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ABSTRACT 

Motorcyclists that have no protective structures while motorcycling as other 

occupants of automobiles do can be particularly vulnerable to accident injuries (i.e., 

motorcycles are not as crashworthy as automobiles). Motorcyclists' susceptibility to 

accident injuries in nature may act synergistically with the complexity of conflicting 

manoeuvres between motorcycles and other motor vehicles to increase their injury 

severities in accidents that take place at junctions (e.g., T-junction or crossroad). 

Previous studies have applied crash prediction models to investigate influential factors 

on the occurrences of different crash configurations among automobiles but statistical 

models of motorcyclist injury severity resulting from different motorcycle-car crash 

configurations have rarely been developed. 

This current research attempts to develop the appropriate statistical models of 

motorcyclist injury severity by various crash configurations conditioned on crash 

occurrence at T-junctions in the UK. T-junctions are selected in this study because 

such junctions represent the single greatest danger to motorcyclists - for junction-type 

accidents, the statistics from the UK Stats19 accident injury database over the years 

1991 and 2004 suggested that T-junctions were ranked the highest in terms of injury 

severity (Le., accidents at T-junctions resulted in approximately 65% of all casualties 

that sustained fatal or serious injuries) and accident occurrence (i.e., accidents at T­

junctions accounted for 62% of all motorcyclist casualties). This may be in part 

because there is a comparatively large number ofT-junctions in the UK. Although the 

author was unable to take into account the exposure factor due to the lack of such data 

(Le., the total number of T-junctions, and the number of motorcycles travelling on 

these locations), it remains true that more severe accidents happen at T-junctions than 

any other type of junction. In this present study, motorcycle-car accidents at T­

junctions were classified into several crash configurations based on two methods that 

have been widely used in literature. The first method is based on the conflicts that 

arise from the pre-crash manoeuvres of the motorcycle and car. The second method is 

on the basis of first points of impact of the motorcycle and car. The crash 

configurations that are classified in this current study based on the mixture of these 

two methods include (a) accidents involving gap acceptance (i.e., approach-turn crash 



and angle crash), (b) head-on crash, and (c) same-direction crash (i.e., sideswipe crash 

and rear-end crash). 

Since injury severity levels in traffic accidents are typically progressive (ranging from 

no injury to fatal/death), the ordered response models have come into fairly wide use 

as a framework for analysing such responses. Using the accident data extracted from 

the Stats19 accident injury database over 14-year period (1991~2004), the ordered 

probit (OP) model of motorcyclist injury severity were estimated because the 

dependent variable (i.e., no injury, slight injury, KSI: killed or seriously injured) is 

intrinsically discrete and ordinal. A set of the independent variables were included as 

the predictor variables, including rider/motorist attributes, vehicle factors, 

weather/temporal factors, roadway/geometric characteristics, and crash factors. The 

current research firstly estimated the aggregate OP model of motorcyclist injury 

severity by motorcycle-car accidents in whole. Additional disaggregate models of 

motorcyclist injury severity by various crash configurations were subsequently 

conducted .. 

It appears in this current research that while the aggregate model by motorcycle-car 

accidents in whole is useful to uncover a general overview of the factors that were 

associated with the increased motorcyclist injury severity, the dis aggregate models by 

various crash configurations provide valuable insights (that may not be uncovered by 

an aggregate crash model) that motorcyclist injury severity in different crash 

configurations are associated with different pre-crash conditions. For example, the 

preliminary analysis by conducting descriptive analysis reveals that the deadliest 

crash manner in approach-turn crashes and angle crashes was a collision in which a 

right-turn car collided with an approaching motorcycle. Such crash patterns that 

occurred at stop-/give-way controlled junctions appear to exacerbate motorcyclist 

injury severity. The disaggregate models by the deadliest crash manners in approach­

turn crashes and angle crashes suggest that injuries tended to be more severe in 

crashes where a right-turn motorist was identified to fail to yield to an approaching 

motorcyclist. Other disaggregate crash models also identified important determinants 

of motorcyclist injury severity. For instance, the estimation results of the head-on 

crash model reveal that motorcyclists were more injurious in collisions where curves 

were present for cars than where the bend was absent. Another noteworthy result is 
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that a traversing motorcycle colliding with a travelling-straight car predisposed 

motorcyclists to a greater risk of KSIs. These findings were clearly obscured by the 

estimation of the aggregate model by accidents in whole. 

In the course of the investigation of the factors that affect motorcyclist injury severity, 

it became clear that another problem, that of a right-turn motorist's failure to yield to 

motorcyclists (for the deadliest crash patterns in both approach-turn crash and angle 

crash), needs to be further examined. The logistic models are estimated to evaluate the 

likelihood of motorist's right-of-way violation over non right-of-way violation as a 

function of human attributes, weather/temporal factors, roadway/geometric factors, 

vehicle characteristics, and crash factors. The logistic models uncover the factors 

determining the likelihood of motorists' failure to yield. Noteworthy findings include, 

for instance, teenaged motorists, elderly motorists, male motorists, and professional 

motorists (Le., those driving heavy goods vehicles and buses/coaches) were more 

likely to infringe upon motorcycle's right-of-way. In addition, violation cases 

appeared to be more likely to occur on non built-up roadways, and during 

evening/midnight/early morning hours. 

This present research has attempted to fill the research gaps that crash prediction 

models focused on analysing motorcyclist injury severity in different crash 

configurations have rarely been developed. The results obtained in this current 

research, by exploring a broad range of variables including attributes of riders and 

motorists, roadway/geometric characteristics, weather/temporal factors, and vehicle 

characteristics, provide valuable insights into the underlying relationship between risk 

factors and motorcycle injury severity both at an aggregate level and at a disaggregate 

level. This research finally discusses the implications of the findings and offers a 

guideline for future research. 
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CHAPTER! 

INTRODUCTION 

1.1 Background 

Motorcycle operation is a complex task that requires excellent motor skills and 

physical cooperation and balance (Rothe and Cooper, 1987). Alertness and 

concentration required to negotiate traffic patterns dominated by cars also make 

motorcycling a formidable skill challenge (Savolainen and Mannering, 2007a). The 

general perception of motorcycling is that motorcycle activity is a dangerous 

transportation mode. Given the dynamics and manoeuvrability of motorcycling (Le., 

motorcycles are able to accelerate faster than other motorised vehicles and pull out 

into smaller gaps in traffic more often and overtake other vehicles more freely), the 

commission of an error when riding a motorcycle is likely to result in more severe 

accidents than making an error when driving an automobile (Elliott et aI., 2007; Holst, 

1993; Horswill and Helman, 2003; Mannering and Grodsky, 1995). Unlike other 

motorised vehicles that offer greater protection to car-occupants through metal 

structure or airbag (McCartt and Kyrychenko, 2007), motorcycle users are more 

susceptible to accident injuries than automobile-occupants (Le., motorcycles are 

generally not as crashworthy as automobiles) (Hancock et aI., 2005). 

Motorcyclists' vulnerability to accident injuries may act synergistically with the 

complexity of conflicting movements and manoeuvres between motorcycles and 

automobiles to increase motorcyclist injury severity in junction accidents (e.g., T­

junction or crossroad). A junction crash could be more severe to motorcyclists than a 

non-junction case as a result of the fact that some of the injurious crashes such as 

angle collision commonly take place. Research (e.g., Chipman, 2004; McLellan et aI., 

1996) suggested that in a car-car angle crash, the impact of intrusion into the 

passenger compartment may be reduced through its metal structure and/or side airbag. 

However there is no such protection for motorcycles. In addition to the absence of the 

measure that may absorb crash-impact for motorcycles, crashing into a car (Le., 

motorcycle is the striking vehicle) in an angle crash may cause the rider to eject or 

tumble (Obenski et aI., 2007). Head and chest injuries, which normally results in 
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Chapter 1: Introduction 

severe/fatal consequence, often occur with ejection when the motorcyclist impacts the 

ground or the car after being thrown from the bike (Peek-As a and Kraus, 1996a). 

The causation of motorcycle accidents can be a difficult task to study. One possible 

solution that has been commonly adopted is the use of methodology that investigates 

road crashes after they have taken place. Such approach involves the use of multi­

disciplinary accident investigation teams who travel to the accident scene soon after 

they occur and subsequently collect data. Several disadvantages have been pointed out 

by Grayson and Hakkert (1987) for such a method. For example, operations costs 

were very high (e.g. manpower or necessary equipment for the in-depth observations 

of the accident scene) and very time-consuming. As a result, only a small number of 

accidents could be investigated. Another preferable approach (i.e., case study method) 

that analyses police accident/hospital reports has been successfully used in existing 

literature (e.g., Pai and Saleh, 2007a, b, 2008, in press). Such approach is benefited 

from the availability of multiple variables/factors in police accident or hospital reports, 

providing valuable insights into the underlying relationship between the risk factors 

and accidents. The statistical power by estimating econometric models can also be 

increased due to the large amount of accident data being available in accident/hospital 

reports, allowing more precise and conclusive modelling results. 

1.2 Brief Overview of Past Studies 

Recent studies relying on statistical analyses have identified several factors that 

contributed to an increased risk of involving in an accident. For example, Mannering 

and Grodsky (1995) reported that factors such as riding exposure, excessive speed, 

and improper lane changing/overtaking were recognised by motorcycle users to 

increase the likelihood of involving in a crash. The conclusions drawn by Mannering 

and Grodsky were generally supported by more recent studies (e.g., Lynam et aI., 

2001; Sexton et aI., 2004; Elliott et aI., 2007). Nevertheless, accident/injury severity 

(as opposed to the likelihood of an accident occurrence) presents another phenomenon 

that has been less understood. A research programme investigating the determinants 

of accident/motorcyclist injury severity, conditioned on an accident having occurred, 

has the potential to provide additional insights into the multiple factors (e.g., human 

factors, vehicle attributes, weather, roadway, and crash characteristics) that influence 
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accident/injury outcome. A better understanding of such mUltiple factors may 

facilitate the identification of suitable countermeasures which may help prevent the 

hazards from occurring. 

Most previous research on motorcycle accident severity has been oriented toward a 

univariate examination of accident severity, with focuses on helmet-related issues 

such as effectiveness of helmets in reducing both fatalities and severity of head 

injuries (see, for example, the work by Watson et aI., 1980; Ouellet and Kasantikul, 

2006). Compared with the multivariate studies of automobile accident/injury severity, 

relatively fewer studies have been conducted in the field of motorcycle safety using a 

true multivariate examination of the determinants of accident/injury severity (Le., 

controlling for all factors that affect accident/injury severity). 

To obtain an understanding of the causal factors that are associated with 

accident/injury severity and subsequently to identity prevention countermeasures, 

crash prediction models have been routinely developed for car-car accidents. 

Depending on the research objectives and available data, these studies can be 

generally divided into two types: crash prediction model at aggregate level (Le., 

models were estimated by accidents in whole) and at dis aggregate level (Le., models 

were estimated by different crash types/configurations). Examples of studies at 

aggregate level include the work by Kockelman and Kweon (2002) that analysed car­

occupant injury severity in car-car accidents in whole. Examples of disaggregate 

studies by crash configurations include the work by Khattak (2001) and Farmer et ai. 

(1996) that examined the determinants of car-occupant injury severity resulting from 

car-car rear-end/angle collisions at intersections. 

A major flaw of the published studies has been that while most of the aggregate or 

dis aggregate studies have been directed towards car-car accidents at intersections, 

comparatively few have been for motorcycle-car accidents. Among the few studies for 

motorcycle-car accidents, most have been conducted at aggregate level (e.g., Quddus 

et aI., 2002; Keng, 2005; Lapparent, 2006). There are at least two important and 

defensible reasons for estimating disaggregate models of motorcyclist injury severity 

in different crash configurations as a function of human, vehicle, roadway, and crash 

factors. 
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The first is motivated by the need to identify the factors that are associated with injury 

severity in different crash configurations but such information may not be revealed 

through crash models at aggregate level. For example, while crash models at 

aggregate level are useful to identify whether a crash configuration is more severe to 

motorcyclist than other crash configurations, one might expect an automatic signal 

may have different impact on riders in rear-end crashes from riders in angle crashes. 

A second use of the dis aggregate models by crash configurations is to gain an 

understanding of the differing effects of human, roadway, weather, and crash factors 

on injury severity in various crash configurations, so that countermeasure effects may 

be better understood. It is likely that countermeasures may affect only a subset of the 

accidents. For instance, it may be learned that surveillance cameras that aim to 

discourage red light running may reduce accident/injury severity resulting from angle 

crashes but may increase accident/injury severity resulting from rear-end crashes 

(either the involved motorcycle or car may have difficulty in taking evasive action 

when the car/motorcycle ahead stops suddenly due to the presence of the camera). 

1.3 Relevant Statistics 

UK government statistics (see DIT, 2006a, b; DETR, 2000) suggest that in the UK, 

motorcycles constitute approximately 4.8% of all motorised vehicles and account for 

17% of total fatalities of traffic accidents (2006's data). Motorcyclists' relative risk of 

being killed or seriously injured (KSI) per kilometre travelled is more than twice that 

for cyclists and almost 50 times that for car drivers (DIT, 2006a, b; DETR, 2000). 

In addition to government statistics, previous studies in literature (e.g., Horswill and 

Helman, 2001) also pointed out that motorcyclists in the UK experience a higher risk 

of involving in a KSI accident while exposure data were taken into account. A study 

by Horswill and Helman (2001) analysing motorcycle accidents for years 1997-1999 

reported that motorcycles were 9.3 times (when controlling for time spent travelling) 

and 7.9 times (when controlling for distance travelled) more likely than other 

motorised vehicles to be involved in an injury/fatal accident. A more recent study by 

Broughton (2005) noted that the number of dead motorcyclists on British roads rose in 

most years since 1996, and by 2002 was 38% above its 1996 level - the highest total 
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since 1990. Broughton attributed this to the faster growth in the number of registered 

machines of over 500cc engine capacity since 1997. He further revealed that the rate 

of fatalities per thousand machines rises with engine capacity, so this trend towards 

larger machines appears to have contributed to the increasing number of motorcyclist 

deaths. 

The statistics from the UK Stats 19 accident injury database revealed that 63% of all 

motorcyclist casualties that sustained KSls were as a result of collisions with cars 

(including passenger cars, heavy goods vehicles, buses/coaches), as shown in Figure 

1.1. Single-motorcycle accidents (i.e., a motorcycle collides with no other road user 

but might either collide with a fixed object such as kerb or pole or merely lose control) 

resulted in approximately 26% of all motorcyclist victims that sustained KSls. The 

rest are collisions with pedal cycle, pedestrian, or motorcycle (10.49%). The results 

clearly show that motorcycles in collisions with cars (in the rest of this thesis, 

"car/automobile" is used to represent cars, heavy goods vehicles, and buses/coaches) 

are a serious safety problem to motorcyclists. 

pedal cycle + pedestrian + motorbike 

~0.49% 

single 

Figure 1.1: Distribution of types of motorcycle's collision partner in motorcycle­
car accidents that cause motorcyclists to sustain KSls (data extracted from the 

Stats19 accident injury database between years 1991-2004). 
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Figure 1.2 reports the information on the distribution of the first impact point of a 

motorcycle in a motorcycle-car accident that caused motorcyclists to have KSIs (data 

were abstracted from the UK Stats 19 accident injury database). As illustrated in 

Figure 1.2, the front of motorcycle that was identified as the first impact point resulted 

in about 73% of the total number of KSIs. Several researchers (e.g., Peek-Asa and 

Kraus, 1996a; Hancock et a!., 2005) found that the front part of motorcycle was 

frequently the first impact point when a car violated the right-of-way of an 

approaching motorcycle at an intersection by turning left (in the UK, it is turning 

right). Such crash type, which was normally termed as an approach-turn crash or an 

angle crash, has been identified by researchers in the US (e.g., Hurt et a!., 1981; 

Preusser et a!., 1995; Peek-As a and Kraus, 1996a; Hancock et a!., 2005) as the most 

common crash configuration of motorcycle-car accidents at junctions. Consistent 

conclusions have been drawn by researchers in the UK (e.g., Hole and Tyrrell, 1995; 

Lynam et a!., 2001; Sexton et a!., 2004; Clarke et a!., 2007; Pai and Saleh, 2007a, 

2008), and in Australia (e.g., Williams and Hoffmann, 1979a, b; Horswill et a!., 2005). 

Such collision type was usually followed by the ejection ofthe motorcyclists from the 

motorcycles, resulting in serious injury outcome (Peek-Asa and Kraus, 1996a). 

Other 
\1.74% 

Front 

73.39% 

Figure 1.2: Distribution ofthe first impact point of a motorcycle in a motorcycle­
car accident that cause motorcyclists to sustain KSls (data extracted from the 

Stats19 accident injury database between years 1991-2004). 
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For junction accidents, the statistics from the Stats19 over years 1991 and 2004 

suggested that T-junctions were ranked the highest in terms of injury severity (Le., 

approximately 65% of all motorcyclist KSI casualties in motorcycle-car accidents 

were at T -junctions) and frequency (Le., approximately 62% of all motorcycle-car 

accidents took place at T-junctions). This is probably in part because there is a 

comparatively large number of T-junctions in the UK (DIT, 2004). Although the 

author was unable to take into account the exposure factor due to the lack of such data 

(Le., the number of motorcycles travelling on these locations), it remains true that 

more accidents happened at T-junctions than any other type of junction. 

Overall, several observations regarding motorcycle safety in the UK may be made 

from the abovementioned statistics: 

• Motorcyclists are the most vulnerable road users in the UK. 

• Motorcycles in collisions with cars are a serious safety problem to 

motorcyclists (see Figure 1.1). 

• The front of motorcycle as the first impact point resulted in about 73 % of the 

total number of KSIs in motorcycle-car accidents (see Figure 1.2). This 

implies that an approach-turn crash and angle crash that involve a motorist's 

failure to give way to an approaching motorcycle are the most common crash 

configurations. 

• T-junctions are the most hazardous junction type to motorcyclists and are 

clearly an important area for study. 

1.4 Research Objectives 

The overall aim of this research is to contribute to the field of motorcycle safety 

research by investigating the determinants of motorcyclist injury severity resulting 

from various crash configurations. The crash typology that comprises different crash 

configurations for motorcycle-car accidents at T-junctions will be developed (see 

section 4.3). The current study attempts to extend the empirical contributions of 

previous studies (drawing on past findings of automobile accident severity) by 

estimating an appropriate statistical model of motorcyclist injury severity that can be 
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used to understand the effects multiple factors have on motorcyclist injury severity. 

Within this context, the present study relies on the real-life accident data (Le., the 

Stats19 accident injury data that is widely recognised as an authoritative database) to 

analyse motorcycle-car accidents that occurred at T -junctions. 

To achieve this aim, the following objectives are formulated. To: 

• Review past studies that have developed the crash typology that consists of 

different crash configurations, as well as a review of literature documenting 

the factors that affect injury severities in different crash configurations. 

• Review statistical modelling techniques which have been estimated m 

literature for examining injury severity. 

• Employ an appropriate statistical model of motorcyclist injury severity in 

motorcycle-car accidents at T-junctions in the UK using the Stats19 accident 

injury database (a detailed description of the Stats19 accident injury data is 

provided in section 4.2.1). 

• Draw general recommendations that provide a first step for the potential 

countermeasures to prevent the hazard(s) from occurring at an aggregate level 

(accidents in whole) and at a dis aggregate level (various crash configurations). 

• Provide a guideline for future research. 

1.5 Outline of the Thesis 

This thesis is organised into ten chapters. Chapter 1 provides the background to the 

study, a brief overview of past studies, relevant national statistics, research objectives, 

and the outline of the thesis. The rest of this thesis is structured as follows. 

In Chapter 2, a review of pertinent past studies that developed a taxonomy of various 

crash configurations for accidents involving different road users such as cars, 

motorcycles, and bicyclists/pedestrians is provided. Such review can contribute to an 

understanding of how the crash typology was developed in extant literature, which 

can in turn provide a guideline on the classification of motorcycle-car accidents at T­

junctions. 
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Chapter 3 provides a review of previous empirical studies that have developed 

different econometric approaches for understanding the multivariate relationship 

between accident severity/injury severity and the variables of interest in accidents that 

involved various road users. A review of these studies is expected to provide guidance 

on an appropriate statistical model that can be estimated in this present study. 

Chapter 4 provides details of the methodology used in the current research to examine 

motorcyclist injury severity. In this chapter, the data source (Le., the Stats19 accident 

injury database) and the empirical setting that consist of the variables considered in 

the analysis are firstly described. This is followed by a description and an illustration 

of how motorcycle-car accidents are classified into several crash configurations for 

the analysis in this present study. Finally a discussion of the proposed econometric 

framework is provided. 

The primary aim of this research is to contribute to the field of motorcycle safety 

research by investigating the determinants of motorcyclist injury severity resulting 

from various crash configurations. To achieve this, the investigations of motorcyclist 

injury severity are then divided into three parts: part one, part two, and part three. 

Investigation part one represents a descriptive analysis of the variables that are 

associated with motorcyclist casualties resulting from motorcycle-car accidents at T­

junctions, which is reported in Chapter 5. The descriptive analysis provides a general 

understanding of the univariate relationship between motorcyclist injury severity and 

the considered variables. 

In addition to the investigation of the univariate relationship between motorcyclist 

injury severity and the considered variables (Chapter 5), investigation part two 

represents a multivariate examination of the determinants of motorcyclist injury 

severity (i.e., controlling for all factors that influence motorcyclist injury severity) at 

aggregate level (Le., an econometric model by accidents in whole) and at an 

dis aggregate level (i.e., the disaggregate models by various crash configurations). 

Investigations part two will be organised in Chapter 6 and Chapter 7. Chapter 6 

presents the estimation results of the econometric model by accidents in whole, while 

Chapter 7 reports the estimation results of the disaggregate models by various crash 

configurations. The main aim of the aggregate model by accidents in whole is to 
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identifY whether a certain crash configuration is more severe to motorcyclists than 

other crash configurations. The primary aim of the dis aggregate models by different 

crash configurations is to examine whether the considered variables affect 

motorcyclist injury severity in various crash configurations differently. 

Chapter 8 presents the investigation part three that represents a summary of the 

findings obtained from the disaggregate models by various crash configurations, as 

well as a further examination of the considered variables amongst various crash 

configurations that led to KSIs. The summary of the estimation results of the 

disaggregate models by various crash configurations provides evidence that the 

considered variables affect motorcyclist injury severity in various crash configurations 

differently. The examination of the considered variables amongst various crash 

configurations leads to insights into whether a certain crash configuration is more 

likely than any other crash configuration to occur under a specific circumstance. 

Chapter 9 discusses the implications of the investigation results in this present 

research, with particular emphasis being placed on the potential countermeasures that 

could be applied to prevent the hazards from occurring both at an aggregate level 

(accidents in whole) and at a disaggregate level (various crash configurations). 

Ultimately in Chapter 10, the conclusions of this research and recommendations for 

future research are provided. This thesis ends with a list of publications that arise out 

of this research. 
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2.1 Introduction 

CHAPTER 2 

LITERATURE REVIEW 

Chapter 1 has set out the objectives of the thesis and outlined the importance of 

estimating disaggregate models by various crash configurations. This chapter firstly 

reviews existing studies that have developed a taxonomy of various crash 

configurations for accidents involving different road users such as automobile­

occupants, motorcyclists, or bicyclists. Published studies were searched through the 

databases Medline, National Transportation Library, and cross references. The 

reviewed studies included laboratory simulations, computer simulations, self-report 

surveys, as well as those using mathematic modelling techniques of archival crash 

data from police accident reports, hospital data, or multidisciplinary crash 

investigations. 

This chapter is structured as follows. A brief summary of how the crash typology was 

developed by previous studies in literature is first provided. Most of research that has 

developed the crash typology (or merely alluded to several crash configurations) has 

been the studies of automobile-automobile accidents. Studies that analysed accidents 

involving automobiles are therefore reviewed first, followed by those of accidents 

involving other road users (Le., motorcycle-automobile, automobile­

bicycle/pedestrian accidents). Studies that analysed motorcycle-related accidents in 

general (i.e., crash configurations were not the research focus in these studies) are also 

reviewed as these studies may still contribute to the understanding of the influential 

factors on motorcyclist injury severity resulting from various crash configurations. 

This chapter aims to uncover the flaws among existing studies in literature and 

provides reasoning for the methodological approach assumed within this thesis. 

2.2 Classification of the Crash Configurations in Literature 

The development of the crash typology has been most common for past studies of 

automobile-automobile accidents. These studies have in general developed the crash 

11 



Chapter 2: Literature review 

typology based on the conflicts that arise from the manoeuvres of the involved 

vehicles (Le., travelling straight, turning right/left) prior to accidents or the first crash 

point. Some studies used a mixture of these two methods. 

Crash configurations that have been routinely examined include: 

• approach-turn and angle/left-turnlright-turn crashes; 

these crashes were generally classified as accidents involving gap acceptance. 

• head-on crashes; 

a head-on crash occurs when two vehicles originally travelling from opposite 

directions collide with each other. 

• same-direction crashes; and 

a same-direction occurs when two vehicles originally travelling from same 

directions collide with each other. This can be a rear-end crash or a sideswipe 

crash. 

• single-vehicle crashes. 

a single-vehicle crash occurs when the vehicle collides with no other road user 

but may collide with some other on-/off-roadway objects (e.g., road sign or traffic 

island), or simply run out of roadway. 

Among these crashes, the classification of an accident as an approach-turn crash is 

mainly based on the manoeuvre of the involved vehicles, while a rear-end crash, or 

sideswipe crash is categorised depending on the first impact point. Categorisation of 

an angle/turning crash and a head-on crash tends to be by either the movements of the 

involved vehicles or the first impact point. For example, some studies assumed that 

the classification of an accident as an angle/turning collision implies that the vehicles 

are travelling at right/left angles to each other or that most accidents involving left­

fright-turn vehicles are categorised as turning crashes; and some studies assumed that 

an accident in which one vehicle was struck to its right/left side was classified as an 

angle crash. 
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In this current research, accidents involving motorcyclists and motorists will be 

classified into several crash configurations. The crash typology developed in this 

research will be fully discussed in Chapter 4. 

2.3 Studies that Analysed Accidents Involving Automobiles 

Past studies that have developed the crash typology or merely alluded to crash 

configurations for automobile-automobile accidents can be subdivided into several 

fundamental categories as follows: 

• studies that developed the crash typology and examined the contributory 

factors to the occurrences of these crash configurations; 

• studies that explored the multivariate relationship between injury severity and 

the variables of interest (the variable "crash configurations" is one of the 

variables of interest); 

• studies that investigated the gap acceptance problem; and 

• studies that explored the factors affecting the occurrence/severity of one or 

more certain crash type. 

A review of these studies is provided in the next sections. 

2.3.1 Studies that Developed the Detailed Crash Typology and Examined the 

Contributory Factors to the Occurrences of Various Crash Configurations 

The development of the crash typology that consists of various crash configurations 

has been the subject of intense research in an effort to quantify the effects of some 

factors on the occurrences of those crash configurations (e.g., Hauer et aI., 1988; 

Sparks et aI., 1993; Wang and Knipling 1994; Shankar et aI., 1995; Poch and 

Mannering, 1996; Persaud and Nguyen, 1998; Pernia et aI., 2002; Retting and 

Kyrychenko, 2002; Retting et aI., 2003; Golob and Recker, 2004; Persaud et aI., 2005; 

Abdel-Aty et aI., 2005; Ulfarsson et aI., 2006; Kim et aI., 2006; Huang et aI., 2006; 

Kim et aI., 2007; Shin and Washington, 2007; Neyens and Boyles, 2007; Wang and 

Abdel-Aty, 2008). These factors include, for instance, traffic flow, intersection 

13 



Chapter 2: Literature review 

geometric design features, traffic control and operational features, and in-/off-vehicle 

distraction factors. These studies have made an attempt to fill the research gaps that 

crash prediction models focused on predicting different crash configurations have 

rarely been developed. 

Classification of crash configurations solely by the manoeuvres of the involved 

vehicles prior to the collisions was probably firstly developed by Hauer et ai. (1988). 

A total of 15 crash patterns in which two automobiles collided at a four-legged 

signalised junction were categorised. They sought to relate accident frequency to the 

traffic flows to which the two colliding vehicles belong. They argued that when 

accidents were categorised by first crash point (rear-end, angle, or sideswipe crash, 

etc.), their cause-and-effect relationship with traffic flow was weakened. More 

recently other typical work that classified accidents by the manoeuvres of the 

involved automobiles include studies by, for example, Persaud and Nguyen (1998) 

and Wang and Abdel-Aty (2008). Aggregate and disaggregate statistical models were 

estimated by Persaud and Nguyen (1998) to examine the safety performance of three­

legged and four-legged signalised junctions. Models were first estimated for all 

impact types and separately by three prominent crash configurations (Le., rear-end, 

right-angle, and turning movement accidents). Models were then calibrated for other 

15 main crash patterns that were defined by the manoeuvres of the involved 

automobiles prior to collisions. In the study of Wang and Abdel-Aty (2008), left­

turning crashes at four-legged signalised junctions were classified into nine crash 

patterns based on the manoeuvres of the automobiles. Obvious differences in the 

factors affecting the occurrences of different left-turn crash patterns were observed. 

Some other researchers conducted a mixture of methods to classify crash 

configurations (e.g., Sparks et aI., 1993; Wang and Knipling, 1994; Shankar et aI., 

1995; Poch and Mannering, 1996; Pernia et aI., 2002; Retting and Kyrychenko, 2002; 

Retting et aI., 2003; Abdel-Aty et aI., 2005; Ulfarsson et aI., 2006; Kim et aI., 2006; 

Huang et aI., 2006; Kim et aI., 2007; Shin and Washington, 2007; Neyens and Boyles, 

2007) - by the manoeuvres of the automobiles prior to the accidents and by the first 

crash point. Among these researchers, several researchers such as Poch and 

Mannering (1996) and Kim et ai. (2006) argued that modelling the total number of 

accidents that occurred at junctions may obscure the real relationship between the 
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crash causes and the occurrences of various crash configurations. As a result, potential 

countermeasures that are specified towards certain crash configurations may therefore 

not be appropriately identified. A summary of these studies is provided below. 

Through the use of the traditional count models (e.g., the Poisson, negative binomial, 

or zero-inflated count models), the abovementioned studies investigated the safety 

effects of a variety of factors on the occurrences of different crash configurations. A 

brief summary of the research findings of these studies regarding the effects of some 

selected factors is provided below. 

In recent years increased attention has been directed at exploring the safety effects of 

crash countermeasures such as red light cameras (RLCs) and daytime running light 

(DRL) (Sparks et ai., 1993; Retting and Kyrychenko, 2002; Retting et ai., 2003; 

Persaud et ai., 2005; Huang et ai., 2006; Shin and Washington, 2007). RLCs were 

expected to play a role in discouraging red light running, thereby reducing angle 

crashes. The use of DRL was expected to improve conspicuity of an oncoming 

vehicle on the major road so that the turning motorist on the minor road can be more 

attentive to the oncoming vehicle and angle crashes could be reduced. RLCs were 

generally found to have the potential to reduce angle and left-turn crashes at 

signalised intersections but to increase rear-end crashes. The severity of rear-end 

crashes was reduced as a result of RLCs (Shin and Washington, 2007). DRL was 

beneficial in reducing car-car approach-turn collisions and right-angle collisions 

(Sparks et ai., 1993). 

Several studies have examined the effects of various junction control measures. 

Angle crashes appeared to be less likely to take place at signalised intersections than 

at unsignalised intersections, whereas there were more rear-end crashes at signalised 

intersections (Poch and Mannering, 1996; Kim et ai., 2007). 

The effects of several risk-taking/distraction factors were assessed by Ulfarsson et ai. 

(2006) and Neyens and Boyles (2007). Intoxicated drivers were found to be more 

prone to pull out into oncoming traffic, resulting in more head-on collisions. Speeding 

tended to increase rear-end/sideswipe crashes, but decrease head-on/approach­

turn/angle crashes (Ulfarsson et ai., 2006). Neyens and Boyles (2007) concluded that 
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teenage drivers that distracted at intersections by passengers or cognitively were more 

likely to be involved in rear-end and angle crashes relative to fixed-object collisions. 

Moreover, in-vehicle distractions resulted in more fixed-object crashes, and drivers 

distracted by mobile phones experienced more rear-end collisions. 

The effects of geometric/weather factors were also received some attention in 

literature. Curved roadway sections were associated with a significantly increased 

probability of head-on crashes, with a slightly increased probability of rear­

end/sideswipe crashes and decreased probabilities of approach-turn/angle collisions 

(Ulfarsson et aI., 2006). The presence of upgrades or downgrades on the roadways 

was associated with a small increase in the probability of rear-end/sideswipe/head-on 

collisions and a decrease in the probability of approach-turn/angle collisions 

(Ulfarsson et aI., 2006). Angle crashes were disproportionately represented during 

clear weather conditions, whilst rear-end collisions were less likely to occur during 

fine weather (Kim et aI., 2007). Shankar et al. (1995) reported that maximum rainfall 

on any given day in the month was more prone to increase sideswipe crashes but 

decrease rear-end collisions. In addition, an increase in the number of rainy days in 

the month was likely to decrease sideswipe and rear-end crashes but increase fixed­

object collisions. Icy/wet road surfaces and unlit roadways in darkness appeared to 

increase head-on crashes but reduce other collision types (Ulfarsson et aI., 2006). 

2.3.2 Studies that Analysed Motorist Injury Severity and Various Crash 

Configurations 

A significant number of studies have alluded to crash configurations and explored the 

multivariate relationship between injury severity and the variables of interest. In some 

of these studies, crash configurations were included as one of the independent 

variables for statistical modelling. Some other studies conducted descriptive analysis 

to compare the severity of one certain crash type with that of other crash 

configurations. One of the objectives of these studies was to identify whether 

motorists involved in one specific crash type were more likely to be severely/fatally 

injured. 
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Crash configurations such as head-on, angle, rear-end, or rollover crash have been 

frequently compared. Although the research findings among the extant studies varied, 

depending on the crash configurations that were included in the studies, head-on 

crashes or vehicles that were rollovered were generally found to be the deadliest crash 

configurations (see, for instance, studies by Kim et aI., 1994; O'Donnell and Connor, 

1996; Kockelman and Kweon, 2002; Khattak and Rocha, 2004; Khattak and Targa, 

2004; Abdel-Aty and Keller, 2005; Rifaat and Chin, 2007; Eluru and Bhat, 2007; 

Khattak and Fan, 2008). These two crash configurations also appeared to be deadly to 

elderly motorists (Zhang et aI., 2000; Khattak et aI., 2002; Hill and Boyle, 2006). 

In a study by Toy and Hammitt (2003) who compared occupant injury severity for 

frontal crashes and side-impact crashes, injuries tended to be more severe to drivers 

whose vehicle was struck on the left side (Le., driver side) due to direct intrusion 

towards drivers. The findings of Toy and Hammitt (2003) concur with those of 

Darzentas et al. (1980a, b, c) who analysed car-car accidents in the UK. Darzentas et 

ai. reported that an angle crash was more severe in which one right-turn car originally 

travelling on the minor road collided with an oncoming vehicle on the major road. 

Khattak et ai. (1998) compared motorist injury severity for single-vehicle crashes, 

two-vehicle rear-end crashes, and sideswipe crashes. They pointed out that single­

vehicle crashes resulted in much more severe injuries than the other two crash 

configurations. 

Manoeuvres that drivers were making prior to accidents, along with collision types, 

were also discussed by several researchers. Chang and Mannering (1999) suggested 

that drivers making right/left turn, rear-end, and opposite direction angle collisions 

resulted in more severe injuries. Some other researchers (e.g., Ulfarsson and 

Mannering, 2004; Khattak and Fan, 2008) observed that in two-vehicle car-SUV 

(sport utility vehicle) crashes, the most harmful manoeuvre involved left-turn cars 

encroaching into oncoming SUV s in angle crashes. Furthermore, passenger car 

drivers appeared to be more injurious when they made a turn, when they were 

involved in head-on collisions, and when their cars were rollovered. 
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2.3.3 Studies that Investigated the Gap Acceptance Problem 

Driver's gap-accept manoeuvre is a complicated and risky driving behaviour, and has 

been widely investigated in traffic safety and operation studies. A common definition 

in most of the gap-acceptance studies has been that drivers base their decisions on the 

assessment of time to arrival, which is the time available before an approaching 

vehicle arrives at a potential conflict position (Davis and Swenson, 2004). Gap 

acceptance may also be used to predict the relative risk at junctions, where smaller 

gaps generally imply higher collision risk (Polus, 1985). At unsignalisedjunctions, for 

instance, a right-/left-turning driver on the minor road needs to make the use of a 

proper gap among the conflicting traffic to cross or merge into the major road. 

Rejecting an adequate gap can lead to needless delay, while accepting an inadequate 

gap may lead to an angle collision with an approaching vehicle. Similarly, a right-turn 

vehicle (or a U-turn vehicle) from the major road accepting an inadequate gap among 

the oncoming traffic may result in an approach-turn crash (see Keskinen et aI., 1998 

for a full discussion). 

The earliest work in literature discussing gap acceptance may probably have been the 

studies conducted in 60s (e.g., Herman and Weiss, 1961; Solberg and Oppenlander, 

1966; Drew, 1967; Tsongos and Weiner, 1969). This is followed by the studies of 

Spicer (1972), Cooper et aI. (1976, 1977), Storr et aI. (1979), Darzentas et aI. (1980a, 

b, c), Mahmassani and Sheffi (1981), Maher and Dowse (1983), Polus (1983), 

Fitzpatrick (1991), Kita (1993), Madanat et aI. (1994), Staplin (1995), Hamed et aI. 

(1997), and Keskinen et aI. (1998). Recent studies include the work by Davis and 

Swenson (2004), Spek et aI. (2006), and Van et aI. (2007). By conducting field studies 

of gap-acceptance behaviours at junctions, the emphasis of these studies has focused 

specifically on observing a sequence of time gaps in a traffic stream, along with 

whether each gap was accepted by a turning driver. These researchers have shown 

that gap acceptance can be treated as a discrete-choice problem. This allows 

modelling of how variables such as driver individual differences (e.g., driver age, 

gender, waiting time, or trip purpose), temporal/environmental factors (e.g., daytime 

or nighttime, urban or rural areas, weather conditions), and road/vehicle factors (e.g., 

junction control measures, major-road vehicle speed or major-road vehicle types) may 

influence a turning driver's gap acceptance. 
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Several important conclusions have been drawn by these studies. For example, 

Solberg and Oppenlander (1966) compared time-interval acceptances by drivers 

making left-turn, right-turn, and through movements at stop-controlled junctions. 

Right-turning drivers and those crossing the junctions were found to have statistically 

equal median acceptance times. However, significant variations were observed 

between right-and left-turn drivers, and between drivers proceeding through the 

junctions and those making left-turn movements. Polus (1983) and the Highway 

Capacity Manual: Special Report 209 (1984) reported that the length of minimum 

accepted gap at a yield sign-controlled junction was shorter than that at a stop­

controlled junction. 

Eberts and MacMillan (1985) used slide presentations to test whether vehicle size 

affected distance judgement. They found that small cars may be perceived as being 

further away than they actually were, thereby affecting the turning driver's decision to 

proceed or not. Drivers in older cars accepted larger gaps than those in newer cars 

(Hamed et aI., 1997). 

Kita (1993) found that drivers merging onto an expressway were more likely to accept 

shorter gaps as they approached the end of the merging lane. Drivers having shopping 

as trip purpose were likely to accept larger gaps than were drivers travelling to or 

from work. Those driving during the p.m. non rush hours were more likely to accept 

short gaps than those travelling during the p.m. rush hours (Hamed et aI., 1997). 

Longer waiting time at the head of the queue, and higher traffic volumes on the major 

roads increased the likelihoods of a turning driver accepting smaller gaps and moving 

into the junction (Wagner, 1966; Adebisi and Sama, 1989; Kettelson and Vandehey, 

1991). Alexander et aI. (2002) suggested that the velocity of the approaching traffic 

was the variable that had the greatest effect on the median accepted gap size. Drivers 

accept shorter gaps as the speed of the oncoming vehicle increases (Mortimer et aI., 

1974; Ashworth and Bottom, 1977; Cooper et aI., 1976, 1977; Storr et aI., 1979; 

Darzentas et aI., 1980a, b, c; Mahmassani and Sheffi, 1981; Madanat et aI., 1994; 

Staplin, 1995; Alexander et aI, 2002). Spek et aI. (2006) concluded that the probability 

that a crossing vehicle collides with the major stream vehicle can be expected to 

increase when the speed of major traffic increases. 
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Research on median gap acceptance in relation to day or night-time conditions was 

found to be fairly inconsistent. It was found by Tsongos and Weiner (1969) that for 

gaps between 4 and 9 seconds, there was no significant difference in the median 

accepted gap size between night and day under low traffic volume conditions. 

However as traffic volume increased, there was a higher percentage of longer gaps 

accepted at night. Darzentas et ai. (1980b, c) found that at lit junctions drivers 

appeared to accept shorter gaps at night. A field study by Lerner et ai. (1995) found 

that the median acceptable gap was not associated with day or night-time conditions. 

More recently Keskinen et ai. (1998) indicated that the time taken to cross an 

intersection was affected by whether it was day or night. 

Other factors such as driver's age and gender difference in gap selection were also 

explicitly considered in literature. Older drivers have problems to adequately detect, 

perceive, and accurately judge the safety of a gap among the conflicting traffic. Not 

only are older drivers more likely to be involved in angle crashes, they are also more 

likely to be seriously injured or killed in these crashes (Laberge et aI., 2006). This 

may be partly due to increases in frailty and functional disabilities that occur with age 

(Oxley et aI., 2006; Murphy, 2005) that results in elderly drivers having less accurate 

judgement about whether a potential crash would occur. Darzentas et ai. (1980a, b) 

found that male drivers generally had shorter mean crossing times than females. 

Elderly motorists executing left-fright turns had longer crossing time than young 

motorists (Hamed et aI., 1997; Cox and Cox, 1998; Keskinen et aI., 1998; Yan et aI., 

2007). Elderly drivers' tendency to underestimate higher speeds, combined with the 

fact that they cross and turn into a traffic stream more slowly, would be particularly 

hazardous to themselves particularly when approaching vehicles travel at higher 

speeds (Scialfa et aI., 1991; Federal Highway Administration, 1993; Staplin, 1995; 

Alexander et aI., 2002; Retting et aI., 2003). Based on these reasons, elderly motorists 

are generally found to be overrepresented in right/left turn as well as angle crashes 

compared with those in other crash configurations (Mayhew et aI., 2006; Chipman, 

2004). 
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2.3.4 Studies that Explored the Factors Affecting the OccurrencefSeverity of One or 

More Certain Crash Type 

Factors determining the likelihood of deaths or serious injuries resulting from specific 

crash configurations or occurrences of such crash configurations have received 

considerable attention in engineering, human factors, and clinical science. These 

studies mainly relied on the conduct of instrumented crash tests, mathematical 

modelling, or computer simulations. The crash configurations examined include, for 

example, approach-turn crashes, angle (left-fright-turn) crashes, rear-end crashes, 

sideswipe crashes, and single-vehicle accidents. Some of the studies specifically 

analysed one certain crash type while some focused on several crash configurations. A 

brief review of these studies is organised by crash type and provided below. 

2.3.4.1 Angle and approach-turn crash 

Following the previous studies that have identified gap acceptance problem, accidents 

involving gap acceptance (i.e., angle, left-fright-turn, and approach-turn crash) have 

been gaining an increasing amount of attention in literature. There exists an 

abundance of research that examined the effect of various junction control measures 

on the occurrences of car-car angle collisions (but relatively few for approach-turn 

crashes). By estimating the negative binomial models and hierarchical logistic models, 

Poch and Mannering (1996) and Kim et al. (2007) suggested that signalised 

intersections (i.e., the intersections that are controlled by automatic signals) resulted 

in a significant decrease in angle collisions. However, automatic signals that were 

shifted into flashing operations during late-night and early-morning hours increased 

angle crashes (Wang and Abdel-Aty, 2007). Retting et aI. (2003) found that 

approximately 70% of angle collisions were at stop-controlled junctions. Kim et al. 

(1994) noted that automatic signals as junction control measures could be an 

intervention measure to reduce car-car approach-turn crashes. The presence or 

absence of a traffic signal at junctions did not affect accident involvement of older 

drivers (Stamatiadis et aI., 1991), although a recent study by Ulfarsoon et al. (2006) 

reported that older drivers experienced more angle collisions when traffic signal 

measures were present at junctions, relative to unsignalised junctions. An 
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uncontrolled left-turn channels and an increase in signal phases of traffic signals 

tended to increase angle crashes at four-legged junctions (Mitra et aI., 2002). 

Songchitruksa and Tarko (2006) indicated that car-car angle collisions at four-legged 

junctions were often quite severe due to the high impact speed of vehicles colliding at 

right angles, and red light running was a contributing factor to such crashes. The 

presence of a red light camera was found to be effective in reducing angle collisions 

(Retting and Kyrychenko, 2002; Retting et aI., 2003; Persaud et aI., 2005; Huang et aI., 

2006; Shin and Washington, 2007). The effects of some other countermeasures such 

as headlights use during daytime and frontal/side air bags on the occurrence/severity 

of approach-turn/angle crashes were examined (e.g., Attwood, 1981; Mercier et aI., 

1999). Attwood found that increased conspicuity through the use of headlights during 

daytime may reduce the detection distances of approaching vehicles, which can 

translate into fewer accidents through the earlier detection of other vehicles. Mercier 

et ai. reported that frontal air bags deployed were found to be protective to females 

only (less certain for males) in both angle and approach-turn crashes. Aside from 

these studies, Viano et ai. (1990) examining fatal chest and abdominal injuries among 

vehicle-occupants in multi-vehicle angle collisions suggested that the risk of injury 

increases steadily with age, and the driver of the struck vehicle frequently caused the 

crash by driving error or traffic violation. The conclusions reached by Viano et ai. 

partly correspond to those of Retting et ai. (2003) and Ryan et ai. (1998), who found 

that inability or failure to see approaching traffic often was cited as the cause to angle 

crashes, and teenage and elderly drivers were disproportionately found to be at fault in 

angle crashes at stop-controlled junctions. 

In order to develop efficient countermeasures for left-turn accidents and improve 

safety at signalised intersections, left-turn accidents were classified into nine crash 

patterns by Wang and Abdel-Aty (2008) depending on the manoeuvres of the 

involved vehicles prior to the accidents. Approach-turn collisions, one of the nine 

crash patterns in the crash categorisation, accounted for more than 70% of all crashes. 

They observed that there were obvious differences in the factors that affect the 

occurrences of the nine crash patterns. For instance, the effectiveness of the left­

turning signal appeared inconsistent for different crash patters. They suggested that 

left-turn accidents be considered in different patterns. 
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There also exists a great deal of research (see, for example, Otte et aI., 1984; Partyka, 

1991; Huelke and Compton, 1992; Haland et aI., 1993; Eguakun and Wilson, 1995; 

McLellan et aI., 1996; Farmer et aI., 1997; Abdelwahab and Abdel-Aty, 2004b; 

McCartt and Kyrychenko, 2007) that investigated the effects of several factors such as 

compatibility, first crash point, or victims' seated positions on injury severity or a 

certain pattern of organ injury in side-impact angle crashes. Classification of an 

accident as an angle crash in these studies was mainly based on the first crash point, 

rather than the manoeuvres of the involved vehicles before collisions. Therefore, 

analyses in these studies may not have been limited to accidents involving gap 

acceptance. Instead, accidents in which one vehicle that was struck to its left or right 

sides by another vehicle in a sideswipe collision may have been included in the 

analyses. 

Fairly similar conclusions have been drawn from these studies. For example, 

occupants seated on the struck side and occupants of lightweight passenger-vehicles 

were more likely to be severely injured; struck-side occupants of cars were much 

more injurious than struck-side occupants of light trucks (i.e., light trucks are much 

more crashworthy than passenger cars); and perpendicular collision-angle was more 

deadly than oblique collision-angle. McCartt and Kyrychenko found that making side 

airbags with head protection available may be beneficial in reducing the risk of car 

and SUV driver death in driver-side collisions. The injured body regions of the 

accident casualties resulting from side-impact collisions were compared with those in 

frontal crashes (Dischinger et aI., 1993; McLellan et aI., 1996). They noted that 

compared with those in vehicles that were struck to frontal parts, drivers in angle 

collisions were more likely to sustain thorax, and abdominal injuries, resulting in a 

higher mortality rate. They attributed such effects to the less vehicle structure between 

the striking force and the occupants, resulting in significant passenger compartment 

intrusion and direct loading of the impact onto the occupant's chest and abdomen. 

2.3.4.2 Head-on crash 

Considerable past research (e.g., Agent and Deen, 1975; Clissold, 1976; Zegeer et aI., 

1981; AI-Senan and Wright, 1987; Zhang and Ivan, 2005) has concentrated on 

examining the factors that are associated with the occurrences/severity of car-car 
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head-on crashes. Most of these studies have focused on the roadway geometric 

features that may explain the incidence of head-on crashes and several important 

conclusions have been drawn. For example, there was a decrease in head-on crashes 

with increases in lane width (Zegeer et aI., 1981; AI-Senan and Wright, 1987) but an 

increase in head-on crashes with increases in the number of horizontal curves and 

grade changes; fatal head-on crashes were more likely to take place on roadways with 

high posted speed limits (AI-Senan and Wright, 1987) and passing zones (Agent and 

Deen, 1975); there were proportionately more head-on crashes on wet road surfaces 

and on rainy days (Clissold, 1976); and roadway segments with high density access 

points were likely to lead to more head-on crashes (AI-Senan and Wright, 1987). 

With respect to the factors influencing the severity of head-on crashes, air bag 

deployment and seat belt use has received additional attention in literature. Air bag 

deployment was associated with substantial reductions in fatalities among right front 

passenger in head-on crashes (Crandall et aI., 2001). Older women appeared to 

receive fewer protections from the use of lap and shoulder restraints but more 

protections from air bags than do older men (Mercier et aI., 1997). Deng et ai. (2006) 

concluded that factors such as wet road surfaces, narrow road segments, high density 

access points, and accidents that occurred at night were significantly related to more 

severe injuries. However, wider lanes and shoulder, contrary to Deng et aI.' s 

expectation, resulted in a reduced possibility of more severe crashes. While their 

initial expectation was that wider pavement would create a favourable driving 

environment that induces drivers to travel faster, their reason for the unexpected 

estimation results was that more spacious driving space may provide a buffer area for 

avoiding a direct head-on impact. 

There is evidence in research (e.g., Braver et aI., 1997; Wittenberg et aI., 2001; 

Durbin et aI., 2004) that children involved in frontal crashes and seated on right front 

positions were more injury-prone. Occupants in large vehicles tended to have more 

protections from air bags than those in smaller ones (Zador and Ciccone, 1993). It 

merits mention that classification of an accident as a head-on collision in these studies 

was mainly based on the first crash point, rather than the manoeuvres of the involved 

vehicles before collisions. Therefore, analyses in these studies may not have been 

limited to accidents in which two cars originally travelling from opposite directions 
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collided with each other. Instead, a frontal crash in which one vehicle head-to-sided 

another vehicle in an angle collision may have been analysed. 

Relying on laboratory simulations, Mizuno and Kajzer (1999) were in an attempt to 

compare different vehicle types with respect to their crashworthiness (self-protection) 

and aggressivity (risk to other vehicles) in two-vehicle head-on crashes. They reported 

that a larger and heavier car involved in a head-on crash was inore crashworthy than a 

smaller car but this came at the price of greater aggressivity towards a smaller car. 

This is, the heavier vehicle drives the lighter one backward, decreasing forces inside 

the heavy vehicle and increasing forces in the lighter one. The findings of Mizuno and 

Kajzer correspond to those of other researchers (e.g., Evans and Wasielewski, 1987; 

Mayrose and Jehle, 2002; Broyles et aI., 2001,2003; Acierno et aI., 2004; Broughton, 

2007). 

