
 i

MARIAN
A hybrid, metric-driven, agent-based routing protocol for multi-

hop ad-hoc networks

Nikos Migas

DSMA, Napier University,
n.migas@napier.ac.uk

Abstract

Recent advances in technology provided the ground for highly dynamic, mobile, infrastruc-
ture-less networks, namely, ad-hoc networks. Despite their enormous benefits, the full
potential cannot be reached unless certain issues are resolved. These mainly involve routing,
as the lack of an infrastructure imposes a heavy burden on mobile devices that must maintain
location information and route data packets in a multi-hop fashion. Specifically, typical ad-
hoc routing devices, such as Personal Digital Assistants (PDAs), are limited in respect to the
available throughput, life-time, and performance, that these may provide, as routing ele-
ments. Thus, there is a need for metric-driven ad-hoc routing, that is, devices should be
utilised for routing according to their fitness, as different device types significantly vary in
terms of routing fitness. In addition, a concrete agent-based approach can provide a set of
advantages over a non-agent-based one, which includes: better design practice; and auto-
matic reconfigurability.

This research work aims to investigate the applicability of stationary and mobile agent
technology in multi-hop ad-hoc routing. Specifically, this research proposes a novel hybrid,
metric-driven, agent-based routing protocol for multi-hop ad-hoc networks that will enhance
current routing schemes. The novelties that are expected to be achieved include: maximum
network performance, increased scalability, dynamic adaptation, Quality of Service (QoS),
energy conservation, reconfigurability, and security. The underlying idea is based on the fact
that stationary and mobile agents can be ideal candidates for such dynamic environments
due to their advanced characteristics, and thus offer state of the art support in terms of or-
ganising the otherwise disoriented network into an efficient and flexible hierarchical
structure, classifying the routing fitness of participating devices, and therefore allow intelli-
gent routing decisions to be taken on that basis.

 ii

Results derived from the experimentation phase proved that resource-constrained devices
are significantly inferior to high-end devices in terms of routing data, buffering capabilities,
and performing complex calculations, processes which are essential by any router. In addi-
tion, these processes were shown to have a significantly negative effect in relation to battery
discharge rate, CPU utilisation, and memory usage. These facts were seriously taken into ac-
count in the modelling phase, where each device was defined so as to be required to
determine several routing fitness metrics, which relate to various routing scenarios, and recal-
culate these each time a change occurs, e.g. battery drops, CPU utilisation increases.
Accordingly, the protocol can use this information in order to dynamically adapt its routing
decisions, and thus always retrieve the optimal routing paths that best suite the routing sce-
nario that is required to accomplish.

Keywords: Multi-hop ad-hoc routing, wireless ad-hoc networks, stationary and mobile

agents, clustering, routing, QoS, automatic network reconfiguration, secu-
rity, intelligent filtering.

 iii

Table of Contents

1 INTRODUCTION .. 1
1.1 PROLOGUE ... 1
1.2 INTRODUCTION TO THE RESEARCH AREA.. 1
1.3 IDENTIFICATION OF THE PROBLEM AREA ... 3
1.4 RESEARCH CHALLENGES AND CONTEXT... 4
1.5 RESEARCH AIMS... 9
1.6 THESIS STRUCTURE ...12

2 LITERATURE REVIEW .. 13
2.1 PROBLEMS & CHALLENGES OF AD-HOC NETWORKS: SECURITY, ROUTING13
2.2 COMPARISON OF ROUTING PROTOCOLS’ MAIN CHARACTERISTICS AND COMPLEXITY FACTORS...14
2.3 COMPARISON OF ROUTING PROTOCOLS VIA SIMULATIONS AND REAL-LIFE EXPERIMENTS21
2.4 AGENT-BASED AD-HOC ROUTING METHODS ..24
2.5 CHAPTER SUMMARY ...28

3 MODEL.. 30
3.1 INTRODUCTION..30
3.2 SYNOPSIS OF MARIAN SPECIFICATION ..30
3.3 OVERALL MARIAN MODEL ...35
3.4 MESSAGE FORMATS AND DATA STRUCTURES ...37
3.5 NEIGHBOURING CLUSTER DISCOVERY PROCESS ..42
3.6 ROUTE DISCOVERY IN MARIAN...49
3.7 MARIAN SOURCE ROUTING - STATIC APPROACH..66
3.8 MARIAN SOURCE ROUTING - MOBILE AGENT APPROACH ..68
3.9 AGENT-BASED METRIC-DRIVEN ROUTING ...70
3.10 BENCHMARKING MULTI-AGENT SOFTWARE SYSTEM (BASS) ..71
3.11 BASS OVERALL ARCHITECTURE ...72
3.12 BASS MULTI-AGENT MODEL...74
3.13 AD-HOC ROUTING METRICS AND APPLIED WEIGHTING FOR QOS SUPPORT...................................77
3.14 CHAPTER SUMMARY ...85

4 IMPLEMENTATION .. 86
4.1 INTRODUCTION..86
4.2 PRELIMINARY EXPERIMENTATION - IMPLEMENTATION DECISIONS..86
4.3 PROXY EXPERIMENTATION - IMPLEMENTATION DECISIONS ..89
4.4 BASS EXPERIMENTATION – IMPLEMENTATION DECISIONS ...93
4.5 EXPERIMENTATION OF MOBILE AGENT MIGRATION – IMPLEMENTATION DECISIONS97
4.6 METRICS SIMULATION – IMPLEMENTATION DECISIONS ...101
4.7 CHAPTER SUMMARY – EXPERIMENTATION SETUP...102

5 RESULTS ... 104
5.1 INTRODUCTION..104
5.2 PROXY EXPERIMENTATION ...109
5.3 BASS EXPERIMENTATION...138
5.4 MOBILE AGENT MIGRATION ..147
5.5 METRICS SIMULATION EXPERIMENTATION ..151
5.6 A MARIAN-ENABLED AD-HOC NETWORK APPLICATION SCENARIO..164

6 EVALUATION... 189
6.1 RESEARCH FINDINGS DISCUSSION..189

 iv

6.2 NOVELTIES JUSTIFICATION..189
6.3 LIMITATIONS OF MARIAN ...199
6.4 COMPARISON OF THIS WORK WITH OTHER RELATED RESEARCH ..200

8 CONCLUSIONS.. 206
8.1 CHAPTER OVERVIEW - CONCLUSIONS...206
8.2 THESIS EPILOGUE ..206
8.3 FUTURE WORK ..207

REFERENCES: .. 210
A APPENDIX - ADDITIONAL INFORMATION .. 225

A.1 JAVA MICRO EDITION (J2ME) ..225
A.2 SUITABILITY OF JAVA FOR THE MOBILE AGENT PARADIGM..226
A.3 WIRELESS STANDARDS: IEEE 802.11 ...227
A.4 MARIAN TERMINOLOGY ...229
A.5 BENCHMARKING THE ROUTING CAPABILITIES OF A PROXY-BASED AD-HOC ROUTING DEVICE ...231

B APPENDIX - DEFINITION OF CONCEPTS ... 243
B.1 WIRELESS NETWORKS ...243
B.2 AD-HOC NETWORKS ...244
B.3 AD-HOC ROUTING ...245
B.4 SOFTWARE AGENTS ..246
B.6 MOBILITY PREDICTION..249
B.7 CLUSTERING ...250
B.9 QOS FOR AD-HOC NETWORKS ...255
B.10 AGENT-BASED AD-HOC SECURITY ...258

D APPENDIX - AD-HOC NETWORKS .. 281
D.1 PROBLEMS AND CHALLENGES OF WIRELESS NETWORKS..281
D.2 A GENERAL MODEL FOR AD-HOC NETWORKS..281
D.3 AD-HOC NETWORK APPLICATIONS...284
D.4 AD-HOC ROUTING PROTOCOLS ..285
D.5 PROACTIVE (TABLE-DRIVEN) AD-HOC ROUTING PROTOCOLS...286
D.6 REACTIVE (ON-DEMAND) AD-HOC ROUTING PROTOCOLS ..288
D.7 HYBRID ...293
D.8 HIGHLY DYNAMIC-SEQUENCED DISTANCE-VECTOR (DSDV)..295
D.9 GLOBAL STATE ROUTING (GSR) ..297
D.10 DISTANCE ROUTING EFFECT ALGORITHM FOR MOBILITY (DREAM)298
D.11 CLUSTER-HEAD GATEWAY SWITCH ROUTING (CGSR)...299
D.12 DYNAMIC SOURCE ROUTING (DSR) ...301
D.13 AD-HOC ON-DEMAND DISTANCE VECTOR (AODV) ...304
D.14 TEMPORALLY ORDERED ROUTING ALGORITHM (TORA) ...305
D.15 CLUSTER-BASED ROUTING PROTOCOL (CBRP)..306
D.16 ZONE ROUTING PROTOCOL (ZRP) ..308
D.17 DISTRIBUTED SPANNING TREES BASED ROUTING PROTOCOL (DST) ...310

 1

1 Introduction

1.1 Prologue

Wireless Ad-hoc networks can be extremely important in situations, such as counter-
terrorism and rescue operations. This is especially true, when fixed networks become sud-
denly unavailable, while their services are crucial for human lives. An example can be found
in a hospital’s emergency department, where the central computer network has gone down
because of some failure, and thus doctors cannot retrieve patients’ history records. Instead,
ad-hoc networking can be used as an alternative, temporary solution, until the problem is
repaired. This chapter introduces the research area of this thesis, and highlights important
concepts. It then discusses the research aims and novelties. Finally, the structure of the thesis
is presented.

1.2 Introduction to the research area

This thesis involves two major research areas: multi-hop wireless ad-hoc routing; and intelli-
gent stationary and mobile agents. Background information on the definitions of concepts,
which are involved with this thesis, is provided in Appendix B. This section only provides an
introduction to these areas, and highlights the most important concepts.

Recent advances in technology have introduced a wide range of devices, with different
performance characteristics, and the ability to remotely communicate without the need of a
fixed infrastructure. Networks of this category are commonly known as ad-hoc networks,
which can be generally defined as a collection of geographically distributed nodes that often
communicate in a multi-hop fashion, each of which is responsible for location management
and data routing (Wang, X., et. al., 2001, Liu, J., et. al., 2002). Mobility is normally an im-
portant feature of ad-hoc networks, and thus provides the ability for users to communicate,
cooperate, and access the computer services in an anytime-and-anywhere manner (Frodigh,
M., et. al., 2000). Ad-hoc networks have been proposed as a networking solution for situa-
tions where the network setup time is a major constraint, and/or where a network
infrastructure is either not available, or not desirable (Ramarathinam, V. and Labrador, M.
A., 2002). In real-life, applications of ad-hoc networks can be found in military, rescue, and
antiterrorism operations, whereas some commercial ones include: conferencing; sensor net-
works; personal area networks; and embedded computing applications (Perkins, C. E.,

 2

2001).
Despite the theoretical benefits of ad-hoc networks, there are certain constraints that limit

the potential implementation of this technology. Routing is, for example, considered to be
the most challenging one. This is due to the fact that participating devices are responsible for
obtaining and maintaining routing tables, and actually route data packets, as there is no fixed
infrastructure. Furthermore, as the majority of these devices are mobile, the network be-
comes highly dynamic, and routes that maybe considered good at a given time may become
unavailable or undesirable, at a later time. In addition, mobile devices rely on battery power,
which is shown to rapidly decrease while performing process intensive tasks, such as routing
(Migas, N., et. al., 2005, Migas, N., et. al., 2004b).

The mobile agent paradigm is a relatively new technology that has its origins in intelligent
agents, and has been proposed as an alternative approach to the client-server communica-
tions model. A mobile agent is a software entity that usually inherits several features of
intelligent agents, and requires a mobile agent system for its execution. It differs from a sta-
tionary agent, as it can suspend its execution on a host computer, and then transfer its code,
data state, and, possibly, its execution state (strong migration) to another agent-enabled host
on the network, and resume execution on the new host. Overall, the aim of a mobile agent
system (Silva, A. R., et. al., 2001) is to provide the appropriate functionality to stationary
and mobile agents in order to execute, communicate, migrate, and use system resources in a
secure way. Their application include: information retrieval (Cardi, G., et. al., 2000); e-
commerce (Lee, T. O., et. al., 2001); network management (Marques, P., et. al., 2001); in-
trusion detection (Spafford, E. H. and Zamboni, D., 2000); collaborative applications
(Wong, D., et. al., 1997); and, most importantly, mobile computing (Kotz, D., et. al.,

1997). Although each application can be implemented with the existing technologies (Harri-

son, C. G., et. al., 1995), the use of mobile agents can contribute to build these distributed
applications in a simpler and more effective manner (Puliafito, A., et. al., 2000).

It has been argued that traditional routing mechanisms in multi-hop ad-hoc networks are
inappropriate because of: low bandwidth; dynamic topology; and, limited connection surviv-
ability (Hassanein, H. and Zhou, A., 2001, Yi, Y., et. al., 2002, Jiang, M.-H., et. al., 2002).
Fortunately, agent-based approaches could be beneficial in environments, which are mainly
characterised by low-bandwidth, high-latency, and unreliable network links (Vinaja, R.,
2001). This is due to the fact that mobile agents offer two major advantages in comparison
to traditional client-server approaches, such as task continuation and minimal connection use
(Kotz, D., et. al., 1997). Various projects have thus applied this paradigm to ad-hoc routing
(Minar, N., et. al., 1999, Chpudhury, R. R., et. al., 2000, Marwaha, S., et. al., 2002) with
reasonable success (see Chapter 2).

 3

1.3 Identification of the Problem Area

In any ad-hoc network, the most important function is considered to be routing. However,

routing is a challenging issue, because of:

• Ad-hoc networks are infrastructure-less, that is, they do not rely on fixed hardware to

perform routing tasks. Thus, it is up to mobile devices to derive and maintain routing

tables, and to actually route data packets.

• Routers (mobile devices) in such environments are mobile, and thus can dynamically

change their placement in an ad-hoc network, or even disconnect from it.

• Routing requires processing power that mobile hosts running on batteries may not be

able to provide.

Furthermore, due to the nature of mobility, a route that can be considered as optimal at a

given time, may break, or not be optimal enough some time later. Therefore, a great deal of

research has been concentrated on how to design and implement efficient routing protocols.

In addition, different network traffic types impose diverse routing requirements. For ex-

ample, real-time traffic requires high buffering capabilities and low latency, while

asynchronous traffic has no such requirements. Therefore, a traditional shortest-path routing

algorithm would fail to address this issue, as a shorter route may not be capable of accom-

modating a particular routing scenario, while another route, despite being longer, could

actually accomplish the routing task efficiently. Figure 1.1 illustrates an ad-hoc network to-

pology, where node A wants to transmit three different types of network traffic to node B.

A B

Multimedia traffic ?

A s y nchronous ?

S ecure ?

Figure 1.1: An ad-hoc network topology with different routing scenarios

Based on the shortest-path routing algorithm, all traffic types, as shown in Figure 1.1, would

be routed through the middle route, which consists of the smaller amount of hops. This de-

cision, however, would not take into account the performance characteristics of the

 4

intermediate devices, nor their utilisation or battery status.

Another major concern in ad-hoc networks is security. This is mainly attributed to the

ubiquitous nature of the wireless medium that makes it more susceptible to security attacks

than in wired communications. Information can be easily intercepted by anyone that is

equipped with a relatively simple wireless device. In addition, the routing process can also

become maliciously altered by radio jamming and battery exhaustion (Stajano, F. and Ander-

son, R., 2000). Thus, it is vital that appropriate security countermeasures are taken into

consideration during the design process of an ad-hoc routing protocol. However, security is

rarely addressed by most to-date routing protocols.

1.4 Research challenges and context

Based on the identification of the problem area presented in Section 1.3, an interesting re-
search question arises:

Can an agent-based system be used in wireless ad-hoc networks in such a way so as to classify
the routing fitness of each participating device based on key metrics, which include: remain-
ing battery life; utilisation status; maximum throughput; buffering capabilities; and, network
error; and then weight it appropriately to suite various routing objectives, such as energy effi-
cient; synchronous; asynchronous; critical; secure; and, burst network traffic?

A scenario is used throughout this section to explain, in more detail, the general research
question presented above. A simplified case is considered, where A, B, and C are mobile
nodes and belong to wireless domains WDA, WDB, and WDC, respectively (Figure 1.2). Sup-
pose that WDA and WDB intersect (∩) and that WNB and WNC intersect as well. Therefore, A
can see B as an adjacent node, and vice-versa, and B can see C as an adjacent node, and vice-
versa. Unfortunately, A cannot see C and vice-versa, and not any other node that belongs to
a network that does not intersect with its own. This is commonly known as the hidden node
problem. In a multi-hop ad-hoc network this problem is common, and is usually solved by
means of flooding the network with Route Request packets (RREQ) in order to retrieve a
route to a desired destination. However, this method is highly inefficient in terms of network
overhead, and thus an alternative solution is desirable:

Can mobile agents efficiently exploit a hierarchically structured multi-hop ad-hoc network in
order to collect the network's topology information, along with the routing metrics involved,
in such a way so as to minimise the total number of required migrations, and to provide resil-

 5

ience in dynamic topology changes, and further reduce the amount of information transmit-
ted by enabling redundant information filtering?

WDA WDB WDC

A
B

C

WDA WDB WDC

A
B

C

Ad-hoc network

Figure 1.2: Discovering Network Neighbourhood

It is possible that a node could create a network topology gathering mobile agent and dis-
patch it to each of its neighbouring nodes. The newly instantiated mobile agent could then
examine its neighbouring nodes, and if appropriate, create a number of clones, equal to the
number of neighbouring nodes, and dispatch them. The process could then iterate until the
complete network topology is collected, or until the specified threshold limit of allowed mi-
grations is reached. Mobile agents could then migrate back to their original platform, pass
the topology information to their parent agent, and kill themselves. Their parent agents
could repeat the process, until all information is returned to the grandparent mobile agent,
that is, the original mobile agent that initiated the network discovery process. Figure 1.3 pre-
sents an illustration of this hypothesis in a network topology information gathering example
using mobile agents.

Based on the Figure 1.3, mobile node A could create a network discovery mobile agent,
which could then examine node’s A neighbouring nodes, and thus create and dispatch a
cloned mobile agent to each of A’s neighbours (B and C). The process could then iterate un-
til the complete network topology is gathered. However, there are various challenges
involved, mainly because of the lack of an infrastructure that could assist the agents in decid-
ing on the appropriate next hop in such as way so as to guarantee that nodes are never visited
more than once, and, in addition, to enable the minimum possible total number of migra-
tions. Furthermore, in large ad-hoc networks the relevant information can be large, and thus
agents will require some sort of filtering capabilities that would enable them to discard re-
dundant irrelevant routing information, and, consequently reduce their migration times.

 6

A

B

E

D C

F

G

H

A

B

E

D C

F

G

H

Figure 1.3: Network discovery using mobile agents

An ad-hoc network with six mobile nodes forming a circular network topology is presented
in Figure 1.4. It is assumed that every mobile node is aware of the existence of all other
nodes in the network, and also knows the routes to get to them. Thus, network discovery is
assumed to have taken place, and the nodes haven’t moved since. In this example, nodes A,
B, C, D, E, and F, belong to wireless domains WNA, WNB, WNC, WND, WNE, and WNF, re-
spectively. Suppose that WNA∩WNB, WNB ∩WNC, WNA∩WND, WND∩WNE, WNE∩WNF,
and WNE∩WNF, thus forming a circular topology.

WDA

WDB

WDC

A

B

C

WDD

WDE

WDF

D

E

F

Ad-hoc
network

WDA

WDB

WDC

A

B

C

WDD

WDE

WDF

D

E

F

Ad-hoc
network

Figure 1.4: A circular ad-hoc network topology

 7

In the case that mobile node B wants to communicate with mobile node E, it can pass net-
work traffic through node A or node C, as WNB, the mobile node B belongs to, intersects
with WNA and WNC. A decision should be based on various parameters, such as the process-
ing capabilities of mobile nodes A and C, as well as their utilisation status, remaining battery
life, memory capacity, available throughput, and so on. In addition, this should be appraised
in terms of the requirements imposed by the network traffic, which B indents of sending,
and, in addition, to the application specific QoS requirements. Unfortunately, in current
routing schemes, these considerations are typically not taken into account, and thus the deci-
sion is usually based on distance, measured in number of hops, that is, the optimal route is
the one that involves the fewest intermediate nodes. This simplified approach can decrease
scalability, availability, and performance.

Can intelligent agents conduct preliminary performance tests, and, in addition, monitor the
device's available resources, and use this information in such a way so as to unambiguously
determine the device's routing performance and dynamically adapt it to changing conditions?

In order to provide more evidence on the importance of this question, an example network
topology is presented in Figure 1.5. According to the example, the source node S wishes to
send some data traffic to the destination node D. The traffic can be routed by either one of
the following available routes, S → B → E → D; S → C → F → D; and, S → D → G → H
→ D. A simplified approach, used in most traditional routing protocols, would be for node S
to count the number of intermediate nodes (hops), and thus deduce the shortest route,
which, in this case, would be the first and second route, as both are two hops away from the
destination. The third route would be excluded from routing, as it has the highest number of
intermediate nodes.

However this approach assumes that participating devices are of equal strength, that is,
they can offer the same throughput, are equally reliable, have the same utilisation status and
electrical power capacity, at any given time. In addition, this approach provides no support
for multiple redundant paths, which could be efficiently used to maximise the network’s per-
formance, and therefore certain paths may become overburdened with routing requests, such
as, in when the network topology presented in Figure 1.5 corresponds to the devices pre-
sented in Figure 1.6. As shown, the first most optimal route in terms of hops, is actually the
worst route in terms of remaining battery capacity, CPU and memory utilisation, and avail-
able throughput (Kbits/s). Also, the previously considered worst route consists of devices
which do not require battery power for their operation, have low utilisation status, and high
available throughput.

 8

Node S

Node B

Node C

Node D

Node E

Node F

Node G

Node D

Node H

Hop 1

Hop 1

Hop 1

Hop 2

Hop 2

Hop 2

Hop 3
Hop 3

Hop 3

H
op 4

Figure 1.5: An ad-hoc random network topology

C
P
U

M
E
M

T
H

C
P
U

M
E
M

T
H

C
P
U

M
E
M

T
H

C
P
U

B
A
T

M
E
M

T
H

C
P
U

B
A
T

M
E
M

T
H

C
P
U

B
A
T

M
E
M

T
H C

P
U

B
A
T

M
E
M

T
H

Source
Node

Destination
Node

Figure 1.6: The underlying devices along with their performance capabilities and utilisation status

Therefore, an intelligent system would, preferably, judge upon the routing requirements of a

 9

routing scenario, and assign the most appropriate route. For instance, heavy network traffic,
in terms of requirements, would be routed through the third route, and, at the same time,
lighter and medium network traffic, would be routed through the first and second route, re-
spectively.

Is it possible to determine the capability, or, incapability of the routing fitness of each source
route towards a single destination, by appraising it against the routing requirements imposed
by each distinct routing objective, and further classifying it into an overall QoS routing met-
ric?

Automatic network reconfiguration is an important element in ad-hoc networks. For in-
stance, in a large wireless ad-hoc network, possibly consisting of a couple of hundred nodes,
if the installation of routing protocol updates becomes necessary, then this typically involves
updating each device manually. In contrast, automatic network reconfiguration could be
achieved by allowing the software to be installed, automatically, without any manual control.
In order for this to be partially achievable, the software has to have mobility capabilities, and
thus migrate to every node in the network and automatically install itself.

Can mobile agent technology automate network reconfiguration, such as, updating the rout-
ing protocol currently running on participating ad-hoc mobile devices, without having to
turn devices off, or gather them in a central place?

1.5 Research aims

The objective of this thesis is to develop new methods for routing in multi-hop ad-hoc net-
works that could be efficiently used in emergency and rescue operations, where participating
devices of unequal strength could be utilised as routing elements, with fairness. In addition,
this thesis aims to enhance current routing schemes by providing route redundancy, and
metric-driven routing that will ultimately set a balance on utilisation factors between high-
end and low-end nodes, as well as retrieving optimal routes in terms of various routing sce-
narios.

In particular, this thesis proposes to assess various agent-based models to determine the
routing capability of each participating node and weight it against the required routing sce-
nario. The determination of this route, though, is a complex one, and requires research into
the best metrics to determine the best path, such as for processing capability, network per-
formance, CPU utilisation, memory capacity, and battery reserves. This thesis shows that an

 10

optimum model is to use a mixture of stationary and mobile agents to gather relevant infor-
mation. These agents could perform important tests, which could be used to generate the
best route through a network. It also analyses different models for the deployment of these
agents, which balance the network nodes' important resources, and, most importantly, can
be efficiently executed by resource-constrained devices, such as PDAs.

For this reason, a novel hybrid, metric-driven, agent-based routing scheme is proposed
that provides the following novelties:

• Metric-driven hierarchical structure. Organises the otherwise disoriented network into a

cluster-head structure, where fitter devices are elected as cluster-heads, and thus have
clustering responsibilities within their own clusters, such as location management and
routing, whereas, weaker devices are elected as cluster-head's members, and thus have
minimum, or, no responsibilities. Key metrics that determine the nodal capability of be-
ing awarded a cluster-head role are: relative mobility; processing capabilities; network
state; utilisation; and battery life. Therefore, it is ensured that re-clustering will occur at a
minimum possible, as cluster-heads are not frequently moving, and, in addition, they are
equipped with sufficient battery life to keep them operational for long enough. However,
it is probable that changes will eventually occur, which might lead to critical situations,
such as a cluster-head is running low on battery life, and are thus taken into account by
allowing the system to dynamically adapt to important metric changes.

• Route redundancy. Supplies a source node with multiple routes, if present, towards a
single destination for each initiated route discovery process. Along the same line, it sup-
plies a cluster-head with multiple routes to each possible destination in the network for
each initiated network topology gathering mobile agent. Multiple routes are kept in the
node's routing cache, in case of non-cluster-head, whereas, in case of a cluster-head, they
are maintained in the node's routing table, which is public for its own members. A
transmitting node can thus use an alternative route in case of primary failure, hence
avoid the initiation of a new route request. In addition, it can utilise more than one route
for each required routing scenario, as it is likely that each route will have a distinct rout-
ing capability, and thus offer various levels of QoS.

• Hybrid route and network discovery. Provides an on-demand route discovery process
that can be initiated by every node in the network, at a controlled manner, and, in addi-
tion, a proactive network topology gathering process that can be initiated only by cluster-
heads based on either triggering events, or, in a periodic manner. Both processes benefit
from the network's clustering formation, as the respective route request packets (RREQ)
and mobile agents need only to traverse special nodes, and are thus not flooded to the

 11

network, which results into decreased network overhead. This hybrid approach enhances
the route availability at each cluster, which can be immediately employed, and therefore
minimises the need for on-demand route discovery, which generally requires additional
time to resolve.

• Metric-driven routing. Determines the capability, or, incapability of a node, and, con-
secutively, a route to accommodate a range of routing scenarios. Therefore, a route may
be determined capable of accomplishing a certain scenarios, whereas incapable of accom-
plishing another. The more the number of routes supplied for a given destination, the
more the likelihood of, at least one route, being determined as capable of routing a cer-
tain type of traffic. In the presence of two or more capable routes, the decision is based
on two factors: the maximum level of QoS offered by each route; and, the level of QoS
required. Therefore, a transmitting node requiring high level of QoS for a given routing
scenario, decides on the route that offers the best services. The metrics are derived from
performance and monitoring tests, which were performed throughout the experimenta-
tion phase, in an attempt to benchmark various devices as routing elements. These
metrics include: complex calculation ability; buffering capabilities; maximum through-
put; protocol error percentage; CPU utilisation; memory usage; and, remaining battery
life. Once a node's overall metric is calculated, it is appropriately weighted to suite vari-
ous routing objectives, and it is dynamically reconfigured in the presence of critical
internal changes, such as rapid increases in the node's utilisation.

• Protection from nodal over-utilisation and battery exhaustion. A node's vital resources
are protected, at all times, by unpleasant over-utilisation, and battery exhaustion. Specifi-
cally, a node with either high utilisation, or, low battery life, is exempted from the
clustering formation, and routing duties, as it would otherwise result into an unreliable
task accomplishment, or, even worst, it could lead into making the node unusable. This
is achieved by incorporating key metrics, such as the node's utilisation status, and re-
maining battery life, into the metric-driven clustering formation and routing processes,
and by further assigning a sufficient weighting so that rapid changes cause the overall
metric to turn to routing and clustering incapability.

• Benchmark the routing capability and resources consumption of various devices types.
In a wireless ad-hoc network it is likely that participating devices will have different
hardware characteristics, and consequently different levels of performance when dealing
with routing. A primary aim is to benchmark this capability and determine the perform-
ance of various devices, including: battery independent devices, such as workstations,
and, battery dependent devices, such as laptops, and PDAs. Another equally important
factor is the resources consumed throughout the routing process, this is, the CPU utilisa-

 12

tion; the memory usage; and, the battery discharge rate.
• Determine the underlying factors that may optimise routing tasks. In addition to

hardware-dependent, routing is also dependent on the underlying software, that is, the
operating system (OS); and, the Java Virtual Machine (JVM), which is used to interpret
the routing software. Therefore, routing optimisation is achieved by utilising the best
software combination, which provides the highest throughput, and, most importantly,
consumes the fewest resource.

1.6 Thesis structure

This thesis splits into the following six main chapters:

• Chapter 2 presents the literature review in the area of agent-based ad-hoc routing, and

provides a synopsis on non-agent-based ad-hoc routing.
• Chapter 3 presents the Mobile Agents for Routing In Ad-hoc Networks (MARIAN)

specification, which is a hybrid, metric-driven, agent-based routing protocol specifically
defined for this research. It also presents the Benchmarking multi-Agent Software System
(BASS), which is a multi-agent software system that assists MARIAN in metric determi-
nation.

• Chapter 4 presents the precise definition of experiments as well as the hardware and
software used for their execution.

• Chapter 5 presents the experimentation results obtained throughout the research. It is
composed by six sub-chapters, the preliminary experimentation phase, the proxy experi-
mentation phase, the BASS experimentation phase, the experimentation of mobile agent
migration phase, the metric simulation experimentation phase, and finally, a MARIAN-
enabled network application scenario.

• Chapter 6 evaluates the research findings, and discusses the major contributions of this
research by comparing these with similar research work.

• Chapter 7 concludes the thesis and presents the future work.

 13

2 Literature Review

2.1 Problems & challenges of Ad-hoc networks: security,
routing

Ad-hoc networks inherit the problems and challenges of wireless networks (see Appendix
D.1), as they use wireless radio signals for communication establishment. In addition, two
more fundamental challenging issues are: security; and routing.

The routing process is considered as the most important area of research in an ad-hoc
network. However, routing in such a highly dynamic network is a challenging issue, as prob-
lems arise due to the nature of an ad-hoc network, such as the mobility and low-performance
characteristics of mobile devices. Accordingly, as mobile devices are free to move in an arbi-
trary manner, performing routing is a challenging issue. Thus, a route which may be
considered as the best path at the present, may break, or become non-optimal, some time
later. The second reason is that, typically mobile devices, such as laptops and PDAs, running
on batteries, and with low performance capabilities, cannot perform complex calculations
that are necessary for the routing process. Thus, the majority of research in ad-hoc networks
is concentrated on the design of energy-efficient routing protocols. Background information
on ad-hoc routing is provided in Appendix D.

Security is also difficult to assure in ad-hoc networks due to the absence of an infrastruc-
ture, which typically does not allow the effective use of private- or public-key cryptography
(Mohapatra, P. K., 2000, Buchanan, W. J., 2000). Security often plays a crucial role in ad-
hoc networks, than, in infrastructure networks, that use wired communications, such as in
LANs. This is mainly because of the ubiquitous nature of the wireless medium that makes it
more susceptible to security attacks than in wired systems. Unfortunately, information sent
over a wireless medium can be intercepted by anyone that is equipped with a relatively sim-
ple wireless device. Also, the sender of network traffic cannot be uniquely identified, as they
can in fixed networks. Even further, eavesdropping or interference cannot be detected in a
medium as ubiquitous as the wireless medium.

Although ad-hoc networking is more prone to passive eavesdropping attack, confidential-
ity is not the only, or even the main security requirement. Security properties for ad-hoc
networks that need to be ensured include: availability, integrity, and confidentiality. Avail-
ability is the most important security property for most non-military applications of ad-hoc
networks. Availability attacks include radio jamming and battery exhaustion (Stajano, F. and

 14

Anderson, R., 2000). An attacker can deny services to mobile nodes of an ad-hoc network by
jamming the radio frequencies they use, or interact with a mobile node in an otherwise le-
gitimate way, but for no other purpose that to consume its battery capacity.

Integrity of a mobile node participating in an ad-hoc network ensures that the node has
not been maliciously altered. It guarantees that a recipient receives the correct information
from a genuine transmitter, and not from a node that has been modified to send out incor-
rect information. As already mentioned, cryptography is the most common and effective
approach used to ensure integrity, but this cannot be applied to an ad-hoc network because
of the lack of infrastructure. An alternative approach is to allow only tamper-proof (Ander-
son, R. and Kuhn, M., 1996) mobile nodes to participate in an ad-hoc network. However,
this approach is difficult to implement, as the cost of tamper-proof mobile devices normally
high.

Confidentiality ensures the secrecy of communications among participants in an ad-hoc
network. It is tightly related with authenticity, which ensures that a mobile node communi-
cates with the right participant. Authenticity is where the real issues are, and, once they are
solved, protecting confidentiality is simply a matter of encrypting the session, using an ap-
propriate encryption key (Stajano, F. and Anderson, R., 2000).

2.2 Comparison of routing protocols’ main characteristics
and complexity factors

The vast majority of routing protocols in the same category share many common characteris-
tics. For example, some of the common characteristics of proactive protocols are: the
frequency of updates broadcasted to the network; the routing structure; and the structure in
which routing information is maintained. However, there are main differences in the overall
performance, scalability, and ease of installation of these protocols. Table 2.1, summarises
most of the basic features of each proactive routing protocol, which have been previously dis-
cussed.

Table 2.1 (Abolhasan, M., et. al., 2004): Proactive routing protocols, basic characteristics

Protocol RS No. Tables Updates frequency HM CN Characteristics
DSDV F 2 Periodic & as re-

quired
Yes No Loop-free

WRP F 4 Periodic Yes No Loop-free
GSR F 3, 1 lista Periodic and localb No No Localised updates
FSR F 3, 1 list Periodic and localb No No Controlled frequency up-

dates

 15

STAR H 1, 5 lists Conditionalc No No LORA/ORA, Minimum
CO

DREAM F 1 Mobility-based No No Controlled rate of updates
by mobility/distance

MMWN H Database Conditional No Yes, LM LORA, Minimum CO
CGSR H 2 Periodic No Yes, CH CH exchange routing in-

formation
HSR H 2d Periodic, within each

subnet
No Yes, CH Low CO, Hierarchy

OLSR F 3 Periodic Yes No MPR, reduced CO
TBRPF F 1, 4 lists Periodic and differen-

tial
Yes Yes, PN Broadcasting topology

updates over a spanning
tree

RS (routing structure); HM (HELLO messages); CN (Critical nodes); H (hierarchical); F (flat); CO (control overhead); LORA (least over-
head routing approach); ORA (optimum routing approach); LM (location manager); CH (cluster-head); PN (parent node); MPR
(multipoint replaying).
aGSR also has a list of all available neighbours.
bIn GSR and FSR link-state is periodically exchanged with neighbouring nodes.
cIn conditional update methods, the updates occur if a particular event occurs.
dNumber of link-state tables may vary according to the number of logical levels.

The routing structure (RS) is referred to the ad-hoc network’s structure. In the case where
the network has no logical structure, the routing structure is supposed to be flat, while, if
some sort of organisation is imposed into the network, the routing structure is hierarchical.
Usually flat addressing is the most normal case for proactive routing protocols, due to its im-
plementation simplicity. However, a flat structure suffers from frequent broadcasted control
packets, along with their prolonged propagation into the network. A possible solution to this
problem is the use of GPS (Kaplan, E. D., 1996) on each device on the network. For in-
stance, DREAM obliges each ad-hoc device to be equipped with GPS, and thus the amount
of information carried into the control packets is significantly minimised. Thus, nodes only
exchange location information, such as geographical coordinates, instead of complete link-
state, or distance vector information. However, GPS comes at a certain cost, and may, there-
fore, be unaffordable to some users. An alternative to GPS, which may achieve similar results,
is the use of conditional updates rather than periodic ones, as in the case of STAR, which
allows the dissemination of updates only when certain conditions occur. Routing protocols
which use a logical hierarchical structure are also known to reduce the control overhead by
localising the propagation of update messages. However, there is often a price to pay in terms
of network overhead involved with structure maintenance. In addition, hierarchical protocols
often require the use of critical nodes, which may become bottlenecks. Table 2.2 summarises
the convergence time, memory overhead, control overhead, advantages and disadvantages, of
each of the key proactive routing protocols, which were previously discussed.

