dy·dz for longitudinal and 
diagonal springs and 2·dy·dz for lateral springs, as shown in Fig. 4. The average normalised density 
of this area from a randomly generated profile is calculated. Finally, the mean strength and stiffness 
parameters for this particular spring are simply adjusted by multiplying this value with the original 
mean parameters. 

Fig. 4 Density profile mapped on lattice 
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2. Methodology 

As shown in the load-displacement curve definition of one spring i in Fig. 1, three types of mean 
parameters have to be adjusted: firstly, the mean stiffness values K that can be directly (with 
limitations) derived from E-moduli, secondly, the mean strength parameters SC and ST for each 
spring type that will be determined by trial and error, and thirdly, the parameters γT and γC that 
define the softening curve. 

All tested specimens came from one timber species, Sitka spruce (Picea sitchensis). 

Given that the timber behaves transverse isotropic on the small scale that it is modelled, it can be 
assumed that parameters in the Y and Z direction are the same. Thus, in summary, there are four 
independent mean elastic parameters (Kx, Ky = Kz, Kyz, Kxz = Kxy, Kyz), six independent mean 
strength parameters (SC,x, ST,x, SC,y = SC,z, ST,y = ST,z, SCT,xy = SCT,xz, SCT,yz) and two softening stiffness 
parameters in compression (γC,x and γC,y = γC,z). The remaining represent a very steep softening 
curve, thus (γT,x = γT,y = γT,z = γCT,xy= γCT,xz = γCT,yz ≈ −∞). 

While the stiffness parameters can be obtained from given E-moduli, the strength parameters are 
adjusted by means of comparisons between tested small clear specimens under various loading 
conditions and their respective FE models. Fig. 5 demonstrates the methodology of the calibration. 

2.1 Elastic Parameters 

The K values for a lattice can not be adjusted entirely freely to represent full anisotropic or simply 
transverse isotropic behaviour. The geometry imposes certain limitations. These could be overcome 
by introducing angular springs that act in between the existing springs in one unit cell. With this, it 
would be possible to adjust, for example, the elastic stiffness Kx and Kz independently from the 
shear modulus Gxz. 

However, this has not been done for this research as it adds considerably to the computational 
problem. In this model (without angular springs), calculating the possible elastic parameters from 
the independent spring stiffness of a lattice cell can be performed according to [5] and shall be 
presented here briefly. This can be achieved by equating strain energy stored in a unit lattice cell 
and energy stored in the respective continuum of the same volume. 

Fig. 5  Flowchart for the calibration process 
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The strain energy can further be written as: 

 (2) 

The former can be arranged as: 

 (3) 

A subsequent step involves equating both strain energies and connecting displacement u with strain 
ε, thus deriving the stiffness tensor C. At the final stage C can be written as: 

 (4) 

V represents the volume of the unit cell repeating in space (V=2·dx·dy·dz). The resulting stiffness 
tensor Cijkm of the size 3x3x3x3 can be transferred due to symmetry to the more widely used Voigt 
Notation with Cij of the size 6x6. From this, the E-moduli and Poisson coefficients can be directly 
obtained by calculating the inverse C 

-1
. Thus, it is possible to calculate the elastic constants from 

assumed spring stiffness. However, as mentioned before, due to the geometry of the lattice only 
limited elastic moduli can be obtained with certain Ks. Therefore, a program was written that 
optimises the K values to find relatively close E-moduli and Poisson coefficient predictions. 

As input values, the E-modulus in the longitudinal direction was measured from tension test data 
(Ex = 9792 N/mm²). The remaining E-moduli and Poisson ratios were then determined with ratios 
taken from the Wood Handbook [6]. Since it is assumed that the material behaves transverse 
isotropic on the small scale of the lattice cells, several elastic parameters are the same. For these 
instances the mean value is taken as shown in Table 1. 

The best fit was achieved by optimising a target function, which is the sum of squared, normalised 
differences between the calculated elastic parameter and the target parameter (E-modulus, shear-
modulus and Poisson ratio). The optimisation routine resulted in the following parameters. 

Table 1  Determination of elastic parameters 

Elastic 
Continuum 
Parameters 

Target 

[N/mm²], [-] 

Result 

[N/mm²], [-] 

 Lattice 
Stiffness 

Parameters 

Result 

[N/mm] 

Ex 9792 9608  Kx 1423.5 

Ey = Ez 592 681  Ky = Kz 357.3 

Gxy = Gxz 612 557  Kxy = Kxz 1392.2 

Gyz not fitted to 325  Kyz 1297.9 

νxy = νxz 0.43 0.4862    

νyz = νzy 0.34 0.3719    

νyx = νzx not fitted to 0.0345    

fit ΦK  0.0635    

Using these resulting K values for the lattice and resulting E, G, ν for solid elements, which adjoin 
the latter, they will both behave in the same way as far as bulk elastic properties are concerned 

2.2 Strength Parameters 

Five different calibration tests have been undertaken to obtain load-displacement data for simple 
stress states: a tensile, shear and cleavage test along with compression tests in the longitudinal and 
lateral direction. These results serve as an input to calibrate the lattice’s strength parameters. 

continuumcell UU =



The first three of these types of tests shall be presented here. A depiction of the respective test 
specimens and FE models is shown in Fig. 6. The red arrows and green triangles represent the 
applied forces and boundary conditions respectively. 