2.3.4.3 Sideswipe and rear-end crash 

A number of previous studies analysing car-car sideswipe crashes (e.g., Chovan et aI., 

1994; Shankar et aI., 1995; Clarke et aI., 1998; Li and Kim, 2000; Sen et aI., 2003; 

Kim et aI., 2006; Pande and Abdel-Aty, 2006) has sought to model the occurrence of 

such crash type, with focuses on the effects of geometric, environmental factors, or 

pre-crash manoeuvres. Pande and Abdel-Aty, together with some other researchers 

(e.g., Chovan et aI., 1994; Li and Kim, 2000), concluded that lane-changing 

manoeuvres, variation in traffic flow, and peak-/off-peak hours were associated with 

the occurrences of sideswipe crashes. Shankar et aI. found that adverse weather 

conditions (e.g., maximum daily rainfall or number of snowy days) increased risks of 

sideswipe collisions. Clarke et aI. noted that sideswipe accidents frequently occurred 

when an overtaking vehicle collided with a right-turn vehicle in the front, and this 

type of crash tended to happen either because a young driver made a faulty overtaking 

decision, or an older driver made a faulty right turn. Kim et aI. revealed that median 

width on major roads is negatively associated with sideswipe crashes, and two 

engineering measures (i.e., the presence of a left-turn lane and number of nearby 

driveways) caused more sideswipe collisions. To the author's knowledge, there seems 

to be a shortage of research in literature that has attempted to explore the determinants 

of the severity of sideswipe crashes. 
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Turning to rear-end crashes, there have been many studies in literature analysing the 

relationship between a set of variables and accident frequency/severity of such crash 

type (see, for example, Duncan et aI., 1998; Khattak, 2001; Abdel-Aty and 

Abdelwahab, 2003, 2004; Abdelwahab and Abdel-Aty, 2004a; Van et aI., 2005; Van 

and Radwan, 2006; Wang et aI., 2003; Kim et aI., 2007; Harb et aI., 2007). Abdel-Aty 

and his colleagues applied several statistical modelling approaches to study the effect 

of the increased percentage of LTV s in traffic on fatalities in car-LTV rear-end 

collisions, and to investigate the effect of the geometric incompatibility of LTV s on 

drivers' visibility of other regular passenger cars involved in four rear-end crash 

configurations (i.e., TwoCars, CarTrk, TrkCar, and TwoTrks rear-end collisions). The 

CarTrk category represents that a regular car strikes an LTV (i.e., a following car 

collided with a leading LTV). Important findings include that TrkCar rear-end crashes 

had the highest death rate, TwoTrks configuration had the lowest death rate, driver's 

visibility and inattention in the following vehicle have the largest effect on being 

involved in a rear-end CarTrk crash, a sudden stop of a leading LTV may deprive the 

following driver of a sufficient response time, which may result in high probability of 

a rear-end crash, and LTVs appeared to produce more rear-end collisions at 

unsignalised intersections due to horizontal visibility blockage and due to the 

following drivers' behaviours when driving behind a LTV. 

Van and his colleagues (Yan et aI., 2005; Van and Radwan, 2006) attempted to 

identifY the contributory factors to the occurrences of two-vehicle rear-end crashes for 

striking and struck drivers/vehicles at signalised junctions. Noteworthy findings 

include that large vehicles were more likely to strike other vehicles in the rear than 

they were struck by other vehicles, female drivers were less likely to strike other 

vehicles but more likely to be struck, and elderly drivers were most likely to strike 

other vehicle whilst struck vehicles were most likely to be driven by mid-aged drivers. 

The occurrences of rear-end accidents were studied by Wang et al. (2003) considering 

the probability of encountering an obstacle vehicle and the probability of a driver 

failing to react fast enough to avoid colliding with the obstacle vehicle. In their 

models, the probability of encountering an obstacle vehicle was assumed to be a 

function of the frequency of disturbances that cause the leading driver in a vehicle to 

decelerate. The probability of the following vehicle's driver failing to respond is the 
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probability that this driver's needed perception/reaction time is less than the available 

perception/reaction time. One of the main findings is that an increase in speed limit 

appeared to decrease the probability of encountering an obstacle vehicle, but increase 

the probability of a driver failure. More recently Kim et aI. (2007) extended the 

methodology of Wang et al. to analyse freeway rear-end collisions. Kim et aI. 

concluded that several factors had dual impact. For example, an increase in daily 

vehicle miles travelled per lane decreased the probability of the leading vehicle 

becoming an obstacle, but increased the probability of the following vehicle failing to 

avoid a crash with a leading vehicle ahead. 

Regarding the studies that examined the factors affecting the severity of rear-end 

collisions, typical studies in recent years include Duncan et aI. (1998) and Khattak 

(2001). These researchers employed the ordered probit models of automobile-driver 

injury severity and successfully isolated the factors that led to severe injuries. For 

example, Khattak concluded that in a two-vehicle rear-end crash the leading driver in 

the struck vehicle had more risks in sustaining more severe injuries, while in a three­

vehicle rear-end crash, the driver in the middle vehicle was more injurious than the 

first and third drivers; and Duncan et aI. suggested that occupants in the struck 

passenger cars to the rear appeared to be more severely injured than those in the cars 

striking a truck to the rear. 

2.3.4.4 Single-vehicle accident 

Crashes involving single-vehicles that either ran off the highway or crashed into a 

fixed object such as a tree or pole have been attracting increased attention from 

researchers (e.g., Renski et aI., 1999; Ray, 1999; Krull et aI., 2000; Lee and 

Mannering, 2002; Dissanayake and Lu, 2002a, b; Holdridge et aI., 2005; Yamamoto 

and Shankar, 2004; Islam and Mannering, 2006). These studies have been in an 

attempt to better understand the nature of single-vehicle accidents, focusing on the 

effects of rollovers (Krull et aI., 2000; Islam and Mannering, 2006) or an increase in 

speed limit (Renski et aI., 1999) on automobile-occupant injury severity. 

The findings of these studies tended to be relatively consistent, providing a useful 

picture of what factors were significantly associated with more severe injuries 
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resulting from such crash type. For instance, older drivers were most likely of other 

age groups to be fatally injured in a rollovered vehicle. Automobile-occupants 

involved in run-off-roadway accidents appeared to be more injurious than those in 

non run-off-roadway accidents, and collisions with certain objects (e.g., leading ends 

of guardrails, bridge rails, trees, or utility poles) were found to increase the probability 

of fatal injury. Other contributory factors to more severe injuries include excessive 

speeds, drivers being intoxicated, accidents that occurred on weekdays, drivers falling 

asleep, drivers that were ejected, and unbelted driving. Ray (1999) further observed 

that an impact point centred on the occupant and positioned on the front door is the 

worst-case impact location for such crash type. Ray attributed this to the fixed objects 

that resulted in significant passenger compartment intrusion and direct loading of the 

impact onto the small areas. 

2.4 Studies that Analysed Accidents Involving Motorcycles 

Motorcycle accidents involving gap acceptance (Le., approach-turn crash and angle 

crash) have been attracting increased attention since 1970s. Past studies that have 

discussed gap acceptance problem in motorcycle-automobile accidents include 

research work by Hurt and his colleagues in USA (e.g., Hurt and DuPont, 1977, Hurt 

et aI., 1981, 1984), Nagayama and his colleagues in Japan (Nagayama et aI., 1980; 

Nagayama, 1984), and researchers in Australia (e.g., Williams and Hoffmann, 1979a, 

b; Haworth et aI., 2005). These researchers highlighted the high frequency of right-of­

way violation accidents at junctions, which results in an approach-turn or angle 

collision. 

Approach-turn crashes accounted for up to half of all motorcycle-car junction 

accidents (Wulf et aI., 1989a, b; Hurt et aI., 1981, 1984; Hancock et aI., 1986, 1989, 

1990, 2005; Thomson, 1980; Rahimi, 1989). These researchers have consistently 

suggested that the possible mechanisms behind right-of-way violations were the 

failure of a turning driver to see an approaching motorcycle. This has been termed as 

a "look-but-fail-to-see" error (Brown, 2002; Herslund and Jorgensen, 2003; Koustanai" 

et aI., 2008). Some other researchers (e.g., Peek-Asa and Kraus, 1996a) argued that 

turning motorists may not adequately judge the time available to clear the junction. 

Automobile-drivers involved in such crashes normally stated that they did not see 
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motorcycles when making manoeuvres until the last moment before collisions (Hurt et 

aI., 1981, 1984; Cercarelli et aI., 1992; Obenski et aI., 2007). Hancock et aI. (1989) 

further pointed out that for approach-turn crashes, turning manoeuvres by automobile­

drivers involved a higher probability of structural interference (Le., detection failure 

due to frequent head reversal movements by looking in the other direction rather than 

motorcycle direction) to visual information processing and increase in mental load 

compared to travelling-straight manoeuvres. Such effects may be implicated in 

increased detection failure among the conflicting traffic, particularly motorcycles. 

Olson et aI. (1981) suggested that the fact that most motorcycles have single head 

lamp and smaller frontal area lead motorcycles to have poorer conspciuity than 

automobiles. Being less conspicuous also makes motorcycles more difficult to detect 

and their approaching speed is more difficult to determine (Hurt and DuPont, 1977; 

Hole and Tyrrell, 1995; Hole et aI., 1996). Efforts to decrease motorcycle-automobile 

crashes involving gap acceptance have concentrated on the manipulations that may 

increase detection frequency through improvements in motorcycle/motorcyclist 

conspicuity (Wulf et aI., 1989a, b; Donne, 1990). 

Research into motorcycle safety can be classified into several fundamental categories 

as follows: 

• studies that identified the gap acceptance problem; 

• studies that developed the crash typology; and 

studies that compared the injury severity or a certain pattern of organ injury 

among different crash configurations; and 

studies that examined the mechanisms behind the occurrences of various 

crash configurations. 

• studies that explored the univariate/multivariate relationship between injury 

severity and the variable(s) of interest (e.g., helmet use). 

A review of these studies is provided in the next sections. 
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2.4.1 Studies that Identified the Gap Acceptance Problem 

Previous studies have identified gap acceptance problems in approach-turn or angle 

crashes involving automobiles and motorcycles (e.g., Olson, 1989; Keskinen, 1998; 

Horswill et aI., 2005; Caird and Hancock, 1994,2002). Automobile drivers have been 

observed to adopt smaller safety margins when pulling out in front of motorcycles 

compared with cars. Influential factors resulting in shorter gap accepted by 

automobile-drivers in front of motorcycle have been routinely researched (e.g., 

Hancock et aI., 1991). Among these studies, Nagayama and his colleagues (Nagayama 

et aI., 1980; Nagayama, 1984) reported the findings of two experiments in which they 

attempted to measure the misjudgement of speed and distance to which an oncoming 

motorcycle was subject. They found that drivers' median gap was larger at night than 

that at daytime. Hancock and Caird (1993) pointed out that, given the choice to pull 

into a traffic stream or not to, older drivers and younger drivers appeared to choose to 

turn more frequently in front of motorcycles than in front of automobiles. A turning 

driver was also more likely to accept shorter gap size when the velocity of an 

approaching motorcycle was high (Hancock et aI., 1991). 

Hancock and his colleagues (Hancock et aI., 1990; Caird and Hancock, 1994,2002), 

together with Horswill et ai. (2005), discussed the time-to-arrival illusion (Le., size­

arrival effect) that automobile-drivers have when judging whether there is sufficient 

time to pull out safely in front of an approaching motorcycle. These researchers 

consistently concluded that drivers may estimate the arrival time of motorcycles to be 

later than cars. In an experimental study to examine turning drivers' perception and 

appraisal of approaching motorcycles at T-junction, Crundall et ai. (in press) further 

pointed out that drivers may have difficulties in perceiving motorcycles that were 

particularly at far distances (motorcycles were spotted less by their participants than 

cars at far distances, and correct response times were slower). 

Several researchers identified the likely mechanisms behind the size-arrival effect that 

lead drivers to choose smaller gaps in front of motorcycles. First, Delucia and his 

colleagues (Delucia and Warren, 1994; Delucia, 2004) argued that there might be a 

size-distance coupling, which may make smaller objects appear further away than 

larger objects. A second possibility is that Treisman (1996) pointed out that drivers 
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tend to rapidly scan the traffic scene for a single feature of a potential hazard such as 

proximity, and decide to proceed without noticing the presence of a more distant 

object. Finally attitudinal factors may influence drivers' judgements on motorcycle's 

distance or arrival time (Hancock et aI., 1990; Caird and Hancock, 1994). Which is, 

approaching vehicles that are larger may appear more threatening than approaching 

motorcycles so drivers waiting to merge with or pull out into the conflicting traffic 

might be more cautious when intersecting with trucks than motorcycles (Sparrow, 

1985). 

2.4.2 Studies that Developed the Crash Typology 

The crash typology that consists of various crash configurations was developed by 

several researchers (e.g., Peek-Asa et aI., 1994; Peek-Asa and Kraus, 1996a) in an 

effort to compare the injury severity or a certain pattern of organ injury among 

various crash configurations, or to identity the mechanisms behind the occurrences of 

different crash configurations. A mixture of classification of crash configurations by 

the first crash point and by the manoeuvres of the automobiles and motorcycles prior 

to the accidents has been commonly adopted. Similar to crash configurations that have 

been classified in the previous studies of car-car accidents, crash configurations that 

have been classified in the studies of motorcycle-car accidents include: 

• approach-turn and angle crashes; 

• head-on crashes; 

• sideswipe/rear-end crashes; and 

• single-vehicle crashes. 

A review of these studies is presented below. 

2.4.2.1 Studies that compared injury severity or a certain pattern of organ injury 

among different crash configurations 

To the author's knowledge, there exist two studies in literature that compared 

motorcyclist injury severity and the injured body-regions among various crash 
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configurations (i.e., head-on, sideswipe, rear-end, single-motorcycle, approach-turn 

collisions). These two studies were conducted by Peek-Asa and her colleagues (Peek­

Asa et aI., 1994; Peek-Asa and Kraus, 1996a). Peek-As a et aI. specifically examined 

the injured anatomic location and severity of lower extremity injuries, while Peek-As a 

and Kraus compared driver features, such as helmet and alcohol use, and crash 

features, such as speeding and ejection from the motorcycle, for approach-turn and 

other crash configurations that occurred at four-legged junctions. 

Main conclusions drawn in these two studies include that riders in head-on crashes 

had the highest percentage of chest, abdomen, spine, and lower extremity injuries, and 

riders were found to be ejected most often from the machines than those in other crash 

configurations. Peek-Asa et aI. (1994) pointed out that potential countermeasures, as 

suggested by Haddon (1973), include modifications in rider apparel such as reinforced 

boots and legwear for upper/lower extremity injuries, a restraint mechanism to 

prevent ejection from the machine, or an airbag to cushion the impact force. For 

approach-turn crashes, motorcyclists involved in such crash type were most likely to 

sustain serious upper extremity injuries than those in other crash configurations except 

for head-on collisions. In approach-turn accidents, the car was much more frequently 

the turning vehicle than the motorcycle, and when the car was the turning vehicle, the 

motorcycle was the striking vehicle in over 70% of such crashes. They pointed out 

that in such crash type the turning vehicle may have already entered the intersection 

earlier than the motorcycle by infringing upon motorcycle's right of way. They fUlther 

noted that approach-turn crashes in which the car was turning caused more injuries 

than those in which the motorcycle was turning; and the highest risk for lower 

extremity fractures was observed among riders in approach-turn crashes in which the 

approaching motorcycle was struck on its side by a turning vehicle. They suggested 

modifications in vehicle design and apparel such as better retention of the leg position 

and protection of the leg are needed to prevent some lower extremity injuries in such 

crash. 

For an approach-turn crash, the average Injury Severity Score (ISS) was 16.34 when 

the automobile was turning compared to 11.26 when the motorcycle was turning. For 

an approach-turn crash in which one turning automobile collided with an approaching 

motorcycle, injuries were more severe when the motorcycle was the striking vehicle 
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(ISS 16.7) than when the motorcycle was struck by the car (ISS 14.5). For an 

approach-turn crash, an oncoming motorcycle that struck a turning automobile was 

more likely to be speeding than a motorcycle that was struck by a turning automobile, 

and controlling motorcycle's speed may be beneficial in reducing motorcycle's 

involvement in such crash type. The average ISS, percent of fatally injured, average 

days in the hospital, and average number of injuries are greater for motorcyclists in 

approach-turn collisions than for those in other crash configurations. 

2.4.2.2 Studies that examined the mechanisms behind the occurrences/severity of 

certain crash configurations 

Past studies have sought to examine the mechanisms behind the occurrence/severity 

of a certain crash type that was analysed as a certain crash type (or sometimes more 

than two) as a specific subset of all crash configurations. Single-motorcycle accidents 

were the focus in the studies by Shankar and Mannering (1996) and Chang and Yeh 

(2006) who have sought to identify the factors that were associated with motorcyclist 

injury severity in such crash type. Through the use of the multinomial logit models 

and binary logistic regression models respectively, similar results were found by these 

researchers. For instance, speeding or intoxicated motorcyclists, unhelmeted riders, 

older riders, or larger motorcycle engine size were found to increase the likelihood of 

fatalities. However helmeted-riders in collisions with fixed objects appeared to 

increase the probability of fatal injuries. Shankar and Mannering attributed this to the 

risk compensation that the increased likelihood could be the outgrowth of helmeted 

riders tending to ride more recklessly in response to that added sense of security a 

helmet provides. 

A recent study by Savolainen and Mannering (2007b) estimated the nested logit and 

standard multinomial logit models to explore the multivariate relationship between 

injury severity in single- and multi-vehicle crashes and variables of interest. They 

separated their models by single- and multi-vehicle crashes because they assumed 

there were substantially different causality mechanisms and factors involved in these 

two crash configurations. Crash configurations were included as one of the 

independent variables in the models (e.g., run-off-roadway crash v.s. non run-off­

roadway crash for single-motorcycle crash model; and head-on, right-angle and rear-
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end collisions for multi-vehicle crash model). Their modelling results suggested that a 

wide-range of factors significantly influence injury-severity probabilities in single­

and multi-vehicle accidents in different ways. Injuries to motorcyclists appeared to be 

greatest while involved in run-off-roadway collisions (for single-motorcycle collisions) 

and head-on collisions (for multi-vehicle crashes). 

The characteristics of several crash configurations were examined by Preusser et al. 

(1995), with a focus on crash configurations such as run-off-roadway crashes, 

oncoming collisions (Le., head-on and sideswipe opposite-direction crashes) 

approach-turn crashes, and lane-changing accidents. Differences were observed for 

the mechanisms behind the occurrences of these crash configurations. For example, 

run-off-roadway accidents and oncoming collisions typically involved motorcyclists 

who left the appropriate travel lanes and subsequently ran off the road or struck 

automobiles travelling from the opposite direction. Both crash types tended to take 

place more frequently in rural areas, on roadways with higher speed limits, and at 

curves. Run-off-road accidents were significantly related to alcohol consumption, but 

approach-turn crashes were less often alcohol related. For approach-turn crashes 

potential countermeasures proposed by Preusser et al. include improved signal timing, 

enforcement of stop and yield obligations, and improved sight distances at 

intersections particularly in cases where the smaller motorcycle may remain blocked 

behind larger vehicles and suddenly become visible by its traversing manoeuvres (e.g., 

overtaking or lane changing). Preusser et al. further suggested that motorcyclists may 

be less likely to be involved in approach-turn crashes by wearing conspicuous 

clothing, and by avoiding excessive speed when approaching an intersection. The 

problem of sight distances or obstruction was also addressed by Ouellet (1982) and 

Hurt et al. (1981). They suggested that automobiles in traffic stream and parked 

automobiles were the one of the main causes of view obstructions. 

Similar to the work by Preusser et al. (1995), a more recent study by Clarke et al. 

(2007) investigated the role of motorcyclist and other driver behaviour in three types 

of motorcycle accidents in the UK: accidents involving right-of-way violation, 

accidents involving loss of control on bends, and rear-end accidents. Different 

characteristics that affect the occurrences of these three types of accidents were 

discovered. For instance, super-sport bikes were overinvolved in curve/bend accidents 
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but had a significantly lower propensity than other types of motorcycle for being 

involved in both rear-end and right of way violation accidents. On average drivers at 

fault (i.e., drivers that infringe upon motorcycle'S right of way) tended to be older; the 

majority of right-of-way violation accidents took place at urban T-junctions; and most 

of curve/bend accidents occurred in rural areas. Sexton et ai. (2004), together with 

Lynam et ai. (2001), similarly found that accidents on built-up roads tended to be the 

fault of motorists "turning or u-turning in front of motorcyclists". 

Impaired-riding crashes were treated as one specific subset of the crash configurations 

by Kim et ai. (2002), as alcohol use by motorcyclists was found to be one of the 

important factors contributing to more severe injuries (Williams and Hoffmann, 

1979b; Luna et aI., 1984; Ouellet et aI., 1987a; Peek-Asa and Kraus, 1996b; Shankar, 

1999; Kim et aI., 2000; Kasantikul et aI., 2005; Nakahara et aI., 2005). Kim et ai. 

(2002) found that those conducting risky road behaviours and riding in the night were 

more likely to be involved in alcohol-impaired crashes. Other researchers (e.g., Peek­

Asa and Kraus, 1996b; Kasantikul et aI., 2005) reported that there were different 

driver and crash characteristics among intoxicated riders and sober riders. For 

example, drunk riders were far more likely than non drinkers to have single­

motorcycle crashes (i.e., capsizing or running off the roadway), to be speeding, to 

crash in the evening/mid-nightleariy morning, and less likely to wear a helmet. 

Factors determining the likelihoods of being at fault in motorcycle-car accidents were 

specifically examined by Kim and Boski (2001). They noted that motorcyclists 

conducting risky road behaviours (e.g., speeding, improper overtaking, or tailgating 

one vehicle ahead too closely) were more likely to be at fault in motorcycle-car 

accidents. Automobile-drivers, on the other hand, were more prone to be at fault if 

they failed to yield to motorcyclists, if their visions were impaired, or if they were 

intoxicated. A more recent study by Su et ai. (2006) further pointed out that 

motorcyclists tailgating/overtaking other vehicles ahead caused significant safety 

concerns. 
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2.4.3 Studies that Explored the UnivariatelMultivariate Relationship between Injury 

Severity/Accident Occurrence and the Variable(s) ofInterest 

The univariate relationship between helmet use and motorcyclist injury severity/head 

injuries has received extensive attention in literature (e.g., Evans and Frick, 1986; 

Weiss, 1992; Kraus et aI., 1994; Peek-Asa and Kraus, 1997; Richter et aI., 2001; 

Ouellet and Kasantikul, 2006). There has been overwhelming evidence in literature 

that helmets were beneficial in reducing head injuries and fatalities, although non­

standard helmets appeared to offer little head protection (Peek-Asa et aI., 1999). Some 

other studies (e.g., AIdman et aI., 1981; Ross, 1983; Hurt et aI., 1986; Ouellet et aI., 

1987b; Chinn et aI., 1989; Harms, 1989) examined the performance of machine 

design such as crash bars and rider apparel such as leather trousers or gloves on 

motorcyclist limb injuries. Past studies of the multivariate relationship between injury 

severity and the variables of interest have also evaluated the effectiveness of helmet 

uses on injury severity/head injuries (e.g., Gabella et aI., 1995; Rowland et aI., 1996; 

Lin et aI., 2003; Keng, 2005; Nakahara et aI., 2005; Zambon and Hasselberg, 2006). 

Zambon and Hasselberg (2006) and Lin et aI. (2003), focusing on young 

motorcyclists, consistently found that riding unhelemted was indeed a deadly factor to 

young riders, with other findings that riding on rural roads/in midnight, higher riding 

speeds, and dry road surfaces were associated with more severe/fatal injuries. 

Other typical studies that investigated the multivariate relationship between injury 

severity/accident occurrence and the variables of interest include research work by, 

for instance, Mannering and Grodsky (1995), Umar et aI. (1996), Quddus et aI. (2002), 

and Lapparent (2006). These studies have conducted multivariate analyses of the 

factors that were associated with more severe injuries (Quddus et aI., 2002; Lapparent, 

2006), factors that affect the occurrences of conspicuity-related accidents (Umar et aI., 

1996), or motorcyclists' perceived likelihood of being involved in an accident 

(Mannering and Grodsky, 1995). Accidents in whole were analysed by these 

researchers rather than specific crash configurations (i.e., these studies have not 

alluded to crash configurations or a certain crash type was not examined as subset of 

all crash configurations). 
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Factors generally found to lead to increases in the probability of severe/fatal injuries 

include increased engine size, headlight not being used during daytime, riding in mid­

night/early morning, riding on dry road surfaces, the presence of surveillance camera, 

female riders, older riders, and riders being identified as a offender (Quddus et aI., 

2002; Lapparent, 2006). Headlight use during daytime was found to reduce the 

conspicuity-related accidents (Umar et aI., 1996). Such finding is in agreement with 

some other studies (e.g., Thomson, 1980; Muller, 1984; Zador, 1985) who reported 

that headlight use during daytime may be beneficial in reducing the number of 

motorcyclist fatalities or motorcycle accidents. Noteworthy findings in the study of 

Mannering and Grodsky (1995) include that motorcyclists were generally found to 

have a reasonable understanding of the factors that increased the likelihood of 

accident involvement. For instance, motorcyclists were more likely to perceive their 

accident likelihood in the high-risk category if they regularly rode above the speed 

limit, or had overtaking manoeuvres on the road shoulders or between traffic lanes. 

2.5 Studies that Analysed Automobile-Bicycle/Pedestrian Accidents 

Studies of automobile-bicycles/pedestrians accidents in literature can be subdivided 

into several fundamental categories as follows. 

• studies that examined the gap acceptance problem; 

• studies that developed the crash typology or alluded to crash configurations; 

and 

• studies that explored the multivariate relationship between injury 

severity/accident occurrence and the variables of interest. 

A review of these studies is provided. 

2.5.1 Studies that Identified the Gap Acceptance Problem 

Similar to previous studies of gap acceptance problem in automobile-automobile or 

motorcycle-automobile accidents, pedestrian/bicyclist gap acceptance problem has 

been attracting attention in literature. Researchers (e.g., Oxley et aI., 1997,2001,2005; 
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Lobjois and Cavallo, 2007) examined age differences in the ability of pedestrians to 

choose safe time gaps in simulated road-crossing tasks. They argued that, for all age 

groups, gap selection was based primarily on vehicle distance rather than time of 

arrival. Younger age group (between 30 and 45 years old) were able to process both 

distance and speed of vehicles in very short period of time, although they based their 

crossing decisions primarily on vehicle distance. Older age groups (75 years and 

older), on the other hand, depended more on longer observation times. They pointed 

out that older pedestrians tended to have longer crossing time, overestimate their 

crossing speed, and being more likely to make wrong judgement on vehicles' speed 

and distance. A handful of studies have addressed children's road-crossing 

judgements while walking/cycling across traffic (e.g., Lee et aI., 1984; Connelly et aI., 

1998; Pitcairn and Edlmann, 2000; Plumert et aI., 2004; Kearney et aI., 2006). 

Younger children were generally found to be more likely than older children to accept 

gaps that were too small for safe crossing. Children chose the same size gaps as adults 

did, but those gaps may be inadequate for safe crossing as it may take longer for 

children to cross the road. 

2.5.2 Studies that Developed the Crash Typology or Alluded to Crash Configurations 

Research (e.g., Ashton et aI., 1978; Lane et aI., 1994; Ashton, 1979, 1982; Kajzer et 

aI., 1992) has suggested that the vast majority of automobile-pedestrian collisions 

involved the pedestrians being struck by the front of a car, and front/side of a car was 

also found to be the most common crash area in bicycle-automobile collisions (Maki 

et aI., 2003; Stone and Broughton, 2003). Classification of pedestrian-/bicyclist­

automobile accidents has been mainly based on the movements of the 

pedestrians/bicyclists and cars prior to crashes rather than first crash point. For 

automobile-pedestrian accidents, several researchers (e.g., Miles-Doan, 1996; 

Roudsari et aI., 2006; Huang et aI., in press) classified accidents depending on the 

manoeuvres of automobiles and pedestrians such as turning right/left and travelling 

straight at junctions. Miles-Doan and Roudsari et aI. consistently reported that injuries 

were most severe to pedestrians in crashes where cars collided straight ahead with the 

pedestrians. They suspected that this increased injury-severity level was probably as a 

result of higher impact speed at the time of crash. Huang et aI. concluded that the two 
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most common crash patterns were identified as cars entering and leaving intersections 

colliding with pedestrians crossing the roads. 

The earliest work that has developed the crash typology for accidents involving 

bicyclists and motorists was probably by Cross and Fisher (1977). In an attempt to 

identify the causes of automobile-bicycle accidents in four locations within the U.S., 

Cross and Fisher developed a taxonomy of 25 crash configurations mainly based on 

the manoeuvres of the involved automobiles and bicycles before collisions. A same­

direction crash (i.e., a sideswipe and a rear-end crash) was identified as one of the 

most common crash type for automobile-bicycle collisions, followed by an accident 

involving gap acceptance (i.e., angle/approach-turn crash). They observed that 

traversing manoeuvres played a part in the occurrence of a same-direction crash in 

which a bicyclist (particularly young bicyclists), without being attentive to the traffic 

behind and without signalling, executed a turning manoeuvres and was struck by an 

overtaking automobile from behind. The overtaking automobile-drivers observed the 

bicyclist well in advance, but had lesser evasive reaction once the bicyclist initiated a 

turn. Recommended countermeasures for such sudden turning manoeuvres by 

bicyclists include rear-vision devices equipped with bicycles, increased conspicuity of 

bicycles or bicyclists, and the education of juvenile bicyclists. A later study by 

Atkinson and Hurst (1983) adopted the similar crash typology by Cross and Fisher in 

an attempt to examine the characteristics of automobile-bicycle accidents in New 

Zealand. Atkinson and Hurst reported that HGVs commonly caused bicyclist deaths 

by side impact in overtaking-accidents, and the majority of bicyclists died from 

multiple injuries through being run over by the wheels of the HGVs. 

Much more recent studies (see, for instance, the work by McCarthy and Gilbert, 1995; 

Summala et aI., 1996; Stone and Broughton, 2003; Wang and Nihan, 2004; Walker, 

2007) classified car-bicycle accidents into several sub-crashes, with focuses on 

accidents that occurred at roundabouts, T-junctions, and signalised four-legged 

junctions. Stone and Broughton found that the most frequent car-bicycle accident type 

at T-junctions and roundabouts were accidents in which an entering/turning-right 

automobile collided with a circulating/travelling-straight bicycle. Walker pointed out 

that overtaking motorists may pass closer to a bicyclist when the bicyclist was 

helmeted, riding away from the curb of the road, was male, or the drivers were 
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professional drivers (e.g., bus or heavy goods vehicle). McCarthy and Gilbert noted 

that poor conspicuity of bicycles or bicyclists was a concern especially when 

motorists were overtaking bicycles that were frequently in the blindspot of motorists. 

Factors contributing to the accidents where a circulating bicycle collided with an 

entering automobile at roundabouts were further investigated by several researchers in 

Finland and Demark (e.g., Summala et aI., 1996; Rasanen and Summa la, 1998,2000; 

Herslund and Jorgensen, 2003). Herslund and Jorgensen (2003) concluded that 

motorists that looked but failed to see bicycles were found to be a causation factor for 

such crash configurations; experienced drivers may be more likely to make such error 

than inexperienced drivers; and drivers tended to accept larger gap towards bicyclists 

if there was another car nearby. Summala et al. (1996) and Rasanen and Summala 

(1998, 2000) further noted that at high speeds much of the driver's attention was 

focused on the most relevant direction or the most hazardous object (Le., automobile), 

and ignored the less relevant direction or the less hazardous object (Le., bicycle). This 

may result in the faster drivers looking to the right less often and showing a tendency 

to yield to the bicyclist less often (Rasanen and Summala, 1998,2000), irrespective of 

whether the bicyclist approaching from the right or left arm of junction (Preusser at aI., 

1982). 

2.5.3 Studies that Explored the Multivariate Relationship between Injury 

Severity/Accident Occurrence and the Variable(s) ofInterest 

There is a lengthy literature investigating the factors that were associated with the 

pedestrian/bicyclist injury severity or accident occurrences by conducting 

laboratory/computer simulations, self-report survey, mathematic modelling techniques 

of archival crash data from police accident reports, hospital data, or multidisciplinary 

crash investigations. These studies include those mainly relying on laboratory 

simulation (e.g., Mizuno and Kajzer, 1999) and those estimating econometric models 

of pedestrian/bicyclist injury severity or accident occurrences (e.g., Pitt et aI., 1990; Li 

and Baker, 1994; Wachtel and Lewiston, 1994; Kim and Li, 1996; Klop and Khattak, 

1999; Zajac and Ivan, 2003; Ballesteros et aI., 2004; Noland and Quddus, 2004; 

Roudsari et aI., 2004; Paulozzi, 2005; Lee and Abdel-Aty, 2005; Henary et aI., 2006; 
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Siddiqui et aI., 2006; Kim et aI., 2007; Sze and Wong, 2007; Hatfield and Murphy, 

2007; Kim et aI., in press; Eluru et aI., in press). 

Overall, the variables of interest in these studies were bicyclist/pedestrian/driver 

factors (e.g., driver age, gender), distraction factors (e.g., mobile phone use while 

walking), temporal/environmental factors (e.g., daytime or nighttime, urban or rural 

areas, weather conditions, speed limit), vehicle factors (e.g., junction control measures, 

vehicle type/speed), and road/geometric factors (e.g., junction control measure or light 

condition). Noland and Quddus (2004) specifically examined the effects of medical 

technology improvements on the likelihood of KSls and slight injuries while Kim and 

his colleagues (e.g., Kim and Li, 1996; Kim et aI., in press) examined the likelihood 

of bicyclists/pedestrians being at fault in bicycle-automobile collisions. General 

findings with regard to the factors associated with more serious injuries include that, 

for example, pedestrians/bicyclists were more severely injured while they were struck 

by heavier/larger vehicles, they/drivers were intoxicated, they were older 

pedestrians/bicyclists, accidents occurred on wider roadway width, speed 

limits/vehicle speeds were higher, it was inclement weather, accidents took place on 

the curved roadways, and while bicyclists were riding against the traffic. Noland and 

Quddus found that more serious pedestrian injuries were generally associated with 

lower-income areas, increases in percent of local roads, increased per capita 

expenditure on alcohol, and increased vehicle age. Similar factors were found to be 

associated with bicyclist KSls, with additional variables such as increased NHS 

(National Health Service) staff per thousand population, increased percentage of 

motorway/trunk roads, and increases in percentage of population ages 0-14 and 65 or 

over. 

2.6 Research Gaps 

The overview of the literature indicates that, while not all work was empirical or 

employed statistical modelling approaches, there has been an abundant volume of 

articles analysing automobile-automobile accidents. These studies have increasingly 

estimated the multivariate modelling techniques and provided an understanding of the 

multivariable relationship between accident occurrence/severity and the variables of 

interest. The following research gaps are found in literature: 

41 



Chapter 2: Literature review 

• Studies of motorcycle-car accidents. 

- Studies analysing motorcycle-car accidents appear to be much fewer 

compared with those of car-car accidents, let alone studies applying the 

multivariate modelling techniques to examine motorcyclist injury severity. 

• Classification of motorcycle-car accidents. 

- Compared with past studies of car-car accidents, classification of 

motorcycle-car accidents was less frequently developed. Research analysing 

motorcycle-car accidents tended to develop aggregate models by accidents 

in whole and a real picture of the factors that are associated with more 

severe motorcyclist injuries resulting from different crash configurations 

may be obscured. 

• Some other important factors are generally overlooked. 

- Past studies such as Peek-Asa et al. (1994), Peek-Asa and Kraus (1996a), 

and Preusser et al. (1995) are among the few studies of motorcycle-car 

accidents that have developed the crash typology. These researchers were in 

an attempt to understand the mechanisms behind the accident occurrence, as 

well as comparing driver/crash features and injury severity/specific injury 

pattern among various crash configurations. Nevertheless, these studies 

tended to overlook the effects of some other important factors, such as 

junction control measures, speed limits, motorist attributes, or right-of-way 

violation. 

• Accidents that occurred at T-junctions were rarely researched. 

- Although motorcycle-car accidents at four-legged intersection were 

researched, T-junction cases have not been fully researched in literature (see 

Chapter 1 for the explanations on why T-junction is an important area for 

this study). 

2.7 The Current Research 

The current research is expected to add to the extant literature on motorcyclist injury 

severity in several ways. Firstly, motorcycle-car accidents are dis aggregated into 

several crash configurations based on a mixture of two methods (i.e., the manoeuvres 

of the involved motorcycles and automobiles prior to collisions, as well as the first 
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crash impact). There exist comparatively few past studies that explicitly classified 

motorcycle-car accidents. 

Secondly, through the use of an appropriate statistical modelling technique, a set of 

contributory factors is included in this study to investigate motorcyclist injury severity 

resulting from various crash configurations. An aggregate model is first estimated to 

identify whether motorcyclists in a specific crash type are most likely of all other 

crash configurations to be injurious, while controlling for other factors. Additional 

disaggregate models by various crash configurations are then estimated. Factors found 

in past studies to affect the occurrence/consequence of the certain car-car/motorcycle­

car crash configurations are incorporated into the dis aggregate models for examining 

their effects on motorcyclist injury severity. For example, motorists' failure to give 

way was found to be a contributory factor to the occurrences of motorcycle-car 

approach-turn/angle crashes; and traversing manoeuvres (e.g., overtaking or lane 

changing) were associated with a higher risk of being involved in car-car 

sideswipe/rear-end crashes. The effects of right-of-way violation and traversing 

manoeuvres on motorcyclist injury severity in approach-turn/angle crashes and 

sideswipe/rear-end crashes are examined in this current study. 

Thirdly, given that research has reported that turning motorists adopted smaller 

margin in front of motorcycles compared with cars, an appropriate statistical model is 

employed to examine the likelihood of motorists failing to yield as a function of 

rider/motorist attributes, vehicle factors, environmental, and roadway factors. This 

may enable the possible countermeasures that aim to curb right-of-way violations to 

be directed towards certain circumstances. For instance, compared with drivers of 

other age groups, elderly motorists may have more difficulties in intersecting with and 

detecting oncoming motorcycles, thereby being more likely to fail to give way to 

motorcycles. 

Finally, the investigations of motorcycle-car accidents in the current study are limited 

to accidents that took place at T -junctions, where the statistics suggested that T­

junction accidents are the most hazardous to motorcyclists than any other junction 

case. 
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2.8 Summary 

This chapter has provided a background of research shortage through a review of past 

studies that have developed a taxonomy of various crash configurations for different 

road users. When reviewed together, the flaws of the existing studies had led to the 

conclusion that there is shortage in literature developing crash configurations and 

conducting research programmes for analysing motorcycle-car accidents at T­

junctions. Findings in literature with regard to the factors determining the accident 

likelihoods or likelihoods of more severe injuries/deaths in the non-junction case may 

still contribute to the understanding of the factors that affect motorcyclist injury 

severity in T-junction cases. These factors include, for example, drivers violating 

motorcycles' right of way was found to contribute to the occurrences of motorcycle­

car accidents that involve gap acceptance. This chapter has also positioned the current 

study. 

The next chapter (Chapter 3) presents a review of previous empirical studies that have 

developed different econometric modelling techniques for understanding the 

multivariate relationship between accident severity/injury severity and the variables of 

interest. A review of these studies is expected to provide guidance on an appropriate 

statistical model that can be estimated in this study. 
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CHAPTER 3 

A REVIEW OF STUDIES ESTIMATING VARIOUS 

ECONOMETRIC MODELS 

3.1 Introduction 

Chapter 2 has provided a review of literature examining the factors that affect injury 

severity among various road users. This chapter reviews the studies of the multivariate 

analyses that utilised different econometric modelling techniques to identify the 

determinants of injury severities. There also exists another type of studies (e.g., 

Atkins et aI., 1988) adopting descriptive analyses to aggregate crashes by injury 

severity levels and compare human, vehicle, weather, environmental factors across the 

different injury-severity categories. These studies are not reported in this chapter as 

they were based on univariate or bivariate associations at an aggregate level. 

The review is organised as follows. Firstly the typical discrete-choice model that has 

been widely used is reviewed. These multivariate studies are organised by different 

road users (i.e., automobile, motorcycle, and bicyclist/pedestrian) within each section 

that contains one certain type of model. This is followed by a review of studies that 

developed different econometric structures (i.e., the extensions to the traditional 

discrete-choice models) for injury severity analysis. Also non-parametric models that 

have occasionally been applied are reviewed. Finally general observations from the 

review are provided in the last section. 

3.2 Discrete-Choice Model 

Multivariate studies of automobile accident/injury severity have employed different 

statistical modelling approaches, including the logistic regression model, the ordered 

response model (i.e., OP/OL: ordered probitllogit), and the unordered response model 

(i.e., the MNL: the multinomial logit model; nested logit model). There exist some 

other studies that developed different econometric structure to overcome the 

limitations imposed by the typical discrete-choice model. A review of past studies 

utilising these modelling techniques is provided below. 
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3.2.1 the Logistic Regression Model 

Among the multivariate modelling techniques, the logistic regression has been 

commonly used when the injury-severity representation is in a binary form (such as 

fatal versus non-fatal, or injury versus non-injury). Examples of studies applying the 

logistic model to examine accident/injury severity in car-car accidents or single­

automobile accidents include the work by Jones and Whitfield (1988), Liu et a!. 

(1988), Farmer et a!. (1996), Hill and Boyle (2006), and Obeng (2007). These 

researchers estimated the logistic regression models to model the probability of one 

certain accident/injury severity level (e.g., fatal injury or some other severe 

characterisation of injury) conditioned on the occurrence of an accident using the 

variables of interest such as driver age, gender, vehicle mass, restraint system use, and 

impact point. 

Most previous research on motorcycle accident severity has been oriented toward a 

univariate examination of accident severity, with focus on helmet-related issues such 

as effectiveness of helmets in reducing both fatalities and severity of head injuries 

(see, for example, Watson et a!., 1980; Ouellet and Kasantikul, 2006). Compared with 

the multivariate studies of automobile accident/injury severity, relatively fewer 

studies have been conducted in the field of motorcycle safety using a true multivariate 

examination of the determinants of accident/injury severity (Le., controlling for all 

factors affecting accident/injury severity). Past studies undertaken by Goldstein (1986) 

has made important contributions on the multivariate analysis by modelling the 

multiple effects of several variables on motorcycle accident severity. Goldstein 

conducted a tobit model to investigate different injured body regions, while the 

logistic regression models were also successfully applied by other researchers when 

the injury-severity representation is in binary form. These researchers include, for 

instat:tce Gabella et a!. (1995), Peek-Asa and Kraus (1996b), Lin et a!. (2003), Keng 

(2005), Chang and Yeh (2006), and Zambon and Hasselberg (2006) to model the 

probability of fatalities/severe injuries/severe head injuries using a wide-range of 

factors such as rider age/gender, helmet use, weather condition, and engine size. 

For studies analysing accident/injury severities in bicyclist-/pedestrian-automobile 

accidents, the logistic regression model has also been frequently estimated when the 
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injury severity levels are recorded in binary form (see, for example, Miles-Doan, 1996; 

Ballesteros et aI., 2004; Henary et aI., 2005; Roudsari et aI., 2004, 2006; Sze and 

Wong, 2007). Generally these researchers were in an attempt to model the probability 

of fatalities/severe injuries using a variety of variables such as junction control 

measures, pre-crash movement of the car, age/gender of bicyclist/pedestrian, and 

vehicle type. 

3.2.2 The Ordered Response Model 

Since injury severity levels are typically progressive (ranging from no injury to 

fatal/death), the ordered response models have come into fairly wide use as a 

framework for analysing such responses. Researchers such as O'Donnell and Connor 

(1996), Duncan et aI., (1998), Renski et aI. (1999), Khattak (2001), Kockelman and 

Kweon (2002), Khattak and Rocha (2004), Yamamoto and Shankar (2004), Deng et al. 

(2006), Eluru and Bhat (2007), Rafaat and Chin (2007), Khattak and Fan (2008), and 

Nayens et al. (in press) are some of the many that have applied this technique. These 

researchers assessed the probabilities of the entire range of injury severity levels as a 

function of a set of independent variables using the ordered logit/probit specifications. 

To the author's knowledge, the first work applying the ordered response model to 

examine motorcyclist injury severity was probably by Weiss (1992) who investigated 

the severity of head injuries using Hurt data (Hurt et aI., 1981). More recently, the 

ordered probit models have been utilised by Quddus et aI. (2002) and Pai and Saleh 

(2007a, b, 2008, in press) to analyse motorcyclist injury severity. 

For bicyclist-/pedestrian-car accidents, the ordered response model has been 

developed by several researchers (e.g., Klop and Khattak, 1999; Zajac amd Ivan, 2003; 

Lee and Abdel-Aty, 2005; Siddiqui et aI., 2006) to understand the effects of various 

factors on bicyclist/pedestrian injury severity. 

3.2.3 The MultinomiallNested Logit Model 

The multinomiallogit (MNL) and nested logit models disregard the ordered nature of 

injury severity levels and treat them as independent alternatives. The MNL model 
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suffers from the well-known independence from irrelevant alternatives (llA) 

assumptions (Ben-Akiva and Lerman, 1985). A thorough review of the IIA that is the 

key assumption of the MNL model is provided by Borooah (2001). Compared to the 

ordered response models, the multinomial/nested logit models require estimation of 

more parameters (in the case of three or more alternatives) (Kockelman and K weon, 

2002). However, they do avoid certain restrictions posed by the ordered response 

model - offer a more flexible functional form by providing consistent parameter 

estimates in the presence of the likely underreporting of accident data that do not 

involve injury (see the work of Yamamoto et aI., in press for a thorough discussion of 

the underreporting effects that may not be captured by the ordered response model). 

In addition, the MNL model specifications relax the parameter restriction imposed by 

the ordered response model that does not allow a variable to simultaneously increase 

(or decrease) both high and low injury severities. That is, they allow the independent 

variables to have opposing effects regardless of injury order. Thus, this class of 

models still have a place in accident/injury severity analysis that has been estimated 

by a number of researchers with considerable success. The monotonic effect of 

variables imposed by the ordered response model was thoroughly discussed in several 

studies (see, for example, Long, 1997; Washington et aI., 2003; Eluru and Bhat, in 

press). 

Past studies analysing accidents involving cars, motorcycles, or bicyclists/pedestrian, 

have shown the potential of the multinomial/nested logit specifications by using 

environmental, geometric, weather, vehicle, and human factors to develop the 

predictive models of accident/injury severity. Examples of automobile-severity 

studies include the work of Shankar et aI. (1996), Chang and Mannering (1999), Lee 

and Mannering (2002), Ulfarsson and Mannering (2004), Abdel-Aty and Abdelwahab 

(2004a), and Holdridge et aI. (2005). 

Examples of motorcycle-severity studies include the work by Shankar and Mannering 

(1996) and Savolainen and Mannering (2007b) in which the multinomial/nested logit 

models have been estimated to understand the impacts of helmet use, alcohol­

impaired riding, and other factors on motorcycle accident severity for single­

motorcycle and multi-vehicle crashes. For bicyclist-/pedestrian-injury severity studies, 

the only work that has employed the unordered response model was by Kim et aI. 
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(2007). They estimated the MNL formulation of bicyclist injury severity considering 

bicyclist/motorist characteristics, vehicle, roadway and environmental factors. 

3.2.4 Extensions to the Discrete-Choice Models 

Extensions to the OP/OL model specifications include the ordered mixed logit model 

(Srinivasan, 2002), the heteroscedastic ordered probitllogit model (Wang and 

Kockelman, 2005), and the mixed generalised ordered response model (Eluru et aI, in 

press). These researchers developed different econometric structures for injury 

severity analysis at the level of individual accidents that recognise the ordinal nature 

of the categories. These models also allow flexibility in capturing the effects of the 

independent variables on each ordinal injury-severity category and can capture 

unobserved heterogeneity in thresholds across individuals. The applications of the 

mixed logit models have also been focused on unordered choice contexts (e.g., 

McFadden and Train, 2000; Milton et aI., 2008) to overcome the IIA limitations of the 

MNLmodel. 

Some other researchers (e.g., Jones and J0rgensen, 2003; Huang et aI., 2008) argued 

that since most modelling techniques such as the logistic model and MNL model 

assume independence across subjects, they may not be adequate in modelling 

individual injury severity in the presence of potential correlations between those 

involved in the same multi-vehicle crashes. Which is, the correlation between samples 

may exist in the situation that, for example, the risk of fatality was dependent on the 

characteristics of the other vehicles. They pointed out that the models without 

considering the covariance between individuals in the same crashes, especially when 

the covariance is significant, would result in inaccurate or biased estimates of factor 

effects. Snijders and Bosker (2002) developed the hierarchical binomial logistic (HBL) 

model that allows hierarchical data structures to be easily specified and estimated. In 

traffic accident research, the HBL model has been applied to account for the 

hierarchical data structure in road crash frequency (e.g., Kim et aI., 2007) and severity 

studies (e.g., Jones and Jorgensen, 2003; Lenguerrand et aI., 2006). 
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3.3 Non-parametric Models 

Several researchers (e.g., Sohn and Shin, 2001; Sohn and Lee, 2003; Chang and Wang, 

2006) argued that most regression models have their own model assumptions and pre­

defined underlying relationships between the target (dependent) variable and the 

predictors (independent variables). If the model assumptions are violated, the model 

could lead to erroneous estimations of the likelihood of injury severity. Artificial 

neural networks (ANNs) (see, for instance, the work of Abdelwahab and Abdel-Aty, 

2001,2003; Abdel-Aty and Abdelwahab, 2004c; Delen et aI., 2006) and classification 

and regression tree (CART) model (see, for example, the work of Chang and Wang, 

2006) are non-parametric models that do not have any pre-defined underlying 

relationship between the dependent and independent variables. 

ANN models were specifically developed by Abdel-Aty and other researchers 

(Abdelwahab and Abdel-Aty, 2001, 2003; Abdel-Aty and Abdelwahab, 2004c) and 

Delen et ai. (2006) to model the relationship between motorist injury severity and a 

variety of factors, which were collected specifically for their studies. In the studies of 

Abdel-Aty and his colleagues, the prediction performance of ANNs was compared 

with the ordered/unordered response models. Their results showed that, in general, 

ANN models had slightly more accurate prediction capability over the 

ordered/unordered response models. As for predicting individual severity category, 

ANN models performed somewhat better than the ordered/unordered response models 

for the more severe injury-severity levels (Le., fatal/severe injury), but the accuracy 

was still relatively low. 

However, as discussed by Sohn and his colleagues (Sohn and Shin, 2001; Sohn and 

Lee, 2003) who applied CART, ANN, and the logistic regression models to analyse 

motorist injury severity, the prediction performances (Le., classification accuracy) of 

these three approaches were compared and no significant differences were found. The 

prediction performance of CART was examined by Chang and Wang (2006). They 

reported that while the CART model performed well for the injury category that has 

the largest percentage of subjects (Le., no injury, slight injury), the model in general 

was unable to predict the less frequent injury category (Le., fatality). 

50 



Chapter 3: A review of previous studies estimating various econometric models 

Although the non-parametric models may provide more accurate prediction capability 

over the traditional discrete-choice models, they have their disadvantages, as 

discussed by Harrel (2001). Firstly, developing non-parametric analysis can be very 

time-consuming. For instance, the time that is required to develop an ANN model 

depends on the size of training data and network structure - there is no general rule in 

determining the network structure and it can only be done by experimentation. 

Secondly, developing the CART model can be very costly. There is a lack of 

appropriate and commercially available software which can be used for this type of 

analysis. For example, the free software for the CART analysis such as Salford 

systems is only workable for a short period of time (see the work of Chang and Wang, 

2006, for a complete discussion). A further disadvantage of the non-parametric model 

is the difficulty in conducting elasticity analysis. Elasticity analysis provides valuable 

information on the marginal effects on the explanatory variables on injury severity 

likelihood. The final drawback of the non-parametric models is that they do not 

provide a probability level or confidence interval for the risk factors and predictions. 

3.4 General Observation 

Through reviewing the literature, several general observations regarding the selection 

of appropriate statistical techniques could be made. Firstly, injury-severity research is 

seeing a movement toward multivariate analysis and away from the descriptive or 

univariate/bivariate analysis that were adopted in the studies in the more distance past. 

Descriptive or univariate analysis has been commonly employed in past motorcycle­

safety studies that have focused on the effectiveness of helmet on reducing the 

severity of head injury and fatalities. 

