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ABSTRACT: Some earlier data were analysed, searching the relation between the minimum dry density 

emax and the two grading entropy parameters (mean log diameter and fraction number characteristic). The data 

were split into two components. The first data component – constituting the major part of the density  – was the 

linear function of the mean log diameter, the second one followed the shape of the entropy diagram and it was 

about the same for the constant vale of the mean log diameter. The density– in terms of normalized the mean 

log diameter– was maximal around at the point where internal structure changed.  

 
RÉSUMÉ: Certaines données antérieures ont été analysées, en recherchant la relation entre l’emax à densité 

sèche minimale et les deux paramètres d’entropie. Les données ont été divisées en deux composantes. La 
première composante de données – constituant la majeure partie de la densité – était la fonction linéaire du 

diamètre moyen de la bûche, la deuxième suivait la forme du diagramme d’entropie et elle était à peu près la 
même pour la Vale constante du diamètre moyen des grumes. La densité – en termes de normalisation du 

diamètre moyen des grumes – était maximale autour du point où la structure interne changeait. 
 

Keywords: Grading entropy,   interpolation, sands, minimum dry density emax  
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1 INTRODUCTION 

In the pioneering research work on sand density 

of Lorincz (1986, 1990), the artificial mixture 

series of natural sand grains with increasing, 

mean log diameters, various fraction numbers 

N=1 to 5 were tested for minimum dry density 

emax. The grading curve series were ‘optimal’ 
(fractal) or gap-graded.   

The data were used for interpolation (Lorincz, 

(1986, Imre et al, 2014). and, to explore the 

relation between density and grading entropy. 

According to the conclusion of Lorincz, the 

minimum dry density emax was a maximum 

value at around A=2/3 for each series. The 

global maximum occurred for gapgraded 

mixtures.  

Analysing the emax data further, a split (into 

weighted mean fraction density and density 

increment, Lorincz 1986) was applied. Some 

near antisymmetric and near symmetric-like 

relations were found for these in terms of the 

grading entropy parameters (Imre et al, 2015). 

In this paper the antisymmetric and 

symmetric-nature of the split is proved with 

statistical mathematical tools (model fitting) 

amd some data measured at Ruhr University of 

Bochum are presented. The “A~2/3 maximum 

density conjecture” is supported by both. The 
data analysis results in the statement that for 

constant A the density is a near-linear function 

of the relative frequencies. Using this, linear 

optimisation theory may explains why the 

maximum/minimum appear at the boundaries of 

the constant A domains. 

2 GRADING ENTROPY  

2.1 The space of grading curves 

The relative frequencies of the fractions xi (i = 1, 

2, ..N) for each grading curve fulfil: 

.1,0,1
 

1  i

=
=

Nxx ii

N
 (1) 

where N is the number of the fractions between 

the finest and coarsest non-zero fractions:  

1minmax +−= jjN  (2) 

The relative frequencies xi - and the space of 

grading curves with N fractions - can be 

identified with the barycentre coordinates in an 

N-1 dimensional simplex (see Figs 2. to 3.). 

For a fixed N, both the non-normalized 

entropy map [ →[S0,S] and, the 

normalized entropy map [ →[A,B] are 

continuous on the open simplex and can 

continuously be extended to the closed simplex. 

2.2 Derivation of the grading entropy  

Two statistical cell systems are used. The 

fractions are defined by successive  

multiplication with a factor of 2, starting from 

an arbitrary d0 as follows (j =1, 2.., Table 1.).    

0
1-j

0
j 22 ddd   (3) 

where fractions are numbered by j (serial num-

ber).  A uniform cell system with d0 width is 

used assuming that the distribution within a frac-

tion is uniform. The base of the logarithm is set 

into 2 in statistical entropy Equation:  


=

−=
m

i
ii ln
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s

12
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so that the maximal value is equal to 1 where the 

relative frequencies of the two cells are equal. 

The number of the elementary cells Ci in the 

fraction i is equal to:  
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The relative frequency of any elementary cell in 

fraction i is equal to: 

i

i
i

C

x
=  (6) 

where xi is the relative frequency of fraction i. Ci 

is the number of the elementary cells in fraction 

i, and xi is the relative frequency of fraction i. 
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Table 1. Definition and properties of fraction j. 

j 1  23 24 
Limits  1 to 2  222  to 223  223  to 224  

S0j [-] 1  23 24 

 
                     2

1                                     3

x
3

 
Figure 1. (left) Representation of the 3- fraction soils 

with the interpolated minimum dry density lines (with 

maximum at the gap-graded edge, Lorincz, 1986). 

