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ABSTRACT 

This thesis investigates the operation of the current transfonner (CT) when sensing 

retum-to-zero current pulses in power electronic circuitry. 

The CT's output signal is nonnally rectified when sensing current pulses and the 

effects of the different rectification techniques on peak current and average current 

droop are evaluated. Initially, the various current sensing techniques and their 

application in power electronics circuits are reviewed. The CT and both diode and 

synchronous rectification are then reviewed in more detail. 

Operation of the CT with diode rectification (DR) and natural resetting is investigated. 

Three operating modes are identified. These are the discontinuous magnetizing 

current, continuous magnetizing current and discontinuous secondary current modes. 

The error (droop) in the average output signal obtained is found to be predominantly 

defined by CT core losses. Coefficients are given for correcting the error due to droop, 

provided that the discontinuous secondary current mode is avoided. Diode 

rectification with the dual CT arrangement is also investigated. 

Operation of the CT with synchronous rectification (SR) and natural resetting is then 

investigated. The SR topologies possible using a discrete MOSFET are categorized. 

During experimentation the arrangement used to drive the MOSFET's gate is found to 

be important if distortion is to be minimized. It also is found that the average current 

droop is dependent on the oscillatory behaviour of the resetting circuit and has an 

effectively random component. The magnitude of this component is defined by the 

voltage drop exhibited by the SR MOSFET's intrinsic anti-parallel diode. 

SR is then implemented using a commercially available analogue switch. The 

problems detailed with the use of a discrete MOSFET are largely alleviated. Another 

benefit is that the increased restriction on maximum duty factor imposed by 

introducing a discrete MOSFET is also eased. However, whichever SR technique is 
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implemented, an operational amplifier is used and the transient response of this circuit 

element is important. 

A method of minimizing droop by indirect sensing of the CT's peak core flux 

excursion is then presented. A corresponding correcting voltage is applied in series 

with the CT's output terminals during a current pulse. The magnitude of this voltage 

is based on the magnitude of the resetting voltage sensed during previous switching 

cycles. A circuit is implemented and simulated. Experimental results are presented. 

A switched-mode circuit operating at a frequency higher than that of the main power 

circuit is then used to apply the correcting voltage with the objective of reducing the 

power drawn. Again, the circuit is implemented and simulated and experimental 

results are presented. 
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CONTRIBUTION TO KNOWLEDGE 

The main contributions claimed by the author are as follows: 

1. Operation of the current pulse transformer when used with diode rectification, 

an active load and natural resonant resetting is investigated. Three modes of 

operation are identified and described. These are the discontinuous 

magnetizing current, continuous magnetizing current and discontinuous 

secondary current modes. It is shown that, at certain combinations of 

frequency and duty factor, the error in the average output signal obtained is 

predominantly defined by core losses in the CT. Simple piecewise power-law 

and ramp-on-a-step correction terms dependent on duty factor are shown to be 

appropriate for substantially correcting the error due to droop, provided that 

the discontinuous secondary current condition is avoided. 

2. Average current droop in the dual CT arrangement when used with diode 

rectification has been evaluated. It is found that, although applying the 

correction terms used with the single CT arrangement may be ideal, a 

substantial reduction in droop may be achieved in this case by the simpler 

approach of adding in a fixed offset term which is independent of duty factor. 

3. Although factors for correcting the average current droop due to core losses 

may be introduced, two criteria have to be satisfied. Firstly, accurate data on 

the CT's core losses is required. Secondly, the core losses should ideally 

exhibit a temperature coefficient of zero. With ferrite materials in particular, 

the losses vary non-linearly with temperature over the typical operating 

temperature of a CT. An additional important practical issue is that the op-amp 

should exhibit symmetrical positive and negative-going slew rates. 

4. Natural resonant resetting of the current pulse transformer when used with 

synchronous rectification (SR) realized with a discrete MOSFET is 

investigated. The possible SR topologies are categorized. It is found that the 

arrangements used to drive the SR MOSFET's gate are important if unwanted 

transient output signals and steady-state distortion in the circuit's output signal 
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are to be avoided. The error in the average output signal obtained is also 

influenced by the oscillatory behaviour of the resetting circuit and has an 

effectively random component, the magnitude of which is defined by the 

voltage drop exhibited by the SR MOSFET's anti-parallel diode. 

5. Using an analogue switch is preferred for realizing SR as this problem is 

largely alleviated, as is the distortion introduced by the presence of the 

MOSFET's inter-terminal capacitances and gate charging current. However, 

the transient (slewing) performance of the operational amplifier still affects the 

minimum droop attainable. 

6. An active technique is investigated for reducing droop in the CT. This is 

applied to a CT in an otherwise conventional diode rectifier and resistive load 

configuration. Feedback is applied such that the CT's secondary terminal 

voltage is preset during a current pulse in response to the resetting voltage 

sensed during previous switching cycles. A circuit implementation has been 

investigated, results are given and a simulation has been presented. It is found 

that, in steady-state operation and with integral feedback, average current 

droop may be effectively removed if the current waveform is rectangular. This 

includes operation at low primary currents where the problem of operation in 

the discontinuous secondary current mode is virtually eliminated. With current 

waveforms containing a triangular component, some distortion is incurred. 

This can be minimized by ensuring that the circuit's time constant is large 

compared to the current pulse's duration. However, the transient (slewing) 

performance of the operational amplifier becomes npn-problematic. 

7. The feasibility of using a switched-mode stage to provide the correcting 

voltage to a CT used with reset voltage feedback is demonstrated. This has the 

advantage that circuit efficiency is improved provided that the fixed losses are 

not excessive. Furthermore, cooling of a linear regulator is not problematic. 

However, a ripple voltage is superimposed onto the desired signal which is 

disadvantageous if the scheme is to be used for sensing peak currents as well 

as average currents. 
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CHAPTER 1 

INTRODUCTION AND OVERVIEW OF CURRENT SENSING 

TECHNIQUES FOR POWER ELECTRONICS APPLICATIONS 

1.1 Overview and Organisation of Thesis 

The operation of the current transfonner (CT) in switched-mode power conversion 

applications is investigated in this thesis. More specifically, its behaviour in 

unidirectional current pulse (UCP) sensing applications is studied. The objective is to 

find practical ways of improving its perfonnance in low-cost applications. A 

drawback with the CT is that "droop" occurs as some of the current being measured 

during a pulse flows into its magnetizing branch. Another important feature is that the 

pulse's duty factor has to be restricted to allow sufficient time to reset the CT's core 

material between pulses. Both these limitations are investigated here. 

As low-cost applications are of interest, only arrangements using the "simplest" 

possible CT construction are investigated. That is, the CT is constructed around a 

continuous toroidal ("ring") core with a single secondary winding and a single primary 

"winding" where the primary conductor is passed once through the core's aperture. 

The output signal from a unidirectional current pulse transfonner (UCPT) is nonnally 

rectified. A passive diode or a synchronous rectifier may be used. Operation of the CT 

with both these techniques is investigated. 

A reset voltage feedback technique is also investigated whereby a compensating 

voltage is applied in series with the CT's secondary tenninals during a current pulse to 

minimize distortion. The magnitude of the correcting voltage is based on the 

magnitude of the CT's resetting voltage-time product sensed during the power 

converter's previous switching cycles. The feasibility of using a switched-mode stage 

to apply the compensating voltage with reduced power dissipation is also evaluated. 



In this chapter different current sensing techniques are compared by way of a literature 

review. A preliminary discussion of synchronous rectification is included. Although 

the use of the CT in power conversion applications is the subject of this thesis, other 

power electronics applications, for example machine-drive inverters, are discussed 

where this is relevant prior art. In Chapter 2 a more specific literature review of the 

CT is presented. The main body ofthe work is included in the subsequent chapters. 

1.2 Current Sensing Requirements in Switched-Mode Power Converters 

Current sensing may be required at several locations in a power converter circuit. As 

an example, Figure 1.1 outlines a typical off-line isolated-output ac-dc converter. This 

circuit comprises a boost converter input stage in conjunction with a full-wave 

rectifier for ac-dc conversion with power factor correction (PFC) and a forward 

converter for dc-dc conversion with an isolated output. Winding N3 on the isolation 

transfonner (T1) fonns the core reset circuit in conjunction with Dr. 

Sensing of the input current (iA) may be required by the boost converter's control 

circuit to enable it to force the average input current to accurately follow the profile of 

the supply voltage and therefore minimize the magnitudes of the hannonic currents 

drawn. High-bandwidth sensing of the current through TR2 (iB) is nonnally required 

to implement peak current control and device protection. Accurate sensing of the 

average output current (ic) may be required in various applications, such as power 

converters for battery charging, where the correct charging profile has to be applied. 

Where modular power converters are run in parallel for increased power throughput, 

iA or iB is nonnally controlled in response to a common current demand signal to 

ensure effective current sharing between the modules [1]. 

As stated in Section 1.1, the DCPT is investigated here. This is appropriate for sensing 

the transfonner's primary current in "single-ended" topologies such as the forward 

converter in Figure 1.1 and also the flyback converter. However, in topologies such as 
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the half-bridge circuit where the power transfonner is driven with a symmetrical 

primary current wavefonn then an ac current transfonner may be used. 
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Figure 1.1. Typical Off-Line Power Converter Showing Locations where Current Sensing may be 

Required 

1.3 Overview of the Principal Current Sensing Techniques 

Various techniques may be used for sensing current [2] of which the CT is only one. 

Their respective advantages and disadvantages are listed in Table 1.1. 

1.3.1 The Sense Resistor 

The sense resistor is, in principle, simple. However, developing a large voltage across 

the resistor is desirable to provide a high signal-to-noise ratio (SNR). This implies a 

high resistance value which in tum leads to high power dissipation. Where the current 

to be measured is within an electronic power converter, a high SNR is particularly 

desirable due to the high level of ambient conducted and radiated electrical 

interference generated by power device switching transients. 
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Sense resistor SimQ1e Large volume 
Accurate, but trimming No inherent galvanic isolation 
operation may be required to 
attain required accuracy 
Good frequency response Relatively high "footprint" area 
(provided low-inductance may be required 
construction is implemented) High ~ower consumption 

Use of parasitic resistance in Low-cost, discrete resistor is not Choke's resistance and 
power converter's choke required inductance need to be known for 

accurate measurement: difficult 
to achieve and both are 
temperature-dt':IJendent 

"Low-footprint" solution No inherent galvanic isolation 

Current-sensing MOSFET Minimal extra circuitry No inherent galvanic isolation 
Low losses Unwanted spikes duc to 

transformer action between 
.2.0wer and current sense circuits 
Frequency response is limited 

Hall-effect sensor (open-loop) Accurate (1 % linearity error Expensive (gapped core and 
typical) Hall-effect element require<!) 
Inherent galvanic isolation Frequency response limited to 

approximately 200 kHz 

Hall-effect sensor (closed-loop) Very accurate (0.1 % linearity Expensive (gapped core, Hall-
error typical) effect element and compensating 

winding required) 
Inherent galvanic isolation Frequency response limited to 

approximately 200 kHz 

Rogowski coil Accurate Prone to time-dependent integral 
drift. Complex circuitry required 
to minimize this 

Inherent galvanic isolation Cannot sense dc 
Accuracy dependent on physical 
dimensions and orientation of 
current-carrying conductor in 
coil's aperture I 

Current transformer Accurate (0.1 % achievable dc current cannot be sensed 
provided the design takes without additional circuitry 
account of distortion due to 
droo21 
Good high frequency response, Duty factor typically constrained 
however, a low frequency to 90 % if saturation of core 
asymptote exists below which material is to be avoided 
excessive droop results 
Inherent galvanic isolation I 

Table 1.1 Overview of the Principle Current Sensing Technologies 
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For high accuracy the resistive element has to be constructed from a material with a 

low temperature coefficient of resistance (TCR). Kelvin ("four-wire") connections are 

also desirable. With Kelvin connections, separate terminals are provided to connect a 

pair of power leads and a pair of sense leads to the resistor. The circuit formed by 

connecting the sense leads does not incorporate the junctions between the power leads 

and the resistor. Variations in the junction resistances, which are significant if the 

element resistance is low, therefore have a minimal effect on accuracy. 

Another drawback with the sense resistor is its lack of inherent galvanic isolation. 

This may be required for safety reasons, to realize level-shifting or to minimize 

interference. Even where safety or interference considerations are not problematic, for 

example, in power converters where the control circuitry is referenced to the power 

conversion circuitry, a level-shifting capability may still be required. However, some 

manufacturers have produced ICs to perform this function, for example [3]. 

A variant of the sense resistor technique extracts the signal developed across the 

inevitable parasitic resistance in a power converter's choke from that across its 

terminals [4, 5]. This avoids the introduction of a discrete sense resistor and its 

consequent losses and "footprint" requirement. However, as the conductor material is 

invariably copper, with a TCR of approximately 0.39 %IOC, inaccuracy occurs due to 

thermal effects. Also, the "cold" resistance of the conductor may, in any case, be 

poorly defined as its cross-sectional area and length may vary between units due to 

manufacturing tolerances. Furthermore, the circuit extracting the signal needs to have 

a comer frequency matched to that formed by the choke's inductance and parasitic 

resistance. Variations in the inductance attributable to changes in the magnetic 

material tolerances and temperature are therefore also problematic. 

1.3.2 The Current-Sensing MOSFET 

A current-sensing MOSFET is shown in the circuit in Figure 1.2. In this device, one 

or more of the cells within the MOSFET are left in an "open-source" arrangement [6-
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8]. The current through these cells is a small proportion, given by the "current sense 

ratio" (CSR), of the drain current. This current does not flow into the main source 

terminal but, instead, flows into a fourth terminal. It is then sensed by means of a 

burden resistor or an operational amplifier circuit. Some high-frequency problems are 

encountered [6, 7]. Firstly, the CSR varies during switching as the gate voltage 

changes and the device moves through its linear region. Secondly, in a practical device 

package, there is some magnetic coupling between the main and the signal-carrying 

source connections. This results in unwanted transient voltages being induced in the 

signal-carrying lead. In Figure 1.2 an operational amplifier in an inverting 

configuration is used to present a virtual ground connection to the sense connection. 

This has the advantage that the sharing ratio is unaffected by the emf which would be 

developed across a burden resistor. The value of the CSR is given by kCSR. 

Normal source connection 
carrying majority of drain 
current 

;, 1 

Figure 1.2. Current-Sensing MOSFET Circuit 

Open-source current-sensing 
connection carrying small 
fraction of drain current (kCSR x iD) 

I Vout = - kCSR x iDRs 

v 

1.3.3 Use of MOSFET On-State Resistance as a Sense Element 

The MOSFET is one of the principle devices used in power converters and its on-state 

characteristic may be approximated as a resistance (RDS(on)). The current through it can 

therefore be derived by sensing the voltage across its power electrodes. However, this 

resistance is normally subject to wide production tolerances. Although this can be 
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compensated for by using a set-on-test (SOT) procedure for individual units, accuracy 

is still poor as the RDS(on) value also has a positive temperature coefficient of 

approximately 0.9 %/oC. However, although not generally accurate enough for 

absolute measurement purposes, this technique is suitable for use in peak current 

control loops where it has been implemented in commercially available power control 

rcs [9]. An on-line technique for calibrating the voltage sensed across a MOSFET at 

the expense of increased circuit complexity is introduced in [10]. An auxiliary switch 

and a sense resistor are connected in parallel with the MOSFET and every 1000 or so 

cycles this network is switched on instead of the MOSFET to obtain an accurate 

current measurement for calibration purposes. As the sense network is only switched 

on occasionally, the effect on circuit efficiency is minimal. 

1.3.4 The Hall-Effect Sensor 

The Hall-effect sensor [11, 12] provides galvanic isolation, low losses from the 

circuitry under measurement and, particularly in its closed-loop variant, very good 

linearity (typically better than 0.1 %). The cost of this sensor is high, in particular in 

the case of the closed-loop type where, in addition to the Hall-plate and the core­

gapping operation, a compensating winding is also required. 

Although the losses seen by the power circuitry under measurement are low, the Hall­

plate has to be supplied with an excitation current from the low-voltage control 

circuitry. Furthermore, the circuitry in the closed-loop variant has to supply some 

power to drive current through the secondary winding. Even where the current under 

measurement is zero, some additional "standby" current is still drawn by the closed­

loop variant. This is because, to minimize "crossover" distortion, the secondary 

winding is driven from a Class-AB amplifier which inevitably draws some quiescent 

or "standing" current. 

Whilst the linearity of the Hall-effect sensor is good, it may exhibit an offset error. 

This is primarily attributable to inconsistencies in the doping of the Hall-plate and 
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misalignments of the two voltage sense connections made to the Hall-plate. The error 

is also time and temperature dependent. One application in which the presence of an 

offset error may be particularly problematic is in grid-connected inverter topologies 

where it may lead to the unwanted injection of a dc current into the grid. However, a 

technique is presented in [13] where the output current of such an inverter is measured 

by a Hall-effect sensor which is continually self-calibrating. 

Although exhibiting high dc accuracy, the Hall-effect sensor has a typical bandwidth 

of typically less than 200 kHz. It is therefore not always suitable for measuring 

instantaneous currents such as is in Figure 1.1 for the purpose of peak current control. 

An arrangement similar to the Hall-effect sensor is the magneto-resistive sensor [14, 

15] where a material exhibiting a change in resistance when exposed to an incident 

flux density is used as the detector element. Unlike the Hall-effect sensor, the signal 

derived from the device is symmetrical with respect to the null incident flux point and 

the direction of the current producing the flux is therefore more difficult to ascertain. 

The combined Wheatstone bridge and "barber-pole" technique described in [14] and 

[15] is used to address this difficulty. Another arrangement similar to the Hall-effect 

sensor is the magneto-impedance sensor [16]. 

The optical current transformer (OCT) [17] is similar in that a device senses the 

magnetic flux attributable to a current in a nearby conductor. The OCT exploits the 

Faraday effect where the polarization of a light beam in a material is changed by an 

incident flux density (depending on the material's "Verdet" constant). Although more 

complicated than other magnetic flux sensors, the OCT is attractive for use in 

transmission networks where the demanding insulation requirements between the grid 

voltage and monitoring equipment are readily met by the use of an optical fibre. 

Drawbacks are that it is sensitive to vibration and variations in temperature. (Although 

referred to as a "CT", the OCT does not operate as a transformer in the commonly­

accepted sense where a voltage across a winding around a magnetic circuit induces a 

voltage across a second winding. It is therefore grouped here with the Hall-plate and 

other sensors which sense the flux density produced by a current under measurement.) 
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The Hall-effect sensor is usually manufactured as a purpose-built device. However, an 

alternative method [18] for realizing the open-loop variant is to embed the Hall-plate 

in the air-gap of an existing magnetic circuit, for example, a choke, located in the path 

of the current to be measured, as the flux density in the air-gap is, ideally proportional 

to the current in the choke's winding. This provides a low-cost and low-footprint 

solution. However, a compromise between the choke's physical size and the 

achievable accuracy is required. This is because the flux swing has to be restricted due 

to the non-linearity of the material's BH curve to attain improved accuracy. 

1.3.5 The Rogowski Coil 

The Rogowski coil [19, 20] may be used for sensing ac currents and return-to-zero 

current pulses. It exhibits galvanic isolation and low losses. As it is constructed 

around an air-cored coil, saturation of magnetic material and a consequent non-linear 

response are not problematic. It operates according to Ampere's and Faraday's Laws 

and yields an output voltage, Valli, given by: 

V - /I N A di 
alit -1"'0 , 1-

dt 
(1.1) 

where flo is the permeability of free space, Al is the cross-sectional area within the 

toroidal shape formed by the coil and i is the current under measurement. The 

conductor carrying this current is normally passed once through the aperture encircled 

by the toroid. N, is not the number of turns, but is the number of turns per unit length 

of the toroid. Valli is integrated, usually with operational amplifier circuitry to give a 

voltage proportional to the instantaneous current. As the integrator cannot be perfect, 

it inevitably exhibits integral drift. This precludes its use for measuring dc currents or 

current pulses above a certain length. A further issue is that the gain is dependent on 

the physical dimension "AI". Therefore, to obtain high accuracy increased cost is 

incurred by the need to ensure that the coil is manufactured to specified tolerances or 

that the gain of the electronic circuitry is accurately calibrated. Another geometrical 
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consideration is that, for Equation (1.1) to be valid, A 1 has to be small compared to the 

area of the aperture enclosed by the toroid. 

As an integrator is used, a high-tolerance capacitor is normally required for an 

accurate gain. This may be an expensive component when compared to other current 

sensors which rely for accuracy on a high-tolerance signal resistor. (Instead of 

operational amplifier circuitry, a simpler passive RC circuit may be used to realize an 

approximate integrator in low-specification applications.) 

The Rogowski coil exhibits some sensitivity to the position of the current carrying 

conductor within its aperture and the angle at which the conductor enters the plane of 

the coil. It also exhibits some sensitivity to currents in conductors outside the coil's 

aperture. In particular, it acts as a "search" coil with one tum when subjected to fields 

from external current-carrying conductors and the more complicated central return­

loop conductor arrangement described in [21] is required to alleviate this effect. 

Power electronics applications for which the Rogowski coil has been found suitable 

are the measurement of phase winding currents in switched reluctance machines [22] 

and the sensing of transient current waveforms in insulated gate bipolar transistor 

(IGBT) modules [23] to assess the current distribution between die in parallel. In [22], 

the current waveforms being measured (in the case of non-zero speed operation) are 

return to-zero-current pulses and in [23] only transient information is required. 

Integrator drift is therefore not problematic in either ofthese applications as the sensor 

can be periodically reset. Another related application is for sensing currents in the 

rotor bars of an induction machine [24]. The Rogowski coil is suitable here as these 

currents do not have a dc component. 

1.3.6 The Current Transformer 

The CT cannot inherently sense dc currents and, in UCP sensing applications, exhibits 

droop and can only sense pulses up to a limited duty factor. However, provided these 
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limitations can be addressed, the CT is a feasible low-cost sensing technique in many 

power converter applications [25]. For switched-mode applications, the CT is usually 

constructed using a toroidal magnetic core carrying a single primary winding and a 

large number of secondary windings, typically between 100 and 500. Advantages of 

the toroidal shape are that very low leakage inductances are achievable and that the 

magnetic circuit is continuous without air gaps. The effective permeability of the 

magnetic circuit is therefore the same as that of the core material's permeability. 

As mentioned in this chapter, the CT cannot inherently sense dc currents and the Hall­

effect sensor has a limited bandwidth. However, hybrid sensors have been developed 

to address these problems which use a Hall-effect device to detect dc and low 

frequency currents in conjunction with a CT to sense high-frequency components and 

thus provide an extended bandwidth [26]. Another hybrid sensor combines a sense 

resistor and isolating amplifier arrangement with a CT to realize a dc current sensor 

with isolation and a high (1 MHz) bandwidth [27]. (Current sensing techniques other 

than the CT may be hybridized in a similar way. For example, a Hall-effect sensor 

may again be used to sense dc and low frequencies, but with a Rogowski coil to detect 

the high-frequency components [28]). 

As shown in Figure 1.3, a burden resistor (RB) is normally used to provide an output 

voltage proportional to the secondary and hence, ideally, the primary current. Unlike 

the closed-loop Hall-effect sensor the energy required to drive current through the 

secondary winding is drawn from the primary circuit. (An exception is found with 

electronically-assisted CT arrangements.) 

ip 1 ,~ 

Figure 1.3. CT with Load (Burden) Resistance 
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The characteristic dimensions of the CT's magnetic circuit are its effective area and 

effective length. However, unlike the Rogowski coil, these dimensions do not affect 

the fundamental accuracy of the technique but, instead, only affect the error term 

attributable to the magnetizing current drawn. 