Secondly, among the multivariate modelling approaches, three preferred approaches 

have emerged in the statistical modelling of accident/injury severity data: the logistic 

regression model, the ordered response model (i.e., OP/OL: ordered probit/logit), and 

the unordered response model (i.e., the MNL or nested logit model). The logistic 

regression has been extensively used when the injury severity levels are in a binary 

form (e.g., fatal injury v.s. non fatal injury, KSI v.s. no KSI, or injury v.s. non injury). 

When the injury severity representation is recorded in multiple categories (such as no 

injury, possible injury, non-incapacitating injury, incapacitating injury, and fatal 
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injury), the ordered/unordered response model have been widely estimated. The 

choice between the ordered response model and the unordered response model in 

literature was likely to depend on one individual's preference (Borooah, 2001). 

Finally, more recent studies formulated non-parametric models to identifY whether 

non-parametric models had more accurate prediction capability over the traditional 

discrete-choice models. Chang and Wang (2006) and Abdel-Aty and Abdelwahab 

(2004c) suggested that the CART and ANN models were a good alternative for 

analysing injury severity in traffic accident, whilst Sohn and his colleagues (Sohn and 

Shin, 2001; Sohn and Lee, 2003) noted that there was no significant difference in the 

prediction performance among CART, ANN, and the logistic regression models. 

3.5 Summary 

This chapter reviewed the literature on modelling techniques that have been adopted 

for analysing the risk factors that influence injury severity. The modelling approaches 

that have been used include the discrete-choice models and non-parametric models. 

The limitations and advantage of these models were discussed. The choice between 

the ordered response model and the unordered response model in literature was likely 

to depend on one individual's preference. Although the prediction capability of the 

non-parametric models was found by several researchers to be somewhat accurate 

than that of the tradition discrete-choice models, they have their own drawbacks. Due 

to limitations on time and funding, it is decided to adopt the ordered response model 

to analyse the risk factors and motorcyclist injury severity in this current research. 

The subsequent chapter will describe the ordered response model in detail, as well as 

the proposed methodology for the development of this present research. 
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CHAPTER 4 

RESEARCH METHODOLOGY 

The flaws among the extant studies in literature have been uncovered, as discussed in 

Section 2.6. The primary aim of this current research is to fill the research gap that 

crash prediction models of motorcyclist injury severity in different crash 

configurations have rarely been estimated. Using accident data which have been 

extracted from the Stats 19 accident injury database, this present study attempts to 

investigate the factors that affect motorcyclist injury severity resulting from various 

crash configurations at T-junctions. The proposed methodological approach that 

achieves this consists of the following steps: 

• Investigation of the motorcycle-car accident data from the Statsl9. 

• Identification of a comprehensive set of contributing factors from the Stats19 

to explain motorcyclist injury severity at T-junctions, including rider, motorist, 

vehicle, roadway, environmental, and crash characteristics 

• Development of motorcycle-car accident typology. 

• Estimations of the appropriate econometric models to evaluate the 

determinants of motorcyclist injury severity. 

an aggregate model by motorcycle-car accidents in whole is estimated first 

to uncover a general picture of the determinants of motorcyclist injury 

severity. 

additional models by different crash configurations are subsequently 

calibrated to identify whether the identified variables affect motorcyclist 

injury severities in different crash configurations differently. 

• Interpretation of the modelling estimation results. 

• Conclusions and recommendations for further research to be drawn. 

The methodology will be fully discussed in the subsequent sections. 
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4.2 Empirical Setting 

4.2.1 Data - Stats 19 Accident Injury Database 

This study uses a large sample of motorcyclists that were involved in motorcycle-car 

accidents at T-junctions for whom crash information is available from the 

comprehensive police crash data (i.e., Stats19 accident injury database). The Stats19 

accident injury database for collection of road accident information was established in 

1949, and has been periodically reviewed and modernised by Department for 

Transport, Great Britain. Following every road traffic accident which becomes known 

to the local police and involves personal injury, appropriately qualified and 

experienced police accident investigators complete the Stats 19 forms that comprise 

three files: accident file, vehicle file, and casualty file. The Accident File contains 

general information on time/date of accident occurrence, weather, road and light 

conditions, posted speed limit, and road type; the Vehicle File records vehicle and 

driver details, such as age and gender of driver/rider, vehicle type, first impact point 

of vehicle, vehicle's orientation, and vehicle's manoeuvres; and the Casualty File 

reports details for each casualty such as injury-severity level, age and gender. 

The injury severity of each individual involved in the accident is classified into four 

levels: fatal, serious, slight, and no injury. Fatal injury includes only those cases 

where death occurs within 30 days as a result of the accident. Example of serious 

injury includes those victims suffering from fracture, internal injury, severe cuts and 

lacerations, concussion, or any injury requiring detention in hospital. Slight injury is 

classified for those casualties who sustain sprains, bruises, cuts judged not to be 

severe and slight shock requiring roadside attention. 

For an individual accident, there are at least two vehicles involved in a multi-vehicle 

accident, and there might be more than one casualty within each involved vehicle. The 

characteristics of each accident (e.g., time/date of accident occurrence, weather, and 

light conditions), the involved vehicles (e.g., vehicle type, and engine size), and 

casualties (e.g., sex and gender are mutually exclusive) are recorded in the Accident 

File, Vehicle File, and Casualty File separately. The variable "Accident Reference 

Number" is the identifier for each individual accident within the years. The variable 

"Vehicle Reference Number" is the unique identifier for the vehicles within each 
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individual accident, with the variable "Type of Vehicle" indicating the type of vehicle. 

The variable "Casualty Number" is the unique identifier for the casualties within each 

vehicle. The variable "Other Vehicle Hit - Reference Number of Other Vehicle" is 

the identifier that indicates with which vehicle the subject vehicle collides with (i.e., 

the subject vehicle's crash partner). The variable "Accident Reference Number" is 

used to merge the three record files from the same year. 

Consider a typical motorcycle-car accident where one motorbike with engine size of 

over 125 cc (coded as "04" in the variable "Type of Vehicle" in the Stats 19) collides 

with a car (coded as "09" in the variable "Type of Vehicle" in the Stats 19). The 

motorbike bears two casualties and the car bears one casualty respectively, as shown 

in Figure 4.1. Through the use of the variable "Accident Reference Number", the 

accident, vehicle, and casualty files can be merged into one individual file as shown in 

Table 4.1. 

~ 
DO 

/~ 
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Figure 4.1: A typical situation of casualties within each vehicle. 

Table 4.1: An example of the merged file in the Stats19. 
Accident Vehicle Other Vehicle Hit-

Casualty Reference 
Reference Reference Vehicle Type Reference Number of 
Number Number Other Vehicle 

Number 

AOOOOOI 001 04 002 001 
AOOOOOI 001 04 002 002 
AOOOOOI 002 09 001 003 
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A sample of the record forms for the Accident File, the Vehicle File, and Casualty 

Files is provided in Appendix A. 

4.2.2 Variables Considered 

Several types of variables obtained from the Stats19 were considered in the empirical 

analysis, including rider/motorist attributes, vehicle factors, roadway/geometric 

characteristics, weather/temporal factors, and crash characteristics. These variables 

have been examined in past multivariate studies of automobile/motorcycle 

accident/injury severity, as discussed in Chapter 2. For instance, it was found by 

Shankar and Mannering (1996) that elderly riders tended to have severe injuries once 

in an accident, and motorcycles with higher engine sizes posed a greater risk of severe 

forms of injury to riders (Quddus et aI., 2002). These studies have the potential to 

provide some general insights into the factors that determine motorcyclist injury 

severity. 

The categorisations of the variables considered in the empirical analysis were guided 

by prior studies. For instance, time of day was classified into four categories (evening: 

6 p.m. to midnight; late night and early morning: midnight to 06:59; rush hours: 7 a.m. 

to 08:59 and 4 p.m. to 17:59; and non rush hours: 9 a.m. to 15:59). This is because 

past studies (e.g., Kasantikul et aI., 2005) concluded that injuries to riders tended to be 

much more severe in accidents that occurred in mid-night/early morning. 

The categorisations of the variables considered in the empirical analysis were also 

based on the examination of whether the variables were significant in explaining 

motorcyclist injury severity, relative to the reference cases. Which is, the 

categorisations of the variables were based on a systematic process of combining 

categories in one variable when their effects were not significantly different from the 

reference cases. 

It merits mention here that the selection of a reference case within one variable is 

guided by prior studies (i.e., prior beliefs), as well as for the ease of interpretation. For 

example, extensive research (e.g., Evans and Frick, 1992) has found that crashes 

involving heavier vehicles generally resulted in more severe accident/injury outcome. 
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A category that has been assigned as a reference case within one variable was the one 

found to impose less impact on injury severity. In the case of the effect of 

motorcycle's collision crash partner, assigning "car" as the reference case can provide 

a clear picture of the prior belief that heavier vehicles would result in more severe 

accident/injury outcome, relative to cars. Another example is the effect of speed limit 

on injury severity. Higher posted speed limits were generally found to increase car­

occupant injury-severity levels (Renski et aI., 1999). The category "built-up roadway 

(Le., speed limit up to 40mph)" has been assigned as the reference case, which can 

provide a clear picture of the prior belief that non built-up roadways (Le., speed limit 

over 40mph) would result in more severe accident/injury outcome, relative to built-up 

roadways. 

This current research sought to include as many relevant explanatory variables as 

possible from the Stats19. Variables that are not statistically significant were still 

retained in the models as it is considered in this current research that all variables have 

their effects on injury outcome. Such approach to retain the variables with low 

statistical significance has been adopted by several researchers (e.g., Kockelman and 

Kweon, 2002). 

Variables considered for the empirical analysis are described further in the subsequent 

sections. 

4.2.2.1 Rider/motorist attributes 

Rider and motorist attributes include demographics information such as age and 

gender. The continuous data for rider/motorist age were transformed into categorical 

data for the ease of modelling interpretation. Rider/motorist age is divided into three 

age groups: teenager (up to 19), middle-aged rider (20-59), and the elderly (60+). This 

present study treats riders/motorists aged 60 or above as the elderly, which is in 

accordance with the categorisation of age in Dff (2006b). For middle-age riders, 

more age groups of smaller ranges by 10 years, for instance, had been considered in 

this research. Nevertheless, partitioning the data of middle-age riders/motorists into 

subgroups was found to yield less statistically significant results. As a result, it was 

decided to include the three age categories as the most reasonable categories. 
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4.2.2.2 Vehicle attributes 

The vehicle attributes include engine size of motorcycle, and type of motorcycle's 

collision partner. There exist three sizes of motorcycle engine capacity in the Stats 19: 

moped, motorcycle with engine size up to 125cc, and motorcycle with engine size 

over 125cc. It has been decided to combine the categories "moped" and "motorcycle 

with engine size up to 125cc" into one single category "motorcycle with engine size 

up to 125cc". This is because the category "moped" was generally found to be 

insignificant in explaining injury severity in the estimated models. This has yielded 

two categories for the variable "motorcycle engine size": motorcycle with engine size 

up to 125cc, and motorcycle with engine size 125cc or above. 

The type of motorcycle's crash partner considered includes heavy goods vehicle 

(HGV), bus/coach, and private car. 

4.2.2.3 Roadway/geometric characteristics 

The roadway/geometric characteristics considered in the analysis are speed limit, 

junction control measures, the presence of curvature for motorcycle or for car, and 

street light conditions. The variable "speed limit" comprises two categories: built-up 

roadway (speed limit <= 40mph) and non built-up roadway (40mph+). The variable 

"road types" (i.e., one way street, dual carriageway, and single carriageway) was 

considered but it was found to be correlated with the variable "speed limit". Therefore 

it was not considered in the analysis. The variable "junction control measure" includes 

three categories: signalised junction, stop-/give-way controlled junction, and 

uncontrolled junction. The data for the presence of bend on the roadway were 

extracted from the variable "2.7 Manoeuvres" in which the categories "Going ahead 

left hand bend" and "Going ahead right hand bend" provide such data. Additional 

geometric characteristics such as grade, shoulder widths, or alignment of roadways, 

could not be included due to the absence of these data in the Stats19. The variable 

"street light condition" includes several categories: daylight, street light lit/unlit in 

darkness, and street light unknown. 
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4.2.2.4 Temporal/weather factors 

Temporal/weather factors related to the crash include day of week (weekend and 

weekday), time of day represented in four categories (evening: 6 p.m. to midnight; 

late night and early morning: midnight to 06:59; rush hours: 7 a.m. to 08:59 and 4 p.m. 

to 17:59; and non rush hours: 9 a.m. to 15:59), accident month represented in two 

categories (spring/summer: March to August; and autumn/winter: September to 

February), and weather conditions (fine weather; adverse weather: windy, rainy, or 

stormy; and unknown). 

4.2.2.5 Crash characteristics 

Crash characteristics which are considered include the number of vehicles involved 

(two-vehicle crash; and three vehicles+), and crash configurations represented as four 

categories (head-on crash; same-direction crash; approach-turn A crash; approach­

turn B crash; angle A crash; and angle B crash). The categorisation of the crash 

configurations is described in detail in 4.3 Classification of the crash configurations. 

Additional variables are incorporated into the disaggregate models by crash 

configurations, which will be presented in Chapter 7. These variables include, for 

instance, motorist's failure to give way that was found in the literature to contribute to 

the occurrences of approach-turn/angle collisions (Hurt et aI., 1981; Hancock, 2005). 

The effect of motorist's failure to give way on motorcyclist injury severity will be 

examined in approach-turn/angle crash model. Another example of the additional 

variables is the pre-crash manoeuvres of the car and the motorcycle. There is evidence 

in the literature suggesting that car-car/motorcycle-car same-direction crashes (Le., 

sideswipe/rear-end crashes) were associated with improper overtaking or changing 

lane manoeuvres (Clarke et aI., 1998, 1999). The effects of pre-crash manoeuvres by 

motorcycle and car on motorcyclist injury severity will be investigated in same­

direction crash model. These additional variables will be fully described in the 

Chapter 7. 

The categories of each variable considered in the empirical analysis, together with its 

frequency, are presented in Table 4.2. 
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Table 4.2: The categories ofthe variables. 

Variable Frequency (%) 

Rider/motorist Gender of rider l. male 93667 (92.0%) 
attributes 2. female 8174(8.0%) 

Age of rider l. 60 above 2469 (2.4%) 
2. up to 19 21970(21.6%) 
3.20-59 77402 (76.0%) 

Gender of collision 1. untraced 4528 (4.4%) 
partner 2. male 67434 (66.2%) 

3. female 29879 (29.3%) 
Age of collision partner l. untraced 9403-(9.2%) 

2.60 above 10412 (10.2%) 
3. up to 19 5557 (5.5%) 
4.20-59 76469 (75.1%) 

Vehicle Engine sizes l. motorcycle over 125cc 72741 (71.4%) 
characteristics 2. motorcycle 125 cc or under 29100(28.6%) 

Collision partners 1. heavy good vehicle 7483 (7.3%) 
2. bus/coach 1359 (1.3%) 
3. car 92999 (91.3%) 

Crash No. of vehicle involved l. >=3 6770 (6.6%) 
characteristics 2. two vehicles only 95071(93.4%) 
Roadway/geometric Bend for motorcycle 1. bends 4935 (4.8%) 
factors 2. non bends 96906 (95.2%) 

Bend for car 1. bends 2107 (2.1%) 
2. non bends 99734 (97.9%) 

Junction control 1. uncontrolled 12440 (12.20/;;) 
measures 2. stop, give-way sign or 

83712 (82.2%) 
markings 
3. automatic traffic signals 5689 (5.6%) 

Light conditions l. darkness: street lights 
958 (0.9%) 

unknown 
2. darkness: street lights lit 23845 (23.4%) 
3. darkness: street lights unlit 2198(2.2%) 
4. daylight 74840 (73.5%) 

Speed limit 1. non built-up roads (>40mph) 12022 (1l.8%) 
2. built-up roads «=40moh) 89819 (88.2%) 

Weather factor Weather conditions l. other or unknown 2039 (2.0%) 
2. fine weather 87704(86.1 %) 
3. bad weather 12098 (1l.9%) 

Temporal factors Accident time l. evening (1800-2359) 27807 (27.3%) 
2. midnight; early morning 

3138 (3.1 %) 
(0000-0659) 
3. rush hours (0700-0859; 33977 (33.4%) 
1600-1759) 
4. non rush hours (0900-1559) 36919 (36.3%) 

Accident day of week l. weekend (Sat-Sun) 21696 (21.3%) 
2. weekday (Mon-Fri) 80145(78.7%) 

Accident month 1. spring/summer (Mar-Aug) 52286 (51.3%) 
2. autumn/winter (Seo-Feb) 49555 (48.7%) 

Total 101841(100%) 
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It should be noted here that "unknown" or "untraced" categories are retained in some 

variables (e.g., motorist attributes, light conditions, and weather conditions), but not 

for some other variables (e.g., rider attributes, day of week). Whether the "unknown" 

or "untraced" data were included in one variable or not is dependent on two criteria. 

Firstly, it is dependent on whether such data resulted in a large fraction of data in 

other variables. For instance, the data for unknown age and gender of rider were 

excluded because these missing data were found to be largely represented in other 

variables (e.g., engine size, speed limit, time of accident, etc.) in the dataset. On the 

other hand, the data for unknown age and gender of motorist were remained because 

these data did not result in other missing data in other variables. 

The second criterion is that it is examined whether the missing data is reasonable. For 

example, missing data for temporal factors are considered to be unreliable data, as it 

seems unrealistic that the time/date of the accident was unknown. Thus, missing data 

for temporal factors could not be included, while unknown weather conditions were 

still retained in the analysis. 

4.2.3 Variables Not Considered 

Some other variables (e.g., 2.27 Driver Postcode, 2.23 Breath Test, 1.23 Road Surface 

Condition, as shown in Appendix A) are readily available from the Stats19 but they 

were excluded from the analysis. It may be reasonable to hypothesise that these 

variables may have impact on injury outcome. The reasons for the exclusion of each 

of these variables from the analysis are justified in the subsequent sections. 

4.2.3.1 Driver postcode 

Previous work by Quddus et al. (2002) concluded that motorcyclists whose nationality 

were not Singaporean were more likely to be fatally injured given an accident has 

occurred. For this current study, it would have been reasonable to assume that 

motorcyclist injury severity may be associated with driver postcode that indicates 

where the involved rider and driver are from. However, such data were not available 

to the public due to confidentiality - they were only available to those who carried out 

research for DfT. 
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4.2.3.2 Breath test 

As for alcohol use, evidence in literature (e.g., Nakahara et aI., 2004; Kasantikul et aI., 

2005) revealed that intoxication was one of the contributory factors to motorcyclist 

fatalities, especially during evening/mid-night hours. Data for breath test were 

available for the latest Stats19 data (Le., 2005 and 2006), but it was decided not to 

include the latest Stats19 data of year 2005 and 2006 with the data of 1991-2004. This 

is because data of year 2005 and 2006 became available while this thesis that analysed 

the data of 1991-2004 has been finalised. However, this would make an interesting 

future study to analyse the breath test data of year 2005 onwards by applying the 

methodology applied in the present study." 

4.2.3.3 Road surface condition 

As for road surface condition, inconsistent research findings were drawn in literature 

regarding the effects of road surface condition on motorcycle accident outcome. For 

instance, while Broughton (1988) concluded that riders of heavier motorbikes were 

less injurious in an event of a single-motorcycle accident that occurred on slippery 

roadways, Savolainen, Mannering (2007b) indicated that road surface conditions were 

not significant in explaining motorcyclist injury severity in multi-vehicle accidents. 

Similar to the conclusions drawn in the study of Savolainen, Mannering, road surface 

conditions were found to be insignificant in affecting motorcyclist injury severity in 

the present study and therefore the variable "road surface condition" was removed 

from the final models. 

4.3 Classification of the Crash Configurations 

Since there is no variable in the Stats19 that explicitly indicates the crash 

configurations, attempts have been made to classify motorcycle-car accidents into 

several crash configurations by using other variables that are readily available. It has 

been decided to develop the crash typology depending on the conflicts that arise from 

the intended/actual path of the motorcycle and car prior to the accidents. 
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The variables "Vehicle Movement Compass Point" and "Manoeuvres" in the Stats19 

are used for the assignment of the intended/actual path of the motorcycle and car. The 

variable "Vehicle Movement Compass Point" (see Figure 4.2) indicates the vehicle's 

orientation, while the variable "Manoeuvres" indicates the pre-crash manoeuvres of 

the involved vehicles. It should be noted here that the original manoeuvres in the 

Stats19 consist 18 manoeuvres. For the assignment of the movement of the involved 

vehicles, these manoeuvres were classified into two categories: going straight and 

turning. Table 4.3 and Table 4.4 report the information on the original manoeuvres in 

the Stats 19 (and their counts), and the merged categories (and their counts) for 

motorcycles and cars respectively. Of 18 manoeuvres, only 16 manoeuvres were used 

for the classification of crash configurations. Two manoeuvres (Le., Reversing and 

Parked) were removed as these manoeuvres are unrelated to the crash configurations 

being considered. 

IN 

8 NW 2 NE 

7 W X 3E 

6 SW 
4 SE 

SS 

Figure 4.2: The variable "Vehicle Movement Compass Point" in the Stats19 that 
indicates the car's and motorcycle's orientation. 
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Chapter 4: Research methodology 

An interesting observation may be made from Table 4.3 and Table 4.4. Which is, 

more than 91 % of all motorcyclist casualties were resulting from accidents in which 

motorcycles were travelling straight (see Table 4.3), whilst more than 71% of all 

motorcyclist casualties were resulting from accidents in which cars were making a 

turn (see Table 4.4). This implies that a travelling-straight motorcycle colliding with a 

turning car can be a typical safety problem to motorcyclists. An angle/approach-turn 

crash arises from the combination of these two manoeuvres (a travelling-straight 

motorcycle collides with a turning car). This crash type was discussed and examined 

by Pai and Saleh (2008) in more details and is investigated further in this thesis. 

In this current research, analysis is limited to motorcycle-car accidents that involve 

two or more vehicles. That is, it could be a two-vehicle crash, or a multi-vehicle crash 

that involve more than two vehicles. The classification of the crash configurations is 

based on the first vehicle with which a motorcycle had collided in the case of a multi­

vehicle crash that involved more than two vehicles (Le., not the second or third 

vehicle with which such motorcycle had collided in a crash involving more than two 

vehicles). 

Motorcycle-car accidents that occurred at T-junctions are classified into the following 

four crashes configurations: 

• crashes that involve gap acceptance (angle crash and approach-turn crash), 

• crashes in which one motorcycle and car originally travelling from opposite 

directions collided with each other (head-on crash), 

• crashes in which one motorcycle and car originally travelling from same 

directions collided with each other (same-direction crash), and 

• other crash configurations. 

These four crash configurations are illustrated in Figure 4.3 and Figure 4.4 and are 

explained further below. 
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(a) ",,,,,,,;;:I;K,,,,,,,,,,,,,,,,, """,,!!Tj.IIII ""'"" "' 

I~l- I~II 
""""""""" (~="""III """""""""~'~""'" .... J ~ 

1'1 I~I 
angle A collision 

41F 4'j"r 
IIIIHImlll:B-m' .... ~. -ca-. ~ 
~, F =jB; r-'FffiiiiiFm'iii'fI'AiiiiFR'l1iiii 

angle B collision 

(b) .....ca-..•. ~!jii!jiiiiiiiiiiiiii 
iiiiiiiiiiiiiiiiiii i ....... ,,,,,,,,m~ '""""'"""" 

• •••• I~ 

III III 
approach-turn A collision approach-turn B collision 

Figure 4.3: Schematic diagram of various crash configurations at T-junctions. (a) 
angle A crash and angle B crash; (b) approach-turn A crash and approach-turn 
B crash. Note: pecked line represents the intended/actual path of a motorcycle 

and solid line represents the path of a car. 
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Figure 4.4: Schematic diagram of various crash configurations at T-junctions. (c) 
head-on crash (d) same-direction crash (e) merging crash (1) both-turning A 

crash and both-turning B crash. Note: pecked line represents the intended/actual 
path of a motorcycle and solid line represents the path of a car. 

68 



Chapter 4: Research methodology 

4.3.1 Crashes that Involve Gap Acceptance 

Crashes that involve gap acceptance include angle crash and approach-turn crash, as 

shown in Figure 4.3(a) and Figure 4.3(b) respectively. 

An angle crash is defined as a crash in which a right-/left-turn motorcycle/car from 

the minor road needs to make use of proper gaps amongst the conflicting traffic to 

cross/merge into the traffic stream. A traffic conflict, which is termed as an angle 

crash, arises from incorrect gap acceptance by right-/left-turn motorcycle/car. An 

angle crash is further divided into two sub-crashes: angle A and angle B crash. An 

angle A crash takes place when one right-turn motorcycle/car from the minor road 

collides with a travelling-straight motorcycle/car (right-hand side traffic) or collides 

with a right-turn motorcycle/car (left-hand side traffic) on the main road (such crash is 

assumed to have a perpendicular crash angle). An angle B crash is defined as a 

collision in which a right-/left-turn car/motorcycle from the minor road collides with a 

travelling-straight motorcycle/car (such crash is assumed to have an oblique crash 

angle). The data of whether the involved vehicles were on the main road or minor 

road are provided by the variable "2.9a Vehicle Location at Time of Accident" in the 

Stats19. Note here that a turning-right vehicle/motorcycle may simply make a V-turn. 

An approach-turn collision is defined as a collision where a right-turn car/motorcycle 

from the major road needs to make use of proper gaps among the conflicting traffic to 

cross or merge into the traffic stream (such car/motorcycle is in a need to either turn 

right from the major road into the minor road or simply make a V-turn). A traffic 

conflict (i.e., an approach-turn crash) arises from incorrect gap acceptance by a right­

turn car/motorcycle. An approach-turn crash is subdivided into two crash 

configurations: approach-turn A and approach-turn B, depending on whether the 

turning vehicle is a motorcycle or a car. An approach-turn A crash takes place when 

one right-turn motorcycle collides with an oncoming car and such motorcycle turns 

right into the path of such car; and an approach-turn B crash occurs when one right­

turn car collides with an approaching motorcycle and such car turns right into the path 

of such motorcycle 
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It merits mention here that the data of whether a turning motorcycle/car is turning 

right or turning left are provided in the variable "2.7 Manoeuvres" in the Stats19 (see 

category code 07, 08, 09, and 10 in Table 4.3 and Table 4.4). 

4.3.2 Head-on Crash 

A head-on crash, as illustrated in Figure 4.4( c), is defined as a crash where one 

motorcycle and one car originally travelling from opposite directions collided with 

each other. An example of a head-on crash is that a motorcycle travelling eastwards 

collides with a car travelling westwards and both are travelling straight instead of 

making a turn. 

4.3.3 Same-direction Crash 

As shown in Figure 4.4( d), a same-direction collision is defined as a collision where 

one motorcycle and one car travelling from same direction collided with each other. 

This can be a sideswipe or rear-end collision that occurs either on the minor road or 

major road. The involved car and motorcycle may make any kind of manoeuvres (e.g., 

travelling straight, overtaking, lane changing, or turning). 

4.3.4 Other Crash Configurations 

Other crash configurations include a merging collision and a both-turning collision, as 

presented in Figure 4.4(e) and Figure 4.4(f) respectively. 

A merging collision is defined as a crash in which one left-turn car/motorcycle on the 

minor road collided with a travelling-straight motorcycle/car on the major road. 

A both-turning collision is defined as a collision where one right-/left-turn 

car/motorcycle on the major road collides with a right-/left-turn motorcycle/car on the 

major road and both are from opposite directions. Note here that a right-turn 

car/motorcycle may simply make a U-turn. A both-turning collision is further 

categorised into two crashes: a both-turning A collision where the car and the 

motorcycle have an oblique crash angle (e.g., both are travelling southwards); and a 
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both-turning B collision the car and the motorcycle have a perpendicular collision 

angle. 

The categories of the variable "crash configurations", together with its frequency, are 

presented in Table 4.5. 

Table 4.5: The categories of the crash configurations. 

Crash confi~uration Total 
Angle A crash 33676 (33.1 %) 
Angle B crash 8357 (8.2%) 
Approach-turn A crash 1061 (1.0%) 
Approach-turn B crash 16653 (16.4%) 
Head-on crash 3741 (3.7%) 
Same-direction crash 34806 (34.2%) 
Merging crash 3294 (3.2%) 
Both-turning A crash 143 (0.1 %) 
Both-turning B crash 110 (0.1%) 
Total 101841 (100%) 

It should be noted here that there is no "unknown" category in this variable "crash 

configurations". That is, the crash configurations that could not be identified by using 

the variables "Vehicle Movement Compass Point" and "Manoeuvres" were removed. 

The exclusion is because that missing data (Le., the data that were left blank) for 

"Vehicle Movement Compass Point" or "Manoeuvres" were found to result in a large 

fraction of data in other variables. For instance, there are a number of missing data for 

motorcycle engine size following missing data for "Vehicle Movement Compass 

Point" and "Manoeuvres". These data have been considered to be unreliable and were 

therefore removed. 

4.4 Investigation Boundaries 

The present study aims to analyse multi-vehicle accidents (Le., motorcycle-car 

accidents) instead of single-motorcycle accidents. In addition, the investigation is 

limited to nationwide scale rather than regional patterns of accidents. The 

investigation boundaries are justified in the following sections. 
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4.4.1 Exclusion of Single-motorcycle Crash 

It is worth noting here that single-motorcycle crash (i.e., an accident where the 

motorcycle collided no other motorised vehicle but may either have collided with on­

/off-roadway objects or capsized) was excluded from the classification here~ This is 

because a majority of KSI casualties were from multi-vehicle accidents - 63% of all 

KSI motorcyclist casualties were as a result of collisions with other motorised 

vehicles (see also Figure 1.1). Therefore, motorcycle-car accidents instead of single­

motorcycle crash were the main focus of the present study. Another reason for the 

exclusion is that previous empirical studies (see, for example, Shankar and Mannering, 

1996; Savolainen, Mannering, 2007b) tended to analyse single-motorcycle crashes 

and motorcycle-car accidents separately because of the substantially different casualty 

mechanisms and factors involved in these two crash types. For example, Shankar and 

Mannering (1996) suggested that rider attributes such as rider gender/age or speeding, 

as well geometric factors such as the presence of bend may significantly affect 

accident consequence in single-motorcycle crashes on undivided roadways while the 

characteristics of the involved automobile such as type of vehicle may significantly 

influence the overall accident severity in multi-vehicle accidents. Further research 

may attempt to analyse single-motorcycle accidents at T-junctions and on undivided 

road sections by applying the methodology applied in the present study. 

4.4.2 Exclusion of Regional Patterns of Accidents 

It should be noted here that the present study focuses on motorcycle-car accidents at 

nationwide level. Regional patterns of accidents such as geographic spread of 

accidents (or accidents that result in KSls) were not investigated. A study 

investigating regional patterns of accidents may have the potential to obtain additional 

geometric factors (e.g., grade or road alignment/layout) that are not readily available 

in the Statsl9. Attempts were made at early stage of the present research to locate 

accidents by using the variable "Grid Reference". However, due to a large fraction of 

missing grid reference data, the data could be fairly unreliable in order to locate the 

accidents. The large fraction of missing grid reference data may be because the police 

attending the accident scene may not capture the final location of a motorcycle in the 

event of an accident. That is, smaller motorbike than a standard automobile makes it 
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hard for the police to accurately locate the involved motorbike, resulting in the 

missing data for the final digit of the grid reference that references I-metre square. 

4.5 Limitations of the Stats19 Data 

It should be justified here that the only accident database analysed in this research is 

the Stats 19 data. There are a few intrinsic research limitations in the current study 

while analysing the Stats 19 data. These limitations include issues such as 

underreporting data, reliability of the crash configurations classified, reliability of the 

injury severity levels recorded, and variables that are not available from the Statsl9. 

These limitations are justified in the following sections, whilst a full discussion of the 

limitations of the Stats 19 data is provided in Chapter 9. 

4.5.1 Underreporting Data 

Traffic accident data can be regarded as outcome-based samples with unknown 

population shares of the injury severities. An outcome-based sample is 

overrepresented by accidents of higher severities. That is, accidents that resulted in no 

injury or slight injury might not be reported to police. There is concern about 

underreporting data when analysing police accident report (see the study by 

Yamamoto et aI., in press for a full discussion of under reporting data). In terms of the 

bias that arises from underreporting, underreporting might be a more serious issue for 

a study that analyses motorist injury severity than a study that analyses motorcyclist 

injury severity. This is because of the fact that motorcyclists in generally are more 

vulnerable than motorists given that an accident has occurred. That is, an accident that 

involves motorist only (e.g., a car-car crash) is less likely to be reported to police as 

automobile provides more protection to its occupants. On the other hand, an accident 

that involves motorcyclist is more likely to be reported to police as motorcycles are 

not as crashworthy as automobiles do. Statistics from DIT (DIT, 2006a, b) also 

suggested that motorcyclists' relative risk of being KSI per kilometre travelled is 

almost 50 time that for car occupants. It is recognised in this present study that 

underreporting may bias the estimated results. However, it is felt that using police 

data for more vulnerable road users such as motorcyclists is less problematic than for 

automobile-motorists. 
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4.5.2 Reliability of the Crash Configurations Classified 

Since there is no variable in the Stats19 that explicitly indicates the crash 

configurations, motorcycle-car accidents were classified in the present study into 

several crash configurations by using other variables that are available in the Stats19 

(i.e., the manoeuvres and first collision points of the involved car and motorcycle, as 

shown in Section 4.3). While the crash type data are not readily available in the 

Stats19, police reporting datasets such as NASS (National Automotive Sampling 

System) in the U.S. explicitly indicate the crash types where the accidents are reported 

to the police (see, for instance, the study ofUlfarsson et aI., 2006 that relied on NASS 

to analyse car-car accidents). However, the reliability of such crash type data could be 

somewhat questionable. This is in part because police attending the accident scenes 

may have obtained the crash type data from the involved victims or witnesses, which 

may be fairly subjective due to postcrash shock or denial of responsibility. It is 

beyond the scope of this current study to either examine the reliability of the crash 

configurations classified in this present study or identify whether a certain dataset is 

more reliable than another one. 

4.5.3 Reliability of the Injury Severity Levels 

While police crash data are perhaps the most valuable source of multiple factors that 

affect accident occurrence/consequence, the injury severity levels recorded can be 

inaccurate (Rosman and Knuiman, 1994). Rosman and Knuiman noted that injury 

severity scale may primarily rely on police officers' judgment at the accident scene. 

Past studies (e.g., Barancik and Fife, 1985) have shown discrepancies between police 

judgments and medical records. Life-threatening injuries, such as internal brain 

trauma, could be identified as slight injury if they are not evident to the police officers. 

However, this may be an innocuous research limitation since a fatal/serious injury is 

classified in the Stats 19 by the observation of a casualty requiring detention in 

hospital for up to 30 days, rather than by police officers' judgment at the accident 

scene alone. 
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4.5.4 Variables that Are Not Available from the Stats19 

Perhaps the most obvious limitation stems from the use of the Stats19 data. While the 

Stats 19 provides a detailed source of accident features, several other important factors 

were not readily available. These factors include the causes to the accident (e.g., 

violation, speeding etc.), helmet use, speed, other geometric factors such as vertical 

bends (i.e., grade) rather than horizontal bends, and alcohol use. Exposure data such 

as traffic flow for the traffic stream at the time of accident, riding/driving experience, 

and other aspects of risk exposure were also not available. The data that were not 

available from the Stats19 can be expensive to obtain and thus analyses of these 

unavailable data are beyond the scope of this thesis. Nonetheless, these factors should 

not be overlooked in future research. 

4.6 Econometric Framework 

When the categories of the dependent variable are clearly ordered, one should take 

account of the fact that the dependent variable is both discrete and ordinal. For this 

current research, suppose that there are N persons (indexed i = 1, ... , N) for each of 

whom an "injury" can occur. Suppose that this injury has three outcomes (no injury, 

slight injury, KSI). The outcomes are indexed j=1, 2, 3, where these outcomes are 

mutually exclusive and collectively exhaustive. Let the values taken by the variable Yi 

represent these outcomes for person i such that: Yi = 1 if the first outcome occurs for 

this person (j = 1); Y; =2 if the second outcome occurs (j =2); and Yi =3 if the last 

outcome occurs (j =3). These outcomes are inherently ordered, by which is meant 

that the outcome associated with a higher value of the variable Y; is ranked higher 

than the outcome associated with a lower value of the variable. Another way to 

express this ordinal nature is that stronger outcomes are associated with higher values 

of the variable. Nonetheless, this ordinal nature of the outcomes has no implication for 

differences in the strength of the outcomes. That is, although the dependent categories 

are numbered sequentially, the outcome associated with Y; =2 is not twice as strong as 

that associated with Y; =1 (i.e., the values are only a ranking and have no cardinal 

significance). Therefore, the actual values taken by an ordered dependent variable are 
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not relevant, as long as larger values correspond to stronger outcomes and smaller 

values correspond to weaker outcomes. 

As discussed in Chapter 3, the unordered multinomial logit (MNL) or nested logit 

models have been widely adopted in literature to determine the factors that affect 

injury severities sustained by various road users. These models, while accounting for 

categorical nature of the dependent variable, treat ordinal dependent variables as if 

they are interval (Borooah, 2001; Long, 1997). Which is, to estimate an econometric 

relation with an ordinal dependent variable, using the methods of the MNL or nested 

logit models would represent that the information conveyed by the ordered nature of 

the data is discarded. 

The econometric models specifically designed for ordinal variables are the ordered 

response models, which are able to account for unequal differences between 

categories in the dependent variable (Le., for this study the distance between no injury 

and slight injury is not the same as that between slight injury and KSI) and do not 

have the restriction of the IIA (the independence of irrelevant alternatives) as a MNL 

model does (Borooah, 2001; Long, 1997). The ordered response models are 

introduced in more detail in the subsequent section. 

4.6.1 The Ordered Response Model 

The ordered response models can be derived from a measurement model in which a 

latent variable y * ranging from -co to +00 is mapped to an observed variable Y . The 

variable Y is thought of as providing incomplete information about the underlying 

y * according to the measurement equation: 

Yi=m . * If flm-l < Yi ::;; flm for m=1 to J [4.1] 

The lis are called thresholds or cutpoints. The extreme categories 1 and J are 

defined by open-ended intervals with flo :=: -co, fl J :=: +00 . 
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In order to illustrate the measurement equation (Equation 4.1), consider the dependent 

variable used in this current study. The data of motorcyclist casualties resulting from 

motorcycle-car accidents at T -junctions were drawn from the Stats 19 for a 14-year 

period between 1991 and 2004. Motorcyclist injury severity resulting from these 

motorcycle-car accidents is classified into three levels: no injury, slight injury, and 

KSI. Assume that this ordered variable is related to a continuous, latent variable Y * . 
The ordered response models are usually motivated in a latent (Le., unobserved) 

variables framework. The general specification of each single-equation model is 

Y i * = f3' Xi + C i [4.2] 

where y; * is the latent and continuous measure of injury severity faced by accident 

victim i in an accident, P' is the vector of parameters to be estimated, and Xi is the (K 

xl) vector of observed non-stochastic (Le. non-random) explanatory variables, and c; 

is the normally distributed error term with zero mean and unit variance for the OP 

model, but logistically distributed for the OL model. Note here that the error terms for 

different accident victims are assumed to be uncorrelated (Le. disturbance term is 

assumed to be heteroskedastic, representing that all individuals have the same 

variance, and unit variance). 

According to the measurement model (Equation 4.1), the observed and coded discrete 

injury severity, y; , is determined from the model as follows: 

{

I if - 00 < Yi * ~ III (no injury) 

Yi = 2 if III < Yi* ~ 112 (slight injury) 

3 if 112 < Yi* < +00 (KSI) 
[4.3] 

where the threshold values III and 112 are unknown parameters to be estimated. Figure 

4.5 illustrates the correspondence between the latent, continuous underlying injury 

variable, Y; * , and the observed injury severity class, Y;. 
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-00 00 

l1li ~ Yi * 
f.-ll f.-l2 

• - - - - - - - 1- - - - - - - - -1- ----2- - - - t ---3- - ~ Yi 

Figure 4.5: Relationship between latent and coded injury variables. 

As shown in Figure 4.5, the solid line represents the latent variable Yi * . The cutpoints 

are indicated by the vertical lines marked III and 112 with 110 = -00, P3 = -too and f.il < f.i2 . 

Below this solid line a dotted line illustrates the values of the observed variable 

Yi over the range of Yi * . 

The probability that an injury level sustained by a motorcycle user i , for a given Xi is 

equal to the probability that the unobserved injury risk, Yi *, takes a value between 

two fixed thresholds. This is presented as follows. 

Firstly, for the probability of a victim sustaining no injury, Yi = 1 is observed when 

Yi * falls between f.io = -co and III . This implies that: 

P(y; =llx;)=p(llo <Y;*~llllxi) [4.4] 

Substituting Yi * into fJ I Xi + & i , 

P(Yi = Ilx;) = P(llo < fJ' Xi + &i ~ PI I Xi) [4.5] 

Subtracting /3' Xi within the inequality, 

P(Yi = llxi ) = P(Po - fJ' Xi < &i ~ PI - fJ' Xi I Xi) [4.6] 

The probability that a random variable is between two values is equal to the difference 

between the cdf (cumulative density function) evaluated at these values. Thus, 
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P(Yi = llxi) = P( &i :s;; III - fJ' Xi I Xi) - P( &i < Ilo - fJ' Xi) = <D(IlI - fJ' Xi) - <D(llo - fJ' Xi) 

[4.7] 

These steps can be generalised to derive the probability of any observed outcome. For 

this current study, the predicted probabilities of the three coded injury-severity levels 

by a victim i, for given X; are: 

P(y; = 1Ix;) = <l>(,ul - [3' x;) 

P(Yi = 2lxi) = <l>(,u2 - [3' Xi) - <l>(,ul - [3' Xi) [4.8] 

P(y; = 3Ix;) = 1- <l>(,u2 - [3'x;) . 

where <l> (u) denotes the cdf (cumulative density function) of the random error term 

8; evaluated at u . It should be noted here that when computing P(Yi = llxi) , the second 

term on the right-hand side drops out since <D(llo - fJ' Xi) = <D( -00 - fJ' Xi) =0. Similarly, 

when computing P(Yi = 3lxi) , the first term on the left-hand equals 1 since 

<D(1l3 - fJ'xi)= <D(oo- fJ'xi) =1. 

The method of maximum likelihood (ML) is used for estimating parameters of the 

ordered response models. To use ML estimation, a specific random error term &; has 

to be assumed (Long, 1997). An OP model is the result of assuming that 8; is 

normally distributed, while an OL model is the result of assuming that &; is 

logistically distributed. Other distributions for the error term have been considered, 

but are not widely used (see the work of McCullagh, 1980, or Amemiya, 1985, for a 

complete discussion of ML estimation in the context of statistical and econometric 

models). 

For the OP model, &; is normally distributed with mean ° and variance 1 and the cdf 

IS: 
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1 & t
2 

<1>(e) = ~f -OOexp(-2)dt [4.9] 

For the OL model, &j is logistically distributed with a mean of 0 and a variance of 

ffA and the cdf is: 

exp( &) 
A ( &) = 1 + exp( &) [4.10] 

A measure of model goodness-of-fitp2(McFadden, 1973) can be calculated as: 

p2 = 1- [In(Lb)/ln(Lo)] [4.11] 

where In(Lb) is the maximised likelihood andln(Lo) is the likelihood value assuming 

all the model slope coefficients are equal to O. 

In practice, the OP and OL formulations give very comparable results (O'Donnell and 

Connor, 1996). Therefore only the estimation results of the OP models are estimated 

and reported in this present study (see Chapter 6 and Chapter 7). It also merits 

mention that two categories (Le., KSI v.s. non KSI) can be considered as the 

dependent variable and the appropriate statistical model for this would be binary 

logistic regression model, as discussed in Chapter 3. It was found that the estimation 

results by adopting the binary logistic regression were fundamentally consistent with 

those by the OP models adopted in this study (e.g., riders were more injury-prone in 

approach-turn B crashes than those in other crash configurations). However, due to 

the binary level of the dependent variable, the whole spectrum of injury severity (Le., 

the probabilities of sustaining no injury, slight or KSI separately) would be obscured. 

Such reasoning (Le., the more injury severity information which can be provided by 

using the ordered response models) is also supported by several researchers (e.g., 

Elure and Bhat, 2007). 
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4.6.2 Multicollinearity Problem 

It is worth mentioning that, for models that have a set of explanatory variables, there 

is a possibility that some of the explanatory variables would be related causing the 

problem known as multicollinearity. Although multicollinearity would not cause the 

estimators to be biased, inefficient, or inconsistent, and does not affect the forecasting 

performance of the model, it might make coefficients less significant (Ramanathan, 

1995). 

Multicollinearity could be identified by high value for correlation coefficients 

between variables. A correlation value that is 0.5 or above between two variables may 

result in multicollinearity problem. In this present study, any cases where one variable 

is observed to be correlated with another variable with a correlation value of 0.5 or 

above, only one variable is maintained in the model to avoid multicollinearity 

problem (see the work of Ramanathan, 1995 for a complete discussion of 

multicollinearity problem that arises from two variables with a correlation value of 0.5 

or above). In this current study, correlation matrix is systematically examined among 

the variables before they are incorporated into the models (see Chapter 6 and Chapter 

7). The symptom of multicollinearity (e.g., wildly changing coefficients when an 

additional variable is included/removed or unreasonable coefficient magnitudes) are 

also examined by observing whether the coefficients of the estimated models have 

meaningful signs and magnitudes. These approaches to avoid multicollinearity have 

been adopted by several researchers (e.g., Jones and Jergensen, 2003; Pai and Saleh, 

in press). 

4.6.3 Interpretation of the Estimated Coefficients and Modelling Performance 

Due to the increasing nature of the ordered levels in the dependent variable, the 

interpretation of the parameter, fJ', is as follows: a positive value of an estimated 

coefficient implies that an increase in the variable will unambiguously increase the 

probability of the highest-ordered discrete category being selected (i.e., KSI), and 

unambiguously decrease the probability of the lowest-ordered discrete category (i.e., 

no injury). 
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As discussed in section 4.1, an aggregate model by motorcycle-car accidents in whole 

is firstly estimated in this study. Several disaggregate models by various crash 

configurations are subsequently estimated. The estimation results for these models 

will be reported in Chapter 6 and Chapter 7. Two tables are prepared to report the 

estimation results of each crash model. This is fully described below. 

First table reports the general estimation results, which include, for example, 

categories of the independent/dependent variables, frequency of each variable, the 

estimated coefficients, significant value for each variable, and model fitting 

information. Model fitting information includes a pseudo-R2 measure and 

classification accuracy, which is explained further below. 

A pseudo-R2 (goodness-of-fit) (Eq. 4.11) measure is presented even though there is no 

universally accepted goodness-of-fit measure for the ordered response models (Long, 

1997; Kennedy, 1993). A pseudo-R2 measure which has the values between 0 and 1 

has no natural interpretation as its purpose is to measure the strength of the linear 

component models (Greene, 2003). That is, unlike the case of the linear regression 

model, where the coefficients are chosen to maximise pseudo-R2
, in ordered response 

models the coefficient estimates do not maximise any goodness-of-fit measure. Thus, 

assessing the nonlinear models like the ordered response model on the basis of the 

goodness-of-fit statistics may be misleading (Kennedy, 1993; Greene, 2003). 

One alternative to a pseudo-R2 measure proposed by Ben-Akiva and Lerman (1985) is 

a fit measure (Le., CA: classification accuracy) that examines the percentage of 

outcomes of dependent variables that are correctly predicted. The model prediction 

accuracy is reported in first table for each crash model. The interpretation of CA 

should proceed with caution since while analysing imbalanced dataset, the less 

frequent outcome tends to be predicted very poorly (Cramer, 1999). 

Second table for each crash model provides information on the probabilities of the 

three injury-severity levels. Research (e.g., Long, 1997; Eluru et aI., in press) has 

noted that, for the ordered response model, the estimated parameters on the 

explanatory variables do not directly provide a clear indication of how changes in 

specific independent variables affect the probabilities of intermediate ordered 
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category (Le., slight injury for this current research). Calculation of these probabilities 

(see Eq. 4.8) allows a better understanding of the relative effectiveness of the 

independent variables on the probabilities of the three injury-severity levels in this 

present study. 

4.6.4 Benchmark Victim 

A useful starting point for a discussion of injury probabilities is to consider the 

characteristics of the casualty when all variables in the models take the value of zero. 

Such accident victim is termed as a "benchmark victim" in the current research. A 

benchmark case is derived when variables in the models take the value of zero, 

thereby remaining the reference cases in the model. See also section 4.2.2 for the 

assignment of a reference case and see Table 4.2 in which the final category is 

assigned as the reference case for each variable. As an example of the model of 

motorcycle-car accident in whole (see Chapter 6), such benchmark victim has the 

following characteristics: 

(a) was a female 

(b) was aged 20 to 59 

(c) was involved in a collision in which the involved motorist was female 

(d) the age of the involved motorist was 20 to 59 

(e) was riding a motorcycle with engine size up to 125cc 

(f) was involved in a collision in which the crash partner was a car 

(g) was involved in a two-vehicle collision 

(h) was riding on the straight roadway (not on the bend) 

(i) her crash partner was riding on the straight roadway (not on the bend) 

(j) was involved in a crash where automatic signals were the control measure 

(k) was involved in a crash when it was daylight 

(I) was involved in a crash in autumn/winter month 

(m)was involved in a crash when the weather was adverse 

(n) was involved in a crash during non rush hours 

(0) was involved in a crash on weekday 

(p) was involved in a crash on the built-up road 

(q) was involved in a same-direction collision 
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Estimates of the probabilities that the benchmark victim sustains three levels of injury 

in the motorcycle-car crash are reported in the first row of the second table for each 

crash model. Estimates of the injury probabilities are subsequently presented. The 

changes in the probability levels of the dependent variables are also estimated, which 

are measured relative to the benchmark victim. This allows one to interpret changes in 

the probability of the severity levels for a change in a given parameter, relative to the 

benchmark victim. The "benchmark victim" approach adopted in this current research 

to discuss injury probabilities has also been employed by previous researchers (e.g., 

O'Donnell, and Connor, 1996; Pai and Saleh, 2007b) and are applied in each crash 

model (see Chapter 6 and Chapter 7). 

4.6.5 An Example of the Derivation of the Injury Severity Probabilities 

An example of how the injury severity probabilities are derived is given here. 

Suppose that, for this present study, a male rider (Le., Xi =1) was involved in an 

accident with three injury severity outcomes: no injury, slight injury, and KSI. Recall 

the Eq.( 4.8), the predicted probabilities of the three coded injury-severity levels by a 

victim i, for given Xi are: 

P(y; = llx;) = <D(.u, - /3' X;) 

P(y; = 21Xi) = <D(.u2 - /3' Xi) - <D(.ul - /3' Xi) 

P(y; = 3Ix;) = 1- <D(.u2 - /3'x i ) 

[4.8] 

The unknown parameters PI , 1l2, and fl' are derived using the statistical software 

SPSS. If /11 = -1.5, 112 = 1.4 , and fl' =0.07 then for Xi =1 (for a male rider, relative 

to a female rider). The formulas for the injury severity probabilities that derive from 

the Eq.(4.8) are: 

P(Yi = no injuryl male rider) = <D( -1.5 - 0.07 * 1) 

P(y; = slightinjuryj male rider) = <D(1.4 - 0.07 * 1) - <D( -1.5 - 0.07 * 1) [4.12] 

P(y; = KSII male rider) = 1- <1>(1.4 - 0.07 * 1) 
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Thus, 

P(y; = no injury I male rider) = <1>(-1.57) 

P(y; = slight injury I male rider) = <1>(1.33)-<1>(-1.57) [4.13] 

P (Yi = KSI I male rider) = 1 - <1> (1.33) 

Recalled the Eq.( 4.9), the tabulated quantity is 

1 f t
2 

P (U > u) = r-- : exp( - -)dt = 1 - <I> (u ) 
27r 2 [4.14] 

Where <1>(u) is the cdf of the standard normal distribution for the OP model. The 

cumulative standard normal probabilities are appended in Appendix B: The normal 

probability integral 1- <1>(-u). For example, 

1- <P(0.11) = 0.45620 [4.15] 

Entries in bold type (see Appendix B) take the same decimal prefix as entries in the 

following row. For example, 

1- <P(2.36) = 0.0091375 [4.16] 

The table in Appendix B gives values of 1- <I>(u) for u ~ 0 . For negative values of u , 

use the relation 

<1>(u) = 1- <1>( -u) [4.17] 

For instance, 

<1>(-2.36) = 1- <1>(2.36) = 0.0091375 [4.18] 

85 



Chapter 4: Research methodology 

Thus, from the table in Appendix B, the probabilities of three injury severity levels 

are: 

P(Yi = no injury I male rider) = 0.058208 == 5.82% 

P(Yi = slight injury I male rider) = 0.908241 - 0.058208 = 0.8500 == 85% [4.19] 

P(Yi = KSI I male rider) = 1- <1>(1.33) = 0.091759 == 9.18% 

The probabilities of no injury, slight injury, and KSI sustained by a male rider in an 

accident are 5.82%, 85%, and 9.17% respectively. The derivation of the probabilities, 

however, is not calculated in SPSS. The injury severity probabilities were externally 

calculated using the Microsoft Visual Basic given the derived parameters PI , 112, 

and /3' , as well as the normal probability integral 1- <1>( -u) (see Appendix B). 