(right) The relative frequency xN of a given simplex 

point is determined by the distance of the face 1…N-1 

and its parallel transportgiven simple point. 

 

 

The grading entropy S is derived by inserting the 

relative frequency of the secondary cell i into 

the statistical entropy Equation of finite dscrete 

distributions (Equation (4)):  
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(7)  

The grading entropy S is split into the base 

entropy So and the entropy increment S: 

SSS += 0  (8)  

The base entropy S0 and the normalized form A: 

ixSxS iii == 00 and
minmax
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oo

oo

S S
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−
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= (9)  

where S0k is the k-th fraction entropy (Table 1), 

S0max and S0min are the entropies of largest and 

smallest fractions, respectively. The entropy in-

crement S and the normalized version B: 

.ln
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where S0i is the grading entropy of the k-th frac-

tion, which is defined as follows (Table 1.):   

2ln

ln k
ok

C
S = kSok = -1 (11) 

The grading entropy parameters induces a 

secondary structure on the space of the grading 

curves. The A = const. condition defines parallel 

N-2 dimensional hyper-plane sections of the N-1 

dimensional simplex, , the A = const., B=const. 

condition defines N-3 dimensional topological 

circles (Figs 2. to 3.). 

2.3 Entropy diagrams  

2.3.1 The lines of the entropy diagrams 

The image of the compact simplex is compact 

(Fig 4. left), having a maximum and a minimum 

value for every possible A or S0. These coincide 

for N=2 being equal to the specific entropy 

function of Eq (4). This line approximately 

determines all lines of the entropy diagrams in 

terms a constant multiplyer. The optimal point  

at maximum B for a fixed N and A: 

 

.hhhh

a
31

2

b

A=0.5B=1

B=1.4

 

Figure 2. N=3. (left) Points with fixed A (N-2=1 

dimensional planes) with the optimal line. (right): 

Points with fixed A and B. 

 

 

Figure 3. N=4. (left) Points with fixed A (N-2=1 

dimensional planes) with the optimal line. (right): 

Points with fixed A and B  (N-3=1 dimensional  

circles). (A=0.66 B=1.2,: A=0.5 B=1.2,:  
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Table 2. The A coordinates for the maximum 

entropy point (at a fixed fractal dimension n = 2) 

N 2 3 4 5 6 7 
A 0,67 0,71 0,75 0,79 0,82 0,84 
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Figure 4. (left) The maximum and the minimum 

lines of the normalized entropy diagrams, depending 

on N. The maximum lines related to N=2 and 40 

coinciding at A=0.5, at the symmetry axis and 

slightly differing for other A values. (right) The 

internal stability domains for N=7 are: I: piping, II: 

transition, III: stable. The points 2 to 7 are the  

maximum entropy points for N=2 to 7, resp. lines as 

b to f the approximate minimum lines for N =2 to 7. 
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Figure 5. Some optimal grading curves of Lorincz 

 

0.010.101.0010.00

d [mm]

0

40

80

S
  

[%
]

gravel sand

511

515

 

Figure 6. Some gap-graded grading curve series of 

Lorincz. 
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where parameter a is the root of the equation :  
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j  (13)  

The optimal grading curves have fractal dis-

tribution, the fractal dimension n is as follows. 

2log

log
3

a
n −=  (14)  

While a varies from 0 to 1 or 1 to ∞, A varies 

from 0 to 0.5 or from 0.5 to 1, n varies from ∞ 
to 3 or from 3 to -∞, respectively. The maximum 

entropy points are at a=n=2 (Figure 4, Table 2).  

2.3.2 The internal stability rule 

The internal stability rule of the grading entropy 

theory (Figure 4 right) is defined by vertical 

flow tests (Lorincz, 1986). For A < 2/3, the 

mixtures are internally unstable, and stable in 

zone III. . The transitional zone depends on N 

and the maximum entropy point (Table 2).  

3 METHODS 

3.1 Density measuremens  

The minimum dry density emax or smin  test were 

originally made on five fractions and artificial - 

mixtures of natural sand grains with optimal  or 

gapgraded soils using Proctor mold (see Figures 

5, 6).  The fractions were: 0.06-0,125mm, 0.125-

0.25 mm, 0.25-0.5 mm, 0.5-1 mm, 1-2 mm. The 

experimental tests have been started to be 

repeated and extended at Bochum University.  

More than 5 fractions were considered and, to 

determine the maximum point, additional series 

were included. The DIN mold was used. 