It is frequently asserted that the CT is an expensive component, usually when it is 

compared with the sense resistor. However, a high-wattage and high-tolerance power 

resistor with a low TCR element material and Kelvin connections is not necessarily 

inexpensive. Also, cooling, and, if required, isolation or level-shifting requirements 

add to the cost of the sense resistor. An important practical point concerning cost is 

that, as the CT is normally constructed with one primary "tum", the primary to 

secondary isolation requirements are particularly easy to meet without incurring high 

cost. To do this, the primary conductor can normally carry a suitable layer of 

insulation or be sleeved to meet the "creepage" and clearance requirements specified 

by regulatory agencies. This is not usually the case with the other magnetic 

components found in a power converter, for example, the power voltage transformer. 

CT's operating at switched-mode frequencies normally use "soft" ferrite core 

materials with a manganese-zinc (MnZn) active material due to the combinations of 

relatively high permeabilities and low core losses which are attainable with this 

material. "Soft" in this context means that the material has a low coercivity (He). The 

relatively low saturation flux density (Bsat) of these materials of 250-400 mT is 

generally not problematic in CT applications at power electronic switching 

frequencies. 

The performance of a CT may be improved by operating it in an electronically­

assisted mode where a tertiary flux-change sense winding is used [29]. The end of the 

secondary winding normally connected to the secondary circuit's reference voltage is 

instead connected to an amplifier which adjusts the terminal voltage in response to 

any flux-change detected by the tertiary winding. This minimizes the magnetizing 

current drawn, and hence the droop. Like the Rogowski coil, ac currents or current 

pulses may be sensed, but not steady-state dc currents. Although the technique has 
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been demonstrated to be suitable for cost-effective sensing of current pulses in 

automotive actuator applications, the particular permutation of performance 

improvement and complexity here is not necessarily optimal for switched-mode 

applications. In summary, the principal limitations of the CT are that: 

• currents with a dc content cannot be sensed without the use of ancillary 

circuitry 

• inaccuracy arises due to droop 

• the duty factor of the current pulse it can sense is limited 

These limitations and mitigating techniques are investigated in this thesis. 

As stated in Section 1.1, an objective of the research presented in this thesis is to gain 

the best performance from the "simplest" physical CT construction. That is, generally 

a CT manufactured by laying a single secondary winding onto a continuous toroidal 

core shape. An assumption made is that the cost of using electronic circuitry to 

enhance the performance of a CT is low compared to implementing a more complex 

physical CT configuration, for example, using a tertiary winding as described in [29]. 

The Hall-effect sensor and CT are discussed separately in Sections 1.3.4 and 1.3.6. 

(For convenience, any technology which directly senses the flux attributable to a 

current under measurement is grouped with the Hall-effect sensor.) However, it may 

be argued that the closed-loop Hall-effect sensor is in effect an electronically-assisted 

CT. At high frequencies CT action is dominant whilst at low frequencies the action of 

the Hall-effect sensor dominates. It may also be regarded as an inherently hybrid 

current sensing method by default whereas in [26] a hybrid design is actively pursued. 

In order to minimize droop in the signal obtained derived from a given CT three 

fundamental approaches may be taken, as summarized in Figure 1.4. 

Firstly, the external impedance seen by the CT may be minimized, in tum minimizing 

the voltage impressed across its magnetizing branch. 
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Secondly, the CT's secondary tenninal voltage may be actively controlled to minimize 

the voltage impressed across its magnetizing branch. This may be done in two ways: if 

the secondary series impedance of the CT is known, a voltage equal to the product of 

this impedance and the secondary current may be maintained at the CT's secondary 

tenninals. This, ideally, results in zero voltage being impressed across the 

magnetizing branch. Alternatively, the voltage may be controlled by detecting and 

nullifying any flux in the CT's core. The flux may be detected directly or indirectly. 

Thirdly, if the error introduced by current being drawn by the CT's magnetizing 

branch can be predicted, correcting tenns may be introduced into the output signal. 

Aspects of all three of these approaches are investigated in this thesis. 

A 1 B 1 c 1 
Minimize external Actively control Add correcting 

impedance terminal voltage of GT terms to GT's 
seen by GT in order to minimise output signal 

to core flux 

I 
1 B.2 1 

Infer required Modify terminal 
terminal voltage from voltage 

secondary current in response to 
and GT's secondary sensed core flux 
winding impedance 

I 
B.2.a 1 B.2.b 1 

Directly sense Indirectly sense 
core flux core flux 

- -- ----

Figure 1.4. Classification of Methods for Minimizing Droop in the Signal Derived from a CT 
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1.4 Other CT Applications in Power Electronics 

The use of the CT for current sensing and control in power converters is investigated 

here. However, CTs have been used in other electronics applications representing 

prior art of interest. These include regenerative base current supplies for the now 

virtually obsolete high-current bipolar junction transistor (BJT) [30, 31] and 

magnetrons [32]. 

Another application for the CT is in protecting the power semiconductor devices in 

inverters. Inverters are generally operated with average current control of their phase 

currents, particularly in high-performance applications where rotating machines are 

driven by implementing flux-vector control. Hall-effect devices are usually preferred 

for sensing the phase currents because of their inherent galvanic isolation and ability 

to operate with low-frequency and dc currents (for example, when zero-speed 

operation is required in a machine-drive application). However, local fast-acting over­

current protection is normally incorporated within the power devices' gate driver 

circuits [33]. This is to protect the devices from failure should faults occur in the 

machine or the occurrence of simultaneous conduction (when the two devices in a 

voltage-sourced bridge-leg are erroneously turned on at the same time). 

The IGBT is generally preferred as the power device in this application due to its low 

conduction losses at high voltage ratings. One technique for detecting over-currents is 

to monitor the collector-emitter voltage during the device's on-time and to trigger a 

latch to remove the gate drive signal if it becomes excessive. (This is similar to the 

technique in [9].) However, unlike the MOSFET, the v-i characteristic of the IGBT is 

approximated as a voltage sink in series with a relatively small slope resistance. 

Accurately setting the threshold trip current on the basis of the voltage observed 

across the power electrodes is therefore difficult with this technique. The CT, on the 

other hand, yields an output voltage proportional to the current being measured, 

making it useful for this application. Although galvanic isolation is not required here, 

as the inhibit signal is normally fed directly to the "high-side" section of the gate 

driver circuitry which is referenced to the IGBT's emitter potential, the combination 
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of low losses and high bandwidth nonetheless makes it attractive compared to the 

sense resistor. 

A current-sensing IGBT structure for protecting against over-currents has been 

presented in [34]. This is similar to the current-sensing MOSFET in [6-8]. However, 

the commercial availability of these devices is low. 

To directly measure the phase currents in a three-phase machine, three Hall-effect 

sensors may be used. Alternatively, to reduce the cost of these devices in a practical 

scheme, only two phase currents may be sensed with the current in the third phase 

being derived by means of Kirchoffs Current Law. To further reduce cost, the phase 

currents in a machine may be derived from a single current sensor located in the 

inverter's dc link conductor at the expense of additional processing circuitry [35]. 

Whilst it is current sensing that is addressed here, it is noted that the voltages in power 

converters may also be inferred from the sensed currents for control purposes [36]. 

The CT may therefore perform a dual function and negate the need for separate 

isolated voltage sensing elements. 

1.5 Synchronous Rectification 

Synchronous rectification (SR) is implemented in this thesis and is briefly discussed 

here. Figure 1.5 illustrates the principle behind SR [37]. Wherever a diode's forward 

voltage drop is problematic, an alternative arrangement is to replace it with a 

MOSFET. The MOSFET is turned on to allow it to conduct in reverse and turned off 

when biased in a forward direction to realize the blocking function of a diode. 

Provided that the MOSFET has a sufficiently low RDS(on) value, conduction losses may 

be reduced. SR is frequently used in switched-mode power supplies with low output 

voltages where even a Schottky diode would incur a high voltage drop compared to 

the output voltage and hence reduced efficiency. 
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Figure 1.5. Principle of Synchronous Rectification 

SR does, however, exhibit two principal drawbacks. Added complexity is usually 

introduced as circuitry is required to drive the SR MOSFET's gate terminal. Also, the 

transient behaviour of the MOSFET's intrinsic diode when regaining its blocking state 

at the end of a conduction period may be problematic. Difficulties include exacerbated 

tum-on losses in the complementary power semiconductor device due to the passage 

of recovery charge and the presence of electromagnetic interference (EMI) at the end 

of the recovery period when the diode regains its blocking properties [38]. 

Although other devices such as the BJT may be used for SR, the MOSFET is normally 

preferred due to its low on-state voltage drop, fast switching performance and the 

comparative ease with which its control electrode (the gate in this case) may be 

driven. In this thesis the application of SR in rectifying the output signal from a CT is 

investigated. 

Techniques for deriving the drive signal for an SR device may be classified into three 

groups. In control-driven SR, the signal for the SR element is derived from that used 

to drive the main power device. In self-driven SR [39] a winding on a transformer or 

inductor is used to provide the SR MOSFET's gate-drive signal. Where the voltage 

appearing across an existing winding is at an appropriate amplitude it may be used 

directly. Otherwise, an auxiliary winding or a tapping taken from an existing winding 

is required. In current-driven SR, the current through the SR device is sensed, either 
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directly by means of a CT [40] or by sensing the voltage across its power electrodes 

[41,42]. The resultant signal is then conditioned to provide a gate-drive signal for the 

SR device. Only control-driven SR is considered in this thesis. The principal 

advantage of the other two schemes, the incorporation of galvanic isolation, is not 

required from a CT's rectifier as this is realized by the CT itself 

Self-driven SR has another advantage in that the SR MOSFET's gate-drive signal is 

directly coupled to the rate-of-change in flux in a magnetic component. The rate of 

change in flux in the component is, in tum, directly related to the voltage applied to it 

by the action of power devices switching. Unlike control-driven SR where 

propagation delays through power devices have to be accounted for, the signal applied 

to the SR MOSFET therefore has near-perfect synchronization to the current changes 

at the power electrodes of the power circuit's devices. Self-driven SR does not 

therefore exhibit the same susceptibility to simultaneous conduction. 

However, the problems of low efficiency, high losses and power device destruction 

resulting from simultaneous conduction are not applicable here, where a CT's output 

signal is being synchronously rectified. Furthermore, the inclusion of an auxiliary 

winding or tapping, required for all situations except where the winding voltage co­

incides with that acceptable for driving the MOSFET's gate, adds increased 

complexity and expense. Also, the gate terminal of a MOSFET may typically only be 

driven over a maximum voltage ratio of three-to-one. That is, the ratio of the 

maximum safe voltage to the threshold voltage is three-to-one. The voltage range over 

which the power circuitry may operate is consequently constrained by this limitation. 

Current-driven SR has the disadvantage that either an additional current sensing 

element or a voltage-sense amplifier is required, again increasing complexity and 

expense. 
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CHAPTER 2 

REVIEW OF CURRENT TRANSFORMER CIRCUITS 

2.1 Introduction 

Where the output signal from a CT has to be rectified for unidirectional current pulse 

(UCP) sensing [25, 43, 44], either diode rectification (DR) or synchronous 

rectification (SR) may be used. Both these options are discussed in this chapter. SR 

reduces distortion due to droop if the MOSFET has a sufficiently low on-state 

resistance. In addition, the duty factor at which the CT may operate before saturation 

of its core material occurs and accuracy is consequently reduced may be extended. 

However, for a given operating frequency, this is only achievable where the 

MOSFET's common-source output capacitance is sufficiently low as this capacitance 

combines with the CT's secondary magnetizing inductance to form a lightly damped 

resonant circuit, the oscillatory frequency of which defines the required reset time. 

Implementing SR may therefore increase the required reset time. 

Three principle parameters of interest in evaluating the performance of a CT circuit 

are droop, maximum duty cycle and peak reset voltage. Droop is most frequently 

defined as the per-unit instantaneous drop in the sensed current present at the end of a 

rectangular current pulse. However, it may also be defined as the shortfall in the 

average current sensed over a switching period. 

2.1.1 Unidirectional Current Pulse Sensing Using a CT 

Figure 2.1(a) shows a CT used to sense the UCP conducted by the switch (TRl) in a 

buck converter. During TRI 's on-time (Toil) the choke current (iLl) flows through TRI 

and the primary winding of CTl. CT's rectifier diode (D2) conducts its secondary 

current and, ideally, yields a signal (VOllf) across the burden resistor (RB) given by: 
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where ip is the current conducted by TR1 and n is the CT's turns ratio given by: 

N2 
n=~ 

N
J 

lpeak 

(2.1) 

(2.2) 

D3 may be included to connect the secondary winding of the CT across a defined 

voltage source, -V;'ese(, during the transistor's off-time (Tojf), to reset the CT's core 

material. This is discussed in more detail later in this chapter. 

Two principal problems arise with the CT. Firstly, as shown in an exaggerated and 

simplified form in Figure 2.1 (b), distortion due to droop results as some of the primary 

current under measurement diverts away from the referred secondary winding and into 

the CT's magnetizing branch. (In accordance with convention, droop (D) is defined 

20 



here as the per-unit fall in the sensed current at the end of a rectangular current pulse 

[25, 43, 44].) Secondly, the maximum duty factor (~Ilax) at which the power device 

operates has to be restricted to avoid saturation ofthe CT's core material. 

Droop is problematic as, in addition to impairing the accuracy of the average current 

measured, the triangular (ramp) component of the trapezoidal current measured in 

Figure 2.I(b) is reduced in magnitude with respect to the rectangular (step) 

component. Where the peak current is being sensed for control purposes, this effect 

tends to oppose the effect of the slope compensation necessary if sub-harmonic 

oscillation in the power converter's control system is to be avoided, as described in 

[44]. 

A restricted duty factor is problematic in various applications. In a buck converter a 

duty cycle near to 100 % may be desirable so that the converter can supply the 

required output voltage when the input voltage is low, that is, when a low "headroom" 

voltage is available. An example is in battery-powered applications where the required 

output voltage may be maintained for longer as the battery's terminal voltage falls 

with discharge. 

In the single-ended boost topology normally preferred for single-phase off-line power 

factor correction (shown in Figure 1.1) a power switch duty cycle up to 100 % is 

desirable when the input voltage is at zero in order to reduce crossover or "cusp" 

distortion. When a CT is used in series with the power switch, a compromise exists 

between avoiding this form of distortion and that resulting from CT saturation as the 

duty factor approaches 100 % [45]. 

2.1.2 CT Equivalent Circuits 

Figure 2.2(a) shows a transformer equivalent circuit. This is simplified here to give 

the circuit in Figure 2.2(b). 
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In addition to the ideal transformer, only the inductive component of the magnetizing 

branch (Lm) and the secondary winding resistance (R2) are included. As the CT is fed 

from a current source (ip) the primary winding resistance and leakage inductance (Rl 

and L l ), both in any case small, are assumed not to affect the voltage (vm) developed 

across the magnetizing branch. The flux excursion in a CT is normally very small and 

the resistive leg (Rm) of the magnetizing branch used to model core losses is often 

neglected. The secondary leakage inductance (L2) is also often neglected in power 

converter applications as the CT is normally constructed with a toroidal core carrying 

an evenly spaced secondary winding. 

Inter-tum and core-to-winding capacitances may be lumped and represented as an 

equivalent capacitance (Ceq) connected across the CT's secondary terminals. A high 

number of secondary tums (N2) is desirable to reduce the amplitude of the secondary 

current. However, Ceq rises as N2 is increased. Adverse consequences [46] are that the 

high-frequency performance of the CT is impaired and an increased reset time is 

required leading to a reduction in the duty factor at which the CT can operate. 

It is noted that Lm2 is given by: 

L = (N2) 2L
/II 

/112 N
J 

(2.3) 

Ideally, the secondary current, i2, in the load resistance is equal to the primary current, 

ip , divided by n. However, as Lm2 lies in parallel with the resistance formed by R2 and 

RB, it inevitably draws some of this current. 

If ip undergoes a step change from zero to Ip at t = 0, then i2 decays according to: 

(N) ~ 
i2 = N~ Ipe T (2.4) 

where the circuit's time constant, T, is given by: 

23 



Lm2 

r=R +R 
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R2 may be neglected where it is much smaller than Rs. Lm2 is given by: 

Lm2 = Aef.lof.1r N
2

2 

Ie 

(2.5) 

(2.6) 

The rate of decay of ip can be lessened by reducing Rs which in tum increases r. 

However, the voltage, Vollf, developed across Rs by i2 is now reduced and therefore has 

a smaller SNR. 

Although the drop in current due to droop is exponential, if ris much greater than TOil 

as is normally the case, then it may be regarded as linear. The per-unit droop (with all 

quantities referred to the secondary side) is therefore approximated as: 

D = (R2 + RB)TolI 

Lm2 

2.1.3 de Current Sensing 

(2.7) 

A limitation of the CT is that it cannot inherently sense non-retum-to-zero dc currents 

such as the choke current (iLl) in the converter shown in Figure 2.1(a) when it is 

operating in the continuous conduction mode (CCM). 

However, methods are available for overcoming this limitation so that a single CT 

may be used directly in series with the choke to measure the current in it. These are 

described in this section. 
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2.1.3.1 Ancillary Circuitry for Core Material Resetting 

Ancillary circuitry may be used to periodically reset the CT's core material [25, 47, 

48J. Whilst the bandwidth of this arrangement may be satisfactory for average current 

control and sensing, it may be too low for effective peak current control or limiting for 

the purpose of switch protection. During the period when reset is taking place, 

measurement of the choke current is not possible. Accuracy may therefore be reduced 

as the current during the reset period has to be estimated. 

2.1.3.2 Multi-vibrator Circuits 

Another approach for dc current sensing is to incorporate the CT into a multi-vibrator 

circuit [49, 50J. This circuitry excites the secondary winding with an alternating 

voltage signal, the frequency of which is sufficiently low for the core material to 

become slightly saturated twice every cycle. That is, the flux density in it is made to 

approach ±Bsat. When a dc primary current is applied, an asymmetrical ac flux 

excursion is now induced in the CT's core material. This effect is detected and a 

correcting secondary current is applied to restore the symmetry to the flux excursion. 

The average mmfs attributable to the primary and secondary currents have to cancel 

each other to yield zero average core flux. A burden resistor is normally used to 

develop a secondary voltage and this is given by Equation (2.1). 

A variant of this technique uses two MOSFETs in conjunction with a CT to realise a 

simple multi-vibrator circuit [51]. However, a tertiary winding on the CT is required 

to drive the MOSFETs' gate terminals. 

Although classified as a "CT" here, the use of multi-vibrator techniques may be 

classified with closed-loop Hall-effect sensors where a flux is detected and a restoring 

mmf is applied to drive the flux to zero. Effectively, the secondary winding acts as 

both a flux detector and also applies the compensating mmf. 

25 



High dc accuracy may be achieved using multi-vibrator circuits and a very simple CT 

construction may be used. However, the frequency response is low because of the 

need to remove the excitation signal from the circuit's output signal using a low-pass 

filter. The frequency of the excitation signal has to be low enough to swing the core's 

flux density through the material's linear range (from +Bsat to -Bsat) to induce 

sufficient distortion to facilitate detection. The required frequency is proportional to 

the applied excitation voltage and inversely proportional to the flux swing, core 

effective area and number of secondary turns. When all these parameters assume 

practical values, a low excitation frequency is necessitated. The filter frequency has to 

be lower still, restricting the bandwidth of the output signal. 

However, the asymmetrical flux excursion technique may be hybridized with a 

conventional CT to realize accurate high-bandwidth DC current transducers [52]. This 

system is relatively complex as three toroidal cores with associated windings and 

extensive processing circuitry is used. However, the cost and complexity is justified in 

some applications such as that in [52] where the currents in magnet drive circuitry for 

a particle accelerator have to be measured with high accuracy. 

2.1.3.3 The Dual CT Circuit 

As an alternative to the use of a single CT, the dual CT technique may be used [53] 

for dc current sensing. This is shown in Figure 2.3. A second CT is added to sense the 

current conducted by the power diode (Dl) in Figure 2.1(a) and the CTs' outputs are 

added to yield the choke current (iLl). The bandwidth achievable is such that peak 

current sensing as well as average current sensing may be implemented. Both the CTs 

are operating in the UCP sensing mode. Minimizing the droop and maximizing the 

duty factor that can be sensed by either or both may therefore be desirable. 

26 



iL1 io Vo 
01 • , Y '\ 

L1 i ~ ---L-

~CO~ 

I CT1 . ' 102 

. I 
Ip 

1 11 1 
I)'l 

~ ...... 
~ 1 v., 

Figure 2.3. Dual CT Arrangement 

A variant of the dual CT technique is described in [54J where the CTs are configured 

to sense pulse currents in both directions so that a bidirectional power converter can 

be controlled. An "integrated magnetics" approach is adopted in [54J to minimise the 

component count. Using this approach, the two CTs are assembled as one common 

component using a three-limbed magnetic core, the windings being configured so that 

the flux excursion produced by each CT has a minimal net effect on the other one. 

The dual CT technique operates by adding the retum-to-zero current pulses in a diode 

and power switch to obtain a resulting current elsewhere, normally in a power 

converter's input or output choke. A related technique is described in [55J where the 

two conductors carrying the power switch and diode currents in a power converter are 

led through the aperture of a single CT such that the currents in them tend to produce 

mmfs in opposite directions. The output is then conditioned to yield the choke current. 

However, low-pass filtering is required to extract the choke current and a compromise 
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has to be reached between having high dc accuracy and a high frequency response. 

This circuit is therefore unsuitable for peak current sensing. 

One technique for sensing the average current in Ll without the use of a second CT 

uses a current synthesizer technique to estimate the choke current when TRI is off. 

This is implemented in the PFC control IC described in [45]. A capacitor is charged 

up to a voltage proportional to the current in the power switch at the end of the current 

pulse. The capacitor is then discharged with a current proportional to the voltage 

across Ll during TR2's off-time. As this voltage has to be known or estimated, this is 

a complicating factor in applications where the control circuit has to be isolated from 

the power circuit. However, this voltage is generally sensed in any case for control 

purposes in the circuitry in [45]. In symmetrical isolated-output power converter 

topologies, the output choke current may be measured instantaneously using two CTs 

in the output rectifier circuit. Where instantaneous sensing is not required, the average 

choke current may be measured accurately using only one CT as the currents in each 

half of the rectifier circuit are virtually identical [56]. 

2.2 Rectifier and Load Arrangements 

2.2.1 Current Pulse Sensing with Load Resistance and Diode Rectification 

When the CT is used in the circuit in Figure 2.1 (a), the voltage drop across the 

rectifier diode may be significant compared to that across the burden resistance. At 

power switch tum-off, the secondary magnetising current (11112(0)) is therefore given by: 

11112 (0) = 8F [VI + ~ (R2 + RB )] 
Lm2 n 

(2.8) 

if it is assumed that the time constant of the circuit, given by Equation (2.5), is much 

greater than the pulse duration (81). The droop is defined as: 
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nI D = m2(0) 

ip 

(2.9) 

Putting Equation (2.8) into (2.9) and given that T=lifyields: 

n5 [ ~( )] D = Vj + - R2 + RB 
JXipLm2 n 

(2.10) 

Unlike the situation where the CT is used with a purely resistive load, as shown in 

Figure 2.2, the droop here is dependent on the magnitude of the current being sensed. 

2.2.2 Current Pulse Sensing with Active Output Stage and Diode Rectification 

Instead of connecting a burden resistance, RB, across the output of the CT, as shown in 

Figure 2.1(a), the circuit in Figure 2.4(a) may be implemented [57]. The CT's 

secondary current flows into the node connected to the operational amplifier's 

inverting terminal. As the operational amplifier is connected in an inverting 

configuration it maintains this terminal at virtually the same potential as its non­

inverting terminal which is connected to the zero-volt rail. The operational amplifier 

develops a voltage across RF equal to i2RF. The polarity of the connection made to 

CTI here is such that a positive output voltage is developed when the current pulse is 

present as this is generally more convenient for control purposes. If the voltage drop 

across D 1 is neglected then each end of this winding is held at virtually the same 

potential by the feedback action of the operational amplifier, effectively short­

circuiting it. The resistance seen in parallel with the magnetizing branch on the 

secondary side of the CT is now reduced from R2+RB to R2. Consequently, r is now 

increased from the value given in Equation (2.5) to: 

L 
r =.-!!11... 