4.7 Summary 

This chapter described the methodology used in this current research to examine 

motorcyclist injury severity in motorcycle-car accidents at T-junctions. The proposed 

methodological approach that achieves this comprises the following steps: 

• Investigation of the motorcycle-car accident data from the Stats19. 

• Identification of a comprehensive set of contributing factors from the Stats 19 

to explain motorcyclist injury severity at T-junctions, including rider, motorist, 

vehicle, roadway, environmental, and crash characteristics. 

• Development of motorcycle-car accident typology. 

• Estimations of the appropriate econometric models to evaluate the 

determinants of motorcyclist injury severity. 

an aggregate model by car-motorcycle accidents in whole is estimated first 

to uncover a general picture of the determinants of motorcyclist injury 

severity. 

additional models by different crash configurations are subsequently 

calibrated to identify whether the identified variables affect motorcyclist 

injury severities in different crash configurations differently. 
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• Interpretation of the modelling estimation results. 

• Conclusions and recommendations for further research to be drawn. 

As previously mentioned, the main objective in this thesis is to identify the factors 

that affect motorcyclist injury severity at T-junctions. To achieve this, the 

investigations are divided into three parts: part one, part two, and part three. The 

investigations part one, two, and three are and explained further below. 

Investigation part one - descriptive analysis 

Investigation part one represents a descriptive analysis of the variables that are 

associated with motorcyclist casualties resulting from motorcycle-car accidents at T­

junctions, which is reported in Chapter 5. The descriptive analysis provides a general 

picture of the univariate relationship between motorcyclist injury severity and the 

independent variables. 

Investigation part two - a multivariate examination of the determinants of 

motorcyclist injury severity 

In addition to the investigation of the univariate relationship between motorcyclist 

injury severity and the independent variables (Chapter 5), investigation part two 

represents a multivariate examination of the determinants of motorcyclist injury 

severity (Le., controlling for all factors that influence motorcyclist injury severity) at 

aggregate level and at disaggregate level. This study firstly estimates an aggregate 

model by accidents in whole. This aggregate model is useful for isolating a variety of 

factors (i.e., human, vehicle, environmental, weather, or geometric factors) that 

significantly affect motorcyclist injury severity at T-junctions. The variable of interest 

is "crash configurations" that is incorporated into the model calibration. The primary 

aim of the aggregate model by motorcycle-car accidents in whole is to identify 

whether a certain crash configuration is more severe to motorcyclists than other crash 

configurations, while controlling for other variables. 
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The second stage of investigation part two is the estimations of the disaggregate 

models by various crash configurations. The aim of these disaggregate models by 

different crash configurations are to identify the factors that affect motorcyclist injury 

severity resulting from specific crash configurations. For example, one might expect 

an automatic signal to cause different collision-impact to those in angle crashes than 

those in same-direction crashes. Such information may be obscured by the estimation 

of the overall model that incorporates the variable "crash configurations" into the 

model. 

Investigations part two will be organised into Chapter 6 and Chapter 7. Chapter 6 

presents the estimation results of the econometric model by accidents in whole, while 

Chapter 7 reports the estimation results of the dis aggregate models by various crash 

configurations. 

Investigation part three - further examination of the considered variables amongst 

various crash configurations that led to KSIs 

Investigation part three represents a summary of the findings obtained from the 

disaggregate models by various crash configurations, as well as a further examination 

of the considered variables amongst various crash configurations that led to KSIs. The 

summary of the estimation results of the disaggregate models by various crash 

configurations provides evidence that the considered variables affect motorcyclist 

injury severity in various crash configurations differently. The examination of the 

considered variables amongst various crash configurations leads to insights into 

whether a certain crash type is more likely than any other crash type to occur under a 

specific circumstance. Investigation part three will be reported in Chapter 8. 

The next chapter (Chapter 5) will provide the results of the investigation part one. 
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INVERTIGATION PART ONE - DESCRIPTIVE ANALYSIS 

CHAPTER 5 

DESCRIPTIVE ANALYSIS 

5.1 Introduction 

This chapter presents the preliminary analysis - descriptive analysis of the considered 

variables that are associated with motorcyclist casualties resulting from motorcycle­

car accidents at T-junctions. In addition to the multivariate analysis by estimating 

statistical models that will be reported in Chapter 6 and Chapter 7, the descriptive 

analysis may provide a general understanding of the univariate relationship between 

motorcyclist injury severity and the independent variables. 

This chapter firstly reports on the sample which is used in this research (section 5.2). 

Sample formation and description are then reported. This is followed by the 

descriptive analysis of the Stats 19 data, with focuses on the distribution of 

motorcyclist injury severity by variables (section 5.3). The descriptive analysis on the 

distribution of motorcyclist injury severity by crash configurations is presented 

separately in section 5.4, as this is the main focus of this current research. A brief 

summary of the descriptive analysis is finally provided (section 5.5). 

5.2 Sample Formation and Description 

The motorcycle-car accident data analysed in this current research were drawn from a 

14-year period between 1991 and 2004. Accidents considered for the analyses in this 

study had to satisfy the following two criteria: 

• Criteria One: an accident must have been a crash that involves more than two 

vehicles, and 

An accident considered includes either a two-vehicle crash (i.e., a 

motorcycle collides with a car) or a multi-vehicle crash that involves more 

than three vehicles (i.e., a motorcycle collides with a car, and a second 

vehicle is not able to avoid the crash ahead so that it collides with such 
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motorcycle or car). Excluded is a single-motorcycle accident where the 

motorcycle collided with on-/off-roadway objects, or ran out of roadway. 

• Criteria Two: In a motorcycle-car accident considered in the analysis, the first 

vehicle with which the motorcycle collided must have been an automobile 

(including private car, bus/coach, and HGV). A motorcycle-motorcycle 

accident is not considered in this current research because this present study 

only focuses on motorcycle-car accidents. In a case of an accident that 

involves more than three vehicles, the second (or the third, forth, etc.) vehicle 

can be either an automobile or a motorcycle/bicycle. 

These two criteria are illustrated in Figure 5.1. As shown in Figure 5.1 , in a case of a 

two-vehicle accident or a multi-vehicle accident that involves more than three 

vehicles, Vehicle 1 must be a motorcycle, while Vehicle 2 must be an automobile. In 

a case of a multi-vehicle accident that involves more than three vehicles, Vehicle 3 

might be an automobile, a motorcycle, or a bicycle. 

(a) 

v~ 
Vehicle 1 Vehicle 2 

(b) 

~ 
~V~~ 

Vehicle 1 Vehicle 2 

A 
Vehicle 3 

Figure 5.1: A schematic example of a motorcycle-car accident considered in the 
analysis. (a) a two-vehicle crash that involves one motorcycle (Vehicle 1) and one 
automobile (Vehicle 2) only; (b) a multi-vehicle crash that involves three vehicles 

or above (Vehicle 1: a motorcycle; Vehicle 2: an automobile, Vehicle 3: an 
automobile, a motorcycle, or a bicycle). 
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In this current study, only accidents that resulted in injuries to motorcyclists 

(including riders and pillion passengers) are considered. Which is, injuries sustained 

by pedestrians/bicyclists or motorists in other motorised vehicles that had collided 

with motorcycles are not considered. It should be noted here that in an accident where 

one car-occupant is injured but the motorcycle user is not injured, such accident is still 

recorded in the Statsl9. Such motorcyclist that is uninjured is included in this current 

study and the injury sustained by such motorcyclist is termed as "no injury". 

Missing and unrelated data were examined and removed from the sample. Missing 

data include the data that were left blank. Unrelated data include, for example, the 

variable "2.7 Manoeuvres" contains the data "Reversing" and "Parked", as discussed 

in section 4.2.2. The data for "Reversing" and "Parked" were removed because they 

are not relevant to the classification of the crash configurations in this present study. 

After missing/unrelated data were removed, a total of 101841 motorcyclist casualties 

resulting from the motorcycle-car accidents that took place at T-junctions were 

extracted. Of these motorcyclist casualties that were involved in car-motorcycle 

accidents at T-junctions, 24.3% are classified as KSI (24709 observations), 74.4% are 

classified as slight injury (75783 observations), and 1.3% are classified as no injury 

(1349 observations). 

The distribution of motorcyclist injury severity by each year is presented in Table 5.1. 

It should be noted that, in this table, the injury-severity categories of fatal injury and 

serious injury are combined into a single category "KSI" (killed or seriously injured) 

and such combination will be applied for the analysis in the rest of this study. This 

combination is for the consistency with the dependent variables that contain multiple 

injury-severity categories for modelling calibration. It was found that the combination 

of fatal injury and serious injury as one single KSI category resulted in more accurate 

prediction capability than fatal injury and serious injury respectively. The modelling 

results will be fully presented in Chapter 6 and Chapter 7. 

The descriptive statistics in Table 5.1 indicate that total motorcyclist casualties have 

decreased from 8857 in 1991 to 6573 in 2004, although there has been a slight 

increase between 2000 and 2003. In general, the injury-severity level of motorcyclist 

casualties shows a slight downward trend. 
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Table 5.1: Distribution of motorcyclist injury severity by year. 

Year No injury Slight injury KSI Total 
1991 91 (1.0%) 6343 (71.6%) 2423 (27.4%) 8857 (8.7%) 
1992 99 (1.3%) 5757 (73.0%) 2033 (25.8%) 7889 (7.7%) 
1993 93 (1.3%) 5298 (73.4%) 1831 (25.4%) 7222 (7.1%) 
1994 94 (1.2%) 5254 (73.4%) 1812 (25.3%) 7160 (7.0%) 
1995 88 (1.3%) 4971 (73.2%) 1736 (25.5%) 6795 (6.7%) . 

1996 95 (1.5%) 4829 (73.8%) 1618 (24.7%) 6542 (6.4%) 
1997 90 (1.3%) 5172 (74.8%) 1648 (23.8%) 6910 (6.8%) 
1998 99 (1.4%) 5138 (74.7%) 1641 (23.9%) 6878 (6.8%) 
1999 109 (1.6%) 5256 (75.9%) 1564 (22.6%) 6929 (6.8%) 
2000 102 (1.4%) 5666 (75.1 %) 1775 (23.5%) 7543 (7.4%) 
2001 91 (1.2%) 5889 (77.1%) 1656 (21.7%) 7636 (7.5%) 
2002 96 (1.3%) 5612 (75.4%) 1735 (23.3%) 7443 (7.3%) 
2003 111 (1.5%) 5655 (75.8%) 1698 (22.7%) 7464 (7.3%) 
2004 91 (1.4%) 4943 (75.2%) 1539 (23.4%) 6573 (6.5%) 
Total 1349 (1.3%) 75783 (74.4%) 24709 (24.3%) 101841 (100%) 

5.3 Distribution of Motorcyclist Injury Severity by Variables 

Table 5.2 provides information on the distribution of motorcyclist injury severity by 

the variables considered in the analysis. The overview of these descriptive statistics is 

organised into several parts: rider/motorist characteristics, vehicle attributes, 

roadway/geometric characteristics, weather factors, temporal factors, and crash 

characteristics. 
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Chapter 5: Descriptive analysis 

5.3.1 RiderIMotorist Characteristics 

For the gender of riders, Table 5.2 shows that there are about twelve times more male 

casualties than female casualties. A similar pattern of motorcyclist casualties was 

observed by Hancock et al. (2005) in the United States. Hancock et al. noted that this 

was probably because motorcycle riding remains a predominantly male activity. Table 

5.2 also indicates that the percentage of male motorcyclists sustaining KSIs (24.7%) 

was higher than that of female riders sustaining KSIs (19.0%). 

For gender of motorist, the statistics indicate that as much as 66.2% of all 

motorcyclist casualties were in collisions with male motorists. In addition, the 

percentage of those sustaining KSIs in collisions with male motorists was slightly 

higher than that of those with female drivers (25.2% versus 23.6%). 

Regarding age of rider, motorcyclists aged 60 or above were more likely to be KSI 

(29.2% of the injuries were KSIs) than other riders of age groups (21.9% for those 

aged up to 19; 24.8% for those aged between 20-59), as shown in Table 5.2. Previous 

studies (e.g., Evans, 1988) suggested that this was probably because younger 

individuals can tolerate crashes of any specific severity more successfully than their 

older peers. With respect to motorist age, riders were more injury-prone in collisions 

with motorists aged 60 or above (29.3% of the injuries were KSIs) than when they 

were in collisions with motorists of other age groups (28.3% of the injuries were KSIs 

for those colliding with teenaged motorists; 24.6% of the injuries were KSIs for those 

colliding with motorists aged between 20-59). 

5.3.2 Vehicle Attributes 

Statistics show that, for motorcycle engine size, 71.4% of all casualties were users of 

motorcycles with engine size over 125cc. This may be a reflection of the fact that 

there might be much more active riders of larger motorcycles in the UK (Broughton, 

2005). In addition, there has been a large increase in numbers of licensed stock for 

motorcycles with engine sizes over 500cc (see DfT, 2006b for detailed statistics on 

licensed stock by engine size). The data in Table 5.2 also indicate that 26.4% of those 
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using heavier motorbikes sustained KSls, which is more than those of smaller bikes 

sustaining KSls (19.0% of the injuries were KSls). 

For motorcycle's crash partner, the data show that it was most frequently a car (with 

91.3% of all casualties were in collisions with cars). However, collisions with cars 

tended to result in less severe injury outcome than those with HGVs or buses/coaches 

(23.8% for collisions with cars, 29.0% for collisions with HGVs, and 28.1 % for 

collisions with buses/coaches). 

5.3.3 Roadway/Geometric Factors 

Roadway/geometric variables include the presence of bend for motorcycle/car, 

junction control measures, light conditions, and speed limits. 

As shown in Table 5.2, there appeared far more motorcyclist casualties when there 

was no bend for motorcycles (95.2%) or for cars (97.9%) than when there were bends 

for motorcycles (4.8%) or for cars (2.1 %). However, among those involved in 

accidents on bends, injuries were much more severe. Which is, 33.6% and 37.9% of 

the injuries were KSls when there were bends for motorcycles or for cars. 

With respect to junction control measures, as much as 82.2% of all casualties were as 

a result of accidents that occurred at stop/give-way controlled junctions. This is 

probably in part because there is a comparatively large number of T -junctions that are 

controlled by stop, give way signs or markings in the UK. Stop, give-way signs or 

marking also appeared to predispose riders to a great risk of KSls (as much as 24.8% 

of casualties sustained KSls), followed by uncontrolled junctions (24.0%). 

For street light conditions, daytime accidents resulted in 73.5% of all motorcyclist 

casualties. This may suggest that motorcyclists tend to have greater discretion about 

travelling during daytime. However, the proportion of those having KSls on unlit 

streets (37.8%) was much higher than that of those on lit streets (25.6%) or in daylight 

condition (23.4%). 
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Motorcyclist casualties on built-up roadways appeared to outnumber those on non 

built-up roadways by nearly 8-to-1 (88.2% versus 11.8%). Nonetheless, riders in 

accidents on non built-up roadways were about two times more likely than those in 

accidents on non built-up roadways to be KSI (43.5% versus 21.7%). 

5.3.4 Weather/Temporal Factors 

The data for the weather factor show that about six-sevenths of all casualties were as a 

result of acCidents that occurred under fine weather (86.1 %). This may suggest riders' 

greater willingness to travel when the weather is fine. The percentage of KSIs under 

fine weather appeared to be higher than that of KSIs under adverse weather (24.8% 

versus 21.1 %). This may be a reflection of more cautious road behaviours under 

adverse weather. 

Regarding seasonal variation, accidents that occurred in spring/summer months 

resulted in slightly more casualties than those that occurred in autumn/winter months 

(51.3% versus 48.7%). This is likely because motorcycling travel is more active in 

spring/summer months. In addition, riders having accidents in spring/summer months 

were slightly more likely than those having accidents in autumn/winter months to be 

KSI (25.0% versus 23.5%). 

With regard to time of accident, 33.4% of all casualties were as a result of accidents 

that took place during 4-hour rush hours (7 a.m. to 08:59 and 4 p.m. to 17:59). This 

may be a consequence of the fact that there is more traffic during rush hours. The data 

also show that there are much fewer accidents that occurred during midnight/early 

morning hours, with only 3.1 % of all casualties resulting from accidents during this 

period. Nevertheless, injuries in accidents that occurred during this period were 

greatest, with 30.1 % of motorcyclists sustaining KSIs. 

For accident day of week, 78.7% of all casualties had accidents on weekdays, which is 

more than the number of casualties on weekends. This may be a reflection of the way 

in which many people use motorcycles regularly to get to and from work during 

weekdays (DIT, 2006b). However, injuries in accidents on weekends were more 

severe than those on weekdays (27.8% versus 23.3%). 
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5.3.5 Crash Characteristics 

Crash characteristics include two variables: "number of vehicle involved" and "crash 

types". The descriptive statistics show that over 93% of all casualties were in two­

vehicle collisions, which outnumber those in accidents involving more than three 

vehicles by approximately 14-to-l (see also Figure 5.1 for a schematic example of a . 

two-vehicle accident and a multi-vehicle accident that involves more than three 

vehicles). However, there is an increase in injury severity to those in accidents that 

involved three vehicles or above (32.6% of the injuries were KSls). This may be a 

reflection of a greater collision-impact imposed by more vehicles involved in 

accidents. 

The descriptive analysis for the variable "crash configurations" is reported in the 

subsequent section. 

5.4 Distribution of Motorcyclist Injury Severity by Crash Configurations 

Table 5.3 provides information on the distribution of motorcyclist injury severity by 

crash configurations. It should be noted that collisions that have small number of 

occurrences are combined with other crashes that have greater occurrences (see also 

Table 4.4 in section 4.3.4 for original categories of crash configurations) so that 

variability caused by random effects when statistical models are applied can be 

reduced. As shown in Table 4.4 in section 4.3.4, this includes the combination of 

"both-turning A collision" (0.1 % of all casualties resulted from both-turning A 

crashes) and "merging collision" (3.2% of all casualties resulted from merging 

crashes) with "angle B collision" as these three types of crashes are assumed to have 

an oblique collision angle. Moreover, "both-turning B collision" (0.1 % of all 

casualties resulted from both-turning B crashes) is combined with "angle A collision" 

as these two crashes are assumed to have a perpendicular collision angle. These 

combinations result in a total of six crash configurations for the analysis (see Table 

5.3), including angle A crash, angle B crash, approach-turn A crash, approach-turn B 

crash, head-on crash, and same-direction crash. 
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Table 5.3: Distribution of motorcyclist injury severity by crash configurations. 

Crash configuration No injury Slight injury KSI Total 
Angle A crash 377 (1.1%) 25888 (72.7%) 9338 (26.2%) 35603 (38%) 
Angle B crash 106 (1.1%) 7698 (77.2%) 2173 (21.8%) 9977 (9.8%) 
Approach-turn A crash 34 (3.2%) 771 (72.7%) 256 (24.1%) 1061 (1.0%) 
Approach-turn B crash l30 (0.8%) 11233 (67.5%) 5290 (31.8%) 16653 (16.4%) 
Head-on crash 60 (1.6%) 2429 (64.9%) 1252 (33.5%) 3741 (3.7%) 
Same-direction crash 6420.7%) 27764 (79.6%) 640008.4%) 34806 (31.3%) 
Total 1349 (1.3%) 75783 (74.4 %) 24709 (24.3%) 101841 (100%) 

The data in Table 5.3 show that there is the relatively high number of casualties that 

resulted from angle A crashes and same-direction crashes (38% and 31.3% 

respectively). The statistics in Table 5.3 also indicate a substantially higher percentage 

of those sustaining KSIs in approach-turn B crashes and in head-on crashes (31.8% 

and 33.5% respectively) than those sustaining KSIs in other crash configurations. 

However, head-on crashes only represent 3.8% of all casualties. Same-direction 

crashes appeared to predispose the riders to the least risk of KSIs (18.7% of the 

injuries were KSIs). 

5.5 Summary 

This chapter presented the investigation part one - the descriptive analysis of the 

Stats19 data for 14 years (1991-2004) which are associated with motorcyclist 

casualties resulting from motorcycle-car accidents at T -junctions. The descriptive 

statistics presented in this chapter provided a general understanding of the univariate 

relationship between motorcyclist injury severity and the independent variables. 

The subsequent chapters (Chapter 6 and Chapter 7) present the investigation part two: 

a multivariate examination of the determinants of motorcyclist injury severity (Le., 

controlling for all factors that influence motorcyclist injury severity) at an aggregate 

level (an econometric model by motorcycle-car accidents in whole) and at a 

disaggregate level (separate econometric models by various crash configurations). 
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INVESTIGATION PART TWO - MULTIVARIATE ANALYSIS 

CHAPTER 6 

MODELLING MOTORCYCLIST INJURY SEVERITY BY 

ACCIDENTS IN WHOLE 

6.1 Introduction 

Chapter 5 presented the investigation part one - descriptive analysis of the considered 

variables that are associated with motorcyclist injury severity resulting from 

motorcycle-car accidents at T-junctions. The descriptive data that were shown in 

Chapter 5 provided a general examination of the univariate relationship between 

motorcyclist injury severity and the considered variables. This chapter presents the 

first stage of the investigation part two - a multivariate examination of the 

determinants of motorcyclist injury severity (i.e., controlling for all factors that 

influence motorcyclist injury severity) by motorcycle-car accidents in whole. The 

second stage of the investigation part two, a multivariate examination of the 

determinants of motorcyclist injury severity (i.e., controlling for all factors that 

influence motorcyclist injury severity) by various crash configurations, will be 

reported in the subsequent chapter. 

This chapter firstly presents the estimation results of the OP model by motorcycle-car 

accidents in whole. The variable of particular interest is "crash configurations" that is 

incorporated into the model calibration. The primary aim of the estimation of the 

aggregate crash model is to examine whether a certain crash configuration is more 

severe than other crash configurations, while controlling for other variables. 

6.2 Model Specification 

The detailed derivation of the OP models has been given in Chapter 4 (Section 4.6 

Econometric Framework). Therefore it is not repeated here. The first model presented 

here is the model of motorcyclist injury severity by motorcycle-car accidents in whole. 

A preliminary analysis (Le., descriptive analysis) of these variables has been 

conducted in Chapter 5. These variables include rider/motorist attributes, vehicle 
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characteristics, roadway/geometric factors, weather/temporal factors, and crash 

characteristics, as shown in Chapter 4 and Chapter 5. The crash configurations 

examined in the model include accidents involving gap acceptance (angle A crash, 

angle B crash, approach-turn A crash, approach-turn B crash), head-on crash, and 

same-direction crash (see section 4.3 for the classification of these crash 

configurations ). 

A correlation matrix among the variables was reported in Table 6.1 to assess the 

presence of multicollinearity. No variable was found to be correlated to each other 

(i.e., correlation that is over 0.5 can cause multicollinearity but it was not observed). 

Therefore there is no need to concern about multicollinearity in the model. The 

highest correlation values found were two values that were close to 0.5. For instance, 

the correlation value that was 0.434 was observed for the variables "Bend for 

motorcycle" and "Bend for Car". Another correlation value that was 0.384 was 

observed for the variables "Street light conditions" and "Accident time". The 

explanation of the higher correlation value for the variables "Bend for motorcycle" 

and "Bend for Car" is probably because there is the relatively high number of 

casualties that resulted from same-direction crashes (see Table 5.3 in section 5.3) in 

which the motorcycle and the car originally travelling from the same direction 

collided with each other. The correlation value that was 0.384 for the variables "Street 

light conditions" and "Accident time" was thought to be reasonable and acceptable 

because whether street lights are lit or unlit depends on the time of day. 

Additional efforts have been made to observe the symptom of multicollinearity where 

the models were calibrated (e.g., wildly changing coefficients when an additional 

variable of these four variables is included/removed or unreasonable coefficient 

magnitudes). The symptom of multicollinearity was not observed and therefore these 

four variables (i.e., Bend for motorcycle, Bend for Car, Street light conditions, 

Accident time) were all retained in the model. 
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6.3 Estimation Results 

The estimation results of the aggregate crash model are reported in Table 6.2. A total 

of 101841 motorcyclist casualties resulting from the motorcycle-car accidents that 

took place at T-junctions were extracted. Of these motorcyclist casualties that were 

involved in car-motorcycle accidents at T-junctions, 24.3% are classified as KSI 

(24709 observations), 74.4% are classified as slight injury (75783 observations), and 

1.3% are classified as no injury (1349 observations). The model has a pseudo-R2 

measure of 0.093. As for predicting each injury-severity category, the classification 

accuracy for KSI, slight injury, and no injury was 4.7%, 99.0%, and 0%. 

A benchmark case (see section 4.4.3 for a discussion of a benchmark case) was 

generated in order to discuss probabilities of three injury levels, which is derived by 

holding all dummy variables to 0 (see Table 6.3). Such benchmark victim has the 

fo Howing characteristics: 

(a) was a female 

(b) was aged between 20-59 

(c) was involved in a collision in which the involved motorist was female 

(d) was involved in a collision in which the age of the involved motorist was 

between 20-59 

(e) was riding a motorcycle with engine size up to 125cc 

(f) was involved in a collision in which the crash partner was a car 

(g) was involved in a two-vehicle collision 

(h) was riding on the straight roadway (not on the bend) 

(i) her crash partner was riding on the straight roadway (not on the bend) 

U) was involved in a crash where automatic signals were the control measure 

(k) was involved in a crash when it was daylight 

(1) was involved in a crash in autumn/winter month 

(m)was involved in a crash when the weather was adverse 

(n) was involved in a crash during non rush hours 

(0) was involved in a crash on weekday 

(p) was involved in a crash on the built-up road 

(q) was involved in a same-direction collision 
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Table 6.2: Statistics summary and estimation results of the aggregate model by 
motorcycle-car accidents in whole. 

Variable Categories of each variable Frequency (%) 
Coefficients 

(v-value) 
Gender of rider 1. male 93667 (92.0%) 0,075«0.000 

2. female 8174 (8.0%) Reference case 
Age of rider 1. 60 or above 2469 (2.4%) 0.158«0.001) 

2. up to 19 21970 (21.6%) -0.004 (0.937) 
3.20-59 77402 (76.0%) Reference case 

Gender of collision 1. untraced 4528 (4.4%) 0.043 (0.108) 
partner 2. male 67434 (66.20/;;) 0.041«0.00n 

3. female 9879 (29.3%) Reference case 
Age of collision partner 1. untraced 9403 (9.2%) -0.219«0.001) 

2.60 above 10412 (10.2%) 0.073 «0.001) 
3. up to 19 5557 (5.5%) 0.041(0.025) 
4.20-59 76469 (75.1%) Reference case 

Engine size 1. motorcycle over 125cc 72741 (71.4%) 0.164 «O.OOn 
2. motorcycle 125 cc or under 29100 (28.6%) Reference case 

Collision partner 1. heavy good vehicle 7483(7.3%) 0.187 «0.001) 
2. bus/coach 1359 (1.3%) 0.122 (0.001) 
3. car 92999 (91.3%) Reference case 

No. of vehicle involved 1. >= 3 6770 (6.6%) 0.097 «0.001) 
2. two vehicles only 95071 (93.4%) Reference case 

Bend for motorcycle 1. bend 4935 (4.8%) 0.024 (0.260) 
2. non bend 96906 (95.2%) Reference case 

Bend for car 1. bend 2107 (2.1%) 0.101 (0.002) 
2. non bend 99734 (97.9%) Reference case 

Junction control 1. uncontrolled 12440 (12.2%) 0.098 «0.001) 
2. stop, give-way sign or markings 83712 (82.2%) 0.156 «0.001) 
3. automatic traffic signals 5689 (5.6%) Reference case 

Light conditions 1. darkness: street lights unknown 958 (0.9%) 0.054 (0.211) 
2. darkness: street lights lit 23845(23.4%) 0.066 «0.001) 
3. darkness: street lights unlit 2198 (2.2%) 0.093 (0.001) 
4. daylight 74840(73.5%) Reference case 

Accident month 1. spring/summer (Mar-Aug) 52286 (51.3%) 0.019 (0.031) 
2. autumn/winter (Sep-Feb) 49555 (48.7%) Reference case 

Weather conditions 1. other or unknown 2039 (2.0%) -0.064 (0.047) 
2. fine weather 87704(86.1 %) 0.087 «0.001) 
3. bad weather 12098 (11.9%) Reference case 

Accident time 1. evening (1800-2359) 27807 (27.3%) 0.094 «O.OOn 
2. midnight; early morning (0000-0659) 3138 (3.1%) 0.188 «0.001) 
3. rush hours (0700-0859; 1600-1759) 33977 (33.4%) 0.021 (0.048) 
4. non rush hours (0900-1559) 36919 (36.3%) Reference case 

Accident day of week 1. weekend (Sat-Sun) 21696 (21.3%) 0.068«0.00n 
2. weekday (Mon-Fri) 80145 (78.7%) Reference case 

Speed limit 1. non built-up roads (>40mph) 12022 (11.8%) 0.510 «o.oon 
2. built-up roads «=40mph) 89819 (88.2%) Reference case 

Crash configuration 1. angle A 37114 (38%) 0.227 «0.001) 
2. angle B 8467 (8.7%) 0.116 «0.001) 
3. approach-tum A 1061 (1.1%) 0.129 (0.002) 
4. approach-tum B 16653(17.1%) 0.404 «0.001) 
5. head-on 3741 (3.8%) 0.334 «0.001) 
6. same-direction 30538(31.30/;;-) Reference case 

/11 -1.527 «0.001) 

/12 1.484 «0.001) 

Summary Statistics 
-2 Log-likelihood at zero = 53660.859 
-2 Log-likelihood at convergence = 48677.559 
Log-likelihood ratio index (p2) = 0.093 

The number ofKSI that was correctly predicted: 1159 (4.7%) 
The number of slight injury that was correctly predicted: 75028 (99.0%) 
The number of no injury that was correctly predicted: 0 (0%) 
Observations = 101841 (KSI: 24.3%; slight injury: 74.4%; no injury: 1.3%) 
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Chapter 6: Modelling motorcyclist injury severity by accidents in whole 

As shown in Table 6.3, estimates of the probabilities that the benchmark victim 

sustains three injury-severity levels are reported in the first row of the second table. 

Estimates of the injury probabilities are subsequently presented. The changes in the 

probabilities of three injury-severity levels are calculated relative to this benchmark 

case. This allows one to interpret changes in the probabilities of the injury-severity 

levels for a change in a given parameter, relative to the benchmark victim. 

An example of the derivation of the injury severity probabilities (see also Table 6.3) is 

given here. Given the estimated cutpoints Jil = -1.527 and Ji2 = 1.484 (see Table 6.2), 

the probabilities of no injury, slight injury, and KSI sustained by, for instance, a rider 

involved in an approach-turn B crash (,8' =0.404) are: 

Thus, 

P(Yi = no injuryl male rider) = <1>(-1.527 - 0.404 * 1) 

P(Yi = slight injuryj male rider) = <1>(1.484 - 0.404 * 1) - <1>(-1.527 - 0.404 * 1) [6.1] 

P(Yi = KSI I male rider) = 1- <1>(1.484 - 0.404 * 1) 

P(Yi = no injury I male rider) = <I>(-l.931) 

P(Yi = slight injury I male rider) =<1>(1.08)-<1>(-1.931) [6.2] 

P (Yi = KSI I male rider) = 1- <I> (l.08) 

According to the table in Appendix B, the probabilities of three injury severity levels 

are (see also Section 4.6.4 for guidance on the use of the table in Appendix B): 

P(Yi = no injury I male rider) = 0.0267 == 2.67% 

P(Yi = slight injury I male rider) =0.8332 == 83.32% [6.3] 

P(Yi = KSI I male rider) =0.1401 == 14.01 % 
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Chapter 6: Modelling motorcyclist injury severity by accidents in whole 

6.3.1 RiderlMotorist Characteristics 

The effects of rider/motorist attributes on motorcyclist injury severity were examined. 

Motorcyclists were most likely to be severely injured while they were aged 60 or 

above (a 34.11 % increased probability to sustain KSIs than mid-aged riders), they 

were males (a 15.24% increased probability to sustain KSIs than females), or while 

they were involved in accidents with male drivers (an 8.13% increased probability to 

sustain KSIs than females) or elderly drivers (a 14.80% increased probability to 

sustain KSIs than mid-aged riders). 

6.3.2 Vehicle Attributes 

Vehicle factors include motorcycle's engine sizes and the type of motorcycle'S 

collision partner. In terms of the effect motorcycles engine size has on motorcyclist 

injury severity, motorcycles with engine capacity over 125cc (relative to engine size 

up to 125cc) have a positive coefficient (0.164) and about a 36% increase in the 

probability of a KSI. There are at least two possible explanations for this: first, larger 

motorcycles tend to be ridden on roadways with higher speed limits; and second, 

drinkers are more likely to be on bigger motorcycles (Broughton, 1988, 2005). An 

intoxicated motorcyclist'S ability to react may be impaired, which might influence the 

injury outcome as a result of lesser evasive reaction. In addition, higher speed by 

heavier motorcycles on high-speed roadways may act synergistically with the 

influence of alcohol to increase injury severity. 

With regard to the effect of motorcycle's collision partner, injuries sustained by riders 

appeared to be greatest in collisions with HGVs (heavy good vehicles), with a positive 

coefficient of 0.187. The probabilities of KSIs sustained by riders in collisions with 

HGVs are 41.22% higher, relative to collisions with cars. Similar effect was found in 

previous research by Maki et al. (2003) who analysed accidents involving vulnerable 

road users (i.e., pedestrians and bicyclists) and cars. They suggested that there were at 

least two explanations for this effect. First, the collision-impact resulting from 

exteriors of a HGV can be much greater to human than those of a passenger car; and 

second, a HGV is more likely to run the victim over due to their higher position of 
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Chapter 6: Modelling motorcyclist injury severity by accidents in whole 

compartment than a passenger car. Such explanations may also be applied to the 

effect found here. 

6.3.3 Roadway/Geometric Factors 

Roadway/geometric variables include the presence of bend for motorcycle/car, 

junction control measures, light conditions, and speed limits. 

Regarding the effect of the bend on motorcyclist injury severity, bends (relative to 

non bend) either for motorcycles or cars appeared to result in more severe injuries 

(though only at a 70% level of confidence for accidents where there were bends for 

motorcycles). That is, there is a 4.64% and 20.90% increase in KSls in accidents 

where there were bends for motorcycles or for cars. The results here for motorcycle­

car accidents are generally consistent with those of previous studies by, for example, 

Hurt et aI. (1981, 1984) and Clarke et aI. (2007). These researchers reported that 

riders in single-motorcycle accidents on bends experienced a higher likelihood of 

sustaining more severe injuries. 

With regard to the effect of junction control measures, T -junctions controlled by stop, 

give-way signs or markings appeared to give motorcyclists the deadliest risks, 

accounting for an approximately 34% increased probability of KSI relative to those 

controlled by automatic signals. 

Unlit streets in darkness were found to be a deadly factor to motorcyclists, with a 

19.16% increased probability of KSI relative to daylight conditions. Motorcyclists 

riding on non built-up roadways (speed limits over 40mph) experienced about a 140% 

increased probability ofKSI relative to built-up roadways (speed limits up to 40mph). 

Such effect is in line with the findings in literature (e.g., Hancock et aI., 2005; Clarke 

et aI., 2007) that the majority of fatal motorcycle accidents occurred in rural areas 

where there tend to be more non built-up roadways. This may be also partly as a result 

of the additional time needed for emergency-vehicle response in rural areas, which 

cuts directly into the golden hours of survival after a crash (Hancock et aI., 2005; 

Noland and Quddus, 2004). 
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6.3.4 Weather/Temporal Factors 

Weather/temporal effects examined in the model include weather conditions, time of 

day, day of week, and month of year of the accident occurrence. Riding under fine 

weather increases the injury severity, with a positive coefficient of 0.087. The 

probability of KSIs relative to bad weather increases by 17.85%. A likely explanation 

is that motorcycle/car travel speed may be higher under fine weather (Padget et aI., 

2001). 

Seasonable effects were measured based on six-month range (spring/summer month 

versus autumn/winter month). Spring/summer months have a coefficient value of 

0.019, with only a minor increase in KSIs (3.77%), relative to autumn/winter months. 

With respect to time-of-day effect, those riding in mid-night and early morning (Le., 

0000~0659) appeared to have the most tendencies in sustaining KSIs. Early morning 

KSI probabilities are 41.51 % higher. Riding on the weekends (relative to weekdays) 

have a positive coefficient of 0.068 and about a 14% increase in KSIs. The results that 

riding during early morning and on weekends resulted in more severe injuries is 

perhaps reasonable, as it is likely that speeding and alcohol use are greater during 

midnight/early morning hours and there are more recreational and social activities on 

weekends (Broughton, 2005; Kasantikul et aI., 2005; Shankar, 2001, 2003; Kim et aI., 

2000). 

6.3.5 Crash Characteristics 

Crash characteristics include two variables: "number of vehicles involved" and "crash 

configurations". The effect of number of vehicle involved is measured relative to a 

two-vehicle accident. The results show a positive coefficient for accidents involving 

three vehicles or above. This indicates that riders in accidents that involved three 

vehicles or above were more injurious than those involved in two-vehicle accidents. 

In the probability estimates derived in Table 6.3, an accident that involved three 

vehicles or above, relative to the reference case of a two-vehicle accident, results in a 

20.03% increase in the probability of a KSI. Such effect is not surprising as more 

impact loads from two vehicles may be directed onto a motorcyclist victim. For 
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example, an ejecting motorcyclist after being struck by the first car may be run over 

by a second car nearby). 

The crash configurations that occurred were estimated relative to same-direction 

collisions. Injuries to motorcyclists were greatest when riders were involved in 

approach-turn B collisions (coefficient=OA04; p-value<O.OOl). This crash type has the 

greatest increase in the probability of a KSI of 103.34% relative to same-direction 

crashes. The second deadliest crash configuration to motorcyclists was a head-on 

crash, with an about 82% increase in the probability of a KSI relative to a same­

direction crash. 

The results in Table 6.2 (see the frequency data) also show that the total number of 

motorcyclist causalities in approach-turn B crashes were about seventeen-times more 

than those in approach-turn A crashes. The difference in approach-turn A crash and 

approach-turn B crash is that an approach-turn A crash is defined as a crash when the 

turning vehicle is a motorcycle. An approach-turn B crash is defined as a crash when 

the turning vehicle is a car (see Figure 4.3(b) in section 4.3.3 for a schematic diagram 

of approach-turn A/B crash). The findings regarding the effects of approach-turn 

collisions are generally consistent with those of previous studies (e.g., Hurt et ai., 

1981; Hancock et ai., 2005; Peek-As a and Kraus, 1996a) that specifically analysed 

motorcycle-car approach-turn collisions at intersections. These researchers reported 

that approximately 70% of approach-turn collisions took place when an approaching 

motorcycle crashed into the side of a turning car (Le., a turning car violated the right­

of-way of an oncoming motorcycle). In addition, Peek-Asa and Kraus further 

indicated that such crash type was usually followed by the ejection of the motorcyclist 

from the machine, resulting in devastating injury outcome. 

6.4 Summary 

The estimation results of the aggregate model by motorcycle-car accidents in whole 

were presented in this chapter. One of the noteworthy findings was that approach-turn 

B crashes were more severe to motorcyclists than other crash configurations. Some 

other factors found to be significantly associated with more severe injuries include 

male or elderly riders/motorists (as crash partners), larger engine capacity of 
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motorcycle, the presence of bends for motorcycles or cars, riding in mid-night/early 

morning, on weekends, in spring/summer months, under fine weather, and on non 

built-up roads, riding in unlit darkness and at stop-controlled junctions, and HGV or 

bus/coach as crash partners. 

Although the aggregate crash model has successfully identified the determinants of 

motorcyclist injury severity, a specific picture of the factors that affect motorcyclist 

injury severity resulting from different crash configurations is obscured by the 

estimation of the aggregate model. For example, the aggregate crash model shows that 

approach-turn B crashes were more severe to motorcyclists than other crash 

configurations but the factors that affect injury severity resulting from such crash type 

are still unknown. As pointed out in past studies (e.g., Hurt et aI., 1981; Pai and Saleh, 

2008), the principal factors for the occurrence of an approach-turn crash lies with 

turning drivers failing to recognise, adapt to, and avoid motorcyclists. There has been 

evidence in literature (e.g., Horswill et aI., 2005) that right-turn motorists infringing 

upon motorcycles' right-of-way by accepting smaller gap in front of motorcycles was 

one of the important reasons for the occurrence of such crash type. Additional 

research is clearly needed to examine whether drivers' failure to yield also playa part 

in affecting motorcyclist injury severity resulting from accidents that involve gap 

acceptance. 

A dis aggregate picture of the determinants of injury severity resulting from other 

crash configurations (e.g., head-on crash, sideswipe crash) is also obscured by the 

estimation of the aggregate crash model. Research has indicated that, for example, the 

severity of car-car head-on crashes was associated with nighttime hours (Deng et aI., 

2006); and lane-changing manoeuvres were associated with the occurrences of car-car 

sideswipe crashes (Pan de and Abdel-Aty, 2006). Whether these factors contribute to 

the increased motorcyclist injury severity in head-on/sideswipe collisions deserve 

further research. 

To do this, investigations are directed toward the estimation of additional models by 

different crash configurations, with additional variables being incorporated into these 

separate models (e.g., the variable "drivers' failure to yield" for approach-turn crash 
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model). The subsequent chapter (Chapter 7) represents the second stage of the 

investigation part two - the dis aggregate models by different crash configurations. 
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CHAPTER 7 

MODELLING MOTORCYCLIST INJURY SEVERITY BY 

VARIOUS CRASH CONFIGURATIONS 

7.1 Introduction 

Chapter 5 presented the descriptive analysis of the Stats 19 data which have been used 

in this current research. Chapter 6 reported the estimation results of the aggregate 

model by motorcycle-car accidents in whole. The aggregate model has successfully 

identified the determinants of motorcyclist injury severity at T-junctions. 

To obtain a clearer understanding of the impacts of different factors on motorcyclist 

injury severity in various crash configurations, additional models of motorcyclist 

injury severity by different crash configurations are needed. The estimation of the 

additional models is preferable to employing one aggregate model as the impacts 

human, vehicle, and environmental factors have on injury levels are expected to vary 

across different crash configurations. For example, one would expect an automatic 

junction signal to have a different impact on injury-severity levels in rear-end 

collisions than it would in the cases of head-on crashes. Such information was 

obscured in the aggregate crash model that examined the variable "crash 

configurations" as one of the independent variables (see Chapter 6). The estimation of 

the separate injury severity models can be more useful for gaining an understanding of 

the different effects of predictor variables on injury severities in different crash 

configurations. As a result, appropriate countermeasures may be suggested to deal 

with different crash configurations. From a statistical standpoint, such separate 

models may also avoid the complicated interpretations resulting from several 

interaction terms (e.g., interaction effects of various crash configurations and other 

variables) that have to be incorporated into one aggregate model. 

The disaggregate models are estimated by different crash configurations. These crash 

configurations include accidents that involve gap acceptance (Le., approach-turn crash, 

angle crash), head-on crashes, and same-direction crashes (see also Figure 4.3 and 

Figure 4.4 in section 4.3.3 for a schematic diagram of various crash configurations at 
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T-junctions). The modelling results are presented in the subsequent sections, with the 

above order of crash type. This chapter ends with a general summary of the research 

findings. 

7.2 Approach-turn Crash and Angle Crash 

7.2.1 Introduction 

The aggregate model (see Table 6.2 and Table 6.3 in section 6.3) shows that 

motorcyclists involved in approach-turn B crashes were most likely of all crash 

configurations to be KSI, with about 103% increase in the probability of a KSI 

relative to same-direction collisions (although such crash type only represents about 

17% of all casualties). 

The aggregate model also revealed that angle A crashes were among the most 

frequently occurring collision types, and ranked third in terms of injury severity (with 

a coefficient value of 0.227), following approach-turn B crashes (with a coefficient 

value of 0.404) and head-on crashes (with a coefficient value of 0.334). Several 

researchers (e.g., Hurt et aI., 1981; Peek-Asa and Kraus, 1996a; Pai and Saleh, 2008) 

have suggested that one of the typical mechanisms behind the occurrences of 

approach-turn B crashes and angle A crashes was that motorists were observed to 

adopt smaller safety margins when pulling out in front of motorcycles compared with 

cars (also see section 2.4.1 for a review of past studies discussing gap acceptance 

problem for accidents involving motorists and motorcyclists). 

This section provides an in-depth multivariate analysis that explores the determinants 

of motorcyclist injury severity in motorcycle-car accidents that involve gap 

acceptance, with a focus on the effects of motorists' failure to yield to motorcyclists. 

This section begins with a description of model specification, followed by the 

modelling results. Finally, a brief summary of the estimation results is provided. 

7.2.2 Crash Classification and Model Specification 

Given that research (e.g., Kim et aI., 1994; Preusser et aI., 1995) has suggested that 

automatic signals with improved signal timing could be a potential countermeasure 
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for reducing approach-turn/angle crashes, junction control measures is the variable of 

interest for the analyses of approach-turn AlB crashes in this section. Table 7.1 shows 

the distribution of motorcyclist injury severity by the interaction of junction control 

measures and approach-turn AlB crashes. The descriptive statistics in Table 7.1 show 

that, for approach-turn A crashes, injures were greatest to motorcyclists in accidents at 

signalised junctions (Le., as much as 28% of the injuries were KSls). For approach­

turn B crashes, injuries were greatest in accidents that occurred at stop-/give-way 

controlled junctions (Le., as much as 32.5% of the injuries were KSls). 

Table 7.1: Distribution of motorcyclist injury severity by the interaction of 
junction control measures and approach-turn AlB crashes. 

Crash type Control measure Noiniul'Y Slight injury KSI Total 
Approach-tum A uncontrolled 3 (2.9%) 75 (71.4%) 27 (25.7%) 105 (9.9%) 

stop, give way sighs 
29 (3.8%) 562 (73.3%) 176 (22.9%) 767 (72.3%) 

or markings 
automatic signals 2 (1.1%) 134 (70.9%) 53 (28.0%) 189 (17.8%) 
Total 34 (3.2%) 771 (72.2%) 256 (24.1%) 1061 (100%) 

Approach-tum B uncontrolled 15 (0.7%) 1501 (69.2%) 652 (30.1%) 2168 (13.0%) 
stop, give way signs 

99 (0.7%) 8864 (66.8%) 4307 (32.5%) 13270 (79.7%) 
or markings 
automatic signals 16 (1.3%) 868 (71.4%) 331 (27.2%) 1215 (7.3%) 
Total 130 (0.8%) 11233 (67.5%) 5290 (31.8%) 16653 (100%) 

Total 164 (0.9%) 12004 (67.8%) 5546 (31.3%) 17714 (100%) 

While approach-turn crashes were classified into approach-turn A and approach-turn 

B crashes depending on whether it was the car or motorcycle that turned right (as 

shown in Figure 4.3(b) in section 4.3), angle AlB collisions (as shown in Figure 4.3(a) 

in section 4.3) are further categorised into five crash patterns based on the 

manoeuvres of motorcycles and cars prior to the crashes. These five crash patterns are: 

(a) angle A collision: both turning; (b) angle A collision: car travelling straight and 

motorcycle turning; (c) angle A collision: car turning and motorcycle travelling 

straight; (d) angle B collision: car travelling straight and motorcycle turning; and (e) 

angle B collision: car turning and motorcycle travelling straight. These five crash 

patterns are illustrated in Figure 7.1. 

The reason for classifying angle collisions into several sub-crashes was because it is 

hypothesised in this study that injury-severity levels may be associated with different 

pre-crash manoeuvres that motorcycles and cars were making in different ways. For 

instance, the crash impact of a crash pattern (b) (see Figure 7.1) in which a right-turn 
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motorcycle collides with a travelling-straight car may be different from that of a crash 

pattern (c) (see Figure 7.1) in which a travelling-straight motorcycle collides with a 

turn-right car. Note here that a turning manoeuvre used for the classification of an 

angle crash includes a U-turn manoeuvre by motorcycles or cars. For example, for 

crash pattern (c), a right-turn car may have attempted to make a U-turn and 

subsequently collided with a travelling-straight motorcycle on the major road. 

(a) "'" II;$,;;: ('Tu II '" """'"'" """"~'1'}"""""",,, 

I~I I~il 
(b) : ...... ,... (c) 

lliiiliil!!ii!i!! : Ij""";"I""'" 11111111111111111). 1.111111111111111 

(d)----- ........... 
.....--..... IIIIII1111111111I11 :-' liiiillll!!!!!!!! 

1*~r I~II 
(e) 1"111"1111"111 -<&-''''~ .... '' 

1111111111111111111 ,~iiiiilliiiiiiiiiiiii iiiiiiiiiiiiiiiiiii 

11fr 1 911 
Figure 7.1: Schematic diagram of angle collisions at T-junctions. (a) angle A 

collision: both turning; (b) angle A collision: car travelling straight and 
motorcycle turning; (c) angle A collision: car turning and motorcycle travelling 
straight; (d) angle B collision: car travelling straight and motorcycle turning; 

and (e) angle B collision: car turning and motorcycle travelling straight. (Note: 
pecked line represents the intended path of a motorcycle; solid line represents 

the intended path of a car). 
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The categories of the variable "crash patterns in angle AlB crashes", together with its 

frequency, are presented in Table 7.2. As shown in Table 7.2, the most frequently 

occurring crash pattern is an angle A crash in which a turning car collides with a 

travelling motorcycle (see Figure 7.1 (c». Such crash pattern represents 60% of all 

casualties. It is worthwhile to note that some crash patterns could not be fit into the 

five crash patterns identified here and these were classified as unidentified crash 

pattern, which accounted for 12.1 % of all casualties. These unidentified crash patterns 

include, for example, a situation when a car from the minor road did not make a right­

Ileft-turn at all. Rather, this car travelled straight to the kerb of the major road (i.e., the 

top of the T -junction) and collided with an oncoming motorcycle. This may be a car 

attempting to park on the kerb of the major road for business purposes. These 

unidentified crash patterns were thought to be irrelevant to this current research and 

therefore were not considered in the analysis in this chapter. However, these 

unidentified crash patterns may deserve future research as they still accounted for 

12.1 % of all casualties. 

Table 7.2: The categories of five crash manners in angle AlB crashes. 

Crash patterns in angle AlB crashes Total 
Unidentified 5527J12.10/."l 
angle A collision: both turning 1202 (2.6%) 
angle A collision: car travellifl£ straight and motorcycle turning 2402 (5.3%) 
angle A collision: car turning and motorcycle travelling straight 27359 (60.00/..<>1 
angle B collision: car travellil!K straight and motorcycle turnil!& 1025 (2.2%) 
angle B collision: car turning and motorcycle travelling straight 8065 J17. 70/..<>1 
Total 45580 (100%) 

Table 7.3 and Table 7.4 provide the information on the distribution of injury severity 

by the interaction of junction control measures and different crash patterns for angle A 

and B collisions respectively. As reported in Table 7.3 and Table 7.4, two combined 

effects (i.e., a travelling-straight motorcycle collided with a right-/left-turn car at stop­

controlled junctions, as shown in Figure 7.1 (c) and (e» represented the deadliest risks 

ofKSls to motorcyclists (i.e., as much as 27.1 % and 22.8% of the injuries were KSls). 