3.2 Density variables  

The void ratio e, solid volume ratio s or its 

inverse, the specific volume v: 

eV

V
s s

+
===

1

11


 (15)  
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 Concerning the grading entropy parameters, 

the base entropy S0 was considered as a mean 

abstract log diameter i0 between S0max and S0min.. 

The relative base entropy A was considered as a 

normalised abstract mean log diameter km 

between 0 and 1  and were used in the 

representation.  

 The entropy increment S was used since it 

measures the  ‘disorder’due to the mixing of the 

fractons. It is maximal if all relative frequency is 

the same.  The measured solid volume ratio s 

was split into two parts for every mixture: 

i

i

ii
isx=s 

=

max

min

0 ,  (16)  

0s=ss − min  (17)  

using the xi relative frequencies and the 

measured solid volume ratio si for fractions 

where si refers the smin of fraction i.  

3.3 Analyses with model fitting  

A linear line was fitted on all the S0 -  s0 relation:  

00 cSs =  (18)  

For mixtures, the fully symmetric S  line of the 

2-fraction mixtures, denoted s S2, with 

maximum of 1 (Eq 4), was fitted to the S0 – 

(smin- s0) data: 

20min Skss =−  (19)  

where k was identified. This fit was 

simultaneously made for the same type of 

mixtures for a fixed N(eg., N=2, continuous) to 

verify the symmetry assumption. 
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Figure 7. The fraction data, measured by Lorincz 

1986 and, in Bochum (Groups III and IV).  
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Figure 8. The computed smin  - s0 values, with a 

feature of the symmetry. (b) The optimal mixtures, 

indicating the N=5 gap-graded. 
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Figure 9. (a) to (c) Measured optimal data of  

Lorincz: full symbols, Bochum data: open symbols.  
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Figure 10. Model fitting. The best-fit grading entropy 

increment line, gap-graded case  (a) to (c) N=3, 4, 5. 
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Figure 11. Model fitting. The difference smin  - s0 and 

the best-fit grading entropy increment line, 

gapgraded mixtures.  (a) to (c) N=2,3, 5 

 

(a)  

 

 

(b)

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Number of fractions  [-]

4E-2

8E-2

1E-1

D
ry

 d
e

n
s
it
y
 i
n

c
re

m
e

n
t 

  
 s

 [
-]



gapgraded mixtures

continuous mixtures
fractions

 

Figure 12. (a) Sum of the components for the N=5 

continuous mixtures, explaining the maximum 

location. (b) The smin-s0 at A=0.5, with the increment 

values of the fraction densities smin,i -smin,1. 

 

Table 3. Continuous mixtures. identified k values  

N 2 3 5 
k 0,02 0,04 0,07 

 

Table 4. Gap-graded mixtures. identified k values  

N 4 5 
k 0,07 0,09 

 

Table 5. The max/min for smin, gapgraded soils, N=5 

N 5 4 3 
max/min 1,28 1,20 1,14 

 

Table 6. The max/min  for smin, optimal soils,  N=5 

N 5 3 2 
max/min 1,23 1,12 1,05 

 

Table 7. Minimum, mean, maximum smin,  N=5 

A 0.25 0.5 0.75 
edge 1-2 or 3-4 0,51 0,53 0,55 

optimal point 0,56 0,61 0,61 

edge 1-N 0,58 0,63 0,64 
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Table 8. -Minimum, mean, maximum smin, N=3 

A 0.25 0.5 0.75 
edge 1-2 or 2-3 0,52 0,52 0,52 

optimal point 0,52 0,55 0,54 

edge 1-N 0,54 0,56 0,57 

4 RESULTS 

The measured results are shown in Figures 7 to 

9, Tables 3 to 4. The smin for soil fractions 

increased with the fraction serial number j for 

Lorincz (1986) but the increase was only 

effective for the smallest few fractions in the 

Bochum data (the differences due to the testing 

mode are treated in Imre et al 2011 and 2014).  

According to Figure 9, the smin for the mixture 

series had a maximum for both the optimal or 

gapgraded series at around A=2/3 being the 

greater for gapgraded soils.  

 The split data and the results of the model fit-

ting are shown in Figures 10 to 11. Using frac-

tion data, c was identified as 0,016.  For mix-

tures, the S  line of the 2-fraction mixtures, 

denoted as S2, with maximum of 1, was fitted 

to the S0 – (smin- s0) data. The same type of mix-

tures with same N (see Figures 5, 6 ) were sim-

ultaneously fitted.  