 16

Table 2.2 (Abolhasan, M., et. al., 2004): Proactive routing protocols, overhead

Protocol CT MO CO Advantage/Disadvantage
DSDV O(D⋅I) O(N) O(N) Loop free/high overhead
WRP O(h) O(N2) O(N) Loop free/memory overhead
GSR O(D⋅I) O(N2) O(N) Localised updates/high memory overhead
FSR O(D⋅I) O(N2) O(N) Reduces CO/high memory overhead, re-

duced accuracy
STAR O(D) O(N2) O(N) Low CO/high MO and processing over-

head
DREAM O(N⋅I) O(N) O(N) Low CO and MO/requires GPS
MMWN O(2D) O(N) O(X+E) Low CO/mobility management and cluster

maintenance
CGSR O(D) O(2N) O(N) Reduced CO/cluster formation and main-

tenance
HSR O(D) O(N2⋅L) +

O(S) + O(N/S)
+ O(N/n)

O(n⋅L)/I +
O(1)/J

Low CO/location management

OLSR O(D⋅I) O(N2) O(N2) Reduced CO and contention/2-hop
neighbour knowledge required

TBRPF O(D) or D + 2
for link failure

O(N2) + O(N)
+ O(N+V)

O(N2) Low CO/High MO

CT (convergence time); MO (memory overhead); CO (control overhead); 1 (a fixed number of update tables is transmitted); V (number of
neighbouring nodes); N (number of nodes in the network); n (average number of logical nodes in the cluster); I (average update interval);
D (diameter of the network); S (number of virtual IP subnets) h (height of the routing tree); X (total number of LMs, one location manager
for each cluster); J (nodes to home agent registration interval); L (number of hierarchical level); E (endpoint nodes).

In relation to Table 2.2, the overhead imposed by most routing protocols in this category is
significantly high. In particular, the memory overhead is significantly high, as each node
needs to store and maintain routing information concerning every other node in the ad-hoc
network, and that each node is required to transmit its complete routing tables. An exception
to this may be DREAM, for the aforementioned reasons. Unfortunately, high overhead often
results in scalability constrains. Thus, proactive routing protocols often do not scale well in
large ad-hoc networks, with a limiting nodes set at around 100. Table 2.3 presents a sum-
mary of each of the key reactive routing protocol’s main characteristics.

Table 2.3 (Abolhasan, M., et. al., 2004): Reactive routing protocols, basic characteristics

Protocol RS Multiple
Routes

Beacons Route metric Routes main-
tained in

Route reconfiguration
strategy

AODV F No Yes Freshest & SP RT ER then SN or LRR
DSR F Yes No SP, or next avail-

able in RC
RC ER then SN

ROAM F Yes No SP RT ER &a

 17

LMR F Yes No SP, or next avail-
able

RT LR & RR

TORA F Yes No SP, or next avail-
able

RT LR & RR

ABR F No Yes Route stability &
SP & b

RT LBQ

SSA F No Yes Strong signal
strength & stabil-
ity

RT ER then SN

RDMAR F No No Shortest relative
distance or SP

RT ER then SN

LAR F Yes No SP RC ER then SN
ARA F Yes No SP RT Use alternative route or

back track until a route is
found

FORP F No No RET & stability RT A Flow_HANDOFF
used to use alternative
route

CBRP H No No First available
route (first fit)

RT at CH ER then SN & LLR

RS (routing structure); F (flat); H (hierarchical); SP (shortest path); RT (routing table); ER (erase route); SN (source notification); LRR
(local route repair); RC (route cache); RET (route expiration time); LBQ (localised broadcast query).
aStart a diffusing search in case a successor is available; else send a query with infinite metric
bRoute relaying load and cumulative forwarding delay

It can be observed that almost all protocols in this category are flat, with the exception of
CBRP. As reactive protocols use flooding to discover on-demand routes, routing structures
which are flat can prolong the propagation of messages, and can thus cause scalability con-
cerns. In order for scalability problems to be eliminated, the route discovery and route
maintenance processes should be controlled in some manner. For example, LAR restricts the
propagation of RREQ packets in the greater vicinity of the destination node. However, LAR
requires that each device to be equipped with GPS, which may not be easy to guarantee. Half
of the protocols in this category allow nodes to store multiple routes to a single destination,
which may generally be beneficial, as a node can immediately resume transmission in case of
a primary route failure. In addition, most routing protocols of this category base their route
metrics on the standard shortest-path algorithm, which simply chooses a best route to a desti-
nation, if the destination based on that route is fewer hops away than any other route
maintained by the source node. Perhaps, more sophisticated route metrics can be found in
ABR, where route decisions are based on route stability, and in SSA, where route stability
metrics are further enhanced by signal strength measurements.

Table 2.4, summarises the time and communication complexities for route discovery and
maintenance, and also outlines the advantages and disadvantages of each protocol. In relation
to this table, it is clear that reactive routing protocols impose a significantly lower overhead

 18

than proactive, especially in cases where GPS is required. This is because nodes are not re-
quired to periodically exchange large amounts of routing information, as route discovery is
performed on-demand, and when necessary. This is especially advantageous for scalability,
which could thus be extended compared to proactive protocols. In an approximate estima-
tion, source routing protocols, such as DSR, could support up to a few hundred nodes, while
point-to-point routing protocols, such as AODV, could scale even higher. Although these
figures may provide just an indication, accurate estimations can only be deduced by large-
scale simulation experiments, or ideally real-world experiments, where factors such as traffic
levels, distance (number of hops), and mobility are being varied at multiple levels. In addi-
tion to the above, reactive routing protocols impose less storage requirements than proactive
routing protocols, depending on the number of routes kept at each node. The main disad-
vantage of protocols in this category is that they normally introduce higher latency than
proactive ones, mainly during route discovery.

Table 2.5 summarises the main features of each of the key hybrid protocols. Protocols in
this category are mostly hierarchical, with the exception of ZRP. Hierarchical protocols, such
as ZHLS, and SLURP, may perform significantly better than other hierarchical protocols
previously described, as they require the use of GPS, and thus have a simplified location
management process. Therefore, there is no specific requirement for critical nodes, such as
cluster-heads, and this may result in an increased overall reliability of the protocol. Addition-
ally, these protocols require less routing information, such as the node ID and zone ID,
compared to other protocols, and could thus cope better in highly-dynamic networks. They
also eliminate single-points-of-failure by allowing nodes to cooperate as a group. Storage re-
quirements are hard to determine, as they are highly dependant on the size of each cluster or
zone, which act proactively.

Table 2.4 (Abolhasan, M., et. al., 2004): Reactive routing protocols, overhead

Protocol TC[RD] TC[RM] CC[RD] CC[RM] Advantage Disadvantage
AODV O(2D) O(2D) O(2N) O(2N) Adaptive to highly

dynamic topologies
Scalability problems,
large delays, HELLO
messages

DSR O(2D) O(2D) O(2N) O(2N) Multiple routes, pro-
miscuous overhearing

Scalability problems due
to source routing and
flooding, large delays

ROAM O(D) O(A) O(|E|) O(6GA) Elimination of search-
to-infinity problem

Large CO in highly dy-
namic environments

LMR O(2D) O(2D) O(2N) O(2A) Multiple routes Temporary routing loops
TORA O(2D) O(2D) O(2N) O(2A) Multiple routes Temporary routing loops
ABR O(D+P) O(B+P) O(N+R) O(A+R) Route stability Scalability problems
SSA O(D+P) O(B+P) O(N+R) O(A+R) Route stability Scalability problems,

 19

large delays during route
failure and reconstruc-
tion

RDMAR O(2S) O(2S) O(2M) O(2M) Localised route dis-
covery

Flooding used if there is
no prior communication
between nodes

LAR O(2S) O(2S) O(2M) O(2M) Localised route dis-
covery

Based on source routing,
flooding is used if no
location information is
available

ARA O(D+P) O(D+P) O(N+R) O(A+R) Low overhead, small
control packet size

Flooding based route
discovery process

FORP O(D+P) O(D+P) O(N+R) O(N+R) Route failure minimi-
sation technique

Flooding based route
discovery process

CBRP O(2D) O(2B) O(2X) O(2A) Only cluster-heads
exchange routing in-
formation

Cluster maintenance,
temporary loops

TC (time complexity); CC (communication complexity); RD (route discovery); RM (route maintenance); CO (control overhead); D (net-
work’s diameter); N (number of nodes in the network); A (number of affected nodes); B (diameter of the affected area); G (maximum
degree of the router); S (diameter of the nodes in the localised area); M (number of nodes in the localised region); X (number of clusters); R
(number of nodes forming the route-reply path); P (diameter of the directed path); |E| (number of edges in the network).

Table 2.6 summarises the time complexity and communication complexities for route dis-
covery and maintenance, and also outlines the advantages and disadvantages of each hybrid
protocol. Routing protocols of this category generally cause less network overhead than pro-
active and reactive protocols. This further increases scalability, which may support more than
1000 nodes.

Table 2.5 (Abolhasan, M., et. al., 2004): Hybrid routing protocols, basic characteristics

Protocol RS Multiple
routes

Bc Route metric method Route main-
tained in

Route reconfigura-
tion strategy

ZRP F No Yes SP Intrazone and
interzone tables

Route repair at point
of failure and SNa

ZHLS H Yes No SP or next available virtual
link

Intrazone and
interzone tables

Location requestb

SLURP H Yes No MFR for interzone for-
warding, DSR for
intrazone routing

Location cache
and a node_list

SN, then location
discovery

DST H Yes No Forwarding using the tree
neighbours and the bridges
using shuttling

Routing tables Holding timec or
shuttling

DDR H Yes Yes Stable routing Intrazone and
interzone tables

SN, then source initi-
ates a new path
discovery

RS (routing structure); H (hierarchical); F (flat); SP (shortest path); SN (source notification); Bc (beacons).
aThe source may or may not be notified.
bA location request will be sent if the zone ID of a node changes.
cPackets are held for a short period of time during which the nodes attempts to route the packet directly to the destination.

 20

Table 2.6 (Abolhasan, M., et. al., 2004): Hybrid routing protocols, overhead

Protocol TC[RD] TC[RD] CC[RD] CC[RM] Advantage Disadvantage
ZRP Intra: O(I)

Inter: O(2D)
O(I)
O(2D)

O(ZN)
O(N+V)

O(ZN)
O(N+V)

Reduce retransmis-
sions

Overlapping
zones

ZHLS Intra: O(I)
Inter: O(D)

O(I)
O(D)

O(N/M)
O(N+V)

O(N/M)a

O(N+V)
Reduction of SPF,
low CO

Static zone map
required

SLURP Intra: O(2ZD)
Inter: O(2D)b

O(2ZD)
O(2D)

O(2N/M)
O(2Y)

O(2N/M)
O(2Y)

Location discovery
using home regions

Static zone map
required

DST Intra: O(ZD)
Inter: O(D)

O(ZD)
O(D)

O(ZN)
O(N)

O(ZN)
O(N)

Reduce transmissions Root node

DDR Intra: O(I)
Inter: O(2D)

O(I)
O(2D)

O(ZN)
O(N+V)

O(ZN)
O(N+V)

No zone map or zone
coordinator

Preferred
neighbours may
become bottle-
necks

TC (time complexity); CC (communication complexity); RD (route discovery); RM (route maintenance); I (periodic update interval); N
(number of nodes in the network); M (number of zones or clusters in the network); ZN (number of nodes in a zone, cluster or tree); Y
(number of nodes to in the path to the home region); V (number of nodes on the route-reply path); SPF (single point of failure); CO (con-
trol overhead);
aIn ZHLS, the intrazone is maintained proactively. Therefore, a fixed number of updates are sent at a fixed interval.
bSLURP’s worst case scenario: the source node and the home region of the destination are on the opposite edges of the network.

According to each routing protocol’s characteristics, and performance overheads, it is safe to
conclude:

• Proactive routing protocols, with flat routing structures, impose heavy overheads and are

not scalable.
• Proactive routing protocols, with hierarchical routing structures, may reduce overheads

by a certain degree, and provide limited scalability.
• Proactive routing protocols often impose high memory overheads, as they require each

node to maintain routing information for each node in the network.
• Reactive routing may be considered as a better routing approach in ad-hoc networks.
• Reactive routing protocols, with flat routing structures, impose high control overhead

due to flooding, however, considerably less than proactive protocols.
• Reactive routing protocols with hierarchical routing structures impose less control over-

head, as control packets are normally routed through critical nodes, which may also
become performance bottlenecks.

• Reactive routing protocols can significantly reduce memory overheads, as nodes normally
cache routes they actively using.

• Hybrid routing protocols normally impose less network overheads than proactive and
reactive protocols, given that most protocols are hierarchical.

 21

• GPS can dramatically improve the performance of routing protocols, however, it comes
at a cost, which users or network administrators may not be willing to pay.

• All routing protocols reviewed so far, do not take into account performance characteris-
tics of individual mobile devices, which can dramatically vary between powerful laptops
and resources-limited handhelds.

2.3 Comparison of routing protocols via simulations and
real-life experiments

In most cases, once an ad-hoc routing protocol has been designed and properly specified,
simulation packages such as network simulator 2 (ns2) are used to evaluate the protocol’s
performance, in comparison to other existing protocols. ns2 is a discrete event simulator that
was originally developed by the University of California at Berkeley and the VINT project
(Fall, K. and Varadhan, K., 2005). It provides substantial support for modelling and testing
network protocols targeted for fixed, as well as wireless, networks. Recent versions of ns2 pro-
vide built-in support for some well-known ad-hoc routing protocols such as DSDV, AODV,
DSR, and TORA, and also provide tools for ad-hoc topology design and testing.

A number of simulation studies for ad-hoc routing protocols have been conducted with
the help of ns2 (Broch, J., et. al., 1998, Das, S. R., et. al., 2000, Aron, I. D., and Gupta, S.
K. S., 2000, Dyer, T. D. and Boppana, R. V., 2001, Gray, R. S., et. al., 2004). The first
study investigated four ad-hoc routing protocols (DSDV, TORA, DSR, and AODV) in a
detailed packet-level simulation. The authors of this work extended the ns2 to accurately
model the MAC and physical-layer behaviour of the IEEE 802.11 wireless LAN standard,
including a realistic wireless transmission channel model. The simulations carried out were
based on ad-hoc network topologies consisting of 50 mobile nodes. The overall goal of this
simulation study was to determine the ability of each protocol to react to network topology
changes, while continuing to successfully deliver data packets to their destinations. The
movement model was based on the random waypoint model (Johnson, D. B. and Maltz, D.
A., 1996), and a range of node mobility rates and movement speeds were tested. Results
showed that DSDV performed quite predictably, delivering virtually all data packets when
the mobility rate and movement speed were low, while failing to converge as node mobility
increased. TORA, though, managed to deliver over 90 (%) of the packets with medium data
traffic flow, however, it was unable to cope when data traffic increased causing a significant
amount of data packets to be dropped. On the other hand, DSR performed well at all mobil-
ity rates and movement speeds, although, the source routing option in DSR increased the
number of routing overhead bytes required by the protocol. AODV performed almost as well

 22

as DSR, without DSR’s source routing requirements, however, at high levels of node mobil-
ity, it was more expensive than DSR in terms of network overhead.

Das, S. R., et. al., 2000, evaluated the performance of traditional link-state and distance-
vector routing protocols including SPF (Cheng, C., et. al., 1989) and EXBF (Shankar, A. U.,
et. al., 1992b) against DSDV and on-demand routing protocols, such as TORA, DSR, and
AODV. A discrete event, packet-level, routing simulator called MaRS (Maryland Routing
Simulator) (Alaettinoglu, C., 1994) was used for comparative performance evaluation. The
authors of this study augmented MaRS to provide node mobility, even though their study
was limited to the network layer, and there was no modelling of link-layer or physical-layer
details. Key metrics used for the performance evaluations of theses protocols included: the
fraction of packets delivered, the end-to-end delay, and the routing load. Results showed that
the proactive routing protocols, including SPF, EXBF, and DSDV, provided excellent per-
formance in terms of end-to-end delay, however, at a high cost of routing load. In contrast,
reactive routing protocols were shown to be significantly more efficient in terms of routing
load, however, they suffered from suboptimal routes, as well as having worst successful
packet delivery value. In addition, TORA was shown to perform worst than the other reac-
tive protocols tested, even though it maintains multiple redundant paths to single
destinations. In particular, the overhead of finding and maintaining this redundant informa-
tion seemed to outweigh the benefits.

A study which aimed to investigate the effect of local error recovery against end-to-end er-
ror recovery in reactive protocols was conducted by Aron, I. D., and Gupta, S. K. S., 2000.
The DSR protocol, which uses end-to-end error recovery, was compared to a similar reactive
routing protocol, WAR (Aron, I. D., and Gupta, S. K. S., 1999), which uses local correction
mechanisms to recover from route failures. The goal of this study was to determine which
error recovery mechanism is suitable for a certain mobility rate in the mobile ad-hoc network
and to quantify its performance in terms of average packet latency and cost of packet delivery
as a function of parameters such as route length, size of the network, mobility rate, and
packet arrival rate. Results obtained from this study revealed that the performance of DSR
degrades extremely fast as the route length increases, and thus DSR is not scalable, while
WAR maintains both low latency and resource consumption, regardless of the route length.
The authors further suggested that unless some local error recovery technique is employed to
deal with failures along the route to destination, the performance of reactive protocols is not
scalable with the size of the network, in terms of route length.

Dyer, T. D. and Boppana, R. V., 2001, examined the performance of the TCP protocol
over three routing protocols for mobile ad-hoc networks including AODV, DSR, and ADV
(Boppana, R. and Konduru, S., 2001). The adaptive distance vector (ADV) routing protocol

 23

combines an on-demand approach with proactive distance vector routing. This study used
ns2 simulator to evaluate the performance of the routing algorithms with the standard TCP
Reno protocol, and Reno with fixed RTO, which was proposed by the authors in (Dyer, T.
D. and Boppana, R. V., 2001), and has the ability to distinguish between route loss and
network congestion, and may therefore be capable of improving the performance of the rout-
ing algorithms. The simulation experiments conducted for this study included a varied
number of TCP connections, background constant bit rate (CBR), and number of CBR
connections. Results acquired, yielded several interesting insights into the performances of
the tree algorithms. Specifically, with standard Reno, ADV performs significantly better
compared to AODV and DSR, as it provides lower connection times for TCP, higher
throughputs, and lower routing overhead. However, when Reno with fixed RTO was used,
the performance of AODV and DSR was significantly improved, while the performance of
ADV remained at the same levels as with standard TCP Reno. This is a direct result from the
fact that Reno with fixed RTO freezes the retransmission timer when dealing with packet
losses due to broken routes, instead of doubling it, and thus data packet retransmissions oc-
cur more frequently. In this way, the route discovery process of on-demand routing protocols
(AODV and DSR) is stimulated often enough so that they gain the ability to re-establish
broken routes.

A more recent study conducted by Gray, R. S., et. al., 2004, was based on a real-life out-
door comparison of four different routing protocols including: APRL (Karp, B. and Kung,
H. T., 1998), AODV, ODMRP (Lee, S. J., et. al., 2002), and STARA (Gupta, P. and
Kumar, P. R., 1997), which were running on 802.11-enabled laptops moving randomly in
an athletic field. Most previous comparison studies of wireless ad-hoc routing protocols in-
volved simulator tools, or small-scale indoor trial runs, and, thus, this study may be
considered innovative, as it provided insight into the behaviour of ad-hoc routing protocols
in the real-life scales. The study use Any Path Routing without Loops (APRL) and System
and Traffic-dependent Adaptive Routing Algorithm (STARA), which are both proactive
routing protocols, and AODV and On-Demand Multicast Routing Protocol (ODMRP)
which are both reactive. ARPL is simple, as it tries to discover a fixed number of routes, not
necessarily shortest, while STARA is more complex, as it uses dynamic latency measurements
to decide on best routes. On the other hand, AODV and ODMRP are closely related, with
the main difference being ODMRP’s multicast traffic support and its inclusion of data pack-
ets inside route discovery packets. All four algorithms were implemented in a similar way, as
user-level applications, through the use of a tunnel device. The outdoor experiments showed
that the reactive protocols performed better than the proactive. In addition, ODMRP out-
performed AODV, a result that may be attributed to ODMRP’s inclusion of the original

 24

data packet in the flooded route-discovery packets. In contrast, the indoor experiments
showed that AODV outperformed ODMRP. This may be attributed to the fact that in the
indoor experiments every laptop can hear every packet due to the physical proximity of the
nodes, a situation in which the 802.11b protocol can significantly reduce collisions through
its standard CSMA/CA protocol.

2.4 Agent-based ad-hoc routing methods

Mobile computing and wireless networking are the most frequently proposed application
areas for the mobile agent technology (Kotz, D., et. al., 1997). Mobile agents are considered
to be particularly useful in: highly dynamic and unreliable environments; where available
bandwidth is limited; and where network links impose high latency and are mostly unreli-
able. This may be attributed to two important characteristics of mobile agents, which are not
present in traditional approaches:

• Task continuation. An agent can migrate to a host server to continue a processing task

while the user is disconnected from the network (Vinaja, R., 2001).
• Minimal connection use. An agent can pre-process information at the server, or, at the

mobile device, in order to reduce the communication bandwidth (Kotz, D., et. al.,
1997).

Mobile agents have the ability to support asynchronous communications and flexible query
processing (Hadjiefthymiades, S., et. al., 2002). Thus, the mobile user can assign a task to a
mobile agent, and when the agent senses that there is communication availability, it can
roam the network and fulfil the task delegated by its user. In this way, a mobile node requires
less communication connectivity than it would need following traditional client-server tech-
niques. Another equally important reason, is than mobile agents are well-known for their
ability to reduce network traffic, under specific circumstances, for example, by performing
appropriate filtering on data (Braun, P., 2003, Migas, N., et. al., 2004a). Furthermore, mo-
bile agents can increase security (Samaras, G. and Panayiotou, C., 2002) by encapsulating
user-profile data and private information, and block unauthorised access. Also, by utilising
the built-in security mechanisms of the mobile agent’s system, the confidentially and integ-
rity of sensitive information can be strengthened by the use of cryptographic techniques.
Background information on intelligent software agents is provided in Appendix C.

Recently, there have been numerous proposals of the mobile agent paradigm in ad-hoc
routing (Anderegg, L. and Eidenbenz, S., 2003, Marwaha, S., et. al., 2002, Bandyopadhyay,

 25

S. and Paul, K., 1999), topology discovery (RoyChoudhury, R., et. al., 2000), and clustering
formation (Denko, M. K., 2003). In a highly-dynamic ad-hoc network, which suffers from
frequent mobile host disconnections, the control overhead of unproductive route request
packets may be significantly high. Moreover, in such a highly dynamic network, it is likely
that even network traffic with low requirements, such as e-mails, would be inefficient, if not
impossible, to be successfully routed from the source to the destination.

The authors in (Bandyopadhyay, S. and Paul, K., 1999) proposed a mobile agent scheme
to address this issue. The underlying principle of the scheme is that mobile agents could act
as messengers that would migrate from a source to a destination. A mobile agent could easily
be dispatched from a source node with the communication data in its payload, autono-
mously navigate through the ad-hoc network, find the destination, and deliver the message.
The authors evaluated the effectiveness of their scheme on a simulated environment, in a
closed area of 1000 × 1000 units, with network sizes of 20, 40, and 60 mobile hosts, and two
different mobility speeds (10units/sec and 30units/sec). The transmission range of each node
was varied from 50 to 150 units. Simulation results showed that the average number of hops
taken by an agent to deliver a message was not significantly high. Moreover, there was no
strong association between the number of hops taken by the agent and the nodal population
in the network. This is due to the fact, that a mobile agent can always find the appropriate
next hop, using an efficient routing protocol infrastructure, and thus an increased network
size would provide the agent with more migration options. Even with increased network
sizes, the increase in traffic with relation to the increase in the number of nodes was shown to
be low. This comes in contrast to standard flooding algorithms.

A comprehensive and novel routing protocol for ad-hoc networks, which utilises selfish
agents that accept payments for forwarding data for other agents, was presented in (Ande-
regg, L. and Eidenbenz, S., 2003). Selfish agents announce their individual costs for
forwarding data for other agents, and accept, only, if the payments made truly cover their
expenses. The routing protocol, called ad-hoc-VCG, is reactive and achieves truthfulness, as
it is designed in such a way that it is in the agent's best interest to reveal its true costs for for-
warding data. In addition, it is financially cost-efficient, and thus guarantees that data
packets are being routed along the most cost-efficient path. This is achieved by making pay-
ments to the intermediate nodes, consisting of a small premium, in addition to their real
costs for forwarding the data packets. The real cost of an intermediate node which forwards
data packets in favour of some source node, is defined as the total amount of wasted energy
throughout this process.

The protocol is not budget-balanced, in the sense that the intermediate nodes receive
premiums over their actual costs. However, the total overpayment is bounded by a factor of:

 26

min

max1

c
c

2 ⋅+α (2.1)

The variable α is the signal loss exponent and cmax (cmin) is the maximum (minimum) cost-of-
energy declared by the nodes on the most cost-effective path. Therefore, the protocol guaran-
tees that the total amount of payments made will be less than this factor, times the cost
incurred by routing along the most cost-efficient path. The underlying idea for achieving
truthfulness is to make cheating unattractive by making payments as high as a node could
possibly expect to obtain by cheating. Ad-hoc-VCG is robust against a single cheating node,
however, it may fail in the presence of coalitions of nodes which try to maximise their total
payments. Ad-hoc-VCG’s route discovery process is similar to DSR’s (Johnson, D. B., et. al.,
2004), and, it briefly works as follows:

• A source node S initiates a session for destination node D.
• Ad-hoc-VCG channels all information regarding shortest paths to the destination node

D.
• The destination node D computes the shortest path, and all the VCG payments that

need to be made.
• The destination node D sends this information back to the source.

The source node then sends its data packets along with electronic payments, to the destina-
tion through the shortest route. A disadvantage of ad-hoc-VCG is its requirement for the
complete knowledge of the underlying topology, which inevitably creates a large overhead in
the route discovery phase.

An additional study, in the context of ad-hoc routing with mobile agents support, was
proposed by Marwaha, S., et. al., 2002, who propose a hybrid routing scheme, called Ant-
AODV, which combines the on-demand nature of AODV with a proactive distributed to-
pology discovery mechanism using ant-like mobile agents. The primary aim of this protocol
is to reduce frequent update disseminations, usually required by proactive protocols, and fur-
ther reduce route discovery latency and end-to-end delays, usually found in reactive
protocols, and thus provides support for real-time data and multimedia communication. To
verify their method they used ns2 simulator to compare the Ant-AODV to conventional ant-
based and AODV routing protocols. A network of 50 mobile nodes, moving according to
the random waypoint model at a speed of 0-10m/s, and 20 constant bit rate (CBR) sources,
was simulated. In addition, several combinations of ant population and history sizes were

 27

used in the simulations. In terms of normalised routing overhead, the results matched the
logical expected values, that is, the normalised routing overhead of the ant-based routing was,
by far, the highest, while the overhead imposed by AODV was the lowest. Normalised rout-
ing overhead is referred to the number of routing packets transmitted per data packet
received at the destination. The reason for the worst performance of the ant-based routing is
that the actual data packets delivered were fewer and thus the ratio of control overhead to
data packets delivered became too high. In contrast, the normalised overhead of Ant-AODV
was shown to be slightly greater than AODV, and this may be attributed to the continuous
movement of ants in the network. However, Ant-AODV achieved the highest connectivity
and fewer end-to-end delays, at a cost of extra processing of the ant messages, and a slightly
higher overhead in occupying network capacity.

RoyChoudhury, R., et. al., 2000, proposed a multi-agent based framework to address the
aspect of topology discovery in wireless ad-hoc networks. The framework utilises mobile
agents with purpose to collect topology-related information from each node and distribute
their knowledge, in terms of updates, to all other nodes. The notion of stigmergic communica-
tion has been used throughout the implementation of a shared information cache in each
node, while the concepts of link stability and information aging were used in order to assist a
node with predicting the current network topology, based on the current network informa-
tion stored at the node. Accordingly, each node in the network has a recency token, which is a
counter that is initialised to zero. When an agent finishes its task on a node, it increments the
recency token found on the node by one, just before self-migration, and then memorises the
token’s value and assigns it to the information retrieved by that node. This technique pre-
vents an agent from updating a node n with routing information about node m, which is
older than the information maintained at node n concerning node m. Simulation results
showed that the average connectivity convergence improves with a decrease in mobility. For
time-to-migrate (TTM) equal to 100ms and high mobility equal to 30m/s, the connectivity
convergence goes below 80%. However, if the time-to-migrate is further reduced the connec-
tivity convergence should be logically increased. In case that the predictive mechanism is
used, even in the context of TtM equal to 100ms, the convergence values were shown to
reach over 98%.

The use of mobile agents for clustering has been proposed by Denko, M. K., 2003, which
uses a mobile agent-based clustering architecture for routing in mobile ad-hoc networks,
aiming to reduce the routing overhead, and thus provide a more scalable solution, compared
to non-agent-based approaches. According to the proposed architecture, mobile agents are
responsible for cluster maintenance, and for updating routing information at each node.
Mobile agents are also responsible to participate in cluster size adjustments, re-clustering, and

 28

continuous cluster status monitoring. In addition, they proposed that intra- and inter-cluster
routing can be carried out using different protocols, either reactive, or proactive. Each node
maintains a clustering table, which includes information, such as the IDs of its neighbours,
the node’s role, mobility information, and so on, and also maintains a routing table which
contains the routes to known destinations. Connectivity information is gathered by periodic
HELLO messages as in standard clustering algorithms. In addition, two instances of the fol-
lowing mobile agents are implicitly associated with each cluster-head:

• Routing mobile agent (RMA). This mobile agent moves across the ad-hoc network and

collects routing information, which it then stores and maintains in the routing table of its
home node.

• Clustering mobile agent (CMA). This mobile agent migrates to adjacent clusters and
collects clustering information. Once data gathering is completed, the mobile agent re-
turns back to its home node, and submits the collected information to the node’s
clustering table.

Due to the long migration times of mobile agents, the clustering architecture requires a rea-
sonable time to stabilise. However, once stable, each node has a complete knowledge of its
neighbours, while the cluster-head may have additional information about other cluster-
heads, gateways, and the routes to reach them. Therefore, the cluster-head has a central role
compared to non cluster-head nodes. In particular, it is responsible for updating its members
with clustering and routing information. They are currently evaluating the performance of
their proposed architecture and its routing behaviour using various performance metrics, in-
cluding: cluster-head changes, gateway changes, cluster size, and cluster membership changes.

2.5 Chapter Summary

This chapter has shown that proactive routing protocols cope well, with small-scale ad-hoc
networks, normally consisting of up to 100 nodes, whereas, reactive routing protocols can
cope well with increased network sizes, as they reduce the amount of routing update dis-
seminated through the network, which is typically the case in proactive routing protocols,
and thus scale better. However, reactive routing protocols have their limitations, as the net-
work overhead imposed by frequent route-requests, especially in the case of high-mobility
networks, can be highly, and thus they are ideal for medium-scale networks, normally con-
sisting of up to a few hundred nodes. An alternative solution that attempts to minimise the
scale of routing updates, as well as, the requirement for frequent route-requests, is found in

 29

hybrid routing protocols. These, typically organise the network into single, or, multiple pro-
active- and reactive-zones, where in the former nodes have knowledge of the topology,
whereas in the latter, nodes learn routing information normally by means of route-requests.

Hierarchical routing protocols impose a hierarchical structure, normally by organising the
network into clusters, which aim to restrict the propagation of control messages to key
nodes, only, and thus reduce the network overhead. However, key nodes may become net-
work bottlenecks, and single-points-of-failure, unless a sophisticated clustering formation
mechanism is used. In addition, most current routing protocols do not provide route redun-
dancy, and they typically rely on the hop-counting mechanism for optimal route
identification, which significantly narrows the reliability, and performance of the system. In
addition, hierarchical protocols, do not pay attention to key metrics, such as the processing
capability, network state, and overall utilisation of key nodes, and thus it is possible for a re-
source-constrained device to become a cluster-head role, whereas, a high-end device to
become a member, which is unacceptable, as a cluster-head typically has location manage-
ment and routing responsibilities, whereas, a member has minimal responsibilities. Thus, the
network's backbone is likely to consist of unsuitable devices, which significantly affect the
network's overall performance, and, at the same time, introduce unfairness to resource-
constrained devices.

 30

3 Model

3.1 Introduction

This chapter presents the model and specification of a routing protocol, named Mobile
Agents for Routing In Ad-hoc Networks (MARIAN), which was designed for the purpose of
this research. MARIAN is specifically designed for use in multi-hop wireless ad-hoc net-
works, where participating nodes may range from resource-constrained devices, such as
PDAs, to high-end devices, such as laptops and workstations. MARIAN provides the net-
work with self-organisation and self-configuration abilities, and thus reduces the need for any
existing network infrastructure or administration. It is based on the well-known, on-demand,
CBRP (Jiang, M., et. al., 2001), and extends it in a number of ways. Initially, CBRP is
purely on-demand, while MARIAN is a hybrid protocol, which uses stationary, on-demand,
intelligent agents and proactive mobile agents for network topology discovery, routing, and
network reconfiguration. In addition, CBRP uses single routes for any particular destination,
while MARIAN allows each source node and each cluster-head to maintain multiple routes
to a destination, and use these effectively. Furthermore, CBRP provides no mechanisms for
deciding on optimal routes, while MARIAN is metric-driven oriented, and, thus, MARIAN
can provide QoS by deciding on optimal routes in terms of the routing scenario which it is
aiming to accomplish, and, at the same time, protect devices’ vital resources, such as CPU,
memory, and battery life.

3.2 Synopsis of MARIAN specification

The proposed routing protocol is simple and efficient, and is designed specifically for multi-
hop ad-hoc networks, with resource-constrained devices, such as PDAs. An ad-hoc network
operating under MARIAN can be completely self-organising and self-configuring, and thus
requires no existing infrastructure, or external control. Network nodes within direct com-
munication range may exchange data directly, while nodes that are far away from each other
may pass network traffic over other intermediate, cooperating, network nodes.

Initially, the protocol organises participating network nodes into a number of intersect-
ing, or, adjacent clusters. The clustering formation algorithm used by MARIAN is a
variation of the well-known lowest-ID algorithm presented in (Gerla, M. and Tsai, J. T.-C.,
1995). According to the standard lowest-ID algorithm, a node is elected as a cluster-head if

 31

its ID is the lowest amongst its neighbouring nodes. The ID must be a unique number, such
as the node’s IP address. CBRP, for example, bases its clustering formation on this algo-
rithm, however, it provides no mechanism for deciding upon the most optimal node to
become a cluster-head. On the contrary, MARIAN uses a metric-oriented, lowest-ID algo-
rithm, which is essentially similar to the lowest-ID algorithm, however, the unique ID is
represented by a sophisticated metric, which integrates the mobility and performance pa-
rameters of the device. The mobility parameter is measured without the need of GPS, and
similar to MOBIC, which is proposed in (Basu, P., et. al., 2001), while the performance is
measured by conducting a number of preliminary tests, such as rigorous algorithm calcula-
tions, buffering capabilities, network state, and a number of continuous tests, such as CPU,
memory, and battery-level monitoring. Thus, it is possible that two devices can calculate the
same node-ID, as a result of very similar hardware characteristics and mobility patterns.

However, the lowest-ID algorithm (Gerla, M. and Tsai, J. T.-C., 1995) in which
MARIAN’s clustering formation is based, strictly forbids duplicate values. In order to guar-
antee that each device will calculate a fair and unique node-ID, a function which generates a
unique ID from a non-unique value must be used. The most attractive approach is to multi-
plex the node’s MAC address, which is guaranteed to be unique for each device, with the
calculated node-ID, in such a way, so as to guarantee the node-ID uniqueness and most im-
portantly leave the actual value virtually unmodified. An alternative approach would be to
allow nodes with the same node-ID to re-execute the election process as many times, as nec-
essary, as to eliminate the duplicate values. This is likely to be dissolved rapidly since a node-
ID is linked to various frequently changing factors, such as the battery level. However, this
approach may result in increased delays, network overhead, and implementation of coordina-
tion efforts.

Nodes which are directly linked to only one cluster-head are member nodes of that clus-
ter, which is bound by the cluster-head, while nodes which belong to two, or more, clusters
are gateways. A sub-class of a gateway is the distributed gateway pair, which consists of two
nodes in sequence, where each node is attached to a different cluster-head, and thus the pair
links two adjacent clusters, without them actually intersecting. A member node has minimal
responsibilities in the routing process, while the cluster-head is required to maintain routing
tables for inter-cluster routing, and actually route data within its own cluster. Thus, the clus-
tering formation algorithm has to be precise, in terms of the selecting the most suitable nodes
for taking up the cluster-head role, as normally, week cluster-heads can easily become per-
formance bottlenecks, and single-points-of-failure nodes. Gateways and distributed gateway
pairs are responsible for inter-cluster routing, and, thus, the selection of the appropriate

 32

gateway, or, distributed gateway pair, is important, as nodes may significantly vary in their
routing ability.