The detailed derivation of the OP models has been given in Chapter 4 (Section 4.6 

Econometric Framework). Therefore it is not repeated here. 
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Table 7.3: Distribution of motorcyclist injury severity by the interaction of 
'. ., I measures and ore-crash manoeuvres for anl!le A coil' . - ----- - --- - - --- --- ---

Manoeuvres * control Injury severity Total 
measures No Iniury Slh!ht KSI 
both turning * uncontrolled 0(0%) 109(80.1%) 27(19.9%) 136(0.44%) 
both turning * stop, give- 16(1.6%) 821(80.6%) 181(17.8%) 1018(3.29%) 
way sign or markings 
both turning * automatic 1(2.1%) 35(72.9%) 12(25%) 48(0.16%) 
signal 
car straight, motorcycle 

11(4%) 203(73.8%) 61(22.2%) 275(0.89%) 
turning * uncontrolled 
car straight, motorcycle 
turning * stop, give-way sign 58(2.9%) 1423(70.8%) 530(26.4%) 2011(6.49%) 
or markings 
car straight, motorcycle 

3(2.6%) 87(75.0%) 26(22.4%) 116(0.37%) 
turning * automatic signal 
car turning, motorcycle 

30(1.1%) 2020(74.9%) 646(24.0%) 2696(8.71%) 
straight * uncontrolled 
car turning, motorcycle 
straight * stop, give-way 182(0.7%) 17513(72.1%) 6579(27.1%) 24274(78.40% ) 
sign or markings 
car turning, motorcycle 

8(2.1%) 280(72.0%) 101(26.0%) 389(1.26%) 
straight * automatic signal 
Total 309(1%) 22491(72.6%) 8163(26.4%) 30?63(100% ) 

Table 7.4: Distribution of injury severity by the interaction of junction control 
------------ ------ r-- ------- -----------.--- --- ---- -- - ------------

Manoeuvres * control Injury severit: Total I 
measures No Injury Slight KSI 
car straight, motorcycle 

5(4.8%) 82(78.1%) 18(17.1%) 105(1.6%) 
turning * uncontrolled 
car straight, motorcycle 
turning * stop, give-way sign 21(2.6%) 621(75.5%) 180(21.9%) 822(9.11%) 
or markings 
car straight, motorcycle 

5(5.1%) 86(87.8%) 7(7.1%) 98(1.09%) 
turning * automatic signal 
car turning, motorcycle 

8(0.9%) 702(78.0%) 190(21.1 %) 900(9.98%) 
straight * uncontrolled 
car turning, motorcycle 
straight * stop, give-way 50(0.7%) 5352(76.5%) 1591(22.8%) 6993(77.51 %) 
sign or markings 
car turning, motorcycle 

1(0.6%) 140(81.4%) 31(18.0%) 172(1.91%) 
straight * automatic signal 
Total 90(1%) 6983(76.8%) 2017(22.2%) 90?0(100%) 

7.2.3 Modelling Results for Approach-turn Crashes 

As shown in Table 7.1, a total of 17714 motorcyclist casualties resulting from 

motorcycle-car approach-turn crashes that took place at T-junctions were extracted 

from the Stats 19. Of these motorcyclist casualties, 31.3% are classified as KSI, 67.8% 
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are classified as slight injury, and 0.9% are classified as no injury. Automatic signals 

and stop, give-way signs and marks tended to predispose riders to a greater risk of 

KSIs in approach-turn A crashes and approach-turn B crashes respectively (as much 

as 28% and 32.5% of the injuries were KSIs). 

In order to gain a further understanding of the factors that affect motorcyclist injury 

severity resulting from these deadliest combinations (i.e., approach-turn A crashes 

that occurred at signalised junctions; approach-turn B crashes that occurred at 

stop/give-way controlled junctions), the separate OP models by these deadliest 

combinations are estimated. For approach-turn A crashes that occurred at signalised 

junctions, most of the variables were found to be insignificant in explaining injury 

severity. This is possibly due to comparatively few observations of casualties 

resulting from such crashes (N=189). The estimation results of this model are 

therefore not reported. Only the estimation results of the approach-turn B crash model 

are provided (see Table 7.8 and Table 7.9 in section 7.2.3.2 below). 

7.2.3.1 Variables considered 

The variables examined in the aggregate model (see Table 6.2 in section 6.3) are 

incorporated into the dis aggregate model of approach-turn B crashes that occurred at 

stop-controlled junctions. In addition to these variables, two more variables are 

incorporated into the approach-turn B crash model. These two variables are 

"motorist's right-of-way violation" and "motorcycle's manoeuvre", which are 

explained in more details below. 

The inclusion of the variable "right-of-way violation" in the approach-turn B crash 

model is because research (e.g., Hurt et aI., 1981; Peek-As a and Kraus, 1996a; Pai and 

Saleh, 2008) has suggested that one ofthe typical mechanisms behind the occurrences 

of approach-turn B crashes was that motorists were observed to adopt smaller safety 

margins when pulling out in front of motorcycles compared with cars. This is 

typically termed as "motorist's failure to give way". For this current research, the 

variable "right-of-way violation" is incorporated into the approach-turn B crash model 

to examine its effect on motorcyclist injury severity. There are three categorises for 

this variable: right-of-way violation, non right-of-way violation, and unknown, as 
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illustrated in Figure 7.2. The definition of right-of-way violation and non right-of-way 

violation is provided below. 

The information on right-of-way violation is not explicitly provided in the Statsl9. 

Instead, the variable "First Point ofImpact" that is readily available in the Stats19 is 

used to assign motorist's right-of-way violation. The variable "First Point ofImpact" 

provides the information on the first crash point of the involved car and motorcycle 

(see Figure 7.3 for an illustration of the variable "First Point ofImpact" that is readily 

available in the StatsI9). 

(a) 

'\ 
1111111111111111111 1;----1111111111111111111111111 

IIF' 
right-at-way violation case 

(b) 

iliiiiiiii:J \1111'"'""""" 
.......... ~ 

III 
non right-at-way violation case 

Figure 7.2: Schematic diagram of (a) a right-of-way violation case and (b) a non 
right-of-way violation case in an approach-turn B collision at T-junctions (Note: 

pecked line represents the intended/actual path of a motorcycle and solid line 
represents the path of a car). 

4 
nearside 

1 front 

2 back 

3 
offside 

4 
nearside 

1 front 

2 back 

3 
offside 

Figure 7.3: Illustration ofthe variable "First Point ofImpact" in the Stats19 that 
is used to create the variable "Right-of-way violation". 
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A common definition in most of the right-of-way violation studies has been that a 

turning automobile adopts smaller safety margins when pulling out in front of a 

motorcycle (see, for example, Hurt et aI., 1981; Peek-As a and Kraus, 1996a; Horswill 

et aI., 2005; Pai and Saleh, 2008). In this present study, an approach-turn B crash that 

involves right-of-way violation (see Figure 7.2(a» is defined as a crash where the 

right-turn car was assumed to have entered the junction earlier than the approaching 

motorcycle and such motorcycle crashed into the car. 

It was assumed that such right-turn car had been in the path of the oncoming 

motorcycle to which it should have yielded the right of way. The variable "First Point 

of Impact" has been used to identify the right-of-way violation cases. Which is, a 

right-of-way violation case is defined as a crash in which the front of an oncoming 

motorcycle crashed into the nearside of the car (i.e., front versus nearside). Note here 

that the front of the motorcycle does not necessarily have to be the first collision point 

with which the nearside of the car collides. The first crash point can be the 

nearside/offside/back of the motorcycle with which the car collides due to the fact that 

motorcycles are more capable of swerving prior to the crash (Obenski et aI., 2007). A 

crash in which the front of a right-turn car was the first crash point with which the 

front of an approaching motorcycle collides was also identified as a crash that 

involves right-of-way violation. This is because such turn-right car was assumed to 

have entered the junction as soon as the bike has entered the junction so that its front 

had struck the front of a motorcycle. 

A non right-of-way-violation crash (see Figure 7.2(b» is defined as a crash in which 

an oncoming motorcycle was assumed to be the first vehicle that had entered the 

junction and the front of a right-turn car crashed into the offside of an oncoming 

motorcycle. It should be noted here that there are some cases that could not be 

identified as a right-of-way case or a non right-of-way case. Examples of these 

unidentified cases include the collisions where the rear of a motorcycle struck the rear 

of a car. These collisions that could not be fit into a right-of-way case or a non right­

of-way case are categorised as "unknown" in the variable "right-of-way violation". 

Table 7.5 reports the information on the distribution of motorcyclist injury severity by 

right-of-way violation. The descriptive statistics in Table 7.5 indicate that 
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motorcyclist casualties resulting from right-of-way violation cases outnumber those 

resulting from non right-of-way violation cases by nearly 10-to-l (86.8% versus 

9.1 %). In addition, riders involved in right-of-way violation cases were more likely to 

be KSI (33.2% of the injuries were KSIs). 

Table 7.5: Distribution of motorcyclist injury severity by right-of-way violation 
in approach-turn B crashes. 

Right-of-way violation No injury Slight injury KSI Total 
Right-of-way violation 85 (0.7%) 7615 (66.1%) 3822 (33.2 %) 11522 (86.8%) 
Not right-of-way 

5 (0.4%) 844 (69.7%) 362 (29.9%) 12II (9.1%) 
violation 
Unknown 9 (1.7%) 405 (75.4%) 1123 (22.9%) 537 (4.0%) 
Total 99 (0.7%) 8864(66.8%) 4307 (32.5%) 13270 (100%) 

In addition to the variable "right-of-way violation", another variable "motorcycle's 

pre-crash manoeuvre" is incorporated into the model, given that research (e.g., 

Preusser et aI., 1995) has suggested that there was a potential risk for approach-turn 

crashes in which the smaller motorcycle may remain blocked behind larger cars and 

suddenly become visible by its overtaking manoeuvres from behind. The variable 

contains three types of manoeuvres: travelling straight, changing lane, and overtaking, 

which are available from the variable "2.7 Manoeuvres" in the Stats19 (see also Table 

4.3 and Table 4.4 in section 4.3 for an example of these manoeuvres that have been 

used to classifY crash configurations). 

Table 7.6 reports the information on the distribution of motorcyclist injury severity by 

motorcycle'S pre-crash manoeuvre. The data in Table 7.6 show that motorcyclists 

were more likely to be KSI when they were travelling straight than when their pre­

crash manoeuvres were changing lane and overtaking (33.2% versus 28.6% and 

23.7%). 

Table 7.6: Distribution of motorcyclist injury severity by motorcycle's pre-crash 
manoeuvre in approach-turn B crashes. 

Pre-crash manoeuvre No in.jury SIi2ht in.jury KSI Total . 

travelling straight 90 (0.7%) 8158 (66.1%) 4085 (33.2 %) 12333 (92.9%) 
changing lane 0(0%) 5 (71.4%) 2 (28.6%) 7 (0.1%) 
overtaking 9 (1.0%) 701 (75.4%) 220 (23.7%) 930 (7.0%) 
Total 99 (0.7%) 8864(66.8%) 4307 (32.5%) 13270 (100%) 
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A correlation matrix among the variables was reported (see Table 7.7) to assess the 

presence of multicollinearity. Multicollinearity was found to exist between the 

variable "street light condition" and "time of accident", with a correlation value of 

0.622. For these two variables that are highly correlated with each other, only the 

most significant variable, which is "time of accident", is retained in the analysis. 

7.2.3.2 Estimation results 

Table 7.8 presents the estimation results for approach-turn B crash model, conditioned 

on the accidents having occurred at stop-controlled junctions. Of 13270 motorcyclist 

casualties that were involved in approach-turn B crashes at stop-/give-way controlled 

T-junctions, 32.5% are classified as KSI (4307 observations), 66.8% are classified as 

slight injury (8864 observations), and 0.7% are classified as no injury (99 

observations). The model has a pseudo-R2 measure of 0.084. As for predicting each 

injury-severity category, the classification accuracy for KSI, slight injury, and no 

injury was 14.8%,95.0%, and 0%. 
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Table 7.8: Statistics summary and estimation results of the approach-turn B crash 
model (limited to those that occurred at stop-controlled junctions). 

Variable Categories of each variable Frequency (%) 
Coefficients 

(p-value) 
Gender of rider 1. male 12429 (93.7%) 0.088 (0.059) 

2. female 841 (6.3%) Reference case 
Age of rider 1. 60 above 258 (1.9%) 0.185 (0.021) 

2. up to 19 2631 (19.8%) 0.003 (0.914) 
3.20-59 10381 (78.2%) Reference case 

Gender of collision 1. untraced 439 (3.3%) 0.139 (0.097) 
partner 2. male 9003 (67.8%) 0.045 (0.075) 

3. female 3828 (28.8%) Reference case 
Age of collision partner 1. untraced 919 (6.9%) -0.360 «0.001) 

2.60 above 1875 (14.1%) 0.057 (0.079) 
3. up to 19 869 (6.5%) 0.074 (0.093) 
4.20-59 9607 (72.4%) Reference case 

Engine size 1. engine size over 125cc 9588 (72.3%) 0.138 «0.001) 
2. engine size up to 125cc 3682 (27.7%) Reference case 

Number ofvehicle 1. >=3 706 (5.3%) 0.250 «0.001) 
involved 2. two-vehicle crash 12564 (94.7%) Reference case 
Bend for motorcycle 1. bend 426 (3.2%) -0.160 (0.013) 

2. non bend 12844 (96.8%) Reference case 
Collision partner 1. heavy good vehicle (HGV) 811 (6.1 %) 0.157 (0.001) 

2. bus/coach 127 (1.0%) 0.246 (0.029) 
3. car 12332 (92.9%) Reference case 

Accident month 1. spring/summer (Mar-Aug) 6384 (48.1%) -0.023 (0.319) 
2. autumn/winter (Sep-Feb) 6886 (51.9%) Reference case 

Weather condition I. other or unknown 238 (1.8%) 0.092 (0.307) 
2. fine weather 11605 (87.5%) 0.126 (0.001) 
3. bad weather 1427 (10.8%) Reference case 

Accident time 1. evening (1800-2359) 4662 (35.1%) 0.168 «0.001) 
2. midnight; early morning (0000-0659) 416 (3.1%) 0.215 (0.001) 
3. rush hours (0700-0859; 1600-1759) 4126 (31.1 %) 0.033 (0.249) 
4. non rush hours (0900-1559) 4066 (30.6%) Reference case 

Accident day of week 1. weekend (Sat-Sun) 2674 (20.2%) 0.066 (0.019) 
2. weekday (Mon-Fri) 10596 (79.8%) Reference case 

Speed limit 1. non built-up roads (>40mph) 1257 (9.5%) 0.623 «0.001) 
2. built-up roads «=40mph) 12013 (90.5%) Reference case 

Motorcycle's 1. going straight 12333 (92.9%) 0.232 «0.001) 
manoeuvre 2. traversing 937 (7.1%) Reference case 
Right-of-way violation 1. violation case 11522 (86.8%) 0.197 (0.001) 

2. not violation case 1211 (9.1%) 0.169 (0.013) 
3. unknown 5377 (4.0%) Reference case 

Jil -1.612 «0.001) 

Ji2 1.349 «0.001) 

Summary Statistics 
-2 Log-likelihood at zero = 7090.671 
-2 Log-likelihood at convergence = 6492.716 
Log-likelihood ratio index (p2) = 0.084 

The number ofKS! that was correctly predicted: 639 (14.8%) 
The number of slight injury that was correctly predicted: 8420 (95.0%) 
The number of no injury that was correctly predicted: 0 (0%) 
Observations = 13270 (KSI: 32.5%; slight injury: 66.8%; no injury: 0.7%) 
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A benchmark case (see section 4.3.3 for a discussion of a benchmark case) was 

generated in order to discuss probabilities of three injury levels, which is derived by 

holding all dummy variables to 0 (see Table 7.9). Such benchmark victim has the 

following characteristics: 

(a) was a female 

(b) was aged between 20-59 

(c) was involved in a collision in which the involved motorist was female 

(d) was involved in a collision in which the age of the involved motorist was aged 

between 20-59 

(e) was riding a motorcycle with engine size up to 125cc 

(f) was involved in a collision in which the crash partner was a car 

(g) was involved in a two-vehicle collision 

(h) was riding on the straight roadway (not on the bend) 

(i) was involved in a crash in auturim/winter month 

U) was involved in a crash when the weather was adverse 

(k) was involved in a crash during non rush hours 

(1) was involved in a crash on weekday 

(m) was involved in a crash on the built-up road 

(n) was having traversing manoeuvre 

(0) was involved in a crash in which the status of right-of-way violation was 

unknown 
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Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

An example of the derivation of the injury severity probabilities (see also Table 7.9) is 

given here. Given the estimated cutpoints /11 = -1.612 and /12 = 1.349 (see Table 7.8), 

the probabilities of no injury, slight injury, and KSI sustained by, for instance, a rider 

of a motorcycle with engine size over 125cc (,8'=0.138) are: 

Thus, 

P(Yi = no injuryl male rider) = <D( -1.612 - 0.138 * 1) 

P(Yi = slightinjur~ malerider) = <D(l.349 - 0.138 * 1) - <D( -l.612- 0.l38 * 1) [7.1] 

P(Yi = KSI I male rider) = 1- <D(1.349 - 0.138 * 1) 

P(Yi = no injury I male rider) = <D(-1.75) 

P(Yi = slight injury I male rider) =<1>(1.211)-<1>(-1.75) [7.2] 

P(Yi =KSllmale rider) =1-<D(1.211) 

According to the table in Appendix B, the probabilities of three injury severity levels 

are (see also Section 4.6.4 for guidance on the use of the table in Appendix B): 

P(Yi = no injury I male rider) = 0.0401 == 4.01 % 

P(Yi = slight injury I male rider) =0.8470 == 84.70% [7.3] 

P(Yi = Ksrl male rider) =0.1129 == 11.29% 

The estimation results of the approach-turn B model (Table 7.8) reveal that riders 

involved in right-of-way violation cases appeared to be more injury-prone, with a 

positive coefficient value of 0.197 relative to "unknown" features. The probability of 

a KSI increases by 40.59% for a right-of-way violation case (Table 7.9). A study by 

Peek-Asa and Kraus (l996a) explained why such violation cases were severe to 

motorcyclists. They noted that head and chest injuries, which normally result in 

severe or fatal consequence, were found to be the main injured human-body regions 

for those involved in accidents where a right-turn motorist failed to give way to an 

approaching motorcycle. 

128 



Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

With regard to the effect of motorcycle's pre-crash manoeuvre, manoeuvres such as 

overtaking and changing lane (see the original categories in Table 7.6) are combined 

into one single manoeuvre category (i.e., traversing) as this combination was found to 

lead to more statistically significant result than treating them as two separate 

manoeuvres. The estimation results (Table 7.8) show that motorcyclists that were 

travelling straight were more injurious, with a positive coefficient value of 0.232 and 

about a 49% (Table 7.9) increased probability of a KSI relative to "traversing 

manoeuvres". This is likely attributable to the higher speed of a travelling-straight 

motorcycle than that of a traversing motorcycle, thereby resulting in greater collision­

impact. 

Other modelling results support those results that were observed from the aggregate 

crash model (see Table 6.2 and Table 6.3 in section 6.3), except for the effects of 

motorist age and the presence of bend for motorcycle. The aggregate model by 

motorcycle-car accidents in whole revealed that elderly motorists appeared to 

predispose riders to a greater risk ofKSls. However, the approach-turn B crash model 

(Table 7.8) shows that injuries to motorcyclists were greatest in collisions with 

teenaged motorists, with a coefficient value of 0.074 relative to mid-aged motorists. 

This may be due to the fact that young motorists' inexperience, inattention, or risky 

driving behaviours were often cited as reasons for crash involvement (Garber and 

Srinivasan, 1991; Dissanayake et aI., 1999; Kim et aI., 2007). However, whether these 

factors contribute to the increased motorcyclist injury severity in approach-turn B 

crashes is unknown and can not be ascertained in this study because behavioural 

factors are not readily available from the Statsl9. A better understanding of a 

comparison of the crossing behaviours among motorists in different age groups when 

intersecting with oncoming motorcyclists could be a fruitful area for future research. 

With regard to the effect of curved roadway on motorcyclist injury severity, the 

aggregate model by motorcycle-car accidents in whole revealed that riders were more 

injurious where there were bends either for cars or for motorbikes. However, it was 

found from the approach-turn B crash model that those riding on the bends were less 

injurious (Table 7.8), with about a 26% decreased probability of a KSI relative to 

"non bend" (Table 7.9). Possible explanations for this could be that an approaching 
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Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

motorcycle on the major roadway may speed down while riding on the bends, thereby 

reducing collision-impact once they have collided with a turning car. 

Some of the similar effects between the aggregate model and the dis aggregate model 

of approach-turn B crashes need further discussions. For example, the disaggregate 

model of approach-turn B crashes (Table 7.8) indicates that injuries were greatest 

during mid-night/early morning hours. Approach-turn B crashes that occurred during 

mid-night/early morning hours have a 44.76% increase in the probability of a KSI 

(Table 7.9), relative to non rush hours. 

Alcohol use and higher speeds during these mid-night/early morning hours have been 

commonly documented in past studies as one of the reasons behind the severe 

accident consequence (see, for example, Kasantikul et aI., 2005). Peek-Asa and Kraus 

(1996a) further reported that approach-turn crashes were more likely than other crash 

configurations to occur in diminished lighting conditions. They argued that 

motorcycle's poor conspicuity as a result of its small frontal surface and single head 

lamp can be exacerbated during these hours. Street light condition was not examined 

in the model as this variable is correlated with the variable "time of accident", as 

shown in Table 7.7. The results here (Table 7.8 and Table 7.9) suggest that riding 

during mid-night/early morning hours, which is in diminished lighting conditions, 

resulted in more severe injuries. Supplemental results from the estimated model (see 

Table 7.8 and Table 7.9), coupled with those of Peek-Asa and Kraus (1996a), 

underscore the role motorcycle's poor conspicuity may play in affecting both accident 

occurrence and injury severity. 

7.2.4 Modelling Results for Angle Crashes 

As reported in Table 7.3 and Table 7.4, two combined effects (i.e., a travelling­

straight motorcycle collided with a right-/left-turn car at stop-controlled junctions, as 

shown in Figure 7.1 ( c) and (e» represented the deadliest risks of KSls to 

motorcyclists (i.e., as much as 27.1 % and 22.8% of the injuries were KSls). A similar 

crash pattern (Le., a travelling-straight motorcycle collided with a right-turn car) was 

also identified by Pickering et aI. (1986) and Stone and Broughton (2002) as 

particular source of car-car and bicycle-car accidents at T-junctions. 
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Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

In order to gain a further understanding of the factors contributing to more severe 

injuries resulting from these two deadly combinations, two separate OP models are 

estimated and the results are reported (see Table 7.16 and Table 7.17 in section 

7.2.4.2). It should be noted here that an additional model was also estimated for 

another hazardous combination (Le., angle A collision in which a travelling-straight 

car collided with a right-turn motorcycle at stop-controlled junctions, as shown in 

Figure 7.1(b». It was observed from Table 7.3 that 26.4% of the injuries were KSIs 

that resulted from such crash pattern (Figure 7.1(b». However, a vast majority of the 

variables that are incorporated into the model by such crash pattern appeared to be 

insignificant in explaining injury severity. Again, this is possibly due to relatively few 

observations of casualties resulting from such crashes (N=2011). The estimation 

results of this model are therefore not reported. Only the estimation results of the 

models by the two deadliest combinations (Le., a travelling-straight motorcycle 

collided with a right-/left-turn car at stop-controlled junctions) are provided (Table 

7.16 and Table 7.17 in section 7.2.4.2). 

7.2.4.1 Variables considered 

The variables examined in the disaggregate model by approach-turn B crashes (see 

Table 7.8 in section 7.2.3.2) are incorporated into the dis aggregate models of two 

deadliest combinations in angle A and angle B crashes respectively. Two variables of 

particular interest include "motorist's right-of-way violation" and "motorcycle's 

manoeuvre". The inclusion of the variable "right-of-way violation" in the analysis 

here is because angle A and angle B crashes, similar to approach-turn collisions, are 

accidents that involve gap acceptance (see a discussion of motorcycle-car accidents 

that involve gap acceptance in Chapter 2). Previous studies (see, for example Hurt et 

aI., 1981; Peek-Asa and Kraus, 1996a; Pai and Saleh, 2008) have suggested that more 

than 70% of approach-turn collisions occurred as a result of a turning car's failure to 

give way to an oncoming motorcycle (see also Figure 7.2(a». It is hypothesised in this 

current study that "motorist's fail to give way" may have some influence on 

motorcyclist injury severity in angle AlB crashes. 
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Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

Similar to the variable "right-of-way violation" that was incorporated in the model of 

approach-turn B crashes (Table 7.8 in section 7.2.3.2), there are three categorises for 

this variable that is incorporated into the models of angle A and angle B crashes. 

These categories include right-of-way violation, non right-of-way violation, and 

unknown, as illustrated in Figure 7.4. The definition of right-of-way violation and non 

right-of-way violation has been provided in section 7.2.3.2. Thus it is not repeated 

here. 

(a)--------- (b) --------

rlllllllllllllllllill S >:;)-0- ....... .... · · .. .q,-

1111;~1 
right-of-way violation case non right-of-way violation case 

Figure 7.4: Schematic diagram of (a) a right-of-way violation case and (b) a non 
right-of-way violation case in an angle A/B collision at T -junctions (Note: pecked 
line represents the intended/actual path of a motorcycle and solid line represents 

the path of a car). 

Table 7.1 0 and Table 7.11 reports the information on the distribution of motorcyclist 

injury severity by right-of-way violation in angle A and angle B crashes respectively 

(i.e., under stop, give-way signs or markings, an angle AlB collision in which a 

turning car from the minor road collided with an oncoming motorcycle from the major 

road). The descriptive statistics in Table 7.10 and 7.11 indicate that motorcyclist 

casualties resulting from right-of-way violation cases outnumber those resulting from 

non right-of-way violation cases by nearly 5-to-l (79.3% versus 17.3% for angle A 

crashes; 78.5% versus 16.5% for angle B crashes). In addition, riders involved in 

right-of-way violation cases were more likely to be KSI (28.3% of the injuries were 

KSIs in angle A crashes; 24.1 % of the injuries were KSls in angle B crashes). 
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Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

Table 7.10: Distribution of motorcyclist injury severity by right-of-way violation 
in angle A crashes. 

Right-of-way violation No injury Slight injury KSI Total 
Right-of-way violation 148 (0.8%) 1336 (71.0%) 5439 (28.3%) 19248 (79.3%) 
Not right-of-way 

32 (0.8%) 3165 (75.2%) 1014 (24.1%) 4211 (17.3%) 
violation 
Unknown 2 (0.2%) 687 (84.3%) 126 (15.5%) 815 (3.4%) 
Total 182 (0.7%) 17513 (72.1%) 6579 (27.1 %) 24274 (100%) 

Table 7.11: Distribution of motorcyclist injury severity by right-of-way violation 
in angle B crashes. 

Right-of-way violation No in.jury Slight in.jury KSI Total 
Right-of-way violation 41 (0.7%) 4129 (75.2%) 1322 (24.1 %) 5492 (78.5%) 
Not right-of-way 

8 (0.7%) 919 (80.7%) 212 (18.6%) 1139 (16.3%) 
violation 
Unknown 1 (0.3%) 304 (84.0%) 57 (15.7%) 362 (5.2%) 
Total 50 (0.7%) 5352 (76.5%) 1591 (22.8%L ,_~22H!00o;o) 

Similar to the variable "motorcycle's pre-crash manoeuvre" that was incorporated in 

the model of approach-turn B crashes (see Table 7.8 in section 7.2.3.2), there are three 

categories for this variable that is incorporated into the models of angle A and angle B 

crashes. These categories include travelling straight, changing lane, and overtaking. 

Table 7.12 and Table 7.13 report the information on the distribution of motorcyclist 

injury severity by motorcycle's pre-crash manoeuvre. The data in Table 7.12 show 

that injuries resulting from angle A crashes were more severe when motorcyclists 

were travelling straight or changing lane (27.8% of the injuries were KSls for both 

manoeuvres). Note here that "changing lane" manoeuvre only represents 0.1 % of all 

motorcyclist casualties (18 observations). For angle B crashes examined in Table 7.13, 

motorcyclists were more likely to be KSI when they were travelling straight than 

when their pre-crash manoeuvres were changing lane or overtaking (23.0% versus 

14.3% and 21.0%). 
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Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

Table 7.12: Distribution of motorcyclist injury severity by motorcycle's pre­
crash manoeuvre in angle A crashes. 

Pre-crash manoeuvre No in.jury Slight in.jury KSI Total i 

travelling straight 154 (0.8%) 14513 (71.4%) 5648 (27.8%) 20315 (83.7%) 
changing lane 0(0%) 13 (71.4%) 5 (27.8%) 18(0.1%) 
overtaking 28 (0.7%) 2987 (75.8%) 926 (23.5%) 3941 (16.2%) 
Total 182 (0.7%) 17513(72.1%) 6579 (27.1 %) 24274 (100%) 

Table 7.13: Distribution of motorcyclist injury severity by motorcycle's pre­
crash manoeuvre in angle B crashes. 

PI'e-crash manoeuvre No injury Slight iniury KSI Total 
travelling straight 48 (0.8%) 4818 (76.3%) 1450 (23.0%) 6316 (90.3%) 
changing lane 0(0%) 12 (85.7%) 2 (14.3%) 14 (0.2%) 
overtaking 2 (0.3%) 522 (78.7%) 139 (21.0%) 663 (9.5%) 
Total 50 (0.7%) 5352 (76.5%) 1591 (22.8%) 6993 (100%) 

Before the variables are incorporated into the models, correlation among the variables 

is examined (see Table 7.14 and Table 7.15). Multicollinearity was found to exist 

between the variable "street light condition" and "time of accident", with a correlation 

value of 0.572 and 0.574. For these two variables that are highly correlated with each 

other, only the most significant variable, which is "time of accident", is retained in the 

analysis. 

7.2.4.2 Estimation results 

Table 7.16 and Table 7.17 present the estimation results for angle A crash and angle B 

crash models (i.e., crash pattern (c) and crash pattern (e), as shown in Figure 7.1), 

conditioned on the accidents having occurred at stop-controlled junctions. Of 24274 

motorcyclist casualties that were involved in angle A crashes at stop-/give-way 

controlled T-junctions (Table 7.16), 27.1 % are classified as KSI (6579 observations), 

72.1% are classified as slight injury (17513 observations), and 0.7% are classified as 

no injury (182 observations). Of 6993 casualties that were involved in angle B crashes 

at stop-/give-way controlled T-junctions (Table 7.17), 22.8% are classified as KSI 

(1591 observations), 76.5% are classified as slight injury (5352 observations), and 

0.7% are classified as no injury (50 observations). 

134 



Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

The angle A crash model has a pseudo-R2 measure of 0.076. As for predicting each 

injury-severity category, the classification accuracy for KSI, slight injury, and no 

injury was 4.4%, 98.9%, and 0% (Table 7.16). The angle B crash model has a pseudo­

R2 measure of 0.057. As for predicting each injury-severity category, the 

classification accuracy for KSI, slight injury, and no injury was 0.5%, 99.9%, and 0% 

(Table 7.17). 

135 



C
ha

pt
er

 7
: 

M
od

el
li

ng
 m

ot
or

cy
cl

is
t 

in
ju

ry
 s

ev
er

it
y 

by
 v

ar
io

us
 c

ra
sh

 c
on

fi
gu

ra
ti

on
s 

T
ab

le
 7

.1
4:

 C
or

re
la

ti
on

 m
at

ri
x 

be
tw

ee
n 

th
e 

va
ri

ab
le

s 
in

 th
e 

an
gl

e 
A

 c
ra

sh
 m

od
el

. 

en
gi

ne
 

m
ot

or
cy

cl
e'

s 
b

en
d

 f
o

r 
cr

as
h

 
ri

d
er

 
ri

d
er

 
m

o
to

ri
st

 
m

ot
or

is
t 

n
u

m
b

er
 

w
ee

k 
ti

m
e 

sp
ee

d 
va

ri
ab

le
s 

vi
ol

at
io

n 
o

f v
eh

ic
le

 
m

o
n

th
 

li
gh

t 
w

ea
th

er
 

si
ze

 
m

an
oe

uv
re

 
m

ot
or

cy
cl

e 
p

ar
tn

er
 

g
en

d
er

 
ag

e 
g

en
d

er
 

ag
e 

in
vo

lv
ed

 
d

ay
 

o
f d

ay
 

li
m

it
 

eJ
!g

in
e 

si
ze

 
1 

0.
00

5 
0.

03
0 

0.
03

8 
0.

01
4 

0.
17

1 
-0

.3
09

 
0.

00
5 

-0
.0

12
 

0.
03

9 
0.

Q
78

 
0.

05
0 

-0
.0

45
 

0.
12

5 
0.

08
2 

0.
06

0 
m

ot
or

cy
cl

e'
S

 
1 

0.
11

0 
0.

06
5 

-0
.0

01
 

0.
00

1 
0.

00
1 

0.
Q

18
 

m
an

oe
uv

re
 

0.
Q

78
 

-0
.1

52
 

-0
.0

15
 

0.
07

3 
0.

11
3 

0.
07

0 
0.

12
1 

-0
.0

08
 

be
nd

 f
or

 
1 

0.
02

8 
0.

04
2 

0.
02

4 
0.

00
2 

-0
.0

08
 

-0
.0

01
 

-0
.0

12
 

0.
05

1 
0.

03
7 

-0
.0

02
 

0.
12

4 
-0

.0
42

 
0.

02
0 

m
ot

or
cy

cl
e 

vi
ol

at
io

n 
1 

0.
01

0 
0.

03
7 

0.
01

0 
-0

.0
17

 
-0

.0
40

 
0.

01
0 

0.
00

5 
0.

02
1 

0.
03

6 
0.

06
8 

0.
03

0 
0.

01
3 

cr
as

h 
_p

ar
tn

er
 

I 
0.

00
3 

-0
.0

25
 

0.
14

0 
-0

.0
46

 
-0

.0
02

 
0.

01
8 

-0
.0

46
 

-0
.0

55
 

0.
02

7 
-0

.Q
48

 
-0

.0
01

 

ri
d

er
 f

en
d

er
 

1 
-0

.0
13

 
0.

00
3 

-0
.0

20
 

0.
00

9 
0.

02
8 

0.
04

0 
0.

02
5 

0.
03

8 
0.

01
3 

0.
02

2 
ri

d
er

 a
"e

 
1 

-0
.0

18
 

0.
00

5 
0.

00
2 

-0
.0

50
 

-0
.0

10
 

0.
02

7 
-0

.0
57

 
0.

05
0 

-0
.0

23
 

m
ot

or
is

t 
1 

0.
24

2 
-0

.0
11

 
-0

.0
07

 
0.

01
9 

0.
06

2 
-0

.0
04

 
0.

05
1 

0.
00

9 
g

en
d

er
 

m
ot

or
is

t 
ag

e 
1 

-0
.0

06
 

0.
01

6 
0.

03
4 

-0
.0

18
 

0.
03

1 
-0

.0
04

 
0.

01
8 

n
u

m
b

er
 o

f 
ve

hi
cl

e 
1 

0.
02

4 
0.

00
4 

-0
.0

32
 

0.
03

6 
-0

.0
54

 
0.

01
9 

in
vo

lv
ed

 
m

o
n

th
 

1 
0.

06
7 

-0
.0

32
 

0.
04

7 
-0

.3
08

 
0.

07
4 

w
ee

k 
d

ay
 

1 
-0

.0
57

 
0.

Q
78

 
-0

.0
31

 
0.

04
1 

ti
m

e 
o

f d
ay

 
1 

-0
.0

07
 

0.
57

2 
-0

.0
37

 
SI

lf
ed

 l
im

it
 

1 
-0

.0
53

 
0.

03
7 

li
gh

t 
1 

-0
.0

98
 

co
nd

it
io

ns
 

w
ea

th
er

 
1 

13
6 



C
ha

pt
er

 7
: 

M
od

el
li

ng
 m

ot
or

cy
cl

is
t i

nj
ur

y 
se

ve
ri

ty
 b

y 
va

ri
ou

s 
cr

as
h 

co
nf

ig
ur

at
io

ns
 

T
ab

le
 7

.1
5:

 C
or

re
la

ti
on

 m
at

ri
x

 b
et

w
ee

n 
th

e 
va

ri
ab

le
s 

in
 t

he
 a

ng
le

 B
 c

ra
sh

 m
od

el
. 

en
gi

ne
 

m
ot

or
cy

cl
e'

s 
b

en
d

 f
or

 
cr

as
h

 
ri

d
er

 
ri

d
er

 
m

o
to

ri
st

 
m

o
to

ri
st

 
n

u
m

b
er

 
w

ee
k 

ti
m

e 
sp

ee
d 

va
ri

ab
le

s 
vi

ol
at

io
n 

o
f v

eh
ic

le
 

m
o

n
th

 
li

gh
t 

w
ea

th
er

 
si

ze
 

m
an

o
eu

v
re

 
m

ot
or

cy
cl

e 
p

ar
tn

er
 

g
en

d
er

 
ag

e 
g

en
d

er
 

ag
e 

in
vo

lv
ed

 
d

ay
 

o
f d

ay
 

li
m

it
 

en
l:

in
e 

si
ze

 
1 

0.
01

6 
0.

02
0 

0.
05

5 
0.

01
1 

0.
19

1 
-0

.3
01

 
-0

.0
19

 
-0

.0
30

 
0.

03
8 

0.
07

3 
0.

05
3 

-0
.0

41
 

0.
13

3 
-0

.0
74

 
0.

06
6 

m
ot

or
cy

cl
e'

s 
1 

0.
07

1 
0.

01
6 

0.
00

1 
-0

.0
37

 
0.

00
1 

0.
03

1 
0.

07
3 

-0
.1

02
 

0.
00

4 
0.

04
0 

0.
08

1 
0.

03
1 

0.
07

9 
0.

01
0 

m
an

oe
uv

re
 

be
nd

 f
or

 
1 

0.
01

7 
0.

03
6 

0.
01

3 
-0

.0
08

 
-0

.0
06

 
0.

00
9 

0.
00

9 
0.

01
9 

0.
01

9 
0.

00
6 

0.
07

7 
-0

.0
13

 
0.

00
1 

m
ot

or
cy

cl
e 

vi
ol

at
io

n 
1 

0.
00

7 
0.

01
8 

0.
00

7 
-0

.0
69

 
-0

.1
29

 
0.

05
6 

-0
.0

11
 

0.
03

3 
0.

00
2 

0.
09

9 
0.

02
2 

0.
00

3 
cr

as
h

 
1 

-0
.0

01
 

-0
.0

14
 

0.
14

4 
-0

.0
38

 
-0

.0
04

 
0.

01
2 

-0
.0

36
 

-0
.0

71
 

0.
03

5 
-0

.0
51

 
0.

00
6 

p
ar

tn
er

 
ri

d
er

 I
:e

nd
er

 
1 

-0
.0

28
 

-0
.0

01
 

-0
.0

05
 

0.
03

0 
0.

02
5 

0.
03

3 
0.

03
2 

0.
03

5 
0.

00
5 

0.
03

4 
ri

d
er

 a
l:e

 
1 

0.
00

8 
0.

01
2 

-0
.0

11
 

-0
.0

26
 

0.
00

9 
0.

04
8 

-0
.0

75
 

0.
04

9 
0.

00
2 

m
ot

or
is

t 
1 

0.
32

7 
-0

.0
23

 
0.

01
9 

0.
03

4 
0.

07
9 

-0
.0

36
 

0.
08

6 
-0

.0
06

 
g

en
d

er
 

m
ot

or
is

t 
al

:e
 

1 
-0

.0
45

 
0.

01
0 

0.
02

0 
-0

.0
07

 
-0

.0
13

 
0.

01
5 

0.
01

8 
n

u
m

b
er

 o
f 

ve
hi

cl
e 

1 
-0

.0
01

 
0.

01
1 

-0
.0

16
 

0.
04

0 
-0

.0
11

 
-0

.0
16

 
in

vo
lv

ed
 

m
o

n
th

 
1 

0.
03

9 
-0

.0
44

 
0.

06
2 

-0
.3

21
 

0.
08

0 
w

ee
k 

da
y 

1 
-0

.0
58

 
0.

09
7 

-0
.0

11
 

0.
03

5 
ti

m
e 

o
f d

ay
 

1 
-0

.0
21

 
0.

57
4 

-0
.0

22
 

sp
ee

d 
li

m
it

 
1 

-0
.0

58
 

0.
04

1 
li

gh
t 

1 
-0

.0
84

 
co

nd
it

io
ns

 
w

ea
th

er
 

1 

13
7 



Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

Table 7.16: Statistics summary and estimation results of the angle A crash model 
(limited to a collision where a turning car collided with a travelling-straight 

motorcycle at stop-controlled junctions). 

Variable Categories of each variable Frequency (%) 
Coefficients 

(p-value) 
Gender of rider I. male 22319 (91.9%) 0.030 (0.346) 

2. female 1955 (8.1%) Reference case 
Age of rider I. over 60 619 (2.6%) 0.183 (0.001) 

2. up to 19 4951 (20.4%) -0.015 (0.509) 
3.20-59 18704 (77.1%) Reference case 

Gender of collision partner I. untraced 665 (2.7%) 0.057 (0.390) 
driver 2. male 15096 (62.2%) 0.031 (0.085) 

3. female 8513 (35.1 %) Reference case 
Age of collision partner I. untraced 1478 (6.1%) -0.243 «0.001) 
driver 2. over 60 2915 (12.0%) 0.049 (0.063) 

3. up to 19 1458 (6.0%) 0.044 (0.215) 
4.20-59 18423 (75.9%) Reference case 

Engine size I. engine size over 125cc 17625 (72.6%) 0.160 «0.001) 
2. engine size up to 125cc 6649 (27.4%) Reference case 

Collision partner I. HGV (heavy good vehicle) 1268 (5.2%) 0.128 (0.001) 
2. bus/coach 184 (0.8%) 0.177 (0.062) 
3. car 22822 (94.0%) Reference case 

Number of vehicle involved I. >=3 1306 (5.4%) 0.210 «0.001) 
2. two-vehicle crash 22968 (94.6%) Reference case 

Bend for motorcycle I. bends 1420 (5.8%) 0.022 (0.545) 
2. non bends 22854 (94.2%) Reference case 

Weather condition 1. other or unknown 509 (2.1%) 0.037 (0.556) 
2. fine weather 20411 (84.1%) 0.078 (0.002) 
3. bad weather 3354 (13.8%) Reference case 

Accident time 2. evening (1800-2359) 6510 (26.8%) 0.152 «0.001) 
I. midnight/early morning (0000-0659) 728 (3.0%) 0.300 «0.001) 
4. rush hours (0700-0859; 1600-1759) 9130 (37.6%) 0.032 (0.126) 
3. non rush hours (0900-1559) 7906 (32.6%) Reference case 

Accident month I. spring/summer (Mar-Aug) 11611 (47.8%) -0.008 (0.641) 
2. autumn/winter (Sep-Feb) 12663 (52.2%) Reference case 

Accident day of week I. weekend (Sat-Sun) 4696 (19.3%) 0.054 (0.012) 
2. weekday (Mon-Fri) 19578 (80.7%) Reference case 

Motorcycle's manoeuvre I. going straight 20315 (83.7%) 0.065 (0.007) 
2. traversing 3959 (16.3%) Reference case ! 

Speed limit 1. non built-up roads (>40mph) 3172 (13.1%) 0.499 «0.001) 
2. built-up roads «=40mph) 21102 (86.9%) Reference case 

Right-of-way violation I. violation case 19248 (79.3%) 0.232 «0.001) 
2. non violation case 4211 (17.3%) 0.151 (0.004) 
3. untraced 815 (3.4%) Reference case 

Jil -1.833 «0.001) 

Ji2 1.272 «0.001) 

Summary Statistics 
-2 Log-likelihood at zero = 11888.956 
-2 Log-likelihood at convergence = 10989.033 
Log-likelihood ratio index (p2) = 0.076 

The number ofKS! that was correctly predicted: 294 (4.4%) 
The number of slight injury that was correctly predicted: 17312 (98.9%) 
The number of no injury that was correctly predicted: 0 (0%) 
Observations = 24274 (KS!: 27.1 %; slight injury: 72.1%; no injury: 0.7%) 
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Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

Table 7.17: Statistics summary and estimation results of the angle B crash model 
(limited to a collision where a turning car collided with a travelling-straight 

motorcycle at stop-controlled junctions). 

Variable Categories of each variable Frequency (%) 
Coefficients 

(p-value) 
Gender of rider 1. male 6338 (90.6%) 0.046 (0.432) 

2. female 655 (9.4%) Reference case 
Age of rider 1. over 60 191 (2.7%) 0.228 (0.02()) 

2. up to 19 1256 (17.9%) -0.046 (0.318) 
3.20-59 5546 (79.3o/~ Reference case 

Gender of collision 1. untraced 409 (5.8%) 0.040 (0.672) 
partner driver 2. male 4309 (61.6%) -0.005 (0.884) 

3. female 2275 (32.5%) Reference case 
Age of collision partner I. untraced 8Ii(11.7%) -0.256 «0.001) 
driver 2. over 60 936 (13.4%) 0.110 (0.023) 

3. up to 19 394 (5.6%) -0.00{(0.933) 
4.20-59 4846 (69.3%) Reference case 

Engine size 1. engine size over 125cc 5068 (72.5%) 0.218«0.00l) 
2. engine size UP to 125cc 1925 (27.5%) Reference case 

Collision partner I. HGV (heavy good vehicle) 431 (6.2%) 0.179 (0.008) 
2. bus/coach 89 (1.3%) -0.201 (0.184) 
3. car 6473 (92.6%) Reference case 

Number of vehicle I. >=3 423 (6.0%) 0.234 «0.001) 
involved 2. two-vehicle crash 6570 (94.0%) Reference case 
Bend for motorcycle I. bend 313(4.5%) -0.114 (0.152) 

2. non bend 6680 (95.5%) Reference case 
Weather condition 1. other or unknown 164(2.3%) -0.218 (0.069) 

2. fine weather 5829 (83.4%) 0.067 (0.157) 
3. bad weather 1000(14.3%) Reference case 

Accident time I. evening (1800-2359) 1839 (26.3%) 0.141 (0.001) 
2. midnight/early morning (0000-0659) 197 (2.8%) 0.171 (0.09()) 
3. rush hours (0700-0859; 1600-1759) 2581 (34.0%) 0.047 (0.236) 
4. non rush hours (0900-1559) 2376 (33.9%) Reference case 

Accident month 1. spring/summer (Mar-Aug) 3353 (47.9%) 0.044 (0.183) 
2. autumn/winter (Sep-Feb) 3640 (52.1%) Reference case 

Accident day of week I. weekend (Sat-Sun) 1348 (19.3%) 0.124 (0.003) 
2. weekday (Mon-Fri) 5645 (80.7%) Reference case 

Motorcycle's manoeuvre 1. going straight 6316 (90.3%) 0.030 (0.594) 
2. traversing 677 (9.8%) Reference case 

Speed limit 1. non built-up roads (>40mph) 893 (12.8%) 0.381 «0.001) 
2. built-up roads «=40mph) 6100 (87.2%) Reference case 

Right-of-way violation I. violation cases 5492 (78.5%) 0.111 (0.154) 
2. non violation cases 1139 (16.3%) -0.001 (0.993) 
3. untraced 362 (5.2%) Reference case 

Jil -1.995 «0.001) 

Ji2 1.287 «0.001) 

Summary Statistics 
-2 Log-likelihood at zero = 4424.803 
-2 Log-likelihood at convergence = 4175.050 
Log-likelihood ratio index (p') = 0.057 

The number ofKSI that was correctly predicted: 8 (0.5%) 
The number of slight injury that was correctly predicted: 5346 (99.9%) 
The number of no injury that was correctly predicted: 0 (0%) 
Observations = 6993 (KSI: 22.8%; slight injury: 76.5%; no injury: 0.7%) 
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Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

Similar to the approach-turn B crash model, a benchmark case was generated in order 

to discuss probabilities of three injury-severity levels in angle AlB crashes. The 

probabilities of a benchmark sustaining three injury-severity levels are derived by 

holding all dummy variables to 0 (see Table 7.18 and Table 7.19). Such benchmark 

victim has the following characteristics: 

(a) was a female 

(b) was aged between 20-59 

(c) was involved in a collision in which the involved motorist was female 

(d) was involved in a collision in which the age of the involved motorist was aged 

between 20-59 

(e) was riding a motorcycle with engine size up to 125cc 

(f) was involved in a collision in which the crash partner was a car 

(g) was involved in a two-vehicle collision 

(h) was riding on the straight roadway (not on the bend) 

(i) was involved in a crash in autumn/winter month 

(j) was involved in a crash when the weather was adverse 

(k) was involved in a crash during non rush hours 

(1) was involved in a crash on weekday 

(m) was involved in a crash on the built-up road 

(n) was having traversing manoeuvre 

(0) was involved in a crash in which the status of right-of-way violation was 

unknown 
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Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

Consistent results were observed between the angle A crash model and the angle B 

crash model with regard to the effect of motorist's failure to yield. As shown in Table 

7.18 and Table 7.19, right-of-way violation has a positive coefficient of 0.232 and 

0.111 for both angle A and angle B crashes (though only at an 80% level of 

confidence for angle B crashes). There is a 46.71 % and 21.01 % increased probability 

of a KSI for both crash configurations relative to unknown cases (Table 7.18 and 

Table 7.19). 

With regard to the effect of motorcycle's pre-crash manoeuvre, manoeuvres such as 

overtaking and changing lane (see the original categories in Table 7.12 and Table 7.13) 

are combined into one single manoeuvre category (Le., traversing). This is because 

the combination was found to result in more statistically significant result. The 

estimation results (Table 7.16 and Table 7.17) show that motorcyclists that had 

"travelling straight" as the pre-crash manoeuvres were more injury-prone, with a 

positive coefficient value of 0.065 and 0.030 (with lack of statistical significance). 

Those travelling straight have about a 5.45% and 11.80% higher probability of KSls 

in angle A and angle B crashes, relative to traversing manoeuvres (Table 7.18 and 

Table 7.19). 

Some consistent results are observed between the angle A crash model and the angle 

B crash model. For example, factors found to be most significantly associated with the 

increased motorcyclist injury severity include elderly riders, elderly motorists, heavier 

motorcycles, accidents that involved three vehicles or above, and accidents that 

occurred during mid-night/early morning hours or on the weekends. Similar factors 

were also found to be correlated with the increased motorcyclist injury severity in the 

approach-turn B crash model (see Table 7.8 and Table 7.9). 

A difference is observed for the effect of bus/coach on motorcyclist injury severity in 

angle A and angle B crashes. As reported in Table 7.18, an angle A crash involving a 

bus!coach has the greatest increase in the probability of a KSI of34.51 % (relative to a 

car). However, as shown in Table 7.17, an angle B crash involving a bus/coach has a 

negative coefficient value (though only at an 80% level of confidence for angle B 

crashes), with a decreased probability of 30.91 % of a KSI relative to a car (Table 

7.19). The cause of these contradictory findings cannot be determined with any 
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Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

reasonable certainty. This may be due to the difference in the crossing behaviour of a 

bus/coach between an angle A crash (with a need to cross-through the conflicting 

traffic) and an angle B crash (with a need to merge with the conflicting traffic). 

Further research may attempt to examine the crossing behaviour among different 

types of automobiles when they are in a need to cross through or merge with the 

conflicting traffic (particularly motorcycle). 

7.2.5 Right-of-way Violation 

In the course of the investigation of the factors that affect motorcyclist injury severity, 

it became clear that another problem, that of a right-turn motorist's failure to yield to 

motorcyclists, needs to be further examined. The binary logistic models are estimated 

to evaluate the likelihood of motorist's right-of-way violation over non right-of-way 

violation as a function of human, vehicle, weather/temporal, and environment factors. 

The theoretical framework of the binary logistic model including the model 

specification and method of evaluation is briefly discussed in the subsequent section. 