R2 
(2.11) 
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Although the resistance in parallel with the CT's magnetizing branch is now reduced 

from R2+RB to R2, the forward voltage drop (Vj) from the rectifying diode (Dl) still 

appears as shown in Figure 2.4(b). 

If the voltage dropped across R2 is small in comparison with that dropped across the 

diode then at power switch tum-off 1,112(0) may be given by: 

I _ Vf 8I' 
1112(0) - -

L 1112 

Putting this result into Equation (2.10) yields: 

D = nVf c5 
JxIpL1II2 

(2.12) 

(2.13) 

Again, unlike the situation where the CT is used with a load resistance, the droop here 

is now dependent on the magnitude of the current being sensed. 

TR2 may be included to act as a Class-A amplifier to ensure that sufficient current 

may be driven through RF where the operational amplifier's output is not able to 

source this current. 

A resistor, RE, is shown in the emitter of TR2. This is because the output voltage, VOl/l, 

may be required to go slightly negative during periods when the load current is zero in 

order to satisfy any offset voltage present at the operational amplifier's inputs. This 

resistor allows a negative voltage to appear and therefore prevents the operational 

amplifier's output from going to the negative rail when trying to source this voltage. 

The operational amplifier's transient response when TR1 is turned on and the load 

current is re-applied to the CT is therefore improved as its output voltage has to slew 

less before settling. (It is assumed here that R2 is sufficient to allow the offset voltage 

to be developed with minimal current error. Where this is not the case, the CT may be 

ac-coupled to the operational amplifier [58].) 
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Figure 2.4. Unidirectional Current Pulse Sensing with Active Load and Diode Rectification 

A drawback of using the active load compared to the passive load shown in Figure 

2. 1 (b) is that, like the closed-loop Hall-effect sensor described in Section 1.3.4 and the 

multi-vibrator circuits described in Section 2.1.3.2, the CT's secondary current has to 
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be sourced by the power converter's low-voltage analogue circuitry. A further 

drawback is that the high-frequency perfonnance of the operational amplifier may 

limit the response of the circuit to rapid current changes. Furthennore, the response of 

the operational amplifier to current pulses may be asymmetric. That is, the rise-time 

when a current pulse is applied may differ from the fall-time when it is removed. This 

is addressed in subsequent chapters and leads to some inaccuracy when sensing 

average currents. 

2.2.3 Current Pulse Sensing with Active Output Stage and Synchronous 

Rectification 

The voltage drop across the rectifier diode may be reduced by the introduction of 

synchronous rectification (SR). The arrangement in Figure 2.4(a) is replicated in 

Figure 2.5(a) but, instead of a passive rectifying diode, a MOSFET (TR3) acting as a 

synchronous rectifier is used [59]. When the power device, TR1, is turned on TR3 is 

also turned on and its channel conducts in reverse. As shown in Figure 1.5, if the on­

state channel resistance is sufficiently low, then the voltage developed across TR3's 

source-drain junction by the CT's secondary current is lower than that which would be 

incurred if it were to flow through a conventional passive diode. Again, the polarity of 

the connection made to CT1 is such that a positive output voltage is developed when 

the current pulse is present. As shown in Figure 2.5(a), where the signal used to drive 

TR1 is galvanically isolated before being applied to its gate, the signal prior to the 

isolation barrier may be used to drive TR3. One of the CT's principal advantages, the 

inherent galvanic isolation it provides, is therefore retained. 

As outlined in Section 1.5, the control methods used for driving SR devices in power 

supplies may be classified as control-driven, self-driven or current driven, but only 

control-driven SR is considered here. 
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Figure 2.5. Unidirectional Current Pulse Sensing with Active Load and Synchronous Rectification 

Droop is calculated here using Equation (2.7) but with RDS(oll) in place of R B: 

(R2 + RDS(oll) )Toll 
D = -----'---

LII12 

In terms of frequency and duty factor the droop is given by: 
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O(R2 + RDS(OIl») D-
- JXLIIl2 

(2.15) 

Synchronous rectification can also be used in the dual CT arrangement. This is shown 

in Figure 2.6. By using an inverting logic gate (U2) the MOSFET rectifying the 

diode's CT output (TR4) is driven in anti-phase with the MOSFET rectifying the main 

switch's CT output (TR3). 
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Figure 2.6. Dual CT Arrangement with Synchronous Rectification 

Using an active stage and SR addresses droop attributable to the load resistance and 

rectifier diode respectively but the impedance of the CT still causes some voltage to 

be impressed across its magnetizing branch. In [60] both the resistive and inductive 

components of this voltage are minimized by introducing a compensating voltage 

dependent on the secondary current to the CT's secondary terminals. The application 

34 



addressed in [60] is for instrumentation-grade ac CTs used in mains-frequency 

applications where minimizing gain and phase errors is important. Another technique 

for enhancing the accuracy of ac CTs is described in [61] where droop and phase shift 

at low frequencies are compensated for by an analogue circuit which introduces 

compensating zeros and poles to cancel the error terms introduced by the CT's 

equivalent circuit. The feasibility of using a CT based around a small toroidal core 

with correcting circuitry to sense mains frequency (50 Hz) currents in an active power 

filter application is demonstrated in [61]. 

This approach is, however, not generally suited for use with the DCPT in power 

converter applications. This is because, although the fundamental frequency of the 

current waveform being sensed is generally fixed, it also has a changing series of 

harmonic terms as the width of the current pulse changes. In mains applications, the 

magnitudes of the harmonic terms relative to the fundamental are usually smaller. 

Another application where a CT is used with a corrected output signal based on the 

CT's known characteristics is in mains-frequency electronic integrating watt-meters 

[62] where digital, instead of analogue, circuitry performs the correction. 

The error caused by the magnetizing current error can be corrected for by dropping the 

CT's turns ratio to account for the current components in Lm and Rm [63]. However, as 

described in [63], whereas Lm is linear, Rm is non-linear and varies with the primary 

current. 

A problem addressed in both [62] and [63] is that the permeability of the material 

which defines Lm is subject to wide tolerances, as is the core loss characteristic which 

defines Rm. Furthermore, although a screening or set-on-test (SOT) approach may be 

taken to select components within narrow ranges, these quantities exhibit significant 

temperature dependencies. 
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2.3 CT Resetting Behaviour 

2.3.1 Resetting into a Discrete Voltage Clamp Circuit 

A maximum duty factor restriction is imposed upon the operation of a CT to avoid 

progressive ("staircase") saturation of its core material. Initially here, it is assumed 

that Ceq is negligible. If the positive and negative volt-second products appearing 

across the secondary winding of the CT during a switching cycle are not equal then the 

resultant dc voltage component will cause core saturation. Based on Faraday's Law: 

v=Nd¢ 
dt 

(2.16) 

and with respect to the waveforms shown in Figure 2.7, it can be seen that if the CT is 

to be fully reset, that is, if the flux in the core is to be returned to zero during a 

switching cycle: 

Ton T 

J Vm2 (t)dt + J Vm2 (t)dt = 0 (2.17) 
o Ton 

where the same winding is used for both fluxing and resetting the core and the voltage 

drops across the CT's series impedances are taken as negligible. To maintain the 

condition in Equation (2.17): 

Vfol1l'ard Tall S \V;'eset \Toll' (2.18) 

For simplicity here, the current pulse in the CT's primary winding is approximated as 

rectangular. Vjorward, although described more accurately as a decaying exponential 

waveform, is shown in Figure 2.7 as a dc quantity for the purpose of assessing the 

maximum allowable duty factor as TOil is much smaller than 1; where r is given by 

Equation (2.5). 

36 



As Ton and Toif are equal to JT and (l-J)T respectively, then putting these results into 

Equation (2.18) and rearranging it gives: 

Iv"eset I 
5 max V d + Iv"eset I forwar 

(2.19) 
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Figure 2.7. CT Reset Waveforms 

From Equation (2.19) it can be seen that minimising Vjorward allows operation at a duty 

factor closer to 100 % for a given reset voltage (Vreset). A voltage rail between 5 and 

15 V is typically available in a power control circuit. If a Schottky diode rectifier with 

a forward voltage drop of approximately 500 m V is used then a maximum duty factor 

of approximately 91 to 97 % is predicted from Equation (2.19) as the reset voltage is 

varied between 5 and 15 V. However, this estimate of the maximum duty factor does 
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not account for the effect of the CT's parasitic capacitances during resetting. This is 

discussed in Section 2.3.2. 

2.3.2 Natural Resetting into Stray Capacitances 

Instead of using a voltage sink to limit the voltage supported by the diode, the diode 

reset voltage may be unrestricted, and the CT may be reset by allowing it to resonate 

with the lumped capacitance of the CT and the diode or SR device. This is 

investigated in [53]. However, the rectifier has to be able to support the peak resetting 

voltage. Although a more sophisticated distributed model may be used as described in 

[64,65], the capacitance here is assumed to be lumped. 

Where this lumped parasitic inter-tum and winding-to-core capacitance (Ceq) is 

significant, the rectangular approximation of the CT's resetting behaviour shown in 

Figure 2.7 become inappropriate. As well as affecting the transient and high-frequency 

response of the CT, Ceq also presents a limitation on the minimum reset time required 

by the core. This is addressed in [53] and [59]. Figures 2.8(a) and 2.8(b) show the CT 

equivalent circuits referred to the secondary side during Tall for both diode 

rectification and SR respectively. Ceq is omitted in each of these circuits. Figure 2.8( c) 

shows the equivalent circuit during Tojf for both DR and SR. An important point here 

is that, whilst it may limit the reset voltage, adding a reset clamp diode will extend the 

minimum reset time required. This is because it limits the rate at which the required 

volt-second product is accumulated. 

Although, as shown in Figure 2.8(c), the same topology is applicable during Tojf for 

both DR and SR, Ceq is larger with SR due to the presence of the MOSFET's 

common-source output capacitance (Coss). A perfect diode (Dl) in series with an emf 

(Vj) is shown in parallel with Ceq. In the diode rectifier this represents the diode 

characteristic. In the SR arrangement it represents the MOSFET's intrinsic diode. 
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The equivalent resistance representing the sum of the core material losses (Rm) which 

lies in parallel (Rm2 when referred) with Lm2 is neglected here. This is because it is 

much larger than the critical resistance (Re) required in this location to cause 

significant damping. The circuit is therefore taken as only very lightly damped, that is: 

RIII2 »Rc 

where Rc is given by: 

1 ~L"" R --
c - 2 Ceq 

(2.20) 

(2.21) 

R2, which lies in series with Lm2, is also neglected because, in this case, it is 

sufficiently small. Figure 2.9 shows the effect of Ceq on the reset voltage. If power 

switch tum-off takes place at t = 0 then im2(t) is given by: 

i lll2 (t) = 11112 (0) COS(lVrt) 

over the interval from t = 0 to t = n/ ~. where ~. is given by: 

1 
lVr = fL C 

V 1112 eq 

V2(t) lags the current by nl2 radians and is given by: 

v, (t) = 1""(0) ~ L"" sin( w,t) 
Ceq 

The peak voltage occurs when at t = nl2~. when sin~.t = 1 and is therefore: 
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(2.24) 



JF:"'2 v2 (pk) = 1",2(0) C 
eq 

(2.25) 

Dl conducts again after the oscillation has completed a half-cycle (at OJ,.f = 1t radians). 

It is noted that, in Figure 2.9, Dl ceases conducting before the current pulse is re­

applied. However, both this and the situation where Dl is still conducting when the 

current pulse is re-applied are addressed in this thesis. 
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Figure 2.9. CT Reset Waveforms with Natural Resetting into Stray Capacitances 

An active technique for resetting the core is presented in [66] where a tertiary winding 

on the CT is driven with a reset current pulse derived from a current source and 

synchronised to the operation of the power switch. This allows the CT to be driven at 

high duty factors. 
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2.3.2.1 Natural Resetting with Diode Rectification and Load Resistance 

m· is given by Equation (2.23). In this case, Ln2(0) is given by Equation (2.8). Putting 

this into Equation (2.25) gives: 

V 2 (pk) = I or [VJ +~(R2 + RB )] 
LIIl2 Ceq n 

(2.26) 

The time required for reset (Treset) that is, for im2(t) to reach zero, is given by: 

Trese! = 1r~LIIl2Ceq (2.27) 

Treset is a half of the CT's oscillatory period (Tr) and is independent of the magnitude 

of 1m2(0) assuming that both LIIl2 and Ceq are linear. Given that blllax = (T-Treset)/T and 

also that T=lifthen the maximum duty factor, blllax, is given by: 

6max = 1- f1r~LIIl2Ceq (2.28) 

2.3.2.2 Natural Resetting with Diode Rectification and Active Load 

Again, OJr is given by Equation (2.23) and v2(Pk) is given by Equation (2.25). 

However, in this case 11112(0) is given by Equation (2.12). This is put into Equation 

(2.25) to yield: 

c5xVJ 
v2 (pk) = f ~L1Il2Ceq (2.29) 

Treset, and the maximum duty factor are again given by Equations (2.27) and (2.28). 
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2.3.2.3 Natural Resetting with Synchronous Rectification and Active Load 

The CT's resetting behaviour is reconsidered here with SR. The resetting voltage 

appearing is again calculated using Equation (2.25). However, in the case of SR, Ln2(O) 

is given by: 

6 x 1 (R2 + RDS(oll») p 

11112(0) = rifL
II12 

Putting this result into Equation (2.25) yields: 

6x1 (R2+RDS(oll») p 

v2(pk) = nif~L (C +Coss) 
1112 eq 

(2.30) 

(2.31 ) 

given that Ceq is now augmented by Casso The maximum duty factor is now given by: 

Ornax = 1- f1C~LII12 (Ceq + CosJ (2.32) 

2.4 Summary of Alternative Rectifier and Load Arrangements 

To summarize, the effects of DR and SR arrangements on the desired CT parameters 

are shown in Table 2.1. Maximising ~lIlax and minimising droop and v2(Pk) are desired. 

The peak voltage (v2(Pk)) appearing across the rectifier is of interest as it has a bearing 

on whether a Schottky diode is used in place of a p-n diode. Whilst the Schottky diode 

cannot withstand as high a peak voltage as the p-n diode, it is noted that v2(Pk) is 

dependent on the diode's forward voltage drop which is lower in the case of the 

Schottky diode. 

A low magnetizing inductance allows ~max to be increased. However, both droop and 

v2(Pk) are exacerbated. Different expressions are used with DR and SR for calculating 

droop and the peak reset voltage. The same expression is used for calculating ~lIlax in 
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both DR and SR cases. However, with SR, Ceq is now larger. As described in [59], 

when SR is introduced Ceq is augmented by Coss. This latter capacitance is non-linear 

and falls with applied voltage. 

Several corollaries [67] result when a high-permeability MnZn material is used, that 

is, one with a high ratio of Zinc to Manganese in its active material. These are 

relatively high core losses, a low saturation flux density (Bsat) and a low Curie 

Temperature (Tc). The core losses and the consequent temperature rise are not 

normally problematic in CT applications as, in practice, the flux density excursion is 

restricted to a very low level. However, maximising T c is desirable for operation in 

high ambient temperatures. Examples include automotive applications where "under­

hood" and "on-engine" temperatures may be rated at 125 DC and 140 DC respectively 

[68]. This necessitates some reduction in the material permeability. 

A feature of the ring core shape when implemented with a ferrite material is that the 

ratios of its dimensions are relatively fixed and different core aspect ratios are not 

compared here. Varying the outer diameter (do) and height (h) significantly from their 

typical proportions with respect to the inner diameter (dD, for example, dold/h = 91613 

for a Ferroxcube TN9/6/3 ring core, is deemed impractical. This is due to 

manufacturing and other practical considerations such as the brittleness of ferrite 

materials and the need to avoid breakages. 

In a typical off-line power converter currents of between 1 A and lOA may be sensed 

by a CT. d i may therefore be made small without exceeding the allowable current 

density, J, in either the primary or secondary conductors. J is typically between 5x10-6 

and 1 Ox1 0-6 Alm2 for a physically small component, depending on factors such as the 

ambient temperature, allowable temperature rise, orientation and cooling regime. 

However, automated winding of such physically small components may be rendered 

more difficult and robustness may be a more important consideration in defining the 

cross-sectional area of the secondary conductor. 
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Parameter Diode rectification with burden Diode rectification with Synchronous rectification 
resistance active load with active load 

6max 1- fJr~Lm2Ceq 1- fJr~Lm2(Ceq +Coss) 

D 
nO [ ip ( )] nVJo O(R2 + RDS(ol1») 
-- VJ +- R2 +RB 

fJpLm2 fLm2 fipLm2 n 

v2(Pk) 
k[VJ +iL(R2 +RB)] 

OVJ OIp(R2 +RDS(on») 

f Lm2Ceq n f ~Lm2Ceq nf ~Lm2(Ceq +CosJ 
--

Table 2.1. Summary of CT Performance Parameters for Different Load Arrangements 

2.5 Average Current Droop and Resonant Operation of the CT 

If the energy in the CT's core is completely dissipated during the reset interval, the 

average current droop (Dave) may be calculated by dividing the peak current droop by 

2. In the DR case, Dave is given by: 

nVf 6 
Dave = 2jLm2I p 

In the SR case, Dave is given by: 

6(R2 + RDS(oll)) 
Dave = 2fXL

m2 

(2.33) 

(2.34) 

However, without a discrete reset voltage clamp, the behaviour of the CT during reset 

is resonant. It is noted in Section 2.3 where resonant resetting is described that, after a 

half resonant period has elapsed, the magnetizing current flows into the rectifier diode 

when the current pulse is removed. The effect of this on both average and peak current 

droop is investigated in more detail in subsequent chapters. 
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CHAPTER 3 

THE UNIDIRECTIONAL CURRENT PULSE TRANSFORMER 

WITH DIODE RECTIFICATION AND NATURAL RESETTING 

3.1 Introduction 

The objective in this chapter is to investigate and quantify the average current droop in 

a DCPT when used with diode rectification, an active load and natural resetting, as 

described in Section 2.3. During a current pulse, some current diverts into the CT's 

magnetizing branch, storing energy. However, when the current pulse ends this energy 

is dissipated either in the form of losses in the CT or in external circuitry. In addition 

to acting according to the same principle as a forward transformer, the CT also 

effectively acts as if it were operating within a flyback (effectively an isolated-output 

buck-boost) converter. Three distinct operating modes are identified and investigated 

here. These are the discontinuous magnetizing current mode (DMCM), continuous 

magnetizing current mode (CMCM) and discontinuous secondary current mode 

(DSCM). 

Being able to sense average currents in a power converter accurately despite the 

presence of a high peak current droop is useful, as in many applications average 

current control may be adequate or even advantageous [69] when compared to peak 

current control. 

3.2 Theory of Resonant CT Operation with Lossless Core Material 

Figure 3.1 shows a current pulse being applied to a CT in the circuit in Figure 2.4(a). 

The magnetizing current (ilia) ramps up during the pulse and subtracts from the 

secondary terminal current, i2. When the pulse is removed, a half oscillation occurs, 

the period of which is determined by Lm2 and Ceq. At t = n/OJr the voltage, V2, across 
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the CT's secondary tenninals changes direction and im2 flows into the diode which 

clamps V2. It can be seen that some of the magnetizing current-time product lost 

during the pulse's on-time is returned to the CT's output tenninals during its off-time. 

The average current droop may therefore be substantially less that predicted from 

Equations (2.33) and (2.34). 

In the centre wavefonns, im2 has decayed to zero, after an interval te, before the current 

pulse is re-applied. This is referred to here as the discontinuous magnetizing current 

mode. The lower wavefonns show a situation where im2 has not reached zero prior to 

the re-application of the current pulse. This is referred to here as the continuous 

magnetizing current mode. 

Although the core flux passes through zero in the continuous mode, the tenn 

"discontinuous" is used here to refer to a state where the core flux settles at zero for a 

finite period. 

Vj1 is the rectifier diode's voltage drop seen during Ton. Vj2. is the voltage drop seen 

when the core flux has reversed and im2 is decaying linearly. Where diode rectification 

is used, Vj1 is invariably greater than Vj2.. This is because during Ton, the current in the 

rectifier diode comprises the referred primary current less im2 whereas during Tojf only 

the decaying im2 flows. As im2 is nonnally much less than i2, typically by a factor of at 

least ten or more, the diode is operating at a significantly different point on its v-i 

characteristic. It is noted that Vj1 is the external voltage drop, but the voltage 

impressed across the CT's magnetizing branch is the sum of this voltage and the 

voltage developed across R2 by i2. However, this latter voltage drop may be small 

enough compared to Vj1 to be neglected. It is also assumed that the voltage drop over 

the CT's secondary leakage inductance is negligible. 

In the lowest set of wavefonns in Figure 3.1, the ratio of Vj1 to Vj2. is exaggerated to be 

much greater than that likely to be encountered in a practical circuit. 
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Figure 3.1. CT Magnetizing Current in Discontinuous and Continuous Modes 

In considering the effect of the net im2 over a switching period on average current 

droop, Figure 3.1 is simplified here to give Figure 3.2 where the oscillatory period is 

neglected and the change in direction of im2 is taken as occurring instantaneously. 
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For the discontinuous operating mode, II is given by: 

II = Vfl 8I' 
L 1112 

For the continuous operating mode, hand h may be found from: 

II = 12 + Vfl 8I' 
L 1112 
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and: 

12 = -II + Vj2 (1-0)T 
L m2 

provided that T,. is small compared to T. 

Vjl and Vj2 may be expressed as a ratio of each other: 

k = V.fl " -Vj2 

(3.3) 

(3.4) 

Combining Equations (3.2) and (3.3) and expressing Vj2 as the ratio of Vjl given in 

Equation (3.4) yields: 

II = VjlT (1-0 +oJ 
2L/l/2 k" 

and also: 

1 --- ---0 VjIT(l-O J 
2 - 2L/l/2 kv 

It is noted that where kv is equal to one, then h is simply given by: 

1
1
= VjlT 

2L /1/2 

(3.5) 

(3.6) 

(3.7) 

For operation at the boundary between a continuous and a discontinuous magnetizing 

current (where h = 0) then: 
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1 
6 = 6TH = k + 1 

v 

(3.8) 

where JTH is the threshold duty factor. Combining Equations (3.1) and (3.7) and taking 

kv as 1, Figure 3.3 shows the peak value of im2 reached during a switching cycle 

plotted against duty factor. Also shown is the peak core flux excursion (rppk) which is 

proportional to this current. 

im2(pk) ----------------------,..---------.- V'1T 

2Lm2 

Ii 

rp ~----------------------...i ; ___ . V'1T1. 
. 2N 

Ii 
0= 0.5 0= 1.0 

Figure 3.3. Peak Magnetizing Current and Core Flux Excursion Plotted against Duty Factor for k" = 1 

3.3 Effect of Net Magnetizing Current on Average Current Droop 

3.3.1 Average Current Droop with Discontinuous Magnetizing Current and 

Lossless Core Material 

The net im2 drawn from the CT's output current and averaged over one switching cycle 

is calculated by summing the enclosed areas shown in Figure 3.2 and dividing by T, 

the waveform's period: 

51 



(3.9) 

It is noted that as im2 during the interval from or to tc is negative then Q2 also becomes 

negative, thereby reducing Im2(ave)- Ql is given by: 

c52T2VJI 
Q= 

I 2L11I2 

Q2 is given by: 

Q
2 
= lIte 

2 

where tc is given by: 

IIL11I2 
te=-V 

J2 

(3.10) 

(3.11) 

(3.12) 

Putting Equation (3.12) into (3.11) and putting in the value for II from Equation (3.1) 

into the result yields: 

Q2 = kvVJI c5
2
r2 

2L 1112 

Putting Equations (3.12) and (3.13) into (3.9) gives: 

- c52rvJI (1- kv) 
I m2 (ave) - ,., T 1112 

(3.13) 

(3.14) 

It can be seen from Equation (3.14) that if kv equals one then no droop results and if kv 

exceeds one then negative droop may result. That is, the current-time product (charge) 
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returned into node at the operational amplifier's inverting input terminal may exceed 

the current-time product lost during the current pulse under measurement. 