Once the clustering formation process is completed, each cluster-head can proactively
dispatch a network topology mobile agent, so as to collect network topology information
concerning clusters beyond its own. This process supports two levels of operation: a periodic,
and a triggered-event dispatch. According to the periodic dispatch, a cluster-head may dis-
patch a network discovery agent every t (s) time, which may be dynamically-tailored to the
needs of the cluster. According to triggered-event dispatch, the cluster-head bases its decision
on various parameters, such as the frequency of route-requests (RREQs) heard from its
member nodes during a certain time period. In addition to the proactive mobile agent ap-
proach, MARIAN supports a reactive stationary agent route discovery process, which is
initiated each time a node requires a route, which does not exist in its route cache, nor is
available in its local cluster-head. In this way, the proactive and reactive approaches operate,
in parallel, that is, the proactive assists nodes in retrieving routes easily, by simply requesting
them from their local cluster-heads, whereas, the reactive approach is used when the required
route does not exist in neither the node's route cache, or, in the local cluster-head. Thus a
source node earns valuable time by, initially, requesting the route from its cluster-head,
which would, otherwise, be wasted in the network discovery process, and thus the scheme
reduces overall latency.

Route requests are always forwarded along a repeated sequence of alternating cluster-head
and gateway node pair(s), which is also the case for mobile agents. In this way, the propaga-
tion of route requests and mobile agents is limited as there is no need for them to visit every
single node in the network, because the network is clustered. This can dramatically reduce
network overhead, which is typically associated with standard flooding techniques (see Sec-
tion 2.2). The on-demand, network discovery process of MARIAN is similar to that of
CBRP, however, MARIAN is able to discover multiple routes for a given destination, along
with the routing-metrics associated with each node. In particular, each node is associated
with two metrics. The first one, which has previously been described, is the cluster-head met-
ric, which is integrated into the node-ID, while the second one is the routing-metric, which
is deduced by the output of standard performance tests executed on each device, in advance,
including complex calculation tests, buffering capability tests, network throughput and
packet error percentage, and so on. In addition, the routing-metric incorporates a number of
varying parameters, such as the CPU utilisation, memory usage, and, if applicable, the bat-
tery level. As a result of this, the metric is non-fixed, and may vary considerably as these
parameters change. For instance, a device with an initial strong routing-metric, which at
some point in the future undertakes significant internal changes, such as when the CPU

 33

utilisation significantly increases, or the battery drops below a certain level, can cause the
metric to become considerably weaker.

When a source device receives multiple routes for a destination, along with the routing-
metric of each intermediate device, it dynamically calculates the overall routing fitness of
each route provided, with respect to the type of traffic which it intends to transmit. For ex-
ample, for traffic types with high requirements, such as synchronous (real-time audio), the
route with the lowest (strongest) overall routing-metric will be selected, while, for traffic
types with low requirements, such as asynchronous (text), the highest (weakest) overall rout-
ing-metric route will be used instead. In this way, MARIAN allows network traffic to flow
efficiently through the network, by appropriately utilising routes, that is, using the routes
which can support the type of traffic being sent, and, thus, it provides an improved level of
QoS support. In addition, MARIAN possibly avoids the over-utilisation of routes which
consist of devices with considerably low battery, or high utilisation. In this manner, it should
extend the life-time of low-battery devices that would be otherwise forced to route data, and,
furthermore, prohibit the overburdening of already highly-utilised devices. The routing met-
rics are thoroughly discussed in Section 3.13.

MARIAN is a loop-free protocol as it bases its fundamental functionality on CBRP which
is also loop-free. MARIAN allows mobile nodes to maintain their own route caches for
routes which have been discovered by the on-demand network discovery process, while
routes which have been discovered by the proactive mobile agents are maintained in the clus-
ter-heads’ routing table.

Route maintenance allows a source node to detect, while using a source route to a destina-
tion node, possible link breakages along that source route, which may be due to changes in
the network topology as a result of nodal movements. When an intermediate node along a
route senses that the next hop is not available, it creates a route error (RERR) packet and
transmits it back to the source node. In particular, when a source node, or an intermediate
node, forwards a data packet to the next hop, it is responsible for confirming that the data
packet has been successfully received by the next hop. Such a confirmation can be provided
by either the MAC protocol in use (e.g. link-layer acknowledgement frame defined by IEEE
802.11 (IEEE Standards, 802.11, 1999)), or by a passive acknowledgement. In case that an
acknowledgement has not been received over a certain number of retransmissions, the link to
the next hop is considered unavailable. Thus, in case the transmitting node is other than the
source, it constructs a route error packet in order to inform the source that the next hop
along the source route is unavailable. Unlike CBRP, MARIAN does not use route shortening
or local repair mechanisms, since the resulting shortened or salvaged route may not corre-
spond to the source’s expectations, that is, it may not provide the QoS required by the

 34

source. Thus, the source can immediately use an alternative route from its route cache, which
is associated with the same or better QoS than the previous route, or, in case of not such a
route existing, it may request a route from its cluster-head, or, finally, initiate a new route
discovery.

The actual routing of data packets is performed using source routing, and is similar to
DSR (Johnson D. B., et. al., 2004). The main advantage over hop-by-hop routing is that it
eliminates the need of intermediate nodes maintaining up-to-date routing information.

3.2.1 MARIAN Assumptions
The underlying assumptions made by this routing protocol are the following:

• Nodes are cooperating in the routing protocol, without cheating. It is generally as-

sumed, that each node in the ad-hoc network, which wishes to communicate with other
nodes, will accept the role given to it by the protocol, and perform its duties, without
cheating. For instance, a node which is given the role of a gateway will not purposely
block its data forwarding mechanism in order to avoid resource-consumptions, such as
battery discharge, increased utilisation, and so on.

• Nodes can detect corrupted packets and discard them. As a result of the unreliable na-
ture of the wireless medium, packets may be often lost or corrupted, at least in
comparison to a fixed network. It is assumed that a node receiving a corrupted packet
can detect the error and discard the packet. The node can then request the retransmission
of the packet.

• Movement of network nodes is not extreme and continuous. Nodes within the ad-hoc
network, operating under MARIAN, are free to move in an arbitrary fashion, and may
even move continuously, but within moderate speeds. In particular, if all nodes are con-
tinuously and rapidly moving, the clustering organisation will undertake frequent
changes, and thus impose a significantly high network overhead. In addition, routing of
data packets may become extremely difficult, and in excessive mobility scenarios, packets
may be forced to be routed by means of flooding to every possible destination. Therefore,
to guarantee proper operation of the routing protocol and gain the benefits offered by
clustering, the speed should be moderate.

• Node links are always bi-directional. MARIAN assumes that every link in the ad-hoc
network is bidirectional, and that each device supports an underlying MAC protocol,
such as IEEE 802.11 (IEEE Standards, 802.11, 1999), which provides link-layer ac-
knowledgements. This way, a node that receives a route-request can reverse the route,

 35

which was taken by the route-request, and thus instantly obtain a route back to the re-
questing node.

• Node IP addresses are assigned by an external mechanism. The node IP addresses are
assumed to be assigned by a mechanism external to the routing protocol, such as static
assignment or dynamic assignment by the use of DHCP.

In addition, the network diameter (∆) is the maximum distance, in hops, in which a data
packet must transverse in order to reach the destination. In practice, however, the distance
will usually be much less than the actual diameter of the network, and possibly significantly
fewer hops due to the advantages provided by clustering formation.

3.3 Overall MARIAN model

This section presents an overview of the protocol's overall model, which is then decomposed
and presented, in detail, in later sections. Figure 3.1 presents the overall model, based on a
small-scale network topology, and depicts: the metric-driven clustering formation; the proac-
tive network discovery mobile agent approach; the reactive route discovery stationary agent
approach, and the data structures, which are maintained at each node.

As illustrated, the network is organised into four clusters, that is, cluster A, cluster B, clus-
ter C, and cluster D, using the nodes' IDs, which are derived by the cluster-head metrics, as
previously mentioned. Clusters A and C intersect, as nodes G1 and G2 are directly linked to
the clusters' cluster-heads R2 and R3. Similarly, clusters B and D intersect, using the node G3,
and, clusters C and D intersect, using node G4. Although clusters A and B do not intersect, as
nodes DG1 and DG2, are not directly linked to both clusters' cluster-heads, the pair of nodes
DG1 and DG2 can be used for inter-cluster routing, and thus it is called distributed gateway
pair. The clustering formation process ensures that each connected node belongs to at least
one cluster, and that each cluster is linked to its adjacent clusters, as long as, there is connec-
tivity (see Section 3.5.1), thus, the clustering formation process is precise. In addition, as a
result of the clustering formation algorithm, cluster-heads can be at either 2-hops, or 3-hops
away, for example, R1 is 2-hops away from R4, whereas R1 is 3-hops away from R2.

Each node runs an agency, which provides the execution environment for stationary and
mobile agents, whereas, a cluster-head, in addition to the agency, it runs a region registry,
which provides a registration service for agencies, stationary and mobile agents, which exist
in its cluster (see Appendix A). The agency and region addresses are assigned by the mobile
agent system, which are, typically, two strings, and they consist of: the communications pro-
tocol used; the node's IP address; the port number, which is different for agencies and

 36

regions; and the name of the agency/region. In addition, each node's agency produces an
identifier, which is referred as the agency identifier, that is, a unique value in a distributed
environment (see Appendix A), and is thus used by the reactive route discovery process,
which is presented, in detail, in Section 3.6.1. Furthermore, each node has a node address,
which is its IP address, normally, the IP of its wireless interface. Each non-cluster-head node
registers to its local cluster-head's region registry, and receives a ticket, where, once expired,
the node assumes that it is no longer in direct communication range with the cluster-head.
As an example (see Figure 3.1), member node M4 has a node-ID of 85, which represents its
ability to become a cluster-head, whereas, it has a routing-metric of 78, which represents its
routing ability. In addition, its node address is set to the IP address of its wireless interface,
whereas the agency address incorporates the additional information that was previously men-
tioned.

Each node is required to broadcast its Neighbouring Node Table (NNT), which consists
of the nodes, that is, the node address and agency/region addresses, a node can hear from,
including, itself, along with the respective node-IDs, routing-metrics, and roles (see Section
3.4). Then, each node builds a 2-hop Neighbouring Node Table (2-hop NNT), which is
deduced from incoming NNTs, and consists of the 2-hop topology, from the viewpoint of
the node, which provides location information about cluster-heads that are 2-hops away. For
example, DG1 can deduce from the NNT broadcasted by DG2, that DG2 is directly linked to
R2, and, also, that DG2 is a distributed gateway, which can provide inter-cluster routing ser-
vices for cluster A and B. However, R1 does not know the existence of cluster A, yet, as this
information cannot be deduced by the NNT broadcasted by DG1, and, thus, DG1 is required
to broadcast its 2-hop NNT, so that cluster-head R1 can learn about cluster A. Specifically,
each distributed gateway is required to broadcast its 2-hop NNT, in addition to, its NNT,
and thus cluster-heads can obtain knowledge of each adjacent cluster-head, that is, cluster-
heads which are 3-hops away. The information contained in 2-hop NNT is: the cluster-
heads' node addresses; the cluster-heads' agency address; the distributed gateways' node ad-
dresses; the distributed gateways' agency addresses; and the respective node-IDs and routing-
metrics (see Section 3.4)

As previously mentioned, MARIAN provides an on-demand route discovery process (see
Section 3.6.1), which is based on stationary agents, and a proactive network topology gather-
ing process (see Section 3.6.2) which is based on mobile agents. Both approaches coexist, and
execute, in parallel, and thus mobile agents gather the network topology asynchronously, and
provide the routing information to their cluster-heads, whereas a node that requires a route,
assuming that the route does not exist in its cluster-head's routing table, it can independently
initiate a route-request. As an example of the reactive approach, M5 requests a route to M3

 37

from its cluster-head R3, and the cluster-head responds back and provides the routing infor-
mation, whereas, M2 requires a route to M4, but its cluster-head R1 does not have this
information, and thus, M2 initiates a full-scale route-request. As shown in Figure 3.1, the
route-request traverses only key nodes, such as cluster-heads, gateways, and distributed gate-
way pairs, and, in addition, it travels through all possible paths, which excludes the paths
that involve multiple gateways. For example, the route-request travelled from R2 to R3
through G2 only, as there is no need for the route-requests to traverse all possible paths, as
this is left to the corresponding route-replies. Furthermore, the route-request was routed
through G2 and not G1, as G2 has a lower metric than G1, and thus it provides a more reliable
path. M4 creates and transmits a route-reply for each incoming route-request, and specifies
the reverse route that each route-request took, which consists of the cluster-head list only, as
the gateway and distributed gateway information is not required, as each cluster-head knows
its adjacent cluster-heads and the way to reach them. The route-replies gather the complete
routing information, which includes all possible routes to M4, as well as, the routing-metrics
of each node along these routes, and, thus, M4 can determine the most optimal routing path,
in relation to the type of traffic it requires to transmit, as described in Section 3.13.

 The mobile agents propagate in a similar manner to route-requests, that is, they visit each
key node in the network by cloning themselves, until a dead-end is reached, that is, each key
node has been previously visited, and thus they return back to their originating mobile agent
systems, which they submit the routing information gathered to their parents, that is, each
node's NNT, and then kill themselves. The mobile agents gather this information from the
cluster-heads they visit, and before migration they filter relevant information, so as to reduce
the size. However, the full-scale process is not illustrated in Figure 3.1, due to the lack of
space, nevertheless, the process it is fully described in Section 3.6.2.

3.4 Message Formats and Data structures

MARIAN defines three data structures which are required for the clustering formation and
route discovery processes: the Neighbouring Node Tables (NNTs); the 2-Hop Neighbouring
Node Tables (2-Hop NNTs); and the Neighbouring Cluster Tables (NCTs).

Neighbouring Node Tables (NNTs)
Each node creates, maintains, and broadcasts its NNT, which contains information about
the node's neighbours, including: the NodeAddress; the AgencyAddress; the RegionAddress,
which is only applicable to cluster-heads; the Node-ID; the Routing-Metric; and the Role (see
Appendix A).

 38

Cluster A

Cluster B

Cluster C

Cluster D1 Hop

2 Hop

3 Hop

1 Hop 2 Hop

Node-ID: 10
Routing-ID: 14
Node address: 192.168.0.10
Agency address:
socket://192.168.0.10:7000/GHagency
Region address:
socket://192.168.0.10:7020/GHregistry

Node-ID: 85
Routing-ID: 78
Node address: 192.168.0.10
Agency address:
socket://192.168.0.10:7000/GHagency

GatewayGateway

Cluster-headCluster-head

MemberMember

Distributed
Gateway
Distributed
Gateway

Inter-cluster routing device
Node ID: 33, Routing ID: 55

Inter-cluster
routing device

Intra-cluster routing device
& Location management
Node ID: 9, Routing ID: 8

Routing ID: 45

Routing ID: 75

M2

DG1

R1

R2

R3

R4

DG2

G2

G1

G3

G4

M1

M3
M4

M5

M6

NNT
R4 10, 14
M8 99 99

2-hop NNT
R4 10, 14 | G3 45, 67

Node ID: 25
Routing ID: 19

NCT
R1 9, 8 | DG2 25, 19 | DG1 33, 55

Node ID: 45,
Routing ID: 67

Routing
Table

min. RREQ

RREP

Routing
Cache

RREQ (M 4)

Proactive network
discovery, initiated by R2

Minimal-propagation RREQ
and corresponding RREP

Full-propagation
RREQ, initiated by
M2 for M4

Node ID: 99, Routing ID: 99

RREP, initiated by
M4 for M2

Figure 3.1: The MARIAN overall model

 39

The NNT is broadcasted as an extension to a HELLO packet at every HELLO_interval time.
The NNT is outlined in Table 3.1

Table 3.1: The NNT data structure

NodeAddress Agency/Region
Address

Node-ID Routing-Metric Role

IP_ address_1 A/R_address_1 cl_numb_1 r_numb_1 Undecided or Member or Cluster-head
or Gateway or Distributed Gateway

IP_ address_2 A/R_address_2 cl_numb_2 r_numb_2 Undecided or Member or Cluster-head
or Gateway or Distributed Gateway

… … … … …
IP_ address_n A/R_address_n cl_numb_n r_numb_n Undecided or Member or Cluster-head

or Gateway or Distributed Gateway

The formatting of an NNT extension to a HELLO message is shown in Table 3.2. In case
the broadcasting node is a non-cluster-head the corresponding RegionAddress field of the
packet is set to null. Similarly, the neighbour RegionAddress field is set to null, if the
neighbour node is a non-cluster-head.

Table 3.2: The NNT extension to a HELLO message

TotalNeighbours Role
Role Role Role Role Role Role Role Role

own NodeAddress
own AgencyAddress
own RegionAddress

own Node-ID
own Routing-Metric

neighbour NodeAddress [1]
neighbour AgencyAddress [1]
neighbour RegionAddress [1]

neighbour Node-ID [1]
neighbour Routing-Metric [1]

…
neighbour NodeAddress [TotalNeighbours]

neighbour AgencyAddress [TotalNeighbours]
neighbour RegionAddress [TotalNeighbours]

neighbour Node-ID [TotalNeighbours]
neighbour Routing-metric [TotalNeighbours]

TotalNeighbours: The total number of listed neighbours
Role: The current role of each entry. (0 Undecided, 1 Member, 2 Cluster-head,
 3 Gateway, 4 Distributed Gateway).

 40

2 Hop Neighbouring Node Tables (2-Hop NNTs)
These tables are deduced from incoming NNTs, and contain information about neighbour-
ing cluster-heads, and the corresponding gateway nodes, or, the distributed gateway pairs. As
MARIAN utilises multiple routes, information contained in these tables includes all possible
gateway nodes, or, distributed gateway pairs, leading to a single cluster-head. 2-hop NNTs
are broadcasted by distributed gateways only as an extension to a HELLO message. The aim
is to allow cluster-heads to identify adjacent cluster-heads that are 3-hops away, typically
linked with one, or more, distributed gateway pair(s). The situation where, a cluster-head
will be 3-hops away from another cluster-head, is not common, as the clustering formation
algorithm, normally, organises the network into intersecting clusters, however, it is likely that
in a large network topology there will be a number of non-intersecting clusters. Table 3.3
presents the formatting of the 2-hop NNT, which is maintained at distributed gateway
nodes.

Table 3.3: The 2-hop NNT data structure

DistributedGateway [1] Routing-Metric [1]
DistributedGateway [2] Routing-Metric [2]

…

AdjacentClusterhead [1]

DistributedGateway [k] Routing-Metric [k]
DistributedGateway [1] Routing-Metric [1]
DistributedGateway [2] Routing-Metric [2]

…

AdjacentClusterhead [2]

DistributedGateway [k] Routing-Metric [k]
… … …

DistributedGateway [1] Routing-Metric [1]
DistributedGateway [2] Routing-Metric [2]

…

AdjacentClusterhead [n]

DistributedGateway [k] Routing-Metric [k]

The information maintained at the 2-hop NNT includes: the NodeAddress; AgencyAddress;
and RegionAddress of each adjacent cluster-head, as well as, the NodeAddress; AgencyAddress;
and Routing-Metric of each distributed-gateway node leading to these cluster-heads. This data
structure is maintained by cluster-heads and distributed gateways, however, only distributed
gateways broadcast it as an extension to a HELLO message. The formatting of a 2-hop NNT
extension is shown in Table 3.4.

Table 3.4: The 2-hop NNT extension to a HELLO message

CH_Length DG_Length (k) … DG_Length (m)
AdjacentClusterhead NodeAddress [1]

 41

AdjacentClusterhead AgencyAddress [1]
AdjacentClusterhead RegionAddress [1]
DistributedGateway NodeAddress [1]

DistributedGateway AgencyAddress [1]
DistributedGateway Routing-Metric [1]

…
DistributedGateway NodeAddress [DG_Length (k)]

DistributedGateway AgencyAddress [DG_Length (k)]
DistributedGateway Routing-Metric [DG_Length (k)]

…
AdjacentClusterhead NodeAddress [CH_Length]

AdjacentClusterhead AgencyAddress [CH_Length]
AdjacentClusterhead RegionAddress [CH_Length]

DistributedGateway NodeAddress [1]
DistributedGateway AgencyAddress [1]
DistributedGateway Routing-Metric [1]

…
DistributedGateway NodeAddress [DG_Length (m)]

DistributedGateway AgencyAddress [DG_Length (m)]
DistributedGateway Routing-Metric [DG_Length (m)]

CH_Length: The total number of listed AdjacentClusterheads.
DG_Length (k): The number of DistributedGateways leading to the first listed
 AdjacentClusterhead [1].
DG_Length (m): The number of DistributedGateways leading to the last listed
 AdjacentClusterhead [CH_ Length].

Neighbouring Cluster Tables (NCTs)
These tables are maintained by cluster-head nodes only, and contain information on how a
cluster-head can reach an AdjacentClusterhead which is 3-hops away. Cluster-heads deduce
the NCTs from incoming HELLO packets, with the 2-hop NNT extensions, which are
broadcasted by DistributedGateways. Information, contained in NCTs, includes:

• The NodeAddress, AgencyAddress, and RegionAddress of each AdjacentClusterhead.
• The NodeAddress, AgencyAddress, and Routing-Metric of each DistributedGateway.

NCTs in conjunction with 2-hop NNTs provide the necessary information to cluster-heads
in order for them to know the complete list of their intersecting and adjacent clusters, that is,
the complete information about every neighbour cluster-head and the intermediate gateway
nodes. In contrast to 2-hop NNTs, NCTs are not broadcasted. Table 3.5 presents the NCT
data structure, while the DistributedGateway is represented by D.G. for better presentation of
the table. The first column of DistributedGateways refers to the intermediate node which is
linked to the clusterhead, while the second column refers to the intermediate node which is

 42

linked to the destination cluster-head. Thus, the pair of DistributedGateways allow two clus-
ter-heads, which are 3-hops away, to communicate.

Table 3.5: The NCT data structure

D. G. [1] Routing-Metric [1] D. G. [1] Routing-Metric [1]
D. G. [2] Routing-Metric [2] D. G. [2] Routing-Metric [2]

… … … …

AdjacentClusterhead (1)

D. G. [k] Routing-Metric [k] D. G. [m] Routing-Metric [m]
D. G. [1] Routing-Metric [1] D. G. [1] Routing-Metric [1]
D. G. [2] Routing-Metric [2] D. G. [2] Routing-Metric [2]

… … … …

AdjacentClusterhead (2)

D. G. [k] Routing-Metric [k] D. G. [m] Routing-Metric [m]
… … … … …

D. G. [1] Routing-Metric [1] D. G. [1] Routing-Metric [1]
D. G. [2] Routing-Metric [2] D. G. [2] Routing-Metric [2]

… … … …

AdjacentClusterhead (n)

D. G. [k] Routing-Metric [k] D. G. [m] Routing-Metric [m]

3.5 Neighbouring cluster discovery process

The clustering formation and clustering maintenance processes require minimal information
to be constantly broadcasted as an extension to a HELLO message by each participating
node, regardless of its role. However, the amount and nature of information broadcasted is
related to the node’s role. Specifically, nodes with Undefined, Member, Gateway, or Cluster-
head status are required to broadcast their NNTs as an extension to a HELLO message, while
nodes with DistributedGateway status are required to broadcast their 2-hop NNTs, as well as
their NNTs, as an extension to a HELLO message. The neighbouring cluster discovery proc-
ess uses this information to inform cluster-heads of their intersecting, as well as adjacent
cluster-heads. In this way, a cluster-head learns information about its intersecting clusters
which are 2-hops away by examining incoming NNTs, while it learns information about ad-
jacent clusters which are 3-hops away by examining incoming 2-hop NNTs. In addition, a
cluster-head also learns information about every possible gateway, and distributed gateway
pair, leading to each cluster. Also, a cluster-head learns the routing-metrics, of each interme-
diate gateway and distributed gateway pair, and thus a cluster-head can determine, at all
times, the best routing path, which may be used to reach its neighbouring clusters.

A cluster-head stores information about all of its 2-hop neighbouring cluster-heads in a 2-
hop NNT, and all of its 3-hop ones in a NCT, which are maintained locally and are not
broadcasted. As an example, consider Figure 3.1, where R1 learns about R4 by examining the
NNT broadcasted by G3, whereas R2 learns about R1 by the examining 2-hop NNT broad-

 43

casted by DG2. Specifically, in the first case, R1 learns that R4 is two hops away, and that the
only intermediate node is G3 with routing-metric of 67, whereas, in the second case, R2 learns
that R1 is three hops, and that the intermediate distributed gateway pair is DG2-DG1, with
routing-metrics of 19 and 65, respectively.

3.5.1 Cluster formation process
In respect to ad-hoc networks, clustering formation refers to the process which imposes a
logical structure or hierarchy to an otherwise disoriented network. MARIAN bases its clus-
tering process on a variation of the well-known lowest-ID algorithm (Gerla, M. and Tsai, J.
T.-C., 1995). The mechanics of this algorithm along with its properties were thoroughly dis-
cussed in Appendix B.7, thus only the modifications performed are presented in this section.
Initially, MARIAN adopts the LCC modification proposed in (Chiang, C.-C., et. al., 1997)
and tailors it to its needs. The purpose is to extend the life-time of a cluster, and thus reduce
network overhead often involved with re-clustering, by defining a set of rules, which are out-
lined bellow:

• A non-cluster-head never challenges the role of an existing cluster-head, even if its node-

ID is lower.
• Only when two cluster-heads move next to each other, one of them loses the cluster-head

role, a decision based on the lowest node-ID.
• An exception to the above rules is when a cluster-head produces a node-ID of infinitive

(∞) metric; it then loses its role, moves to Undecided state, and thus re-clustering is per-
formed.

• When a non-cluster-head node moves out of its cluster, and does not enter into any ex-
isting cluster, it forms a new cluster and becomes the cluster-head of this cluster,
irrespectively to its node-ID.

• Member nodes which leave their cluster(s) will have to move to an Undecided state and
re-execute the clustering algorithm.

In addition to the Clusterhead, Member, and Gateway states, which have been defined in
(Gerla, M. and Tsai, J. T.-C., 1995), MARIAN defines an Undecided state for smoother op-
eration of the clustering formation process, similarly to CBRP. Moreover, MARIAN defines
the DistributedGateway role, which is not part of CBRP, which aims to simplify the cluster-
ing formation process, and, importantly reduce network overhead. This is achieved by
requiring only DistributedGateways to broadcast their 2-hop NNTs, in contrast to CBRP

 44

where each node is required to broadcast this information. Although MARIAN broadcasts
additional information to CBRP, such as the nodal AgencyAddresses and Routing-Metrics,
these reductions in network overhead may compensate for this.

Most importantly, MARIAN uses a metric-driven, lowest-ID algorithm, which employs
the scheme presented in (Basu, P., et. al., 2001) and discussed in Appendix B.8. Briefly, this
novel approach utilises a mobility metric, named MOBIC, which is calculated based on the
ratio of power levels due to successive receptions at each node. MARIAN uses MOBIC for
clustering formation in conjunction with performance metrics, such as buffering capabilities,
calculation of complex algorithms, throughput, network error percentage, utilisation status,
battery level, and so on, in order to calculate an overall node-ID, which represents the fitness
of a node to become a cluster-head, and ranges between 0 (best) and 100 (worst).

Five transition state diagrams have been included in this section, which describe the basic
functions performed by nodes according to their role, including: Undecided; Clusterhead;
Member; Gateway; and DistributedGateway. Figure 3.2 illustrates the actions performed by an
Undecided node. Initially, the node sets an un_timer and constantly broadcasts a HELLO
message which includes its NNT. Each time a node receives a HELLO message from a node
other than itself, it updates its own NNT. If the incoming HELLO message is received by a
cluster-head, the node cancels the un_timer and updates its role to member of that cluster-
head. If the un_timer expires, the node examines its NNT for entries. If at least one entry
exists, the node compares its node-ID with the node-ID(s) of its neighbour(s). If the node
has the lowest node-ID it changes its state to Clusterhead and broadcasts a triggered HELLO
message. The node compares its own node-ID with only other Undecided nodes. If the node
finds no entries in its NNT it sets a new un_timer.

Figure 3.3 illustrates the actions performed by a Member node towards clustering forma-
tion. Specifically, a Member node constantly broadcasts its own NNT as an extension to a
HELLO message. In the case that a Member node loses the registration ticket of its cluster-
head, it changes its role to Undecided. If the Member node receives a HELLO message from
another cluster-head, it changes its role to Gateway. If it receives a HELLO message from a
Gateway, it simply updates its own NNT by adding the Gateway’s information. In the case
where a Member node receives a HELLO from another Member, it examines the other node’s
NNT and identifies whether the node is a Member of a cluster-head other that its own. If this
is true it becomes a DistributedGateway, otherwise it updates its own NNT inserting the in-
formation of the new node. The same goes for a member node which received a HELLO
message from a DistributedGateway.

 45

UNDECIDEDUNDECIDED

Set un_timer

YES

NO

NO

YES Send triggered
‘HELLO’ as
CLUSTER-

HEAD

NO

CLUSTER
-HEAD

CLUSTER
-HEAD

Is the
lowest CH

metric
mine?

Is the
lowest CH

metric
mine?

Have I
received

NNTs from
other nodes?

Have I
received

NNTs from
other nodes?

Cancel
un_timer

Update NNT
as MEMBER

Broadcast
own NNT

Set new
un_timer

MEMBERMEMBER

Update NNT
and include
new node’s
information

Received ‘HELLO’
from non Cluster-

head

Received ‘HELLO’
from non Cluster-

head

un_timer
expired

un_timer
expired

Received
‘HELLO’ from
Cluster-head

Received
‘HELLO’ from
Cluster-head

NO

Ignore this
node for

the
election

YES

Is the node
with the lowest

CH metric
‘Undecided’?

Is the node
with the lowest

CH metric
‘Undecided’?

Figure 3.2: Undecided state transition diagram

MEMBERMEMBER

Update NNT

UNDECIDEDUNDECIDED GATEWAYGATEWAY

Lost registration
ticket with

Cluster-head

Lost registration
ticket with

Cluster-head

Received
‘HELLO’ from

Member

Received
‘HELLO’ from

Member

Received
‘HELLO’ from

another
Cluster-head

Received
‘HELLO’ from

another
Cluster-head

Examine
Member’s

NNT

YES

NO
DISTRIBUTED

GATEWAY
DISTRIBUTED

GATEWAY

Received ‘HELLO’
from Gateway

Received ‘HELLO’
from Gateway

Received ‘HELLO’
from Distributed

Gateway

Received ‘HELLO’
from Distributed

Gateway

Broadcast
own NNT

Examine
Distributed
Gateway’s

NNT

Does
Distributed

Gateway hear
from a Cluster-
head other than

mine?

Does
Distributed

Gateway hear
from a Cluster-
head other than

mine?

NOYES

Update NNTUpdate NNT

Update NNT
Does Member

hear from a
Cluster-head

other than
mine?

Does Member
hear from a

Cluster-head
other than

mine?

Figure 3.3: Member state transition diagram

 46

Figure 3.4 illustrates the actions performed by a node with a Clusterhead role. Once a node
has been elected as a Clusterhead it starts a region registration service and registers its own
agency (see Appendix A). A Clusterhead, just like a Member, constantly broadcasts its own
NNT as an extension to a HELLO message. If a Clusterhead receives a HELLO from a non-
Clusterhead node, it updates its NNT with the new node’s information and registers the new
node’s agency to its region registration service. The reason for doing so is that nodes within
the same cluster that are two hops away from each other can query the region registry, which
runs on the Clusterhead, in order to retrieve routing information for each other. Another rea-
son is that network discovery mobile agents can gather information about the member nodes
within the cluster, without having to visit every single one, by just querying the cluster-head’s
region registration. If a Clusterhead stops receiving HELLO messages from a registered node,
it deregisters its agency from its region registration service. In the case that a Clusterhead re-
ceives a HELLO message from another Clusterhead it sets a cl_timer. When the cl_timer
expires, the Clusterhead examines its NNT to verify whether the other cluster-head is still in
direct communication range, or that it has left its cluster. If the two cluster-heads are still
linked, they compare their node-IDs. The lowest node-ID wins, while the highest loses and
thus shuts down its region registration service, changes its role to member and sends a trig-
gered HELLO message as Member.

CLUSTER-HEADCLUSTER-HEAD

YES

Is my CH
metric
lower?

Is my CH
metric
lower?

NO

YES

Update NNT

Received
‘HELLO’ from
non Cluster-

head

Received
‘HELLO’ from
non Cluster-

head

Received
‘HELLO’ from
Cluster-head

Received
‘HELLO’ from
Cluster-head

cl_timer
expired
cl_timer
expired

Register
node’s
agency

Start region
registration

service

MEMBERMEMBER
Send triggered

‘HELLO’ as
Member

Am I directly
linked to
another

cluster-head?

Am I directly
linked to
another

cluster-head?

Shutdown
region

registration
service

Broadcast
own NNT

A Member
moved away

from this
Cluster-head

A Member
moved away

from this
Cluster-head

Deregister
node’s
agency

Update NNT

Update NNT
as Member

Set
cl_timer NO

Figure 3.4: Cluster-head state transition diagram

 47

Figure 3.5 illustrates the actions performed by a Gateway node. Initially, it examines a boo-
lean variable, named D.G_G, which reveals if this Gateway has DistributedGateway
responsibilities. If this is true, the Gateway broadcasts its own NNT and 2-hop NNT as an
extension to a HELLO message, otherwise it simply broadcasts its own NNT. If it receives a
HELLO message from a new Clusterhead it increases the total number of tickets by one and
updates its own NNT with the new cluster-head’s information. If the Gateway node receives
a HELLO from a non-Clusterhead, it updates its own NNT with the new node’s informa-
tion. If it loses a registration ticket which was associated with one of its Clusterheads, it
decreases the number of total tickets by one, and examines the remaining number of tickets.
If the remaining number is greater or equal to two, the node remains a Gateway. If the re-
maining number is one, the node becomes a Member, in the case of the D.G_G variable
being false, otherwise, it becomes a DistributedGateway. However, if the remaining tickets are
less than one, the node becomes Undecided.

GATEWAYGATEWAY

Broadcast own
NNT and 2-hop

NNT

NO

YES

NO

Received
‘HELLO’ from
Cluster-head

Received
‘HELLO’ from
Cluster-head

Increase the
number of

tickets by one

Decrease the
number of

tickets by one

Received
‘HELLO’ from

non Cluster-head

Received
‘HELLO’ from

non Cluster-head

Lost registration
ticket with a
Cluster-head

Lost registration
ticket with a
Cluster-head

Update NNT

Update NNT

UNDECIDEDUNDECIDED

Are tickets ≥ 2 ?Are tickets ≥ 2 ?

Is ticket = 1 ?Is ticket = 1 ?

Is D.G_G set
to true ?

Is D.G_G set
to true ? YESNO

Broadcast own
NNT

MEMBERMEMBER

YES

Does non
Cluster-head
hear from a

Cluster-head
other than

mine?

Does non
Cluster-head
hear from a

Cluster-head
other than

mine?

NO

Is D.G_G set
to true ?

Is D.G_G set
to true ?

DISTRIBUTED
GATEWAY

DISTRIBUTED
GATEWAY

Set D.G_G
to true

NO YES

YES

Figure 3.5: Gateway state transition diagram

 48

Figure 3.6 illustrates the actions performed by a DistributedGateway node. By default, it con-
stantly broadcasts its own NNT and 2-hop NNT as an extension to a HELLO message.
Initially, it sets a dg_timer which is usually set to a small amount of time. If the timer expires
the DistributedGateway checks its own NNT in order to identify whether the Distribut-
edGateway, which it is linked to, is still within direct communication range. If this is true,
the DistributedGateway does not change its state, otherwise, it becomes a Member node. If a
DistributedGateway loses its registration ticket to a cluster-head’s region, it changes its state
to Undecided. If it receives a HELLO from a new Clusterhead, it changes its role to Gateway,
however, it still maintains its distributed Gateway capabilities, and thus keeps-on broadcast-
ing its NNT and 2-hop NNT as an extension to a HELLO message. If it receives a HELLO
from a non-Clusterhead, it updates its NNT with the new node’s information.

DISTRIBUTED
GATEWAY

DISTRIBUTED
GATEWAY

UNDECIDEDUNDECIDED

GATEWAYGATEWAY

Lost registration
ticket with

Cluster-head

Lost registration
ticket with

Cluster-head

Received
‘HELLO’ from

another
Cluster-head

Received
‘HELLO’ from

another
Cluster-head

NO

Received
‘HELLO’ from a

non Cluster-
head

Received
‘HELLO’ from a

non Cluster-
head

Broadcast own
NNT and 2-hop

NNT

MEMBERMEMBER

Set dg_timer

dg_timer
expired

dg_timer
expired

Examine
incoming NNTs

YES

YES

Update NNTUpdate NNT

Does
Distributed

Gateway hear
from a Cluster-
head other than

mine?

Does
Distributed

Gateway hear
from a Cluster-
head other than

mine?

NO

Has it received
a ‘HELLO’ from

a Distributed
Gateway in the
last dg_timer?

Has it received
a ‘HELLO’ from

a Distributed
Gateway in the
last dg_timer?