Detailed derivation of this model is provided in several studies (e.g., Long, 1997; 

Hosmer and Lemeshow, 2000). 

The analyses here are limited to angle A crashes and approach-turn B crashes that 

occurred at stop-controlled junctions where a right-turn car collided with an oncoming 

motorcycle (see also Figure 7.2 and Figure 7.4). Estimation results of the binary 

logistic model for angle B crashes are found to be relatively comparable to those of 

the binary logistic model for angle A crashes. Thus the modelling results of angel B 

crashes are not reported here. 

It merits mention here that the analysis is limited to the occurrences of violation and 

non violation cases in accidents rather than motorcyclist casualties in accidents. It is 

thought that analyses of motorcyclist casualties in accidents rather than the number of 

accidents may lead to imprecise results as one individual violation case may result in 

more than one motorcyclist casualty (Le., a rider and a pillion passenger, as discussed 

in section 4.2.1). The accidents analysed here are also limited to those that resulted in 

injured motorcyclists (Le., cases that resulted in KSIs or slight injuries). Accidents 

that resulted in noninjured motorcyclists are not included in the analyses. A total of 
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Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

12184 approach-turn B accidents and 22447 angle A accidents are included in the 

analysis. 

7.2.5.1 General specification of the binary logistic model 

The binary logistic models are widely used if the dependent variable is dichotomous 

(right-of-way violation versus non right-of-way violation in this current study) in the 

regression equation. This model has many advantages over ordinary least-squares 

regression models while the dependent variable violates the assumptions of 

continuous or normal distribution. The logistic regression allows one to predict a 

binary outcome from a set of explanatory variables that may be continuous, 

categorical, or a mixture of the two. All explanatory variables are treated as 

categorical variables in this current research (see also section 4.2.2 for a discussion of 

the variables considered in the analysis). 

In the logistic regression model, a latent variable is formulated by the following 

expression: 

g (x) = f3 0 + fJ 1 X 1 + fJ 2 X 2 + ... + fJ j X j + ... f3 p X p [7.1] 

where X j is the value of the j th independent variable; and fJ j as the corresponding 

coefficient, for j =1,2,3 ... p, and is the number of independent variables. 

With this latent variable, the conditional probability of a positive outcome is 

determined by 

ff(X) = exp(g(x» 
1 + exp(g(x» 

[7.2] 

The maximum likelihood (ML) method (see the work of McCullagh, 1980, or 

Amemiya, 1985, for a complete discussion of ML estimation in the context of 

statistical and econometric models) is employed to measure the associations by 

constructing the likelihood function as follows: 
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n 

l(fJ) = IT ;r(Xi)Yi (1- ;r(Xi))l-Yi 
[7.3] 

i=l 

where Y i denotes the i th observed outcome, with the value of either 0 or 1, and i =1, 

2, 3, ... , n, where n is the number of observations. The best estimate of/l could be 

obtained by maximising the log likelihood expression as: 

n 

LL(fJ) = In(1(fJ)) = I {Yi In(;r(Xi)) + (1- Yi)ln(1-;r(Xi))} [7.4] 
i=! 

The effect of attribute k on right-of-way violation could be revealed by the odds ratio 

(OR): 

OR=exp (fJj) [7.5] 

An odds ratio that is greater than 1 indicates that the concerned attribute leads to a 

higher probability of right-of-way violation, and vice versa. Odds ratios of 1 or close 

to 1 suggest a neutral or weak effect. To assess the goodness-of-fit of the logistic 

regression model, the change in deviance can be determined by comparing the log 

likelihood functions between the unrestricted model and the restricted model with the 

following expression: 

G = -2(LL(c) - LL(B)) [7.6] 

where LL(c) is the log likelihood function of the restricted model and LL(B) is the log 

likelihood function of the unrestricted model. Under the null hypothesis that there are 

no effects of the variables included in the model, G is likelihood ratio x2 with 

p degrees of freedom (DF), where p is the number of variables considered. If G is 

significant at the 5% level, the null hypothesis could be rejected, and one could 

conclude that the proposed model generally fits well with the observed outcome. 
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7.2.5.2 Likelihood of right-of-way violation 

The variables considered in the analysis here are those that have been included in the 

disaggregate OP models by approach-turn B crashes and angle A crashes (see Table 

7.8 and Table 7.16). The variable "Number of vehicle involved" is not included in the 

analysis here because it is considered to be a postcrash event that may not have 

influence on the likelihood of right-of-way violation. The variable "Street light 

condition" is excluded from the analysis in the logistic models as it is correlated with 

the variable "Accident time" (see Table 7.7 and Table 7.14). 

Table 7.20 and Table 7.21 report the estimation results of the binary logistic models 

for approach-turn B crashes and angle A crashes. For ease of interpretation, the 

coefficients, the p-value, and odds ratios are provided. Of 12184 approach-turn B 

crashes, there are 11 020 observations for right-of-way violation cases (90.4%) and 

1164 observations for non right-of-way violation cases (9.3%). Of 22447 observations 

for angle A crashes, there are 18437 observations for right-of-way violation cases 

(82.1 %) and 4010 observations for non right-of-way violation cases (17.9%). The 

likelihood ratio X2 measures of these two models reveal that null hypothesis that there 

are no effects of the variables included in the models could be rejected. As for 

predicting each violation/non violation category, all violation cases were predicted 

correctly in two models, with none of non violation cases being correctly predicted. 
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Table 7.20: The binary logistic model ofthe likelihood of motorist's right-of-way 
violations over non right-of-way violation for approach-turn B crashes at stop­

controlled junctions. 

Variable 
Coefficient Odds Ratio 
JR-valut1 jORl 

Intercept 1.583 «0.001) 
Gender of rider 1. male 0.386 «0.0011 1.474 

2. female Reference case Reference case 
Age of rider 1. 60 above -0.400 (0.034) 0.670 

2. up to 19 0.108 (0.193) 1.115 
3.20-59 Reference case Reference case 

Gender of crash partner 1. untraced 0.127 (0.56I2. 1.136 
2. male 0.130 (0.062) 1.141 
2. female Reference case Reference case 

Age of crash partner 1. untraced -0.165(0.2641 0.848 
2.60 above -0.049 (0.583) 0.952 
2. up to 19 0.228 (0.098) 1.256 
3.20-59 Reference case Reference case 

Bend for motorcycle 1. bend -0.435 (0.0061 0.647 
2. non bend Reference case Reference case 

Engine size 1. engine size> 125cc 0.085 (0.246) 1.088 
2. engine size up to 125cc Reference case Reference case 

Collision partner 1. heavy good vehicle 0.057 (0.675) 1.059 
2. bus/coach -0.108 (0.726) 0.879 
3. car Reference case Reference case 

Accident month 1. spring/summeuMar-Aug) 0.109 (0.085) 1.115 
2. autumn/winter (Sep-Feb) Reference case Reference case 

Weather condition 1. other/unknown -0.073 (0.755) 0.929 
2. fine weather -0.016 (0.870) 0.984 
3. bad weather Reference case Reference case 

Accident time 1. evening (1800-2359) 0.125 (0.114) 1.133 
2. midnight; early morning (0000-

0.001 (0.995) 1.001 0659) 
3. rush hours (0700-0859; 1600-1759) 0.029 (0.711) 1.030 
4. non rush hours (0900-1559) Reference case Reference case 

Accident day of week 1. weekend (Saturday-Sunday) 0.053 (0.507) 1.055 
2. weekday (Monday-Friday) Reference case Reference case 

Speed limit 1. non built-up roads (>40mph) 0.526 «0.001) 1.693 
2. built -tIJl roads «-40mrh) Reference case Reference case 

Motorcycle's manoeuvre 1. going straight 0.029 (0.811) 1.029 
2. traversing Reference case Reference case 

Summary statistics 
-2 restricted log likelihood = 2720.012 
-2 unrestricted log likelihood = 2654.209 

Likelihood ratio X 2 
= 65.803 (with 21 D.F., p<O.OOI) 

The number of right-of-way violation cases that was correctly predicted: 11020 (100%) 
The number of non right-of-way violation cases that was correctly predicted: 0 (0%) 
Observations: 12184 (11020 observations for violation cases; 1164 observations for non violation cases) 
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Table 7.21: The binary logistic model of the likelihood of motorist's right-of-way 
violations over non right-of-way violation for angle A crashes at stop-controlled 

junctions. 

Variable 
Coefficient Odds Ratio 
(p-value) (OR) 

Intercept 0.851 «0.001) 
Gender of rider 1. male 0.328 «0.001) 1.389 

2. female Reference case Reference case 
Age of rider 1. 60 above -0.315 (0.002) 0.730 

2. up to 19 0.070 (0.136) 1.072 
3.20-59 Reference case Reference case 

Gender of crash partner 1. untraced -0.325 (0.011) 0.722 
2. male 0.074 (0.050) 1.076 
2. female Reference case Reference case 

Age of crash partner 1. untraced -0.031 (0.726) 0.969 
2.60 above 0.071 (0.210) 1.074 
2. up to 19 0.Dl8 (0.816) 1.018 
3.20-59 Reference case Reference case 

Bend for motorcycle 1. bend 0.050 (0.529) 1.051 
2. non bend Reference case Reference case 

Engine size 1. engine size> 125cc 0.034 (0.419) 1.035 
2. engine size up to 125cc Reference case Reference case 

Collision partner 1. heavy good vehicle 0.263 (0.002) 1.301 
2. bus/coach 0.327 (0.148) 1.387 
3. car Reference case Reference case 

Accident month 1. spring/summer (Mar-Aug) 0.079 (0.026) 1.083 
2. autumn/winter (Sep-Feb) Reference case Reference case 

Weather condition 1. other/unknown 0.152 (0.261) 1.164 
2. fine weather -0.076 (0.142) 0.927 
3. bad weather Reference case Reference case 

Accident time 1. evening (1800-2359) 0.223 «0.001) 1.250 
2. midnight; early morning (0000-0659) 0.292 (0.010) 1.340 
3. rush hours (0700-0859; 1600-1759) 0.021 (0.612) 1.022 
4. non rush hours (0900-1559) Reference case Reference case 

Accident day of week 1. weekend (Saturday-Sunday) 0.092 (0.053) 1.096 
2. weekday (Monday-Friday) Reference case Reference case 

Speed limit 1. non built-up roads (>40mph) 0.292 «0.001) 1.339 
2. built-up roads «=40mph) Reference case Reference case 

Motorcycle's manoeuvre 1. going straight 0.224 «0.001) 1.252 
2. traversing Reference case Reference case 

Summary statistics 
-2 restricted log likelihood = 6042.978 
-2 unrestricted log likelihood = 5840.598 

Likelihood ratio X 2 = 202.380 (with 21 D.F., p<O.OOI) 

The number of right-of-way violation cases that was correctly predicted: 18437 (100%) 
The number of non right-of-way violation cases that was correctly predicted: 0 (0%) 
Observations: 22447 (18437 observations for violation cases; 4010 observations f()r non violation cases) 
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The estimation results revealed that for both crash configurations, male riders 

(OR=1.474, p<O.OOI; OR=1.389, p<O.OOI) were more likely to experience a violation 

case than female riders; and younger riders (OR=1.115, p=0.193; OR=1.0n, p=0.148) 

were more prone to experience a violation case than mid-aged motorcyclists, as 

shown in Table 7.20 and Table 7.21. Younger motorists in approach-turn B crashes 

were 1.256 times more likely to violate motorcycle's right-of-way than mid-aged 

motorists (Table 7.20), whilst such effect was not significant for angle A crashes 

(Table 7.21). Elderly motorists in angle A crashes were most likely of all age groups 

to infringe upon motorcycle's right-of-way (OR=1.074, p=0.210) (Table 7.21). Male 

motorists were 1.141 and 1.076 times more prone than female motorists to commit 

right-of-way violations in both approach-turn B crashes and angle A crashes (Table 

7.20 and Table 7.21). 

In addition to gender-/age-specific determinants of motorist's failure to yield, other 

factors such as temporal factors, roadway factors were examined. An approach-turn B 

crash that occurred during evening hours has the greatest increase in the probability of 

a violation case of 13% (OR=1.133, p=O.l14) relative to no rush hours (Table 7.20). 

An angle A collision that occurred during midnight/early morning hours has the 

greatest increase in the probability of a violation case of 34% (OR=1.340, p=0.010) 

relative to no rush hours (Table 7.21). 

With regard to the effect of motorcycle's collision partner, professional motorists (Le., 

HOV or bus/coach driver) were about 1.30 times (OR=1.301, p=0.002 for HOV; 

OR=1.387, p=0.148 for bus/coach) more likely than passenger car drivers to fail to 

yield in angle A crashes (Table 7.21), although such effect was not significant for 

approach-turn B crashes (Table 7.20). 

Regarding the effect of speed limit, riding on non built-up roadways were 1.693 times 

(for approach-turn B crashes, as reported in Table 7.20) and 1.339 times (for angle A 

crashes, as reported in Table 7.21) more likely than riding on built-up roadways to 

experience right-of-way violations. 

With regard to the effect of motorcycle's pre-crash manoeuvre, a travelling-straight 

motorcycle was 1.252 times (OR=1.252, p<O.OOI) more likely than a traversing 
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motorcycle to experience a violation case in angle A crashes (Table 7.21). Such effect 

was not significant for approach-turn B crashes (Table 7.20). 

The estimation results of two binary models could be used to enhance enforcement 

efforts as well as public information and safety education programmes to curb 

motorists' failure to yield. For instance, safety education programmes may be directed 

toward certain drivers such as male motorists and young motorists, or drivers of 

heavier vehicles. Enforcement efforts may need to be directed towards certain times 

and locations where right-of-way violations are more likely to occur (e.g., during 

evening/nighttime and on non built-up roads). Several studies have reported that 

enforcement by police near a junction makes turning motorists more cautious (e.g., 

Cooper and McDowell, 1977; Storr et aI., 1980). It is clear here such temporal factors 

(i.e., evening/midnight/early morning) and location factors (non built-up roads) need 

to be taken into consideration in the implementation of police-enforcement strategies 

meant to curb motorcycle-car crashes that result from right-of-way violations. 

The result that motorists on non built-up roads were more likely than those on built-up 

roads to violate motorcycle'S right of way may deserve further discussions. This may 

be a consequence of higher motorcycle speed on non built-up roadways. The 

following studies may lend support for the reasoning here: 

Statistics from DfT (2006b) has revealed several phenomenons about the speed 

distributions by motorcycles and automobiles - it was found that average motorcycle 

speeds are generally slightly higher than average automobile speed on the same types 

of road. Specifically, about a quarter of motorcyclists exceed the speed limit by more 

than 10mph on motorways and dual carriageways, while around one in ten exceed the 

limit by more than 10mph on other roads. In a study by Brenac et al. (2006), the mean 

speed of the motorcycle involved in conspicuity-related accidents was found to be 

significantly higher than that in non conspicuity-related collisions. Brenac et aI., 

together with Kim and Boski (2001), suggested that motorcycle's poor conspicuity 

may be exacerbated with higher speed, which may decrease their detectability from a 

turning motorist's perspective. Peek-Asa and Kraus (1996a) specifically discussed 

speeding effect on the occurrences of approach-turn crashes. They found that for 

approach-turn crashes, a motorcycle striking a turning car (i.e., a right-of-way 
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violation case) was more prone to be speeding than a motorcycle struck by a turning 

car (Le., a non right-way-way violation case). They pointed out that the turning 

motorist might have not been able to correctly judge the speed of the approaching 

motorcycle and might have not been able to clear the junction in time to avoid a crash. 

They suggested that controlling motorcycle speed may decrease the number of such 

crash type. 

Motorists' higher speeds arising from higher speed limits may also result in 

themselves failing to yield to motorcycles. This hypothesis may be supported by 

Sum mala and his colleagues (see, for example, Riisiinen and Summa la, 2000; 

Summala et aI., 1996) who analysed automobile-bicycle accidents at roundabouts. 

They reported that higher vehicle approach speed contributed to motorists not looking 

to their right or not giving way to bicyclists at roundabouts. They further pointed out 

that speed-reducing countermeasures may enable a turning driver to have more time 

in searching a bicyclist travelling from the right. The findings of Summala and his 

colleagues were specific to automobile-bicycle accidents at roundabouts rather than 

motorcycle-car accidents at T-junctions. Nonetheless, their findings may provide 

additional insight into the possibility that motorists' higher speeds that arise from 

higher speed limits may also result in themselves failing to yield to motorcycles. 

7.2.6 Summary 

This. chapter firstly attempted to investigate the distribution of motorcyclist injury 

severity by the interaction of approach-turn crashes/angle crashes and junction control 

measures. Angle crashes were further classified into five crash patterns depending on 

the pre-crash manoeuvres of the involved motorcycles and cars. Injuries to 

motorcyclists appeared to be greatest in approach-turn A crashes at signalised 

junctions and in approach-turn B crashes at stop-controlled junctions (Table 7.1). For 

approach-turn B crashes, the most severe crash pattern identified was a crash in which 

a right-turn car pulled out into the path of an approaching motorcycle. Such a right­

turn car was assumed to have violated the motorcycle's right-of-way. In addition, 

right-of-way violations by right-turn motorists were found to lead to the most 

motorcycle-car approach-turn B crashes and predispose riders to a greater risk of KSIs 

(Table 7.8 and Table 7.9). 
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Similar effects were observed for those involved in angle A/B crashes. Injuries to 

motorcyclists appeared to be greatest in angle A crashes and angle B crashes in which 

a turning car from the minor road collided with an oncoming motorcycle from the 

major road (while stop, give-way signs and markings were present at accident 

locations) (Table 7.3 and Table 7.4). A right-/left-turn motorist (from minor road) 

intending to cross-through/merge with the conflicting traffic was found to frequently 

fail to yield to an approaching motorcyclist (Table 7.16 and Table 7.17). 

Motorcyclists appeared to be more injurious in such right-of-way-violation cases than 

those in non right-of-way violation cases (see Table 7.16 to Table 7.19). 

The binary logistic models were subsequently estimated to explain the likelihood of 

motorists' failure to yield as a function of human, weather, roadway and vehicle 

factors. Specific human features such as gender and age of the motorists, and temporal 

factors such as time of accidents, were found to be significant in explaining the 

likelihoods of right-of-way violations. Noteworthy findings for both approach-turn B 

crashes and angle A crashes include that violation cases were more likely to occur on 

non built-up roadways, and during evening/midnight/early morning hours (Table 7.20 

and Table 7.21). 

The next section presents an analysis of the factors that affect motorcyclist injury 

severity resulting from motorcycle-car head-on crashes. 
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7.3 Head-on Crash 

7.3.1 Introduction 

The aggregate model (see Table 6.2 in section 6.3) has revealed that riders in head-on 

crashes were more likely to be KSI than riders in other crashes except for approach­

turn B crashes. There has been a great deal of research (see Chapter 2 for a review of 

relevant studies) analysing car-car head-on crashes, of which much has focused on 

examining what factors were correlated with the occurrences of or consequences of 

such crash type that occurred either on undivided roadways (e.g., Deng et aI., 2006) or 

intersections (e.g., Ulfarsson et aI., 2006). Explorations of the factors affecting 

motorcyclist injury severity resulting from head-on crashes, however, have been fairly 

limited in literature. This section attempts to identifY the determinants of motorcyclist 

injury severity resulting from head-on crashes that occurred at T-junctions. 

The remainder of this section proceeds with a description of motorcycle-car head-on 

crashes. The descriptive analysis is then conducted to examine the distribution of 

motorcyclist injury severity by the variables of primary interest. This is followed by a 

multivariate examination of the determinants of motorcyclist injury severity in head­

on crashes. The section ends with a summary of the research findings. 

7.3.2 Model Specification 

A motorcycle-car head-on crash is defined as a crash in which a motorcycle and car 

originally travelling from opposite directions collided with each other (e.g., a 

motorcycle travelling eastwards collided with a car travelling westwards), as 

illustrated in Figure 4.4( c). It is worth mentioning here that the analyses are not 

limited to the collisions where the front of the motorcycle was the first collision point. 

Instead, other combinations of the first crash point such as the front of a car and the 

nearside of a motorcycle are also included in the analyses. This is because 

motorcycles that are capable of swerving prior to the crash may have other crash parts 

(e.g., nearside, offside instead of front) as first crash point (Obenski et aI., 2007). Data 

that were removed include missing data and unreliable data. Examples of unreliable 

data include a crash in which either the car or motorcycle did not impact at all. 
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There is evidence in the literature (e.g., Mizuno and Kajzer, 1999; Ulfarsson et aI., 

2006) that unintended/intended lane changing manoeuvres on curved roads were 

linked with a strong increase in the probability of head-on crashes. The presence of 

curves on the roadways and the pre-crash manoeuvres of motorcycles and cars are 

therefore the variables of particular interest. 

The descriptive analysis is firstly conducted to examine the distribution of 

motorcyclist injury severity by the presence of bend, as well as the manoeuvres of 

motorcycles and cars. Table 7.22 and Table 7.23 report the distribution of 

motorcyclist injury severity by the presence of bend for motorcycle/car. The statistics 

in Table 7.22 and Table 7.23 show that riders were more likely to be KSI when there 

were bends for motorcycles or for cars (42.3% and 44.3%). 

Table 7.22: Distribution of motorcyclist injury severity by the presence of bend 
for motorcycles in head-on crashes. 

The presence of bend No injury Slight injury KSI 
Total 

.1% oftota!l 
Bend 7 (0.9%) 447 (56.8%) 333 (42.3%) 787(21%) 
Non bend 5311.80/~ 1982.167.1%1 919 J31.1%1 2954179.00/<>} 
Total 60 (1.6%) 2429 (64.9%) 1252 .133.50/~ 3741J.1000/<>} 

Table 7.23: Distribution of motorcyclist injury severity by the presence of bend 
for cars in head-on crashes. 

The presence of bend No injury Slight injury KSI 
Total 

1% oftota!l 
Bend 80.2%) 364 (54.5%) 296 (44.30/<>} 668 JP .90/<>} 
Non bend 52 (1.7%) 2065 (67.2%) 956 (31.1%) 3073 (82.1 %) 
Total 6011.60/<>} 2429JM.9%1 1252133.5%1 374111000/<>} 

Table 7.24 repOlts the distribution of motorcyclist injury severity by the interaction of 

the presence of bend for motorcycles and cars. The descriptive data in Table 7.24 

reveal that riders in general were least likely to be KSI when there was absence of 

bend for motorcycles and cars (30.6% of the injuries were KSls for accidents where 

there was no bend for motorcycles and cars). It was found that injuries were greatest 

in head-on collisions in which motorcycles travelling on non bends collided with cars 

travelling on bends (as much as 47.3% of the injuries were KSls). 
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Table 7.24: Distribution of motorcyclist injury severity by the interaction of the 
presence of bend for motorcycles and cars in head-on crashes. 

Interaction ofthe 
Total presence of bend for No injury Slight injury KSI 

(% of total) motorcycles and cars 
Bend * bend 6 (1.0%) 317 (55.1%) 252 (43.8%) 575i15.4O/~ 
Bend * non bend 1 (0.5%) 130 (61.3%) 81 (38.2%) 212 (5.7%) 
Non bend * bend 2[2.2O/~ 47J50.5o/~ 44147.30/01 93j2.5o/~ 
Non bend * non bend 51 (1.8%) 1935 (67.6%) 875 (30.6%) 2861 (76.50/~ 
Total 60(1.6%) 2429 (64.9%) 1252133.5%) 3741 (100%) 

Table 7.25 and Table 7.26 present the distribution of motorcyclist injury severity by 

motorcycle's manoeuvre and car's manoeuvre respectively. The manoeuvres 

examined include changing lane, overtaking, and travelling straight. The statistics 

show that injuries were greatest when motorcyclists were overtakers (34.6% of the 

injuries were KSls, as shown in Table 7.25), and when cars were travelling straight 

(34.1 % of the injuries were KSls, as shown in Table 7.26). This may be as a result of 

motorbikes being at acceleration modes while overtaking other vehicles. 

Table 7.25: Distribution of motorcyclist injury severity by motorcycle's 
manoeuvre. 

Manoeuvre No injury Slight injury KSI Total 
(% oftotal) 

Changing lane 1 (1.7%) 25 (69.4%) 10 (27.8%) 36 (l.0%) 
Overtaking 9 (1.7%) 346 (63.7%) 188 (34.6%) 543 (14.5%) 
Travelling straight 50 (1.6%) 2058 (65.1%) 1054 (33.3%) 3162 (84.5%) 
Total 60 (1.6%) 2429 (64.9%) 1252 (33.5%) 3741 (100%) 

Table 7.26: Distribution of motorcyclist injury severity by car's manoeuvre. 

Manoeuvre No injury Slight injury KSI Total 
(% oftotal) 

Changing lane 1 (0.9%) 86 (73.5%) 30 (25.6%) 117 (3.1%) 
Overtaking 3 (0.9%) 222 (69.4%) 95 (29.7%) 320 (8.6%) 
Travelling straight 56 (1.7%) 2121 (64.2%) 1127 (34.1%) 3304 (88.1 %) 
Total 60 (1.6%) 2429 (64.9%) 1252 (33.5%) 3741 (100%) 
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Table 7.27 reports the distribution of motorcyclist injury severity by the interaction of 

the manoeuvres of motorcycles and cars prior to accidents. It should be noted here 

that in Table 7.27, the manoeuvres "changing lane" and "overtaking" were merged 

into one single manoeuvre "traversing manoeuvre". This is because in the multivariate 

analysis through the use of the OP model of motorcyclist injury severity, changing 

lane and overtaking were found to yield less statistically significant results than 

grouping lane changing and overtaking together into one category. As a result, the two 

manoeuvre groups (traversing and travelling straight) were considered to be more 

appropriate than three manoeuvre groups (overtaking, changing lane, and travelling 

straight). The descriptive statistics in Table 7.27 show that injuries to motorcyclists 

were greatest in head-on collisions in which a traversing motorcycle collided with a 

travelling-straight car (35.2% of the injuries were KSIs). 

Table 7.27: Distribution of motorcyclist injury severity by the interaction ofthe 
manoeuvres of motorcycles and cars in head-on crashes. 

Interaction of the 
Total manoeuvres of No injury Slight injury KSI 

(% oftotal) motorcycles and cars 
Traversing * traversing IJ1.5o/~ 49J72.1%1 18J26.5o/~ 68J1.8o/~ 
Traversing * straight 9 (1.8%) 322 (63.0%) 180 (35.2%) 511 (l3.7O/~ 
Straight * traversing 3 (0.8%) 259 (70.2%) 107 (29.0%) 369 (9.9%) 
Straight * straight 47 (1.8%) 1799J64.4O/~ 947 J33.9o/~ 2793 J7 4. 7O/~ 
Total 60 (1.6%) 2429 (64.9%) 1252 (~~.5"1o) 3741 (100%) 

In addition to the variables of interest (Le., the presence of bend, pre-crash 

manoeuvres), the variables examined in the aggregate model (see Table 6.2 in section 

6.3) are incorporated into the disaggregate model of head-on crashes. These variables 

include rider/motorist factors, vehicle factors, weather/temporal factors, and 

roadway/geometric characteristics. 

A correlation matrix among the variables was reported (see Table 7.28) to assess the 

presence of multicollinearity. Similar to the models of approach-turn B crashes, and 

angle A/B crashes (see Table 7.7, Table 7.14, and Table 7.15), multicollinearity was 

found to exist between the variable "street light condition" and "time of accident", 

with a correlation value of 0.572. For each of these two variables that are highly 

correlated with each other, a model run was calibrated and the most significant 

variable, which is "time of accident", is retained in the analysis. 
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The variable "bend for motorcycle" was also correlated with the variable "bend for 

car", with a correlation value of 0.744 (Table 7.28). For each of these two variables 

that are highly correlated with each other, similarly a model run was calibrated and 

the most significant variable, which is "Bend for car", is retained in the analysis. 

The subsequent section presents a multivariate examination of the determinants of 

motorcyclist injury severity in head-on crashes (i.e., controlling for all factors that 

influence motorcyclist injury severity) using the OP model. 

7.3.3 Estimation Results 

Table 7.29 reports the estimation results of the head-on crash model. A total of 3741 

motorcyclist casualties resulting from head-on collisions at T-junctions were extracted 

from the Stats19 over the period of years 1991-2004. Of3741 motorcyclist casualties, 

33.5% are classified as KSI, 64.9% are classified as slight injury, and 1.6% are 

classified as no injury. The model has a pseudo-R2 measure of 0.061. As for 

predicting each injury-severity category, the classification accuracy for KSI, slight 

injury, and no injury was 20.4%, 93.4%, and 0%. 
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Table 7.29: Statistics summary and estimation results of the head-on crash model. 

Variables Categories Frequency (%) 
Coefficient 
(p-value) 

Gender of rider I. male 3524 (94.2%) 0.060 (0.505) 
2. female 217{5.8o/ol Reference case 

Age of rider I. 60 above 63 (1.7%) -0.017 (0.915) 
2. up to 19 944 (25.2%) -0.101 (0.054) 
3. 20-59 2734 (73.1 %) Reference case 

Gender of collision partner I. untraced 185 (4.9%) -0.070 (0.610) 
2. male 2608 (69.7%) 0.1131.O.02Ql 
3. female 948 (25.3%) Reference case 

Age of collision partner I. untraced 319 (8.5%) -0.199 (0.051) 
2.60 above 338 (9.0%) -0.026 (0.717) 
3. up to 19 198 (5.3%) -0.117 (0.209) 
4. 20-59 2886f77.1%) Reference case 

Bend for car I. bend 668 (15.4%) 0.172 JO.003) 
2. non bend 3073 (82.1%) Reference case 

Engine size 1. engine size> 125cc 2763 J73.9o/ol 0.092 JO.0811 
2. engine size up to 125cc 978 (26.1%) Reference case 

Number of vehicle involved I. >-3 711 (19.0%) 0.1641.0.0021 
2. two-vehicle crash 3030 (81.0%) Reference case 

Collision partner I. he~oods vehicle 311 (8.3%) 0.264J<0.0011 
2. bus/coach 109 (2.9%) 0.132 (0.281) 
3. car 3321 (88.8%) Reference case 

Accident month I. spring/summer (Mar-Aug) 2094 (56.0%) -0.029 (0.497) 
2. autumnlwinterJS~-Feb) 1647J44.0%) Reference case 

Junction control measure I. uncontrolled 684 (18.3%) 0.332 (0.024) 
2. stop,~ive-way signs or marking 2970 (79.4%) 0.4271.0.0021 
3. automatic signal 87 (2.3%) Reference case 

Weather condition I. other/unknown 67 (1.8%) -0.040 (0.806) 
2. fine weather 3198 (85.5%) 0.110 (0.077) 
3. bad weather 476J12.7%) Reference case 

Accident time I. evening (1800-2359) llll (29.7%) 0.192J.<0.00!l 
2. midnight; early morning (0000-0659) 136 (3.6%) 0.490 «0.001) 
3. rush hours (0700-0859; 1600-17522 1055 (28.2O/~ 0.010JO.84Ql 
4. non rush hours (0900-1559) 1439 (38.5%) Reference case 

Accident day of week 1. weekendJSaturd<lY-SundllY) 1074 (28.7%) 0.079 JO.08~ J 
2. weekday (Monday-Friday) 2667 (71.3%) Reference case 

Speed limit I. non built-ullroads (>40mph) 667J17.8o/~ 0.48H<0.00!l 
2. built-up roads «=40mph) 3074 (82.2%) Reference case 

Interaction effect of 1. traversi~ * traversi~ 68 (1.8%) -0.110 (0.480) 
motorcycle'S and vehicle's 2. traversing * straight 511 (13.7%) 0.081 (0.183) 
manoeuvres 3. straight * traversiIlg 369 (9.9%) 0.006 (0.935) 

4. straight * straight 2793 (74.7%) Reference case 

Jil -1.312 «0.001) 

Ji2 1.355 «0.001) 

Summal'y Statistics 
-2 Log-likelihood at zero = 3967.295 
-2 Log-likelihood at convergence = 3727.382 
Log-likelihood ratio index (p2) = 0.061 

The number ofKSI that was correctly predicted: 255 (20.4%) 
The number of slight injury that was correctly predicted: 2268 (93.4%) 
The number of no injury that was correctly predicted: 0 (0%) 
Observations = 3741 (KSI: 33.5%; slight injury: 64.9%; no injury: 1.6%) 
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Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

Similar to the models that have been calibrated in previous sections (see the models of 

motorcycle-car accidents in whole, approach-turn B crashes, and angle A crashes in 

section 6.3, section 7.2.3.2, and section 7.2.4.2), a benchmark case was generated in 

order to discuss probabilities of three injury-severity levels in head-on crashes. The 

probabilities of a benchmark sustaining three injury-severity levels are derived by 

holding all dummy variables to 0 (see Table 7.30). Such benchmark victim has the 

fo llowing characteristics: 

(a) was a female 

(b) was aged between 20-59 

(c) was involved in a collision in which the involved motorist was female 

(d) was involved in a collision in which the age of the involved motorist was aged 

between 20-59 

(e) was riding a motorcycle with engine size up to 125cc 

(f) was involved in a collision in which the crash partner was a car 

(g) was involved in a two-vehicle collision 

(h) was involved in a collision where her collision partner was travelling on the 

straight road (not on the bend) 

(i) was involved in a crash in autumn/winter month 

U) was involved in a crash when the weather was adverse 

(k) was involved in a crash during non rush hours 

(1) was involved in a crash on weekday 

(m)was involved in a crash on the built-up road 

(n) was involved in a crash in which she was travelling straight and her crash 

partner was travelling straight at the same time 
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Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

The effects human factors have on motorcyclist injury severity were estimated. Fairly 

different results regarding the effects of human factors, while compared with those of 

the aggregate model for accidents in whole (Table 6.2 and Table 6.3 in section 6.3), 

were observed. For example, mid-aged motorcyclists in head-on crashes tended to be 

more injurious than other age groups that have negative coefficient values (Table 

7.29). Riders were most likely to be KSI while they collided with mid-aged motorists 

(see the negative coefficient values for other age groups in Table 7.29). With regard to 

the effect of rider/motorist gender, no variation was found for rider gender due to its 

lack of statistical significance. However, male motorists have a positive coefficient of 

0.113 (Table 7.29). The probability of a KSI in a collision with a male motorist is 

22.12% higher (Table 7.30). 

The effects of other explanatory variables appeared to be fairly similar to those of the 

aggregate model (see Table 6.2 and Table 6.3 in section 6.3). As reported in Table 

7.29, factors that were most significantly associated with the increased motorcyclist 

injury severity include heavier motorcycle engine size (coefficient value=O.092, p­

value=0.081), HGVs as collision partners (coefficient value=0.264, p-value<O.OOl), 

accidents that occurred at stop-controlled junctions (coefficient value=0.427, p­

value=0.002), riding on non built-up roads (coefficient value=0.483, p-value<O.OOl), 

and during mid-night/early morning hours (coefficient value=0.490, p-value<O.OO 1). 

These results are not surprising. For instance, HGVs that have higher compartment 

may run over the riders involved in head-on collisions, resulting in more severe 

injuries to riders than a car. For mid-night/early morning riding conditions, there 

might be much more alcohol use and speeding during this period (Broughton, 2005; 

Pai and Saleh, 2007b). Collision impact that arises from opposite directions (e.g., a 

car travelling eastwards collided with a motorcycle travelling westwards) can thus be 

higher. 

The bend effect is measured relative to roadways without bend. Only the variable 

"bend for car" was included in the analysis as the variable "bend for motorcycle" was 

found to be correlated with the variable "bend for car". As shown in Table 7.29, 

motorcyclists tended to be more injurious when there were bends for cars, with a 

coefficient of 0.172. The presence of bend for a car has a 35.01 % increase in the 

probability of a KSI, relative to the absence of bend for a car (Table 7.30). The likely 

163 



Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

explanation for this effect is that bends on roadways may oveliax either riders or 

motorists in following the curving alignment, thereby reducing the sight distance and 

the ability of riders and/or motorists to detect the oncoming traffic travelling along the 

curve. This is also likely to be the consequence of either the car or motorcycle that 

travels beyond the centreline in order to reduce the centrifugal force, as shown in 

Figure 7.5. A collision that results from an unintended/intended movement into the 

oncoming traffic may therefore be unexpected and severe. 

~/ 
~-------- - "- " " ' " 

y,----- ~ .... 
"--

"""'" 

,,'/ 
'" 

" 

Figure 7.5: Schematic diagram of a head-on crash in which a car travelling 
beyond the centreline (in order to reduce the centrifugal force) collided with an 

oncoming motorcycle. 

The interaction effects of the pre-crash manoeuvres of motorcycles and cars on 

motorcyclist injury severity were investigated. As reported in Table 7.29, injuries to 

riders were greatest in a head-on crash in which a traversing motorcycle collided with 

a travelling-straight car, though only at an 80% confidence leveL The probability of a 

KSI increases by 15 .51 % under such circumstance relative to a crash in which a 

travelling-straight motorcycle collided with a travelling-straight car (Table 7,30), 

Speed might be one of the likely explanations for this effect. Which is, higher speed 

of a travelling-straight car (relative to a traversing car) may act synergistically with 

the sudden appearance of a traversing motorcycle (that may originally be blocked by 

other traffic) to increase motorcyclist injury severity, 
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Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

7.3.4 Summary 

This section presented the estimation results of the motorcycle-car head-on crash 

model. The factors that affected motorcyclist injury severity resulting from head-on 

crashes have been successfully identified. Specifically, the modelling results revealed 

some combined effects that predisposed riders to a greater risk of KSIs. For instance, 

there is evidence that riders were more injury-prone when curves were present for cars 

than when there was no curvature at all for cars. In addition, injuries were greatest in a 

head-on crash in which a traversing motorcycle collided with a travelling-straight car 

(see Table 7.29 and Table 7.30). 

The next section presents an analysis of the factors that influence motorcyclist injury 

severity resulting from same-direction crashes. 
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7.4 Same-direction crash 

7.4.1 Introduction 

Although the descriptive analysis (Table 5.3 in section 5.4) and the aggregate crash 

model (Table 6.2 in section 6.3) showed that riders in same-direction crashes were the 

least likely of all crash configurations to be KSI (18.4% of the injuries were KSIs), 

such crash configuration accounted for one-third of all motorcycle-car accidents at T­

junctions (31.3% of all casualties were as a result of same-direction collisions). See 

Figure 4.4( d) in section 4.3 for a schematic diagram of a same-direction crash. 

Therefore it is worth identifYing the hazardous factors that are most significantly 

associated with the increased motorcyclist injury severity in this crash configuration. 

In this section, motorcycle-car same-direction crashes are subdivided into sideswipe 

crashes and rear-end crashes. This section attempts to identifY the determinants of 

motorcyclist injury severity resulting from motorcycle-car same-direction crashes, 

focusing on the effects of the pre-crash manoeuvres by motorcycles and cars, as well 

as different junction control measures. These factors (Le., pre-crash manoeuvres and 

junction control measures) have been found to contribute to the occurrences of car-car 

sideswipe crashes (e.g., Chovan et aI., 1994; Li and Kim, 2000) or car-car rear-end 

crashes (e.g., Abdel-Aty and Abdelwahab, 2003,2004; Wang and Abdel-Aty, 2006). 

It is hypothesised in this current study that these factors may playa part in affecting 

motorcyclist injury severity resulting from these two crash configurations. 

The remainder of this section proceeds with a description of the crash typology for 

sideswipe and rear-end collisions. The descriptive analysis is then conducted to 

examine the distribution of motorcyclist injury severity by the variables of interest 

(e.g., pre-crash manoeuvres and junction control measures). This is followed by a 

multivariate examination of the determinants of motorcyclist injury severity in 

sideswipe crashes and rear-end crashes. The modelling results by sideswipe and rear­

end crashes are provided separately. The section ends with a summary of the research 

findings. 
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7.4.2 Classification of Same-Direction Crashes 

A same-direction collision is classified into six crash manners, depending on the first 

point of impact of the motorcycle and car. The variable "First Point of Impact" that is 

readily available in the Stats19 provides the information on the first crash point of the 

involved car and motorcycle (see Figure 7.6). A schematic diagram of six crash 

manners that are classified from same-direction collisions is provided in Table 7.31. 

The classification of these six crash manners that are based on the first point of impact 

is also explained in Table 7.31, with the frequency of each crash manner. 

4 
nearside 

I front 

2 back 

3 
offside 

4 
nearside 

1 front 

2 back 

3 
offside 

Figure 7.6: Illustration of the first crash point of car and motorcycle in the 
Stats19 for the classification of sideswipe and rear-end crash. 
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Table 7.31: The classification of the six crash manners that are based on the first 
points of imnact of the involved motorcvcle and car in same-direction crashes. 

First point of 
First point of 

Crash manner impact ofa 
impact of a car 

Frequency (%) 
motorcycle 

a. 

SO~ nearside/offside nearside/offside 6261 (18.0%) 

b. 

~ ~ front nearside/offside 11056 (31.8) 

~ ~ 
c. 

A ~ ~ ~ nearside/offside front 1483 (4.3%) ; ; 
d. 

%JP ~ back! nearside/offside/ 
643 (1.85%) 

nearside/offside back , 
e. 

~ front back 7087 (20.4%) 

+ f. 

* back front 3614 (10.4%) 

; 
g. other other combinations of first point of 4662 (13.4%) 

impact 
Total 34806 (100%) 
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As reported in Table 7.31, a same-direction crash is classified into six crash manners 

(from (a) to (f)), with an "other" category (g). The details of these six crash manners 

are provided below: 

(a) a car collides with a motorcycle at a parallel crash-angle (the side of a motorcycle 

strikes the side of a car) 

- the first point of impact of a motorcycle and a car can be "offside versus 

offside" or "nearside versus nearside" 

(b) a motorcycle head-to-sides a car (the front of a motorcycle crashes into the side of 

a car) 

- the first point of impact of a motorcycle and a car can be "motorcycle'S front 

versus car's offside/nearside" 

(c) a car head-to-sides a motorcycle (the front of a car crashes into the side of a 

motorcycle) 

- the first point of impact of a motorcycle and a car can be "car's front versus 

motorcycle's offside/nearside" 

(d) a motorcycle/car crashes into the back of a car/motorcycle with its nearside/offside 

- the first points of impact of a motorcycle and a car can be "nearside/offside of a 

motorcycle versus back of a car" or "nearside/offside of a car versus back of a 

motorcycle" 

(e) a motorcycle crashes into the back of a car ahead with its front (the front of a 

motorcycle crashes into the back of a car) 

- the front of a motorcycle is exactly the first point of impact and the back of a car 

is exactly the first point of impact 

(f) a car crashes into the back of a motorcycle ahead with its front (the front of a car 

crashes into the back of a motorcycle) 

- the front of a car is exactly the first point of impact and the back of a motorcycle 

is exactly the first point of impact 

(g) other crash manners, including those collisions that could not be fit into the six 

crash manners above. 
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In this section, crash manners (a) to (d) are termed as "sideswipe crash" as these crash 

manners take place while the nearside/offside of a motorcycle/car is the first point of 

impact. Crash manner (d) is termed as a "rear-end McCar crash" which represents a 

crash in which a following motorcycle crashes into a leading car. Crash manner (e) is 

termed as a "rear-end CarMc crash" which represents a crash in which a following car 

crashes into a leading motorcycle. 

The main reason for the classification of these crash patterns was that injury-severity 

levels may be associated with struck or striking role that motorcyclists play in 

different ways. For instance, motorcyclists that are rear-ended by cars may be more 

likely to eject and consequently to be run over by other automobiles nearby, while 

there might be different collision-impact for a motorcyclist that crashes into a leading 

car ahead. Several researchers (e.g., Duncan et aI., 1998; Khattak, 2001) have 

revealed differences in the injury-severity levels among occupants in the striking and 

struck cars in car-car rear-end collisions. Duncan et ai. and Khattak have similarly 

found that occupants in the struck cars to the rear appeared to be more severely 

injured than those in the cars striking another car ahead (section 2.4.3.3 provides the 

details of literature on car-car sideswipe and rear-end collisions). 

Table 7.32 provides the information on the distribution of motorcyclist injury severity 

by these crash manners in motorcycle-car same-direction crashes. The statistics in 

Table 7.32 revealed that for sideswipe crashes, a motorcycle crashing into a car (i.e., a 

motorcycle head-to-sides a car) is the deadliest crash manner (22.0% of the injuries 

were KSIs). Such crash manner was the most frequently occurring crash type, which 

accounts for 31.8% of all casualties. For rear-end crashes, injures to motorcyclists 

were more severe when it was a McCar crash (20.6% of the injuries were KSIs) than 

when it was a CarMc crash (9.3% of the injuries were KSIs). 
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Table 7.32: Distribution of motorcyclist injury severity by crash manner in 
same-direction collisions. 

Crash manner No injury Slight injury KSI 
Total 

(% oftofal) 
(a) sideswipe: side to side 53 (0.8%) 5205 (83.1 %) 1003 (16.0%) 6261 (18.0%) 
(b) sideswipe: motorcycle 

1446 (1.3%) 8477 (76.7%) 2435 (22.0%) 11056 (31.8%) 
head-to-sides car 
(c) sideswipe: car head-to-

16 (1.5%) 809 (78.0%) 212 (20.4%) 1037 (5.2%) 
sides motorcycle 
(d) sideswipe: car/motorcycle 
crashes into motorcycle/car 9 (1.4%) 501 (77.9%) 133 (20.7%) 643 (1.8%) 
(side versus back) 
(e) rear-end: McCar 

212 (3.0%) 5418 (76.4%) 1457 (20.6%) 7087 (20.4%) 
(motorcycle crashes into car) 
(t) rear-end: CarMc (car 

62 (1.7%) 3216 (89.0%) 336 (9.3%) 3614 (10.4%) 
crashes into motorcycle) 
(g) unknown 125 (2.7%) 3767 (78.0%) 770 (16.5%) 4662 (13.4%) 
Total 250 (1.3%) 15672 (79.0%) 3916 (19.7%) 19838 (100%) 

In order to gain an understanding of the factors that affect motorcyclist injury severity 

resulting from the two deadliest combinations (Le., crash manner (b) and (e), as 

illustrated in Table 7.31), two separate OP models by these two crash manners are 

estimated. 

7.4.3 Model Specification 

The variables examined in the aggregate model (see Table 6.2 in section 6.3) are 

incorporated into the disaggregate models of a sideswipe "motorcycle head-to-sides 

car" crash (Le., crash manner (b)) and rear-end McCar crash (i.e., crash manner (e)). 

Among these variables, the variable "junction control measures" is the variable of 

particular interest. This is because research has reported that at signalised junctions, 

rear-end crashes were frequently the predominant collision type involving two cars 

(Wang and Abdel-Aty, 2006). Such crash type arises from the combination a leading 

car's deceleration under the influence of the automatic signals and the ineffective 

response of a following car to this deceleration (Wang and Abdel-Aty, 2006). It is 

hypothesised in this current study that junction control measures would playa part in 

affecting motorcyclist injury severity in sideswipe "head-to-side" crashes and in rear­

end McCar crashes. 
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In addition to these variables abovementioned, the variable "manoeuvres" is 

incorporated into the models. This is because there is evidence in the literature 

documenting the increased risk of involving in car-car sideswipe/rear-end crash due to 

improper manoeuvres (e.g., overtaking, lane-changing, shunting, or tailgating) (see, 

for example, Clarke et aI., 1998; Abdel-Aty and Abdelwahab, 2003, 2004). 

The descriptive analysis is conducted to examine the distribution of motorcyclist 

injury severity by the variables of primary interest. The variables of interest include 

junction control measures, and the pre-crash manoeuvres of motorcycle and car. 

Table 7.33 and Table 7.34 report the information on the distribution of motorcyclist 

injury severity by junction control measure in sideswipe "motorcycle head-to-sides 

car" crashes and rear-end McCar crashes respectively. The data in Table 7.33 and 

Table 7.34 show that both crash manners that occurred at uncontrolled junctions 

predispose riders to a greater risk of KSIs (23.5% and 21.3% of the injuries were 

KSIs). The second deadliest junction control measure is stop/give-way controlled 

junctions (22.4% and 20.9% of the injuries were KSIs). These data imply that riders 

involved in accidents at signalised junctions were the least likely of all junction 

control measures to be KSI in both crash manners. 

Table 7.33: Distribution of motorcyclist injury severity by junction control 
measure in sideswipe "motorcycle head-to-sides car" collisions. 

Control measure No injury Slight injury KSI Total 
(% oftotal) 

uncontrolled 31 (1.9%) 1196 (74.6%) 377 (23.5%) 1604 (14.5%) 
stop, give-way signs or 

110 (1.2%) 6745 (76.3%) 1982 (22.4%) 8837 (79.9%) 
markings 
automatic signals 3 (0.5%) 536 (87.2%) 76 (12.4%) 615 (5.6%) 
Total 144 (1.3%) 15672 (76.7%) 2435(~2-,0% ) 11056 (100%) 

Table 7.34: Distribution of motorcyclist injury severity by junction control 
measure in rear-end McCar collisions. 

Control measure No injury Slight injury KSI 
Total 

(% oftotal) 
uncontrolled 44 (4.2%) 772 (74.4%) 221 (21.3%) 1039 (14.6%) 
stop, give-way signs or 

136 (2.5%) 4201 (76.6%) 1744 (20.9%) 5481 (77.3%) 
markings 
automatic signals 32 (5.6%) 445 (78.2%) 92 (16.2%) 569 (8.0%) 
Total 212 (3.0%) 5418 (76.4%) 1457 (20.6%) 7087 (100%) 
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Table 7.35 and Table 7.36 report the distribution of motorcyclist injury severity by 

pre-crash manoeuvre of motorcycle and car in sideswipe "motorcycle head-to-sides 

car" collisions. The statistics in Table 7.35 and Table 7.36 show that riders were more 

likely to be KSI when they were oVeltaking (24.5% of the injuries were KSls), or 

when cars were making a turn (23.3% of the injuries were KSls). 

Table 7.35: Distribution of motorcyclist injury severity by motorcycle's 
manoeuvre in sideswipe "motorcycle head-to-sides car" collisions. 

Manoeuvre No injury Slight injury KSI 
Total 

(% oftotal) 
Overtaking 81 (1.3%) 4535 (74.2%) 1495 (24.5%) 6110 (55.3%) 
Turning 4 (1.3%) 258 (83.0%) 49 (15.8%) 311 (2.8%) 
Changing lane 0(0%) 56 (84.8%) 10 (15.2%) 66 (0.6%) 
Travelling straight 59 (1.3%) 3629 (79.4%) 881 (16.9%) 4569 (41.3%) 
Total 144 (1.3%) 8477 (76.7%) 2435 (22.0%) 11056 (100%) 

Table 7.36: Distribution of motorcyclist injury severity by car's manoeuvre in 
sideswipe "motorcycle head-to-sides car" collisions. 

Manoeuvre No injury Slight injury KSI 
Total 

(% oftotal) 
Overtaking 0(0%) 138 (84.7%) 25 (15.3%) 163 (1.5%) 
Turning 120 (1.3%) 6883 (75.4%) 2123 (23.3%) 9126 (82.5%) 
Changing lane 5 (0.9%) 489 (86.3%) 74 (12.8%) 577 (5.2%) 
Travelling straight 19 (1.6%) 958 (80.5%) 213 (17.9%) 1190 (10.8%) 
Total 144 (1.3%) 8477 (76.7%) 2435 (22.0%) 11056 (1000/0) 

Table 7.37 and Table 7.38 report the distribution of motorcyclist injury severity by 

pre-crash manoeuvre of motorcycle and car in rear-end McCar collisions. Similar to 

the data in Table 7.35 and Table 7.36, the descriptive data in Table 7.37 and Table 

7.38 reveal that injuries were greatest when motorcycles were overtaking (25.3% of 

the injuries were KSIs), or when cars were making a turn (23.6% of the injuries were 

KSIs). 

Table 7.37: Distribution of motorcyclist injury severity by motorcycle's 
manoeuvre in rear-end McCar collisions. 

Manoeuvre No injury Slight injury KSI 
Total 

(% oftotal) 
Overtaking 7 (0.8%) 646 (73.9%) 221 (25.3%) 847 (12.3%) 
Turning 7 (4.8%) 119 (81.5%) 20 (13.7%) 146 (2.1%) 
Changing lane 0(0%) 40 (87.0%) 6 (13.00/0 46(0.60/0 
Travelling straight 198 (3.3%) 4613 (7.6%) 1210 (20.1 %) 6021 (85.0%) 
Total 212 (3.0%) 5418 (76.4%) 1457 (20.6%) 7087 (100%) 
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Table 7.38: Distribution of motorcyclist injury severity by car's manoeuvre in 
rear-end McCar collisions. 