3.3.2 Average Current Droop with Continuous Magnetizing Current and 

Lossless Core Material 

Again, im2 averaged over one switching cycle is calculated by summing the applicable 

enclosed areas shown in Figure 3.2 and dividing by the waveform's period: 

I -Q +Q -Q 
1112(ave) = I 2 3 

T 

Ql is given by the area under the triangle: 

1 
QI =-1 121 tl 

2 

where lIz I is the magnitude of Iz, given by: 

1121= VIIT(b'-1 +b'J 
2LIII2 kv 

and where the interval tl is given by: 

1121 LIII2 
t = 
I VII 

Putting Equation (3.18) and then Equation (3.17) into Equation (3.16) gives: 

VII T2 (b' -1 J2 QJ =-- --+b' 
8LIII2 kv 
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Q2 is given by the area under the triangle: 

1 
Q2 =-1 (8r-t) 2 1 1 

(3.20) 

Putting Equation (3.5) and then (3.18) into Equation (3.20) gives: 

VflT2 (1- £5 J2 Q2=-- --+£5 
8 LIIl 2 kv 

(3.21) 

Q3 is given by: 

Q, = (!-t5)f' :112 1J (3.22) 

Putting Equations (3.5) and (3.6) into Equation (3.22) gives: 

V T2 
Q3 =_f_1 -(£5-£52 ) 

2LIIl2 
(3.23) 

Finally, Equations (3.19), (3.21) and (3.23) are put back into Equation (3.15) to yield 

11112(ave): 

VflT [f 2{ 1 J] 1m2 (zve ) = - \J - J - - 1 
2LIIl2 kv 

(3.24) 

Figure 3.4 shows the normalized average magnetizing current drawn against duty 

factor for kv = 1.1 and 1.2. It is noted that this is always negative. Equation (3.14) is 

used to calculate 11112(ave) for the DMCM mode and Equation (3.24) is used to calculate 

11112(ave) for the CMCM mode. 
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Figure 3.4. Nonnalized Average Magnetizing Current against Duty Factor for kv = 1.1 and 1.2 

The threshold duty factor, bTH, given by Equation (3.8), where the change from 

discontinuous to continuous modes takes place, is marked on Figure 3.4. 

3.4 Operation in Discontinuous Secondary Current Mode with Lossless CT Core 

Material 

As the value of the current is progressively reduced or the pulse length is increased, a 

point is reached where the current under measurement is entirely diverted into the 

CT's magnetizing branch before the end of the pulse. The CT's secondary current now 

becomes discontinuous, that is, the DSCM mode is entered and the peak current droop 

is 100 %. This mode of operation is illustrated in Figure 3.5 and occurs at a duty 

factor (b1) given by: 
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IL 
51 = P /Il2 

nVfT 
(3.25) 

The difference between Vjl and Vj2 is neglected here as the effect on droop due to 

entering the DSCM mode is taken as being dominant. Therefore, Vj= Vjl = Vj2. Above 

01 the measured current does not change because no information is available from the 

CT as its core flux is no longer changing. The average current droop for duty factors 

above 01 is given by: 

5-~1 D(ave) = 8
lhOI 

(3.26) 

To avoid DSCM operation, Lm2 has to be sufficiently large such that 01 is larger than 

the worst-case duty factor encountered for a given current being sensed. 
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Figure 3.5. CT Wavefonns in Discontinuous Secondary Current Mode 

However, the average droop given by Equation (3.26) is only appropriate up to the 

point where the current pulse is re-applied after the resonant magnetizing current from 

the previous pulse has reached zero. This mode of operation is shown in Figure 3.6. 

The duty factor (02) at which this occurs is given by: 

(1- 02)r = IpL1II2 
nVf 

(3.27) 

provided that T,. is small compared to the switching period (1). Equation (3.27) may 

be rearranged to give: 
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Figure 3.6. DSCM Operation with Current Pulse Re-applied before Decaying Magnetizing Current from 

Previous Pulse has Reached Zero 

02 =1- IpL
IIl2 

nVfT 

This can be expressed in tenns of 61: 

02 = 1-0\ 

(3.28) 

(3.29) 

The droop in this region is calculated by equating ampere-time products as follows: 
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The ideal output is given by: 

Q,~8f:J 

The actual output is given by adding the trapezium and triangle in Figure 3.6: 

Q,,",m' ~~ (1-8)T( ~ +I}~f: +I1J 

This simplifies to: 

Q",,,., ~ ~ (I: + I, )(1- 8)T + t,l 

II and tc are given by: 

1
1

= Ip _ Vf (1-8)T 
n L m2 

and: 

t c = (II + I p J Lm2 
n Vf 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

Combining Equations (3.33) and (3.34) and putting the result into Equation (3.32) 

gIves: 

21/ Lm2 _ Ip (1- 8)T 
Qac/llal = n2 V

f 
n (3.35) 

59 



The average current droop, Dave, is given by: 

D Qi - Qac/llal 
ave 

Qi 

(3.36) 

Putting Equations (3.30) and (3.35) into Equation (3.36) and rearranging it gives: 

1 2IpLIIl2 
Dave = 8 - T8xnV

f 

(3.37) 

This can also be expressed in terms of 61: 

D _ 1 28 
ave _---1 

8 8 
(3.38) 

Figure 3.7 shows Dave calculated against duty factor for DSCM operation for different 

primary currents and hence, from Equations (3.36) and (3.38), different values of 61. 

All quantities are normalized to one. 
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Figure 3.7. Average Current Droop against Duty Factor in Discontinuous Secondary Current Mode 
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Although, as shown in Figure 3.8, increasing flr, and hence Lm2, avoids the secondary 

current becoming discontinuous, a drawback is that the maximum allowable duty 

factor is reduced as the reset period required is increased. Combining Equations (2.28) 

and (3.25), the boundary condition beyond which distortion due to either the 

maximum duty factor limitation or DSCM operation is unavoidable for a given core 

shape is given by the relationship: 

I, = fJr' n'VfC" ( (1 :5)' J (3.39) 

Ceq is taken as being a function of the core's shape and the secondary winding turns 

number and configuration. In this section droop attributable to kv not being equal to 

one and to core losses has been neglected, as, for most duty factors, the effect of a 

discontinuous secondary current is dominant. 

Ip 

J1r~= 

boundaries at which 
distortion results 
due to discontinuous 
secondary current 

~ , , , , , , , , 
.... --'"1 

: , , , 
--r---~ , 

0=1 0 

boundaries at which 
distortion results 
due to inadequate 
reset time 

Figure 3.8. Boundaries at which Distortion Results from Insufficient Reset Time and Onset of 

Discontinuous Secondary Current for Varying CT Core Material Permeability 

61 



Using Equation (3.39), Figure 3.9 shows the boundary condition where distortion 

attributable to either DSCM operation or incomplete reset results for a CT circuit with 

the notional parameters Ceq = 20 pF, n = 120, Vi = 0.8 V operating at 20 kHz. 
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3.9. Boundary Condition at which Distortion Attributable to either Onset of DSCM Operation or 

Incomplete Reset Results for a CT Circuit with Notional Parameters 

3.5 Effect of Core Losses in the CT on Average Current Droop 

In Sections 3.2 to 3.4, losses in the CT have not been accounted for. Three approaches 

may be taken in anticipating Dave. Firstly, the theory in Section 3.3 may be applied 

where droop is calculated in terms of kv and b and losses are assumed to be negligible. 

Secondly, the droop attributable to variations in kv and b may be neglected and the 

droop resulting from core losses may be taken as dominant. Thirdly, both the above 

factors may be combined. The second approach is taken here. 

The Steinmetz equation takes account of the hysteresis and eddy current losses in a 

magnetic material separately: 

P - C jB a + C f2B 2 
v - II ac e ac (3.40) 
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where Bae is the peak flux density excursion and CII and Ce are the coefficients of 

hysteresis loss and eddy current loss respectively. However, infonnation from ferrite 

core manufacturers is generally expressed in the simplified fonn [70] in Equation 

(3.41): 

Pv = klfa Baed (3.41) 

where kl' a and d are constants. (The loss may also be estimated by using the 

manufacturer's graphs of loss per unit volume for various combinations of Bae and!, 

for example, in [71]. However, these graphs do not give detailed data for the 

combination of Bae andfused here.) The core's power loss (Weare) is: 

Weare = PvVe (3.42) 

where Ve is the core's effective volume. Therefore: 

Weare = Veklfa Bae d (3.43) 

At a given frequency, the core loss may be expressed as: 

Weare = k2 Bae d (3.44) 

if VekJ.!a are expressed as the constant, k2. 

Up to DrH, Bac is directly proportional to 6. Therefore, for 6 ~ 6TH, Equation (3.44) may 

be written as: 

Weare = k36d (3.45) 

and above 6TH the core losses remain fixed at this level. 
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The power output from the CT is W = Vf xi2(ave) where i2(ave) is the CT's average 

secondary terminal current. Therefore, for kv Z 1, the core loss is directly manifested as 

a shortfall in the average sensed current. 

The factor 'd' here is approximated as "2" here. However, it is noted that the flux 

excursion has a considerable harmonic content and a more complete method of 

assessing losses is given in [72]. 

3.6 Experimentation 

3.6.1 Experimental Arrangements 

The theory presented in Section 3.5 was evaluated using a boost converter circuit and 

CT with diode rectification and an active load as shown in Figure 3.10. For 

experimental purposes this has the advantage that, unlike the buck converter, the 

choke current may be set by the power supply operating in constant output current 

mode and does not change with duty factor. In a buck converter, a feedback loop 

would be required to adjust the output voltage from the power supply to maintain a 

constant choke current. A low-pass filter formed by Rl and Cl was used at the emitter 

of TR2 to allow Vout(ave) to be observed. Two CT cores were used in the test circuit. 

Both were in the TN9/6/3 shape manufactured by Ferroxcube. One was in the 3F3 

material grade and the other was in the 3E25 grade. 

The average output voltage ideally expected is given by: 

s;:. R 
u X 1 LI(ave) F 

Voll(ave) - (3.46) 
n 

provided that iLl is continuous. 
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Figure 3.10. Converter Circuit Used for Experimentation with Diode Rectification 

An IRF1010E MOSFET was used in location TR1 and a 43CTQ100 Schottky diode 

was used in location Dl. Using a MOSFET avoids the effects of "tail" currents at 

tum-off which are exhibited by some other power semiconductor devices, for 

example, the IGBT. A Schottky diode was used to avoid the effects of diode reverse 

recovery current which would be present if a p-n junction diode were to be used. This 

current would be expected to cause some error, particularly at high frequencies. 

However, some transient reverse current flow is still expected due to junction 

capacitances. D2 is a 1 N4148 p-n signal diode. A Schottky diode may be preferred 

here due to the lower forward voltage exhibited. However, a p-n diode was used as the 

higher forward voltage drop is useful in accentuating droop for experimental purposes. 

An LEM LA 100-P Hall-effect sensor was used to calibrate the average choke current 

(iLl (ave))' 

The principal data from the circuit in Figure 3.10 are listed in Table 3.1. 
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Operational amplifier feedback resistance (RF) (.0) 120 
Emitter resistance (RE) (ill) 10 
Operational amplifier type NE5534AP [73] 
Rectifier diode (D2) IN4148 
Bipolar npn transistor used in location TR2 ZTX651 
Supply rail voltages (Vee and -Vee) (V) ± 15 
RI (ill) 10 
CI (nF) 3.3 

Table 3.1. Experimental Circuit Parameters 

The comer frequency of the low-pass filter (Rl and Cl) is set at 4.8 kHz. The CTs' 

data are listed in Table 3.2. The small-signal secondary magnetizing inductances of 

the CTs (Lila) were measured using a Philips PM 6303 RCL meter at a measurement 

frequency of 1 kHz. The experimentally derived value of the permeability was 

calculated from: 

fl,. = L1Il21
e 

flON22 A e 

(3.47) 

where Ie and Ae are given as 22.9 mm and 4.44 mm2 respectively from the 

manufacturer's data in [71]. 

As the turns ratio (n) is 120 and the feedback resistance (Rp) is 120 n then a gain of 1 

VIA is expected. Details of the CTs assembled for testing are listed in Table 3.2. 

The resistances of the CTs' secondary windings (R2) were measured using the four­

wire technique with an instrument uncertainty of ±2 %. At the rated primary current of 

5 A and given that n = 120 and R2 = 0.89 n in each case, the voltage drop across the 

secondary winding is calculated at 37 mV. This is small in comparison to the forward 

voltage drop of approximately 0.8 V across the rectifier diode [74]. 

The 3F3 and 3E25 material grades are representative of the typical trade-off between 

permeability and core losses detailed in [71]. In relative terms, the 3F3 grade has a 

66 

I 



high Curie temperature and a low permeability whereas, conversely, the 3E25 grade 

has a low Curie temperature and a high permeability. 

Core shape TN9/6/3 
CT primary winding configuration Single conductor passed through core aperture 
CT secondary winding configuration 120 turns of 0.2 mm diameter copper wire wound 

evenly around core circumference to minimize 
leakage inductance 

CTusing 3F3 Tc (0C) 200 
material Measured value of LI/12 at 11.0 

approximately 20°C (mH) 

Jir calculated from measured LI/12 3134 

Measured value of R2 at 0.89 
approximately 20°C (0) 

CT using Tc (0C) 125 
3E25 material Measured value of L",2 at 24.7 

approximately 20°C (mH) 
I-lr calculated from measured L",2 7038 
Measured value of R2 at 0.89 
approximately 20°C (0) 

Table 3.2. Parameters ofCTs under Test 

+5V 

15V 

1KO 
ZTX651 

r~-;-ii~l~=~=J 
~100nF 

active low 
drive signal 

I l ___ J _________________ L _____ J- ___________ J 

TLP2200 EN 

Figure 3.11. Gate Driver Circuit with Optical Isolation 
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Some practical points are noted. Ceq is particularly sensitive to end-winding effects, 

that is, the proximity of the winding tails. The position of the tails is therefore 

disturbed as little as possible during experimentation to ensure repeatability. The 

oscilloscope probe used to observe V2 was left permanently in place during all 

measurements to avoid changes to Ceq attributable to the probe's capacitance. The CTs 

evaluated here are not varnish-impregnated, as is normally the case for production 

purposes. The presence of varnish increases the stray capacitance associated with the 

CT as the permittivity ofvamish is invariably significantly greater than that of air. The 

winding had multiple layers and no attempt was made to keep the ends physically 

distanced. This arrangement leads to a relatively high capacitance. 

The switching frequency was set at 20 kHz. Although higher frequencies are generally 

used for switched mode power conversion, 20 kHz was selected as, for the particular 

CTs used here, this allows operation at a high duty factor (approximately 95 %) prior 

to incomplete reset resulting. Also, operational amplifier parameters such as slew rate 

and frequency response assume less importance. 

In addition to the dc component, the current waveform conducted by the CT has ac 

components present at integer multiples of 20 kHz. However, the skin effect is treated 

as negligible here. This is justified as follows. The skin depth (ds) is given by: 

d, = ~ 1r0iLo (3.48) 

where p is the resistivity of the conductor material, in this case copper. Equation 

(3.48) rearranges to give: 

p 
f = 1fX flods-

(3.49) 

Taking the resistivity of copper as 17.lxlO-9 Om at 20°C and ds as 0.1 mm, that is, 

the same as the radius of the conductor, then f is calculated as 433 kHz. The skin 
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effect is therefore not expected to be significant as the fundamental frequency here is 

20 kHz. 

During experimentation the value of im2 and the consequent state of the core flux is 

infened from either the missing sensed load cunent or the time integral of the voltage 

at the terminals (according to Faraday's Law). 

A photograph of the test circuit is shown in Figure 3.12. 

boost converter 
pcb (input choke 
is off-board) 

Type-K thermocouple 
used to sense eT's 
ambient temperature 

Figure 3.12. Photograph of Test Circuit 
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3.6.2 Experimental Results 

Figures 3.13, 3.14 and 3.15 show exemplifying waveforms from the circuit in Figures 

3.10 and 3.12 when it is operating in the CMCM mode. The average value of iLl is set 

at 5 A and ~ is set at 33 %. 

The values of Ll, Vill and VOlil are selected here such that they allow a visible rate of 

current change during the period of the switching waveform. 

In Figure 3.13, the MOSFET's drive signal (vGs) is shown for reference purposes. 

Also shown are CT's secondary terminal voltage (V2), the choke current (iLl) which is 

sensed using a high-bandwidth (50 MHz) dc current probe, and the instantaneous 

output voltage at the emitter ofTR2 (VOIIf)' 

Figure 3.14 shows V2 in greater detail. It can be seen that V2 adopts two different 

voltage levels, Vj1 during TOil and Vf2 during To./f. The end of conduction, where Volil 

reaches zero, is also characterized by an oscillation in V2 having a peak amplitude 

approximately equal to that of the rectifier diode's forward voltage drop. The 

oscillation is at the same frequency seen during the period 1;. as Lm2 again resonates 

with Ceq. This frequency is measured at approximately 300 kHz. As expected, the 

duration of tc exceeds that of TOil as kv is greater than 1. 

Figure 3.15 shows iLl and Volil in greater detail. Volil is characterized by several phases. 

During TOil, it is essentially proportional to ip , less a component attributable to droop. 

At t = TOil, it drops to zero for the interval Tr when im2 reverses direction due to the 

resonant action of Lm2 and Ceq. It then rises as im2 decays through D2, and then reaches 

zero when im2 has commutated. 
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V2 

iL 

Vout 

Figure 3.13. Waveforms in Discontinuous Magnetizing Current Mode (vGS = 20 V/div, V2 = 20 V/div, 

iLl = 2 Ndiv, VOIII = 2 V/div, Time Scale: 10 !!s/div) 

VGS 

Onset of discontinuous 
core-flux operation 
denoted here by onset 
of lightly-damped ringing 

V2 

Figure 3.14. Waveform V2 in Discontinuous Magnetizing Current Mode Shown in Greater Detail (vGS 

=20 V/div, V2 =5 V/div, Time Scale: 10 !!s/div) 

VGS 

iL 

Vout 

Figure 3.15. Waveforms iLl and VOIlI in Discontinuous Magnetizing Current Mode Shown in Greater 

Detail (vGS = 20 V/div, iLl = 1 Ndiv, VOIlI = 1 V/div, Time Scale: 10 !!s/div) 
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Figures 3.16, 3.17 and 3.18 show exemplifying waveforms from the circuit in Figures 

3.10 and 3.12 when it is operating in the CMCM mode. Again, the average value ofiLl 

is 5 A and the switching frequency is 20kHz. However, 0 is set at 67 % here. 

Figure 3.16 shows the MOSFET's gate drive signal (vGs) for reference purposes, the 

CT's secondary terminal voltage (V2), the choke current (iLl) and the instantaneous 

output voltage at the emitter ofTR2 (vollt). 

Figure 3.17 shows V2 in greater detail and Figure 3.18 shows iLl and Volil in greater 

detail. It can be seen that the effective peak current droop is exacerbated as described 

in Section 3.2. 
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V2 
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Vout 

Figure 3.16. Wavefonns in Continuous Magnetizing Current Mode (vGS = 20 V/div, V2 = 20 V/div, iLl = 

2 Aldiv, VallI = 2 V/div, Time Scale: 10 Ils/div) 

VGS 

V2 

Figure 3.17. Wavefonn V2 in Continuous Magnetizing Current Mode Shown in Greater Detail (vGS = 20 

V/div, V2 = 10 V/div, Time Scale: 10 Ils/div) 
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Vout 

Figure 3.18. Wavefonns iLl and Vout in Continuous Magnetizing Current Mode Shown in Greater Detail 

(vGS = 20 V/div, iLl = 1 Aldiv, Vout = 1 V/div, Time Scale: 10 Ils/div) 
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In Figures 3.13 to 3.18 inclusive the pennutation of input and output voltages and the 

choke inductance are set to allow a discernible di/dt over a switching cycle for 

illustrative purposes. However, for subsequent measurements the choke size is now 

increased so that less than 5 % current ripple is now present. 

Figures 3.19, 3.20 and 3.21 show Vout(ave) for average choke currents (ill) of 5 A, 3 A 

and 1 A respectively with a TN9/6/3 core shape using 3F3 core material. The output 

voltage ideally obtained is also plotted on these figures. It can be seen that the per-unit 

error present increases as the current under measurement is decreased. This is 

expected as the magnitude of the magnetizing current in a diode-rectified CT upon 

which error depends is essentially independent of the magnitude of the current being 

measured. 

It can also be seen, particularly from Figure 3.21, that a change in the trajectory in the 

measured sensed current is evident at the duty factor where the transition from 

DMCM to CMCM core flux operation occurs (<5TH). 

Figures 3.21, 3.22 and 3.23 show Vout(ave) for average choke currents (iLl) of 5 A, 3 A 

and 1 A respectively with TN9/6/3 core shape in 3E25 material. 

At 95 % duty factor some distortion is evident as insufficient reset time is available 

with either core type for the reset half-oscillation to fully elapse. 

Because the absolute droop is primarily dependant on the rectifier's forward voltage 

drop here, the per-unit droop becomes greater at lower currents. 
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Figure 3.19. Measured and Ideal vollt(ave) Plotted against Duty Factor (3F3 Core Material, ill = 5 A) 
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Figure 3.20. Measured and Ideal vollt(ave) Plotted against Duty Factor (3F3 Core Material, ill = 3 A) 
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Figure 3.21. Measured and Ideal vollt(ave) Plotted against Duty Factor (3F3 Core Material, ill = 1 A) 
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Figure 3.22. Measured and Ideal vOI/I(ave) Plotted against Duty Factor (3E25 Core Material, it! = 5 A) 
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Figure 3.23. Measured and Ideal vOI/I(ave) Plotted against Duty Factor (3E25 Core Material, it! = 3 A) 
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Figure 3.24. Measured and Ideal vOI/I(ave) Plotted against Duty Factor (3E25 Core Material, iLl = 1 A) 
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Figures 3.25 and 3.26 again show the data from Figures 3.21 and 3.24 respectively, 

but with the predicted sensed currents for a lossless CT core used without resonant 

energy recovery added. 

The output voltage for this condition is calculated from: 

- 1-
( 

nVfo J 
VOI/l - vOI/I(idea/) 2JXLIII2Ip (3.50) 

Vt is taken as 0.8 V and Lm2 for the 3F3 and 3E25 materials are the values given in 

Table 3.2. 
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Figure 3.25. Measured and Ideal vout(ol'e) Plotted against Duty Factor with Predicted Sensed Current 
without Resonant Operation Superimposed (3F3 Core Material, iLl = 1 A) 
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Figure 3.26. Measured and Ideal vout(ol'e) Plotted against Duty Factor with Predicted Sensed Current 
without Resonant Operation Superimposed (3E25 Core Material, iLl = 1 A) 

Figure 3.27 shows the absolute average voltage droop against duty factor for load 

currents between 1 and 5 A in 1 A increments. The results in Figure 3.27 and all 

subsequent results in this chapter are taken with the CT variant in 3F3 core material 

described in Table 3.2. It can be seen that the value of droop is essentially independent 

of the magnitude of the sensed current. It is noted that some offset error is expected in 

these readings as the droop is calculated by subtracting the measured current from the 
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set current. The current is set using instrumentation with a resolution of 1 % at the 

lowest current and therefore a consequent (larger) per-unit error may appear in the 

droop calculated in this way. At 95 % duty factor some of the error readings are 

shown to deviate as the reset half-oscillation is not completed. 
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0.15 
_._Ip = 1 A 

~ --*-Ip = 2 A 
C1> 
Cl 0.1 
.IS 

__ lp=3A 

'0 
> 

-l-Ip= 4A 

--*""" Ip = 5 A 
0.05 

0 

I~ 
{).05 

Duty Factor (%) 

Figure 3.27. Absolute Droop Expressed as Shortfall in volIl(ave) against Duty Factor for Currents from 1 

to 5 A 

As the CT's core losses are proportional to 62 below 6TH, then as 6 approaches zero the 

theory in Equation (3.12) is expected to become applicable where the droop becomes 

negative. This is consistent with the results in Figure 3.27. 