NO

Update NNT

Set D.G_G
to true

Figure 3.6: Distributed gateway state transition diagram

 49

3.6 Route discovery in MARIAN

MARIAN performs route discovery in a reactive, as well as a proactive manner. The reactive
nature of MARIAN is similar to CBRP, however, MARIAN allows multiple routes to be dis-
covered for a single route discovery. In addition, the routing-metrics of each device along
each discovered route are returned to the source node. The source can then calculate an over-
all routing-metric for each route, tailored to its routing scenario. This process may allow
intelligent routing decisions to be taken by the source, as opposed to standard hop-counting
routing mechanism. For instance, assuming that node S, discovers two routes to node D,
with the first consisting of high routing-metrics, while the second with low. MARIAN en-
ables the source to transmit its high requirements network traffic, such as real-time audio,
through the route with the lowest overall routing-metric, while transmit the low require-
ments network traffic, such as asynchronous chat, through the route with the highest overall
routing-metric. In this way, single routes are not over-utilised which can frequently result in
over-consuming devices’ important assets, and, furthermore, it may provide network scalabil-
ity, and extend the network’s life-time.

MARIAN’s proactive nature is based on the mobile agent concept. Specifically, compact,
intelligent, goal-oriented agents are migrated from one key node (nodes other than Member
and Undecided) to another, cloning themselves, cooperating with each other, and finally
building the network’s topology. Cluster-heads are the only nodes which are allowed to initi-
ate these agents, and are responsible for their propagation and population. In particular,
agent propagation can be controlled by allowing cluster-heads to dynamically set a propaga-
tion limit, which reflects the network discovery-depth the cluster-head wishes to retrieve.
The maximum propagation limit is the complete ad-hoc network, while the minimum is the
second row of adjacent cluster-heads, for which a cluster-head has no default knowledge. As
previously mentioned, MARIAN defines two levels of agent initiation, including a periodic
and a triggered-event. According to the periodic dispatch, a cluster-head may dispatch a net-
work discovery agent every t (s) time, which may be dynamically tailored to the needs of the
cluster. According to the triggered event dispatch, the cluster-head bases this decision on
various parameters, such as the frequency of route-requests heard from its member nodes
during a certain time period. The time limits between successive dispatches must be suffi-
ciently large in order to guarantee that the population of these agents is not exceeding a
certain threshold, however consistent with the needs of each cluster. Similar to reactive route
discovery, these agents gather the routing-metric of each routing node, in addition to the
complete network topology. This approach aims to significantly reduce latency often in-
volved with purely reactive methods, and thus maximise support for multimedia

 50

transmissions. This is achieved by providing a complete routing table at each cluster-head,
and thus allowing non-cluster-head nodes to retrieve routes to desired destinations, in a
much faster way than on-demand route discovery. However, if a desired route is not available
in the cluster-head’s routing table, or the route does not provide the QoS required by a
source node, it may initiate an independent, on-demand route discovery based on the reac-
tive approach.

The clustering structure is employed by the both reactive and proactive approaches, such
that the flooding traffic is significantly minimised for the reactive approach, and the mobile
agent migrations are significantly reduced for the proactive. Moreover, the combination of
these approaches, along with their features can reduce latency, maximise network perform-
ance, by employing multiple routes, and provide improved QoS by utilising the routing-
metrics.

3.6.1 Reactive route discovery
Each time a non-cluster-head node S wishes to send network traffic to destination D, it
searches its local NNT and identifies if D is in direct communication range. If this is true, S
transmits directly to D, otherwise it searches its route cache. If a route is found, such that the
QoS required by node S is guaranteed, it transmits its data through this route, in a way simi-
lar to DSR. Otherwise, S constructs a minimal propagation route-request packet (see Table
3.6) targeted for its cluster-head, asking for a route to D. Node S enters its AgencyAddress,
and, if the route’s NodeAddresses are required, it enters the target’s NodeAddress, otherwise, it
leaves it blank, and fills in the target’s AgencyAddress instead, which means that the route's
AgencyAddresses are required.

Table 3.6: Minimal propagation route request packet format

 0 0 1 Identification
Originator’s AgencyAddress

Target’s NodeAddress
Target’s AgencyAddress

Identification: A unique string identifying this minimal propagation RREQ. Perhaps,
 incorporating the source’s agency identifier with the number of
 this request attempt.
001: Type of MARIAN packet, minimal propagation RREQ.
Target: The agency and node address of the destination node for which the route
 is requested.
Originator: The agency address of the source node.

 51

Algorithm 3.1 outlines the process followed by a source node, before it starts its data trans-
mission.

Algorithm 3.1: Preparation for data packet transmission by a MEMBER node

IF S is a MEMBER
Examine the NNT
IF D exists in NNT

Transmit to D directly
Terminate

ELSE IF S’s route cache has a route to D which satisfies S’s QoS requirements
Transmit over that route using source routing
Terminate

ELSE
Construct a minimal propagation RREQ
Transmit RREQ to cluster-head

ENDIF
IF the corresponding RREP(s) includes a route such as node S’s QoS requirements can be satisfied

Transmit over that route using source routing
Terminate

ENDIF
ENDIF

If the cluster-head has a single route to D, it replies back with a single minimal propagation
route reply (RREP) packet targeted for S, and informs it about the complete, ordered list of
nodes, and their corresponding routing-metrics. In the case that the cluster-head has two, or,
more routes to D, it creates and transmits multiple minimal propagation route-reply packets
to the requesting node, whereas, if the cluster-head does not have a route to D, it creates and
transmits a route-not-available (RNA) packet. The minimal propagation route-reply packet
format is presented in Table 3.7, while the route-not-available packet format is presented in
Table 3.8.

Table 3.7: Route-not-available packet format

 1 1 0 RNA Identification
Originator’s AgencyAddress

Target’s NodeAddress
Target’s AgencyAddress

110: Type of MARIAN packet, route-not-available (RNA).
Identification: The unique identification copied from the minimal propagation RREQ.
Originator: The cluster-head’s agency address.
RNA: Always set to 1, and means that the requested route does not exist in the
 cluster-heads routing table.

 52

Table 3.8: Minimal propagation route reply packet format

 1 1 0 TotalSourceAddresses Identification
Originator’s AgencyAddress

SourceRoute NodeAddress [1]
SourceRoute AgencyAddress [1]

Routing-Metric [1]
…

SourceRoute NodeAddress [TotalSourceAddresses]
SourceRoute AgencyAddress [TotalSourceAddresses]

Routing-Metric [TotalSourceAddresses]

011: Type of MARIAN packet, minimal propagation RREP.
TotalSourceAddresses: The total number of node or/and agency addresses composing the source
 route.
Identification: The unique identification copied from the minimal propagation RREQ.
Source Route: The node and agency addresses of an intermediate device along the source
 route.
Originator: The cluster-head’s agency address.

In case that the procedure depicted in Algorithm 3.1 does not supply S with the desired
route to destination D, then S may construct and transmit a full-scale route-request, as out-
lined in Table 3.9.

Table 3.9: The route request packet format

0 1 0 TotalClusterheadGatewayPairs TotalClusterheadsTraversed Pointer Identification
Originator’s AgencyAddress

Target’s NodeAddress
Target’s AgencyAddress

Gateway’s NodeAddress [1]
Neighbouring Clusterhead’s NodeAddress [1]

…
Gateway’s NodeAddress [TotalClusterheadGatewayPairs]

Neighbouring Clusterhead’s NodeAddress [TotalClusterheadGatewayPairs]
Clusterhead NodeAddress [1]
Clusterhead NodeAddress [2]

…
Clusterhead NodeAddress [TotalClusterheadsTraversed]

010: Type of MARIAN packet, RREQ.
TotalClusterheadGatewayPairs: This number is the total number of neighbouring cluster-
 head-gateway pairs this RREQ packet has traversed.
TotalClusterheadsTraversed: This number is the total number of cluster-heads this
 RREQ packet has traversed.

 53

Pointer: The position of the neighbouring cluster-head pointer. It is
 used by the cluster-head in order to identify which is the
 next neighbour to send this RREQ packet.
Identification: A number that uniquely identifies this RREQ. It can either
 be the originator’s node address or agency address, along
 with the number which identifies this cloned packet.
Target: The node and agency addresses of the destination node.
Originator: The agency address of the source node. The node address is
 not required, as the destination can obtain it from the IP
 source address field in the IP header.
Gateway: The node address of the intermediate node that will forward
 this RREQ to the next cluster-head in the list.
Neighbouring Clusterhead: The address of the cluster-head which this RREQ packet
 will be or has been forwarded by the corresponding gateway.
Cluster-head: The node address of the last visited cluster-head.

As a general rule, if node S is a non-cluster-head, it sends the packet to each of its host clus-
ter-head(s), that is, the cluster-heads the node has a direct communication link, otherwise, in
the case that node S is a cluster-head, to its adjacent cluster-heads. As MARIAN imposes a
clustering structure, RREQ packets traverse only through key nodes, such as cluster-heads,
gateways, and distributed gateways, and, thus, ordinary nodes, are not disturbed.

The information entered in the RREQ depends on the node's role that originates the RREQ,
however, each node is required to initially perform the following:

• Enters the unique identification string which uniquely identifies this RREQ packet.
• Fills in its own AgencyAddress, and the target’s NodeAddress and AgencyAddress.

Then, if node S is a Member or DistributedGateway, it performs the following steps:

• Fills in the packet’s Neighbouring Clusterhead NodeAddress and Gateway NodeAddress

fields, with the NodeAddress of its cluster-head, in both cases.
• Sets the TotalClusterheadGatewayPairs variable to one, and also sets the TotalClusterhead-

sTraversed and Pointer variables to zero (see Table 3.9).
• Transmits the RREQ packet to its host cluster-head.

If node S is a Gateway it performs the following steps:

• Fills in the packet’s Neighbouring Clusterhead NodeAddress and Gateway NodeAddress

pair(s), with the NodeAddress of its cluster-head(s), in both cases.

 54

• Sets TotalClusterheadsTraversed and Pointer to zero, and sets TotalClusterheadGateway-
Pairs to the total number of its host cluster-head(s).

• Transmits the RREQ packet to each of its host cluster-heads.

If node S is a Clusterhead it performs the following steps:

• Fills in the packet’s Neighbouring Clusterhead NodeAddress field(s), with the NodeAddress

of its intersecting, or/and, adjacent cluster-head(s),
• Fills in the packet’s Gateway NodeAddress field(s), with the NodeAddress of the corre-

sponding gateways node(s) leading to it's intersecting, or/and, adjacent cluster-head(s). In
case of multiple gateways leading to a single cluster-head, the lowest routing-metric
gateway is chosen.

• Fills in the packet’s Clusterhead NodeAddress with its own NodeAddress.
• Transmits the RREQ packet to the chosen Gateway NodeAddress field(s).

Algorithm 3.2 presents the actions performed by a cluster-head N when it receives a RREQ
packet. Initially, the cluster-head checks the RREQ’s identifier and compares it to the
RREQs’ identifiers maintained in the cluster-head, and, if a match is found, it discards the
packet, otherwise, it proceeds. It then determines if the destination node D is in direct com-
munication range, and, if so, it unicasts the packet to D, otherwise it proceeds. First, it
compares the intersecting and adjacent cluster-head NodeAddresses, maintained in its 2-hop
NNT and NCT, with the Neighbouring Clusterhead NodeAddress field(s) and the Clusterhead
NodeAddress field(s) stored in the RREQ. The matching node addresses are stored in a tem-
porary list of excluded cluster-heads, which is used as reference for this particular RREQ.
Next a cloned packet is created for each of its non-excluded intersecting and adjacent cluster-
heads, and is transmitted to the corresponding Gateway NodeAddress field(s). It is worth
mentioning that each cloned packet has a distinct identification, and is thus treated inde-
pendently.

Algorithm 3.2: Cluster-head route request packet handling

IF N has already seen RREQ
Discard RREQ

ELSE IF D’s NodeAgency or AddressAddress exist in N’s NNT
Record the RREQ’s identifier
Append the character ‘_’ to RREQ’s identifier
Append N’s agency identifier to RREQ’s identifier
Increment RREQ’s TotalClusterheadsTraversed by 1
Record N’s NodeAddress to RREQ’s Clusterhead NodeAddress [TotalClusterheadsTraversed]

 55

Unicast RREQ to D
ELSE

Record the RREQ’s identifier
Append the character ‘_’ to RREQ’s identifier
Append N’s agency identifier to RREQ’s identifier
Increment RREQ’s TotalClusterheadsTraversed by 1
Record N’s NodeAddress to RREQ’s Clusterhead NodeAddress [TotalClusterheadsTraversed]
Copy the value of TotalClusterheadGatewayPairs to Pointer
Define and set an integer variable “replica” equal to 0
Examine N’s 2-hop NNT and NCT
FOR each Cluster-head entry (i) in N’s 2-hop NNT and NCT DO

Examine the RREQ’s list of Neighbouring Clusterhead NodeAddresses
FOR each RREQ’s neighbouring Clusterhead NodeAddresses (j) DO

Compare N’s Cluster-head entry [i] to RREQ’s Neighbouring Clusterhead NodeAddress [j]
ENDFOR
IF a match is found

Add the Cluster-head entry [i] in the temporary list of excluded cluster-heads (one separate list is dy-
namically created for each incoming RREQ packet and deleted once the cluster-head dealt with the
RREQ)

ELSE
Examine RREQ’s list of Clusterhead NodeAddresses
FOR each RREQ’s Clusterhead NodeAddress (k) DO

Compare N’s Cluster-head entry [i] to RREQ’s Clusterhead NodeAddress [k]
ENDFOR
IF a match is found

Add the Cluster-head entry [i] in the temporary list of excluded cluster-heads
ENDIF

ENDIF
ENDFOR
FOR each Cluster-head entry (m) in N’s NNT and 2-hop NNT DO

IF NOT Cluster-head entry (m) is in the temporary list of excluded cluster-heads
Clone RREQ packet
Increment replica by 1
Append a “_replica” String to the identifier of the cloned RREQ packet, where…
… “replica” represents the actual value of the variable
Record cloned RREQ’s packet identifier
FOR each Cluster-head entry (n) in N’s NNT and 2-hop NNT DO

IF NOT Cluster-head entry (n) is in the temporary list of excluded cluster-heads
Increment TotalClusterheadGatewayPairs by 1 in the cloned RREQ packet
Record Cluster-head’s NodeAddress [m] in …
…RREQ’s Neighbouring Clusterhead NodeAddress [TotalClusterheadGatewayPairs]
IF multiple Gateways are found to be leading to the Cluster-head entry [m]

Choose the Gateway with the lowest Routing-Metric
ELSE

Choose the single Gateway
ENDIF
Record the chosen Gateway’s node address in …
…RREQ’s Gateway NodeAddress [TotalClusterheadGatewayPairs]

ENDIF
ENDFOR
Unicast cloned RREQ to Gateway NodeAddress [Pointer + replica]

 56

ENDIF
ENDFOR

ENDIF

Algorithm 3.3 presents the detailed actions performed by a gateway node (G) when it re-
ceives a RREQ packet. It should be noted that Gateway in the following algorithm refers to
both Gateway and DistributedGateway nodes. The gateway’s function is simple, in the sense
that it is required to forward the RREQ to the destined cluster-head, without performing any
modifications. However, if the gateway node is not in direct communication range with the
cluster-head, it searches its tables for an intermediate gateway between itself and the cluster-
head and performs the following actions: it substitutes its own NodeAddress in the RREQ
with the NodeAddress of the gateway found in its tables; and transmits the RREQ to that
gateway. In the case that multiple gateways are found, it then compares their Routing-Metrics
and transmits the RREQ to the node with the lowest Routing-Metric.

Algorithm 3.3: Gateway route request packet handling

IF Gateway G finds an entry for D in its NNT table
Unicast RREQ to D

ELSE IF Gateway node G is specified as a Gateway node to only one Cluster-head C in RREQ packet
Examine G’s NNT
IF G is directly linked to Cluster-head C

Unicast RREQ to C
ELSE

Examine G’s 2-hop NNT
IF only one Gateway G2 is found such that G2 is directly linked to Cluster-head C

Modify RREQ by substituting the Gateway NodeAddress entry …
…which leads to Cluster-head C with G2’s NodeAddress
Unicast RREQ to G2

ELSE
IF multiple Gateways are found (Gateways (n)), such that, …
…each of them is directly linked to Cluster-head C

Choose the Gateway with the lowest metric, e.g. Gateway [k]
Modify RREQ by substituting the Gateway NodeAddress which leads to …
…Cluster-head C with Gateway’s [k] NodeAddress
Unicast RREQ to Gateway’s [k]

ENDIF
ENDIF

ENDIF
ELSE IF Gateway node G is specified as a Gateway node to multiple Cluster-heads …
…(Cluster-heads (n)) in RREQ packet

Examine the “_i” String in the end of RREQ’s identifier
Examine G’s NNT and 2-hop NNT
IF G is directly linked to Neighbouring Clusterhead NodeAddress [Pointer + i]

Unicast RREQ to Neighbouring Clusterhead NodeAddress [Pointer + i]
ELSE

 57

IF a Gateway G2 is found, such that, G2 is directly linked to …
…Neighbouring Clusterhead Node Address [Pointer + i]…
…and G2 has the lowest Routing-Metric among every other similar option

Modify RREQ by substituting the Gateway NodeAddress [Pointer + i] to G2’s NodeAddress
Unicast RREQ to G2

ELSE
Discard RREQ

ENDIF
ENDIF

ELSE
Discard RREQ packet

ENDIF

In relation to Algorithm 3.2 and 3.3, it can be seen that the route request packets’ propaga-
tion is limited to nodes such as cluster-heads, gateways, and distributed gateways, while
member nodes do not participate in this process. A RREQ packet is forwarded from one hop
to another, normally along a repeated sequence of alternating cluster-head and gateway node
pairs. Using the approach of packet cloning as shown in the Algorithm 3.2, cluster-heads
send the RREQ packets along every possible cluster-head path in the ad-hoc network, and
thus redundancy is added. In addition, cluster-heads always select the gateway with the low-
est routing-metric to forward a RREQ, assuming that multiple gateways exist, and thus
RREQs may reach their destination faster and more reliably.

The route in which a RREQ is propagated with purpose to reach the destination will al-
ways be in the general form of: Source, Cluster-head 1, Gateway 1, Cluster-head 2, Distributed
Gateway 2, Distributed Gateway 3, Cluster-head 3, Gateway 4, Cluster-head 4, … , Destina-
tion. Thus, the recorded Clusterhead NodeAddress list will be: Cluster-head 1, Cluster-head 2,
Cluster-head 3, Cluster-head 4, … , Cluster-head n.

When a node receives one, or more, RREQs, where the packets’ Target NodeAddress or
Target AgencyAddress matches its own address(es), it replies back to the source by initiating
one, or multiple, RREP packets (see Table 3.10). A RREP always follows the cluster-heads
path, which the corresponding RREQ has taken. However, in case of multiple gateways, or
distributed gateways leading to the next cluster-head, the RREP is cloned and transmitted
through each possible combination. In addition, the RREPs gather the routing-metrics of
each node they visit. In detail, once the destination node D, receives a RREQ packet, it cre-
ates a RREP packet with the same identifier and copies the inverted list of Neighbouring
Clusterhead NodeAddress fields from the RREQ to the RREP’s Clusterhead’s NodeAddress list.
It then fills in the first entry of the Calculated Route list with its own NodeAddress and
AgencyAddress, and its Routing-Metric, and increments TotalSourceRouteAddressPairs by one.
Node D can store the route which the RREQ packet followed, and use it at a later stage, if it

 58

requires to transmit data to the source node S. However node S may be reluctant to use that
route, as it contains no routing-metric information, and thus S cannot calculate the QoS.

Table 3.10: The route reply packet format

1 0 0 TotalClusterheadsTraversed TotalSourceRouteAddressPairs Identification
Target AgencyAddress

Originator AgencyAddress
Clusterhead NodeAddress [1]
Clusterhead NodeAddress [2]

…
Clusterhead NodeAddress [TotalClusterheadsTraversed]

Calculated Route NodeAddress [1]
Calculated Route AgencyAddress [1]

Routing-Metric [1]
Calculated Route NodeAddress [2]

Calculated Route AgencyAddress [2]
Routing-Metric [2]

…
Calculated Route NodeAddress [TotalSourceRouteAddressPairs]

Calculated Route AgencyAddress [TotalSourceRouteAddressPairs]
Routing-Metric [TotalSourceRouteAddressPairs]

100: Type of MARIAN packet, RREP
TotalClusterheadsTraversed: The total number of cluster-head node addresses this packet will traverse.
TotalSourceRouteAddressPairs: The total number of addresses in the calculated route, which assumes that
 a node/agency address counts as one.
Identification: The same identification as in the corresponding RREQ packet.
Target: The agency address of the destination node, which issued the correspond-
 ing RREQ.
Originator: The agency address of the source node, which created this RREP.
Clusterhead NodeAddress: The node address of each cluster-head in the sequence for which the
 RREP packet will have to traverse in order to reach the target. This list
 of cluster-head addresses is copied from the corresponding RREQ packet,
 and inverted.
Calculated Route: A sequence of node and agency addresses that provide a route from a
 source to a destination. This may be used for both static and mobile agent
 implementation.
Routing-Metric: The preliminary metric array of each device in the calculated routes list
 (see Section 3.13).

A RREP packet always follows the route defined by the cluster-head’s NodeAddress list in or-
der to reach the source S. Each cluster-head, in turn, forwards the packet to the next cluster-
head in the list, until the last entry has been reached. The corresponding gateway nodes are
not copied from the RREQ packet to the RREP packet, as each cluster-head has knowledge
on how to reach its neighbouring cluster-head. Another reason for doing so is due to mobile

 59

gateway nodes which move away, and others, which may appear. Thus, it is more sensible to
provide a RREP with knowledge of cluster-heads path rather than the Neighbouring Cluster-
head NodeAddress-Gateway NodeAddress pairs that the RREQ traversed. Moreover, each time
a cluster-head identifies multiple gateways, or multiple distributed gateway pairs leading to
the next cluster-head in the list, it clones the original RREP packet and sends each replica to
each gateway node.

One novelty of MARIAN is based on the collection of routing-metrics during the RREP’s
propagation to the source node S and in providing multiple redundant routes to a single des-
tination. Each node that the RREP visits, submits its own routing-metric which is related to
the node’s fitness of routing data. Thus, node S can choose the best route according to the
type of traffic it wishes to transmit, assuming that multiple RREP were actually produced.
For instance, multimedia traffic, which typically has high buffering requirements and re-
quires low latency, can be sent through a route with a low overall routing-metric, while
asynchronous traffic, which typically has low buffering requirements, and few latency prob-
lems, can be sent through a different route, with, possibly, a high overall metric. Based on
this method, the overall performance of the network can be improved, as multiple routes to a
destination are utilised, and thus avoids single routes being over-utilisation. Furthermore,
redundancy is added so that, if a NodeAdress along a source route becomes unreachable at
some stage, the source can immediately use an alternative route. Finally, the most significant
factor is that lower specification devices will rarely be used as routing elements, especially for
heavy network traffic, due to the metric-driven clustering process, and due to the routing-
metric calculation, as long as a route with more powerful devices exists. It is thus well suited
to emergency situations, where reliability is an important issue.

Similar to CBRP, MARIAN utilises a mechanism by which cluster-heads calculate an op-
timised hop-by-hop route while forwarding a RREP packet. Accordingly, when a cluster-
head receives a RREP packet, it examines if the previously visited node is in direct communi-
cation range with the next in the RREP's list. If this is true, the cluster-head forwards the
packet without recording its own information in the Calculated Route and Routing-Metric
fields, otherwise, it records it.

 Nodes are limited on how many RREQs can be issued at a time. Also, a node which is-
sued a RREQ and has not received a RREP during a certain period of time, enters an
exponential backoff algorithm before resending another RREQ. Routes learned throughout
the route discovery process are stored in memory cache, thus, when a node requires a route
to a destination, it initially checks its memory cache before issuing a RREQ.

 60

Algorithm 3.4 presents the detailed actions performed by a Cluster-head N when it re-
ceives a RREP packet. In the same way as in previous algorithms, the Gateway is referred to
gateway nodes as well as distributed gateway nodes.

Algorithm 3.4: Cluster-head route reply packet handling

Cluster-head N decrements TotalClusterheadsTraversed by 1
IF NOT TotalClusterheadsTraversed equal to 0

Cluster-head N examines its 2-hop NNT and NCT
IF Clusterhead NodeAddress [TotalClusterheadsTraversed] can be reached by only one Gateway G

Examine N’s NNT
IF Calculated Route NodeAddress [TotalSourceRouteAddressPairs] is directly linked to G

Unicast RREP to G
ELSE

Increment TotalSourceRouteAddressPairs by 1
Record N’s Cluster-head NodeAddress in …
…RREP’s Calculated Route NodeAddress [TotalSourceRouteAddressPairs]
Record N’s Cluster-head AgencyAddress in …
…RREP’s Calculated Route AgencyAddress [TotalSourceRouteAddressPairs]
Record N’s Cluster-head Routing-Metric in…
… RREP’s Routing-Metric [TotalSourceRouteAddressPairs]
Unicast RREP to G

ENDIF
ELSE IF multiple routes are available

FOR each possible Gateway G to Clusterhead NodeAddress [TotalClusterheadsTraversed] DO
Clone original RREP packet
Examine N’s NNT
IF Calculated Route NodeAddress [TotalSourceRouteAddressPairs] is directly linked to G

Unicast cloned RREP to G
ELSE

Increment TotalSourceRouteAddressPairs by 1
Record N’s Cluster-head NodeAddress in the…
…RREP’s Calculated Route NodeAddress [TotalSourceRouteAddressPairs]
Record N’s Cluster-head AgencyAddress in the…
… RREP’s Calculated Route AgencyAddress [TotalSourceRouteAddressPairs]
Record N’s Cluster-head Routing-Metric in the…
…RREP’s Routing-Metric [TotalSourceRouteAddressPairs]
Unicast cloned RREP to G

ENDIF
ENDFOR

ELSE
Discard RREP packet

ENDIF
ELSE

Increment TotalSourceRouteAddressPairs by 1
Record N’s Cluster-head NodeAddress in the…
…RREP’s Calculated Route NodeAddress [TotalSourceRouteAddressPairs]
Record N’s Cluster-head AgencyAddress in the…
… RREP’s Calculated Route AgencyAddress [TotalSourceRouteAddressPairs]

 61

Record N’s Cluster-head Routing-Metric in RREP’s Routing-Metric [TotalSourceRouteAddressPairs]
Examine N’s NNT
IF a NodeAddress entry in N’s NNT matches the IP address of the IP packet…
… or an AgencyAddress entry in N’s NNT matches the target’s AgencyAddress of RREP packet

Unicast RREP to target
ELSE

Discard RREP packet
ENDIF

ENDIF

When a gateway node receives a route-reply, it performs the actions outlined in Algorithm
3.5, where the Gateway refers to both Gateway and DistributedGateway nodes.

Algorithm 3.5: Gateway route request packet handling

Gateway G increments TotalSourceRouteAddressPairs by 1
Records G’s NodeAddress in Calculated Route NodeAddress [TotalSourceRouteAddressPairs]
Records G’s AgencyAddress in Calculated Route AgencyAddress [TotalSourceRouteAddressPairs]
Records G’s Routing-Metric in Routing-Metric [TotalSourceRouteAddressPairs]
Examines G’s NNT
IF Clusterhead NodeAddress [TotalClusterheadsTraversed] is directly linked to G

Unicast RREP to Clusterhead NodeAddress [TotalClusterheadsTraversed]
ELSE

Examine G’s 2-hop NNT
IF Clusterhead NodeAddress [TotalClusterheadsTraversed] is directly linked to only one Gateway G2

Unicast RREP to G2
ELSE IF multiple Gateways (Gateways (n)) are available

FOR each Gateway (n) leading to Clusterhead NodeAddress [TotalClusterheadsTraversed] DO
Clone original RREP packet
Unicast cloned RREP to Gateway [n]

ENDFOR
ELSE

Discard RREP packet
ENDIF

ENDIF

3.6.2 Proactive route discovery
Each cluster-head has the right to create a network discovery mobile agent with purpose to
collect the topology of the whole ad-hoc network. No other key or ordinary node has the
same right. Cluster-heads exercise this right under a controlled manner, for example, on trig-
gered events. Such events may include the following:

• A registered agency requested this action.
• A foreign, but authenticated mobile agent, requested this action.
• A local timer has expired.

 62

• The cluster-head has heard enough RREQs from its members, specifically more than a
certain threshold value.

Triggered events can be configured in advance, or, in real-time. For instance, the administra-
tor of an ad-hoc network can pre-configure a number of triggered events before the network
gets into operation, or, dynamically dispatch a number of autonomous, trusted mobile agents
for reconfiguration purposes, while the network is in operation, and thus allowing the net-
work to cope with dynamic changing environmental factors, such as when overall mobility
changes. For example, in situations where the mobile devices of an ad-hoc network are sta-
tionary for long periods of time, it may be best to configure the cluster-head's dispatch timer
to expire infrequently, or even set it to infinity. In this way, the mobile agents collect the
whole networks topology, in the beginning, and settle down, as they will no longer be
needed, as topological updates will be uncommon.

Mobile agents can exist in one of two states: Exploring or ReturningHome. When a mobile
agent is in Exploring state, its goal is to collect routing information from its docking cluster-
head, while, when in ReturningHome state, its goal is to return to its home platform, and
submit the topology information collected throughout the Exploring state. Initially, an ex-
plorer agent examines the 2-hop NNT and NCT of its docking cluster-head in order to
identify the intersecting and adjacent cluster-head AgencyAddresses. It then clones itself, and
sends one copy to each intersecting and adjacent cluster-head, as long as the destination clus-
ter-head has not been visited by itself, or from one of its previous clones. Even though the
agent’s destination is set to the cluster-head’s AgencyAddress, cluster-heads are never in direct
communication range, and thus the agent is initially dispatched to the intermediate gateway
with the lowest routing-metric, which leads to the agent’s final destination. The parent agent
passes the following arguments to each cloned agent upon creation, and before dispatch:

• The destination cluster-head AgencyAddress. This AgencyAddress is set to the intersecting

or adjacent cluster-head’s AgencyAddress, that is, the agent’s final destination.
• Parent’s agent information Object. This allows the agent to contact its parent when it

returns to its home-platform.

The mobile agent stores and maintains the following information, which carries it with itself
during its self-migration, and throughout its existence:

• Destination Clusterhead AgencyAddress. This is the destination which was assigned by its

parent agent.

 63

• Neighbouring Clusterhead AgencyAddresses list. This is a list of cluster-heads that has
been visited by other cloned agents and it thus must be avoided by this agent.

• Clusterhead AgencyAddresses list. This is a list of cluster-heads that has been visited by its
ancestor agents and it thus must be avoided by this agent.

• RoutingInformation. This is the network’s topology information collected so far, and is
in the form of NNT, 2-hop NNT, and NCT.

The list of excluded cluster-heads is declared transient, and, thus, it is not carried along with
the agent’s self-migration, and, thus, this list is emptied each time the agent migrates to a
new cluster-head. Algorithm 3.6 presents the actions performed by a network discovery mo-
bile agent (MA) when it is initiated by a cluster-head. Initially, the creator cluster-head sets
the mobile agent’s goal to Exploring.

Algorithm 3.6: Network discovery mobile agent actions when residing on a cluster-head

MA examines its goal
IF goal is equal to Exploring

MA stores C’s AgencyAddress in the list of Clusterhead AgencyAddresses (maintained by the MA)
MA examines C’s 2-hop NNT and NCT
Define and set integer variable “replica” equal to 0
Examine N’s 2-hop NNT and NCT
FOR each Clusterhead entry (i) in N’s 2-hop NNT and NCT DO

MA examine the list of Neighbouring Clusterhead AgencyAddresses (maintained by the MA)
FOR each MA’s Neighbouring Clusterhead AgencyAddress (j) DO

MA compares N’s Clusterhead entry [i] to its Neighbouring Clusterhead AgencyAddress [j]
ENDFOR
IF a match is found

Add the Clusterhead entry [i] in the transient list of excluded cluster-heads (the mobile agent…
… creates and remembers the contents of this list while awake; however, the list’s contents…
… are not being carried along with the agent’s self migration)

ELSE
MA examines the list of Clusterhead AgencyAddresses (maintained by the MA)

FOR each MA’s Clusterhead AgencyAddress (k) DO
MA compares N’s Clusterhead entry [i] to its Clusterhead AgencyAddress [k]

ENDFOR
IF a match is found

Add the Cluster-head entry [i] in the transient list of excluded cluster-heads
ENDIF

ENDIF
ENDFOR
FOR each Cluster-head entry (m) in N’s NNT and 2-hop NNT DO

IF NOT Cluster-head entry (m) is in the temporary list of excluded cluster-heads
MA clones itself (creates an explorer MA)
MA passes its agent info (parent) Object to its cloned copy upon creation
MA passes the Cluster-head entry [i] to its cloned copy upon creation, which is stored in…
… the clone’s Destination Clusterhead AgencyAddress

 64

FOR each Cluster-head entry (n) in N’s NNT and 2-hop NNT DO
IF NOT Clusterhead entry (n) is in the temporary list of excluded cluster-heads

MA passes the Clusterhead’s AgencyAddress [m] to its cloned copy upon creation, which is…
…stored in the clone’s Neighbouring Clusterhead AgencyAddresses list
IF MA finds multiple Gateways leading to the Cluster-head entry [m]

MA dispatches its cloned copy to the Gateway with the lowest Routing-Metric
ELSE

MA dispatches its cloned copy to this single Gateway
ENDIF

ENDIF
ENDFOR

ENDIF
ENDFOR
MA collects C’s NNT, 2-hop NNT, and NCT and stores them to memory
IF at least one cloned copy of the MA has been created

MA sets a clone_timer
WAIT for clone_timer

MA constantly checks for updates in C’s NNT, 2-hop NNT, and NCT tables
IF new information become available

MA updates information stored in its memory
ENDIF
IF cloned agent contacted this MA

MA collects NNT, 2-hop NNT, and NCT from cloned copy
MA stores information in its memory
MA filters data and removes redundant information (e.g. an indirect link from MA’s docking…
…cluster-head (C) to intersecting cluster-head (C1) through gateway (G1) may be known…
… by the MA and cloned copy)

IF MA collected network topology from all of its cloned copies
Stop waiting

ELSE IF clone_timer expired
Stop waiting

ENDWAIT
ENDIF
MA sets its goal to ReturningHome (home is the agent’s originating platform)
MA invokes itself

ELSE IF goal is equal to ReturningHome
MA checks the docking platform’s agency identifier and compares it to its home platform’s agency identifier
IF NOT a match is found

MA examines C’s NNT, 2-hop NNT, and NCT
IF MA’s home platform’s AgencyAddress is found in C’s Neighbouring Cluster-head AgencyAddresses list

IF MA finds multiple Gateways leading to its home platform
MA sets its Destination Clusterhead AgencyAddress to its home platform’s AgencyAddress
MA migrates to the Gateway with the lowest Routing-Metric

ELSE
MA sets its Destination Clusterhead AgencyAddress to its home platform’s AgencyAddress
MA migrates to this single Gateway

ENDIF
ELSE

MA sets a waiting_timer
IF waiting_timer has expired and a Gateway G is not found, such that, G leads to its home platform

MA kills itself

 65

ELSE
MA sets its Destination Clusterhead AgencyAddress to its home platform’s AgencyAddress
MA migrates to the Gateway G

ENDIF
ENDIF

ELSE
MA updates the RoutingInformation of its home platform
MA tries to contact its parent MA
IF NOT parent is available or exists

MA kills itself
ELSE

MA passes the new RoutingInformation to parent
MA kills itself

ENDIF
ENDIF

ENDIF

Once a network discovery mobile agent arrives at a gateway node, either in Exploring or Re-
turningHome state, it performs the same exact actions, as outlined in Algorithm 3.7, where
the Gateway (G) refers to both Gateway and DistributedGateway nodes.

Algorithm 3.7: Network discovery mobile agent actions when residing on a gateway

MA examines its goal
IF MA’s goal is equal to Exploring or ReturningHome

MA examines G’s NNT and 2-hops NNT
IF the MA’s Destination Clusterhead AgencyAddress is in G’s NNT (direct communication range)

MA migrates to Destination Clusterhead AgencyAddress
ELSE IF Destination Clusterhead AgencyAddress is in G’s 2-hop NNT (indirect link)

IF multiple Gateways (n) leading to Destination Clusterhead AgencyAddress
Migrate to Gateway AgencyAddress which has the lowest Routing-Metric

ELSE
MA migrates to this single Gateway

ENDIF
ELSE

MA sets a waiting_timer
IF waiting_timer has expired and a Gateway G is not found, such that, G leads to its home platform

MA kills itself
ELSE

MA sets its Destination Clusterhead AgencyAddress to its home platform’s AgencyAddress
MA migrates to the Gateway G

ENDIF
ENDIF

ENDIF

The network discovery mobile agents propagate through the network in a similar manner to
the RREQ packets, however, during both Exploring and ReturningHome phases, each agent

 66

travels a maximum distance of three hops for each phase. This is because, while Exploring, a
mobile agent is allowed to migrate from a cluster-head to only one intersecting or adjacent
cluster-head, and, while ReturningHome, from that cluster-head back to the originator clus-
ter-head. The grandparent of all agents, which is created by the cluster-head, that issued this
proactive route discovery, remains stationary in the originator cluster-head, and dispatches its
clones for this purpose. Once the agent clones return back, the grandparent agent obtains the
NNTs, 2-hops NNTs, and NCTs of each key node in the network. Thus, the agent will be
able to create a complete roadmap of the ad-hoc network, and associate an overall routing-
metric to each derived route. The complete routing information of the network can then be
stored in the cluster-head’s routing table. The detailed description of the process involved in
deriving the network’s roadmap is out of the scope of this thesis, as it can use techniques,
such as sorting and matching algorithms. However, the association of retrieved routes with
an overall routing-metric is thoroughly analysed in Section 3.13.