Manoeuvre No injury Slight injury KSI 
Total 

(% of total) 
Overtaking 2 (2.2%) 70 (76.1%) 20 (21.7%) 92 (1.3%) 
Turning 80 (2.7%) 2214 (73.7%) 709 (23.6%) 3003 (42.4%) 
Changing lane 0(0%) 169 (81.3%) 39 (18.8%) 208 (2.9%) 
Travelling straight 130 (3.4%) 2965 (78.4%) 689 (18.2%) 3784 (53.4%) 
Total 212 (3.0%) 5418 (76.4%) 1457 (20.6%) 7087 (100%) 

The descriptive data in Table 7.33 to Table 7.38 provided a general picture of the 

univariate relationship between motorcyclist injury severity and the variables of 

interest. The subsequent section presents a multivariate examination of the 

determinants of motorcyclist injury severity in sideswipe "motorcycle head-to-sides 

car" crashes and rear-end McCar crashes (i.e., controlling for all factors that influence 

motorcyclist injury severity) using the OP model. 

A correlation matrix among the variables was reported (see Table 7.39 for sideswipe 

crash and Table 7.40 for rear-end crash) to assess the presence of multicollinearity. 

Similar to the models of approach-turn B crashes, angle AlB crashes, and head-on 

crashes (see Table 7.7, Table 7.14, Table 7.15, and Table 7.28), multicollinearity was 

found to exist between the variable "street light condition" and "time of accident", 

with a correlation value of 0.582 and 0.554 (see Table 7.39 and Table 7.40). For these 

two variables that are highly correlated with each other, only the most significant 

variable, which is "time of accident", is retained in the analysis. 
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Similar to the model of head-on crash (see Table 7.28 in section 7.3.2), a high 

correlation was observed between the variables "bend for motorcycle" and "bend for 

car", with a value of 0.517 and 0.538 (see Table 7.39 and Table 7.40). For these two 

variables that are highly correlated with each other, only the most significant variable 

is retained in the models. It should be noted here that for the model of sideswipe 

"motorcycle head-to-sides car" crash, the variable "bend for motorcycle" is found to 

be more significant than the variable "bend for car". However, for the model of rear­

end McCar crash, the variable "bend for car" is found to be more significant than the 

variable "bend for motorcycle". As a result, the variable "bend for motorcycle" is 

retained in the sideswipe "motorcycle head-to-sides car" crash model, while the 

variable "bend for car" is retained in the rear-end McCar crash model. 

7.4.4 Estimation Results for Sideswipe "Motorcycle Head-to-Sides Car" Collisions 

Table 7.41 reports the estimation results of the sideswipe crash model. After removing 

unreliable/missing data, a total of 11056 motorcyclist casualties resulting from 

sideswipe "motorcycle head-to-sides car" collisions at T-junctions were extracted 

from the Statsl9. Of 11056 motorcyclist casualties, 22.0% are classified as KSI, 

76.7% are classified as slight injury, and 1.3% are classified as no injury. The model 

has a pseudo-R2 measure of 0.078. As for predicting each injury-severity category, the 

classification accuracy for KSI, slight injury, and no injury was 4.8%, 98.7%, and 0%. 

Similar to the models that have been calibrated in previous sections (see, for example, 

the models of motorcycle-car accidents in whole, approach-turn B crashes, and angle 

A crashes in section 6.3, section 7.2.3.2, and section 7.2.4.2), a benchmark case was 

generated in order to discuss probabilities of three injury-severity levels in sideswipe 

"motorcycle head-to-sides car" crashes. The probabilities of a benchmark sustaining 

three injury-severity levels are derived by holding all dummy variables to 0 (see Table 

7.42). Such benchmark victim has the following characteristics: 

(a) was a female 

(b) was aged between 20-59 

(c) was involved in a collision in which the involved motorist was female 
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(d) was involved in a collision in which the age of the involved motorist was aged 

between 20-59 

(e) was riding a motorcycle with engine size up to 125cc 

(f) was involved in a collision in which the crash partner was a car 

(g) was involved in a two-vehicle collision 

(h) was travelling on the straight road (not on the bend) 

(i) was involved in a crash in autumn/winter month 

U) was involved in a crash when the weather was adverse 

(k) was involved in a crash during non rush hours 

(1) was involved in a crash on weekday 

(m) was involved in a crash on the built-up road 

(n) was involved in a crash when her pre-crash manoeuvre was "travelling 

straight" 

(0) was involved in a crash when the pre-crash manoeuvre of her crash pattern 

was "travelling straight" 
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Table 7.41: Statistics summary and estimation results of the sideswipe 
"motorcycle head-to-sides car" model. 

Variables Categories of each variable Frequency (%) 
Coefficient 
(p-value) 

Gender of rider 1. male 10436 (94.4%) 0.025 (0.659) 
2. female 620 (5.6%) Reference case 

Age ofrider 1. 60 above 162 (1.5%) 0.240 (0.022) 
2. up to 19 2200 (19.9%) -0.010 (0.769) 
3.20-59 8694 (78.6%) Reference case 

Gender of collision partner 1. untraced 388 (3.5%) 0.051 (0.572) 
2. male 7888 (71.3%) 0.059 (0.054) 
3. female 2780 (25.1%) Reference case 

Age of collision partner 1. untraced 968 (8.8%) -0.134 (0.018) 
2.60 above 702 (6.3%) 0.073 (0.161) 
3. up to 19 538 (4.9%) 0.066 (0.262) 
4.20-59 8848 (80.0%) Reference case 

Bend for motorcycle 1. bend 118 (1.1%) 0.181 (0.140) 
2. non bend 10938 (98.9%) Reference case 

Engine size 1. engine size> 125cc 8419 (76.1%) 0.220 «0.001) 
2. engine size up to l25cc 2637 (23.9%) Reference case 

Number of vehicle involved 1. >=3 509 (4.6%) 0.273 «0.001) 
2. two-vehicle crash 10547 (95.4%) Reference case 

Collision partner 1. heavy good vehicle 1155 (10.4%) 0.178 «0.001) 
2. bus/coach 166 (1.5%) 0.116 (0.263) 
3. car 9735 (88.1%) Reference case 

Accident month 1. spring/summer (Mar-Aug) 6124 (55.4%) 0.006 (0.812) 
2. autumn/winter (Sep-Feb) 4932 (44.6%) Reference case 

Junction control measure 1. uncontrolled 1604 (14.5%) 0.110 (0.099) 
2. stop, give-way signs or marking 8837 (79.9%) 0.153 (0.010) • 
3. automatic signal 615 (5.6%) Reference case 

Weather condition 1. other/unknown 187 (1.7%) -0.024 (0.827) 
2. fine weather 9863 (89.2%) 0.112 (0.014) 
3. bad weather 1006 (9.1%) Reference case 

Accident time 1. evening (1800-2359) 2654 (24.0%) 0.118 «0.001) 
2. midnight; early morning (0000-0659) 294 (2.7%) 0.244 (0.002) 
3. rush hours (0700-0859; 1600-1759) 3553 (32.1 %) -0.001 (0.986) 
4. non rush hours (0900-1559) 4555 (41.2%) Reference case 

Accident day of week 1. weekend (Sat-Sun) 2505 (22.7%) 0.085 (0.007) 
2. weekday (Mon-Fri) 8551 (77.3%) Reference case 

Speed limit 1. non built-up roads (>40mph) 1120 (10.1%) 0.632 «0.001) 
2. built-up roads «=40mph) 9936 (89.9%) Reference case 

Motorcycle's manoeuvre 1. overtaking 6110 (55.3%) 0.080 (0.004) 
2. turning 311 (2.8%) -0.067 (0.418) 
3. changing lane 66 (0.6%) -0.027 (0.877) 
4. going straight 4569 (41.3%) Reference case 

Car's manoeuvre 1. overtaking 163 (1.5%) 0.002 (0.986) 
2. turning 9126 (82.5%) 0.115 (0.009) 
3. changing lane 577 (5.2%) -0.098 (0.167) 
4. going straight 1190 (10.8%) Reference case 

/11 -1.534 «0.001) 

/12 1.560 «0.001) 

Summary Statistics 
-2 Log-likelihood at zero = 7061.156 
-2 Log-likelihood at convergence = 6514.299 
Log-likelihood ratio index (p2) = 0.078 

The number ofKS! that was correctly predicted: 117 (4.8%) 
The number of slight injury that was correctly predicted: 8383 (98.9%) 
The number of no injury that was correctly predicted: 0 (0%) 
Observations = 11056 (KSI: 22.0%; slight injury: 76.7%; no injury: 1.3%) 

- -----
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Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

As reported in Table 7.41, relatively comparable modelling results were observed 

from the sideswipe "motorcycle head-to-sides car" crash model compared with those 

of the aggregate model that was estimated in section 6.3 (Table 6.2 and Table 6.3). 

For example, factors that were most significantly associated with the increased 

motorcyclist injury severity include elderly riders (coefficient=0.240, p-value=O.022), 

male motorists (coefficient=O.059), collisions with HGVs (coefficient=O.l78, p­

value<O.OOI), larger motorcycle engine capacity (coefficient=O.220, p-value<O.OOI), 

and accidents that involved more than three vehicles (coefficient=0.273, p­

value<O.OOI), under fine weather (coefficient=O.1l2, p-value=O.014), during 

midnight/early morning hours (coefficient=0.244, p-value=O.002), and on non built­

up roads (coefficient=O.632, p-value<O.OOI). One of the noteworthy results here is 

that accidents that occurred on non built-up roads have a 197.47% increase in the 

probability of a KSI, relative to built-up roads (Table 7.42). 

The variable of patticular interest for the sideswipe "motorcycle head-to-sides car" 

crash model is the effects of the pre-crash manoeuvres of motorcycle or car and 

junction control measures. The modelling results (Table 7.41 and Table 7.42) show 

that accidents that occurred at stop-controlled junctions have the greatest increase in 

the probability of a KSI of 34.18% (relative to automatic signals). This is followed by 

accidents that occurred at uncontrolled junctions, with about a 23.74% increased 

probability of a KSI (Table 7.42). Likely explanations for these results are that an 

uncontrolled or stop-controlled junction may normally be located in rural areas with 

higher speed limits. Accident outcome may therefore be more severe once an accident 

occurred. 

With regard to the effect of pre-crash manoeuvre, the deadliest combination of 

manoeuvres found in "motorcycle head-to-sides car" crash manner was an overtaking 

motorcycle colliding with a turning car. It should be noted here that the interaction 

effect of the pre-crash manoeuvres of motorcycle and car is not examined in the 

model. This is because the two manoeuvre variables that were incorporated into the 

model have explicitly captured the interaction effect of the pre-crash manoeuvres in 

such crash manner (i.e., a motorcycle head-to-sides a car ahead). 
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Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

Instead of examining the interaction effects of the pre-crash manoeuvres, the 

distribution of motorcyclist casualties sustaining KSIs by the combined manoeuvres 

was examined (see Figure 7.7). The deadliest combination of manoeuvres (i .e., an 

overtaking motorcycle collided with a turning car ahead) were found to be 

overrepresented in such crash manner, accounting for approximately 57% of all 

motorcyclist casualties that had KSIs . 

• an overtaking motorcycle collides with a turning car 
a travelling-straight motorcycle collides with a turning car 

Dothers 

Figure 7.7: Distribution of the manoeuvres by motorcycles and cars prior to 
sideswipe "motorcycle head-to-sides car" collisions that led to KSls (N=2435). 

Similar results regarding the effects of pre-crash manoeuvres were found in previous 

studies of car-car accidents (Clarke et ai., 1998) and motorcycle-car accidents 

(Crundall et ai. , in press). Clarke et ai. reported that the most common accidents for 

overtakers were crashes in which a motorist made an error by oveltaking a leading 

automobile that was turning. Crundall et ai. noted that typical motorcycle-car same­

direction crashes involved an overtaking or turning motorist in slow moving traffic 

without checking for filtering motorcycles that were making oveltaking manoeuvres 

between two lanes of stationary/slow moving traffic. The result derived in this study 

(see Figure 7.7) is in line with the findings ofCrundall et ai. that a typical motorcycle­

car same-direction crash takes place when a turning car collides with a filtering 

motorcycle that intends to have oveltaking manoeuvres. 
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Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

7.4.5 Estimation Results For Rear-End Collisions 

Table 7.43 rep0l1s the estimation results of the rear-end McCar crash model. A total 

of 7087 motorcyclist casualties resulting from rear-end McCar collisions at T­

junctions were extracted from the Stats19. Of these 7087 motorcyclist casualties, 

20.6% are classified as KSI, 76.4% are classified as slight injury, and 3.0% are 

classified as no injury. The model has a pseudo-R2 measure of 0.050. As for 

predicting each injury-severity category, the classification accuracy for KSI, slight 

injury, and no injury was 0.4%, 76.5%, and 0%. 

Similar to the previous models in previous sections (see, for example, the models of 

head-on crash section 7.3.3, and sideswipe "motorcycle head-to-sides car" crash in 

section 7.4.3), a benchmark case was generated in order to discuss probabilities of 

three injury-severity levels in rear-end McCar crashes. The probabilities of a 

benchmark sustaining three injury-severity levels are derived by holding all dummy 

variables to 0 (see Table 7.44). Such benchmark victim has the following 

characteristics: 

(a) was a female 

(b) was aged between 20-59 

(c) was involved in a collision in which the involved motorist was female 

(d) was involved in a collision in which the age of the involved motorist was 

aged between 20-59 

(e) was riding a motorcycle with engine size up.to 125cc 

(f) was involved in a collision in which the crash partner was a car 

(g) was involved in a two-vehicle collision 

(h) her collision partner was travelling on the straight road (not on the bend) 

(i) was involved in a crash in autumn/winter month 

(j) was involved in a crash when the weather was adverse 

(k) was involved in a crash during non rush hours 

(1) was involved in a crash on weekday 

(m) was involved in a crash on the built-up road 

(n) was involved in a crash when she was travelling straight and her collision 

pal1ner was travelling straight at the same time 
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Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

Table 7.43: Statistics summary and estimation results of the rear-end McCar 
crash model. 

Explanatory variable Categories of each variable Frequency (%) Coefficients 
(p-value) 

Gender of rider I. male 6464 (91.2%) 0.072 (0.200) 
2. female 623 (8.8%) Reference case 

Age of rider I. over 60 109 (1.5%) 0.203 (0.104) 
2. up to 19 2031 (28.7%) 0.052 (0.169) 
3.20-59 4947 (69.8%) Reference case 

Gender of collision partner I. untraced 244 (3.4%) 0.072 (0.527) 
2. male 4727 (66.7%) 0.125 «0.001) 
3. female 2116 (29.9%) Reference case 

Age of collision partner I. untraced 494 (7.0%) -0.051 (0.523) 
2. over 60 571 (8.1%) 0.063 (0.267) 
3. up to 19 275 (3.9%) 0.069 (0.384) 
4.20-59 5747 (81.1%) Reference case 

Engine size I. engine size over 125cc 4931 (69.6%) 0.169 «0.001) 
2. engine size up to 125cc 2156 (30.4%) Reference case 

Bend for car I. bend 42 (0.6%) 0.014 (0.356) 
2. non bend 7045 (99.4%) Reference case 

Collision partner I. HGV 558 (7.9%) 0.210 «0.001) 
2. bus/coach 77(1.1%) -0.002 (0.988) 
3. car 6542 (91.0%) Reference case 

Number of vehicle I. >= 3 704 (9.9%) 0.058 (0.265) 
involved 2. two vehicles only 6383 (90.1%) Reference case 
Accident month I. spring/summer (Mar-Aug) 3982 (56.2%) -0.009 (0.781) 

2. autumn/winter (Sep-Feb) 3105 (43.8%) Reference case 
Weather condition 1. other or unknown \38 (1.9%) -0.161 (0.182) 

2. fine weather 6044 (85.3%) 0.093 (0.048) 
3. bad weather 905 (12.8%) Reference case 

Accident time I. evening (1800-2359) 1619 (22.8%) 0.094 (0.020) 
2. midnight/early morning (0000-0659) 165 (2.3%) 0.010 (0.926) 
3. rush hours (0700-0859; 1600-1759) 2206 (31.1 %) 0.044 (0.229) 
4. non rush hours (0900-1559) 3097 (43.7%) Reference case 

Accident day of week I. weekend (Sat-Sun) 1764 (24.9%) 0.067 (0.068) 
2. weekday (Mon-Fri) 5323 (75.1%) Reference case 

Speed limit 1. non built -up roads (>40mph) 1100 (15.5%) 0.486 «0.001) 
2. built-up roads «=40mph) 5987 (84.5%) Reference case 

Junction control 1. uncontrolled 1037 (14.6%) 0.081 (0.248) 
2. stop, give-way sign or markings 5481 (77.3 %) 0.152 (0.010) 
3. automatic signal measure 569 (8.0%) Reference case 

Interaction ofMC's and 1. traversing * traversing 818 (11.5%) 0.110 (0.033) 
Car's manoeuvre 2. traversing * travelling straight 248 (3.5%) 0.031 (0.718) 

3. travelling straight * traversing 2485 (35.1%) 0.100 (0.004) 
4. travelling straight * travelling 

3536 (49.9%) Reference case 
straight 

111 -1.242 «0.001) 

112 1.540 «0.001) 

Summary Statistics 
-2 Log-likelihood at zero = 5885.316 
-2 Log-likelihood at convergence = 5593.342 
Log-likelihood ratio index (p2) = 0.050 

The number ofKSI that was correctly predicted: 6 (0.4%) 
The number of slight injury that was correctly predicted: 5416 (76.5%) 
The number of no injury that was correctly predicted: 0 (0%) 
Observations = 7087 (KSI: 20.6%; slight injury: 76.4%; no injury: 3.0%) 
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Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

As reported in Table 7.43, relatively comparable modelling results were observed 

from the rear-end McCar model compared with those of the aggregate model that was 

estimated in section 6.3 (Table 6.2 and Table 6.3). For example, factors found to be 

most significantly associated with the increased motorcyclist injury severity include 

elderly riders (though only at an 85% confidence interval, with a coefficient value of 

0.203, relative to mid-aged riders), male riders (though only at an 80% confidence 

interval, relative to mid-aged riders), male motorists (coefficient=0.125, p­

value<O.OOI), collisions with HGVs (coefficient=0.210, p-value<O.OOI), larger 

motorcycle engine capacity (coefficient=0.169, p-value<O.OOI), and accidents that 

occurred under fine weather (coefficient=0.093), during evening hours 

(coefficient=0.094), on the weekends (coefficient=0.067, p-value=0.048), and on non 

built-up roadways (coefficient=0.486, p-value<O.OO 1). Similar to the sideswipe 

"motorcycle head-to-sides car" crash model (see Table 7.41 and Table 7.42), one 

noteworthy result in the rear-end McCar model is that accidents that occurred on non 

built-up roads have a 136.08% increase in the probability of a KSI, relative to built-up 

roads (Table 7.44). 

The variables of primary interest in the rear-end McCar crash model include junction 

control measures and pre-crash manoeuvres. Regarding the effect of junction control 

measures, rear-end McCar crashes that occurred at stop-controlled junctions have the 

greatest increase in the probability of a KSI of 33.66% (relative to automatic signals) 

(Table 7.44). This is followed by accidents that occurred at uncontrolled junctions, 

with about a 17% increased probability of a KSI (Table 7.44). Possible explanations 

for these results are that an uncontrolled or stop-controlled junction may normally be 

located in rural areas with higher speed limits. Accident outcome may therefore be 

more severe once an accident occurred. 

With respect to the pre-crash manoeuvres, manoeuvres such as overtaking, lane 

changing, and turning (see Table 7.35 to Table 7.38 for original manoeuvre categories) 

were combined together as one single category "traversing manoeuvres". This is 

because it was found that one single category "traversing manoeuvres" appeared to 

result in more statistically significant results than assessing three manoeuvre 

categories alone in the estimated model. In addition, the variable "interaction of 

motorcycle's and car's manoeuvres" was incorporated into the model, instead of the 
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Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

two variables "motorcycle's manoeuvres" and "car manoeuvres". This is because the 

examination of the interaction of the pre-crash manoeuvres was found to result in 

more statistically significant results than assessing motorcycle's manoeuvres and car's 

manoeuvres separately. The variable "interaction of motorcycle's and car's 

manoeuvres" was also incorporated into the model of head-on crashes (see Table 7.29 

and Table 7.30 in section 7.3.3). 

The modelling results (see Table 7.43) show that riders were more injury-prone as a 

result of the combinations a traversing motorist colliding with another 

traversing/travelling-straight motorcyclist, with coefficient values of 0.110 and 0.100. 

There is a 23.62% increased probability of a KSI and a 21.20% increase in the 

probability of a KSI for these two combinations (see Table 7.44). 

7.4.5 Summary 

In this section, a motorcycle-car same-direction crash was firstly subdivided into six 

crash manners (see Table 7.31). Two deadliest crash manners identified were a 

sideswipe "motorcycle head-to-sides car" crash and a rear-end McCar crash (see 

Table 7.32). Two OP models of motorcyclist injury severity by these two deadliest 

crash manners were estimated. The estimation results of the sideswipe "motorcycle 

head-to-sides car" crash model revealed that the deadliest pre-crash manoeuvres in 

such crash pattern were an overtaking motorcycle crashing into a turning car (see 

Table 7.41 and Table 7.42). For rear-end McCar crashes, traversing manoeuvres by 

both the motorcycle and car have the highest probability of a KSI (see Table 7.43 and 

Table 7.44). Another noteworthy result was that injuries were greatest to riders that 

were involved in both sideswipe "motorcycle head-to-sides car" crashes and rear-end 

McCar crashes at stop-controlled junctions. 

7.5 Summary 

This chapter presented the second stage of the investigation part two - the estimation 

results of the disaggregate models of motorcyclist injury severity by various crash 

configurations. The disaggregate models by different crash configurations showed 

that the considered variables affect motorcyclist injury severity in various crash 
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Chapter 7: Modelling motorcyclist injury severity by various crash configurations 

configurations differently, which is clearly obscured by the estimation of the 

aggregate crash model. Additional variables were also incorporated into the 

disaggregate crash models and these variables were found to be significantly 

associated with the increased motorcyclist injury severity in specific crash 

configurations. 

The subsequent chapter (Chapter 8) provides a summary of the findings obtained from 

the dis aggregate models by various crash configurations. Chapter 8 also reports the 

investigation part three - a further examination of the considered variables amongst 

various crash configurations that led to KSls. 
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INVETIGATION PART THREE - FURTHER EXAMINATION OF 

THE CONSIDERED VARIABLES 

CHAPTERS 

FURTHER EXAMINATION OF THE CONSIDERED VARIABLES 

AMONGST CRASH CONFIGURATIONS THAT LED TO KSIS 

8.1 Introduction 

A multivariate examination of the determinants of motorcyclist injury severity, the 

investigation part two, has been conducted in Chapter 6 and Chapter 7. The results of 

the first stage of the investigation part two (see Table 6.2 and Table 6.3 in section 6.3) 

showed that approach-turn B crashes and head-on crashes were the deadliest crash 

configurations to riders. Chapter 7, the second stage of the investigation part two, has 

presented the estimation results of the disaggregate models of motorcyclist injury 

severity by various crash configurations that occurred at T-junctions. 

The investigation part three is reported in this chapter that firstly reports a summary of 

the findings obtained from the disaggregate crash models by various crash 

configurations. This is followed by a further examination of the considered variables 

(Le., the explanatory variables that have been incorporated into the aggregate model 

by accidents in whole, as can be seen in Table 6.2 in section 6.3) amongst various 

crash configurations that led to KSls. 

The further examination in this chapter is limited to the accidents that led to KSls as 

this is the main focus of this current research. Such examination can be useful for 

obtaining insights into whether a certain crash configuration is more likely than any 

other crash configuration to occur under a specific circumstance. For instance, a head­

on crash might be more likely than other crash configurations to occur on the curved 

road since bends on roadways may overtax either riders or motorists in following the 

curving alignment and drifting into oncoming traffic. 
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8.2 General Comment and Summary 

Following Chapter 6 that investigated motorcyclist injury severity resulting from 

motorcycle-car accidents in whole, Chapter 7 reported the estimation results of the 

disaggregate OP models by various crash configurations. Additional variables that 

were of interest in this present study were incorporated into the disaggregate crash 

models of various crash configurations. For example, the effects of motorists' failure 

to yield right-of-way to motorcyclists were incorporated into approach-turn B crash 

and angle A crash models (section 7.2.3 and section 7.2.4); and the effects of pre­

crash manoeuvres of motorcycles and cars were specifically examined in the models 

of head-on crashes (section 7.3.3), sideswipe "motorcycle head-to-sides car" crashes, 

and rear-end McCar crash (section 7.4.3 and section 7.4.4). 

8.2.1 General Findings 

In Chapter 7, it appears that the dis aggregate models of motorcyclist injury severity 

by crash configurations provided valuable insights (that may not be uncovered by an 

aggregate model) into some of the pre-crash conditions that influence motorcyclist 

injury severity in these crash configurations differently. Table 8.1 provides a summary 

of the variables that were incorporated into the dis aggregate crash models. Arrows in 

Table 8.1 show increase (up) or decrease (down) in the probability of a KSI, relative 

to the reference case of each variable, and shading indicates the most severe category 

(ifthere are more than three categories). 
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Table 8.1:'A summary of the variables that affect motorcyclist injury severity in 
the disaggregate crash models. 

Variables Crash confi~uration 
1 2 3 4 5 6 

Rider sex 1. male if n,s, n,s, n,s, n,s, if 
Rider age 1. over 60 • • • n,S, • • 

2, up to 19 n,s, n,s, n,s, ~ n,s, if 
Motorist sex 1. unknown • n,s, n,s, n,s, n.s. n.s. 

2. male if • n.s. if • • 
Motorist age 1. unknown ~ ~ n.s. ~ ~ n.s. 

2. over 60 if • • n.s. • n.s. 
3,uptol9 • n.s. n.S. n.s. n.s. n.S. 

Engine size 1. engine size over 12Scc if if if if if if 
Bend for motorcycle 1. bend ~ n.s, ~ ~ if ~ 
Bend for car 1. bend ~ ~ ~ if ~ n.s. 
Crash partner 1. HGV if if • • • • 

2. Bus/coach • • ~ if n.s. n.s. 
No. of vehicle involved 1. >=3 if if if if if n.s. 
Accident month 1. spring/summer n,s, n.s. if n.s. n.S. n.S. 
Weather conditions 1. other or unknown n.s, n,s, ~ n.s. n.s. ~ 

2. fine weather • • • • • • Accident time 1. evening if if if if if • 2. midnight/early morning • • • • • n.s. 
3. rush hours n.s. if n.s. n.s. n.s. n.s. 

Day of week I, weekend if if if if if if 
Control measure 1. uncontrolled V V V if if n.s. 

2. stop, give-way sign or markings • • • 
Speed limit 1. non built -up roads if if if if if if 
Right-of-way violation 1. violation case • • • V V V 2. non violation case if if n.s. 
Motorcycle's manoeuvre 1. travelling straight if if n.s. ..,..-/ ..,..-/ ~ 
Interaction effect of I. traversing * traversing / / / ~ / r-!-motorcycle's and vehicle's 2. traversing * straight --L ~ manoeuvres 3. straight * traversing n.s. if 
Motorcycle's manoeuvre 1. overtaking / / / / --L / 2, turuing ~ 

3. changing lane n.S. 
Car's manoeuvre 1. overtaking 

/ / / V ~ / 2. turning + 3, changing lane 

Note: 
(a) crash configurations 1-6 represent the dis aggregate crash models (1) the approach­
turn B crash model, (2) the angle A crash model, (3) the angle B crash model, (4) 
head-on crash model, (5) the sideswipe "motorcycle head-to-sides car" crash model, 
and (6) the rear-end McCar crash model. 
(b) Arrows "if" and "~" show increase (up) or decrease (down) in KSI, relative to the 
reference case of each variable, and shading "." indicates the most severe category (if 
there are more than three categories). 
(c) n.s. stands for non statistically significant relative to the reference case at 80% 
level of confidence. 
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Chapter 8: Further examination ofthe considered variables among different crash configurations 

As reported in Table 8.1, the estimation results of the disaggregate crash models 

suggest that the effects of some variables on injury-severity levels vary across 

different crash configurations. Several observations may be made from Table 8.1: 

1. male riders did not show a significant difference in the probability of 

sustaining KSIs in all crash configurations, except for approach-turn B crashes 

and rear-end McCar crashes; 

2. elderly riders were most likely of all age groups to be KSI in all crash 

configurations, except for head-on crashes; 

3. riders generally experienced a higher probability of a KSI in collisions with 

male motorists than female motorists (but such effect is not significant for 

angle B crashes); 

4. riders had a higher probability of a KSI in collisions with elderly motorists in 

angle A/B crashes and sideswipe "motorcycle head-to-sides car" crashes, but 

teenaged motorists predisposed riders to a greater risk of KSIs in approach­

turn B crashes; 

5. riders were more injurious in all crash configurations when they were riding 

heavier motorbikes; 

6. there were inconsistent results for the effects of the presence of bend for 

motorcycle or for car; 

7. buses/coaches appear to be the deadliest collision partner to those involved in 

accidents that involve gap acceptance (approach-turn B crash and angle A 

crash), whilst HGVs tend to be most hazardous to those involved in other 

crash configurations; 

8. all crash configurations that involved three vehicles or above resulted in more 

severe injuries (but such effect was not significant in rear-end McCar 

collisions); 

9. accident month appears not to be a predictor of motorcyclist injury severity in 

most of crash configurations; 

10. motorcyclists were more injury-prone in all crash configurations when riding 

under fine weather than riding under adverse weather; 

11. mid-night/early morning hours appear to be the deadliest period in all crash 

configurations, whilst injuries were greatest to riders in rear-end McCar 

collisions that occurred during evening hours; 
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12. weekend riding tended to be more hazardous than weekday riding in all crash 

configurations; 

13. stop, give-way signs or markings appeared to be the deadliest junction control 

measure in all crash configurations; and 

14. riding on non built-up roadways tended to predispose riders to a greater risk of 

KSls in all crash configurations. 

8.2.2 Specific Findings 

For approach-turn B crashes and angle A crashes, right-of-way violations by right­

turn motorists were found to outnumber non violation cases. Moreover, riders 

appeared to be more severely/fatally injured when involved in right-of-way violation 

cases than no right-of-way violation cases. Results also showed that the effect of 

right-of-way violation on motorcyclist injury severity was more pronounced at stop­

controlled junctions (see section 7.2.3 and section 7.2.4). 

The right-of-way violation problem in approach-turn B crashes and angle A crashes 

was further examined by estimating the binary logistic models. Specific findings 

include that violations on non built-up roadways were more likely to occur than those 

on built-up roadways; and violations in daytime were less likely than those during 

evening/midnight/early morning hours to occur (see section 7.2.5). 

For head-on crashes, results indicated that injuries tended to be greatest in collisions 

where curves were present for motorcycles, and a traversing motorcycle colliding 

with a travelling-straight car predisposed motorcyclists to a greater risk of KSls (see 

section 7.3.3). 

For motorcycle-car same-direction collisions, the deadliest crash manner identified 

was when a motorcycle crashed into the side of a car ahead. Such crash manner was 

termed as a sideswipe "motorcycle head-to-sides car" crash. The second deadliest 

crash manner identified was when a motorcycle as a following vehicle crashed into 

the back of a leading car. Such crash manner was termed as a rear-end McCar crash. 

For sideswipe "motorcycle head-to-sides car" crashes, the most hazardous pre-crash 

manoeuvres identified were the combination that an overtaking motorcycle crashed 
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into a turning car. For rear-end McCar crashes, injuries tended to be greatest when 

motorcycles were making traversing manoeuvres and cars were making traversing 

manoeuvres at the same time. Another noteworthy result was that injuries were 

greatest to riders that were involved in both sideswipe "motorcycle head-to-sides car" 

crashes and rear-end McCar crashes at stop-controlled junctions (see section 7.4.3 and 

section 7.4.4). 

8.3 Examination Results 

The considered variables are further examined amongst different crash configurations 

that led to KSls, as shown in Table 8.2. The crash configurations include approach­

turn A crash, approach-turn B crash (see Figure 4.3(b) in section 4.3), angle A and 

angle B (see Figure 7.1 (c) and (e) in section 7.2.2), head-on crash (see Figure 4.3(c) in 

section 4.3), sideswipe "side-to-side" crash (see Table 7.31(a) in section 7.4.2), 

sideswipe "motorcycle head-to-sides car" crash (see Table 7 .31 (b) in section 7.4.2), 

rear-end McCar crash (see Table 7.31(d) in section 7.4.2), and rear-end CarMc crash 

(see Table 7.31(e) in section 7.4.2). 

It should be noted here that only the variables that have been incorporated into the 

aggregate model (see Table 6.2 in section 6.3) are further examined here. Specific 

variables for certain disaggregate models are not examined. These specific variables 

include, for instance, right-of-way violation for the models of approach-turn B crashes 

and angle A crashes. 
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Chapter 8: Further examination of the considered variables among different crash configurations 

The values in Table 8.2 represent the percentage of KSIs resulting from the variable. 

For instance, for approach-turn A crashes, there was a total of 256 casualties 

sustaining KSIs. Among these casualties, 90.2% were males, and 9.8% were females. 

The average of the percentage of each variable among various crash configurations is 

reported in the final column. The number that is bold represents that it is higher than 

the average percentage. For instance, the average percentage of male casualties is 

93.08. The percentage of male casualties in several crash configurations (Le., 

approach-turn A crash, angle A crash, head-on crash, sideswipe "motorcycle head-to­

sides car" crash, and rear-end McCar crash) is higher than the average percentage. 

The examination results are organised by type of factors: rider/motorist factors, 

roadway/geometric factors, vehicle factors, and crash factors. 

8.3.1 RiderlMotorist Factors 

As reported from Table 8.2, the percentage of male casualties from sideswipe 

"motorcycle head-to-sides car" crashes is the highest (95.9%). In addition, female 

casualties were overrepresented in approach-turn A crashes (9.8%). While there is no 

prior studies examining these effects, possible explanations for these effects could be 

that male motorcyclists could be more aggressive in filtering out from traffic than 

when they were having other traffic tasks (e.g., when intersecting with the conflicting 

traffic). Turning to female casualties in approach-turn A crashes, this may be a 

reflection of the possibility that female riders could not execute a turn as safely as 

they could in other situations. 

It was found that 33.4% of casualties in angle A collisions and 31.6% of casualties in 

angle B crashes were as a result of the collisions with female motorists, which was the 

highest among all crash configurations. Elderly motorists appeared to be 

overrepresented in accidents where a turning car collided with an approaching 

motorcycle (Le., 15.4% for approach-turn B crashes, 13.7% for angle A crashes, and 

16.9% for angle B crashes). This implies that elderly motorists intending to make a 

turn may have more difficulties in intersecting with oncoming motorcycles than when 

they are executing other traffic tasks (e.g., when they intersect with motorcycles 

travelling from same directions). Similar conclusions were drawn by several 

researchers (e.g., Clarke et aI., 2007; Keskinen et aI., 1998) who reported that elderly 

197 



Chapter 8: Further examination of the considered variables among different crash configurations 

motorists tended to cross into and merge with the traffic stream more slowly and have 

problems detecting approaching motorcycles. Numerous studies of car-car accidents 

(see, for example, Mayhew et aI., 2006; Chipman, 2004) have also noted that elderly 

motorists were generally found to be overrepresented in right/left turn as well as angle 

crashes compared with those in other crash configurations. 

One noteworthy difference observed from Table 8.2 was that there is far higher 

percentage of unknown motorist gender and age for rear-end CarMc colli,sions. 

Unknown motorist gender and age contribute to 13.7% and 20.8% of the casualties in 

rear-end CarMc collisions respectively. While the cause of these differences cannot be 

determined with any certainty, it is likely that the car as a following car that crashed 

into a leading motorcycle may be more likely to escape from the accident scene than 

other crash configurations. A work that examines the explanations for these effects 

could be an interesting future research area. 

8.3.2 Roadway/Geometric Characteristics 

It was found that head-on crashes were far more likely than other crash configurations 

to occur when there were bends for motorcycles or for cars. "Bends for motorcycles" 

represent 26.6% of the casualties in head-on crashes, while "bends for cars" 

contribute to 23.6% of the casualties in head-on crashes. This result is in accordance 

with the findings by several researchers (e.g., Mizuno and Kajzer, 1999; Ulfarsson et 

aI., 2006), who pointed out that unintended/intended lane changing manoeuvres on 

curved roads were linked with a strong increase in the probability of head-on crashes. 

With regard to junction control measures, uncontrolled junctions were 

overrepresented in head-on crashes (17%). This could be because either motorcycles 

or cars may be more likely to make improper manoeuvres (such as travelling beyond 

the centreline of the road) that arise from fewer restraints to manoeuvre at 

uncontrolled junctions. 

For stop, give-way signs and markings, angle A/B collisions were more likely than 

other crash configurations to occur at stop-controlled junctions (89.8% and 87.8% 

respectively). Head-on and angle AlB collisions were the least likely of all crash 
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configurations to occur at signalised junctions (1.3% for head-on crashes; 1.4% for 

angle A crashes; 1.7% for angle B crashes), whilst approach-turn A and rear-end 

CarMc collisions were far more likely than any other crash configuration to take place 

under automatic signals (20.7% for approach-turn A collisions; 16.1 % for rear-end 

CarMc collisions). 

To the knowledge of the author, research investigating the relationship between 

junction control measures and motorcycle-car crash configurations is scarce in 

literature, which deserves further research. One exception seems to be the work by Pai 

and Saleh (2007a) in which similar findings were drawn. Pai and Saleh suggested that 

for approach-turn A crashes (see the illustration in Figure 4.3(b) in section 4.3), while 

signalised junctions provide definite right to right-turn motorcyclists and travelling­

straight motorists to cross the junctions, the turning riders probably did not 

compensate as sufficiently as they normally did at signalised junctions (for other 

travelling tasks such as intersecting with the conflicting traffic on the major roads). If 

there is any truth to this, automatic signals should be similarly overrepresented in 

approach-turn B crashes in which an approaching motorcycle collided with a right­

turn car. However, statistics in Table 8.2 show that 6.3% of approach-turn B crashes 

took place at signalised junctions, which appears to be far less often than approach­

turn A crashes at signalised junctions. Clearly this deserves to be further researched. 

Regarding street light conditions, it was found that daylight conditions contributed to 

60.7% of the casualties in approach-turn B crashes, which was less often than other 

crash configurations. This implies that this crash configuration was more likely than 

other crash configurations to occur in darkness, irrespective of the street lighting 

conditions. 

For speed limit effect, approach-turn B crashes were most likely of all crash 

configurations to take place on built-up roads (84.1%). Several researchers (e.g., Hole 

et aI., 1996; Clarke et aI., 2007) similarly found that the majority of right-of-way 

violation accidents took place at urban intersections. Head-on and rear-end McCar 

crashes were most likely of all crash configurations to occur on non built-up roads 

(about 28.0% for both head-on crashes and rear-end McCar crashes). 
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8.3.3 Vehicle Factors 

With regard to the effect of motorcycle engine size, it was found that the highest 

percentage of casualties that were users of heavier motorcycles was for sideswipe 

"motorcycle head-to-sides car" crashes (84.2%). The lowest percentage of casualties 

that were users of heavier motorcycles was for approach-turn A crashes (64.5%). 

Possible explanations for these effects could be as a result of different road behaviours 

of these heavier-bike users such as their overconfidence in overtaking manoeuvres for 

sideswipe "motorcycle head-to-sides car" crashes (also see the estimation results in 

Table 7.41 and Table 7.42 regarding overtaking manoeuvres in the model of 

sideswipe "motorcycle head-to-sides car" crashes), and more cautious crossing 

behaviours for approach-turn A crashes. 

As reported in Table 8.2, it appears that the percentage of HGVs in same-direction 

collisions (i.e., sideswipe "side to side" crash, rear-end McCar crash, rear-end CarMc 

crash) is higher than accidents that involve gap acceptance (i.e., approach-turn AlB 

crash, angle A/B crash). The highest percentage of HGVs is for sideswipe "side to 

side" crash (16.3%). These results are probably because HGVs which have higher 

passenger compartment may exacerbate the problem that motorcycles are often in 

motorists' blind spots (particularly a filtering motorcycle from behind or on the 

adjacent lane). On the other hand, it could be easier for HGVs that have higher 

passenger compartment to detect an oncoming motorcycle due to their less obstructed 

sight distance. However, there are 10.9% of the causalities in head-on collisions with 

HGVs in which the HGVs with higher compartment might have less obstructed sight 

distance to detect oncoming motorcycles. Other factors such as the presence of bend 

for motorcycle or car may playa part in such effect. It might be interesting for future 

research that attempts to examine HGVs' road behaviours on the roadways with bends. 

Head-on crashes are found to be far more likely than other crash configurations to 

involve the third vehicle or above (24% of the casualties were involved in head-on 

crashes that involved more than three vehicles). Rear-end McCar and CarMc 

collisions were second most likely to involve the third vehicle or above (13.5% and 

11.0% respectively). To the knowledge of the author, there seems to be a lack of 

research examining why motorcycle-car head-on crashes/rear-end crashes were more 
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likely than other crash configurations to involve more than three vehicles or above. 

Estimation results of head-on crash model also showed that riders were more injurious 

in head-on crashes that involved more than three vehicles than in two-vehicle head-on 

crashes (see Table 7.45 in section 7.5.1). Such effect was not significant in explaining 

motorcyclist injury severity in rear-end McCar crashes (see Table 7.45 in section 

7.5.1). The examination results here, coupled with the findings in the model of head­

on crashes, may lend support for future work that examines the characteristics of these 

crash configurations involving more than three vehicles. 

8.3.4 Weather/Temporal Factors 

For weather conditions, it was observed from Table 8.2 that adverse weather is 

overrepresented in angle A and angle B collisions (12.0% and 12.5%). Such effect 

may be explained by the possibility that adverse weather is more likely to exacerbate 

the sight distance of a turning car that is in a need to intersect with an oncoming 

motorcycle. 

With respect to temporal factors, 37.5% of approach-turn B collisions took place 

during evening hours, which was the highest than all other crash configurations. This 

finding concurs with the conclusions drawn by Peek-As a and Kraus (1996a) who 

suggested that approach-turn collisions were more likely than other multiple vehicle 

crashes to occur· in dusk lighting conditions. The examination results for street light 

conditions also reveal that approach-turn B crashes were more likely than other crash 

configurations to occur in darkness, irrespective of the street lighting conditions (see 

section 8.3.2 above). The findings here, coupled with those of Peek-Asa and Kraus, 

underscore the importance of improving motorcycle's conspicuity especially during 

evening/nighttime hours. 

For weekday effect, head-on collisions appeared more likely than any other crash 

configuration to occur on weekends (32.1%). This may be a reflection of more 

relaxing or aggressive driving/riding behaviours on the weekend, thereby resulting in 

riders/motorists more frequently drifting into oncoming traffic. 
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8.4 Summary 

This chapter firstly provided a summary of the findings obtained from the 

disaggregate models by various crash configurations. The summary, as shown in 

Table 8.1, suggested that the effects of some variables on injury-severity levels vary 

across different crash configurations. 

Following the summary of the estimation results of the disaggregate crash models, the 

considered variables amongst various crash configurations that led to KSIs were 

further examined. The examination results showed that there were differences in the 

considered variables amongst various crash configurations that led to KSIs. The 

examination results provided insights into whether a specific crash configuration 

leading to KSIs was most likely of all crash configurations to occur in a certain 

situation. Noteworthy examination results include, for instance, elderly motorists were 

disproportionately represented in accidents where turning cars collided with 

approaching motorcycles (Le., approach-turn B and angle AlB crashes); head-on 

crashes were far more likely than any other crash configuration to take place on the 

curved roadway and on the weekend; and approach-turn B crashes were more likely 

than other crash configurations to occur in darkness, regardless of the street light 

conditions, and during evening hours. 

The next chapter will provide a discussion of the research findings obtained in this 

present study. 
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CHAPTER 9 

DISCUSSIONS AND RESEARCH LIMITATIONS 

9.1 Introduction 

The implications of the findings obtained from this research are discussed in this 

chapter, with particular emphasis being placed on the potential countermeasures that 

could be applied to prevent the hazards from occurring. The discussions are organised 

by the crash configurations, followed by a general discussion for possible prevention 

strategies that may be beneficial for all crash configurations. The constraints and 

research limitations that exist in this current study are also described. This chapter 

ends with a brief summary. 

9.2 Discussions and Potential Countermeasures 

9.2.1 Approach-Turn and Angle Crash 

9.2.1.1 Right-of-way violation 

The results in this research showed that, for approach-turn B crashes and angle A 

crashes, motorists' failure to give way appeared to be a deadly factor to motorcyclists. 

The contributory factors documented in literature that result in motorists failing to 

yield include motorcycles' poorer conspicuity (Hurt et aI., 1981; Preusser et aI., 1995), 

motorcycle'S speed being difficult to determine, size-arrival effect (Horswill et aI., 

2005; Caird and Hancock, 1994), elderly motorists' difficulties in detecting 

motorcycles (Hole et aI., 1996; Clarke et aI., 2007), and some other 

cognitive/attitudinal factors (Hancock et aI., 1990). These contributory factors were 

not examined in this research due to the absence of this type of data in the Statsl9. 

However, this research has uncovered other factors determining the likelihood of 

motorists' failure to yield. These factors include gender-/age-specific factors, as well 

as other factors such as temporal, roadway, and vehicle factors. Countermeasures 

aimed to improve motorcycle safety may first attempt to curb motorists' failure to 

yield through enforcement efforts as well as public information and safety education 

programmes. For instance, safety education programmes may be directed towards 

certain groups of motorists such as the elderly/teenage motorists, or professional 
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motorists of larger motor vehicles that appeared to be more likely to violate 

motorcyclists' right of way. Enforcement efforts such as police patrol near junctions 

(Cooper and McDowell, 1977; Storr et aI., 1980) may need to be directed towards 

certain times and locations such as nighttime/weekend and non built-up roads where 

violations were more likely to occur. 

In this research the relationship between actual pre-crash speed of car and motorcycle 

and right-of-way violation was not examined because such data was not available 

from the Stats19. "Speed limit" was examined as a surrogate variable for vehicle 

crash speed (see Table 7.20 and Table 7.21 in section 7.2.5.1). The estimation results 

of the binary logistic models (see Table 7.20 and Table 7.21) suggested that violation 

cases were more likely to occur on non built-up roads than those on built-up roadways. 

Controlling traffic speed by reducing speed limit may be an intervention measure to 

curb right-of-way violations. 

Past studies of car-car angle crashes at T-junctions (e.g., Cooper and McDowell, 1977; 

Storr et aI., 1980; Darzentas, 1980a, b) and motorcycle-car approach-turn collisions at 

four-legged junctions (e.g., Peek-As a and Kraus, 1996a; Brenac et aI., 2006), as well 

as car-bicycle accidents at roundabouts (Rasanen and Summala, 2000; Summala et aI., 

1996), may lend support for the proposed countermeasure here. Research analysing 

car-car angle collisions at T-junctions (Cooper and McDowell, 1977; Storr et aI., 1980; 

Darzentas, 1980a, b) argued that when the traffic on the major road was slower and 

more uniform in speed, turning drivers tended to make fewer perceptual errors and 

collisions were reduced. Studies of car-motorcycle approach-turn/angle crashes (Peek­

Asa and Kraus, 1996a; Brenac et aI., 2006) reported that a high speed (or speeding) 

motorcycle may affect the motorcycle's detectability and may be a determining crash 

factor. Summala and his colleagues (Rasanen and Summala, 2000; Summala et aI., 

1996), in analyses of car-bicycle accidents, pointed out that higher motor vehicle 

approach speed contributed to motorists not looking to their right or to not giving way 

to bicyclists at roundabouts. The conclusions drawn by these researchers, coupled 

with the findings in this current research, underscore the importance of controlling 

traffic speed by reducing speed limit to assist the detectablity and identification of 

motorcycles in traffic. The number of right-of-way violations may therefore be 

reduced. 

204 



Chapter 9: Discussions and Research Limitations 

Evidence in literature (e.g., Hurt et al., 1981) showed that motorists violating 

motorcycles' right-of-way often claimed not to have seen them at all or not to have 

seen them in time to avoid the crash. Whether motorcycles being less conspicuous 

resulted in motorists' failure to yield was not directly examined in the thesis due to the 

lack of data. Rather, the effect of accident time was investigated (Table 7.20 and 

Table 7.21 in section 7.2.5.1). The estimation results of the binary logistic models (see 

Table 7.20 and Table 7.21) revealed that evening and mid-night/early morning hours 

(relative to non rush hours) were associated with more right-of-way violations. The 

finding that evening and mid-night/early morning hours were correlated with more 

right-of-way violations may point to the need to enhance motorcycle's conspicuity 

particularly during these hours. This is because motorcycles' poor conspicuity may be 

exacerbated during evening and mid-night/early morning hours (Peek-Asa and Kraus, 

1996a), thereby decreasing their detectability from right-turn motorists' perspective. 

There is a lengthy literature investigating whether some measures would effectively 

improve motorcycle/motorcyclist conspicuity. The measures examined include 

running the headlight during the daytime (Janoff and Cassel, 1971; Fulton et al., 1980; 

Vmar et al., 1996), additional running lights in varying patterns during nighttime 

(Hancock et al., 2005), fairings that increase the frontal surface area (Williams and 

Hoffmann, 1979a), and the wearing of fluorescent garments/helmets/leg shields 

(Donne and Fulton, 1985; Donne et al., 1990; Olson et al., 1981; Hancock et al., 

2005). Relatively consistent conclusions drawn in these studies include that, through 

the use of these measures, motorists were more likely to notice and pause for the 

oncoming motorcycles. Being able to virtually detect a motorcycle may prevent 

motorists from making a turn recklessly, or at least, help to allow more chances to 

brake abruptly before a collision (Peek-Asa and Kraus, 1996a). This current study did 

not attempt to evaluate the role of improved motorcycle's conspicuity in either 

curbing right-of-way violations or reducing motorcyclist injury severity conditioned 

on an accident having occurred. However, the results suggested (see Table 8.2 in 

section 8.3) that approach-turn B collisions were the least likely of all crash 

configurations to occur in daylight conditions (60.7% of approach-turn B crashes took 

place in daylight conditions which is about 13% below the overall average for this 

variable, as shown in Table 8.2). This implies that approach-turn B collisions were 

most likely of all crash configurations to occur during evening/midnight/early 
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morning hours. For evening/midnight/early morning riding conditions, there may be 

value in adopting these measures proposed in past studies, which may in turn reduce 

the turning motorists' perceptual errors when intersecting with motorcyclists. 

The conspicuity problem that motorcycles have may also arise from the fact that 

motorcycles being much smaller than other motor vehicles (particularly when viewed 

from the front of machine) are more likely to be blocked in traffic streams (Olson, 

1989). Blockages such as a larger motor vehicle nearby or a nature obstruction (e.g., 

tree or curved roadway) may cause motorists' failure to see the oncoming motorcycle 

or see it in time to avoid the crash (Hurt et aI., 1981; Williams and Hoffman, 1979a). 

There has been considerable agreement among these researchers - blockages of direct 

visibility may playa significant role in approximately half of motorcycle-car crashes 

that involved right-of-way violations. Other researchers (e.g., Preusser et aI., 1995; 

Clarke, 1999; Kim and Boski, 2001) suspected that motorcycles' improper overtaking 

manoeuvres would reduce their visibility because they generally popped out in traffic 

streams. 