3.6.3 Experimental Results at Low Primary Currents 

In the diode-rectified CT, the magnetizing current's peak magnitude is essentially 

independent of the load current magnitude. In order to evaluate the behaviour of the 

magnetizing current more accurately, the current under measurement is now reduced 

to accentuate the magnitude of im2 with respect to iLl. Subsequent measurements are 
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taken at less than 1 A. To enhance the resolution of the sensed current, the value of RF 

is changed to 1.2 kQ to yield an expected output of 10 VIA. 

Figure 3.28 shows exemplifying waveforms when operating with 100 % peak current 

droop. The switching frequency is 20 kHz and iLl is 100 rnA. As with the situation 

where the magnetizing current reaches zero during discontinuous operation, the point 

at which 100 % peak current droop occurs is marked by the onset of an oscillation in 

V2. The height of the voltage triangle immediately after the reset half-resonant period 

is less than that when the current pulse under measurement is applied. Also, some 

curvature is seen in the triangles' decaying slopes. Both these observations are 

attributed to the presence of the CT's core losses. 

100% peak current droop occurs 
at this point in switching cycle 
(entire referred primary current 

has diverted into CT's 
magnetizing branch) 

Recovery of charge 
commences here after 

half resonant period has 
elapsed 

VGS 

V2 

Vout 

Figure 3.28. Wavefonns with Discontinuous Secondary Current (vGS = 20 V/div, V2 = 5 V/div, VOllI = 

500mV/div, Time Scale: 10 !ls/div) 

Figure 3.29 shows exemplifying waveforms when operating with 100% peak current 

droop and with the current pulse re-applied prior to commutation of the magnetizing 

current. 
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Current pulse is re-applied here before 
recovery of charge from previous cycle 

has been completed 

VGS 

V2 

VOu! 

Figure 3.29. Wavefonns with Discontinuous Secondary Current and with Current Pulse Re-applied 

Prior to Commutation of Magnetizing Current (vGS = 20V/div, V2 = 5 V/div, VOIiI = 500 mY/diy, Time 

Scale: 10 llS/div) 

Figure 3.30 shows the measured and ideal VOlit against [) for primary currents of 100 

rnA, 300 rnA and 500 rnA. The current against duty factor boundary at which the peak 

current droop reaches 100 % is marked. This is calculated with Equation (3.25) and 

with Lm2 taken as 11.0 mHo Vfl is taken as 0.8 V. 
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Figure 3.30. Measured and Ideal VOIiI Plotted against Duty Factor ( hI = 100 rnA, 300 rnA and 500 rnA) 
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In Figure 3.30, it can be seen that the measured currents exhibiting plateaus centred 

around a duty factor of approximately 50 % lie below this boundary where the ratio of 

15 to Ip is too high to sustain continuous conduction in the CT's secondary winding. 

3.6.4 Comparison of Experimental Results with Theory 

Figure 3.31 shows the sensed and ideal currents against duty factor for a primary 

current of 500 rnA. It can be seen that the change from CMCM to DMCM operation 

occurs at a duty factor of approximately 60 %. Where losses are significant, a higher 

threshold duty factor than that predicted by Equation (3.8) is applicable. As mentioned 

in Section 3.5, a shortfall in output current, and hence output voltage, is proportional 

to the core losses, and hence the peak core flux excursion to the appropriate power. 

Vout is therefore also proportional to the losses. Therefore, if losses are proportional 

B 2. to ac. 

k V ollt(ideal) - V ollt(meas) 

4 02 
(3.51) 

where k4 is determined here from VouI(meas) at the threshold duty factor (15TH), The 

predicted value of VouI(ave) is shown where VallI is derived from Equation (3.51) for 

values of 15 below 15TH and the absolute droop above 15TH is held constant at that 

measured at 15TH. 

Using the correction algorithm given, it can nonetheless be seen that an increasing 

deviation takes place as 15 is raised from 15TH towards one. This is attributed to the 

observation that, as 15 rises, the magnitude of the average voltage impressed across Lm2 

increases slightly. That is, whilst the primary winding of the CT is conducting during 

the period 15T, the voltage across Lm2 is Vj2 + hR2, whereas when the pulse is not 

present during the period (1 - (5)T, this voltage is Vjl. 
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Figure 3.31. Introduction of Piece-Wise Compensation Scheme to CT Output Signal (iLl = 500 rnA) 

Figure 3.32 shows the error at SA current from Figure 3.18 with the error after 

compensation superimposed. The correction coefficient (k4) is that taken from the 

measured error at 500 rnA. As with the results shown in Figure 3.25, this is to 

demonstrate that the flux swing and consequent losses are essentially independent of 

the magnitude of the current being sensed. 
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Figure 3.32. Error at 5 A Current Before and After Compensation with Correction Coefficient Derived 

from Reading at 500 rnA 
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3.6.5 Relation of Average Current Droop to Core Material Loss Data 

The CT's core flux density swing is given by: 

t1B = c5xTVj 

NA e 

(3.52) 

At a frequency of20 kHz the wavefonn's period, T, is 50 ).lS. Other parameters are: Vj 

= 0.8 V, N2 = 120 and Ae = 4.44 mm2
. At the threshold duty factor of approximately 

50 % (where the full flux swing is nearly reached, as shown in Figure 3.3) the peak 

flux excursion, Bac, is calculated from Equation (3.52) at 73 mT. 

k j , a and d are given in [70] as 1.5 xl0-6
, 1.3 and 2.5 respectivelywherefis entered in 

kHz and Bac is entered in mT. This gives a specific loss of3.355 mW/cm3 here. As the 

core used has a volume of 0.102 cm3 then the resultant loss is 0.342 m W. In the data 

presented in Figure 3.30, the output voltage measured at Ip = 500 rnA and b = 50 % is 

1.944 V compared to an ideal of 2.5 V. Given that RF = 1.2 kO, then this represents a 

shortfall in the measured current of 0.463 rnA. As Vj = 0.8V then this represents a 

power loss of 0.371 m W. There is therefore approximate agreement between the 

power loss inferred from the shortfall in the sensed current and the calculated core 

loss. 

3.7 An Enhanced Loss Algorithm 

Although losses were taken as being fixed above bTH, it can, however, be seen that a 

small, approximately linear (ramp-on-a-step) rise is evident. 

Where enhanced accuracy is required, a straight-line loss approximation dependent on 

the duty factor is deemed appropriate above bTH at the expense of a slightly more 

complex algorithm. The approximation is justified as follows. With respect to Figure 

3.33, the average voltage (V2(ave)) impressed across Lm2 over a switching cycle is given 

by: 

84 



V2(al'e) = t5VJJ + (1- 8)VJ2 (3.53) 

As Vjl = kvVf2 then: 

V2(ave) = VJ2 [1 + (kl' -1)8] (3.54) 

,~ 1 1--- v" i -m____mm v" 

IE ):< ): 
, 5T . (1-b)T . 

Figure 3.33. Voltage Impressed across CT's Magnetizing Branch over a Switching Cycle for c5 > 15TH 

(CMCM Operation) 

rjpk is proportional to V2(ave) and the losses are in turn proportional to rjp/ and hence 

V2(ave/. Expressing this with a lumped constant, k, then: 

~, = k[l + (kl' -1)8)2 (3.55) 

This expands to give: 

~, = kl1 + 2(kl' -1)8 + (kl' _1)2 82 J (3.56) 

Given that kv is only slightly greater than one, then Equation (3.56) may be simplified 

to give: 

~, "" k[l + 2(kv -1)8] (3.57) 
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Therefore, above bTH, the increase in Pv as b approaches one, and hence the droop, 

may be approximated as directly proportional to the duty factor multiplied by a 

constant, in this case, 2k(kv-l). For values of b above bTH, the droop is now given by: 

Dave = k46TH 2 + ks (6 -6TH ) (3.58) 

where ks is an empirically determined constant. Figure 3.34 shows the results from 

Figure 3.30, but with the enhanced algorithm described in Equation (3.58) used to 

correct the sensed current. It can be seen that the agreement is improved. 
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Figure 3.34. Effect of Enhanced Compensation Algorithm Applied to CT Output Signal (iLl = 500 rnA) 

3.8 Thermal Effects 

The measurements taken in this chapter are performed at room temperature, that is, at 

approximately 20°C. The CT normally exhibits a very low temperature rise above 

ambient. However, the ambient temperature may be high in some applications, for 

example, in automotive power converters. The proximity of other components 
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dissipating heat, for example, power transfonners and semiconductors may also lead 

to the CT operating at an elevated temperature. 

Most ferrite materials have a negative core loss temperature coefficient at room 

temperature which progressively reduces in magnitude as the temperature increases 

and then becomes positive at typically 80 to 120°C. Exemplifying measurements of 

the droop obtained from the circuitry in Figures 3.10-3.12 as the CT's temperature is 

varied are given in Appendix 3. 

The flux excursion in the CT is primarily defined by the rectifier diode's forward 

voltage drop which is also temperature dependent, nonnally having a negative thennal 

coefficient. The diode's v-i characteristic is also, in any case, nonnally subject to 

broad tolerances. 

3.9 Summary of Chapter 

In a UCPT used with diode rectification, core losses are shown to predominately 

influence the theoretically predicted average current droop. Provided that the current 

pulse being measured does not entirely divert into the CT's magnetizing branch, 

simple algorithms have been shown to be appropriate for substantially correcting the 

sensed current to allow for core losses. 

The correction algorithms may be applied to allow the use of a lower-penneability 

material with a higher Curie temperature, whilst still maintaining high accuracy. 

However, with ferrite core materials, a limitation arises if accuracy is to be obtained 

over a wide operating range as the losses are temperature-dependent. Difficulties 

include obtaining both accurate core loss data and infonnation on the tolerances of 

that data for ferrite materials operating at low flux excursions. 
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CHAPTER 4 

DIODE RECTIFICATION IN THE DUAL CURRENT 

TRANSFORMER ARRANGEMENT WITH NATURAL 

RESETTING 

4.1 Introduction 

The dual CT technique may be used with either diode rectification or synchronous 

rectification as shown in Figures 2.3 and 2.6 respectively. Although, as described in 

[ 45], a current synthesizer circuit may be used instead of a second CT, there are some 

circumstances where a second CT may be necessary, for example, where the requisite 

input or output voltages are not known for the purpose of estimating the required rate 

of change of current. The suitability of the core loss correction algorithms given in 

Chapter 3 when applied to the dual CT circuit with diode rectification is investigated 

in this chapter. 

4.2 Application of Core Loss Correction Algorithms to the Dual CT 

Arrangement with Diode Rectification 

With respect to the dual CT arrangement shown in Figure 2.3 and the top set of graphs 

in Figure 4.1, it can be seen that the total average current sensed is ideally independent 

of the duty factor of the signal driving TRI. However, with diode rectification and 

with RB replaced by an active stage and therefore equal to zero, the flux swing in each 

transformer is approximated by the second from top set of graphs. Resultant losses in 

each CT's core are shown in the second from bottom graph. As described in Chapter 

3, this is proportional to the droop where k" is approximated as one. The bottom set of 

graphs shows the aggregate core losses. 
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Figure 4.1. Idealized Graphs of Average Currents Sensed, Flux Density Swings and Expected Core 

Losses Plotted against Duty Factor for CTs in Dual CT Arrangement with Diode Rectification 

As described in Chapter 3, losses in the CT (expressed as a current) are given by the 

fonnulae which are repeated here. Below the threshold duty factor, OTH, losses are: 

. -k -
( 

J )2 
l[oss - 4 100 'o5,

0
Tll 

(4.1) 
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where 0 is expressed as a percentage. Also, above OTH, losses are given by: 

)

2 
6TH . -k 'J~, - .(100 'iN", 

(4.2) 

The constants k4 and OTH were empirically determined as being 2.224 and 60 % 

respectively in Chapter 3. The duty factor at which CT2 operates is 1-0 where 0 is the 

duty factor at which TR1 is driven. Losses in CT1, CT2 and the total CT losses are 

shown in Figure 4.2. As OTH is greater than 50 %, two relatively shallow peaks are 

present instead of the single peak shown in Figure 4.1. 
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Figure 4.2. Expected Droop in cn and CT2 and Total Droop Plotted against Duty Factor 

Figure 4.3 shows the expected droop where the enhanced compensation scheme is 

applied and, above OTH, the droop is now given by: 

( )
2 ( ) . k 6TH k 6 - 6TH 

l/oss = 100 + 5 100 , 
o~OTll 

(4.3) 
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where k5 is the constant empirically determined in Section 3.7 of Chapter 3. 
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Figure 4.3. Expected Droop in cn and CT2 and Total Droop Plotted against Duty Factor with 

Enhanced Compensation Scheme Applied 

4.3 Effect of Inclusion of Second CT on Current Slope Sensed during Power 

Device's On-Time 

Where the dual CT arrangement is used with resonant resetting, the instantaneous 

output voltage (VOlIf) is comprised oftwo components. Firstly, a voltage proportional to 

the current under measurement less the component lost due to peak droop is present. 

Secondly, a component attributable to the resetting action of the complementary CT is 

present. 
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4.4 Experimentation 

4.4.1 Experimental Arrangements 

Droop with the dual CT arrangement was evaluated using the circuit shown in Figure 

4.4. This is identical to the circuit in Figure 3.10, but with CT2 and D3 incorporated. 

CT2 is constructed identically to CTl, as summarized in Table 3.2. 

L 1 

iLl 

. i, \' 

galvanic 
isolation I 

_// 

~/ 1 
V GS 

• 

CT1 

io 
D1 

1 V'M" 

D3 Vee 

RF 

V2 

C1 I 1 1" ,~'"" 

Figure 4.4. Converter Circuit Used for Experimentation with Diode Rectification in Dual CT 

Arrangement 

4.4.2 Exemplifying Circuit Waveforms 

Figure 4.5 shows exemplifying waveforms from the circuit in Figure 4.4 for iLl (ave) = 5 

A and b = 50 %. The values of Ll, ~11 and VWAD are selected here such that they allow 
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a visible rate of current change over the period of the switching waveform. The 

magnetizing currents in both CTI and CT2 are continuous. 

-- )- -- --I VGS 
L-___ _ 

,------,/ ~~w 

I 

Figure 4.5. Exemplifying Waveforms from Dual CT Circuit with Diode Rectification and 50 % Duty 

Factor (iLl(al'e) = 5 A) (vGS = 20 V/div, hi = 1 Aldiv, VOIII = 1 V/div, Time Scale: 10 !lS/div) 

From Figure 4.5 it is seen that the output voltage, VOltf, during Tall is stepped as the 

decaying magnetizing current from the complementary CT is applied shortly after 

tum-on when the reset half-oscillation has elapsed. This may render peak current 

control problematic. Leading edge blanking (LEB) is normally incorporated [44] in 

peak current control schemes to mask the effect of the power diode's reverse recovery 

current and other transients at switch tum-on. However, 1;. may exceed the length of 

these transients which are typically of 200-300 ns duration. The LEB time may be 

adjusted to exceed 1;'esel and provide smooth control, but this may be at the expense of 

an increased minimum power device on-time and some loss of device protection. 

Figure 4.6 shows operation at a duty factor of 66 %. The magnetizing current in CT2, 

ina(CT2), is now discontinuous. As discussed in Section 4.3, this current affects the 

circuit's instantaneous output voltage (VOltf). It can therefore be seen that the slope in 

Valli undergoes a change in trajectory when ina(CT2) commutates. This is shown in 

greater detail in Figure 4.7. 
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Figure 4.6. Exemplifying Waveforms from Dual CT Circuit with Diode Rectification and £5 Set so that 

Magnetizing Current in CT2 is Discontinuous (iLl(ove) = 5 A) (vGS = 20 V/div, iLl = 1 Aldiv, VOIlI = 1 

V/div, Time Scale: 10 IJS/div) 

change in slope 
trajectory here as 

current in CT2 
commutates 

..• " V
GS 

iLl 

Vout 

Figure 4.7. Waveforms from Figure 4.5 with VOIlI Shown in Greater Detail (vGS = 20V/div, iLl = 1 Aldiv, 

VOIlI = 200 mVidiv, Time Scale: 10 IJS/div) 

The abrupt change in slope magnitude may, again, present a difficulty where the CT in 

series with the power switch is being used in a peak current control loop as well as 

acting as one of the two CTs in an average current measurement scheme. This is 

because slope compensation is normally incorporated to avoid sub-harmonic 

oscillations at duty factors above 50 % and to provide input voltage feed-forward. 

With effectively two slopes, a compromise is necessary where the current change due 

to the termination in the complementary CT's magnetizing current is significant. If the 
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magnetizing current is relatively high and the slope compensation is to be ideal (that 

is, providing 100 % feed-forward under all conditions) then a current synthesizer 

circuit may be preferred instead of a second CT for deriving the average current. 

Superimposition of the diode's detected current onto the transistor's detected current 

is therefore avoided. Alternatively, separate operational amplifiers may be used to 

detect the outputs from the CTs. 

In Figures 4.5 to 4.7 the permutation of input and output voltages and the choke 

inductance are set to allow a discernible di/dt over a switching cycle for illustrative 

purposes. However, as in Chapter 3, for all subsequent measurements the choke size is 

now increased so that less than 5 % peak-to-peak current ripple is now present. 

4.4.3 Experimental Results 

Figure 4.8 shows readings of the average current droop against duty factor from the 

circuit in Figure 5.4 for iLl(ave) = 500 rnA. The droop is calculated by subtracting the 

reading (vollt(ave)) from the expected output of 5 V. RF is 1.2 kD. here to enhance 

resolution and give the expected output of 5 V. Although the nominal core type and 

construction of CT2 is identical to that of CT1, no attempt is made to ensure that the 

core losses are identical. The curve giving the expected droop derived from the 

enhanced algorithm described by Equations (4.1) and (4.3) is also shown. 
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Figure 4.8. Expected and Measured Droop Using the Dual CT Arrangement with Diode Rectification 

(iU(a)'e) = 500 rnA) 

It can be seen from Figure 4.8 that the agreement between the predicted and measured 

curves is relatively poor. Two factors are noted. Firstly, the loss disagrees with that 

given. Secondly, an asymmetry about b = 50 % is observed. This is attributed to a 

mismatch between the CTs' core losses. This is verified by transposing them to yield 

the curve shown which shows reverse repeatability about b = 50 %. 

A third curve is now obtained using two experimentally matched cores. It can be seen 

that the symmetry of the losses about b = 50 % is now improved. 

4.4.4 Discussion of Experimental Results 

It is concluded from the experimental results that to mmlmlze droop, accurate 

information on core losses and their tolerances is required. However, even in the 

absence of this information, although applying a piecewise square-law and fixed-term 

core loss correction algorithm may be appropriate, a substantial reduction in droop 

may be achieved by simply adding in a fixed offset term throughout. 
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4.5 Summary of Chapter 

Average current droop in the dual CT circuit with diode rectification has been 

evaluated. To minimize droop, accurate information on core losses and their 

tolerances is required. However, although applying a piecewise power-law and linear­

term core loss correction algorithm to each CT may be appropriate, a substantial 

reduction in droop over the entire duty factor range may be achieved by simply adding 

in a fixed offset term throughout. 

A drawback with using diode rectification in the dual CT circuit is that the current 

slope detected during the power switch's on-time has discontinuities imposed upon it 

by the action of the complementary CT. In both DMCM and CMCM operation, a step 

is imposed due to the application of the decaying magnetizing current in the 

complementary ( diode) CT after the interval Treset. In the DCMC mode a second step 

is introduced by the commutation of this current. This may prove a difficulty where 

the CT in series with the power switch is being used in a peak current control loop as 

well as acting as one of the two CTs in an average current measurement scheme. 
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CHAPTERS 

THE UNIDIRECTIONAL CURRENT PULSE TRANSFORMER 

WITH SYNCHRONOUS RECTIFICATION AND NATURAL 

RESETTING 

5.1 Synchronous Rectification with Discrete MOSFET 

As described in Chapter 2, synchronous rectification may be used instead of diode 

rectification with a UCPT. In [59] the droop is experimentally compared with that 

resulting with DR and a reset voltage circuit in place. However, in this chapter factors 

influencing the droop with SR are investigated in further detail. For a given CT, there 

are some significant differences when SR is compared with DR. The period of the 

reset voltage half-oscillation occurring when the current pulse ends is longer as the 

MOSFET's inter-terminal capacitance now augments that of the CT as described in 

[59] and Chapter 2. The peak amplitude of the half-oscillation is also lower due to 

both the presence of this capacitance and the lower magnetizing current when the 

current pulse is terminated. The minimum reset period is longer, an exception being 

where otherwise a voltage clamping diode would be used with DR to limit the peak 

reset voltage. 

As shown in Figure 5.1, with DR Vf2 is invariably greater than Vfl as, after the half­

oscillation at tum-off, the magnetizing current passes through the MOSFET's intrinsic 

anti-parallel diode during Tojf The CMCM mode now commences at a much higher 

duty factor and operation is almost entirely in the DCMC mode. (Vfl is now given by 

Vfl = i2(R2 + RDS(oll)) and Vf2 is the forward voltage drop across the SR MOSFET's 

intrinsic diode. The constant kv is consequently smaller and primarily current­

dependent.) 

At the boundary condition where the core flux becomes continuous then tc = (l-b)T. 

Therefore, from Equations (3.4) and (3.8): 
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Figure 5.1. CT Magnetizing Current with Synchronous Rectification 

Vf2 

om = Cp(Rw +nRDS(.,,)) + VI' 
(5.1) 

Therefore, if Vjl is low compared to Vj2 then bTH is close to one. However, due to the 

presence of Coss when an SR MOSFET is used, Tr is more significant. In this case, at 

the onset of continuous conduction te may be obtained from: 

T = OF + T,. + te (5.2) 

This rearranges to give: 

t =T-OF-T e r (5.3) 

Putting Equation (5.1) into Equation (5.4) and rearranging gives: 
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T-Tr 

8
TH 

= (Tip (R2 + RDS(OIl))J + T 

nVJ2 

(5.4) 

In the DR case the effect of the resonating current in the CT after the diode has ceased 

conducting in the forward direction during TojJ is taken to be negligible. The peak 

voltage is insufficient to make the diode conduct again. However, with SR a 

capacitive route is provided for this current to flow into the operational amplifier's 

input and consequently affect its output voltage. For a lossless core material, negative 

droop is expected with DR. Measurements in Chapter 3 show that this is the case 

where the core flux excursion and consequent losses are low, although it is shown that 

for certain practical current levels positive droop is expected due to core losses in the 

CT. With SR, although for a given CT the core flux excursion is less, the droop is 

expected to be positive at all combinations of frequency, current and duty factor due 

to kv being less than one. 

5.1.1 Categorization of Synchronous Rectification Topologies for Use with the 

CT 

Where the output from a CT is to be synchronously rectified, several topologies may 

be implemented other than that shown in Figures 2.5a and 2.6 and presented in [59]. 

The possible permutations with both N- and P-channel MOSFETS are categorized 

here. The junction field effect transistor (JFET) is not considered due to its RDS(on) 

rating being too high for this application. 

5.1.2 Synchronous Rectifier Topologies with N-Channel MOSFET 

Figure 5.2 shows the possible topological permutations where an N-channel MOSFET 

is used for SR. In each case the dotted end of the CT secondary winding goes positive 

when a current pulse is applied. The properties of the arrangements in Figure 5.1 are 
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tabulated in Table 5.1. Several criteria are applicable when selecting a topology. 