3.7 MARIAN source routing - static approach

Data packet routing is performed in a source-routing manner, rather than a hop-by-hop.
This means that a data packet carries the complete ordered list of node addresses that it trav-
erses over in order to reach the destination. The main advantage of this is that network nodes
do not have to maintain up-to-date hop-by-hop routing information. In addition, MARIAN
provides the functionality for agent-based source routing, as a source node has knowledge of
each node’s AgencyAddress along a route (see Section 3.8).

A node originating a packet, either for the purpose of route discovery, route error, or
source routing, has to initially construct a MARIAN header and add it to the packet along
the following sequence of steps (assuming the inexistence of other headers that need to be
placed before the MARIAN header):

• The node inserts a MARIAN header after the IP header, but before any other headers

that may be present.
• The node sets the NextHeader field of the MARIAN header to the Protocol number field

of the packet’s IP header.
• The node sets the Protocol field of the packet’s IP header to the Protocol number assigned

for the MARIAN header.

The MARIAN header format is shown in Table 3.11:

 67

Table 3.11: The source routing packet format

NextHeader PayloadLength

Option

NextHeader: Identifies the header type which is immediately following the MARIAN
 header.
PayloadLength: The total length of the Option field, excluding the header’s fixed portion.
Option: Options include: Minimal Route-Request, Minimal Route-Reply, Route-
 Not-Available, Route-Reply, Route-Error, and Source-Route. Only one of
 these options may be included in a single MARIAN header.

When a source node originates an IP data packet for a destination node D, which is not in
direct communication range, it modifies the packet and includes the MARIAN header as
previously described, and it constructs a source-routing packet as shown in Table 3.12.

Table 3.12: The source routing packet format

 0 0 0 TotalSourceRouteAddresses Pointer
SourceNodeAddress [1]
SourceNodeAddress [2]

…
SourceNodeAddress [TotalSourceRouteAddresses]

000: Type of MARIAN packet, source routing.
TotalSourceRouteAddresses: The total number of node addresses in the source route
 ([1 … TotalSourceRouteAddresses])
Pointer: A pointer used to specify the currently visited node address.
SourceNodeAddress: The node address of an intermediate node which the data packet has to
 traverse in order to reach its destination.

The source routing option shown in Table 3.11 is then appended to the MARIAN header.
Once the data packet is completed, the source node transmits it to the next hop along the
source route. When a node receives a source routing data packet it performs the following
steps:

• It examines the IP header’s destination address. If the node finds that the IP address

matches its own address, it consecutively infers that the packet is destined for itself, and
performs no further actions concerning source-route forwarding, otherwise it continues.

 68

• It examines the SourceNodeAddress [Pointer]. If this does not match the node’s IP ad-
dress, it discards the data packet. Otherwise, it increments the Pointer by one, and
transmits the data packet to SourceNodeAddress [Pointer].

In case that the transmission along the next hop in the source route fails, which may be a re-
sult of various factors such as nodal movements, the intermediate node constructs a route
error packet and transmits it back to the source node. The packet’s format is shown in Table
3.13.

Table 3.13: The source routing packet format

 1 0 1 TotalSourceRouteAddresses
SourceNodeAddress [1]
SourceNodeAddress [2]

…
SourceNodeAddress [TotalSourceRouteAddresses]

BrokenLinkFromNodeAddress
BrokenLinkToNodeAddress

101: Type of MARIAN packet, route-error.
TotalSourceRouteAddresses: The total number of node addresses in the source route
 ([1… TotalSourceRouteAddresses])
SourceNodeAddress: The node address of an intermediate node which the error
 packet has to traverse in order to reach the destination node
 (the source node which initiated the source-routing data
 packet, for which an error occurred).
BrokenLinkFromNodeAddress: The RERR packet’s originator.
BrokenLinkToNodeAddress: The unreachable next hop node address, as specified in the
 original source route packet.

When a source node is informed of a broken route, by means of a RERR packet, it resumes
its data transmission over an alternative route, either found in its routing cache, or in the
cluster-head’s routing table. The alternative new route, of course, should match the source
node’s QoS requirements. However, if such a route is not found by either these two meth-
ods, the source node may initiate a new route discovery process.

3.8 MARIAN source routing - Mobile agent approach

This approach utilises the full potential of the mobile agent paradigm, and may be adaptable
to various implementations, and thus this section provides a general guide on how this could
be achieved. Initially, a source node which has some data to transmit to a destination node,

 69

in a multi-hop manner, creates a routing mobile agent. The originator node initialises the
agent by performing the following steps:

• Setting the home agent platform of the mobile agent to its own AgencyAddress.
• Setting the destination agent platform of the mobile agent to the AgencyAddress of the

destination.
• Setting the itinerary of the mobile agent to the list of source AgencyAddresses.
• Passing the transmission data to the agent’s payload.

Upon creation, the mobile agent will autonomously, and sequentially, migrate to each
AgencyAddress found in its itinerary, and, finally, to the agent’s ultimate destination, where
the data will be delivered. In practice, this is not an efficient method, as the agent migration
times are significantly greater than the source-routing data packet propagation (see Section
5.4). However, the delivery time may not be the sender’s crucial requirement, as other factors
may influence this decision, including: guaranteed delivery; robustness; and security. A rout-
ing mobile agent could possibly provide the following advantages:

• Successful propagation over unreliable links: A routing agent who according to its itin-

erary requires to migrate to a next-hop, although the communication link turns to be
unavailable, it can wait for a certain amount of time until the link is re-established, while
performing some other task.

• Dynamic alteration of its itinerary. A routing agent can dynamically alter its itinerary, in
the case that a source route which is equipped with, turns out to be inaccurate. For in-
stance, if the agent’s next hop is unreachable, the agent can bypass that hop and replace
its itinerary with an alternative route. This could be achieved by either taking into advan-
tage the information maintained on the current node, or, by issuing a route discovery
process for the hop following the unreachable next hop.

• Confidentiality of information. Mobile agents can be initially used to distribute the pub-
lic keys of their users, who are willing to participate in confidential communications.
Then, a routing agent can encrypt its user’s message with the other user's public key and
append the encrypted message to its payload. The agent can then deliver the message at
the destination, where it can get decrypted with the corresponding private key.

 70

3.9 Agent-based metric-driven routing

The majority of ad-hoc routing protocols suffer from sub-optimal route identification, typi-
cally based on hop-counting mechanisms, which generally underestimate the importance of
the routing devices' performance characteristics and their current utilisation status. In par-
ticular, a route is represented by the number of intermediate nodes that need to be traversed
to reach the destination. For example, a route with three intermediate nodes is considered to
be stronger than a route with more than three. However, this approach oversimplifies such a
complex decision by ignoring the fact that participating devices may have considerably un-
equal performance characteristics and current utilisation status. Accordingly, it is possible for
a best route to be composed of devices with high utilisation status or low battery level, which
results in an overall unreliable route. If this information was made available to the routing
protocol on which it based its routing decisions, it would have a significant impact on the
network’s overall performance and reliability. In addition, different routing scenarios impose
different requirements, and thus a path may be ideal for a certain routing objective but inap-
propriate for another.

MARIAN employs a metric-driven routing approach, which bases its routing decisions on
various key metrics, such as the devices’ processing power, memory capacity, battery reserves,
network reliability, routing throughput, utilisation status, and so on. This section outlines
the Benchmarking multi-Agent Software System (BASS), which can be executed by resource-
constrained devices, and aims to benchmark the fitness of various ad-hoc device types as
routing elements. It achieves this by performing a number of tests, that is, tests that are exe-
cuted once and tests that constantly monitor the device's resources, where test results are
used to produce an overall routing metric, which is tailored to the needs of various routing
scenarios. For this purpose, BASS incorporates various test agents, which can cooperatively
calculate the routing ability of a device, including: 1D bubble sort; CPU merge; memory
test; client-server throughput; proxy throughput; TCP error; IP error; UDP error; CPU utili-
sation; memory usage; and battery level.

The 1D bubble sort agent performs an intensive sorting algorithm, and can thus be used
to benchmark the devices processing power, which may be equivalent to the intensive proc-
essing tasks that are typically required by routing, whereas the CPU merge agent performs a
less intensive sorting algorithm, and thus provides an alternative test for devices that may not
be able to execute the 1D bubble sort, such as mobile phones, and so on. The memory test
agent creates a number of files of varying sizes, and a varying number of files of constant
sizes, and can thus benchmark the buffering capabilities of resource-constrained devices, as
they use the RAM as their persistent storage. Ad-hoc routing devices typically buffer incom-

 71

ing data, in the case of routing congestion, and thus the memory test can provide a useful
benchmark. The client-server test is used to benchmark the throughput, when devices are in
direct communication range, whereas the proxy test is used to benchmark the throughput
that a routing device can offer, and is thus an ideal test for ad-hoc routing devices. This is
due to the fact that by knowing, in advance, the devices' routing speeds, it can assist the rout-
ing protocol to decide on optimal routes for network traffic that requires fast delivery. The
TCP, IP, and UDP error tests constantly monitor the network protocol errors, and are thus
particularly useful, as frequent protocol errors can compromise the reliability and efficiency
of an ad-hoc routing device. The CPU utilisation and memory usage tests constantly moni-
tor the device's overall utilisation, which typically increases while the device is routing data,
and are thus particularly useful in benchmarking the current status of a routing device, and
further protect it from over-utilisation. Finally, the battery level test constantly monitors a
device's battery reserves, and is used as a key routing metric, as remaining battery life is, per-
haps, a device's most valuable resource, and as shown in Section 5.1, the battery discharge
rate is significantly reduced while a device has its wireless feature on, in comparison to when
it is in an idle state. These agents are described in more detail in the next section.

3.10 Benchmarking multi-Agent Software System (BASS)

The main objective of BASS is to gather system performance, and utilisation status informa-
tion, and use this to derive an overall routing metric of the device. Performance tests are
scheduled to execute in a periodic, or in an on-demand fashion. This is important due to the
unstable nature of ad-hoc environments, that is, that optimal routes often die due to mobil-
ity issues, and thus optimal routes need to be re-discovered. The tests are implemented in
such a way as to not waste the mobile device’s processing power. An extensive study in en-
ergy efficient routing protocols is provided in (Buchanan, W. J., et. al., 2004a).The
performance of ad-hoc routing often depends on processing strengths, memory and buffering
capabilities, battery capacity, and the networking capabilities of the devices (Buchanan, W.
J., et. al., 2004a). Thus, performance tests were designed to exercise the strength of devices
based on these factors. In general, they can be grouped into the following categories:

• Kernel level. These tests aim to identify the hardware characteristics of the device.
• Network level. These tests aim to determine the current status of an ad-hoc network,

from the device viewpoint.
• Application level. These tests aim to monitor the system’s utilisation, at a given time.

 72

• Group level. These tests aim to group devices according to common characteristics that
they may share. For example, all devices with the same operating system (OS) may re-
quire to run a specific test, in a specific way.

The most critical factor for mobile devices is typically the battery reserves. If possible, unless
in emergency applications, devices with low battery reserves should not be used for routing,
as they are likely to become unavailable within a short time. More precisely, PDAs, typically,
turn off their wireless activities when the battery reserves drop below a certain level. The con-
trol of the power consumption of mobile devices in ad-hoc networks, largely improves the
battery reserves, and can extend the lifetime of the network. Another equally important fac-
tor is memory buffering, which is particularly important in a PDA device, as memory is a
valuable resource as the data is held in RAM, and not on a hard drive. This, therefore, limits
the amount of data that can be buffered to the amount of available memory.

BASS (Buchanan, W. J., et. al., 2004a) is especially designed to support MARIAN’s rout-
ing metric determination process (Migas, N. and Buchanan, W. J., 2005), however, it can be
adaptable to any metric-driven routing protocol. This is due to the fact that BASS is decoup-
led from MARIAN, in a way that BASS produces a number of preliminary metrics based on
test results, while MARIAN uses these to produce a capability/incapability policy targeted for
each device to accomplish various routing tasks, as well as the route(s) in which a device is
positioned to, in a particular instance (see Section 3.13). Figure 3.7 presents MARIAN’s
overall architecture (Migas N. et al, 2003b) and the layer in which BASS lies. The architec-
ture can be logically divided into the following:

• Foundation. This is the physical layer and consists of all mobile nodes in an ad-hoc net-

work. BASS resides on each fixed, or mobile, device in the foundation layer.
• Intermediate. This layer sits on top of the foundation layer, and is divided into two cate-

gories: the stationary agent model, and the mobile agent model.
• Core layer. This is top layer and is a combination of the stationary and mobile agent

models.

3.11 BASS overall architecture

BASS is designed on a multi-agent principle, where tests are represented by goal-oriented
stationary agents, which report their findings to their supervisor agents. BASS is imple-
mented in Java language, and conforms to the J2ME specification (see Appendix A), which
enables it to execute on resource-constrained devices, such as PDAs which are J2ME-

 73

enabled. However, due to J2ME's limitation to extract low-level information, such as the
battery reserves of a PDA, the test has been developed in C language, and it is called by Java
code, through the use of JNI (Sun, Microsystems, 2003c). Figure 3.8 presents the high-level
design of BASS.

Foundation layer
–The physical layer consisting of all
mobile nodes

Intermediate layer
–Static agent approach.
Centralized routing process

–Mobile agent approach.
Decentralized routing process

Core layer
–Hybrid approach. Combination of static
and mobile agent approach

BSSBSS

Grasshopper MEGrasshopper ME

JVMJVM

Win CE/Familiar
Linux

Win CE/Familiar
Linux

BASS

Grasshopper ME/SEFoundation layer
–The physical layer consisting of all
mobile nodes

Intermediate layer
–Static agent approach.
Centralized routing process

–Mobile agent approach.
Decentralized routing process

Core layer
–Hybrid approach. Combination of static
and mobile agent approach

BSSBSS

Grasshopper MEGrasshopper ME

JVMJVM

Win CE/Familiar
Linux

Win CE/Familiar
Linux

BASS

Grasshopper ME/SE

Figure 3.7: BASS position in MARIAN’s overall architecture

Load operational
mode

Load operational
mode

Automatic
start

Automatic
startGUIGUI

Run TestsRun Tests

Group
Tests

Group
Tests

Kernel
Tests

Kernel
Tests

Network
Tests

Network
Tests

Application
Tests

Application
Tests

Conf.ini

Spec.tst

Data TransactionsData Transactions

Database Transactions File Transactions

Authenticated
External
objects

Authenticated
External
objects

DatabaseDatabase
File

Output
(PDA)

File
Output
(PDA)

JNIJNI

Figure 3.8: BASS architecture

 74

3.12 BASS multi-agent model

As previously mentioned, each performance test has been designed as a stationary agent,
where each test agent is responsible for conducting the corresponding test exactly the same
way as described in a test specification file. In addition to test agents, supervisor agents are
responsible for the control of test agents that belong to their group. Currently, there are four
supervisor-agents: group-level agent1 (see in Figure 3.9), kernel-level agent, network-level

agent, and application-level agent. The group-level agent is the only exception to the above
rule as it does not supervise any other agents, and conducts the test on its own. In addition,
this agent automatically conducts its task on system start-up, as it is necessary for the system
to know on which device it is running, and thus adjusts itself, accordingly.

Test agents can be generally grouped into two categories: continuous and preliminary. In
the former, test agents run continuously in the background, aiming to monitor device’s re-
sources, while in the latter, test agents are usually executed once, aiming to benchmark the
device’s hardware characteristics. In terms of device’s resource consumptions, continuous
tests agents are light-weighted and are thus not overloading the device, however, preliminary
test agents may need more processing power and resources to complete their tasks. Continu-
ous agents include the memory and battery monitoring agent, the temperature variation
monitoring agent, the Internet connectivity test agent, the error packets monitoring agent,
the CPU, memory, and overall utilisation agent, the heap memory usage monitoring agent,
and the Java threads monitoring agent. Preliminary agents include the memory test agent,
the CPU bubble sort test agent, the CPU merge test agent, the client-server throughput
agent, the proxy throughput agent, and the group-level agent.

Each supervisor-agent reads the test specification file and, accordingly, creates an instance
of the required agents to deal with the demand. Supervision-level agents then pass the re-
quired parameters to performance agents that describe the frequency of the test execution,
the delay between test iterations, and the specification test arguments. Supervisor-agents thus
constantly look for changes in the test specification. Once changes have been made, the su-
pervisor-agents kill any running test agents that are no longer necessary, and re-instantiate
the required ones. When test agents have results from the conducted tests, they report them
to supervisor-agents, which, in turn, forward them to the test results gathering agent. Once
the test results gathering agent has sufficient amount of information, it forwards them to the

librarian agent for database or file storage. The librarian agent is then responsible for for-
warding the results to other authenticated agents, objects, and entities, such as the metric

calculation agent, which initially produces a preliminary metric for each test, represented
from one to 100 (the lower the value, the fitter it is for this test) and finally calculates the

 75

routing metric of the device associated with available routing scenarios. This information is
then made available to MARIAN’s route discovery process, which builds up an overall rout-
ing metric representing the fitness of a route to accommodate various routing scenarios.

File outputFile outputDatabase

Memory
and battery

Metric calculation
Librarian

Test results
gathering

Kernel
-level

Temperatur
e variation

Memory test

CPU bubble sort

CPU merge

CPU and memory
utilisation

Heap
memory

Java Threads Application-
level

Group-
level

Network-
level

Internet-
connectivity Client-server

throughput

Proxy
throughput

Network
protocol
errors

Figure 3.9: BASS Multi-agent model based on both intelligent stationary and mobile agents

Kernel-level agent can create an instance of the following agents: memory and battery moni-

toring agent, temperature variation monitoring agent, memory test agent, CPU bubble

sort test agent, and CPU merge test agent. The memory and battery agent monitoring is
responsible for extracting memory usage and battery levels when changes occur. Readings are
then passed to the kernel-level agent, on request, or in a periodic fashion. The temperature
variation monitoring agent records the variation in the device’s internal temperature each
time the battery drops by 1%. The memory test agent is responsible for conducting two tests,
which both benchmark the buffering capabilities of the hardware system (applicable to PDAs

 76

only) and the speed of the hard-drive (applicable to non-PDAs). For this, it measures the
time taken to create varying number of files with constant file-sizes, and the time taken to
create a constant number of files with varying file-sizes. The CPU bubble sort test agent is
responsible for sorting a number of random integer values using a bubble sort algorithm. It
aims to benchmark the strength of the CPU to perform complex calculations, allowing four
levels of intensity (1, 2, 3, and 4-dimensional array of integer values), however, the 2D, 3D,
and 4D, as shown in Section 5.3.2, do not provide any additional useful information in
terms of ad-hoc routing, and thus only the 1D bubble sort test is used by the metric calcula-
tion process. The CPU merge test agent is similar to CPU bubble sort test agent, however, it
uses a simpler algorithm to sort a number of random integer values. It is used to benchmark
devices with limited processing capabilities, such as mobile phones, which are not capable of
conducting the 1D bubble sort test.

The network-level agent can create an instance of the following agents: the proxy

throughput agent, the error packets monitoring agent, the client-server test agent, and the
Internet connectivity test agent. The proxy is light-weighted, and has been developed as an
alternative to proper routing software, as it bases its functionality on simple mechanisms,
such as Java Sockets and Threads, which enable resource-constrained devices to execute rout-
ing tasks. In particular, the agent constantly listens for incoming network traffic in a pre-
defined port, and, once an incoming connection is established, it creates an outgoing connec-
tion on another pre-defined port, and forwards the data. In this manner, the agent is simple
as it does not require complex routing calculations, which is often the case for proper routing
software, as it bases its functionality on higher layers of the network protocol stack. The de-
tails of the process of benchmarking the routing capabilities of a proxy-enabled ad-hoc
routing device, as well as the monitoring of resource-consumption rates, such as the battery
discharge rate, CPU utilisation, and so on, can be found in Appendix A. The error packets
monitoring agent is responsible for monitoring the current network state. It calls native code
via the JNI to calculate current TCP, UDP, and IP data statistics and errors. This test is par-
ticularly useful in ad-hoc routing, where frequent errors can occur because of the limitations
of the wireless medium, and can thus be used to determine the network reliability of a rout-
ing device. The client-server throughput agent is responsible for measuring the throughput
between any pair of nodes in an ad-hoc, or, a fixed network. It requires a client node, and a
server node, where raw data are passed from the client to the server, and then back to the cli-
ent. This process allows the calculation of throughput between two nodes within
communication range, and can be used by the routing protocol as an additional factor,
which may assist in determining the network state between a node and its neighbouring
nodes. The Internet connectivity test agent attempts to download an HTML page from a

 77

remote server. If successful, it calculates the time to connect and the time to download, and
shows that there is a connection. If unsuccessful, it shows that there is no TCP connection
for HTTP, from the viewpoint of the device. Although this test is not related to ad-hoc rout-
ing, and is thus not included in the metric calculation process, it may provide information
on the connection and download speeds of resource-constrained devices.

The application-level agent can create instances of the following agents: the CPU, mem-

ory, and overall utilisation agent, the heap memory usage monitoring agent, and the Java

threads monitoring agent. The CPU, memory, and overall utilisation agent is responsible for
obtaining current CPU and memory usage per process running in the system, as well as total
system utilisation. It calls native code via JNI to achieve this. Results from this test can be
used from the routing protocol in order to protect ad-hoc routing devices from over-
utilisation, which can occur from frequent routing requests. The heap memory usage agent is
slightly different than the CPU, memory, and overall utilisation agent in the respect that it
extracts heap memory usage, which is utilised by Java Objects, instead of measuring the total
memory utilisation. Even though test results from the heap memory usage agent are not used
by the metric calculation process, as they are not relevant with ad-hoc routing, they may be
useful in determining the performance of the JVM, which is used to interpret the Java-based
proxy agent (see Section 5.2). The Java threads monitoring agent is responsible for obtaining
the total number of Java Threads running on the device, and the amount of CPU they utilise,
and, possibly, it can be used to detect malicious agents, which initiate denial of service at-
tacks, and thus stop their execution. However, test results are not included in the metric
calculation process.

3.13 Ad-hoc routing metrics and applied weighting for QoS
support

This section describes the process of assigning a routing metric to an ad-hoc routing device,
which is based on the test results that were previously described. Initially, for each test that
participates in the metric calculation process, a preliminary metric is calculated, which is
then appropriately weighted to suit various routing objectives, and is then averaged with the
remaining weighted preliminary metrics. In this manner, a number of overall routing metrics
is calculated, which represent the routing fitness of a device to achieve various routing objec-
tives, such as to route synchronous network traffic, asynchronous network traffic, and so on.
As previously mentioned, the nodes' overall routing metrics are gathered by MARIAN's on-
demand route discovery and proactive network discovery processes. This information is used
by a source node to determine the capability/incapability of each retrieved route to accom-

 78

plish the source's routing scenario. Thus, the source estimates a final metric for each of the
capable routes, which represents the QoS that the routes can offer, and thus it bases its route
selection on the requirements imposed by its routing scenario.

Preliminary metrics calculation
The tests that participate in the preliminary metrics calculation process are outlined in Table
3.14. Briefly, the 1D bubble sort test is used to determine the processing strength of an ad-
hoc routing devices, while the CPU merge, although serves the same purpose, it is intended
to be used by limited devices, which cannot execute the intensive 1D bubble sort. The mem-
ory tests are used to benchmark the buffering capabilities of resource-constrained devices, as
they typically use their RAM as persistent storage. The client-server throughput test is used
to benchmark the available throughput between two neighbouring devices, while the proxy
throughput is used to determine the routing fitness of a proxy-based ad-hoc routing devices,
which is particularly important, as this information is used by the routing protocol to deter-
mine optimal routing paths for network traffic that requires low latency. The protocol error
tests (T7-T9) are used to determine a device's current network state in terms of routing reli-
ability, which is particularly important in ad-hoc routing, as frequent network errors can
considerably reduce a device's routing ability. The CPU utilisation and memory usage tests
are used to estimate a device's remaining resources, and thus protect the device from per-
forming routing tasks that exceed its capability. The battery tests is, possibly, the most
important one, as ad-hoc devices normally rely on battery power for operation, and thus this
information can be efficiently used by the routing protocol to provide energy conservation.

Table 3.14: Test that count towards the preliminary metrics calculation process

Test Symbol
1D Bubble sort T1

CPU Merge T2

memory 1 File T3
memory 1 KB T4
Client-Server throughput T5
Proxy throughput T6
TCP error T7
IP error T8
UDP error T9
CPU utilisation T10
Memory usage T11
Battery level T12

 79

For each of the tests presented in Table 3.14, a preliminary metric (pm) is calculated, based
on the results achieved by each test. The process of creating the pm(s) is based on either a
function, or a threshold value:

• Function. Using this method, results acquired from a certain test are passed to a function

which produces a preliminary metric. Each test is using a distinct function for its metric
calculation.

• Threshold value (TH). The main element in this method is a threshold value, which
represents the worst case scenario for a test. Using this value a preliminary metric can be
calculated based on the test results.

The preliminary metrics for tests T1 - T6 are calculated based on a threshold basis while tests
T7 - T12 are calculated using functions. Table 3.15 presents the default threshold values for
some of these tests.

Table 3.15: Threshold values for preliminary metric calculation

Test Threshold value (TH)
1D Bubble sort 500

CPU Merge 100

memory 1 File 20
memory 1 KB 7000
Client-Server throughput 80
Proxy throughput 350

The threshold values were derived from the experimentation phase (see Sections 5.1-5.3), and
represent the worst case test results, that an ad-hoc routing device can achieve. A device
which achieves results equal to a threshold, or above, is determined incapable of routing, and
is thus assigned an infinity routing metric (∞). The mathematical expression that is used to
estimate the preliminary metric (PM), given the values of the test results (Tn) and threshold
value (THn) for that test is:

PM = 100
TH
T

n

n ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 (3.1)

The preliminary metrics for tests T5 - T7 are calculated using the mathematical expressions
in:

 80

PM5 = 100
TCPTCP

TCP

outin

error ×
+

 (3.2)

PM6 = 100
IPIP

IP

outin

error ×
+

 (3.3)

PM7 = 100
UDPUDP

UDP

outin

error ×
+

 (3.4)

For T10 - T11, the preliminary metrics are calculated based on equation 3.5, while for T12 is
based on equation 3.6. In both cases, special sensitivity factors α, β, and γ are introduced.
These factors differ on value for each of these tests, and thus allow for better adaptation of
the output preliminary metrics accordingly. In particular, these factors refine the shape of the
exponential curves (see equation 3.5-3.6), and their values were deduced through simulation,
aiming to deliver the precise preliminary metric for each memory, CPU, and battery reading,
respectively. For example, the equation in 3.6 in relation to the default sensitivity factors in
Table 3.16, produce a low preliminary metric for battery readings above 60% of battery re-
serves, while for readings below 20% they produce a high preliminary metric. Although the
default values of the sensitivity factors might not constitute the most accurate figures, they
were shown to produce close proximity preliminary metrics.

f(x) =
γα

β
+⎟

⎠
⎞

⎜
⎝
⎛ −
⋅−

× 100
x100

e100 (3.5)

f(x) =
γα

β
+⎟

⎠
⎞

⎜
⎝
⎛⋅−

× 100
x

e100 (3.6)

Table 3.16: Sensitivity factors for each monitoring test

 α β γ
CPU utilisation 3 2 -4

Memory usage 3 2.5 -4

Battery level 6 2 0

An additional preliminary metric (Tm) is used to represent a device’s mobility patterns, and is
only used for clustering formation. Mobility results are assumed to be directly fed into this
metric from MOBIC (Basu, P., et. al., 2001). Even though mobility is the most important

 81

factor for cluster-head selection, other factors including processing power, utilisation status,
and so on, which are not considered in (Basu, P., et. al., 2001) should also influence this de-
cision. This is a direct result of a cluster-head being responsible for intra-cluster routing and
location management. For this purpose, a cluster-head objective (OCH) is defined, however
distinguishes itself from the other, as it is based on a best effort approach. In this fashion, a
node with the lowest cluster-head objective, that is, the lowest node-ID, it is elected as the
cluster-head.

Once the preliminary metrics for all tests have been calculated, the system applies a dis-
tinct weighting (W) to each one of them according to various objectives and calculates an
overall metric for each of the objectives. The mathematical expression used to calculate the
overall metric (OM) is:

OM =

∑

∑
=

=

=

=

×

12

1

12

1

)(

)(

n

n
n

n

n
nn

W

PMW
 (3.7)

The system supports various objectives, including:

• Energy efficient traffic (O1). This type of traffic typically favours the use of devices,
which have high battery levels, or do not require batteries to operate.

• Synchronous traffic (O2). This type of traffic typically requires a wide bandwidth
and has high buffering requirements.

• Asynchronous traffic (O3). This type of traffic typically has no special requirements.
• Critical traffic (O4). This type of traffic may contain critical information that re-

quires reliable transmission to the destination.
• Secure traffic (O5). This type of traffic typically requires authentication, encryp-

tion/decryption, and thus requires typically good processing capacity.
• Burst traffic (O6). This type of traffic has high buffering requirements.

In addition to these, the routing protocol can dynamically adapt to newly defined objectives,
as long as their specification concerning their weighting requirements is provided. In particu-
lar, trusted reconfiguration agents can extend the network by carrying updates, such as these
in their payloads. This can be advantageous in situations where an ad-hoc network requires
extra configuration and finer tuning.

 82

The weighting system is different for each of these objectives, and thus each of these sce-
narios is treated differently according to requirements. In this way, more weighting can be
applied to battery preliminary metric for energy efficient traffic, while less can be applied to
asynchronous traffic. The values of the weighting system were deduced through experimental
work, and were shown to produce the desired outcome through simulations (see Section 5.4).
Although the values of the weighting system for each test and for each objective, which are
presented in Table 3.17, may not be the most accurate, they were shown to provide a good
configuration.

Table 3.17: The weighting system for each predefined objective

 Energy Synch Asynch Critical Secure Burst Clustering

Bubble sort 1 1 0 1 5 1 5
CPU merge 1 1 0 1 5 1 5
Memory test 1 File 1 5 0 1 1 10 10
Memory test 1KB 1 5 0 1 1 10 10
Client-server throughput 3 3 1 15 1 1 10
Proxy throughput 3 3 1 15 1 1 10
TCP error 3 3 1 15 1 1 10
IP error 5 10 0 2 1 1 15
UDP error 5 25 0 2 1 1 15
CPU utilisation 25 20 1 10 3 10 25
Memory utilisation 34 20 3 12 4 12 20
Battery level 50 40 4 20 3 10 35
Mobility N/A N/A N/A N/A N/A N/A 50

Final route metric calculation
The final stage includes the translation of the devices' overall metric along a source route, to
a meaningful expression, which indicates the ability of the route to accomplish the objective
in question. For this purpose, five grades were defined including:

• Excellent. A device assigned this grade is the most suitable device to accomplish the par-

ticular objective.
• Very Good. The device can accomplish the objective very efficiently.
• Good. The objective will be accomplished adequately.
• Average. A boundary performance is expected.
• Poor. The device should only be used for this type of objective, only if there are no alter-

natives.

 83

Figure 3.10 illustrates the process of assigning an overall routing metric to an ad-hoc routing
device based on a number of pre-defined objectives, as well as calculating the final metric of
the route on which the device is situated. Initially, when a source node receives the prelimi-
nary metrics of each node along a source route, which is achieved by initiating a route
discovery process, it calculates the capability/incapability determination of each node along
the source route in relation to the intended routing objective, and based on this information
it calculates the capability/incapability of the source route. Table 3.18 provides a look-up
table on which a node is based to determine the capability/incapability of each node along a
source route, as it defines the desired overall metric ranges, in which a device must fall to be
determined as capable. These values were deduced through experimentation, and were veri-
fied through simulations (see Section 5.4).

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

100

0
0 1

100

0
0 1

20

0
0 1

20

0
0 1

7000

0
0 1

7000

0
0 1

0
0

350

1

0
0

350

1

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100

W1

O
bjectives

O
1

O
2

O
3

…
O

n

O
bj

ec
tiv

es

O
1

O
2

O
3

…
O

n

Overall
Metric

Excellent

V, Good

Good

Poor

FINAL
METRIC

FINAL
METRIC

0
0

500

1

0
0

500

1

W12

W11

W10

W9

W8

W7W6

W5

W4

W3

W2

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100

80

0
0 1

80

0
0 1

80

0
0 1

80

0
0 1

pm
1

pm
2

pm
3

pm
4

pm
5

pm
6 pm

7

pm
8

pm
9

pm
10

pm
11

pm
12

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

100

0
0 1

100

0
0 1

100

0
0 1

100

0
0 1

20

0
0 1

20

0
0 1

20

0
0 1

20

0
0 1

7000

0
0 1

7000

0
0 1

7000

0
0 1

7000

0
0 1

0
0

350

1

0
0

350

1

0
0

350

1

0
0

350

1

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100

W1

O
bjectives

O
1

O
2

O
3

…
O

n

O
bjectives

O
1

O
2

O
3

…
O

n
O

1
O

2
O

3
…

O
n

O
bj

ec
tiv

es

O
1

O
2

O
3

…
O

n

O
bj

ec
tiv

es

O
1

O
2

O
3

…
O

n
O

1
O

2
O

3
…

O
n

Overall
Metric

Excellent

V, Good

Good

Poor

Excellent

V, Good

Good

Poor

FINAL
METRIC

FINAL
METRIC

0
0

500

1

0
0

500

1

0
0

500

1

0
0

500

1

W12

W11

W10

W9

W8

W7W6

W5

W4

W3

W2

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
0

10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100

80

0
0 1

80

0
0 1

80

0
0 1

80

0
0 1

pm
1

pm
2

pm
3

pm
4

pm
5

pm
6 pm

7

pm
8

pm
9

pm
10

pm
11

pm
12

Figure 3.10: The process of calculating the overall routing metric for certain device types and objectives

 84

Table 3.18: Desired ranges for each predefined objective

Objective Desired metric ranges
Energy efficient network traffic 0-30
Synchronous network traffic 0-25
Asynchronous network traffic 0-50
Critical network traffic 0-20
Secure network traffic 0-15
Burst network traffic 0-20

Table 3.19 is used as a look-up table by a source node in order to translate the capable re-
trieved routes into a final metric. The average (AV) of the devices' overall routing metrics, as
well as the standard deviation (SD) of these metrics, is used to determine the QoS-level that
a route can provide. The average represents the routing fitness of the route, while the stan-
dard deviation represents the difference in routing fitness that the nodes along a route may
have. Thus, a route with low average and standard deviation is likely to provide high-levels of
QoS, and is thus preferable for routing objectives that impose high requirements. As an ex-
ample, for asynchronous network traffic, in order for a route to be determined as Excellent,
the average and standard deviation must be below, or, equal to 10, whereas, for synchronous
network traffic, the average must be below, or, equal to five, and the standard deviation must
be equal to zero.

Table 3.19: Final route metric look-up table

AV & SD Energy Synch Asynch Critical Secure Burst
AV≤3 & SD=0 Excellent Excellent Excellent Excellent Excellent Excellent
AV≤5 & SD=0 Excellent Excellent Excellent Excellent V.Good Excellent
AV≤5 & SD≤4 Excellent V.Good Excellent Excellent V.Good V.Good
AV≤5 & SD≤5 Excellent V.Good Excellent Excellent Good Good
AV≤10 & SD≤4 Excellent V.Good Excellent V.Good Good V.Good
AV≤10 & SD≤5 Excellent V.Good Excellent V.Good Good Good
AV≤10 & SD≤8 V.Good Good Excellent V.Good Good Good
AV≤10 & SD≤10 V.Good Good Excellent V.Good Poor Poor
AV≤15 & SD≤9 V.Good Good Good Good Poor Good
AV≤15 & SD≤10 V.Good Good Good Good Poor Poor
AV≤15 & SD≤15 V.Good Poor Good Good Poor Poor
AV≤20 & SD≤15 Good Poor Good Poor Poor Poor
AV≤30 & SD≤20 Poor Poor Good Poor Poor Poor
AV≥30 & SD≥0 Poor Poor Poor Poor Poor Poor

An example is provided in Section 5.6 that extensively demonstrates the process of calculat-
ing the device's preliminary metrics, the device's overall metric, the route's

 85

capability/incapability determination, and the route's final metric, for each of the predefined
objectives and in relation to various discovered routes.