In this current research, the effects of these two factors (i.e., the presence of bend and 

motorcycles' traversing manoeuvres, as abovementioned) on the likelihood of 

motorists' right-of-way violations were examined (see Table 7.20 and Table 7.21 in 

section 7.2.5.1). It was found that the presence of bend was not significant in 

explaining the likelihood of motorists' failure to yield. Moreover, for angle A crashes, 

right-of-way violations were more likely to occur to a travelling-straight motorcycle 

than a traversing motorcycle (such effect was insignificant for cases in approach-turn 

B crashes). Such results may be somewhat inconsistent with those of the 

abovementioned studies. Possible explanations for the first result could be that the 

bend data of the Stats19 were thought to be fairly unreliable - none of traversing 

manoeuvres (i.e., overtaking or lane changing) was recorded to have occurred on 

curved roads. The second result could be attributable to the possibility that a 

travelling-straight motorcycle may travel faster than a traversing motorcycle, allowing 

less time for a turning motorist to clear the junction in time. It could also be a 

consequence of an overtaking manoeuvre by a motorcycle that represents the presence 

of other motorised vehicles nearby, which may act as a visual deterrent to reckless 

crossing by a turning motorist. 
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Junction control could be important in controlling the occurrence of approach-turn 

crashes (see conclusions drawn by Peek-Asa and Kraus, 1996a; Kim et aI., 1994; 

Preusser et aI., 1995). Junction control measures may be a starting intervention point 

to help eliminate the needs of a right-turn motorist to detect an oncoming motorcycle, 

thereby reducing the number of right-of-way violations. Priority signal measures such 

as priority phases with arrows that direct turning motor vehicles to proceed in their 

desired directions, as well as a longer duration of green phase for either motorcycles 

or motor vehicles, could be beneficial at junctions where there are high traffic volume 

of motorcycle and motor vehicle. 

9.2.1.2 Injury severity 

The countermeasures mentioned above, which aim to prevent the crash from 

occurring by curbing right-of-way violations, were termed as primary prevention 

strategies by Peek-As a and Kraus (1996a). Secondary prevention strategies, which 

aim to reduce the number/severity of injuries resulting from accidents, were also 

discussed by Peek-Asa and Kraus. Typical secondary prevention strategies include the 

use of energy-absorbing structures such as engine guards, air bags, leg protectors, and 

helmets that decrease the energy of the crash, direct the impact energy away from the 

rider, or dissipate energy away from the motorcyclist. 

Defining the patterns of injuries sustained in various crash configurations, which 

indicated where the energy of the impact is absorbed by the motorcyclists, helped 

Peek-Asa and Kraus identify potential secondary prevention measures. For example, 

they reported that the odds of lower extremity injuries among injured motorcyclists in 

approach-turn crashes was more than twice that of injured riders in single-motorcycle 

crashes. Approach-turn crashes were further disaggregated into two crash 

configurations - crashes in which motorcycle turned left and car turned left. Among 

approach-turn crashes in which the car was left turning, lower extremity injuries (i.e., 

limb fracture) were more common when the approaching motorcycle was struck by 

the left-turn car due to the entrapment with the car. Injuries of the lower extremities 

often resulted in infection, required longer hospital stays and costly medical treatment 

including complicated surgery, skin and bone grafts, total joint replacement, and 

amputation (Mackay, 1986). They argued that, for such injury pattern, several 
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different types of devices to protect legs of the injured riders including crash bars, or 

energy absorbing leg protectors with cage-like structures (Haddon, 1973; Harms, 

1989) may be beneficial in reducing the severity of limb injuries. Other findings 

drawn by Peek-Asa and Kraus include that, in approach-turn crashes in which car was 

left turning, injuries to motorcyclists were generally more severe when the motorcycle 

struck the car than when motorcycle was struck by the car. The striking riders 

appeared to be more prone than the struck riders to sustain head, chest, spine, and 

upper extremity injuries. Part of their findings generally concurs with the finding in 

this current research that motorists infringing upon motorcyclists' right of way 

predisposed riders to a greater risk ofKSIs. 

The abovementioned findings by Peek-Asa and Kraus with respect to the injured 

regions of human body cannot be ascertained in this current research due to the lack 

of data on medical diagnoses records. Therefore no secondary prevention measures 

that target injuries resulting from specific crash configurations can be identified. 

However, the current research may provide some impo11ant preliminary evidence for 

the development of countermeasures that can be applied to prevent the hazards from 

occurring, or reduce injury severity once an accident has occurred. For example, the 

examination of temporal factors in this current study (see Table 7.8 and Table 7.9 in 

section 7.3.2) point to the conclusion that more alcohol use and speeding during 

particular hours or days of week (e.g., evening, mid-night/early morning hours, 

weekends) may be associated with the increased motorcyclist injury severity 

(Kasantikul et ai., 2005). Evidence in literature (e.g., Kasantikul et ai., 2005) revealed 

that alcohol-involved motorcycle accidents were more frequent on weekends and 

during evening/nighttime hours. Whether riders/motorists were more likely to be 

speeding on weekends and during evening/nighttime hours seem not to be thoroughly 

researched. Clearly, further research examining the relationship between injury 

severity, alcohol use, speeding, and temporal factors (e.g., nighttime/weekend riding) 

may confirm the conjecture here. If the relationship between motorcyclist injury 

severity and these factors can be confirmed, educating riders about the risks that they 

face while drink-riding particularly during evening/nighttime/early morning hours and 

on the weekends, as well as police enforcements meant to curb drink-riding and 

speeding, are likely to bring more immediate benefits. 
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9.2.2 Head-on Crash 

It was found that riders in head-on crashes were more injurious when there was a bend 

for car than when there was no bend for car at all (see Table 7.29 and Table 7.30 in 

section 7.3 .3). Head-on collisions leading to KSIs also appeared to be far more likely 

than other crash configurations to occur on the curved roadways (see Table 8.2 in 

section 8.3). Past studies analysing the accident occurrences concluded that a curved 

road was linked with a strong increase in the probability of car-car head-on crashes 

(e.g., Ulfarsson et aI., 2006; Zhang and Ivan, 2005). Zhang and Ivan attributed this to 

the possibility that drivers may be more likely to drift into the oncoming traffic 

following the curvature. Ulfarsson et aI. further pointed out that reducing the degree 

of the horizontal curves may be effective for reducing most car-car head-on crashes. It 

is recognised in this present study that making the geometric changes would not be a 

cost-effective measure. Instead of curves strengthening, a mirror that is erected on the 

kerb and reflects the presence of the oncoming traffic has been widely used in Asian 

countries. Such countermeasure may have the potential in increasing the ability of the 

motorist/rider to detect the approaching traffic on curved roads, thereby preventing 

the hazards from happening. 

Riding during mid-night hours/early morning hours and on the weekend appeared to 

predispose motorcyclists to a greater risk of KSIs (see Table 7.29 and Table 7.30 in 

section 7.3.3). Similar to the features of approach-turn and angle crashes examined in 

this research, speeding and more alcohol use during these hours may play a part. 

Peek-Asa and Kraus (1996a) specifically comparing the characteristics of head-on 

crashes with those of other crash configurations reported that the motorist was 

drinking most often in head-on crashes, and the motorcyclist was drinking the second 

most often in such collisions followed by single-motorcycle crashes. Peek-Asa and 

Kraus further noted that riders in head-on crashes were most likely of all crash 

configurations except for single-motorcycle collisions to be speeding. Although the 

effect of speeding and alcohol use was not examined in this research, the modelling 

results that riders were more injury-prone during mid-night hours/early morning hours 

point to the conclusion that enforcement that prohibits speeding or drink 

riding/driving should be directed towards mid-night and early morning hours. 
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Injuries tended to be greatest in head-on collisions in which a traversing motorcycle 

collided with a travelling-straight car (see Table 7.29 and Table 7.30 in section 7.3.3). 

In order to prevent such hazard from occurring, traversing manoeuvres should be 

prohibited at T-junctions. 

9.2.3 Sideswipe and Rear-end Crash 

While traversing manoeuvres were found to increase car-car sideswipe crashes in 

extant literature (e.g., Chovan et aI., 1994; Li and Kim, 2000), it was found in this 

research that the deadliest pre-crash manoeuvres in sideswipe "motorcycle head-to­

sides car" crashes were an overtaking motorcycle crashing into a turning car (see 

Table 7.41 and Table 7.42 in section 7.4.3). For rear-end McCar crashes, traversing 

manoeuvres by both the motorcycle and car have the highest probability of a KSI (see 

Table 7.43 and Table 7.44 in section 7.4.4). 

Prevention strategies for these deadly combinations include engineering measures 

such as motorcycle segregation that precludes motorcyclists and motorists from 

sharing the same pavement on high-speed roadways, and/or on roads with a 

significant fraction of heavy motor vehicles. Such engineering measure may be 

beneficial in reducing the risks of traversing-related (e.g., overtaking, lane changing) 

accidents on undivided roadways in general and at junctions in particular. Motorcycle 

segregation from other motor vehicle traffic has been adopted in highly motorcycled 

countries in Asia such as Taiwan and Malaysia (Radin Vmar et aI., 2000; Ramen et 

aI.,2003). 

Similar to approach-turn and angle collisions, it is suspected in this study that 

motorcycles' poor conspicuity may playa part in determining motorcyclist injury 

severity in sideswipe and rear-end crashes. Which is, motorists may not be able to 

detect a filtering motorcycle from behind or a motorcycle on the adjacent lane in time 

until the crash takes place. Researchers (e.g., Freedman, 1982; Freedman and Davit, 

1984; Tang, 2003; Tang et aI., 2006) have suggested that manipulations that can 

increase the detectability of a motorcycle through the improved conspicuity to the 

sides and rear of motorcycles may have an impact on reducing rear-end/sideswipe 

crashes. These researchers observed the significant differences between various side 
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and rear conspiuity-enhancing treatments such as a twin/triple tail-lamp and flashing 

turn signals in their laboratorylfield studies that simulated motorcycle's appearance in 

day and night, urban and rural conditions. The reaction time to rear conspituity­

enhancing treatments was found to be significantly reduced particularly during 

nighttime, and the side reflectorisation aids may improve side conspicuity. 

Manipulations that may increase detection frequency through improvements in car 

conspicuity were also discussed in past studies of car-car accidents. Many of these 

efforts such as collision warning/avoidance measures are directed towards specific 

crash configurations. The crash configuration that has received most attention is 

probably the rear-end/sideswipe collision. For instance, McIntyre (2008) noted that 

yellow tail-lamp resulted in faster reaction times and fewer errors than cunent red taiI­

lamp; and the centre high-mounted stoplight (CHMSL) equipped with the leading car 

may lead to an decreased injury severity level of the motorist in the following car 

(Khattak, 2001). Evidence in literature also revealed that intelligent transportation 

system (ITS) technologies such as side blind zone alert (SBZA) systems had the 

potential to reduce lane changing-/overtaking-related crashes in which "did not see 

other vehicle" was a principal causal factor (Kiefer and Hankey, 2008). 

The effects of these abovementioned measures on motorcycle safety are uncertain, 

and there seems to be a lack of research into this area. However, they may have the 

potential in preventing several crash configurations (e.g., head-on crashes, rear-end 

crashes) from occuning. The results in this cunent study revealed that crash 

configurations such as head-on crashes and rear-end crashes were more likely than 

other crash configurations to involve three vehicles or above (see Table 8.2 in section 

8.3). These findings may underscore the need for the countermeasures (e.g., collision 

warning/avoidance measures) to prevent the third vehicle from being involved in 

head-on crashes and rear-end crashes. 

9.2.4 General Discussions 

There is evidence in past studies documenting elderly motorists' over-involvement in 

angle crashes (Garber and Srinivasan, 1991; McKelvey and Stamatiadis, 1989; Abdel­

Aty et aI., 1999), sideswipe crashes, and head-on crashes (Garber and Srinivasan, 
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1991). Researchers have attributed these phenomena to the possibility that the elderly 

motorist was more likely to be cited for failure to yield right of way (Garber and 

Srinivasan, 1991; McKelvey and Stamatiadis, 1989; Stamatiadis et aI., 1991), and 

more prone to disregard traffic signal, make improper turns, and have improper lane 

usage (Garber and Srinivasan, 1991). Similar results were observed in this current 

research - elderly motorists were found to be overrepresented in approach-turn B 

crashes, angle A crashes, and angle B crashes (see Table 8.2 in section 8.3). In 

addition, riders aged 60 or above were generally found to be more injurious than those 

of younger age groups across all crash configurations (see Table 7.45 in section 7.5.1). 

Researchers analysing car-car accidents (e.g., Evans, 1988) attributed this discrepancy 

to the possibility that younger individuals may tolerate crashes of any specific severity 

more successfully than their older peers. Research into motorcycle accidents (e.g., 

Shankar and Mannering, 1996; Quddus et aI., 2002) noted that the elderly that were 

frailer to accident injuries may be due to physiological factors associated with 

advanced age. 

In this current research, male motorcyclists were generally more injury-prone than 

females, which is consistent with the findings of several researchers (e.g., Keng, 2005; 

Lapparent, 2006; Chang and Yeh, 2006), but inconsistent with that of Quddus et ai. 

(2002). Such result is likely to be as a result of some other exogenous factors that 

were not assessed in this research. For example, male riders were found to be more 

likely to drink and ride than females (Kasantikul et aI., 2005), which could be an 

explanation for the gender differences found in this research. 

The estimation results also showed that injuries tended to be greatest to elderly riders 

both in accidents in whole and in different crash configurations. Efforts such as 

training programmes or license restrictions to prevent crashes or reduce injuries (in an 

event of a crash) in the elderly will be increasingly important particularly in an ageing 

society. 

Riding in mid-night and early morning was found to predispose motorcyclists to a 

greater risk of KSIs in almost all crash configurations. As mentioned previously in 

this thesis, speeding and alcohol use might be a contributory factor to this effect. 

While this conjecture cannot be confirmed in this current research as a result of the 
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absence of such data in the Stats19, several published studies have suggested that 

drink riding was overrepresented in fatal accidents that occurred during these hours. 

For example, Hancock et ai. (2005) reported that motorcyclists killed at nights were 

nearly four times as likely to be intoxicated as those killed during daytime hours. 

Efforts meant to curb drink driving/riding such as education programmes and police 

enforcement during these hours may constitute effective countermeasures in areas 

with a significant fraction of motor vehicles/motorcycles. 

ITS technologies that are capable of helping drivers avoid crashes (or mitigate the 

impact of crashes) under some conditions are emerging into the marketplace or are 

under development. The effects of emerging intelligent transport system technologies 

on the consequence/occurrence of car-car accidents have been regularly researched in 

literature (see, for example, Khattak, 2001; Kiefer and Hankey, 2008). ITS measures 

that help motorists detect and track walking pedestrians have also been developed (see 

for example, Pai et aI., 2004). Compared with the widespread development and 

applications of ITS measures for car-car/car-pedestrian accidents, there is little 

attention currently given to car-motorcycle accidents (Hancock, 1995; Hancock et aI., 

2005). Future research may attempt to identify whether the ITS measures such as 

collision warning/avoidance systems currently used for the prevention of car-car/car­

pedestrian accidents may also be applied for car-motorcycle accidents. Collision 

warning/avoidance systems may have the potential to help turning motorists detect an 

approaching motorcycle (for angle and approach-turn B crashes) or a filtering 

motorcycle nearby or from behind (for sideswipe "motorcycle head-to-sides car" 

crash/rear-end McCar crash). 

9.3 Research Limitations 

There are a few intrinsic research limitations in the current research. These limitations 

are described below. 

9.3.1 Underreporting Issue 

The ideal study population for this current research would include all motorcyclists 

involved in accidents, irrespective of injury severity. This research was limited to 
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motorcycle-car accidents that resulted in either motorcyclists or motorists being 

injured and that were reported to the police. It was recognised at the outset of this 

current research that the underrepOliing motorcycle-car accidents would be a serious 

concern, with direct implications for the analyses. That is, the police-repolied crashes 

can skew injury severity levels towards more severe crashes. This current study 

therefore may not be generalisable to the entire spectrum of motorcycle crash injuries. 

However, this underreporting issue can be compensated for in two ways. First, a 14-

year database was analysed. By extracting data of additional years, additional 

motorcycle accidents were analysed. Second, it is believed that a large proportion of 

motorcycle crashes involving severely injured motorcyclists that required medical 

treatments were reported to police. Underreporting accidents that resulted in slight 

injuries or no injury at all to motorcyclists may not be properly repOlied to police (the 

slightly injured/uninjured motorcyclist may have left the accident scene) but such 

cases have not been the focus of this current research. Rather, the main focus of this 

current study has been on the KSIs sustained by motorcyclists. 

9.3.2 Classification of Crash Configuration 

Another limitation of this current work is that the method of classifYing 

actual/intended paths of motorcycle and car may interact synergistically with the 

complexity of motorcycle collision kinematics to undermine the validity of the crash 

typology developed in this study. This is, for example, classifYing an angle crash into 

angle A crash (perpendicular collision-angle) and angle B crash (oblique collision­

angle) on the basis of car/motorcycle actual/intended paths can be somewhat 

problematic. 

Take something as simple as a motorcycle and car on perpendicular paths (i.e., the 

collisions in which a right-turn car on the slip road collided with an oncoming 

motorcycle travelling on the major road, as illustrated in Figure 7.1(c) in section 

7.2.2). If the motorcycle hits the side of the car (Le., such motorcycle's intended path 

is perpendicularly conflicting with the car's intended path), it is a perpendicular 

collision; if such motorcycle plows across the front end of the car (this may happen as 

the motorcycle may swerve before crash), the contact surface is parallel/oblique. In a 

crash with perpendicular collision-angle, crash-impact/injuries can be affected by 
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where the rider hits. For instance, the occupant compartment of a HGV or SUV will 

stop a rider's forward motion, which would result in "above-the-knee" injuries. 

Hitting the bonnet or the boot area of a passenger car can result in the rider ejecting 

and tumbling (Obenski et aI., 2007), which would generate secondary contacts 

between the motorcyclist and the car and motorcyclist and ground. Furthermore, 

crash-impact in a perpendicular collision, if a car is the striking vehicle, is also 

affected by car speed or car type - if the speed is high enough, it can cause the 

motorcycle to yaw during impact; and higher compartment of the involved automobile, 

if it is a truck, may run over the rider or cause the entrapment of the rider. 

Efforts have also been made to capture the abovementioned variability (i.e., the 

effects of striking/struck role and types of collision partner) that may undermine the 

validity of the crash typology developed in this present study. It is recognised in this 

current research that there might be some other sources of variability that may be 

overlooked. The crash typology developed in this study, however, was the best the 

author can do with police report data. 

9.3.3 Definition of Right-of-way Violation 

While the data on right-of-way violation are not explicitly provided in the Statsl9, the 

variable "First Point ofImpact" that is available in the Stats 19 has been used to assign 

motorist's right-of-way violation (see section 7.2.3.1 for a detailed discussion of how 

motorist's right-of-way violation was assigned). Although extensive research (e.g., 

Hurt et aI., 1981; Hancock et aI., 1991; Peek-As a and Kraus, 1996a; Pai and Saleh, 

2008) has adopted the similar approach used in this present study in assigning right­

of-way violation, one may argue that assuming right-of-way violation by "First Point 

ofImpact" can be somewhat subjective. For instance, a right-turn car crashing into the 

offside of an approaching motorcycle could be classified as a right-of-way violation 

case rather than a non violation case (see Figure 7.2 in section 7.2.3.1 for a schematic 

diagram of a right-of way violation case and a non right-of-way violation case). This 

is because such right-turn motorist may be too impatient to wait for the oncoming 

motorbike to clear the junction (or simply misjudge the time such motorbike needs to 

clear the junction), thereby deliberately infringing upon such motorcycle's right-of­

way and crashing into its offside. However, it is beyond the scope of this current 
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research to examine whether the approach adopted in previous studies and in this 

research is robust without any bias. 

9.3.4 Data Availability 

Perhaps the most obvious limitation stems from the use of the Stats 19 data. While the 

Stats 19 provides a detailed source of accident features, several other important factors 

were not readily available. These factors include the causes to the accident (e.g., 

violation, speeding etc.), helmet use, speed, other geometric factors such as vertical 

bends (Le., grade) rather than horizontal bends, and alcohol use. Exposure data such 

as traffic flow for the traffic stream at the time of accident, riding/driving experience, 

and other aspects of risk exposure were also not available. The data that were not 

available from the Stats19 can be expensive to obtain and thus analyses of these 

unavailable data are beyond the scope of this thesis. Nonetheless these factors should 

not be overlooked in further research. 

Speed of the involved motorcycle and car could be one of the most important factors 

that affect injury outcome or likelihood of motorists' failure to give way. Most of 

published works relying on police reports to conduct their studies have encountered 

the same problem as this current research has, which is, the lack of data on speed. For 

some studies examining the effect of speed factor that was available from some 

database, the reliability of such speed data could be rather questionable. This is in part 

because police attending the accident scenes may have obtained the speed data from 

the involved victims or witnesses, which may be fairly subjective due to postcrash 

shock or denial of responsibility. 

9.3.5 Inclusion of Data and Reliability Issue 

While the problems that arise from analysing police crash report data were addressed 

in section 8.3.1 and section 8.3.4 in this chapter, several shortcomings of the Stats19 

regarding the reliability of the data are reported below. 

First, while this thesis has been completed, the Stats 19 data for years 2005 and 2006 

have been readily available. The author decided not to include the data of 2005 and 
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2006 in the analyses of the data for years 1991-2004 because the modification of the 

categories in the variable "Junction control measures" makes it inappropriate to 

combine the data of 2005 and 2006 with those of previous years. This is, the category 

"Give way sign or marking" is merged with the category "Uncontrolled" for the data 

of years 2005 and 2006. It is considered here to be an inappropriate modification as a 

significant difference in the injury severity was observed in this current study for 

several crash configurations (e.g., head-on crashes, sideswipe "motorcycle head-to­

sides car" crashes) that occurred at uncontrolled junctions and stop-controlled 

junctions (see Table 7.45 in section 7.5.1). It is also worthwhile to note that the data 

for years 1985-1990 were initially deposited by the Dff and became available while 

this thesis was being finalised. It was decided not to include the 1985-1990 data in the 

analyses as the inclusion of the 1985-1990 data in the original analyses is very time­

consuming. Further research may extend the work conducted in this current study by 

including the 2005 and 2006 data, as well as the 1985-1990 data. 

Second, while police crash data are perhaps the most valuable source of multiple 

factors that affect accident occurrence/consequence, the injury severity levels 

recorded can be inaccurate (Rosman and Knuiman, 1994). This is largely because 

injury severity scale may primarily rely on police officers' judgment at the accident 

scene. Past studies (e.g., Barancik and Fife, 1985) have shown discrepancies between 

police judgments and medical records. Life-threatening injuries, such as internal brain 

trauma, could be identified as slight injury if they are not evident to the police officers. 

However, this may be an innocuous research limitation since a fatal/serious injury is 

classified in the Stats 19 by the observation of a casualty requiring detention in 

hospital for up to 30 days, rather than by police officers' judgment at the accident 

scene alone. 

Finally, it should be pointed out here that the bend data of the Stats 19 are thought to 

be somewhat inaccurate/unreliable. In the Stats 19, the variable "2.7 Manoeuvres" is 

the only variable that provides the information on the presence of bend. Which is, the 

categories "Going ahead left hand bend" and "Going ahead right hand bend" in the 

variable "2.7 Manoeuvres" represent the presence of bend. It is recognised in this 

present research that this may be a misleading recording system which results in none 

of traversing manoeuvres (Le., overtaking or lane changing) being recorded to have 
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occurred on curved roads. In spite of the bend data that are thought to be somewhat 

inaccurate/unreliable, the bend data were still included in the analysis as previous 

studies (e.g., Broughton, 2005; Clarke, 2007) suggested that the presence of curvature 

on the roadway is a serious concern for motorcycle safety. For instance, Broughton 

pointed out that motorcyclists riding on bends experienced a higher risk in being 

fatally/severely injured in single-motorcycle accidents. In addition, Clarke noted that 

the presence of curvature on roadway is one of the significant factors to the 

occurrence of fatal single-motorcycle crash. Interesting results related to the presence 

of bend were also found in this current research. For instance, there is about a 35% 

increased probability of a KSI for a head-on crash that occurred on the roadway with 

bend for car relative to non bend for car (see Table 7.30 in section 7.3.3). The 

examination results (see Table 8.2 in section 8.3) also revealed that head-on collisions 

were most likely of all other crash configurations to occur on the roadways with bends. 

It appears here that, given that research (e.g., Broughton, 2005) indicating that the 

presence of curvature on the roadway is a serious concern for single-motorcycle 

accidents, roadways with bends may also playa part in affecting motorcyclist injury 

severity in motorcycle-car accidents. It is therefore recommended that for more 

accurate and reliable bend data, an additional variable be added into the Stats19 

recording system. 

9.3.6 Cost-Effective Issue 

Although several possible countermeasures were proposed in this current research, the 

author acknowledges that they may not be cost effective due to the fact that the United 

Kingdom is not a highly motorcycled country. The present study cannot address the 

question of whether or not these countermeasures are cost effective, nor can it conduct 

before-and-after studies due to the limited time and fund (see the work of Hauer, 1997, 

for a complete discussion of the essentials for a before-and-after study). The author 

recognises that these countermeasures may only be cost effective in areas with heavy 

automobile and/or motorcycle traffic. However, it is felt that these possible 

countermeasures may be beneficial in making driving safer for all road users in 

general and motorcyclists in particular. For instance, police surveillance can be 

targeted toward nighttime/weekend hours, and on non built-up roads, thereby helping 
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making the right-turn motorists intersect with other motorised vehicles (particularly 

motorcycles) more cautiously. 

9.4 Summary 

This chapter discussed the findings in this research, with emphases on the potential 

countermeasures that can be applied to help curb right-of-way violations and prevent 

specific hazards from occurring. 

The prevention measures that may curb motorists' failure to yield in accidents 

involving gap acceptance were first discussed. Gender-/age-specific factors, as well as 

other factors such as temporal, roadway, and vehicle factors were found to be 

associated with more right-of-way violation cases. These factors should be taken into 

account for the implementation of the countermeasures. For example, 

countermeasures such as public information and safety education programmes can be 

targeted toward celtain groups of motorists such as the elderly/teenage motorists, or 

professional drivers of larger motor vehicles that were found to be more likely to 

violate motorcycles' right of way. Police patrol near junctions that can be a potential 

countermeasure may also need to be directed towards certain times and locations such 

as nighttime/weekend . and non built-up roads where violations were more likely to 

occur. 

Evidence in literature has shown that motorcycles' poor conspicuity may be one of the 

contributory factors to motorists' failure to give way. The relationship between right­

of-way violations and motorcycles' poor conspicuity was not directly assessed in this 

research. However it was found in this research that evening/nighttime/early morning 

hours riding was associated with more right-of-way violations. It was suggested in 

this research that improving motorcycles' /motorcyclists' conspcituity through the use 

of the measures such as the wearing of fluorescent garments/helmets/leg shields may 

make motorcycling safer during daytime in general and during evening/midnight/early 

morning hours in particular. 

It was also suggested in this research that certain types of junction control measures 

may have the potential in helping eliminate the needs of a right-turn motorist to detect 
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an approaching motorcycle, thereby reducing the number of right-of-way violations. 

These measures that could prevent the direct crossing from occurring include priority 

signal phases and a longer duration of green phases for either motorcycles or motor 

vehicles 

No secondary prevention policy that aims to decrease the number of injuries or lessen 

injury severity can be proposed based on the findings in this research. Rather, 

measures that may help prevent the specific hazards from occurring in certain crash 

configurations are discussed. For example, injuries in head-on crashes were greater 

when there was presence of bends than there was absence of bends on the roadways. 

It was suggested in this research that a mirror erected on the kerb could help 

motorists/motorcyclists detect oncoming traffic that may be blocked by the bends. 

Moreover, for the finding that traversing manoeuvres such as overtaking or lane 

changing by motorcycles resulted in the increased injury severity in sideswipe 

"motorcycle head-to-side" crashes and rear-end McCar crashes, efforts should be 

made to prevent motorcyclists from filtering in the traffic stream on high-speed 

roadways. Engineering measures such as motorcycle segregation lane may have the 

potential in reducing the number of overtaking-/lane changing-related accidents. 

The next chapter ends this thesis with conclusions and recommendations for future 

research. 
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CHAPTER 10 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

RESEARCH 

10.1 Introduction 

The primary objective of this current research has been to investigate the factors that 

were associated with the increased motorcyclist injury severity resulting from various 

motorcycle-car accidents that occurred at T -junctions. This chapter presents a 

summary of the main results and conclusions obtained from the research. Furthermore, 

some recommendations based on the findings of this thesis for future research in the 

field of motorcycle safety are discussed. 

10.2 Conclusions 

Using data extracted from the Stats19 accident injury database, the current research 

estimated the aggregate OP model of motorcyclist injury severity by motorcycle-car 

accidents in whole. Additional disaggregate models of motorcyclist injury severity by 

various crash configurations were also conducted. The results obtained in this current 

research, by exploring a broad range of variables including attributes of riders and 

motorists, roadway/geometric characteristics, weather/temporal factors, and vehicle 

characteristics, provide valuable insights into the underlying relationship between risk 

factors and motorcycle injury severity both at an aggregate level and disaggregate 

level. The binary logistic models were also built to explain the likelihood of motorists 

failing to yield to motorcyclists in accidents that involved gap acceptance (i.e., 

approach-turn and angle crashes). The conclusions of this current research are 

organised into several sub-sections and presented below. 

10.2.1 Right-of-way Violation 

This current work has uncovered a significant problem involving the failure of a right­

turn motorist to give way to motorcyclists in approach-turn and angle crashes. Right­

of-way violation cases appeared to outnumber non right-of-way cases and predispose 
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motorcyclists to a greater risk of KSIs in both approach-turn B collisions and angle A 

crashes. Significant factors (e.g., demographic, temporal, roadway and vehicle factors) 

associated with right-of-way violations have emerged. Such findings may facilitate 

the identification of the possible countermeasures that aim to curb motorists' failure to 

give way. Gender-/age-specific factors, as well as other factors such as temporal, 

roadway, and vehicle factors should be taken into consideration in the design and 

implementation of countermeasures meant to curb right-of-way violations. For 

instance, prevention strategies such as public information and safety education 

programmes can be targeted towards certain groups of motorists such as male 

motorists, young/elderly motorists, or professional motorists that were found to be 

more prone to infringe upon motorcyclists' right of way. Police patrol near junctions 

as a countermeasure may also need to be directed towards certain times and locations 

such as nighttime/weekend and non built-up roads where violations were more likely 

to occur. 

10.2.2 Other Important Empirical Findings 

There are some other important empirical findings. First, an important result is that 

injuries were generally greatest to riders in almost all crash configurations that 

occurred at stop-controlled junctions. One exception is for approach-turn A crashes 

where riders were more injury-prone under automatic signals. Second, the presence of 

the curvature for car resulted in the increased motorcyclist injury severity in head-on 

crashes. Third, overtaking manoeuvres by motorcycles appeared to be the deadliest 

manoeuvre to motorcyclists in sideswipe "motorcycle head-to-sides car" crashes. 

Fourth, injuries to riders were greatest in rear-end McCar collisions in which a 

traversing motorcycle collided with a traversing car ahead. With reference to past 

studies on motorcyclist injury severity which have focused primarily on estimating 

aggregate models by accidents in whole, there have been very few, if any, studies that 

resulted in similar significant findings. 

Other factors found to generally increase motorcyclist injury severity in all crash 

configurations include elderly rider, motorcycle with engine size over 125cc, elderly 

motorist as motorcycle's crash partner, accidents that involved three vehicles or above, 
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and accidents that occurred on non built-up roadways, during midnight/early morning 

hours, and on the weekend. 

10.2.3 Possible Countermeasures 

The results obtained in this current research have important implications for education 

programmes, traffic regulation and engineering control, and planning of motorcyclist 

facilities, as discussed in Chapter 9. One of the examples of potential measures based 

on the findings of this thesis is that engineering measures such as certain types of 

junction control measures may have the potential in helping eliminate the needs of a 

right-turn motorist to detect an approaching motorcycle, thereby reducing the number 

of right-of-way violations. The measures that could prevent motorists' direct crossing 

include priority signal phases and a longer duration of green phases for either 

motorcycles or motor vehicles. Another example is that motorcycle segregation that 

precludes motorcyclists and motorists from sharing the same pavement on high-speed 

roadways, and/or on roads with a significant fraction of heavy motor vehicle traffic 

may be beneficial in reducing the risks of overtaking-/lane changing-related accidents 

on undivided roadways in general and at junctions in particular. 

10.3 Recommendations for Future Work 

The scope of this current research was limited to the analyses of available data from 

the Stats19. Due to the restrictions on funding and time, it appeared impossible to 

extend this current research by analysing data from other datasets or validating the 

results by conducting a local case study. Therefore, the following issues are 

recommended for future research and are described further in the subsequent sections: 

• Further research for specific crash type with available data in the Stats 19 

• Improving the model specification by including additional variables 

• Improving the predictability of the calibrated models 

• Validation of the modelling results 
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10.3.1 Further Research for Specific Crash Configurations with Available Data in the 

Stats19 

Research is needed for specific crash configurations with available data in the Statsl9. 

This is organised by crash type and explained further in the following sections. 

10.3.1.1 Angle AlB crash 

In this current research, angle AlB crashes were classified into five crash manners 

depending on the pre-crash manoeuvres of the involved motorcycle and car (see 

Figure 7.1 in section 7.2.2). There exist some crash patterns that could not be fit into 

five crash patterns and these were classified as unidentified crash pattern, which 

accounted for 12.1 % of all casualties (Le., 5527 observations, as reported in Table 

7.2). These unidentified crash patterns include, for example, a situation when a car 

from the minor road did not make a right-/left-turn at all. Rather, this car travelled 

straight to the kerb of the major road (Le., the top of the T-junction) and collided with 

an oncoming motorcycle. It is suspected that this may have been a car attempting to 

park on the kerb of the major road for business purpose. These unidentified crash 

patterns are irrelevant to this current research and therefore were not considered in the 

analysis. However, further research may attempt to identifY whether these 

unidentified crash patterns resulted from inappropriate roadside parking that led to 

collisions with motorcycles. Further research may make the use of the variable 

"Vehicle Movement Compass Point" that provides information on the parking status 

of an involved vehicle. 

10.3.1.2 Approach-turn A crash 

As reported in Table 7.1, 28% of the injuries resulting from approach-turn A crashes 

under automatic signals were KSIs. No disaggregate model was estimated by this 

deadly combination as there were too few observations of casualties resulting from 

such crash configuration (N=189) to yield statistically significant modelling results. 

The examination of the considered variables amongst different crash configurations 

(see Table 8.2) also revealed that approach-turn A crashes were most likely of all 

crash configurations to occur under automatic signals. Clearly further research is 
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needed to examine the causality mechanisms and factors involved in this crash 

configuration. To do so, further research may conduct univariate descriptive analysis 

(as conducted in Chapter 5 in this thesis), instead of the multivariate modelling 

approach, through the use of the data available from the Statsl9. 

10.3.1.3 Head-on crash 

It was found from the dis aggregate model of head-on crashes that riders were more 

injurious in head-on crashes that involved three vehicles or above (Table 7.29 and 

Table 7.30). The examination of the considered variables among different crash 

configurations (see Table 8.2) also revealed that head-on crashes were far more likely 

than other crash configurations to involve three vehicles or above. Similar to 

approach-turn A crashes that occurred at signalised junctions, the total number of 

casualties resulting from such crash configuration that involved three vehicles or 

above was too few to yield significant modelling result (N=711). Through the use of 

the data that is readily available from the Statsl9, further research may conduct 

univariate descriptive analysis (as conducted in Chapter 5 in this thesis), instead of the 

multivariate modelling approach, to examine the causality mechanisms and factors 

involved in head-on crash that involves three vehicles or above. 

10.3 .1.4 Rear-end/sideswipe crash 

Regarding rear-end/sideswipe crashes, there are three recommendations for future 

research: 

• further research may attempt to identify whether a motorcycle is the middle 

vehicle that crashes into the car ahead and subsequently is rear-ended by a car; 

• further research may attempt to analyse rear-end crashes with unknown 

gender/age of motorist; and 

• further research may attempt to examine why the percentage of HGVs in 

same-direction collisions (Le., sideswipe "side to side" crash, rear-end McCar 

crash, rear-end CarMc crash) is higher than accidents that involve gap 

acceptance (Le., approach-turn A/B crash, angle A/B crash). 
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These three recommendations are further described below. 

Regarding rear-end collisions that involve three vehicles or above, research analysing 

car-car rear-end crashes (e.g., Khattak, 2001) reported that in rear-end crashes that 

involved three vehicles or above, injuries to occupants in the middle car tended to be 

greatest. For motorcycle-car rear-end crashes, one may expect motorcyclist injury 

severity to be more severe if the motorcyclist victim is in the middle position. For this 

current research, the author has not been able to identifY whether the motorcycle is 

exactly the middle vehicle that crashes into the car ahead and subsequently is struck 

by another automobile behind. This is because the variable "First Point of Impact" 

that has been used to classifY rear-end McCar/CarMc collisions (see section 7.4.2 for 

more discussions on the use of the variable "First Point of Impact") only provides the 

information on the first point of impact. To identifY a motorcycle that crashes into the 

car ahead and subsequently is struck by another automobile behind, information both 

on first point of impact (i.e., it must be the front of a motorcycle) and on second point 

of impact (i.e., it must be the back of a motorcycle) is needed. Unfortunately, 

information about second point of impact is not available in the Stats 19. 

Although the author has not been able to extract the abovementioned data from the 

Statsl9, further research may stilI attempt to identifY such crash pattern (i.e., the 

motorcycle as the middle vehicle that crashes into the car ahead and subsequently is 

struck by another automobile behind). A possible way to do this is to identifY such 

crash pattern by using the information provided in the variable "2.18 Partes) Damage". 

The variable "2.18 Partes) Damage" provides the information on the multiple parts of 

damage of one vehicle (e.g., front, back, offside, nearside, roof, underside, all four 

sides), although it was observed that there is a relatively large fraction of missing data 

on this variable. 

With respect to unknown gender/age of motorist in rear-end collisions, it was found 

that there is far higher percentage of unknown gender and age of motorist for rear-end 

CarMc collisions (see Table 8.2). Unknown motorist gender and age contribute to 

13.7% and 20.8% of the casualties in rear-end CarMc collisions respectively. While 

the cause of these differences cannot be determined with any certainty, it is likely that 

the car as a following vehicle that crashed into a leading motorcycle (Le., a rear-end 
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CarMc crash) may be more likely to escape from the accident scene than those in 

other crash configurations. 

The findings related to unknown gender/age of motorist in rear-end CarMc crashes 

underscore the need for a careful and comprehensive study of "hit-and-run" accidents. 

Further work may examine whether these rear-end CarMC crashes with unknown 

gender/age of motorist are "hit-and-run" accidents through the use of the variable 

"2.24 Hit and Run" in the Statsi9. The variable "2.24 Hit and Run" provides the 

information on whether it is a hit-and-hit accident, although it was observed that there 

is a relatively large fraction of missing data on this variable. 

Turning to the third recommendation, it was found (see Table 8.2) that the percentage 

of HGVs in same-direction collisions (Le., sideswipe "side to side" crash, rear-end 

McCar crash, rear-end CarMc crash) is higher than accidents that involve gap 

acceptance (Le., approach-turn A/B crash, angle A/B crash). It is suspected in this 

present study that HGVs that have higher passenger compartment may exacerbate the 

problem that motorcycles (particularly a filtering motorcycle from behind or on the 

adjacent lane) are often in motorists' blind spots. On the other hand, it could be easier 

for HGVs that have higher passenger compartment to detect an oncoming motorcycle 

due to their less obstructed sight distance. 

Future research may attempt to examine the explanations for these effects. A 

recommended way for developing such future work is to use the data that is readily 

available from the Stats19 and conduct univariate descriptive analysis (similar to that 

conducted in Chapter 5 in this thesis). For instance, further work may discern the 

relationship between roadway factors and temporal factors (e.g., street light conditions 

and time of accident that may affect motorcycle's conspicuity) and the occurrences of 

same-direction collisions. 

10.3.2 Improving the Model Specification by Including Additional Variables 

The analyses in this current research are limited by the variables that are readily 

available in the Stats19. Clearly there is room for improving the model specification 

by incorporating additional variables into the models. These additional variables 
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include, for example, headlight use, alcohol use, detailed roadway geometrics data, 

medical diagnoses records, or detailed motorcycle factors. Analyses of more detailed 

data than those obtained from the Stats19 would provide more precise and conclusive 

estimation results. The importance of these unavailable data is described below. 

10.3.2.1 Headlight use 

Past studies (e.g., Wells et aI., 2004; Hole and Tyrrell, 1995) have suggested that 

measures such as daytime running lights (DRLs), fluorescent garments, or illuminated 

leg shields may improve motorcycle's conspicuity, thereby reducing the number of 

right-of-way violations. However, there has been little convincing evidence that these 

measures actually increase detectability in real traffic situations (Wulf et aI., 1989a, 

1989b; Cercarelli et aI., 1992). DRLs for motorcycles are compulsory in a number of 

European countries and several states in the U.S., while several countries have 

mandated DRLs for all motor vehicles (e.g., Iceland) (Elvik, 1993; Hansen, 1994). 

Hancock et aI. (2005) argued that motorcycles may be more conspicuous to other road 

users by using DRLs, but such improvement is likely to decrease if other motor 

vehicles have headlights on at the same time. It would be interesting for future 

research to identify whether these measures efficiently increase detectability of 

motorcycles in real traffic circumstance. 

10.3.2.2 Geometric factors 

Geometrics factors such as grade, shoulder widths, alignment of roadways, or 

curvature may playa role in motorcycle safety. The Stats19 provides limited data on 

geometric factors. The only geometric factor available is the presence of curvature but 

seems to be somewhat unreliable, as discussed in Chapter 9. Research (e.g., 

Broughton, 2005; Clarke, 2007) has revealed that curved roads both contributed to the 

occurrence of a single-motorcycle crash and resulted in more severe injuries in such 

crash type. Interesting results related to the presence of bend were also found in this 

current research. For example, the presence of bend for car was found to be associated 

with the increased motorcyclist injury severity in head-on collisions. It was also found 

that head-on collisions were far more likely than other crash configurations to occur 

on the roadway with bend. It appears here that roadways with bends may also play a 
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part in affecting motorcyclist injury severity in motorcycle-car accidents. Future 

research may attempt to extend the work conducted in this current research by 

obtaining and analysing more accurate and reliable bend data from other data source 

instead of the Stats 19. 

Evidence in several studies of motorcycle-car accidents (see, for example, Ramen et 

aI., 2003) has revealed that geometric factors such as number of lanes and shoulder 

width were significant in explaining car-motorcycle accident occurrences - Ramen et 

ai. considered the possibility that there may have been a reduction of motorcycle-car 

rear-end/sideswipe crashes as a result of an increase in number of lanes and wider 

shoulders on the major roads. Further research analysing additional geometric 

variables that may be obtained from other databases may allow more conclusive 

results than those in this current research. 

10.3.2.3 Alcohol use 

The modelling results in this research showed that late evening/mid-night/early 

morning hours were associated with the increased motorcyclist injury severity. In 

addition, right-of-way violation was more likely to occur during these hours. 

Although it was stated in this thesis that this is perhaps a consequence of alcohol 

during these hours, the real effect of drink riding/driving could not be examined in 

this current study due to the lack of such data from the Statsl9. This is a result that 

needs more scrutiny in future studies. Past studies (e.g., Kim et aI., 2000; Peek-As a 

and Kraus, 1996b; Shankar, 2001, 2003; Nakahara et aI., 2004; Kasantikul et aI., 2005; 

Broughton, 2005) may confirm the conjecture here - alcohol-related motorcycle 

accidents during these hours were much frequent than those during other hours. 

Moreover, drinking riders were less likely to wear a helmet, more likely to lose 

control, more likely to violate traffic signals, and more likely to be speeding. Future 

studies may seek to obtain alcohol use data from other database - for instance, Blood 

Alcohol Content (BAC) data supplied by Coroners and Procurators Fiscal to 

Transport Research Laboratory (TRL) for those who died in traffic accidents. 
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10.3.2.4 Medical diagnoses records 

Peek-As a and her colleagues (1994, 1996a) have previously investigated the effects of 

crash characteristics on the injured body regions among different crash configurations. 

However, their work has been more than 10 years old and has not been able to control 

for other important factors such as junction control measures or types of collision 

partners. Future studies may seek to analyse data for which information from the 

Stats 19 is linked to medical diagnoses records that may include the injured anatomic 

location. A research programme is warranted that combines the methodology of this 

current research that has controlled for several important factors and Peek-Asa and 

her colleagues' works. 

10.3 .2. 5 Detailed motorcycle factors 

The only variable that is available for the attributes of motorcycle in the Stats 19 is 

engine size. Other characteristics of motorcycle such as type or more detailed engine 

size are not readily available, but they may influence use and hence exposure to 

situations. Which is, powerful motorcycles can travel faster and any high speed 

collision can result in more severe injury outcome. 

Evidence in literature (e.g., Broughton, 2005; Clarke et aI., 2007) has revealed that 

more detailed data on engine size/type of machine may be desired in analysing 

motorcycle safety. For instance, Broughton suggested that there were almost 9 times 

as many deaths per large motorcycle (over 500cc) as per moped (0-50cc). Clarke et ai. 

concluded that super-sport motorcycles were overrepresented in accidents that 

occurred on curved roads, whilst scooters and mopeds were more likely to be 

involved in rear-end shunt collisions. They also found that super-sport motorcycles 

had a significantly lower propensity than other types of motorcycles for being 

involved in right-of-way violation accidents; and super-sport motorcycles appeared 

significantly overrepresented in overtaking (passing)/filtering accidents. 

In this current research, engine size effect was measured with two categories: engine 

size up to 125cc and engine size over 125cc. Engine size data were extracted from the 

variable "vehicle type" of the Stats 19 that provides three types of engine capacity: 
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moped, engine size up to 125cc, and engine size over 125cc. "Moped" and "engine 

size up to 125cc" are merged into one category to improve statistical significance in 

the calibrated models, as discussed in Chapter 4. Estimation results of the aggregate 

crash model and dis aggregate crash models suggested that bikes with engine size over 

125cc predisposed riders to a greater risk ofKSIs. 

The Stats 19 data for the year 2005 onwards subdivide the over 125cc range of engine 

size, with a total of four engine sizes available: moped, engine size up to 125cc, 

engine size over 125cc and up to 500cc, and engine size over 500cc. The Stats19 data 

for the year 2005 upwards were not included in the analysis in this present study (see 

the reasons and discussions in section 9.3.5). Therefore, the effect of engine size over 

500cc on motorcyclist injury severity was not examined in this thesis. 

Future research may investigate the effects of more detailed engine size (e.g., the 

subgroups of engine size examined in the work of Broughton) and machine type (e.g., 

the machine types examined in the work of· Clarke et aI.) on motorcyclist injury 

severity. Data on engine size over 500cc are available from the Stats19 for the year 

2005 upwards, as abovementioned. In addition, more detailed engine size data (e.g., 

engine size over 500cc and up to 1000cc, and engine size over 1 OOOcc) and machine 

type data (e.g., sports bike) are available from the National Driving and Vehicle 

Licensing Agency (DVLA) for those vehicles whose Vehicle Registration Marks 

(VRMs) were recorded by the police in the Stats19. Future research may attempt to 

augment "Vehicle record data" of the Stats19 with the national DVLA data and adopt 

the similar research methodology of this current study. 

10.3.2.6 The presence of pillion passenger 

Past studies of car-car accidents examining the effect of passenger carriage pointed 

out that carrying passenger was associated with proportionately more at-fault fatal 

crashes than driving alone for motorists aged 24 or younger (e.g., Preusser et aI., 1998; 

Chen et aI., 2000). Preusser et ai. 's and Chen et ai. 's results indicated that restrictions 

on carrying passengers should be considered for inclusion in graduated licensing 

systems for young motorists. Neyens and Boyle (2007, 2008) further noted that 
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passenger distractions at intersections resulted in more angle collisions and rear-end 

collisions relative to crashes with fixed objects. 

There seems to be a lack of research into this area for motorcycle accidents. Two 

exceptions are the studies by Quddus et al. (2002) and Broughton (2005). Quddus et 

al. found that carrying passenger resulted in an increased motorcyclist injury severity. 

Broughton further compared the proportion of passenger fatalities among motorcycles 

with different engine capacity. He concluded that the proportion of passenger 

fatalities tended to rise with engine capacity, and one tenth of fatalities on machines 

over 1000cc capacity were pillion passengers. 

The effect of passenger carriage on motorcyclist injury severity is not examined in 

this current study as the Stats19 does not explicitly provide information on whether a 

pillion passenger is present or not in an accident. Future research may attempt to 

identify whether passenger carriage increases motorcyclist injury severity, especially 

for riders of heavier machines (as discussed by Broughton, 2005). This can be 

important for experienced motorcyclists who are more likely to use heavier machines 

that are more suitable than small ones for carrying passengers. With higher speed that 

larger machines can perform, accidents outcome may be devastating to riders and/or 

passengers once a crash has occurred. 

10.3.3 Improving the Predictability of the Calibrated Models 

Overall, the current research contributes to the literature from empirical standpoint. 

Moreover, the investigations of various crash configurations have not been considered 

previously in literature for motorcycles at T -junctions. This research presents an 

investigation of identification of crash configurations at T -junctions for motorcycles, 

which is a severely under researched area. A number of papers have been prepared 

based on the results obtained in this present study and published in a number of 

international journals to report the results. 

The ordered response models have been used in this current research to investigate the 

factors that affect motorcyclist injury severity at an aggregate level (accidents in 

whole) and disaggregate level (by various crash configurations). It should be noted 
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here that, as discussed in section 3.3, the ordered response models employed in this 

research suffer from the same problem of previous studies that estimated the ordered 

response models (see, for example, Abdel-Aty and Abdelwahab, 2004c) - the less 

frequent categories of the dependent variable tended to be predicted badly. The 

combination of fatal injury and serious injury as one single KSI category was found to 

result in more accurate prediction capability than fatal injury and serious injury alone, 

but the accuracy was still fairly low (see Table 10.1 for a summary of the prediction 

performance of the calibrated models). As reported in Table 10.1, the classification 

accuracy (CA) of each calibrated model while predicting the most severe injury (i.e., 

KSI, which is the focus of this current research) is relatively low. As for predicting the 

KSls, the head-on crash model performs the best among the calibrated crash models, 

with 20.4% of the KSls being correctly predicted. The angle B crash model and rear­

end McCar crash model perform the worst among the calibrated models, with only 

0.5% and 0.4% of the KSls being correctly predicted. 

Table 10.1: A summary of classification accuracy (CA) of the calibrated OP 
models. 

Crash model CA for in.iury severity (%) Average Total 
No injury Slight KSI CA(%) observations 

1 0(0%) 75028 (99.0%) 1159 (4.7%) 74.81% 101841 
2 0(0%) 8450 (95.0%) 639 (14.8%) 68.49% 13270 
3 0(0%) 17312 (98.9%) 294 (4.5%) 72.53% 24274 
4 0(0%) 5346 (99.9%) 8 (0.5%) 76.56% 6993 
5 0(0%) 2268 (93.4%) 255 (20.4%) 67.44% 3741 
6 0(0%) 8383 (98.9%) 117 (4.8%) 76.88% 11056 
7 0(0%) 5416 (100%) 6 (0.4%) 76.51% 7087 

Note: Crash model 1-7 represent (1) aggregate crash model by accidents in whole, (2) 
approach-turn B crash model, (3) angle A crash model, (4) angle B crash model, (5) 
head-on crash model, (6) sideswipe "motorcycle head-to-sides car" crash model, and 
(7) rear-end McCar crash model. 

Further work may attempt to identify whether the predictability of the OP models 

estimated in this present study (especially the angle B crash model and rear-end 

McCar crash model, as reported in Table 10.1) can be improved by estimating some 

other non-parametric models such as artificial neural networks (see the review of past 

studies in section 3.3 that developed non-parametric models). 
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Chapter 10: Conclusions and recommendations for future research 

10.3.4 Validation of the Modelling Results 

This present research was limited to a sample of motorcyclists sustaining different 

injury severity levels, which were not true relative risks because they were derived 

from the Stats19 over years 1991-2004 and may not be generalisable to the entire 

spectrum of motorcycle crash injuries. The important issue of transferability of the 

calibrated models to other jurisdictions, as well as validation of the modelling results, 

were beyond the scope of the research. Addressing these issues in further studies 

would involve a comparison of model parameters and predictions with those of other 

calibrated models, and validation with a different database. 
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