 The results are summarized in Figure 12. The 

sum of the fitted functions had a maximum at 

around A=2/3. The identified k values - the max-

imal density increments at A=0,5 - increased 

with N, they plot into near linear lines with 

slightly smaller slope for the continuous than for 

the gap-graded, being both slightly steeper 

than the fractions line with slope of 0,016.  

5 DISCUSSION 

5.1 The density variation in the simplex  

The maximum and the minimum value of smin 

within the mixture series for fixed N may differ 

by a factor of 1.2, as shown in Tables 5 and 6. 

The maximum for optimal or gapgraded series 

was at around A=2/3 being the greatest for 

gapgraded soils. This results imply the following 

assumption. The smin for fixed A and N  is 

controlled by the quantity of the largest fraction 

(see the verticals of Figure 1 left, Imre et al, 

2009). These spatial distribution results and 

assumptions can be explained by linear 

optimisation theory as follows. 

 The s=smin function can be rewritten as 

follows in the suggested split model:  

i

i

ii
isx=s 

=

max

min

0 , 0s=ss − min  (20)  

=s i

i

ii
icx

max

min


=

+ )A(Nf  (21)  

Since si dry density of the fractions measured by 

Lorincz increases with i, c1 < c2…< cN, the 

second term is less than about 1/5 of the first 

term and can be considered about constant for 

fixed A. It follows that the s=smin function is 

nearly linear for fixed A, therefore, the extreme 

values of the density are encountered at the 

boundaries, the mean at the optimal point.   

Being the largest coeffiicient the cN, following 

from the geometrical meaning of relative 

frequency xN and the A=const hyperplanes 

(Figures 2, 3) it follows from that the extreme 

density values are determined by the 

maximum/minimum value of xN. If the s 

function is basically linear, its conditional 

maximum or minimum will appear on each the 

A=const hyperplane at edge 1-N or the edge 

with minimum xN, resp. 

 

5.2 The density increment in compaction  

The mixture smin value is dependent on A, with 

ratio of the minimum and maximum smin 

between 1.05 to 1.28 (Tables 5 and 6).   

The ratio of the minimum and the maximum 

dry density smin / smax is comparable with this, 

being equal to eg., 0.822 (=1/1.2) for calibration 

sand data (Imre et al, 2011, Kabai, 1968).  
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6 CONCLUSIONS  

6.1 Fraction results 

According to the measurements of Lorincz, the 

density of the fractions smin,i (sometimes denoted 

by si) increases linearly with So in the tested 

diameter ranges, where So for the i-th fraction is 

equal to Soi. This result was not fully reproduced 

possibly due to the different testing and soil 

conditions.  

6.2 Grading curves with varying A  

(1) According to the measurements Lorincz, the 

mixture density smin (sometimes denoted by s) in 

terms of A has a maximum around A=2/3 for 

each tested grading curve series where A varied. 

This was reproduced by the repeated tests. 

(2) In the suggested split model, the s0 (mean 

fraction density) is substracted from the mixture 

density. The remaining increment smin -s0  is zero 

for the fractions and, is positive and controlled 

by the entropy increment S(A) for the mixtures 

such that the maximum of smin -s0 at A=0.5  

increases with N about linearly, similarly to the 

fraction density increase with the fraction serial 

number. The s0 (mean fraction density) in terms 

of So follow the same linear relation as the 

fraction density  smin,i  in terms of So.  

(3) The split model may explain why the 

mixture density smin in terms of A has a 

maximum around A=2/3.  

6.3 Grading curves with constant A  

For a fixed constant A section (shown eg., in 

Figures 2 to 3), according to the observations, 

the smin is dependent on the quantity of the 

largest fraction. The optimal point has a mean 

value, the gap-graded point a maximum value, 

the simplex edge point where the largest fraction 

is missing, the minimum. This result can be 

explained by the fact that the dry density 

function is basically linear.  Due  to linear 

optimisation rules, on the constant A sections of 

the grading curve space, the minimum and the 

maximum of s0 is occuring at the boundaries 

where xN is a maximum or a minimum.   

 

It can be noted that all result can be explained 

by finite geometry reasons. Larger diameter 

ranges (larger variety of grain sizes) may result 

in denser packing both for fractions and 

mixtures. It can be noted that the A=2/3 for limit 

is an internal stability limit which can be 

explained by microstructural reasons as follows. 

The A=2/3 limit determines a boundary where 

‘coarse in fine’ structure changes into ‘fine in 

coarse’ configuration (see eg., Goudarzy, 2015). 
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