3.14 Chapter Summary

This chapter introduced the detailed MARIAN routing protocol specification, which was
specifically designed for multi-hop wireless ad-hoc networks, and for resource-constrained
devices, such as PDAs. MARIAN is a hybrid routing protocol that utilises a clustering struc-
ture for the purpose of minimising the flooding traffic. It combines an on-demand route
discovery based on stationary agents, and a proactive approach based on mobile agents. The
reactive route discovery process is similar to CBRP, where a node can reactively discover a
route to a destination by means of flooding, however the propagation is significantly reduced
in a way that the packets are traversed only through key nodes, such as cluster-heads, gate-
ways, and distributed gateways. The proactive route discovery process is initiated only from
cluster-head nodes, with purpose of gathering the network’s topology of non-adjacent clus-
ter-heads. The novelties this protocol is aiming to achieve is to provide redundancy by
discovering multiple routes, support QoS by assigning a capability/incapability routing-
metric, reduce latency by allowing each cluster-head to maintain a routing table provided by
the proactive approach, support reconfigurability, and provide the framework for enhanced
security. Efforts are now concentrated on submitting the specification to the Internet Engi-
neering Task Force (IETF) for Multi-hop Ad-hoc Networks (MANETs).

 86

4 Implementation

4.1 Introduction

This chapter presents specific details on the implementation decisions involved in configura-
tion and execution of the experimentation work that has been performed for this research. In
addition, certain obstacles which this work came across are also presented and discussed,
along with the way that they were overcome. Each section presents the experimentation
setup for each experimentation cycle, together with details on the organisation of participat-
ing devices, whereas the hardware and software used is presented in Appendix A.

4.2 Preliminary experimentation - Implementation deci-
sions

Experiments can be grouped into three categories: the protocol stack; the fixed network; and
the wireless network. Experiments in the first category only used a single device, such as a
PDA or a laptop. The fixed network experiments required two or more devices connected to
an Ethernet network (10/100 Mbps). Similarly, the wireless network experiments required
two or more devices, however, connected wirelessly using the IEEE 802.11b standard. Each
of these experiments can be sub-divided into experiments that only use the TCP transmit-
ter/receiver agents (see Appendix A) and experiments that, in addition, use the TCP proxy
throughput agent (see Appendix A). Thus, in the absence of the TCP proxy throughput
agent, the devices were operating in client-server mode, while, in its presence, the intermedi-
ate device acts as a gateway linking the other two devices.

The transmitting and receiving buffer size was set to 8KB for every experiment mentioned
above. Also, throughout the experimentation, the memory and battery monitoring agent (see
Appendix A) was used in order to record battery discharge rates experienced by the PDA.
Specifically, the agent was recording the time duration between two consecutive battery lev-
els, until the experiment was finished or the battery reserves were exhausted. However, the
minimum allowed battery level was set to 15%, and the PDA was fully charged before the
start of the experiments.

 87

4.2.1 The Protocol Stack
Two experiments were conducted for each device type (see Appendix A): the client-server and
the client-proxy-server. In the first experiment, the transmitter and receiver were running as
separate processes in the same device, where the transmitter was sending data traffic from the
application layer down to the protocol stack and immediately back up to the application. In
the second experiment, an additional process was involved, the proxy. The difference is that
the data was travelling through a proxy process before being pushed back up to the applica-
tion layer. Specifically the proxy accepts data from a transmitter process on a predefined
TCP port, and then pushes data down to the protocol stack and back up again, where the
data was finally delivered to the server process on another predefined TCP port (see Appen-
dix A). In both cases, the data was not intended to reach the physical network.

For the client-server experiment the buffer size was set to 8KB, and 4,750 buffers were
routed through by the workstation, laptop, and PDA devices. The experiment was iterated a
total of 20 times. In the client-server-proxy experiment, the buffer size remained the same,
while the number of buffers reduced to 512 for the workstation and laptop, whereas, for the
PDA this figure was considerably reduced to 85. This is due to the PDA requiring an unreal-
istic amount of time to conduct the proxy experiment with large amounts of data.

4.2.2 The Ethernet evaluation
This cycle of experiments was conducted only by the workstation and laptop (see Appendix
A). In the first class of experiments, the laptop was sending data to another laptop, and the
throughput achieved by the pair was measured, over 20 iterations. Following the same pro-
cedure, the throughput of a pair of workstations was also measured. In the second class, two
workstations were used, which were acting in a client-server mode, while the network traffic
was being routed through a workstation in the first experiment and through a laptop in the
second.

In the client-server experiment, 1,024 buffers were transmitted and received by the work-
station, while 512 buffers were used for the laptop. In the client-server-proxy experiment,
128 buffers were routed through by the workstation, while 64 buffers where used for the lap-
top. Each experiment was conducted 20 times in order to guarantee accuracy of results, and
the buffer size was set to 8KB. The workstation was tested with double the amount of data
that was used for the laptop, as the workstation was shown to achieve almost half more
throughput than the laptop.

 88

4.2.3 The Wireless evaluation
This cycle of experiments aims to benchmark the throughput of wireless devices, operating in
client-server mode, as well as operating as proxies (see Section 5.2 and Appendix A). The
wireless protocol used, in all cases, was the IEEE 802.11b, which can theoretically provide a
maximum throughput of 11Mbits/s. In the client-server category, three device pairs where
used: a pair of workstations, laptops, and PDAs (see Appendix A). In the client-proxy-server
experiment, a pair of workstations was used, which was transmitting network traffic to each
other, initially, through the workstation, then through the laptop, and finally through the
PDA.

In the client-server experiment, 6,128 buffers where transmitted and received by the
workstations, laptops, and PDAs pairs. In the client-proxy-server experiment, 256 buffers
were routed through the workstation, while 128 buffers routed through the laptop, and only
eight buffers were routed through the PDA. The number of buffers routed through the PDA
was significantly reduced, as the PDA requires an unrealistic amount of time to conduct the
proxy experiment with large amounts of data, whereas when in client-server mode it per-
forms relatively well. The experiment was iterated a total of 20 times, and the buffer size was
set to 8KB.

4.2.4 Obstacles presented in the preliminary experimentation phase
There were a few difficulties in this phase, mainly in the experimentation setup. In particu-
lar, most difficulties concerned the PDA’s support and installation of a suitable JRE and
mobile agent system, as well as the implementation and successful execution of agent-based
software targeted for this platform. The operating system, usually PocketPC 2002 or 2003
(Microsoft, Corporation, 2004), restricts Java support, and consecutively, the installation of
the majority of available mobile agent systems (developed in Java). Grasshopper v2.2.4 is one
out of the few mobile agent systems that provides a mobile edition (ME) tailored for Pock-
etPC platforms. Even though Grasshopper is a well documented system it provides
insufficient documentation for the ME edition, resulting in major installation problems be-
cause of the uneven support of various JREs targeted for these platforms (J2ME) (see
Appendix A). A common problem in Grasshopper’s ME execution is an exception raised by
most J2MEs implementations, concerning the use of an unsupported class in the Abstract
Windows Toolkit (AWT). This problem was not solved, as IKV++ holds the source code
private. However, an alternative solution was found. This involves switching off Grasshop-
per’s Graphical User Interface (GUI), and thus only using the provided Textual User

 89

Interface (TUI). In this way, the exception could be bypassed, and the agent platform can
properly operate.

4.3 Proxy experimentation - Implementation Decisions

Routing in ad-hoc networks is a complex task, often requiring high throughput, CPU-
intensive calculations, and large memory usage, which can result in relatively high power
consumption. Resource-constrained devices, such as PDAs are the principle candidates for
these networks due to their portability and small size. However, their strength of carrying out
routing tasks is highly restricted because of their limited capacities.

The aim of this experimentation cycle is to benchmark the available throughput that may
be offered by PDAs while routing, and determine the resource consumption rates required in
terms of CPU utilisation, battery consumption, heap memory, and temperature. Experi-
ments were conducted for various Operating Systems (OSs), Java Virtual Machines (JVMs),
and buffer sizes. In particular four JVMs especially designed to target handheld devices have
been tested: Insignia Jeode (Insignia, 2004); IBM J9 (IBM, 2004); NSIcom CrEme (NSI-
Com, 2004); and Blackdown JRE 1.3 (Blackdown, 2004) (see Appendix A). In addition,
three operating systems have also been tested including: PocketPC 2002, PocketPC 2003,
and Familiar Linux (see Appendix A). Moreover, buffer sizes tested include: 1KB; 2KB; 4KB;
8KB; and 16KB.

Figure 4.1, presents the organisation of the hardware devices and the software used. The
handheld was situated 10 meters apart from each of the two workstations, while they were
situated 20 meters apart from each other. A possible limitation of the experiment is that the
selected distance does not represent a real-life scenario, as 20 meters apart is a relatively short
distance, as devices can communicate directly. On the other hand, the simulation of a real-
life experiment requires long distances, perhaps, 200 meters apart, which is unrealistic in a
laboratory environment.

The first workstation was used as a transmitter, the second as a receiver, and the handheld
as a proxy. The TCP transmitter agent has been instructed to send fixed amounts of TCP
network traffic, at fixed time intervals, to the handheld’s proxy throughput agent, which, in
turn, was forwarding it to the TCP receiver agent (see Appendix A). All communications
were point-to-point and were using wireless as their communication medium.

 90

10 m 10 m

CrEme

Jeode J2SE 1.3

PocketPC 2002

PocketPC 2003

Familiar Linux

Proxy Software

Resource
Consumption

Software

Windows XP

Throughput
Calculation
Software

TCP Transmitter
Software

J2SE 1.4.2

Windows XP

Throughput
Calculation
Software

TCP Receiver
Software

J2SE 1.4.2J9

Figure 4.1: The organisation of devices for the proxy experimentation cycle

This experimentation cycle is very similar, in nature, to the proxy experiments conducted in
the preliminary experimentation phase, with the only difference being that throughout, in
this occasion, was measured using various JVMs and OSs combinations in order to identify
the differences, and, possibly, the underlying reasons for these differences. Furthermore,
three supplementary monitoring agents were used, in addition to the battery discharge agent,
in order to monitor the proxy’s resource consumptions in terms of CPU utilisation, heap
memory usage, and temperature variation, which was implemented for Familiar Linux de-
vices (see Appendix A). The tested JVMs and OSs combinations include the following:

• PocketPC 2002 with Jeode, J9, and CrEme.
• PocketPC 2003 with J9 and CrEme.
• Familiar Linux with JRE 1.3 and J9.

All other combinations were not possible, as the available JVMs are not supported by all
OSs, that is, JRE 1.3 cannot be installed to PocketPC 2002/2003, nor, can Jeode be installed
in PocketPC 2003 or Familiar Linux. The purpose of experimenting with different OSs and
JVMs is to investigate if there are any significant differences in the routing performance,

 91

which may be associated with the OS and/or the JVM, and identify the issues involved,
which can further assist in building-up a robust model.

4.3.1 Proxy PDA with PocketPC 2002 - Setup
As previously mentioned, this experimentation cycle involved three different JVMs designed
specifically for PDAs running PocketPC 2002. The tested JVMs included the Insignia Jeode,
IBM J9, and NSIcom CrEme, which are all fully certified from Sun Microsystems and con-
form to J2ME Personal Profile specification (Sun, Microsystems, 2004c).

In the first experiment, the source transmitted 128 buffers of size 1KB each, a total of
128KB to the proxy, which forwarded them to the destination. Once the data was received
by the destination, the throughput was calculated in both the transmitter and receiver, using
the time taken for the data to arrive at the destination through the proxy. This experiment
has been repeated fifteen times and the average throughput has been calculated, a total of
1.8311MB were routed through the proxy device. The multiple repetitions were necessary in
order to measure the average throughput.

Another four experiments were conducted using the same principles, however, the buffer’s
size, and the number of buffers were altered in such a way that the total amount of data re-
mained constant. The aim was to investigate whether buffer size has a significant role in
routing performance, or not. In more detail, in the second experiment the source transmitted
64 buffers of size 2KB each, in the third 32 buffers of size 4KB each, in the fourth 16 buffers
of size 8KB each, and in the fifth 8 buffers of size 16KB each, thus a total of 128KB for each
experiment. In this way, at each experiment, the total amount of data routed through the
device remained the same, which is necessary in order to measure the effect of the buffer size.

The experiments described above were performed for Jeode, J9, and CrEme. Finally, in
addition to measurements concerning the throughput achieved by the proxy device, the bat-
tery consumption rate, CPU utilisation, and heap memory usage (see Appendix A) have been
also monitored throughout this experimentation cycle.

4.3.2 Proxy PDA with PocketPC 2003 - Setup
The same series of experiments were conducted here as described in Section 4.3.1, with the
only difference being the OS used, which was PocketPC 2003, a more recent version of Mi-
crosoft’s OS than PocketPC 2002. The hardware, software, and organisation of devices
remained the same. At present, Jeode is not available for PocketPC 2003, and thus the ex-
perimentation had to be restricted to J9 and CrEme only. The purpose of this series of

 92

experiments is to investigate whether the OS can significantly influence the performance of a
proxy-PDA in an ad-hoc environment.

Similarly to Section 4.3.1, the source device was used to transmit a fixed number of data
to the proxy-PDA, which, in turn, was used to forward them to the destination device. All
communications were point-to-point and used wireless as their communication medium.
The same buffer sizes were tested against available throughput, including: 1KB; 2KB; 4KB;
8KB; and 16KB. A total of 128KB were thus routed for all buffer sizes. In addition, this ex-
periment has been repeated fifteen times for each buffer size and the average throughput has
been calculated, with a total of 1.8311MB for each experiment. Moreover, the throughput,
battery consumption rate, CPU utilisation, and heap memory usage were monitored
throughout this experimentation cycle.

4.3.3 Proxy PDA with Familiar Linux v0.7.2 - Setup
The purpose of these experiments is to measure the strengths and weaknesses of different
JVMs when executing proxy software on Familiar Linux handheld devices. They are de-
signed in the same way as described in Section 4.3.1, with the only difference being the OS
installed. A non-commercial OS targeted for handheld devices, such as PDAs, is Familiar
Linux. It can be freely downloaded and installed in any of the supporting handhelds by re-
placing the original OS, or creating a dual-band booting. For the purpose of this research,
two JVMs were selected due to their different nature: Blackdown’s Java 1.3; and IBM’s J9
Personal profile for Zaurus. Both JREs are fully certified by Sun Microsystems, however
Blackdown 1.3 conforms to Sun’s Java 1.3 specification, while J9 conforms to Sun’s J2ME
Personal Profile specification. Thus, the full Java 1.3 onto PDAs possibly improves the de-
velopment on these platforms, but, on the other hand, it imposes a heavy burden due to its
large footprint. On the contrary, J9 Personal profile for Zaurus is a light-weighted JRE,
which is restricted to a smaller scale of classes and libraries that comply with the Sun's J2ME
specification (see Appendix A).

Blackdown Java 1.3 has been especially designed for Familiar Linux, and it is thus not
supported by PocketPC platforms. IBM J9 Personal Profile has been designed for Zaurus
handhelds running Embedded Linux, that is, a small-footprint Linux OS targeted for Zaurus
handhelds, and therefore there is no official support for any other handhelds, or platforms.
However, experimentation demonstrated that IBM J9 Personal Profile can be successfully
ported on other handheld devices, such as iPAQs, which are running Familiar Linux. Simi-
larly to Section 4.3.1, the throughput, battery consumption rate, CPU utilisation and heap
memory usage, as well as temperature variation were monitored throughout this series of ex-

 93

periments. These additional measurements may provide evidence on whether proxy devices
suffer from significant changes in their internal temperatures, and if so, to which degree, and
whether the variation in temperature significantly varies between different JVMs. The tem-
perature variation test was specifically designed for Familiar Linux, as the supported JVMs,
that is, Java 1.3 and IMB J9 for Zaurus, have major differences in the resources they utilise
while routing, and may thus provide a suitable environment for temperature monitoring.

4.3.4 Obstacles presented in the proxy experimentation phase
This experimentation phase was inspired by efforts aiming in the optimisation of the proxy-
based PDA. In particular, the assumption was that the OS or/and the JVM may be two of
many factors that could significantly improve the throughput provided by the proxy. In or-
der to test this assumption, a variety of OSs and JVMs, especially designed for PDAs, had to
be found, installed, and tested. There were no obstacles involved in this experimentation
phase, as there are notes available for PocketPC and Familiar Linux platforms, as well as for
each tested JVM.

4.4 BASS Experimentation – Implementation decisions

BASS is a multi-agent benchmarking system, which aims to determine the routing fitness of
ad-hoc routing devices, and was especially designed to be light-weighted, and thus allow its
execution on resource-constrained devices. Its purpose is to conduct various tests, such as
intensive algorithmic calculations, routing throughput, utilisation monitoring, and pass the
results to a metric-driven routing protocol, which can then translate them to metrics that
describe the fitness of a device to perform routing tasks (see Section 3.10).

This section presents various tests that were conducted in order to identify the most ap-
propriate ones, which can be used to describe the routing fitness of an ad-hoc device. The
tests that are directly related to ad-hoc routing are: CPU-intensive sorting algorithms, mem-
ory tests (applicable to PDAs), client-server and proxy throughput, network protocol error,
CPU utilisation, memory usage, and battery reserves monitoring (see Section 3.10). Thus,
these tests can be used to determine the routing fitness of various ad-hoc devices, as these
factors are directly linked to ad-hoc routing (see Section 3.10). In addition, a few other tests,
that are not directly related to ad-hoc routing, and thus are not involved in the metric calcu-
lation process, are presented in this section. These include: the group-level test; the Internet
connectivity test; and the Java threads utilisation test. The group-level test is used to gather
the devices' system-level information, such as the OS and JVM version, which can be used to

 94

group similar devices, and thus allow the dispatch of routing updates to specific groups, if
necessary, which can extend the reconfiguration flexibility of the ad-hoc network. The Inter-
net connectivity test was designed to provide insight information on the connection and
download speeds of resource-constrained devices. The Java threads utilisation test was de-
signed to gather statistical utilisation information for each Java Thread running in the device,
and could possibly used to detect denial of service (DoS) attacks, which may be launched by
malicious agents.

The battery monitoring agent was used to monitor the devices’ battery consumption,
while the devices were executing the tests. Even though BASS is equipped with more re-
source-consumption monitoring agents, such as the CPU utilisation, the heap memory
usage, and the temperature variation, their operation was skipped, as they were used in the
proxy experimentation phase (see Section 4.3). Thus, the group-level, bubble sort, CPU
merge, memory test, Internet-connectivity, error packets monitoring, Java threads, and bat-
tery reserves monitoring agents were executed on each of the hardware devices (see Appendix
A). The following sections present specific details on their setup and execution.

The group-level agent does not require any addition configuration, or supervision, on
runtime, and were executed only once on the laptop device (see Appendix A). The details of
this agent are shown in Appendix A.

4.4.1 Bubble sort agent – Setup
In this experiment, the bubble sort test was requested to sort 30,000 random integers. Vari-
ous levels of depth were selected, including the 1D, 2D, 3D, and 4D. Each test was required
to sort approximately the same amount of integer values, i.e. 30,000 for the 1D,
173×173=29929 for the 2D, 31×31×31=29791 for the 3D, and 13×13×13×13=28,561 for
the 4D. The purpose of experimenting with in-depth dimensions rather than a single one is
to identify the CPU’s response on increased algorithmic depth, and compare the results to
the effect that ad-hoc routing has on the CPU utilisation. Each test was executed on each
device, for 20 iterations, and the battery discharge rate was recorded throughout the sorting
process.

4.4.2 Memory test - Setup
This agent has the capacity of performing two similar tests: creation of varying number of
files with constant file-sizes and creation of a constant number of files with varying file-sizes.
For each test two experiments were carried out. Specifically, for the first test and in the first
experiment one file was used, while in the second the file number increased to 16. Their sizes

 95

were ranging from 0 (KB) to 2000 (KB), in increments of 100 (KB). For the second test and
in the first experiment the size of the files used was 1 (KB), while in the second it was set to
16 (KB). The number of files was ranging from 100 to 2000, in increments of 100 files.
Each experiment was iterated 20 times, and the battery discharge rate was recorded through-
out these tests.

4.4.3 CPU merge agent – Setup
This test is an alternative to bubble sort, designed to impose a lighter CPU utilisation, and
thus provide a simpler and faster execution for limited devices, such as mobile phones. Even
though both tests can be requested to short the same number of random integer values, it is
guaranteed that the CPU merge agent will always finish first, as it bases its functionality to a
simpler sorting algorithm than the one used by the bubble sort agent. In addition, this test
can be used in situations were the user wishes to perform a quick benchmarking of the hand-
held’s processing power, and thus avoid long-lasting processes. Thus, this test is a preferable
alternative to the bubble sort in cases where a quick benchmarking of a device’s processing
speed is necessary, or, the device is incapable of conducting the 1D bubble sort. In the actual
experiment, the agent was requested to sort 80,000 random integers, and the experiment was
iterated 20 times.

4.4.4 Internet connectivity agent – Setup
This test attempts to download a single HTML page of 26,823 (bytes). It can be used to de-
termine whether there is an Internet connection or not, assuming that the web-site address is
always available. In order to minimise the possibility of the site being actually unavailable,
multiple addresses may be passed to this agent at runtime. If the agent senses that there is
Internet connection it calculates the following:

• Time taken to connect.
• Time taken to download.
• Total time taken.

In this particular experiment, all devices were configured in such a way so as to have a con-
nection to the Internet and attempted to download a single web-site from the same source.
The connection was provided wirelessly from an access point. Although this test is not re-
lated to ad-hoc routing, and is thus not involved in the metric calculation process, it might

 96

provide insight information on the connection, and download, which is required by re-
source-constrained devices.

4.4.5 Error packets monitoring test – Setup
The purpose of this test is to monitor the network traffic generated at an ad-hoc routing de-
vice, and to gather statistical information on the amount of traffic being processed by the
device, as well as to capture any network errors that may have occurred. Thus, this test can
constantly monitor the incoming, outgoing, and error data packets, of each of the supported
network protocols, that is, IP, TCP, and UDP, and thus allow the ad-hoc routing protocol
to determine the device's network state. This information can then be used by the ad-hoc
routing protocol to determine the device's reliability, and thus base its routing decisions ac-
cordingly. This test was executed a few times for a relatively short period of time on the
laptop device. The instance, in which network errors occurred, was captured, and presented
in Appendix A.

4.4.6 CPU utilisation and memory usage monitoring test – Setup
As previously mentioned, the purpose of this test is to monitor the utilisation of a device in
terms of CPU and memory. In general, the test can greatly assist in the determination of the
routing capabilities of a device. Unlike most other tests, the results can be highly dynamic, as
they can widely vary, depending on the current state of the device. Although a device may
have achieved good results in all previously described tests, if results from this test prove to
be inadequate, then the device is most likely to be determined as poor in terms of routing
capabilities. Therefore this test is extremely sensitive in relation to the overall fitness calcula-
tion, as CPU and memory are usually the two most important factors.

This test was used throughout the proxy experimentation phase, and results were mainly
concentrated on the current CPU utilisation of the proxy-enabled devices. In addition to
CPU utilisation, this test can provide information, including: the total memory; the available
memory; the virtual memory used; and so on. A snapshot of the test's output is presented in
Appendix A.

4.4.7 Java threads monitoring test – Setup
The purpose of this test is to monitor all Java Threads in the system, and store information
including the following:

• threadID. A unique ID identifying this running thread.

 97

• cpuPercentUsed. The CPU percentage used by this thread.
• cpuTimeUsed. The CPU time used by this thread.
• lastUpdated. Information corresponds to the last updated time.

Since the BASS system, the Grasshopper agent-platform, and the stationary and mobile
agents themselves are all written in Java, this test could be especially useful in determining
their overall CPU utilisation, and memory usage, activities. Thus, it provides the basic infra-
structure for tolerating denial of service attacks, originating from foreign mobile agents,
where stationary guard agents can monitor their activities, and kill or depart them in case of
any suspicion. However, this test is not directly related to ad-hoc routing, and thus it does
not participate in the metric calculation process.

4.4.8 Obstacles presented in the BASS experimentation phase
The main difficulty of this experimentation phase was to determine the suitability of each
test in terms of ad-hoc routing, and thus rely only on the tests that are directly related to de-
termine the routing fitness of various ad-hoc devices. As previously discussed, tests, such as
the group-level, Java threads utilisation, Internet connectivity, and heap memory usage were
left out from the metric calculation process, due to their lack of relevance to ad-hoc routing.
On the other hand, the group-level test provides system-level information for each participat-
ing device, which may be used by the routing protocol to disseminate routing updates to the
group of devices, which need them, for example, all PocketPC platforms. In the same man-
ner, the heap memory usage test was used throughout the proxy experimentation phase in
order to measure heap memory, which was used by proxy-enabled devices. However, the Java
threads utilisation and Internet connectivity tests have little or, no validity, in the context of
this research, and, thus, they were presented here, as added features that could only provide
interesting results from the perspective of each device type.

4.5 Experimentation of mobile agent migration – Imple-
mentation decisions

This experimentation cycle aims to determine the migration times involved with mobile
agents and their ability to reduce network overhead. Initially, two groups of devices with dif-
ferent hardware characteristics were selected, namely, the superiors and inferiors (see
Appendix A). Each group consisted of five workstations, which were wirelessly connected
using the IEEE 802.11b standard. A mobile agent was implemented in such a way so as to

 98

migrate from its home platform, hop to each device of the same group, in sequence, and re-
turn back to its origin, along the same route, which was used by the agent for its
propagation. Thus, the total migrations were designed to be of exactly eight hops. In addi-
tion, the agent was equipped with a timer, used to measure its round-trip time (RTT), and
the migration time, along each hop. This experiment could provide insight information in
determining the average migration time of a mobile agent, and further provide evidence on
whether devices’ hardware characteristics can, or cannot, affect migration times, in general.

The last phase of this experimentation cycle aims to show whether data gathering mobile
agents, with intelligent filtering capabilities, could, or could not, improve upon static ap-
proaches. For this purpose, a database application scenario was implemented in such a way
so as to enable both static and mobile agent retrieval approaches to a fair comparison. In par-
ticular, a database holding information about research articles was maintained by a laptop,
while another nearby laptop was maintaining a region registry. A remote PDA required spe-
cific information from the database, and was situated beyond the database’s reachability. An
intermediate proxy-PDA device was used to facilitate forwarding services for both the static
and mobile agent approaches. Initially, the time taken to retrieve the requested data using the
pure static agent approach was compared to the pure mobile agent approach, whereas in the
second phase the comparison was made between the pure static agent approach and the mo-
bile agent approach which was equipped with intelligent data filtering.

Figure 4.2 presents the organisation of devices used to conduct the experimentation of the
database application scenario. As shown, every device is in direct communication range with
each other, apart from the client PDA and the database laptop (nodes A and D), which be-
long to different wireless domains (WDB and WDA respectively). The application scenario
required the registration of each agency, agent, and service, in the local region registry. Thus,
an agent could locate other objects, in the distributed environment, by simply requesting
their location information from the local region registry.

According to the static agent approach (see Figure 4.3), the client agent initially contacts
the region registry and requests the contact information of the database agent. The region
registry provides the information to the client agent, which then tries to contact the database
agent directly by passing its user’s query. However, since the client PDA and the database
laptop are not in communication range, this attempt is designed to fail. Thus, the client
senses the failure and decides to contact the region registry again, only that this time it re-
quests the proxy agent’s contact information. Once the details arrive at the agent, it contacts
the proxy agent and passes its user’s query. The proxy agent realises that the client requires a
database proxy service, and thus contacts the region registry to retrieve the contact informa-
tion of the database agent. Then, it passed the original query to the database agent and waits

 99

for the agent to process the request. Once the resulting data is available, the proxy agent for-
warded it to the client agent.

Database laptop
Node D

Gateway PDA
Node C

Client PDA
Node A

Region registry
Node B

WDA WDB

Figure 4.2: Organisation of devices for the database retrieval experiment

According to the mobile agent approach (see Figure 4.4), the client mobile agent initially
contacts the region registry and requests the location information of the database agent, that
is, the agency location information in which the database agent lives. Then, it tries to migrate
to that location, however, the client PDA and the database laptop are not in communication
range, and thus this attempt fails, similarly to the static agent approach. The agent senses the
migration failure, and decides to migrate to the intermediate node, that is, the gateway.
Thus, it contacted the region registry and retrieves the gateway’s location information. Next,
it initiates its self-migration with destination the gateway node. Once there, it tries to mi-
grate to the database laptop and succeeds, as the proxy and database nodes are within
communication range. The agent then senses its arrival on the database node and initiates
communication with the database agent. It passes the query to the agent, and stores the re-
sults in its payload. Then, it inverted its itinerary and migrates to the gateway node, and,
finally, to its home-platform, that is, the client node.

The filtering mobile agent approach follows the same principles, as the pure mobile agent
data gathering, however, in this case the client mobile agent maintains preference informa-
tion, on articles that its user requires. Once the client mobile agent retrieves the results from
the database, instead of just storing them to its payload, it first filters the data locally, accord-
ing to its user’s preference criteria, and thus stores only a small amount of the total data. For
instance, according to the current implementation of this application scenario, the agent

 100

bases its decision onto knowledge acquired by the user upon its creation. Specifically, the
agent learned that its user was only interested in recent articles published in journals only,
written by a precise set of authors, and supplied in a pdf format. The agent interprets the
word recent to papers written between the years 2004 and 2005, and follows its user’s in-
structions.

Communication flowCommunication flow

Database

Database
Agent

Proxy
Agent

Proxy
Agent Client

Agent

Region
registry

Figure 4.3: Retrieving database records using the static agent approach

Database

Database
Agent

Region
registry

Client Mobile
Agent

Figure 4.4: Retrieving database records using the mobile agent approach

 101

4.5.1 Data gathering using the static agent, mobile agent, and mo-
bile agent with filtering approaches - Setup

Initially, the results from the database were set to be 100Kbits, which then increased to
200Kbits, and, finally, to 300Kbits. The static and mobile agent approaches were tested
against these amounts, and, in respect to time. Each experiment was iterated 20 times in or-
der to allow accurate measurements. Then, the results from the database query were set to be
15Mbits, where the static agent and mobile agent with filtering approaches, were tested for
this data size. Similarly, this experiment was iterated 20 times. Each device was set to be ap-
proximately 5 meters apart from the remaining. The PDAs and laptops were fully charged at
the start of the experiment.

4.5.2 Obstacles presented throughout the experimentation of mobile
 agent migration cycle

In this experimentation cycle a few obstacles were presented mostly in relation to the posses-
sion and set-up of the hardware equipment, since only the first phase required two groups
with each group consisting of five identical devices. In addition, the software installation and
control was another issue, since it had to be spawn over a large number of devices, however,
it was dealt efficiently. Furthermore, concerns were also raised with the definition of intelli-
gent filtering. Specifically, the term intelligent filtering is reasonably ambiguous, and highly
relates to the context used, thus, it can be implemented in many possible diverse ways. A rea-
sonable decision was then taken, that is, to allow the mobile agent to filter the data, as if it
performed a second search, on the originally returned data. The search criteria were based on
its user’s preferences, which were fed into the agent on creation. Even thought some database
search components offer sophisticated search facilities, this is not the case for most of them,
and thus it makes sense to utilise mobile agent technology as to an extension of their services.

4.6 Metrics simulation – Implementation decisions

This experimentation cycle involves simulation experiments which aim to prove the correct-
ness, adaptability, and fast convergence of the proposed metric-driven routing protocol, in
various changes of the devices’ main routing elements. Specifically, conditions such as the
rapid increase in a device’s utilisation, sudden drop of a device’s battery capacity, and rapid
decrease in a device’s available memory, have been tested in relation to their effect in the de-
vice’s overall routing metric. For the purposes of this simulation, six distinct device types
have been defined, including the following:

 102

• Average strength iPAQ PDA (DT1). These devices are the most common in mobile ad-

hoc networks.
• iPAQ PDA with high utilisation (DT2). These devices inherit all the characteristics of

the first category, however, the utilisation was set to constantly be considerably high.
• iPAQ PDA with good network throughput (DT3). These devices also inherit all the

characteristics of the first category, however, the proxy throughput was set to a valid
maximum for the standards of these devices.

• iPAQ PDA with poor throughput (DT4). These devices provide a valid minimum proxy
throughput.

• iPAQ PDA with high errors in the network protocols (DT5). These devices are prone to
network protocol errors.

• iPAQ PDA with low battery (DT6). These devices were set to have low battery capacity.
• Average strength laptop (DT7). An average strength mobile device, however, highly ca-

pable when compared to the first category devices.
• Good strength laptop (DT8). A highly capable mobile device.
• Powerful workstation (DT9). An exceptionally strong device, which is not battery-

driven.

Each device is assigned to a set of preliminary metrics (see Section 5.5.2), which are deduced
from the test results that are later presented throughout Sections 5.1 - 5.3. The purpose of
the simulation experiments is to vary key preliminary metrics from zero to 100 for each de-
fined device type, and measure the effect that this could have on the device’s overall metric,
and capability/incapability determination criteria, in relation to each predefined objective (see
Section 3.13). This experimentation phase has not faced any problems or obstacles.

4.7 Chapter Summary – Experimentation setup

This chapter presented a thorough analysis and provided implementation details for each
experiment conducted for the purposes of this research. Specifically, this chapter presented
the configuration of each experiment, where the hardware and software used is presented in
Appendix A. In addition, it provided details on the obstacles presented and how these were
efficiently dealt. Each section provided implementation detailed concerning the setup for
each experimentation cycle, together with details on the organisation of participating devices.
It should be noted that this chapter did not include implementation details for the experi-
mentation cycle presented in Section 5.6, as it was especially designed for demonstration

 103

purposes and mainly provides a demonstration on various application scenarios of the pro-
posed research work.

 104

5 Results

5.1 Introduction

The purpose of this chapter is to outline the experimentation approach, and to presents
the results obtained, which justify the design and verification of the model. One of the
key factors is to determine the characteristics of various device types, which can be used
in simulators, such as ns-2, and provide a methodology for automatically assessing devices
for ad-hoc routing. In this way, the devices’ responsibilities towards ad-hoc routing is
balanced on their capacity to perform key tasks, such as buffering, processing, data rout-
ing, as well as their current status, such as battery life, CPU utilisation, and memory
usage, which overall introduces fairness from the device’s perspective, and most impor-
tantly improves the network’s overall reliability and performance. This chapter
demonstrates that routing is a resources-consuming process, which has a significant nega-
tive effect on resource-constrained devices, especially in terms of battery discharge rate
and CPU utilisation. In addition, high-end devices typically provide sufficient through-
put, which supports high-requirement routing scenarios, such as synchronous and burst
network traffic, whereas resource-constrained devices can normally support network traf-
fic with no special requirements, such as asynchronous chat. This chapter also shows that
the introduction of the proxy, which is a simple and efficient way of routing, allows a
wide range of devices to perform routing tasks, even handhelds, which are possibly the
weakest ad-hoc devices. In addition, a number of optimisation strategies are shown to
improve the throughput that handhelds can achieve, such as the selection of the Operat-
ing System, and Java Runtime Environment.

5.1.1 Device tests
This experimentation phase was conducted to provide answers for the following funda-
mental questions:

• Can proxy devices be used to route traffic over fixed and wireless networks?
• Are mobile devices fit enough to route network traffic?
• Are there any restrictions on the type of traffic PDAs can handle?

Multi-hop ad-hoc routing inherently suggests that each mobile device along a routing
path should equally participate in the routing process, as needed. Thus, the aim of the
experimentation is to identify the fitness of devices with various hardware characteristics,

 105

as routing elements in terms of maximum throughput and battery discharge rate.

5.1.2 The protocol stack
This is the simplest routing experiment, where a device is sending data from the applica-
tion layer down to the protocol stack and immediately back up to the application layer,
however, the data does not actually reach the physical network. This test is useful in pro-
viding an estimation of the average time which is necessary for data to reach the physical
network, having been processed by various protocols of the protocol stack. The imple-
mentation details of this experiment are described in Section 4.2.1.
 Figure 5.1 presents the throughput of the protocol stack experiment achieved by the
workstation, laptop, and PDA, over multiple iterations. In more detail, the workstation
achieved the best results, with an average of approximately 400Mbits/s, while the laptop
achieved an approximate average of 95Mbits/s, and finally the PDA achieved an ap-
proximate average of 1.75Mbits/s. By comparing these results, it can be deduced that the
workstation performed the experiment almost four times faster than the laptop, and a
considerable 230 times faster than the PDA. These results clearly indicate the difference
in processing power between high and low performance devices. Further evidence of the
difference in processing power between low and high performance devices is presented in
Figure 5.2. The results were obtained by conducting the protocol stack experiment, using
a proxy in-between the sender and receiver processes. The figures suggest that the work-
station may route data internally up to 10 times faster than the PDA, however achieving
better, but similarly, to the laptop. Consecutively, devices with similar hardware charac-
teristics to a PDA may struggle when dealing with high routing requirements, such as the
ones imposed by real-time traffic. In addition, a resource-constrained device, such as a
PDA, could become over-utilised while routing, and may even become temporarily un-
available to perform user-driven tasks.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

350000

400000

450000

90000

100000

110000

1500

1750

2000Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations

Workstation

Laptop

PDA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

350000

400000

450000

90000

100000

110000

1500

1750

2000Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations

Workstation

Laptop

PDA

175

200

225

150

16

18

20

22

24

26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations

Workstation

Laptop

PDA

175

200

225

150

16

18

20

22

24

26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations

Workstation

Laptop

PDA

Figure 5.1: The protocol stack throughput

Figure 5.2: The protocol stack throughput,
through a proxy

 106

Another equally important factor to throughput, especially for mobile devices, is battery
discharge rate. In other words, the average time (s) in which the battery-level drops by
1% (delta 1%), while the device is conducting an experiment. Figure 5.3 presents the
battery discharge rate for the PDA, throughout the internal client-server experiment. The
x-axis shows the time taken for the complete experiment, while y-axis shows the time
taken for the battery to drop by 1%. These measurements are important so as to deter-
mine the resources, in terms of battery, which is required by resource-constrained devices
to push data down the protocol stack and back up again. In this way, this experiment
provides a valuable insight in the consumption rates experienced by a device when rout-
ing. According to Figure 5.3, the average battery discharge rate for the PDA while
conducting the client-server experiment is approximately 141s, whereas the average bat-
tery discharge rate for the PDA while conducting the client-proxy-server experiment is
approximately 127s (see Figure 5.4). Specifically, battery discharge at almost 10% faster
for the client-proxy-server experiment than the client-server. Thus, that the added proxy
process causes the battery to discharge at a higher rate, which infers that more intensive
tasks consume the battery at a higher rate.