Whether the output voltage is negative or positive is of interest here as most 

commercially available power control ICs operate from a single rail and a positive 

output voltage from the operational amplifier is preferred. Referencing the MOSFET's 

gate signal to "zero" volts is also preferred as this is normally the reference voltage for 

the power device drive signal produced by the IC. 
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Figure 5.2. Topologies for DCPT with Synchronous Rectification using N-Channel MOSFET 

RF 

RF 

The requirement for gate-drive level-shift circuitry is therefore avoided. Another 

criterion is that, for improved accuracy, it is desirable that the return path for the 

MOSFET'S transient gate-drive current is not common with the CT's secondary 

current flowing into the operational amplifier's non-inverting terminal. 
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Topology Operational amplifier Non-changing Undesired output 
output voltage reference electrode voltage developed by 
polarity (MOSFET source) gate charging current? 

potential held at OV? 

(a) Positive Yes Yes 
(b) Positive No No 
(c) Negative No No 
(d) Negative Yes No 

Table 5.1. Properties of Topologies for UCPT with Synchronous Rectification using N-Channel 

MOSFET 

With reference to Table 5.1, it can be seen that no ideal combination of parameters is 

available, that is, a positive output voltage, a non-floating reference electrode voltage 

and no undesired output voltage developed by the MOSFET's gate charging current. 

5.1.3 Synchronous Rectifier Topologies with P-Channel MOSFET 

Figure 5.3 shows the possible topological permutations where a P-channel MOSFET 

is used for SR. (Again, in each case the dotted end of the CT secondary winding goes 

positive when a current pulse is applied.) The P-channel MOSFET presents two 

disadvantages in this application. Its RDS(oll) rating for a given die area and voltage 

rating is approximately 2.5 times that of an equivalent N-channel MOSFET due to the 

lower mobility of the carriers (holes) compared to electrons. Also, a negative gate 

voltage is required to tum the device on l
. 

1 The main application for the P-channel MOSFET in power electronics is at low power levels where it 
acts as a switch referenced to a positive supply rail. The negative gate voltage requirement is useful in 
these applications as the requirement for level-shifting circuitry for driving the gate is avoided and this 
may outweigh the disadvantage of its higher on-state resistance. 
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Figure 5.3. Topologies for UCPT with Synchronous Rectification using P-Channel MOSFET 

The properties of the arrangements in Figure 5.3 are tabulated in Table 5.2. It can 

again be seen that no ideal combination of parameters is available. 

Topology Operational amplifier Non-changing Undesired output 
output voltage reference electrode voltage developed by 
polarity (MOSFET source) gate charging current? 

potential held at OV? 

(a) Positive No No 
(b) Positive Yes No 
(c) Negative Yes Yes 
(d) Negative No No 

Table 5.2. Properties of Topologies for UCPT with Synchronous Rectification using P-Channel 
MOSFET 
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5.1.4 Experimentation with Discrete MOSFET SR 

5.1.4.1 Experimental Arrangements 

Figure 5.4 shows the experimental circuit used. This is identical to that in Figure 3.10, 

but with the rectifier diode replaced with an N-channe1 MOSFET (TR3) acting as the 

SR device. 

L 1 

iu 

galvanic 
isolation 

VGS 

CT1 

V2 

D1 

1 v,~ 
Vee 

RF 

Figure 5.4. Converter Circuit Used for Experimentation with Synchronous Rectification Implemented 

with Discrete MOSFET 

TR3 is a Zetex ZVN4306A device and its principal parameters of interest here are 

given in Table 5.3. The CT used throughout the experimentation here is the variant in 

3F3 core material described in Table 3.2. The same physical core was used so that DR 

and SR could be directly compared without the effects of variations in the core 

characteristics. 
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VDS 60 V VGs=OV,ID= 1 rnA 
RDS(oll) (maximum) 450 mQ VGS= 5 V,JD= 1.5 A 

VGS(th) 1.3-3.0 V VGS= VDS,JD = 1 rnA 
Coss 140 pF VDS = 25 V, VGs= 0 V, 
Ciss 350 JJF f= 1 MHz 

Table 5.3. SR MOSFET Principal Parameters ofInterest 

5.1.4.2 Estimate of Effect of CT Core Losses with Synchronous Rectification 

The peak flux density excursion, B, is: 

Nlm2(O)f.lof.lr 
B= 

Ie 

Putting Equation (2.30) into Equation (5.5) yields: 

B = Ip(R2 + RSR)or 
N 2A 2 e 

as n = N2, that is, Nl has one tum here. 

(5.5) 

(5.6) 

At Ip = 5 A, R2 = 0.89 n, RSR = RDS(on) = 0.45 n, a duty factor of 100 % andf= 20 kHz 

(T = 50 Ils) then the maximum core flux excursion is calculated as 5.2 mT. The effect 

of core material losses is therefore predicted to be very small. 

5.1.4.3 Synchronous Rectifier MOSFET Gate Charge Effects 

Before proceeding with obtaining results, the practical issue of driving the SR 

MOSFET's gate is addressed. The arrangement in Figure 5.5 is that shown in 

configuration (a) in Figure 5.2 where the return connection to the gate terminal is 

made via the signal ground voltage rail. As shown in Figure 5.5, the gate charging 
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current (iG) supplied to the MOSFET is therefore injected into the node connected to 

the operational amplifier's inverting terminal and consequently develops an unwanted 

transient output voltage as it is routed through RF . 

~
R1 :: __ I I 

RG --~ ~--, , , , 

v"'l .~ 
7 

Figure 5.5. Route Taken by SR MOSFET Gate Charging Current 

RF 

When SR is used with the dual CT arrangement where two MOSFETs are driven with 

complementary gate signals, as shown in Figure 2.6, some reduction of the unwanted 

signals results as the gate charging current of one MOSFET is cancelled by the 

discharging current of the other. This is shown in Figure 5.6. However, it is not 

expected that the unwanted signals may be entirely eliminated due to the non-linearity 

ofthe MOSFETs' input capacitances. 
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Figure 5.6. Routes Taken by SR MOSFET Gate Charging Currents in Dual CT Arrangement 

Figure S.7 shows wavefonns from the circuit in Figure S.S with a gate resistance of 

100 Q used to limit iG. The choke current is SOO rnA and RF = 1.2 kQ. The upper trace 

shows the gate voltage (S V in the on-state) applied to the power MOSFET, the centre 

trace shows the gate voltage applied to TR3 and the lower trace shows Vout. It can be 

seen that disturbances result on the output voltage at tum-on and tum-off. 

The maximum gate-source voltage allowable with the ZVN4306A device is specified 

as being within ±20 V. However, this is a logic-level device and is designed to be 

satisfactorily operated from a S V drive signal. Although the channel resistance 

becomes lower as the voltage is increased above the threshold voltage, the gate charge 

required rises disproportionately with respect to the improvement in conductivity. 
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vdref) 

vGSI 

II 1------------1lf Vaut 

Figure 5.7. Waveforms with VOS(OIl) = 5 V, Ro = 100 n (iLl = 500 rnA) (vos = 20 V/div, VOSI = 10 V/div, 

VOllI = 1 V/div, Time Scale: 10 I1S/div) 

Figure 5.8 shows waveforms, again from the circuit in Figure 5.5, but with the gate 

resistance now increased to 1 kG. The disturbances on the output voltage are now less 

severe. However, as can be seen, transient exponential terms are added to the 

measured current at tum-on and tum-off. 

vGs(ref) 

V GSI 

Vaut 

Figure 5.8. Waveforms with VOS(OIl) = 5 V, Ro = 1 kn (iLl = 500 rnA) (vos = 20 V/div, VOSI = 10 V/div, 

VOIiI = 1 V/div, Time Scale: 10 I1S/div) 

Figure 5.9 shows the voltage obtained from the circuit in Figure 5.6 where the second 

MOSFET is added in position TR2 and driven with a complementary signal. Its drain 

terminal is short-circuited to its source terminal. Both RGl and RG2 are 100 n. A 74AC 
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series logic gate is used as the inverter. This logic series has a propagation delay of 

approximately 4 ns so minimal timing skew is imposed between the two gate signals. 

--- - -- I vGs(ref) 

V GS1 

Vout 

Figure 5.9. Waveforms with VGS(OIl) = 5 V and Complementary MOSFET in Place with RGi = RG2 = 100 

n (iLl = 500 rnA) (vGS = 20V/div, vGSJ = lOV/div, VOIlI = 1 V/div, Time Scale: 10 Ils/div) 

In order to minimize the effect of the passage of gate charge, all subsequent 

experimental readings are taken with RG = 1 kQ. 

However, where the CT is used in a peak current control scheme a disturbance is not 

necessarily problematic when the current pulse is applied. This is because of the 

leading edge blanking described in [44] and discussed in Section 4.4.2. The current is 

also not monitored during the switch's off-time so, for peak current control purposes, 

the disturbance at tum-off is also not necessarily problematic. The RDS(on) value given 

in Table 5.3 is the manufacturer's quoted maximum value. However, for experimental 

purposes, the actual value was measured at 0.37 Q for VGS(on) = 5 V and ID = 100 rnA 

when at room temperature. 
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5.1.4.4 Experimental Results with Discrete MOSFET SR 

Figures 5.10, 5.11 and 5.12 show exemplifYing waveforms at ILl = 5 A. The switching 

frequency is 20 kHz and the duty factor is set at 50 %. 

It is noted that, due to the propagation delay introduced by the galvanic isolation 

element in Figure 5.4, the gate signal applied to the power MOSFET (TR1) lags 

behind that applied to the TR3 by approximately 300 ns at both tum-on and tum-off. 

The oscillatory frequency is measured at 91 kHz. It can be seen from Figure 5.12 that, 

when compared to Figures 3.15 and 3.18 where diode rectification is used, the peak 

current droop is now reduced. 

Some observations are made with respect to Figures 5.10, 5.11 and 5.12. Operation 

here is discontinuous. During the power switch's off-time the same three phases are 

evident as when DR is used. Firstly, the half-oscillation takes place. Secondly, the 

diode (in this case the SR MOSFET's intrinsic diode) conducts and thirdly, there is an 

oscillation with a peak magnitude of approximately 0.8 V when the diode ceases to 

conduct. The volt-second product appearing across the diode when resetting appears 

to be greater than the volt-second product appearing when the pulse is applied. 

However, this is expected because, as the voltage dropped across the SR MOSFET's 

on-state resistance (0.37 0) is low compared to the CT's secondary winding resistance 

(R2 = 0.89 0), then most of the voltage drop impressed across the CT's magnetizing 

branch is internal to the CT. 
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Figure 5.10. Wavefonns at 50% Duty Factor with SR (lLl= 5 A) (vGS = 20 V/div, V2 = 5 V/div, iLl = 2 

Aldiv, Vall/ = 2 V/div, Time Scale: 10 Jls/div) 
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Figure 5.11. V2 Shown in Greater Detail (vGS = 20 V/div, V2 = 5 V/div, Time Scale: 10 Jls/div) 
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Figure 5.12. Wavefonns iLl and Valli Shown in Greater Detail (vGS = 20 V/div, iLl = 2 Aldiv, Valli = 1 

V/div, Time Scale: 10 Jls/div) 
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In previous figures the permutation of input and output voltages and the choke 

inductance are set to allow a discernible di/dt over a switching cycle for illustrative 

purposes. However, for subsequent measurements the choke size is now increased so 

that less than 1 % current ripple is now present. 

Figures 5.13, 5.14 and 5.15 show the measured and ideal sensed output voltages 

against J for currents of 5 A, 3 A and 1 A respectively. It is seen that the maximum 

duty factor attainable prior to incomplete reset causing droop is, as expected, lower 

than that with DR. Putting the values of R2 and Lm2 in Table 3.2 and the value of 

RDS(oll) measured here (0.37 0) into Equation (2.34) gives an expected Dave of: 

Dal'e = b"x2.9x10-3 (5.7) 

assuming that the current-time product recovered from the CT during TojJis negligible, 

that is, Vf2 is much greater than Vfl. Figure 5.16 shows the measured droop for choke 

currents of5 A, 3 A and 1 A and the predicted droop from Equation (5.7). 

Figure 5.17 shows the absolute measured droop (expressed as the shortfall in Vouf(ave)) 

for choke currents of 5 A, 3 A and 1 A. It can be seen that the droop is dominated by 

the oscillatory behaviour of the circuit during the switch's off-time. 

112 



5 
4.5 

4 
3.5 

~ 3 
Ql 

~ 2.~ 
o 
> 1.5 

1 
0.5 

o 
o ~ ~ ~ ~ ~ @ ~ ~ ~ 

Duty Factor (%) 

Figure 5.13. Measured and Ideal voul(ave) against Duty Factor 
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Figure 5.14. Measured and Ideal vout(ave) against Duty Factor 
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Figure 5.15. Measured and Ideal vollI(ave) against Duty Factor 
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Figure 5.17. Absolute Droop Expressed as Shortfall in vOIl/(ave) against Duty Factor for ill = 5 A, 3 A and 
1A 

Figure 5.18 shows a more complete circuit representation of the MOSFET. The 

MOSFET's inter-terminal capacitance, in addition to lengthening the required 

minimum reset time presents an additional disadvantage in this application. As one 

end of this capacitance is connected not to the zero voltage rail but to the virtual 
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ground at the operational amplifier's inverting terminal, most of the resonating 

magnetizing current flows through RF, developing a consequent voltage. 

• 
ip 

TR3 

CT1 
r------ ROs(on) 

: '.---,! It i/~ 

~ I-Ceq -r v, --r-r: I I ~ 
__ ~_T_I_C,~ __ nr 

VGSI 

RF 

Figure 5.18. More Complete Representation of the MOSFET in CT Rectifier Application 

5.2 Synchronous Rectification with Analogue Switch 

5.2.1 Experimental Circuit 

Figure 5.19 shows the circuit from Figure 5.4, but using a Texas Instruments 

TS5A3159 analogue switch [75] instead of a discrete MOSFET as the SR element. 

Figure 5.20 shows (gate) waveforms for comparison with those from Figures 5.5-5.7. 

Figure 5.21 shows the average current droop for ILl = 5 A, 3 A and 1 A for 

comparison with the values in Figure 5.16. The estimated droop is also shown, again 

calculated from Equation 2.35, but with RDS(on) taken as 1.1 n from the data in [75]. It 

is noted that the resonant frequency of the oscillation at tum-off is approximately 310 

kHz, that is, similar to that measured with diode rectification in Chapter 3. The effect 

of capacitive loading is therefore minimal. Over the range of currents and pulse 

lengths measured here, the peak reset voltage is such that it does not exceed the 

analogue switch's maximum input voltage. 
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Figure 5.19. Converter Circuit Used for Experimentation with Synchronous Rectification Implemented 

with Analogue Switch 

5.2.2 Experimental Results with Analogue Switch SR 

Figure 5.20 shows the measured droop with analogue switch SR. The negative droop 

in Figure 5.20 is attributed to an asymmetry in the rise and fall times of the 

operational amplifier's output voltage when the current pulse is applied and removed, 

as discussed in Section 2.2.2. The rise and fall times of the current pulse and voltage 

gain of the amplifier are set such that Volli is limited by the slew rates. From Figure 

5.21, a volt-second difference of approximately 0.5 /lVS is imposed. The fall-time is 

found to be essentially independent of current magnitude and therefore the effect on 

droop is also fundamentally independent of current magnitude. It is noted here that the 

operational amplifier is driven with a large signal when the current pulse is applied 

and a small signal when it is removed. To illustrate the importance of the operational 

amplifier's performance here, Figure 5.22 shows the effect on VOIlI of using an 

alternative operational amplifier (the OP A 134P A type) with a slower response upon 

current pulse removal. 
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Figure 5.20. Droop against Duty Factor for ill = 5 A, 3 A and I A with Calculated Droop also Shown 

(Analogue Switch SR) 

VCTRL 

Vout 

Figure 5.21. Control and VOl(t Wavefonns with NE5534AP Operational Amplifier (VCTRL = 5 V/div, Vout = 

2 V/div, V out = I V/div, Time Scale: 5 Jls/div) 
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Figure 5.22. Control and Vout Wavefonns with OPA134PA Operational Amplifier (VeTRL = 5 V/div, VOllt 

= 2 V/div, VOllt = 1 V/div, Time Scale: 5 Jls/div) 

Returning to Figure 5.21, Figures 5.23 and 5.24 show the transient waveforms at ILl = 

5 A and 1 A respectively in greater detail. 
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Figure 23. Transient Wavefonns in Greater Detail at ILl = 5 A with NE5534AP Operational Amplifier 

(vGS = 20 V/div, VeTRL = 5 V/div, VOlil = 1 V/div, Time Scale: 1 Jls/div) 

VGS 

V CTRL I ! ~ I If . . ! V

oo1 

1 

I 

Figure 24. Transient Wavefonns in Greater Detail at hI = 1 A with NE5534AP Operational Amplifier 

(vGS = 20 V/div, VeTRL = 5 V/div, VOIiI = 500 m V/div, Time Scale: 1 Jls/div) 
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5.3 Discussion of Experimental Results and Summary of Chapter 

Either a discrete MOSFET or an analogue switch may be used for SR. The following 

observations are made: 

1. Where a MOSFET is used, driving its control (gate) terminal is not a trivial 

consideration. Transient interference results. This, and the excitation of the LC 

circuit formed by Lm2 and Ceq both impair accuracy. 

2. An analogue switch may therefore be preferred. It is noted that this device is 

intended for signal routing. As such, it is optimized to minimize "crosstalk" 

between the signal at the control terminal and signal being routed. Also, inter­

tenninal capacitances are low to reduce signal degradation. This has the dual 

benefit here of minimizing oscillations and allowing operation at a duty factor 

approximately equal to that with DR. 

3. The transient performance of the operational amplifier remains a limiting 

factor in determining the accuracy of the CT circuit. 
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CHAPTER 6 

APPLICATION OF RESET VOLTAGE FEEDBACK FOR DROOP 

MINIMIZATION IN THE UNIDIRECTIONAL CURRENT PULSE 

TRANSFORMER 

6.1 Introduction 

A technique for minimizing the peak current droop in the signal derived from a DCPT 

is investigated in this chapter. This is achieved by applying a correcting voltage in 

series with the CT's output terminals when a current pulse is present. The magnitude 

of the correcting voltage is based on the resetting voltage sensed during the power 

converter's previous switching cycles. An experimental circuit is implemented to 

investigate the technique's effect on both peak and average current droop. A passive 

diode rectifier and resistive load is used. Results are compared with a circuit 

simulation. 

6.2 Operating Principle 

The technique investigated here may be loosely grouped with those techniques where 

the CT's core flux is sensed and its secondary terminal voltage is modified in response 

to minimize the flux. Such techniques may be further sub-divided into those where the 

flux is sensed directly by a detector element placed in the magnetic circuit, for 

example, in [11] and [14] and those where it is inferred indirectly, for example, in 

[29] where the rate of change of flux is sensed. The technique here may be grouped in 

the latter sub-division as the core flux is also sensed indirectly by measuring another 

quantity in this case, the CT's reset voltage. In [29], as shown in Figure 6.1(a), a 

tertiary winding on the CT is used to provide a voltage proportional to the rate of 

change of flux present in the core (VN3). Alternatively, as shown in Figure 6.1(b), a 

Hall-plate may be used to directly sense the core flux and produce a proportional 
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voltage (VHE). In either case, this voltage is amplified as by Al to yield a correcting 

voltage (ve) which is applied in series with the CT's secondary terminal voltage. As 

shown in Figure 6.2, the emf across the CT's magnetizing branch is therefore reduced, 

in tum reducing the peak current droop. 

i2 I CT1 

i2 - -

',I • ~ [~ R·OI·~ ',I: ~ RB 0 1 vo
", 

N, 

lv, LJ y 1 v, 

V V 
• + 

1 VHE 

V 
(a) (b) 

Figure 6.1. Circuits for Correcting CT Secondary Tennina1 Voltage in Response to Rate of Core Flux 

Change Detected with (a) Tertiary Winding and (b) Flux Detected Using Hall-Plate 

ideal 
transform er 

CT1 

I v, 

R2 

-VR2 

D1 

t .~ 

Figure 6.2. Equivalent Circuit during Current Pulse with Correcting Voltage Applied to CT's 

Secondary Winding 
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The principal advantage of the technique here compared to those in Figure 6.1 is that 

the CT's construction is not modified. Figure 6.3 shows a functional block diagram 

outlining the technique investigated here and Figure 6.4 shows the principal idealized 

waveforms. TR1 is the switching device in a power converter and CT1 is in series 

with it acting as a DCPT. D1 is the CT's rectifier diode and RB is the burden 

resistance. If a voltage clamp circuit is not used, at TR1 turn-off a sinusoidal half­

wave oscillation occurs as shown in Figures 2.7 and 2.9. In the conventional diode 

rectifier and load resistance circuit shown in Figure 2.1(a) the peak secondary voltage 

(v2(Pk)) appearing at CT reset is given by Equation (2.26) which is repeated here: 

v2 (pk) = lor [Vf + Ip(R2 +RB )] 
LIII2C

eQ 
n 

(6.1) 

It can be seen that v2(Pk) is dependent on the magnetising current and the consequent 

core flux at switch turn-off. 
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Figure 6.3. Functional Block Diagram of Reset Voltage Feedback Scheme 
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Figure 6.4. Idealized Waveforms Showing Operation of Reset Voltage Feedback Scheme 

This effect is exploited here to minimise droop. The switch shown in Figure 6.3 (S I) 

is controlled by the same signal driving TRI. During TRI 's off period end "B" ofN2 

is connected to the zero voltage rail. During TRI's on-period end "B" of N2 is 

connected to the output of the amplifier AI. 

At TRI tum-off the negative-going reset voltage is applied to Al (which IS an 

inverting amplifier) and low-pass filtered to give a voltage, Vc. 

If the loading effect of the amplifier is negligible, then the voltage V2 at the amplifier's 

input over the period from t = 0 to t = 1[/OJ,. is given by: 

V2(t) = - I 8I' [VI + I: (R2 + RB )]sin(OJ,.f )1
1 O~t~~ 

Lm 2 Ceq mo. 

(6.2) 

where OJ,. is the resonant frequency of the circuit formed by Lm2 and Ceq. As the 

voltage seen by Al is approximately zero for the rest of the switching cycle then the 

average voltage is given by: 
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!( 

I {t)r or [I ] 
v2 (ave) = - T f J VI + : (R2 + RB) sin(m,.t )dt 

o Lm2Ceq 
(6.3) 

This integrates to give: 

v, (ave) ~ -2{VJ + I: (R, + Rn)] (6.4) 

Alternatively, this result may be deduced from the observation that, as the current is 

returned to zero halfway through the reset half-oscillation, then the average reset 

voltage must be twice the average voltage applied across the CT's magnetizing branch 

during Ton. Due to the inversion introduced by AI, when the power device is next 

turned on and Ve is applied to end "B" ofN2, the polarity ofve is such that it opposes 

the voltage impressed across Lm2 by the sum of the voltage drops across RB, D I and 

R2. V2 is therefore now given by: 

V2 = VI +i2RB -vc (6.5) 

However, V2 is the CT's terminal voltage and the voltage across Lm2 (vila) is given by: 

Vm2 = VI + i2 (RB + R2) - Vc (6.6) 

The magnetizing current drawn by Lm2 is therefore reduced. Again, if the loading 

effect presented by Al is negligible, the peak reset voltage is now given by: 

v2(pk)=- ,or [VI+lp(R2+RB)-Vc] 
Lm2Ceq n 

(6.7) 

and the average reset voltage is now given by: 
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v,(ave) = -21Vf + I; (R, + RB)-V,] (6.8) 

Ve is given by: 

Vc = k A (S)V2 (ave) (6.9) 

where kA(s) is the gain of Al which only acts on the negative-going part of the input 

signal. 

The greater the average reset voltage occurring, the greater is the correcting voltage 

(ve) applied to the loop encircling Lm2. 

Unlike the technique in [29], the voltage across Lm2 is not controlled instantaneously 

in response to the rate of change of core flux but is based on the magnitude of the 

magnetizing current indirectly detected at the end of previous current pulses. 

Disadvantages with this technique are that abrupt deviations in current magnitude 

between successive current pulses are not readily catered for and that the correction 

voltage is a fixed magnitude which cannot change to account for changes in current 

magnitude during the pulse. Also, long "one-off' pulses cannot be catered for. 