2.3 Program Output 

As one of the postprocessor’s features, the FE program generates output files in form of 3D 
surfaces. Individual layers of geometric data of the deformed model as e.g. the lattice elements, 
solid elements and boundary conditions can be exported. These surfaces can be visualised with a 
rendering program (e.g. Bryce). To picture the fracture path the FE program generates surfaces (two 
for each plane in the xy, xz and yz-direction due to the shifted cell arrangement) with different 
shades of red according to the amount of broken links that this surface encompasses, see Fig. 7. 
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Fig. 6  Model depiction of three test arrangements (from the top left): cleavage (y/z), shear (xy) 
and tension (x). Note that only part of the specimen is modelled with a lattice, for the 
remainder transverse isotropic elastic solid elements are used (grey area) 
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Fig. 7 Model depiction of a cleavage, shear and tension test, lattice colour represents variation 
in elastic and strength properties, influence of growth ring structure on fracture path for 
model and tests pictured (bottom, left) 



3. Preliminary Results 

After a preliminary adjustment of the strength parameters ST,x, ST,y/z, SCT,xy/xz, load-displacement 
graphs can be obtained. They are plotted in Fig. 8, along with a box plot of the stiffness and 
maximum load of the model and experimental tests. Similar maximum loads are observed among 
model and experimental results for all three loading conditions and can be fine-tuned further. 

However, predicted and measured stiffness, due to the inherent limitation of the lattice cells to fully 
model the ratios of elastic properties, show less agreement. Furthermore, post peak behaviour in the 
experimental shear tests was more pronounced than the model’s prediction, which after a short 
plastic deformation shows brittle fracture. This probably stems from the wide meshed lattice that is 
used for these relative small shear specimens. Since the model allows adjustment of the softening 
curve of a spring (γT,j), this could serve to be another parameter to adjust for bulk post peak 
behaviour. However, cleavage models, using a denser mesh, showed better agreement in this regard. 

Variation in the system’s properties was in all cases predicted to be smaller than observed ones. As 
an initial assumption for these models, the density was mapped directly without any factor on the 
lattice’s properties. Better model predictions might be obtained by applying a factor to the density 
variation for specific spring types. 

4. Discussion, Conclusions and Acknowledgements 

Lattice models seem to be a reasonable approach to model fracture behaviour. Comparisons 
between experiments and lattice models show that realistic predictions can be made in terms of 
stiffness, maximum load and fracture path. Heterogeneity was implemented by creating an artificial 
growth ring structure. This has a significant influence on the fracture path which can be observed in 
the model as well as in tests (see cleavage model in Fig. 7).

Fig. 8  Load-displacement curves for cleavage, shear and tension tests, box plots show 
variation in K and Smax for model (red) and experiments (blue) 



However, since it was important to minimise the computational effort various techniques and 
approximations were applied. For example, one major drawback is that the lattice does not perfectly 
represent transverse isotropy (i.e. can not be adjusted freely to any given set of elastic properties). 
The only solution, to use angular springs, leads to even more strength parameters that need to be 
determined and to more computation time. 

The authors acknowledge the experimental work for measuring density samples taken place in the 
Agricultural & Analytical Chemistry Department at the University of Glasgow. Furthermore, they 
want to express their gratitude for the financial support from the Royal Academy of Engineering, 
Edinburgh, which enabled the participation in the WCTE conference. 
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Nomenclature 
α  angle between Y-axis and vector from lattice centre to pith [rad] 
σ, ε, C stress, strain and elasticity tensor  [N/mm², -, N/mm²] 
ρ(r) normalised density at radial distance r  [-] 

idiff ,ρ  difference between max normalised density and min for ring i  [-] 

iexp,ρ  exponent parameter in approximated, normalised density function for ring i [-]  
min,iρ  minimum parameter in approximated, normalised density function for ring i  [-] 
νxy Poisson ratio (load applied in X and displacement in Y) [-] 
γC,x,i parameters defining compression softening curve for spring i in X  [-] 
φ probability density [-] 
σ, µ, cv mean value, standard deviation, coefficient of variation (σ/µ) [N, N/mm,-] 
dx lattice spacing in X  [mm]   
Ex, Gxy E-modulus in X, shear modulus in XY-plane [N/mm², N/mm²] 
F force in one spring [N] 
i,j,k,m arbitrary variables [-] 
KTest,Kmodel overall stiffness for test and model [N/mm, N/mm] 
Kx mean stiffness parameter in X  [N/mm] 
Kx,i stiffness parameter in X for spring i  [N/mm] 
l
(b)

 length of vector n
(b)

 [mm] 
n

(b)
 normalised vector of spring (b) in unit cell [-] 

Nb number of half springs in one unit cell (18) [-] 
Pc,i vector from pith to spring i [-] 
r, ri, ∆ri radial distance from pith, radius of ring i, ring width of ring i [mm, mm, mm] 
∆rdiff,i difference between ring width of ring i and ring i-1 [mm] 
rpith  distance from lattice centre to pith  [mm] 

shiftr  parameter defining position of specimen in centre growth ring [-] 
rvar difference between radius of ring i, front and backside [mm] 
SC,x,i individual strength parameter for tension in X for spring i  [N] 
ST,x mean strength parameter for compression in X [N] 
Smax,test/model maximum load for tests and model [N] 
u displacement in one spring [mm] 
U strain energy  [N/mm²] 
V volume of lattice unit cell [mm³] 