0

20

40

60

80

100

120

140

160

00:00:00 00:14:24 00:28:48 00:43:12 00:57:36

Time (hh:mm:ss)

Ti
m

e
(d

el
ta

 %
) (

s)

0
20
40
60
80

100
120
140
160
180
200

00:00:00 00:14:24 00:28:48 00:43:12 00:57:36 01:12:00 01:26:24

Time (hh:mm:ss)

Ti
m

e
(d

el
ta

 %
) (

s)

Figure 5.3: Battery discharge rate experienced by
the PDA throughout the protocol stack experi-
ment (client-server)

Figure 5.4: Battery discharge rate experienced by
the PDA throughout the protocol stack experi-
ment (client-proxy-server)

5.1.3 Throughput over an Ethernet 10/100 (Mbits/s)
This experiment’s description and implementation details are thoroughly presented in
Section 4.2.2. Figure 5.5 presents the throughput provided by the transmitting and re-
ceiving workstations and laptops. The workstation pair achieved an average throughput
of approximately 9.4Mbits/s, while the laptop pair achieved approximately 4Mbits/s. In
addition, the workstation results were similar for all 20 iterations, while, in case of the
laptop, several inconsistencies were observed. This could be attributed to the fact that the
laptop is caching the data to virtual memory, as its physical memory capacity was limited.
In terms of throughput, the workstations pair achieved approximately twice as good as
the laptops pair, which is attributed to the overall fitness of the workstation device, and

 107

especially to its Ethernet interface. Figure 5.6 presents the throughput provided by the
proxy-workstation and proxy-laptop. The proxy-workstation achieved an average
throughput of approximately 610KBits/s, while the proxy-laptop achieved an average
throughput of approximately 190KBits/s. In comparison to results presented in Figure
5.5, it can be clearly seen that the introduction of the proxy had a considerable effect on
the overall throughput for both device types. Specifically, the throughput through the
proxy-workstation was reduced by 93.6%, when compared to the workstation client-
server experiment, while the throughput through the laptop-workstation was reduced by
95.25%, when compared to the laptop client-server experiment. In addition, the proxy-
workstation routed the same amount of data, as the proxy-laptop, within almost one-
third of the time. This further suggests that higher performance devices can actually in-
crease throughput, and thus route data in less time.

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iterations

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Workstation

Laptop

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iterations

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Workstation

Laptop

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iterations

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Workstation

Laptop

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iterations

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Workstation

Laptop

Figure 5.5: Client-Server throughput, over an
Ethernet network, 10/100 (Mbits/s)

Figure 5.6: Client-Server throughput, through a
proxy, over an Ethernet network 10/100Mbits/s

5.1.4 Throughput over a wireless IEEE 802.11b network
(11Mbits/s)

In this category, devices were wirelessly connected (IEEE802.11b standard) and tested as
presented in Section 4.2.3. Figure 5.7 presents the throughput results obtained by a pair
of workstations, laptops, and PDAs operating in client-server mode, while Figure 5.8 pre-
sents throughput results when these devices were acting as proxies. According to Figure
5.7, the workstations achieved the best results, almost twice as much throughput as the
laptops, and almost three times more throughput than the PDAs. Similarly, according to
Figure 5.8, it can be seen that the proxy-workstation achieved the best results. In particu-
lar, the workstation achieved twice as much throughput as the laptop, and 100 times
more than the PDA. The difference between the proxy-workstation and the proxy-PDA
is significant, and may be addressed to the fact that PDAs are limited devices, in terms of
processing power, memory capacity, buffering capabilities, and so on. Thus, it may be

 108

safe to conclude that PDAs are not appropriate for routing heavy network traffic, such as
real-time multimedia traffic with Quality of Service (QoS) requirements. Instead, these
devices should only be used to route asynchronous network traffic, such as message ex-
change.

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations

Workstation

Laptop

PDA

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations

Workstation

Laptop

PDA

3.5

4.5

4

0

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations

Workstation

Laptop

PDA

3.5

4.5

4

0

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations

Workstation

Laptop

PDA

Figure 5.7: Client-Server throughput over a
wireless network IEEE 802.11b (11Mbits/s)

Figure 5.8: Client-Server throughput, through a
proxy, over a wireless network IEEE 802.11b
(11Mbits/s)

Figure 5.9 presents the battery discharge rate of the receiving PDA, while conducting the
client-server experiment. As it can be seen from the graph, the average discharge rate for
the receiving PDA was approximately 74s, which is a significant reduction of approxi-
mately 50%, compared to the corresponding results in the protocol stack experiment.
This is possibly a direct effect of the wireless being enabled and used, which obviously
requires a relatively sufficient amount of energy. Figure 5.10 presents the battery dis-
charge rate of the receiving PDA, while conducting the client-proxy-server experiment.
As it can be seen, the average battery discharge rate was approximately 70s, which is a
slight difference from the results presented in Figure 5.9, specifically a reduction of ap-
proximately 5.5%. Thus, results do not prove that data routing has a significant negative
effect on battery for resource-constrained devices, which may be attributed to the limita-
tions of this small-scale experiment.

0
10
20
30
40
50
60
70
80
90

100

00:00:00 00:14:24 00:28:48 00:43:12 00:57:36 01:12:00 01:26:24

Time (hh:mm:ss)

Ti
m

e
(d

el
ta

 %
) (

s)

0
10
20
30
40
50
60
70
80
90

100

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48 00:36:00 00:43:12

Time (hh:mm:ss)

Ti
m

e
(d

el
ta

 %
) (

s)

Figure 5.9: Battery discharge rate experienced by
the PDA throughout the wireless experiment
(client-server)

Figure 5.10: Battery discharge rate experienced
by the PDA throughout the wireless experiment
(client-proxy-server)

 109

5.1.5 Outcomes and evaluation of preliminary experimentation
The introduction of the proxy device was shown to reduce network throughput, and, in
addition, increase the proxy's battery discharge rate. However, the proxy allows many
different types of devices, such as workstations, laptops, and handhelds to route data,
whereas proper routing software would possibly prohibit its use by handhelds, as it re-
quires the execution of intensive processes. The benefit of using a proxy is that it does not
require devices to execute additional functions, other than routing data, as it only re-
quires the creation of two Threads, which are used as tunnels for data exchange, and thus
it does not impose additional processing.
 High performance devices were shown to provide significantly more throughput than
resource-constrained devices, when used as proxies. In particular, in the client-server pro-
tocol stack experiment, the workstation achieved 230 times more throughput than the
PDA, while, in the client-proxy-server experiment of the same category, the difference
was 100 times. In the wireless client-server experiment, a pair of workstations achieved an
average throughput of approximately four times more than the corresponding pair of
PDAs, however, the difference between the proxy-workstation and the proxy-PDA, was
significantly higher. Specifically, the proxy-workstation accomplished an average
throughput of approximately 100 times more than the proxy-PDA. Throughput results
suggest that resource-constrained devices may be unable of routing heavy network traffic,
because of the significantly narrow throughput provided, and may thus be more suitable
of routing network traffic with no specific requirements, such as asynchronous chat.
 In terms of battery discharge rate, it was shown that when a PDA has its wireless on it
consumes almost 50% more battery that without wireless. As ad-hoc routing devices
typically use wireless for data routing, the PDA may struggle to maintain the battery dis-
charge rate, at a reasonable pace, if it is required to constantly have its wireless on. In
addition, data routing was shown to have a slight effect on the PDA's battery discharge
rate, which may be attributed to the small-scale experiment.

5.2 Proxy Experimentation

Following the significantly negative results of the proxy-PDA presented previously, this
section investigates the significance of the proxy element, such as on the selected buffer
size, the Operating System (OS), and the Java Virtual Machine (JVM) used to interpret
the Java-based proxy bytecode. Thus, for the selected device, which is an iPAQ h5450
(see Appendix A) all possible OS and JVM combinations were tested. In addition, each
experiment was conducted for five different buffer sizes, at: 1KB, 2KB, 4KB, 8KB, and
16KB. For each experiment, various devices’ important factors were monitored, includ-

 110

ing the battery discharge rate, CPU utilisation, heap memory usage, and temperature.
The implementation details of this experimentation cycle are described in Section 4.3.

The preliminary experimentation provided several evidence of the inability of re-
source-constrained devices, as routing elements, especially in wireless networks. The
purpose of this set of experiments is to further benchmark the minimum and maximum
throughput that may be provided by a proxy-enabled PDA, and, in addition, to measure
the battery consumption rate, CPU utilisation, heap memory usage, and temperature
variation. The aims are to:

• Benchmark throughput offered by a proxy-based PDA, in an ad-hoc network.
• Identify the degree in which the installed OS may affect throughput.
• Identify the degree in which the installed JVM has on throughput.
• Identify the degree in which the selected buffer size has on throughput.
• Monitor the resource consumption rates of the proxy-based PDA, while routing.
• Monitor the resource consumption rates of a PDA, while in idle state.
• Benchmark the imposed overhead, in terms of resources used by the proxy-based

PDA, and deduce the type of traffic which may be suitable of routing.

5.2.1 Throughput of a PDA running PocketPC 2002
The details of the experiment are presented in Section 4.3.1. Figures 5.11 - 5.14 present
the throughput measurements, for each supported JVM, over 15 iterations, using buffer
sizes of 1KB, 2KB, 4KB, 8KB, and 16KB. Insignia’s Jeode JVM is represented by a solid
line, IBM’s J9 is represented by a dashed line, and NSIcom CrEme is represented by a
dotted line. It can be seen that the measured throughput using Jeode and J9 overlap,
while in the case of CrEme the throughput is approximately four times larger. Similar
conclusions can be drawn by examining Figure 5.15, with the only difference that J9
achieves slightly more throughput than Jeode. The average throughput values are sum-
marised in Table 5.1. It can be seen that CrEme seems to be able to provide significantly
higher throughput in PDAs running PocketPC 2002. The underlying reason is that, al-
though each supported JRE fully satisfies the J2ME specification (see Appendix A), there
are no strict guidelines on the actual implementation, and is thus possible for one system
to achieve better performance than another. This is possibly achieved by utilising the de-
vice's wireless capability more intensively, as well as occupying more resources. This
argument is examined further, in later sections. As far as the buffer size is concerned,
there is no noticeable difference as all tested buffer sizes produced approximately the
same throughput. Although CrEme may be the best JVM candidate for interpreting the
Java-based proxy software, the throughput provided seems mostly suitable for routing
small amounts of network traffic, such as e-mails and text, rather than heavy network

 111

traffic, such as real-time audio and video.

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations (n)

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations (n)

Figure 5.11: Throughput using Jeode, J9, and
CrEme with buffer size of 1KB

Figure 5.12: Throughput using Jeode, J9, and
CrEme with buffer size of 2KB

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations (n)

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations (n)

Figure 5.13: Throughput using Jeode, J9, and
CrEme with buffer size of 4KB

Figure 5.14: Throughput using Jeode, J9, and
CrEme with buffer size of 8KB

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations (n)

Figure 5.15: Throughput using Jeode, J9, and CrEme with buffer size of 16KB

Table 5.1: Average throughput for the PocketPC

PocketPC 2002 throughput (Kbits/s)

 Jeode J9 CrEme
1 KB 3.44 3.44 13.36
2 KB 3.49 3.45 13.41
4 KB 3.70 3.47 12.37
8 KB 3.38 3.44 13.23

16 KB 3.43 4.05 14.23

 112

5.2.2 Battery discharge rate for PocketPC 2002
The PDA’s battery discharge rate was measured while the PDA was routing network traf-
fic from the source to the destination, as described in Section 4.2. Briefly, this was
performed by measuring the time taken for the battery to discharge by 1%, until the ex-
periment was finished, or until the battery reached 15% of its remaining capacity. Figures
5.16 - 5.20 present the battery discharge rate, for the selected buffer sizes and JVMs.
Jeode is represented by a solid line, J9 with a dashed line, and CrEme with a dotted line.
It can be seen that the battery discharge rate is similar for all tested JVMs and buffer sizes.
The average battery discharge results are summarised in Table 5.2. With this, the battery
discharge rates recorded using Jeode and CrEme were almost identical for all buffer sizes.
In the same way, J9 accomplished an almost identical discharge rate for buffer size of
1KB, however, for the remaining buffer sizes it allowed a slower battery discharge of ap-
proximately 6s, that is, almost 10% more time for the battery to discharge by 1%. This
means that the PDA can stay alive for 10 additional minutes, before the battery gets fully
discharged Although J9 seems to slightly improve on battery life, it provides the worst
routing throughput.

30

40

50

60

70

80

90

100

00:00:00 00:17:17 00:34:34 00:51:50 01:09:07 01:26:24
30

40

50

60

70

80

90

100

00:00:00 00:17:17 00:34:34 00:51:50 01:09:07 01:26:24

Ti
m

e
(d

el
ta

 1
%

) (
s)

Time (hh:mm:ss)

30

40

50

60

70

80

90

100

00:00:00 00:17:17 00:34:34 00:51:50 01:09:07 01:26:24
30

40

50

60

70

80

90

100

00:00:00 00:17:17 00:34:34 00:51:50 01:09:07 01:26:24

Ti
m

e
(d

el
ta

 1
%

) (
s)

Time (hh:mm:ss)

Figure 5.16: Battery discharge rate for buffer size
of 1KB using Jeode, J9, and CrEme

Figure 5.17: Battery discharge rate for buffer size
of 2KB using Jeode, J9, and CrEme

30

40

50

60

70

80

90

100

00:00:00 00:17:17 00:34:34 00:51:50 01:09:07 01:26:24
30

40

50

60

70

80

90

100

00:00:00 00:17:17 00:34:34 00:51:50 01:09:07 01:26:24

Ti
m

e
(d

el
ta

 1
%

) (
s)

Time (hh:mm:ss)

30

40

50

60

70

80

90

100

00:00:00 00:17:17 00:34:34 00:51:50 01:09:07 01:26:24
30

40

50

60

70

80

90

100

00:00:00 00:17:17 00:34:34 00:51:50 01:09:07 01:26:24

Ti
m

e
(d

el
ta

 1
%

) (
s)

Time (hh:mm:ss)

Figure 5.18: Battery discharge rate for buffer size
of 4KB using Jeode, J9, and CrEme

Figure 5.19: Battery discharge rate for buffer size
of 8KB using Jeode, J9, and CrEme

 113

30

40

50

60

70

80

90

100

00:00:00 00:17:17 00:34:34 00:51:50 01:09:07 01:26:24
30

40

50

60

70

80

90

100

00:00:00 00:17:17 00:34:34 00:51:50 01:09:07 01:26:24
Ti

m
e

(d
el

ta
 1

%
) (

s)
Time (hh:mm:ss)

Figure 5.20: Battery discharge rate for buffer size of 16KB using Jeode, J9, and CrEme

Table 5.2: Average battery discharge rates for the PocketPC 2002

PocketPC 2002 Battery discharge rate
Average time to change 1% (s)

 Jeode J9 CrEme
1 KB 62.24 62.80 61.52
2 KB 62.19 68.64 60.70
4 KB 61.41 68.50 60.36
8 KB 62.60 68.83 63.04

16 KB 61.32 68.49 61.57

5.2.3 CPU utilisation for PocketPC 2002
This section presents the utilisation of the PDA’s CPU, while routing. It was estimated,
that while the PDA was in an idle state, the CPU utilisation would be low, however,
while the PDA was forwarding large amounts of network traffic, the CPU utilisation re-
corded was extremely high, reaching up to 97%. In addition to the proxy, processes
managing the wireless features, where shown to further occupy CPU time, making rout-
ing over a wireless ad-hoc network even more CPU intensive.

Each CPU measurement for Jeode, J9, and CrEme was taken at fixed time intervals of
60s, 60s, and 20s respectively. The difference in time scale is justified by the fact that
CrEme required approximately four times less time to complete the experiments (see Sec-
tion 5.2.2). Thus, by taking CPU measurements more frequently for CrEme than the
rest JVMs, it is guaranteed to obtain similar amount of data, which can assist in compar-
ing the CPU utilisation imposed by each JVM. Figures 5.21 - 5.25 present the CPU
utilisation for all tested buffer sizes and JVMs. Jeode is represented by a solid line, J9
with a dashed line, and CrEme with a dotted line. It can be seen that Jeode and J9 util-
ised the processor at a very similar rate, however CrEme's utilisation was of a higher
order. The average CPU utilisation rates are summarised in Table 5.3. It can be seen that
Jeode and J9 imposed similar CPU utilisation, approximately 64%. In contrast, CrEme

 114

utilised the processor at a significantly higher order than the other two JVMs, which was
approximately by 15%. The buffer size had no real significant influence on CPU utilisa-
tion.

 Time (hh:mm:ss)

0
10
20
30
40
50
60
70
80
90

100

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48 00:36:00 00:43:12
0

10
20
30
40
50
60
70
80
90

100

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48 00:36:00 00:43:12

 C
P

U
 U

til
is

at
io

n
(%

)

0
10
20
30
40
50
60
70
80
90

100

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48 00:36:00 00:43:12
0

10
20
30
40
50
60
70
80
90

100

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48 00:36:00 00:43:12

 Time (hh:mm:ss)

 C
P

U
 U

til
is

at
io

n
(%

)

Figure 5.21: CPU utilisation for buffer size of 1
KB using Jeode, J9, and CrEme

Figure 5.22: CPU utilisation for buffer size of 2
KB using Jeode, J9, and CrEme

0
10
20
30
40
50
60
70
80
90

100

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48 00:36:00 00:43:12
0

10
20
30
40
50
60
70
80
90

100

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48 00:36:00 00:43:12
 Time (hh:mm:ss)

 C
PU

 U
til

is
at

io
n

(%
)

0
10
20
30
40
50
60
70
80
90

100

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48 00:36:00 00:43:12
0

10
20
30
40
50
60
70
80
90

100

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48 00:36:00 00:43:12

 Time (hh:mm:ss)

 C
P

U
 U

til
is

at
io

n
(%

)

Figure 5.23: CPU utilisation for buffer size of
4KB using Jeode, J9, and CrEme

Figure 5.24: CPU utilisation for buffer size of
8KB using Jeode, J9, and CrEme

0
10
20
30
40
50
60
70
80
90

100

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48 00:36:00 00:43:12
0

10
20
30
40
50
60
70
80
90

100

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48 00:36:00 00:43:12
 Time (hh:mm:ss)

 C
PU

 U
til

is
at

io
n

(%
)

Figure 5.25: CPU utilisation for buffer size of 16KB using Jeode, J9, and crème

Table 5.3: Average CPU utilisation for the PocketPC 2002

PocketPC 2002 CPU utilisation (%)

 Jeode J9 CrEme
1 KB 64.96 63.92 80.01

 115

2 KB 63.30 64.04 81.47
4 KB 63.15 64.26 78.13
8 KB 65.02 64.65 78.13

16 KB 64.31 59.47 76.81

5.2.4 Heap memory usage for PocketPC 2002
This section presents the heap memory usage, which was recorded throughout the rout-
ing process. Results are focused on the amounts of memory used by Java Objects while
routing, rather than the amounts of memory used by the JVM as a process, which nor-
mally remains almost constant. In this way, the experiment may provide insight into the
memory allocation and management, which is performed by each JVM, and possibly
provide a means of explaining their difference performance in terms of throughput.
Measurements were taken at fixed time intervals of 1 (s) for all JVMs. Figures 5.26 - 5.30
present the memory usage for all buffer sizes using Jeode, J9, and CrEme. Jeode is repre-
sented by a solid line, J9 with a dashed line, and CrEme with a dotted line. It can be
clearly seen that Jeode and J9 employed similar amounts of heap memory, for all buffer
sizes. In contrast, CrEme employed significantly higher heap memory, almost three times
more than the other two JVMs. Buffer size did not influence the heap memory usage.
The average values are summarised in Table 5.4.

0

100

200

300

400

500

600

700

00:00:00 00:05:46 00:11:31 00:17:17 00:23:02 00:28:48
0

100

200

300

400

500

600

700

00:00:00 00:05:46 00:11:31 00:17:17 00:23:02 00:28:48
 Time (hh:ss:mm)

H

ea
p

us
ag

e
(K

B)

0

50

100

150

200

250

300

350

400

450

00:00:00 00:05:46 00:11:31 00:17:17 00:23:02 00:28:48
0

50

100

150

200

250

300

350

400

450

00:00:00 00:05:46 00:11:31 00:17:17 00:23:02 00:28:48

 Time (hh:ss:mm)

H

ea
p

us
ag

e
(K

B
)

Figure 5.26: Memory usage for buffer size of
1KB using Jeode, J9, and CrEme

Figure 5.27: Memory usage for buffer size of
2KB using Jeode, J9, and CrEme

0

50

100

150

200

250

300

00:00:00 00:05:46 00:11:31 00:17:17 00:23:02 00:28:48
0

50

100

150

200

250

300

00:00:00 00:05:46 00:11:31 00:17:17 00:23:02 00:28:48

 Time (hh:ss:mm)

H

ea
p

us
ag

e
(K

B)

0

50

100

150

200

250

300

350

400

00:00:00 00:05:46 00:11:31 00:17:17 00:23:02 00:28:48
0

50

100

150

200

250

300

350

400

00:00:00 00:05:46 00:11:31 00:17:17 00:23:02 00:28:48
 Time (hh:ss:mm)

H

ea
p

us
ag

e
(K

B
)

Figure 5.28: Memory usage for buffer size of
4KB using Jeode, J9, and CrEme

Figure 5.29: Memory usage for buffer size of
8KB using Jeode, J9, and CrEme

 116

0

50

100

150

200

250

300

350

400

00:00:00 00:05:46 00:11:31 00:17:17 00:23:02 00:28:48
0

50

100

150

200

250

300

350

400

00:00:00 00:05:46 00:11:31 00:17:17 00:23:02 00:28:48
 Time (hh:ss:mm)

H

ea
p

us
ag

e
(K

B
)

Figure 5.30: Memory usage for buffer size of 16KB using Jeode, J9, and CrEme

Table 5.4: Average heap usage for PocketPC 2002.

PocketPC 2002 Heap memory usage (KB)

 Jeode J9 CrEme
1 KB 53.95 59.11 151.71
2 KB 53.93 59.06 149.25
4 KB 53.92 58.95 148.58
8 KB 53.95 59.06 150.28

16 KB 53.95 59.05 148.67

5.2.5 Evaluation of PocketPC 2002 results
The purpose of this section is to summarise results presented for the PDA, and evaluate
their significance. As previously stated, the main aim of the experiments was to identify
whether the JVM, which provides the runtime environment for the Java-based proxy
software, has any significant importance on the routing device’s performance, especially
in terms of throughput, battery discharge rate, CPU utilisation, and heap memory usage.
An additional aim was to investigate, whether buffer size could influence the device’s per-
formance.

According to Tables 5.1 - 5.4, it can be observed that all average values obtained for
Jeode and J9 in relation to throughput, battery consumption rate, CPU utilisation, and
heap usage, were indeed similar to each other, for all buffer sizes. Thus, it may be safe to
conclude that a wireless proxy-based PDA running PocketPC 2002, with either Jeode or
J9, performs equally the same, in all aspects. Major differences were observed by experi-
menting with CrEme on PocketPC 2002. These differences mostly concerned
throughput, CPU utilisation, and heap memory usage. In more depth, the offered
throughput, while the PDA was routing heavy network traffic, was of a magnitude of ap-
proximately three times more than its counterparts. In addition, the CPU utilisation was
increased by a value of 14%, and three times more heap memory was utilised by Java Ob-

 117

jects. In contrast, the battery discharge rate was similar to the other two JVMs. This factor
is especially important for devices that depend on battery power.

The data presented above make CrEme the most powerful candidate for wireless
proxy-based PDAs running PocketPC 2002, as far as routing is concerned. However, the
smaller footprints of Jeode and J9 may make them more appropriate for tasks that do not
require higher rates of throughput.

5.2.6 Throughput of a PDA running PocketPC 2003
The throughout measurements for J9 and CrEme, with all tested buffer sizes are pre-
sented in Figures 5.31 - 5.35. CrEme is represented by a solid line and J9 is represented
by a dashed line. It can be seen that the throughput measurements for J9 and CrEme sig-
nificantly differed. CrEme achieved a significantly higher throughput than J9 of
approximately 13 times more. This observation was repeated for all buffer sizes. The av-
erage throughput values are summarised in Table 5.5. It can be seen that J9 achieves a
fairly stable throughput for all buffer sizes which is approximately 5Kbits/s. Along the
same line, CrEme achieves the same throughput for all buffer sizes which is approxi-
mately 75Kbits/s. However, CrEme and J9 have a significant difference in terms of
throughput, where CrEme achieves 13 times more throughput than J9. In other words, if
a CrEme-enabled proxy-PDA requires 10 seconds to route a certain amount of network
traffic, a J9-enabled proxy-PDA requires more than two minutes to route the same
amount of network traffic. In addition, CrEme may be capable of routing low-bandwidth
real-time traffic such as voice and video data, since it provides nearly one and a half times
more throughput than a 56 Kbits/s modem. J9 cannot offer as high throughput, and thus
it may be more suitable for e-mail, text, and low-resolution graphics network traffic
rather than real-time voice, or video.

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations (n)

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations (n)

Figure 5.31: Throughput using J9 and CrEme
with buffer size of 1 KB

Figure 5.32: Throughput using J9 and CrEme
with buffer size of 2 KB

 118

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations (n)

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations (n)

Figure 5.33: Throughput using J9 and CrEme
with buffer size of 4 KB

Figure 5.34: Throughput using J9 and CrEme
with buffer size of 8 KB

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations (n)

Figure 5.35: Throughput using J9 and CrEme with buffer size of 16 KB

Table 5.5: Average throughput values for PocketPC 2003

PocketPC 2003 Throughput (Kbits/s)

 J9 CrEme
1 KB 5.08 75.10
2 KB 5.08 76.34
4 KB 5.00 76.80
8 KB 4.99 74.14

16 KB 4.99 74.55

5.2.7 Battery discharge rate for the PocketPC 2003
The PDA’s battery discharge rate was measured using the same procedure, as described in
section 5.2.3. Figures 5.36 - 5.40 present the battery discharge rate experienced by the
PDA for CrEme and Jeode, and all tested buffer sizes. J9 is represented by a dashed line
while CrEme by a bolded solid line. It can be clearly seen that the whole range of ex-
periments finished much faster with CrEme than J9. This is due to higher throughput
offered by CrEme. The battery discharge rate is similar for both J9 and CrEme for all
tested buffer sizes. The average values are summarised in Table 5.6. It can be seen that
the battery discharge rates achieved using J9 are approximately the same for all buffer

 119

sizes, which is on an average approximately 70s. Similarly, the battery discharge rates
achieved using CrEme are approximately the same for all buffer sizes, which is on an av-
erage approximately 60 (s). Therefore it can be seen that CrEme forces the battery to
discharge at a higher rate than J9. On average, the battery requires 10 additional seconds
to discharge by 1% using J9 than what it requires using CrEme. As a result, the battery
life of the J9-enabled proxy-PDA can stay alive for approximately 17 minutes more than
a CrEme-enabled proxy-PDA, before the battery gets fully discharged.

0

20

40

60

80

100

00:00:00 00:11:31 00:23:02 00:34:34 00:46:05 00:57:36
0

20

40

60

80

100

00:00:00 00:11:31 00:23:02 00:34:34 00:46:05 00:57:36

Ti
m

e
(d

el
ta

 1
%

) (
s)

Time (hh:mm:ss)

0

20

40

60

80

100

00:00:00 00:11:31 00:23:02 00:34:34 00:46:05 00:57:36
0

20

40

60

80

100

00:00:00 00:11:31 00:23:02 00:34:34 00:46:05 00:57:36

Ti
m

e
(d

el
ta

 1
%

) (
s)

Time (hh:mm:ss)

Figure 5.36: Battery discharge rate for buffer size
of 1 KB using J9 and CrEme

Figure 5.37: Battery discharge rate for buffer size
of 2 KB using J9 and CrEme

0

20

40

60

80

100

00:00:00 00:11:31 00:23:02 00:34:34 00:46:05 00:57:36
0

20

40

60

80

100

00:00:00 00:11:31 00:23:02 00:34:34 00:46:05 00:57:36

Ti
m

e
(d

el
ta

 1
%

) (
s)

Time (hh:mm:ss)

0

20

40

60

80

100

00:00:00 00:11:31 00:23:02 00:34:34 00:46:05 00:57:36
0

20

40

60

80

100

00:00:00 00:11:31 00:23:02 00:34:34 00:46:05 00:57:36

Ti
m

e
(d

el
ta

 1
%

) (
s)

Time (hh:mm:ss)

Figure 5.38: Battery discharge rate for buffer size
of 4 KB using J9 and CrEme

Figure 5.39: Battery discharge rate for buffer size
of 8 KB using J9 and CrEme

0

20

40

60

80

100

00:00:00 00:11:31 00:23:02 00:34:34 00:46:05 00:57:36
0

20

40

60

80

100

00:00:00 00:11:31 00:23:02 00:34:34 00:46:05 00:57:36

Ti
m

e
(d

el
ta

 1
%

) (
s)

Time (hh:mm:ss)

Figure 5.40: Battery discharge rate for buffer size of 8 KB using J9 and CrEme.

 120

Table 5.6: Average battery discharge rates for Pocket PC 2003

PocketPC 2003 Battery discharge rate
Average time to change 1% (s)

 J9 CrEme
1 KB 71.86 61.83
2 KB 71.94 57.60
4 KB 69.68 57.80
8 KB 69.27 61.66

16 KB 68.49 59.66

5.2.8 CPU utilisation for the PocketPC 2003
This section presents the CPU utilisation of the proxy-PDA. Measurements were taken at
fixed time intervals of 40s for J9 and 3s for CrEme. This difference in the measurements
scale is justified by the difference in the time taken to complete the experiments (see Sec-
tion 5.2.7). Figures 5.41 - 5.45 present the CPU utilisation for all tested buffer sizes with
J9 and CrEme. J9 is represented by a dashed line while CrEme by a solid line. It can be
clearly seen that CrEme had finished the whole range of experiments much faster due to
its faster throughput, as explained in Section 5.2.7. CrEme utilised the CPU in a higher
intensity that J9, and also in less time. The average CPU utilisation values are summa-
rised in Table 5.7. It can be seen that J9 utilises the CPU similarly for all buffer sizes,
which is on an average of approximately 70%, while CrEme utilises the CPU on an aver-
age of approximately 78%. Although CrEme’s CPU utilisation for most buffer sizes
slightly varies, this does not present a significant difference and may be considered as an
oversight. In addition, CrEme utilises the CPU by 8% more than J9, on average. It was
observed throughout the experimentation that the CrEme-enabled proxy-PDA managed
to connect instantly, with the transmitting and receiving devices, at the start of each itera-
tion, whereas the J9-enabled proxy-PDA suffered considerable delays, which are
illustrated throughout Figures 5.41-5.45, as its CPU utilisation drops low at various
points.

0
10
20
30
40
50
60
70
80
90

100

00:00:00 00:02:53 00:05:46 00:08:38 00:11:31 00:14:24
0

10
20
30
40
50
60
70
80
90

100

00:00:00 00:02:53 00:05:46 00:08:38 00:11:31 00:14:24

 Time (hh:mm:ss)

 C
P

U
 U

til
is

at
io

n
(%

)

0
10
20
30
40
50
60
70
80
90

100

00:00:00 00:02:53 00:05:46 00:08:38 00:11:31 00:14:24
0

10
20
30
40
50
60
70
80
90

100

00:00:00 00:02:53 00:05:46 00:08:38 00:11:31 00:14:24

 Time (hh:mm:ss)

 C
P

U
 U

til
is

at
io

n
(%

)

Figure 5.41: CPU utilisation for buffer size of
1KB using J9 and CrEme

Figure 5.42: CPU utilisation for buffer size of
2KB using J9 and CrEme

 121

0
10
20
30
40
50
60
70
80
90

100

00:00:00 00:02:53 00:05:46 00:08:38 00:11:31 00:14:24
0

10
20
30
40
50
60
70
80
90

100

00:00:00 00:02:53 00:05:46 00:08:38 00:11:31 00:14:24
 Time (hh:mm:ss)

 C
P

U
 U

til
is

at
io

n
(%

)

0
10
20
30
40
50
60
70
80
90

100

00:00:00 00:02:53 00:05:46 00:08:38 00:11:31 00:14:24
0

10
20
30
40
50
60
70
80
90

100

00:00:00 00:02:53 00:05:46 00:08:38 00:11:31 00:14:24
 Time (hh:mm:ss)

 C
P

U
 U

til
is

at
io

n
(%

)

Figure 5.43: CPU utilisation for buffer size of
4KB using J9 and CrEme

Figure 5.44: CPU utilisation for buffer size of
8KB using J9 and CrEme

0
10
20
30
40
50
60
70
80
90

100

00:00:00 00:02:53 00:05:46 00:08:38 00:11:31 00:14:24
0

10
20
30
40
50
60
70
80
90

100

00:00:00 00:02:53 00:05:46 00:08:38 00:11:31 00:14:24
 Time (hh:mm:ss)

 C
PU

 U
til

is
at

io
n

(%
)

Figure 5.45: CPU utilisation for buffer size of 16KB using J9 and CrEme

Table 5.7: Average CPU utilisation for the PocketPC 2003

PocketPC 2003 CPU utilisation (%)

 J9 CrEme
1 KB 70.86 80.29
2 KB 68.11 80.08
4 KB 71.28 74.25
8 KB 70.70 76.88

16 KB 69.67 77.89

5.2.9 Heap memory usage for the PocketPC 2003
This section presents the heap memory usage recorded throughout the routing process.
Measurements were taken at fixed time intervals of 1 (s) for both J9 and CrEme. Figures
5.46 - 5.50 present the heap memory usage for all buffer sizes using J9 and CrEme. J9 is
represented by a dashed line and CrEme by a solid line. It can be seen that CrEme’s Java
Objects employ significantly more heap memory than J9’s Objects in order to route the
data. CrEme allows Java Objects to use up to 10 times more heap memory. The average
heap memory usage results are summarised in Table 5.8. It can be seen that J9 Objects
used the same amount of heap memory for all buffer sizes, which is approximately 60KB,
on average. CrEme Objects used similar amounts of heap memory for all buffer sizes,

 122

which is approximately 615KB, on average. This is a significant difference, as CrEme Ob-
jects may use up to 10 times more heap memory than J9 Objects, which means that
CrEme Objects can buffer more data as they arrive from the transmitting device, which
may be a factor that enforces the higher rates of throughput. Furthermore, it seems that
buffer size has not any significant effect on heap memory usage.

0

300

600

900

1200

1500

1800

2100

00:00:00 00:01:52 00:03:45 00:05:37 00:07:29
0

300

600

900

1200

1500

1800

2100

00:00:00 00:01:52 00:03:45 00:05:37 00:07:29

 Time (hh:ss:mm)

H

ea
p

us
ag

e
(K

B
)

0

300

600

900

1200

1500

1800

2100

00:00:00 00:01:52 00:03:45 00:05:37 00:07:29
0

300

600

900

1200

1500

1800

2100

00:00:00 00:01:52 00:03:45 00:05:37 00:07:29

 Time (hh:ss:mm)

H
ea

p
us

ag
e

(K
B)

Figure 5.46: Memory usage for buffer size of
1KB using J9 and CrEme

Figure 5.47: Memory usage for buffer size of
2KB using J9 and CrEme

0

300

600

900

1200

1500

1800

2100

00:00:00 00:01:52 00:03:45 00:05:37 00:07:29
0

300

600

900

1200

1500

1800

2100

00:00:00 00:01:52 00:03:45 00:05:37 00:07:29

 Time (hh:ss:mm)

H

ea
p

us
ag

e
(K

B)

0

300

600

900

1200

1500

1800

2100

00:00:00 00:01:52 00:03:45 00:05:37 00:07:29
0

300

600

900

1200

1500

1800

2100

00:00:00 00:01:52 00:03:45 00:05:37 00:07:29
 Time (hh:ss:mm)

H

ea
p

us
ag

e
(K

B
)

Figure 5.48: Memory usage for buffer size of
4KB using J9 and CrEme

Figure 5.49: Memory usage for buffer size of
8KB using J9 and CrEme

0

300

600

900

1200

1500

1800

2100

00:00:00 00:01:52 00:03:45 00:05:37 00:07:29
0

300

600

900

1200

1500

1800

2100

00:00:00 00:01:52 00:03:45 00:05:37 00:07:29
 Time (hh:ss:mm)

H

ea
p

us
ag

e
(K

B)

Figure 5.50: Memory usage for buffer size of 16KB using J9 and CrEme

 123

Table 5.8: Average heap usage for PocketPC 2003

PocketPC 2003 heap memory usage (KB)

 J9 CrEme
1 KB 60.22 547.18
2 KB 60.04 601.42
4 KB 60.31 621.75
8 KB 60.10 648.62

16 KB 60.18 648.23

5.2.10 Evaluation of PocketPC 2003 results
This section summarises results presented in previous sections, concerning PocketPC
2003, and evaluates their significance. CrEme officially supports both PocketPC 2002
and PocketPC 2003 OSs, although J9 officially supports only PocketPC 2002. However,
it has been seen that J9, running on top of PocketPC 2003, provided significantly more
throughput, than on top of PocketPC 2002. The same was also observed in the case of
CrEme, and thus it seems that Microsoft’s PocketPC 2003 considerably improved upon
the earlier version.