However, in many switched mode applications abrupt changes in current magnitude 

do not present a difficulty as soft starting is incorporated into the control circuit 

thereby limiting the rates of change. Also, changes during steady-state operation are 

typically small. 

The principle advantage with this technique compared with that in [29] is that the CT 

does not have to carry an auxiliary winding. All of the correction circuitry may be 

incorporated within TRI's control circuitry as the only control signal required is that 

used to drive the power device. The technique is therefore more cost-effective for 

switched mode power converter applications. 
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6.3 Implementation of Circuit and Experimental Results 

6.3.1 Implementation 

The circuit in Figure 6.5 was used to evaluate the technique. The power device (TRl) 

is operated in the same boost converter circuit shown in Figure 3.10 where TRI is a 

MOSFET and the power diode is a Schottky type. The permutation of input voltage, 

output voltage and choke inductance is such that the ripple component of the current 

is less than 1 % and the current pulses conducted by TRI are therefore regarded as 

rectangular. U2 is a Texas Instruments TS5A3159 analogue switch, as described in 

[75], and is used to realise the function of SI in Figure 6.3. D3 is included to prevent 

the operational amplifier (Ul) applying an out-of-specification negative voltage to U2 

when the current in CTI is zero or so low that the error voltage does not overcome 

any offset terms present. 

CT1 
VA 

D1 i2 

A -
OS tl' v, 

ip 
NO 

Ra r vo~ 
N, I I N2 COM r---

U2 
B va 

, , , 
IN 

I Jl D3 

galvanic TR1 

lL ---L;;ion I ~ D2 

power device 
gate drive signal ~Vc 

Figure 6.5. Implementation of Reset Voltage Feedback Scheme 
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D4 prevents the operational amplifier's output from saturating at the negative rail in 

the quiescent state, yielding a faster response when current pulses are applied. (D3 is 

still included as the forward voltage drop of D4 exceeds the maximum allowable 

negative voltage at the input to U2.) 

The CT used is the variant in 3F3 core material described in Table 3.2 to enable direct 

comparisons to be made with the circuit with diode rectification and an active load. RB 

is 12 n giving an expected gain of 100 mY/A. The TS5A3159 device has a maximum 

supply voltage of 5 V and the circuit's supply voltage was set at ± 5 V to allow U1 to 

be supplied from the same positive supply voltage rail. The principal component data 

are listed in Table 6.1. The gain of U1 is integral here. This control method has the 

advantage that, for a low-frequency error term, the steady-state error is virtually 

eliminated. 

Rl was set at 100 kn so that the damping effect on the RLC circuit it forms with Lm2 

and Ceq is minimized. That is, the loading effect of the amplifier can be taken as very 

small. This was verified by running the circuit open-loop with Rl in and then out of 

circuit. With Rl out of circuit the resonant frequency of the reset transient voltage is 

measured at 365 kHz with a peak value of -37.2 V. With Rl in circuit these values are 

measured at 343 kHz and -32.5 V respectively. Minimizing the damping effect and 

consequent reduction in the resonant frequency is desirable as the increase in the reset 

time is in tum minimized. Although a second operational amplifier may be used to 

buffer V2, a difficulty is that the signal applied would have to be attenuated or clamped 

to prevent over-voltages at its input terminals. The arrangement here is therefore 

implemented for simplicity. 

RI 100 ill 
CI 1.0 nF 
D2,3,4 1N4148 
VI NE5534A 
V2 TS5A3159 

Table 6.1. Component Data 
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It is noted that, in a practical scheme where integral control is used, some offset input 

current (shown as iajf in Figure 6.5) is necessary at the operational amplifier's 

inverting terminal to allow for its worst-case input offset voltage. This is needed 

because, if a positive offset voltage is present between the operational amplifier's 

input terminals, saturation of the feedback loop will be present at start-up. This results 

in Ul's output voltage saturating at the positive supply rail voltage in the quiescent 

state (Mp ;:::; 0) and sourcing an excessive current through the loop formed by U2, N2, 

Dl andRB. 

The galvanic isolation circuit shown in Figure 6.5 is that shown in Figure 3.11 with 

one change made. RG is now 100 0 instead of 10 O. This resistance was made larger 

as the interference resulting from transient effects at TRl tum-off was otherwise 

found to affect correct operation ofthe integrator. 

An analogue switch is used here, although an alternative circuit realisation using a 

discrete MOSFET is described in Appendix 4. With the exception of U2, leaded 

through-hole components are used in the circuit in Figure 6.5. However, a photograph 

of the circuit assembled in surface mount technology throughout is shown in 

Appendix 5. 

6.3.2 Exemplifying Circuit Waveforms 

Exemplifying circuit waveforms are shown in this section. Figure 6.6 shows 

oscillograms of ip, Valli and VA where the circuitry in Figure 6.5 is omitted and ip is 

sensed using the conventional rectifier diode and load resistor arrangement as shown 

in Figure 2.1(a). The power device switching frequency is 20 kHz and the primary 

current is 5 A at a duty factor of 50 %. ip is sensed for reference purposes using a 

high-bandwidth (50 MHz) dc current probe. As is the case with the measurements in 

Chapter 3, during the pulse off-time some recovery of the current-time product lost to 

droop during the on-time can be seen in the trace of Valli after the half-sinusoidal 

resonant resetting period has elapsed. 
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ip 

Vaut 

VA 

Figure 6.6. ip, Vaut and VA in Conventional Arrangement (ip = 5 A/div, Vallt = 100 mY/diy, VA = 50 V/div, 

Time Scale: 10 flS/div) 

The modified scheme shown in Figure 6.5 is now introduced. Figure 6.7 shows the 

oscillograms. It can be seen that both the peak current droop and the peak reset 

voltage are reduced. (Note that different scaling by a factor of 5 is used for VA in 

Figures 6.6 and 6.7.) As expected, during the pulse off-time the current-time product 

returned to VOlil is less due to the smaller current now forced into Lm2. Although the 

duty factor is 50 %, operation is well within the DMCM mode here. The reset voltage 

transient is not entirely eliminated due to the offset current supplied to the operational 

amplifier. 

ip 

Vaut 

VA 

Figure 6.7. ip, Vallt and VA in Modified Arrangement with Integral Feedback (ip = 5 A/div, Vallt =100 

mY/diy, VA = 10 V/div, Time Scale: 10 flS/div) 
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Peak current droop is measured at 8.5 % using the conventional arrangement and is 

found to be negligible using the modified arrangement from the respective waveform 

data collected in Figures 6.6 and 6.7. (However, up to 1 % rise in the applied current 

pulse is allowed so some droop may be present.) The former figure of 8.5 % is in 

approximate agreement with the calculated peak current droop of 6.8 % which is 

given by: 

I D = 1112(0) 

i2 

(6.10) 

where I m2(o) is given by Equation (2.8) and i2 is the ideal secondary current. Vjis taken 

as 0.8 V and Lm2 and R2 are the values given in Table 3.2. Putting these values into 

Equation (2.8) and then putting this result into Equation (6.10) gives a droop of7.8 %. 

Figure 6.8 shows the principle waveforms from the circuit in Figure 6.5, including 

that of VB. 

1.---------',1. ip 

zero-volt rail 
applied to end "B" of 
CT secondary winding 
during power device off-time 

correcting voltage (ve) 
applied to end "B" of 
CT secondary winding 
during power device on-time 

Vout 

VA 

Va 

Figure 6.8. Principle Wavefonns from Modified Arrangement with Integral Feedback (ip = 5 Aldiv, Val/I 

= 500 mY/diy, VA = 10 V/div, VB = 5 V/div, Time Scale: 10 Ils/div) 
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6.3.3 Comparison of Average Current Droop with Conventional Diode Rectifier 

and Load Resistor Circuit 

Figure 6.9 shows the average current droop plotted against duty factor measured using 

the 12 Q load resistor connected in the normal way (as shown in Figure 2.1a) and also 

the droop from the modified circuit with solely integral control implemented. The 

output voltage across Rs is low-pass filtered using the same RC circuit used in 

previous chapters where R = 10 kQ and C = 3.3 nF, giving a comer frequency of 4.8 

kHz. Some observations are made. Average current droop is very low over the entire 

duty factor range with the modified scheme introduced. Also, with the conventional 

scheme, the piecewise correction algorithm described in Chapter 3 is not so applicable 

here. This is expected, as the load here is a combination of a voltage sink (the rectifier 

diode) and resistance (the load resistor), whereas in Chapter 3, the load is more readily 

represented as a zero-impedance voltage sink. 
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.&.& 
.& 
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.&.& 
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.&.& .& • vout (modified circuit) 

.& vout (conventional 
diode-resistor circuit) 

o I-, Iii iii iii I I I I i 

5 15 25 35 45 55 65 75 85 95 

Duty Cycle (%) 

Figure 6.9. Average Output Voltage against Duty Factor with Conventional Diode and Load Resistor 

Arrangement and with CT Circuit Incorporating Reset Voltage Feedback (iLl = 1 A) 
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6.3.4 Operation at Low Primary Currents 

The discontinuous secondary current mode (DSCM) is described in Chapter 3 where 

the CT is operated with diode rectification and an active load. Figure 3.30 shows the 

boundary combination of primary current and duty factor at which this condition and 

the consequent exacerbated distortion occur with experimental readings 

superimposed. 

The circuit in Figure 6.5 was tested at the same primary currents of 100 rnA, 300 rnA 

and 500 rnA shown in Figure 3.30. A potentiometer was adjusted to set iojf such that 

the offset error developed by the operational amplifier resulted in v2(Pk) being set at 

approximately -2 v. The same CT was used for consistency and the results are shown 

in Figure 6.10. 
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___ \Out at 100mA (meas) 

-- \Out at 300mA (ideal) 

\Out at 300mA (meas) 

-- \Out at 500mA (ideal) 

~\Out at 500mA (meas) 

Figure 6.10. Average Output Voltage against Duty Factor Obtained from CT Circuit Incorporating 

Reset Voltage Feedback at Low Primary Currents 

Again, it can be seen that the steady-state error in the current sensed is virtually 

eliminated, as is the problem of operation in the DSCM mode. 
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6.4 Circuit Simulation 

The circuit may be treated as continuous by averaging quantities over a switching 

cycle. This approach is shown in block diagram form in Figure 6.11, where it is 

assumed that the circuit's time constants are large compared to the period of the 

waveform being measured. 

However, where the bandwidth of Al is high compared to that of the switching 

frequency, the circuit in Figure 6.11 is no longer adequate. Therefore, to more fully 

investigate the instantaneous behaviour of the circuit, in particular, cycle-by-cycle 

variations, a simulation model was prepared for the circuit in Figure 6.5 using 

Simulink [76]. This is shown in Figure 6.12. 

l'pICs ) 

n 

+ Vout 

lE-
n 

R2 + RB 

v, +.(';) Vm2 .1 or 'm2(O) 

Lm2 
---l 

r-
2Lm2 

Vc L V2(ave) T 

Figure 6.11. Block Diagram Showing Continuous Approximation of Circuit Operation when Sensing 

Rectangular Current Pulses 
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In Figure 6.12, switches 1 and 2 respectively emulate the effect of the application and 

removal of the primary current pulse. When the current pulse is present, the voltage 

given by Equation (6.6) is applied to the CT's magnetizing branch (Lila) by "switch 

1". When the current pulse is removed, the resonant circuit formed by Ceq is 

connected by "switch 2". "integrator 3" and "Fcn" represent the integral feedback gain 

(kAs)) realized by VI in Figure 6.5. The "offset" input is included to assess the effects 

of worst-case offset terms and an output saturation limit is imposed to represent the 

finite rail voltage available. 

"integrator 1" and "integrator 2" are both reset at the application of the pulse and at 

the completion of the half resonant resetting cycle. That is, im2 and V2 in the resonant 

circuit formed by Lm2 and Ceq are both forced to zero at these instants. 

The experimental conditions were replicated and the data in Table 3.2 were used in 

the simulation. VD 1 is the forward voltage drop of the rectifier diode (D 1 in Figure 

6.5) and VD3 is the voltage drop of the blocking diode (D3 in Figure 6.5). Both VDl 

and VD3 are entered as 0.8 V, the value measured at 40 rnA. The forward voltage 

drop of D2 is neglected. 

Lm2 is not entered directly but is calculated (in block "f(u)") from the core dimensions 

and material characteristics so the effects of varying these parameters may be readily 

assessed. Ceq is entered as 17 pF, the value calculated from the measured unloaded 

resonant frequency of 365 kHz and the measured value of Lm2 in Table 3.2. 

The droop when feeding a resistive load via a rectifier diode has both linear and 

exponential components and these are accounted for as such in the simulation. 

However, it is noted in Chapter 2 that the exponential component may be treated as 

linear if TOil is much shorter than r and this accuracy is not expected to be strictly 

necessary. 
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Figure 6.12. Simulink Model of CT Circuit with Reset Voltage Feedback 

Figure 6.13 shows the simulated steady-state output voltage for Ip = 5 A at a duty 

factor of 50 % with the correction circuitry omitted. Droop is measured at 7.2 %, in 

approximate agreement with that measured in Figure 6.6 and calculated in Section 

6.3.2. 
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Figure 6.13. Steady-State Output Voltage Modelled in Simulink with Correction Circuitry Omitted (Ip = 

5 A, 15=50 %) 

Figure 6.14 shows the simulated steady-state output voltage with the correction 

circuitry included. Droop is measured at virtually zero, in agreement with that 

measured in Figure 6.7. 
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Figure 6.14. Steady-State Output Voltage Modelled in Simulink with Correction Circuitry Incorporated 

(Ip = 5 A, 15 = 50 %) 
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Figure 6.15 shows the modelled transient output voltage and correcting voltage (ve) 

and integrator output voltage (Intout) in response to a step application of a rectangular 

current pulse train modelled with the correction circuitry incorporated. Ip is 5 A and J 

is 50 %. Figure 6.16 shows the same simulation but with J = 90 %. Although positive 

in the circuits in Figures 6.3 and 6.5, Ve is shown as a negative-going quantity here as 

it opposes the other voltage drops impressed across Lm2• Also, the initial condition of 

the integrator is arbitrarily set at 1 V. From Figures 6.15 and 6.16, it can be seen that, 

the steady-state correcting voltage is independent of J although with higher values of J 

it is approached more rapidly. 
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Figure 6.15. Modelled Transient Response to Step Application of Current Pulse Train with Correction 

Circuitry Incorporated (Ip = 5 A, 0= 50 %) 
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Figure 6.16. Modelled Transient Response to Step Application of Current Pulse Train with Correction 

Circuitry Incorporated (Ip = 5 A, 0= 90 %) 

From Figures 6.15 and 6.16, it can be seen that, the steady-state correcting voltage is 

independent of 0 although with higher values of 0 it is approached more rapidly. 
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6.5 Performance with Non-Rectangular Current Pulses 

6.5.1 Theory 

So far, only rectangular current pulses have been addressed. However, in a practical 

power converter in the continuous conduction mode the waveform is more accurately 

treated as a ramp-on-a-step and in the discontinuous conduction mode the waveform 

becomes triangular. Where Vc is a steady value during a current pulse, an important 

difference between rectangular and non-rectangular cases is that, in the latter case, 

some flux excursion takes place during a current pulse in the steady-state. The circuit 

is represented in Figure 6.17 where Rr is the sum of R2 and RB. Two disadvantages are 

incurred with triangular waveforms. Firstly, the inaccuracy of the average current 

measurement increases. Negative droop is incurred: that is, VOlil is an overestimate. 

Secondly, although not definable as peak current droop in the normal way defined in 

[25,43,44], the slope of the current waveform is reduced at the peak current value. 

Rr 

i2 

'/n 1 i~ l~l ,~ 1 V'-', 

Lm2 

Figure 6.17. Equivalent Circuit for Evaluating Steady-state Performance with Non-Rectangular Current 

Pulses 

With respect to Figure 6.17, for a triangular current waveform where ipln = At, then 

im2 is given by: 
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im2 = A[t -r(l- e-Yr ) ] Vc ~:f (1- e -Yr) (6.11) 

If im2 = 0 at the end of a pulse of duration bT then, by substituting these values into 

Equation (6.11) and rearranging, Vc is given by: 

Vc = RTA( ~8r1r - rJ + Vf 
1-e l' 

(6.12) 

Substituting this result back into Equation (6.11) gives: 

(1- e-Yr ) 
1m2 1- e . =At-AOF( -orh ) (6.13) 

This is integrated over the interval from t = 0 to t = bT to yield the magnetizing charge 

drawn during a switching cycle: 

Ip ( 
A52T2 -or J i

m2
dt = - AOF OF + re Yr + rJ 

o 2 1 -or/ -e IT 

(6.14) 

The average magnetizing current drawn may be obtained by dividing this result by the 

waveform's period: 

A52T 1 OF + re -orh + rJ 
im2(ave) = 2 - A vl 1 _ e -orh 

(6.15) 

The instantaneous value of Va lit during Ton, may be calculated from: 

(
ip . ) 

VOIII =RB -;;-lm2 (6.16) 
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where im2 for a triangular waveform is given by Equation (6.13). 

6.5.2 Experimental Readings with Triangular Current Waveform 

Figure 6.18 shows waveforms from the conventional diode-resistor circuit in Figure 

2.1 (that is, without reset voltage feedback) when sensing a triangular current 

waveform of 5 A peak value at 50 % duty factor. As with the result shown in Figure 

6.6, significant charge recovery takes place after the interval Tr has elapsed. 

onset of charge 
recovery after reset 

half-oscillation 

Figure 6.18. ip and VOIlI in Conventional Arrangement when Sensing Triangular Current Pulse at 20 kHz 

(ip = 1 A/div, VOIlI = 100 mY/diy, Time Scale: 10 f.ls/div) 

Figure 6.19 shows waveforms from the circuit in Figure 6.5 (with reset voltage 

feedback) when sensing a triangular current waveform of 5 A peak value at 50 % duty 

factor. 
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Figure 6.19. ip and VOIII in Modified Arrangement with Integral Feedback when Sensing Triangular 

Current Pulse at 20 kHz (ip = 1 A/div, VOIII = 100 m Y/div, Time Scale: 10 Ils/div) 

Some divergence between ip and VOIl! is seen in Figure 6.19. Figure 6.20 shows ip and 

VOlil with the switching frequency now reduced to 4 kHz and ~ increased to 75 % to 

accentuate the expected distortion for comparison with that predicted using Equation 

(6.16). 

Figure 6.20. ip and V OIII in Modified Arrangement with Integral Feedback when Sensing Triangular 

Current Pulse at 4 kHz and ~ = 75 % (ip = 1 A/div, VOIII = 100 mY/diy, Time Scale: 50 Ils/div) 

For comparison, Figure 6.21 shows the same traces as in Figure 6.20, but with the CT 

variant in 3E25 core material described in Table 3.2. 
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Figure 6.21. ip and Vout in Modified Arrangement with Integral Feedback when Sensing Triangular 

Current Pulse at 4 kHz and 6 = 75 %, 3E25 CT Core Material (ip = 1 Aldiv, Valli = 100 mY/diy, Time 

Scale: 50 f.ls/div) 

6.5.3 Comparison with Theory 

Figure 6.22 shows the data for VOIII collected from Figure 6.20 with the calculated 

value using Equation (6.16) superimposed. In the calculation, Lm2 = 11.0 mH, RT = RB 

+R2= 12.89 Q and Ipln = 1667 Als. 
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Figure 6.22. Measured and Calculated Readings with Triangular Current Pulse and 3F3 Core Material 

(Ip = 5 A,f= 4 kHz and 6 = 75 %) 
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6.6 Discussion and Summary of Chapter 

A technique has been described and demonstrated for reducing droop in the output 

signal from a UCPT. The CT's construction is not modified here. Instead, its 

secondary terminal voltage is adjusted during a current pulse in response to the 

resetting voltage sensed during previous switching cycles. Largely arbitrary 

component values have been used and the results have been compared with a circuit 

simulation with good agreement. 

Unlike the scheme in Chapter 3, the peak current droop is largely eliminated here and 

this in tum implies a reduced Dave. 

Although it is shown in Chapter 3 that the operation of the CT is inherently resonant 

and a proportion of the current-time product lost due to peak current droop is returned, 

thereby alleviating Dave, the CT's core losses and the ratio of Vjl to Vj2 have to be 

known if high accuracy is to be attained. These issues are less problematic with reset 

voltage feedback. However, with this scheme, it is noted that where the peak current 

droop is not entirely eliminated, some recovery of the (now much smaller) current­

time product lost during the current pulse still takes place, thus further minimizing 

Dave. It is also noted that complete elimination of the peak current droop is not feasible 

due to the need to cater for worst-case offsets in the amplifier. However, the much 

smaller core flux swing also implies that the lossless approach may be more relevant 

in estimating Dave and the offset term left in may be countered by the effective return 

of energy into the CT's output load. 

Given that a minimum voltage drop is known to be incurred by the rectifier diode (at 

the very least, approximately 0.45 V where a Schottky diode is used), then this can be 

fed forward. However, feed-forward is omitted for simplicity here. It is, however, 

noted that, when detecting rectangular current pulses, the steady-state error due to 

droop is virtually eliminated using integral control without it being necessary to know 

the values of Vjor RB• 
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When detecting triangular current pulses, complete elimination of average current 

droop is not achieved and worsening negative droop results as the circuit's time 

constant approaches the period of the switching waveform. 

Several practical considerations are noted: 

1. During the period when the integrator is measuring the CT's resetting voltage, 

a comparatively high level of ambient interference is also present in the circuit 

due to the transient effects of the power switch turning off. Two approaches 

may be taken to counter this. Firstly, the circuit's susceptibility to interference 

may be minimised by measures such as slowing down the rate at which power 

devices switch and implementing appropriate routing of conductors. Secondly, 

an offset term may be added to cancel the effect of any net dc voltage induced 

at the amplifier's input by the transient interference. (An offset term is 

required in any case to allow for the worst-case amplifier input offset voltage.) 

2. The equivalent capacitance between the anode of the reverse voltage sense 

diode (D3 in Figure 6.5) and the zero voltage rail leads to some peak detector 

action taking place. Ideally the voltage at this point tracks the voltage, VA, in 

Figure 6.6. However, it decays at a slightly slower rate due to this capacitance 

combining with Ri. The volt-second product predicted in Equation (6.8) is 

therefore expected to be a slight underestimate. 

3. A further practical consideration is found to be that timing skews between the 

current transitions in the CT and the control signal driving the analogue switch 

may exacerbate distortion when. sensing current waveforms with ramp 

components. 
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CHAPTER 7 

APPLICATION OF SWITCHED-MODE CIRCUITRY FOR 

SUPPLYING CORRECTING VOLTAGE TO THE 

UNIDIRECTIONAL CURRENT PULSE TRANSFORMER WITH 

RESET VOLTAGE FEEDBACK 

7.1 Introduction 

The droop reduction scheme described in Chapter 6 applies a correcting voltage to the 

CT's secondary terminals by dropping the supply voltage across a linear regulator. U1 

performs this function in the circuit realised in Figure 6.5. The power dissipation, 

however, is not necessarily trivial. Considering the circuitry in Figure 6.5, the 

following permutation of parameters is taken as an example: VDD (the supply voltage) 

= 12V, n = 120, Ip = 5A, b = 95 % and vou/ip = 100 mY/A, implying that RB is 12 n. 
At these conditions, and with Tftaken as 0.8 V, the power dissipated in the circuit is 

475 mW of which 424 mW is lost in the linear regulator. Significant additional 

capacity is thus required from the control circuitry's power supply. Apart from the 

problem of providing the extra power drawn, cooling of the series regulator element 

has to be addressed, particularly if the circuit is to be integrated with existing control 

circuitry. 

The CT may be wound with an increased number of secondary turns to reduce circuit 

losses by reducing the rail current drawn for a given primary current. However, this 

has the drawbacks described in Section 2.1.2: the frequency response of the CT is 

reduced due to the increased inter-winding capacitance introduced into its equivalent 

circuit and the required reset time is increased. A practical issue is that a high 

secondary turns number implies a low secondary conductor csa leading to termination 

difficulties. A large headroom voltage is desirable where the secondary voltage varies. 
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The feasibility of using switched-mode circuitry to reduce this power consumption is 

therefore investigated in this chapter. 

7.2 Proposed Technique 

Figure 7.1 outlines the proposed technique. During Toffi end "B" of N2 on the CT is 

held at 0 V by S2 and, as described in Chapter 6, an error voltage is derived from the 

reset voltage by AI. During Ton, however, the error voltage is not simply directly 

applied to end "B" as before, thus making Al act as a linear regulator. Instead, Vc is 

compared with a high-frequency reference waveform, VREF, by a comparator, COMPI 

to produce a PWM signal, VPWM. An AND gate, VI, enables this signal to control S 1 

and S2 such that S 1 acts as the power switch and S2 acts as the synchronous rectifier 

diode in a buck converter circuit. Ideally, the PWM frequency is high compared to 

that at which the main power device (TRl) operates so that it introduces a minimal 

ripple current onto the CT's output signal. 

Normally the implementation of switched-mode circuitry is relatively expensive due 

to the need to include a passive component (a choke in the case of a voltage-sourced 

power converter). However, this is not problematic in the topology here as the CT's 

secondary inductance acts as the choke. 
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Figure 7.1. Outline of Proposed Switched-Mode Circuit for Applying Compensating Voltage to CT 

Secondary Winding 

7.3 Implementation of Circuit and Experimental Results 

7.3.1 Implementation 

Figure 7.2 shows the experimental implementation of the circuit in Figure 7.1. 200 

kHz was selected as the correcting PWM frequency. This is greater by a factor of 10 

than the power converter switching frequency of 20 kHz. VREF was a triangle wave set 

at 3 V peak-to-peak, with a 3 V positive offset voltage superimposed. An IR4427 gate 

driver IC (U2) was used to realise the functions of S 1 and S2 in Figure 7.1. This is a 

dual-channel device that uses MOSFETs as the output transistors. Both channels are 

connected in parallel to minimise the resultant output resistance. The function of Ul 

in Figure 7.1 is realised using D3 (1 N4148) to make a "wired-AND" connection 

between the output of COMPI and the gate drive signal applied to TRI. The pull-up 

resistor, R2, is 2.2 kQ to yield an acceptable rise-time. Unlike the circuit in Figure 6.5, 

the circuit here was designed to operate from a single rail supply voltage (V DD), set at 
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12V here. Al is an MC33171PG single-rail operational amplifier. However, the non­

inverting terminal was held at approximately 0.8 V above the a V rail to avoid it 

attempting to operate with input voltages outside the supply rail voltages. Otherwise, 

details are the same as those for the circuit in Figure 6.5. That is, RI = 100 kO, CI = 1 

nF, Rs = 12 0 and D1 = D2 = 1N4148. CT1 is the device in 3F3 material specified in 

Table 3.1. 
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Figure 7.2. Implementation of Switched-Mode Circuit for Applying Compensating Voltage to CT 

Secondary Winding 

Neglecting quiescent losses, the loss in the linear scheme is 

ox1 V 
Wr = p DD (7.1) 

n 

and losses in an ideal switched-mode scheme are: 
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Wr ~ f"~f {:]' R, ] (7.2) 

However, a practical switched-mode scheme exhibits some losses. These include 

conduction and switching losses in the driver stage as well as quiescent losses. 

7.3.2 Exemplifying Circuit Waveforms 

Figure 7.3 shows exemplifying waveforms from the circuit in Figure 7.2 at Ip = 5 A 

and b = 50 %. When compared with the waveforms from the uncompensated and 

linear schemes in Figures 6.6 and 6.7 respectively, it can be seen that droop is also 

reduced using the switched-mode arrangement. However, a ripple voltage is 

superimposed onto the signal ideally obtained. Transient voltages are also 

superimposed onto the ideal signal when the driver IC switches. This is shown in 

more detail in Figure 7.4. It is noted that the switching voltage transitions (dv/dts) 

produced by the driver IC are very rapid and that Ceq provides a route for the dv/dts 

applied at end "B" ofN2 to inject currents through RB• 

VGS 

Vout 

Va 

Figure 7.3. VGS, VOllt and VA in Modified Arrangement with Integral Feedback and Switched-Mode 

Correction Stage (lp = 5A, 0= 50%) (vGS = 20V/diy, VOllt = 100 mY/diy, VB = 10 V/div, Time Scale: 10 

Jls/diy) 
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Vout 

Figure 7.4. Detailed View of VallI (VallI = 100 mV/div, Time Scale: 5 Jls/div) 

7.3.3 Comparison of Average Current Droop with Conventional Diode and 

Burden Resistor Circuit 

Figure 7.5 shows the sensed average current plotted against duty factor for hI = 1 A to 

allow a comparison with the results from the linear technique given in Figure 6.9. 

Again, the current sensed with the unassisted conventional diode and resistor 

arrangement is shown. Also as before, the output voltage is filtered using a low-pass 

RC circuit where R = 10 kQ and C = 3.3 nF giving a comer frequency of 4.8 kHz. 
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Figure 7.5. Average Output Voltage Plotted against Duty Factor with Switched-Mode Correction Stage 

(hI = 1 A) 
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7.3.4 Comparison of Measured Losses against Estimated Losses 

The losses against duty factor for ILl = 5 A are shown in Figure 7.6 and are inferred 

from the current drawn from the supply voltage rail. The losses calculated in 

Equations 7.1 and 7.2 for the linear and ideal switched-mode circuits respectively are 

also shown for comparison. No particular attempt has been made to minimize 

quiescent losses here and the loss exhibits the consequent fixed term seen. However, 

when this fixed term (137 mW) is subtracted from the power drawn when the circuit 

is active, it can be seen that the dynamic losses (that is, principally the switching 

losses in the IR4427 Ie) are very low. 
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Figure 7.6. Comparison of Measured Losses in Ideal Switched-Mode (100% Efficient) Circuit and 

Linear Circuit Plotted against Duty Factor (ILl = 5 A) 

7.4 Circuit Simulation 

The circuit was simulated using the Simulink simulation shown in Figure 7.7. A 

simulation is carried out again here to investigate the effect on the output voltage 

across VB caused by applying a PWM signal to N2. "switch 3" represents the stage 
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fonned by the IR4427 device and applies 0 V or 12 V to end "B" of CT1's secondary 

winding in response to the PWM signal produced by the comparator stage . 
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Figure 7.7. Simulink Model ofCT Circuit with Switched-Mode Reset Voltage Feedback 

Figure 7.8 shows the simulated steady-state output voltage with the correction 

circuitry included for comparison with the wavefonns in Figures 7.3 and 7.4. Droop is 

measured at virtually zero. However, the ripple component introduced by the 

correction circuitry can be seen. 
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Figure 7.8. Steady-State Output Voltage Modelled in Simulink with Switched-Mode Correction 

Circuitry Incorporated (Ip = 5 A, 0= 50 %) 

7.5 Discussion and Summary of Chapter 

The feasibility of using a switched-mode stage to provide a compensating voltage has 

been demonstrated. Losses in the compensating circuit are reduced except at low duty 

factors where fixed losses dominate. However, a ripple voltage is superimposed onto 

the signal under measurement. Although, as in any switched-mode scheme, the ripple 

current may be minimised by operating at a higher PWM frequency, transient voltages 

are introduced by the switching action of the PWM controller. Apart from the effect 

on the waveform being measured, another potential source of unwanted EMI is 

introduced. 
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CHAPTERS 

CONCLUSIONS 

S.l Principal Findings 

S.1.1 Diode Rectification 

Operation of the current pulse transformer with diode rectification, an active load 

realized using an inverting operational amplifier circuit and natural resetting has been 

investigated. Compared to synchronous rectification, both average and peak current 

droop are relatively high. Three modes of operation have been identified and 

described. These are the discontinuous magnetizing current, continuous magnetizing 

current and discontinuous secondary current modes. It is found that, at relatively high 

core flux excursions, the error in the average output signal obtained is predominantly 

defined by the core losses in the CT. A simple piecewise correction algorithm which 

is a function of duty factor is shown to be appropriate for correcting the error due to 

droop provided that the discontinuous secondary current mode is avoided. A further 

enhancement is introduced using a square-law and ramp-on-a-step algorithm which 

provides good accuracy. 

The dual CT circuit with DR and an active load is also investigated. It is found that a 

simpler correction algorithm based on the addition of a fixed offset term irrespective 

of duty factor may be appropriate. It is found that slope compensation may be 

complicated in this circuit. 

Although the influence of core losses is described, three difficulties to the successful 

implementation of the correction schemes based on compensation for core losses are 

identified. 
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Firstly, data on ferrite losses at low levels of flux density excursion are not readily 

available. In any case, this data is subject to wide tolerances. 

Secondly, the core losses exhibit a significant temperature coefficient. Whereas the 

first difficulty may be addressed by means of a trimming or "set-on-test" operation, 

this latter problem is more difficult to address. Although the ambient temperature or 

that of the CT itself could be sensed, and compensation adjusted in response, this 

would tend to negate two of the CT's principal advantages, its simplicity and low cost. 

Nonetheless, the worst-case distortion from a CT may be estimated by accounting for 

the worst-case combination of core losses and ambient temperature. 

Thirdly, if the positive and negative-going slew rates of the operational amplifier are 

mis-matched, then average current droop is affected, particularly at low duty factors 

and high frequencies. 

8.1.2 Synchronous Rectification 

Resonant operating modes of the current pulse transformer when used with 

synchronous rectification and an active load realized using an operational amplifier 

are investigated. 

8.1.2.1 Synchronous Rectification with Discrete MOSFET 

The practical issue of driving the SR MOSFET's gate terminal is addressed as it is 

found that this is non-trivial if distortion is to be minimized. Compared to diode 

rectification, both the average and peak current droop are relatively low. However, the 

theoretically anticipated improvement is not attained. Sources of inaccuracy identified 

are attributable to the gate charging current being injected into the operational 

amplifier's input node and the interaction ("ringing") of the MOSFET's inter-terminal 

capacitances with the CT's magnetizing inductance. 
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8.1.2.2 Synchronous Rectification with Analogue Switch 

Improved results were obtained using a commercially available analogue switch in 

that both the unwanted signals injected via the control terminal and ringing due to 

inter-terminal capacitances cause less inaccuracy. However, the performance of this 

arrangement is still affected by mismatches in the operational amplifier positive and 

negative-going slew rates. As with DR, this becomes particularly significant at low 

duty factors 

For maximum accuracy, whether DR or SR is used, an operational amplifier with an 

accurate transient response is required. The operational amplifier will normally act in 

a slew rate limited mode. For average current sensing of rectangular current 

waveforms, this does not necessarily introduce inaccuracy provided the positive and 

negative-going slew rates are identical. However, the degree of symmetry is not 

normally specified by manufacturers. During the experimental work considerable 

asymmetry was found to exist between operational amplifiers of the same type 

number. 

8.1.3 Reset Voltage Feedback 

8.1.3.1 Reset Voltage Feedback with Linear Correction Stage 

A further technique, reset voltage feedback, has been investigated for addressing 

droop in the UCPT. Its secondary terminal voltage is adjusted during a current pulse 

in response to the peak resetting voltage sensed during previous switching cycles. 

Arbitrary component values have been used to evaluate the technique and 

experimental results have been compared with simulated results. 

Reset voltage feedback is shown to be effective. However, it performs best when 

sensing a rectangular primary waveform without abrupt changes in magnitude and 

duty factor. The CT's core flux excursion is very small and, consequently, the error 
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due to core losses is also very small. The problem of discontinuous secondary current 

operation is virtually eliminated when operating at permutations of low current and 

high duty factor. With a triangular component in a current pulse, some core excitation 

is incurred, as is some (negative) average current droop. 

Advantages are that a very low steady-state error in the average current sensed is 

attained and the threshold at which the secondary current becomes discontinuous is 

lowered. However, as with any feedback scheme, a compromise is needed between 

maximizing transient performance and retaining stability. Also, being a scheme with a 

repetitive discrete behaviour, there is the potential for sub-harmonic oscillations. With 

ramp current wavefOlIDs, complete elimination of droop is not achieved using reset 

voltage feedback and some negative average current droop is incurred. Although not 

definable as peak current droop in the normal way, distortion of the instantaneous 

current sensed is also present with ramp waveforms. Both these forms of droop may 

be minimized by ensuring that the CT's time constant is large compared to the pulse 

length, and ideally using a rectifier diode with a "flat" v-i characteristic. 

An attractive feature of reset voltage feedback when compared to DR and SR is that 

the transient response of the operational amplifier is less important as its output does 

not have to slew at a significant rate. 

8.1.3.2 Reset Voltage Feedback with Switched-Mode Correction Stage 

The reset voltage scheme has also been implemented using a switched-mode stage. It 

has been shown that this can yield an improvement in efficiency. However, a ripple 

current component is added to the sensed current, as well as transient switching noise 

attributable to the operation of the switched-mode circuitry. Also, efficiency is only 

improved if the saving in dissipative losses incurred in the linear stage are not offset 

by standby losses. A feature is that, ideally, the comparator is capable of high­

frequency operation (eg., at 1 MHz if it is to operate at ten times a typical PWM 
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frequency of 100kHz). It should also exhibit low power consumption. However, these 

tend to be conflicting properties in a practical comparator design. 

8.2 Classification of Work Done against Existing Techniques 

To put the work in this thesis into context with respect to the discussions in Section 

1.3.6, Table 8.1 tabulates it against the techniques shown in Figure 1.4 and also 

selected references exemplifying the prior art. 

Technique (as categorized in Figure 1.4) References Work in Thesis 
Exemplifying 
Prior Art 

A. Minimise [57,59] Chapter 5: 
external synchronous 
secondary rectification 
impedance seen 
byCT 
B. Actively B.l. Infer required terminal voltage from [60] -
control terminal secondary current and CT's secondary 
voltage of CT in winding impedance 
order to minimise B.2. Modify terminal B.2.a. Directly [11, 12, 14] -
core flux voltage in response sense core flux 

I 
, 

I 

to sensed core flux B.2.b. Indirectly [29] Chapters 6 and 7: I 

sense core flux reset voltage sensing 
C. Add correcting [61,62] Chapters 3 and 4: 
terms to CT's diode rectification 
output signal 

Table 8.1. Classification of Approaches to Reducing Distortion in Signal Derived from a CT 

8.3 Suggested Further Work 

It is suggested that the topics described below may merit further investigation. 

1. The relationship between the lossless and "lossy" models for CT behaviour 

with DR may be investigated to develop a more comprehensive model. As the 

CT's peak flux excursion approaches zero at high frequencies and low duty 

159 



factors, then the lossless model becomes more appropriate. A combined model 

may therefore be developed. It is noted that the equipment used for measuring 

currents, voltages and resistances in this thesis has typical accuracies of 

between 0.1 % and 1 %. Further experimentation with more accurate 

instrumentation may therefore be useful. 

2. Standard commercial MnZn ferrite core materials have been used. These 

exhibit low core losses. However, more important criteria in CT circuits where 

droop correction algorithms are applied may include the tolerancing of the 

core losses and their temperature dependencies. Alternative materials may 

therefore be investigated. 

3. A practical compensation scheme may be realised using either traditional 

analogue or digital PWM control circuitry as exemplified in [77]. 

4. Optimization of the CT's design specifically for use with active DR and SR 

schemes may yield an improved performance. System inputs may be regarded 

as current magnitude, frequency and duty factor. Outputs may be regarded as 

both peak and average current droop, maximum allowable duty factor and the 

restriction on the current magnitude and duty factor combination which must 

be met if the discontinuous secondary current mode is to be avoided. Elements 

influencing the process may be regarded as the magnetizing inductance, 

secondary winding resistance, equivalent capacitance and the core losses. The 

inter-relationships between these elements may be investigated and optimized. 

5. In the reset voltage feedback schemes used for droop reduction, further work 

may include enhancing the circuit simulations, quantifying stability issues and 

optimizing component values. Feed-forward may be introduced to account for 

a proportion of the forward voltage drop across the rectifier diode. An 

improved practical realization of the switched-mode circuitry may be 

implemented to further improve efficiency. 

6. The switched-mode arrangement has been applied to the CT with reset voltage 

feedback. This feedback method is loosely classed here with the use of a flux 

sense winding, another way of indirectly sensing core flux to allow a 

compensating voltage to be applied. This latter method was not considered in 
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the thesis as it involves complicating the CT's construction. However, it also 

may be suitable for operation with a switched-mode stage. 

7. Hybrid permutations of the circuitry studied in this thesis may be investigated. 

For example, a CT may be used with either a passive or an active load, diode 

or synchronous rectification and with or without reset voltage. Also, the dual 

CT circuit may be used with different circuit permutations for each CT. 

8. Operation of the CT arrangements presented in this thesis at both higher and 

lower frequencies may be investigated. 
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APPENDIX 2 

DROOP MEASUREMENTS FROM THE CURRENT 

TRANSFORMER WITH DIODE RECTIFICATION AT VARYING 

FREQUENCIES 

A2.1 Introduction 

In Chapter 3 it is shown that, at low frequencies, the average current droop (Dave) in 

the signal derived from a CT used with DR is primarily dependent on losses in the 

CT's core material. 

A2.2 Results 

The circuitry in Figures 3.10, 3.11 and 3.12 is used again with the CT in 3F3 core 

material detailed in Table 3.2. hI is set at 1 A. Figure A2.1 shows the droop at 

frequencies of 10kHz, 20 kHz, 50 kHz and 100 kHz. It can be seen that the core flux 

compensation algorithm becomes less appropriate as the operating frequency is raised. 

An increasing offset at b ~ 0 is evident as the frequency rises. With respect to Figure 

3.27 where the absolute droop tends to zero at b = 0, two observations are made: 

1. Firstly, the offset worsening as the frequency increases is attributable to the 

increased effect of the operational amplifier's asymmetrical rise and fall times, 

as discussed in Sections 2.2.2 and 5.2.2. 

2. Secondly, the diode, operational amplifier and feedback resistor, although 

having the same specification, are all physically different components here. 

It is further noted that the maximum allowable duty factor given by Equation (2.28) 

applies, where the duty factor at which incomplete reset results becomes lower as the 

frequency rises. 
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APPENDIX 3 

MEASUREMENTS OF THE EFFECT OF CORE TEMPERATURE 

ON AVERAGE CURRENT DROOP FROM THE CURRENT 

TRANSFORMER WITH DIODE RECTIFICATION 

A3.1 Introduction 

In Chapter 3 it is shown that, at low frequencies, the average current droop (Dave) in 

the signal derived from a CT used with DR is primarily dependent on losses in the 

CT's core material. Where this material is a ferrite type, its temperature therefore 

influences Dave as the losses in these materials are in tum strongly temperature 

dependent. Measurements of the temperature dependency of the error in the CT's 

output are given in this appendix. 

A3.2 Experimental Arrangements 

The circuitry in Figures 3.10, 3.11 and 3.12 is used again. However, the ambient 

temperature seen by the CT is varied by putting the printed circuit board it is mounted 

on (shown in Figure 3.12) into an enclosure and varying the internal temperature by 

means of a fan-cooled resistor. The ratio of power dissipation to surface area of the 

CT is very low, so the CT's core material temperature in the steady-state is close to 

ambient. (An infra-red temperature probe was used to measured the surface 

temperature of the CT as being approximately 1 °C above ambient when operating.) A 

type-K thermocouple is used to monitor the air temperature within the enclosure. The 

thermocouple's junction is located in air approximately 5 mm away from the CT (as 

shown in Figure 3.12). 

The CT used is the 3F3 variant specified in Table 3.2. 
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Two complicating factors exist. Firstly, the rectifier diode's forward voltage drop is 

generally temperature dependent, having a negative coefficient in the case of the pn 

type (as used here). Secondly, the resistance of the secondary winding, R2, has a 

temperature coefficient of 0.4 %/oC. However, the diode's forward voltage drop is 

only slightly affected by its temperature. In any case, for experimentation, the diode is 

outside the heated enclosure and is therefore at room temperature (between 20°C and 

25 DC) during experimentation. Also, the voltage drop across R2 is low and the voltage 

impressed across Lm2 is dominated by the diode's forward voltage drop. 

A3.3 Results 

The output from the CT was measured at between 20°C and IOO °C inclusive in 20 

°C increments. Figure AI.I shows the sensed current (in the form of Vout(ave)) plotted 

against duty factor for Ip = 500 rnA at 20°C and 40 DC. 
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Figure A3.2 shows the absolute enor in the sensed cunent against duty factor for Ip = 

500 rnA at all five measurement temperatures, from 20°C to 100°C inclusive. 
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Figure A3.2. Absolute Droop against Duty Factor and Temperature at Ip = 500 rnA 

For clarity, Figure A3 .3 shows the enor at J= 90 % at the different temperatures. (The 

measurements are taken at J = 90 % as, at 95 %, the duration of the reset transient is 

only slightly less than the available off-time. This therefore ensures that droop 

attributable to incomplete reset is not incuned.) As expected, the curve is similar to 

the curves of core loss against temperature given by the core manufacturer in [71]. 

The data in [71] is shown as graphs of losses against temperature for four 

permutations of frequency and flux density excursion and no formulae are provided. 
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APPENDIX 4 

ALTERNATIVE IMPLEMENTATION OF LINEAR RESET 

VOLTAGE FEEDBACK SCHEME USING DISCRETE MOSFET 

In the linear realization of the reset voltage feedback technique in Chapter 6, an 

analogue switch is used to connect the end of the CT's winding alternately to zero 

volts and to the correcting voltage. The correcting voltage is derived from an 

operational amplifier which acts as a linear regulator. However, as with the 

synchronous rectification arrangements investigated in Chapter 5, a discrete MOSFET 

may also be used as the switch. This is described here. 

Figure A4.1 shows an N-channel MOSFET, TR2, acting as the analogue switch (S2) 

in Figure 6.3. During TojJ VI detects the reset voltage transient and low-pass filters it 

as described in Chapter 6. TR2 is off during this period as its gate is held low by VGS 

by means of D4. Although the node at "VB" is not firmly connected to ground, the 

lumped capacitance between this node and ground allows only a relatively small 

voltage excursion at this point during Tojf When VGS goes high, turning TRIon, R2 

pulls the voltage at the gate of TR2 up to Vc plus the forward voltage drop of D5 (Vj). 

TR2 operates in the (linear) source-follower mode and applies the correcting voltage 

to N2. During TOjJ, VB is therefore given by: 

VB = Vc + VI - VGS(th) (A4.l) 

where V GS(th) is the gate-source threshold voltage of TR2. 

Two points are noted: 

1. As with the schemes in Chapter 5 where discrete MOSFETs are used for SR, 

the reset interval is increased due to the effect of introducing the MOSFET's 

inter-terminal capacitances across the CT's secondary winding terminals. 
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2. In addition to acting as the analogue switch, the MOSFET, and not the 

operational amplifier, acts as the linear regulator here in that it is the power 

dissipating element. 
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Figure A4.1. Alternative Implementation of Linear Reset Voltage Feedback Scheme Using Discrete 

MOSFET 
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APPENDIX 5 

LINEAR RESET VOLTAGE FEEDBACK SCHEME REALIZED 

IN SURFACE-MOUNT TECHNOLOGY 

Figure AS.l shows the circuit in Figure 6.5 replicated in surface-mount packaging. 

The diode pairs Dl/D2 and D31D4 are realized using BAV99 dual anode-to-cathode 

packages. Ceramic decoupling capacitors are included across the 0 V to + SV and 0 V 

to -5 V rails and a potentiometer is included to allow the easy adjustment of iojf 

Figure AS.2 shows a more detailed view of the correction circuitry. 
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Figure AS . I. Photograph of Test Circuit showing Linear Reset Voltage Feedback Circuit Assembled in 

Surface-Mount Packaging 
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Figure AS.2. Correction Circuitry shown in Greater Detail 
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