In relation to Table 5.5 and Table 5.8, it can be clearly seen that the JVMs used can
have enormous differences concerning throughput and heap memory usage. However, in
terms of battery consumption rate and CPU utilisation the measurements are shown to
be fairly similar. CrEme can increase the available throughput up to 13 times in compari-
son to J9. The high demand of throughput in ad-hoc networks makes CrEme, on top of
PocketPC 2003, the strongest candidate amongst its counterparts so far. However, it has
to be noted that IBM J9 does not officially support PocketPC 2003 platforms.

The heap memory usage may be a crucial factor assisting CrEme to perform excep-
tionally well. As shown, CrEme Objects can use up to 10 times more heap memory than
J9 Objects. In this way, the CrEme-enabled PDA moves data faster, as it can buffer large
amounts of received data before they are transmitted, which seems that enhances its
proxy capability, especially if a device cannot send and receive data at the same time.
However, other factors could have contributed, including: better implementation prac-
tices specifically aiming PocketPC 2003 platform; better utilisation of the wireless
interface; and so on.

Furthermore, by examining throughput results presented so far, it can be deduced
that, on average, J9 increased the throughput by 31%, when PocketPC 2003 platform
was used instead of PocketPC 2002. This fact was consistent among all tested buffer
sizes. Along the same line, CrEme on top of Pocket 2003 improved the provided
throughput by 558% than on top of PocketPC 2002. Again, this was true for all tested
buffer sizes. Finally, it was shown that buffer size did not significant influence through-
put, battery consumption rate, CPU utilisation, or heap memory usage in either J9 or

 124

CrEme results.

5.2.11 Throughput of a PDA running Familiar Linux
In a similar direction as to the one described in Sections 5.2.1 and 5.2.6, the Familiar
Linux PDA was used as a proxy, forwarding a fixed amount of data from a source to a
destination device. All communications were point-to-point and were using wireless as
the communications medium. This set of experiments was repeated 15 times, with vary-
ing buffer sizes, and the average throughput was measured. The implementation details
of the experiment are presented in Section 4.3.3. Figures 5.51 - 5.55 illustrates the
throughput measured for both Java 1.3 and J9 and for all tested buffer sizes. Java 1.3 is
denoted by a dashed line, while J9 is denoted by a solid line.

It can be seen that throughput measurements for Java 1.3 were considerably lower
than J9. It arises that J9 can provide up to approximately three times more throughput
than Java 1.3. This is true for all buffer sizes presented above, and the average throughput
values are summarised in Table 5.9. It can been seen that buffer size does not have any
significance in either Java 1.3 or J9 throughput measurements. However, there are some
insignificant differences in the throughput that may be caused by the unreliable nature of
the wireless medium. The average throughput of all tested buffer sizes for Java 1.3 is
13.428Kbits/s, while for J9 is 41.542Kbits/s, which means that J9 can be approximately
up to three times faster than Java 1.3. The throughput achieved by J9 is almost equal to a
56Kbits/s modem, while Java 1.3 just reaches the one third of that. According to these
results, J9 could be used to route moderate network traffic such as text, e-mails, low qual-
ity real-time voice, sounds, and graphics. On the contrary, Java 1.3 may be more
appropriate for low network traffic such as text, e-mails, low quality graphics, and so on.

0
5

10
15
20
25
30
35
40
45
50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
5

10
15
20
25
30
35
40
45
50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations (n)

0
5

10
15
20
25
30
35
40
45
50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
5

10
15
20
25
30
35
40
45
50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations (n)

Figure 5.51: Throughput using Java 1.3 and J9
for buffer size of 1KB

Figure 5.52: Throughput using Java 1.3 and J9
for buffer size of 2KB

 125

0
5

10
15
20
25
30
35
40
45
50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
5

10
15
20
25
30
35
40
45
50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations (n)

0
5

10
15
20
25
30
35
40
45
50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
5

10
15
20
25
30
35
40
45
50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations (n)

Figure 5.53: Throughput using Java 1.3 and J9
for buffer size of 4KB

Figure 5.54: Throughput using Java 1.3 and J9
for buffer size of 8KB

0
5

10
15
20
25
30
35
40
45
50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
5

10
15
20
25
30
35
40
45
50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Th
ro

ug
hp

ut
 (K

bi
ts

/s
)

Iterations (n)

Figure 5.55: Throughput using Java 1.3 and J9 for buffer size of 16KB

Table 5.9: Average throughput for the Familiar Linux PDA

Familiar Linux throughput (Kbits/s)

 Java 1.3 J9
1 KB 13.428 40.371
2 KB 13.115 40.862
4 KB 13.022 43.047
8 KB 13.397 41.493

16 KB 14.182 41.939

5.2.12 Battery discharge rate for the Familiar Linux
The PDA’s battery discharge rate was measured throughout the series of experiments pre-
sented in the previous section. The purpose of these measurements was to investigate
whether the large footprint of Java 1.3 or the light-weighted footprint of J9 (see Section
4.3.3) can have any significant difference in battery discharge rate. Figures 5.56 - 5.60
present the battery discharge rate, measured in seconds, against the total time taken to
complete the whole range of experiments. The dashed line denotes Java 1.3 and the
bolded solid line denotes J9.

It can be clearly seen that more measurements were taken for Java 1.3 than J9, which
is a direct result of the fact that J9 completed the experiment much faster than Java 1.3

 126

(see Section 5.2.11). In addition, it can be seen that the battery discharge rate measure-
ments for Java 1.3 are more stable than the respective ones for J9. Overall, while Java 1.3
maintains a quite solid line for all presented buffer sizes, J9 experiences sudden drops of
the battery. It has to be noted that IBM J9 does not officially support J9 for Familiar
Linux platforms, and as it seems J9 does not fully adapts to this platform. However, as
the results suggest the overall average for both JVMs is approximately equal. These aver-
age battery discharge rates are summarised in Table 5.10. It can be seen that Java 1.3
discharges the battery at a stable rate across all tested buffer sizes, which is on average ap-
proximately 83s. J9 discharges the battery at a very similar rate which is approximately
82s, even though the rate varies across different tested buffer sizes. For instance, buffer
size of 16KB produces the lowest discharge rate of 68.142s, while a buffer size of 8KB
produces the highest of 92.857s. However, these observed anomalies do not provide
strong evidence that buffer size can influence the battery discharge rate, and may thus be
attributed to the problematic power management offered by Familiar Linux. Despite this,
both JVMs forced the battery to discharge at the same rate and may thus be considered
equal in this aspect.

0

20

40

60

80

100

120

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48
0

20

40

60

80

100

120

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48

Ti
m

e
(d

el
ta

 1
%

) (
s)

Time (hh:mm:ss)

0

20

40

60

80

100

120

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48
0

20

40

60

80

100

120

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48

Ti
m

e
(d

el
ta

 1
%

) (
s)

Time (hh:mm:ss)

Figure 5.56: Battery discharge rate for buffer size
of 1KB using Java 1.3 and J9

Figure 5.57: Battery discharge rate for buffer size
of 2KB using Java 1.3 and J9

0

20

40

60

80

100

120

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48
0

20

40

60

80

100

120

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48

Ti
m

e
(d

el
ta

 1
%

) (
s)

Time (hh:mm:ss)

0

20

40

60

80

100

120

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48
0

20

40

60

80

100

120

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48

Ti
m

e
(d

el
ta

 1
%

) (
s)

Time (hh:mm:ss)

Figure 5.58: Battery discharge rate for buffer size
of 4KB using Java 1.3 and J9

Figure 5.59: Battery discharge rate for buffer size
of 8KB using Java 1.3 and J9

 127

0

20

40

60

80

100

120

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48
0

20

40

60

80

100

120

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48
Ti

m
e

(d
el

ta
 1

%
) (

s)

Time (hh:mm:ss)

Figure 5.60: Battery discharge rate for buffer size of 16KB using Java 1.3 and J9

Table 5.10: Average battery discharge rates for Familiar Linux

Familiar Linux battery discharge rates
Average time to change 1% (s)

 Java 1.3 J9
1 KB 80.13 85.16
2 KB 85.81 76.25
4 KB 84.04 88.33
8 KB 80.00 92.85

16 KB 84.28 68.14

5.2.13 CPU utilisation for the Familiar Linux
This section presents the CPU utilisation of the Familiar Linux PDA experienced by the
PDA throughout this series of experiments. Measurements were taken for both Java 1.3
and J9 at fixed time intervals of 20s and 5s respectively. The difference in the time scale is
justified by the fact that J9 completed the whole range of experiments much faster than
Java 1.3, and thus CPU measurements should have been scheduled at shorter time inter-
vals, in order to record approximately the same CPU values for both JVMs. Figures 5.61
- 5.65 presents the CPU utilisation for all tested buffer sizes using Java 1.3 and J9 against
the time taken to complete the experiments. Java 1.3 is represented by a dashed line,
while J9 by a solid line.

It can be clearly seen that J9 had finished the whole range of experiments much faster
due to its higher rate of throughput, as explained in Section 5.2.11. Another important
issue is that J9 had some of its values close to zero, while Java 1.3 maintained all of its
measurements above 20%. The reason for this is that J9 experienced short connection
delays, at the start of each iteration, in a similar way to J9 (see Section 5.2.8). These aver-
age CPU utilisation values are summarised in Table 5.11. It can be seen that Java 1.3
utilised the CPU evenly across all tested buffer sizes, which was approximately 87%,
while for J9 it was approximately 66%. These results highlight a significant difference in

 128

terms of CPU utilisation. Java 1.3 used almost 21% more CPU time than J9, while it
provided approximately one-third of the throughput that J9 achieved. This proves the
initial hypothesis that the large footprint of Java 1.3 could have a negative effect on per-
formance, and further suggests that an optimised smaller JVM may be more suitable for
resource-limited devices (see Section 4.3.3). In addition, it shows that increased CPU
utilisation, at least in the case of Java 1.3, does not have a positive effect on throughput
(see Section 5.2.11). However, the full version of Java 1.3 is not restricted to the smaller
subset of available classes, which is supported by Sun’s J2ME (see Appendix A), and thus
provides more useful features. Furthermore, it was shown that even though Java 1.3

0

20

40

60

80

100

00:00:00 00:03:36 00:07:12 00:10:48 00:14:24 00:18:00 00:21:36
0

20

40

60

80

100

00:00:00 00:03:36 00:07:12 00:10:48 00:14:24 00:18:00 00:21:36
 Time (hh:mm:ss)

 C
P

U
 U

til
is

at
io

n
(%

)

0

20

40

60

80

100

00:00:00 00:03:36 00:07:12 00:10:48 00:14:24 00:18:00 00:21:36
0

20

40

60

80

100

00:00:00 00:03:36 00:07:12 00:10:48 00:14:24 00:18:00 00:21:36

 Time (hh:mm:ss)

 C
PU

 U
til

is
at

io
n

(%
)

Figure 5.61: CPU utilisation for buffer size of 2
KB using Java 1.3 and J9

Figure 5.62: CPU utilisation for buffer size of 2
KB using Java 1.3 and J9

0

20

40

60

80

100

00:00:00 00:03:36 00:07:12 00:10:48 00:14:24 00:18:00 00:21:36
0

20

40

60

80

100

00:00:00 00:03:36 00:07:12 00:10:48 00:14:24 00:18:00 00:21:36
 Time (hh:mm:ss)

 C
PU

 U
til

is
at

io
n

(%
)

0

20

40

60

80

100

00:00:00 00:03:36 00:07:12 00:10:48 00:14:24 00:18:00 00:21:36
0

20

40

60

80

100

00:00:00 00:03:36 00:07:12 00:10:48 00:14:24 00:18:00 00:21:36

 Time (hh:mm:ss)

 C
P

U
 U

til
is

at
io

n
(%

)

Figure 5.63: CPU utilisation for buffer size of 4
KB using Java 1.3 and J9

Figure 5.64: CPU utilisation for buffer size of 8
KB using Java 1.3 and J9

0

20

40

60

80

100

00:00:00 00:03:36 00:07:12 00:10:48 00:14:24 00:18:00 00:21:36
0

20

40

60

80

100

00:00:00 00:03:36 00:07:12 00:10:48 00:14:24 00:18:00 00:21:36

 Time (hh:mm:ss)

 C
PU

 U
til

is
at

io
n

(%
)

Figure 5.65: CPU utilisation for buffer size of 16 KB using Java 1.3 and J9

 129

Table 5.11: CPU utilisation for Familiar Linux

Familiar Linux CPU utilisation (%)

 Java 1.3 J9
1 KB 86.684 71.751
2 KB 86.120 65.047
4 KB 86.021 63.669
8 KB 86.611 62.937

16 KB 88.106 68.963

5.2.14 Heap memory usage for Familiar Linux
This section presents the heap memory usage required by the Java 1.3 and J9 Objects
throughout the data routing process. As in Sections 5.2.4 and 5.2.9, results are focused
on the amounts of memory used by Java Objects rather than the amounts of memory
used by the JVM as a process. Measurements were taken at fixed time intervals of 1s for
both Java 1.3 and J9. Figures 5.66 - 5.70 presents the heap memory usage throughout
the whole series of experiments, including all tested buffer sizes. J9 is represented by a
dashed line and Java 1.3 by a solid line. It can be clearly seen that Java 1.3 required sig-
nificantly more heap memory than J9, almost double the amount. Also, Java 1.3 heap
memory measurements were steady across all tested buffer sizes. In contrast, J9 measure-
ments were similar across all tested buffer sizes, however, values seemed to vary between
relatively low and high end-points. The average heap memory results are summarised in
Table 5.12. It can be clearly seen that the heap memory used by Java 1.3 Objects was
more stable across all tested buffer sizes, which was on average approximately 211KB.
The J9 heap memory usage was on average approximately 77.192KB. By comparing
these two JVMs, it appears that Java 1.3 Objects require approximately three times more
heap memory that J9 Objects. These results further suggest that the full version of Java
1.3 utilises more resources than an optimised JVM targeted for handheld devices, such as
J9.

 Time (hh:ss:mm)

0

50

100

150

200

250

00:00:00 00:02:53 00:05:46 00:08:38 00:11:31
0

50

100

150

200

250

00:00:00 00:02:53 00:05:46 00:08:38 00:11:31

H

ea
p

us
ag

e
(K

B
)

0

50

100

150

200

250

00:00:00 00:02:53 00:05:46 00:08:38 00:11:31
0

50

100

150

200

250

00:00:00 00:02:53 00:05:46 00:08:38 00:11:31

 Time (hh:ss:mm)

H

ea
p

us
ag

e
(K

B)

Figure 5.66: Memory usage for buffer size of 1
KB using Java 1.3 and J9

Figure 5.67: Memory usage for buffer size of 2
KB using Java 1.3 and J9

 130

0

50

100

150

200

250

00:00:00 00:02:53 00:05:46 00:08:38 00:11:31
0

50

100

150

200

250

00:00:00 00:02:53 00:05:46 00:08:38 00:11:31
 Time (hh:ss:mm)

H

ea
p

us
ag

e
(K

B
)

0

50

100

150

200

250

00:00:00 00:02:53 00:05:46 00:08:38 00:11:31
0

50

100

150

200

250

00:00:00 00:02:53 00:05:46 00:08:38 00:11:31
 Time (hh:ss:mm)

H

ea
p

us
ag

e
(K

B
)

Figure 5.68: Memory usage for buffer size of 4
KB using Java 1.3 and J9

Figure 5.69: Memory usage for buffer size of 8
KB using Java 1.3 and J9

0

50

100

150

200

250

00:00:00 00:02:53 00:05:46 00:08:38 00:11:31
0

50

100

150

200

250

00:00:00 00:02:53 00:05:46 00:08:38 00:11:31
 Time (hh:ss:mm)

H

ea
p

us
ag

e
(K

B)

Figure 5.70: Memory usage for buffer size of 16 KB using Java 1.3 and J9

Table 5.12: Average heap memory usage for Familiar Linux

Familiar Linux memory heap usage (KB)

 Java 1.3 J9
1 KB 210.925 71.751
2 KB 210.929 65.047
4 KB 210.929 63.669
8 KB 210.923 62.937

16 KB 210.937 68.963

5.2.15 Temperature for Familiar Linux
Unlike PocketPC 2002 and 2003, the temperature monitoring under Familiar Linux was
trivial. Thus, this platform was preferable for the implementation of a temperature moni-
tor. This section presents the temperature variation that occurred during the routing
process. Readings were taken at the exact time when the battery capacity was being re-
duced by 1%. Thus, the temperature readings are as many as the battery readings, as they
were taken at exactly the same time. Figures 5.71 - 5.75 present the temperature variation

 131

experienced by Java 1.3 and J9 for all tested buffer sizes. Temperatures were measured in
Celsius (oC) and are plotted against the total time taken to complete the experiments.
Java 1.3 is represented by a dashed line, while J9 is represented by a bolded solid line.

It can be seen that the temperature is rising for most of the time, remaining steady for
less, and rarely reached negative values during which the PDA was cooling down. Similar
patterns were observed for both Java 1.3 and J9. These average temperature variation re-
sults are summarised in Table 5.13. It can be seen that Java 1.3 increased the internal
temperature of the PDA across all buffer sizes, apart from 2 KB where the total difference
in temperature was zero. The average increase in temperature was approximately 0.082
oC for every reduction of the battery’s capacity by 1%. Similarly, J9 increased the internal
temperature of the PDA across all buffer sizes, which on average was approximately 0.128
oC. Therefore, J9 was shown to have a more intense temperature effect on the PDA than
Java 1.3, which may be associated with the increased throughput provided by it. How-
ever, for Java 1.3, the PDA started at an internal temperature of 32 oC and finished with
a temperature of 39.875 oC, while for J9 the PDA started at 28.625 oC and finished at
33.25 oC. Thus, Java 1.3 completed the whole range of experiments and experienced an
increase in the temperature of 7.875 oC, while J9 of 4.625 oC. Unfortunately, part of this
difference is associated with the more time taken by Java 1.3 to conduct the experiments.

0

0.1

0.2

0.3

0.4

0.5

0.6

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48
0

0.1

0.2

0.3

0.4

0.5

0.6

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48

Time (hh:mm:ss)

Te
m

pe
ra

tu
re

 c
ha

ng
e

(o
C

)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

00:07:12 00:14:24 00:21:36 00:28:48

Time (hh:mm:ss)

Te
m

pe
ra

tu
re

 c
ha

ng
e

(o
C

)

Figure 5.71: Temperature variation using Java
1.3 and J9 for buffer size of 1 KB

Figure 5.72: Temperature variation using Java
1.3 and J9 for buffer size of 2 KB

0

0.2

0.4

0.6

0.8

1

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48
0

0.2

0.4

0.6

0.8

1

00:00:00 00:07:12 00:14:24 00:21:36 00:28:48

Time (hh:mm:ss)

Te
m

pe
ra

tu
re

 c
ha

ng
e

(o
C

)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

00:07:12 00:14:24 00:21:36 00:28:48

Time (hh:mm:ss)

Te
m

pe
ra

tu
re

 c
ha

ng
e

(o
C

)

Figure 5.73: Temperature variation using Java
1.3 and J9 for buffer size of 4 KB

Figure 5.74: Temperature variation using Java
1.3 and J9 for buffer size of 8 KB

 132

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

00:07:12 00:14:24 00:21:36 00:28:48

Time (hh:mm:ss)
Te

m
pe

ra
tu

re
 c

ha
ng

e
(o

C
)

Figure 5.75: Temperature variation using Java 1.3 and J9 for buffer size of 16 KB

Table 5.13: Temperature variation for Familiar Linux

Average temperature variation for Familiar Linux (oC)
 Java 1.3 J9

1 KB 0.187 0.303
2 KB 0 0.140
4 KB 0.104 0.071
8 KB 0.085 0.046

16 KB 0.034 0.083

5.2.16 Evaluation of Familiar Linux results
Java 1.3 from Blackdown has been designed specifically for handheld devices running
Familiar Linux OS. J9 from IBM has been designed specifically for the Zaurus handhelds
running Embedded Linux, and thus there is no official support for iPAQs running Fa-
miliar Linux. However, experimentation has shown that J9 is an optimised small-scale
JVM that executes fairly well on Familiar Linux. In addition, as shown in Tables 5.9 -
5.13, J9 provided up to three times more throughput than Java 1.3, for various buffer
sizes. Furthermore, J9 utilised the CPU on an average of approximately 21% less than
Java 1.3 while routing. Also, the heap memory usage was up to three times less than Java
1.3. The temperature increase rate experienced by Java 1.3 was lower than J9, however,
the total increase in temperature experienced by Java 1.3 was approximately double the
amount of J9, as Java 1.3 required approximately three times more time than J9 to route
the same amount of data. Finally, battery discharge rate seemed to have no effect on both
JVMs, and was also almost equal across all tested buffer sizes.
 These figures strongly suggest that J9 is an optimised JVM for handheld devices which
is ideal due to its small footprint. In contrast, Java 1.3 requires more resources and pro-
vides less throughput. Nevertheless, it provides many more useful features, and can thus

 133

execute a vast number of Java applications, without having to alter the application's
source code in order to make it compatible with Sun’s J2ME specification (see Appendix
A).
 Comparing throughput results presented for J9 on top of Familiar Linux to through-
put results presented for J9 on top of PocketPC 2002 and 2003, there was a constant,
significant improvement of the available throughput in the degree of 1164% and 826%,
respectively, for all buffer sizes. Finally, it has been proven that buffer size does not have
any significant importance in throughput, battery consumption rate, CPU utilisation,
heap memory usage, or temperature variation.

5.2.17 Battery discharge rate of an idle PDA
This section presents results obtained by measuring the PDA’s battery discharge rate
while it was in an idle state. Measurements were taken for PocketPC 2002, PocketPC
2003, and Familiar Linux. The aim is to compare the power management of these OSs.
Figure 5.76 presents the time taken for the battery to discharge by 1% for the PocketPC
2002, PocketPC 2003 and Familiar Linux, which is drawn against the total time taken
for the battery to fully discharge. However, in PocketPC platforms data are stored in
RAM, which provides requires minimal power to maintain them, thus if the battery is
fully discharged it is likely that the information stored will get lost. Thus, to avoid this
from happening, measurements were taken until the battery reached 25% of its capacity
and then the experiment was stopped. In addition, all standby modes and power saving
features were turned off. PocketPC 2002 is represented by a solid line, PocketPC 2003
by a dashed line, and Familiar Linux by a dotted line.

50

100

150

200

250

300

350

400

00:00:00 00:50:24 01:40:48 02:31:12 03:21:36 04:12:00
50

100

150

200

250

300

350

400

00:00:00 00:50:24 01:40:48 02:31:12 03:21:36 04:12:00

Time (hh:mm:ss)

Ti
m

e
(d

el
ta

 1
%

) (
s)

Figure 5.76:
Battery discharge rate of an idle PDA with PocketPC 2002, PocketPC 2003, and Familiar Linux

According to Figure 5.76, it can be clearly seen that Familiar Linux achieved the best re-
sults, followed by Pocket PC 2003, and, finally, PocketPC 2002. In more detail, the

 134

average discharge rate for PocketPC 2002 was 143s, for PocketPC 2003 was 163s, and
for Familiar Linux was 195s. Thus, the battery can last the longest with Familiar Linux,
and longer with PocketPC 2003 than PocketPC 2002. In fact, according to these results,
the battery with Pocket PC 2003 could last up to 33 minutes more than PocketPC 2002,
and with Familiar Linux 1 hour and 27 minutes more. Thus, it is safe to conclude that
Familiar Linux, applies better power management and thus the battery is discharged at a
lower rate.

5.2.18 Battery discharge rate of an idle wireless PDA
This series of experiments is similar to experiments described in Section 5.2.17, with the
only difference being that the PDA’s wireless features were turned on during the experi-
ment. The aim was to compare the ability of PocketPC 2002, PocketPC 2003, and
Familiar Linux to maintain a low discharge rate while the wireless features are turned on.
The PDA was in an idle state without sending or accepting network traffic. Figure 5.77,
presents the time taken for the battery to discharge by 1% for the PocketPC 2002, Pock-
etPC 2003 and Familiar Linux. As mentioned in the previous section, measurements
were taken until the battery reached 25% of its capacity and then the experiment was
stopped. Similarly, all standby modes and power saving features were turned off. Pock-
etPC 2002 is represented by a solid line, PocketPC 2003 by a dashed line, and Familiar
Linux by a dotted line.

40
50
60
70
80
90

100
110
120
130

00:00:00 00:28:48 00:57:36 01:26:24 01:55:12 02:24:00
40
50
60
70
80
90

100
110
120
130

00:00:00 00:28:48 00:57:36 01:26:24 01:55:12 02:24:00

Time (hh:mm:ss)

Ti
m

e
(d

el
ta

 1
%

) (
s)

Figure 5.77:
Battery discharge rate of an idle wireless PDA with PocketPC 2002, PocketPC 2003, and Familiar Linux

According to Figure 5.77, PocketPC 2002 and PocketPC 2003 perform equally well,
while Familiar Linux performs significantly better. In more detail, the average discharge
rate for PocketPC 2002 was 71s, for PocketPC 2003 was 74s, and for Familiar Linux was
115s. Thus, the battery can last the longest with Familiar Linux, and approximately the

 135

same with PocketPC 2002 and PocketPC 2003. In fact, according to these results, the
battery with Pocket PC 2003 could last up to five minutes more than PocketPC 2002,
and with Familiar Linux up to 1 hour and 13 minutes. Thus, it is safe to conclude that
Familiar Linux applies better power management when the wireless is turned on and thus
the battery is discharged at a significantly lower rate. Table 5.14 summarises the results
for the idle PDA with and without its wireless on.

Table 5.14: Average battery discharge rate of an idle PDA with and without its wireless turned on

Average battery discharge rate for each supported OS
Average time taken to change 1%

 Idle (s) Wireless (s)
PocketPC 2002 143 71
PocketPC 2003 163 74
Familiar Linux 195 115

5.2.19 Outcomes and evaluation of the proxy experimentation
This proxy experimentation phase presented extensive experimentation with an iPAQ
proxy-based PDA in relation to throughput, battery discharge rate, CPU utilisation, heap
memory usage, and temperature variation. In particular, the throughput experimentation
revealed the following significant conclusions:

• The JVM can play a dramatic role in terms of the throughput offered by the routing

device. In fact, CrEme offered 15 times more throughput than J9 when running on
top of PocketPC 2003.

• The OS can also play an important role in terms of the throughput offered by a rout-
ing device. As an example, CrEme running on top of PocketPC 2003 can offer up to
five times more throughput than running on top of PocketPC 2002. Similarly, J9
running on top of Familiar Linux can offer up to 10 times more throughput than
running on top of PocketPC 2003.

• Buffer size does not have a significant role in the throughput offered by the routing
device. This fact has been throughout the experimentation process.

• The best combination of OS and JVM in terms of throughput is PocketPC 2003
with CrEme, while the most unfavourable combination is PocketPC 2002 with either
Jeode or J9.

Significant conclusions involving the battery discharge rate, which where revealed
throughout the experimentation process are:

• OS’s power management capability can assist in providing a longer battery life to

 136

handhelds. For instance, when the PDA is idle, Familiar Linux allows an average dis-
charge rate of 195s, while for the PocketPC 2002 it is 143s. This can be interpreted
as 1 hour and 27 minutes longer battery life for the PDA running Familiar Linux in-
stead of PocketPC 2002. The same can be observed when the wireless features are
turned on. Familiar Linux offers 1 hour and 13 minutes longer battery life to a wire-
less handheld in comparison to PocketPC 2002.

• Routing reduces the battery capacity. Comparing the average discharge rates while
routing to rates while the wireless features are turned on, it can be clearly seen that, in
most cases, the difference is not significantly large. For instance, consider CrEme
running on top of PocketPC 2003, which provides the highest throughput. On aver-
age the battery capacity of the routing PDA would get exhausted 23 minutes faster
than the PDA which is idle but has its wireless features turned on. However, once
compared with the PDA which is in an IDLE state without the wireless turned on,
significant differences can be observed. In fact, battery capacity of the routing PDA
would get exhausted two hours and 35 minutes faster than the idle PDA that has its
wireless features turned off. In that respect, routing is a heavy process due to the re-
quirement that the wireless must be switched on, and also that ad-hoc routing, itself,
adds an extra overhead.

• Buffer size does not play any significant role in the PDA’s battery discharge rate. This
fact is proven throughout the experimentation process.

• The most efficient combination in terms of battery capacity is J9 running on top of
Familiar Linux, which achieves an average discharge rate of 82s. The most unfavour-
able combination is Jeode or J9 running on top of PocketPC 2002, which achieves a
discharge rate of approximately 62s. This can be interpreted as 30 minutes of more
routing time by J9. In addition, J9 running on top of Familiar Linux can finish a
routing task up to 10 times faster than Jeode running on top of PocketPC 2002 due
to its higher throughput. Thus, it can save battery life by completing the task faster
and also forcing a lower discharge rate to the battery’s capacity.

The CPU utilisation conclusions obtained throughout the experimentation process are:

• Routing is a CPU intensive task. In all cases, the CPU utilisation ranges from a

minimum point of 59% to a maximum point of 86.68%. The over utilisation of the
CPU while constantly routing heavy network traffic may prohibit handhelds from
performing other concurrent tasks efficiently.

• The JVM has a significant effect on the CPU utilisation of the handheld while per-
forming a routing task. As an example, consider the utilisation of J9 running on top
of PocketPC 2002 and the utilisation of CrEme running on top of the same OS. The

 137

average utilisation of J9 is 64%, while CrEme's is 79%. Thus, CrEme requires more
CPU time while routing than Jeode, however its broader throughput compensates for
it.

• Buffer size does not play any significant role in the CPU utilisation of the PDA. This
fact is proven throughout the experimentation process.

• The least CPU intensive combination is J9 running on top of PocketPC 2002. How-
ever, it provides the lowest throughput. A slightly more CPU-intensive combination
is J9 running on top of Familiar Linux that utilises the CPU by 3% more, however it
provides up to 10 times more throughput. This may be considered as evidence that
the OS has a significant effect on the CPU utilisation, or that J9 for Linux is highly
optimised compared to the implementation of J9 for PocketPC 2002.

The following briefly presents the conclusions obtained throughout this chapter concern-
ing heap memory usage:

• The magnitude of heap memory used by Java Objects is linked to the JVM used. For

instance, CrEme running on PocketPC 2002 allows its Objects to use up to three
times more heap than Jeode and J9 running on PocketPC 2002. Another example is
Java 1.3 and J9 running on top of Familiar Linux. Java 1.3 Objects can use up to
three times more heap memory than J9 Objects.

• The magnitude of heap memory usage is related to the throughput offered by the
JVM. For instance, CrEme running on top of PocketPC 2002 which allows its Ob-
jects to use three times more heap memory than Jeode and J9, can achieve up to four
times more throughput. Another example is CrEme running on top of PocketPC
2003 which allows its Objects to use 10 times more heap memory than J9, and can
achieve up to 15 times more throughput. The only exception to this rule is Java 1.3,
which is based on Sun's Java 1.3 specification, and thus has a large footprint, which is
probably why it uses large amounts of heap, while achieving lower throughput than
J9, which uses much less (see Section 5.2.14).

• Buffer size does not play any significant role in the heap memory usage. This fact is
proven throughout the experimentation process.

Relative, temperature variation readings were much less compared to throughput, battery
discharge rate, and so on, due to the fact that these figures were recorded for only the
Familiar Linux platform. Conclusions that may be drawn from these figures include the
following:

• J9 increased the proxy device's internal temperature at a higher rate than Java 1.3,

 138

which may be due to the fact that J9 achieved higher throughput, and thus utilised its
wireless interface more intensively than Java 1.3, which may have caused this differ-
ence.

• The limitation of this experiment is that the execution time for J9 and Java 1.3 was
different, as J9 finished first due to its broader throughput, and thus the difference in
the overall temperature increase may be partially associated with the more time taken
by Java 1.3 to conduct the experiment.

In addition, the limitation of the experiments lie on the fact that, resource-consumption
measurements, were not taken at a constant throughput. Thus, it is possibly unfair for
devices that achieved good throughput, and consequently consumed more in terms of
battery, CPU utilisation, and heap memory usage. In this way, a possible more accurate
future experiment would be allow a constant throughput to flow through each device,
and measure these resource-consumptions.

5.3 BASS Experimentation

Results presented in the previous chapters clearly demonstrated that the fitness of various
routing devices significantly varies, and may be related to a wide range of parameters,
such as processing power, buffering capability, memory capacity, utilisation status, and
furthermore the OS and JVM combination used to execute the routing software. This
section investigates the effect of these parameters in-depth, by presenting performance
results acquired by running a set of tests in a number of device types (see Appendix A),
ranging from a low-performance device, such as a PDA, to a powerful workstation. The
software used for conducting these tests was BASS, which is fully described in the Sec-
tions 3.10 - 3.12 and 4.4. Briefly, BASS is a Java-based multi-agent performance
acquisition system, especially designed for resource-constrained devices, which can be also
executed in high-end devices, and has the ability to perform various tests and apply a pre-
liminary metric for each test which collectively represent the strength of a routing device.
These tests are grouped into preliminary and continuous, since the first involves tests that
may be run only once, while the latter requires tests to continue monitor system’s re-
sources. Preliminary tests include the group-level, bubble sort, CPU merge, memory test,
client-server and proxy throughput, and Internet connectivity, while continuous tests in-
clude the error packets monitoring, CPU, memory, and overall utilisation, Java threads
monitoring, and battery monitoring.

The purpose of this cycle of experiments was to benchmark the strength of various de-
vice types as routing elements, ranging from low-to-high performance. The aims were:

 139

• Identify the strengths and weaknesses of devices with different hardware characteris-
tics, for the purpose of ad-hoc routing.

• Produce a preliminary metric which corresponds to the fitness of a device to carry-out
a certain task, related to ad-hoc routing.

• Investigate the need for metric-driven routing in ad-hoc networks.
• Analyse and compare these preliminary metrics in relation to their importance in ad-

hoc routing.
• Determine the tests that best fit into the derivation of an overall metric of a routing

device.

5.3.1 Group-level agent test results
This test is aiming to extract system information, such as the IP address of the device, the
OS name, architecture and version, the JRE version and supported classes, and so on.
Table 5.15 presents the system information gathered by having run this test to the laptop
device (see Appendix A). The importance of this test lies in the ability of the routing pro-
tocol to issue routing updates to a group of devices, without affecting the remaining
devices in the network. For example, a mobile agent carrying a routing updated targeted
for devices running Familiar Linux, could install the update based on system information
found at each node, and thus avoid other devices running OSs, such as PocketPC.

Table 5.15: Sample data captured by the group-level test, executed on the laptop

Group information Sample data
MainIP 192.168.0.11
MainHostname Laptop
AltIP 127.0.0.1
AltHostname localhost
OSName Windows NT
OSArch x86
OSVersion 5.0
JRuntimeName NULL
JVMVersion 1.2
Username me
UserCountry NULL
UserLang en
JavaVMRuntime Java Virtual Machine Specification
JavaRuntimeVers NULL
JavaVersion 1.2
Graphics sun.awt.Win32GraphicsEnvironment
SunArcData NULL
SunCPUEndian NULL
SunUnicode UnicodeLittle
SunCPUISA NULL
Last Updated 12/14/03 14:09

 140

5.3.2 Bubble sort agent test results
The aim of this test was to benchmark the processing power of a device, by performing a
bubble sort test of a large amount of random integers. In particular, the bubble sort agent
was requested to sort 30,000 random integers based on four different levels of intensity,
which were: one, two, three, and four-dimensional array. Figures 5.78 - 5.81 presents the
time taken for each device to complete the test, based on 20 iterations, and on multiple
degree of intensity.

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16 18 20

Iterations

Ti
m

e
(s

)

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14 16 18 20

PDA

Server

Laptop

Workstation

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16 18 20

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16 18 20

Iterations

Ti
m

e
(s

)

PDA

Server

Laptop

Workstation

Figure 5.78: Time taken to execute the bubble
sort test (1D) for the PDA, server, laptop, and
workstation, for each one of the 20 iterations

Figure 5.79: Time taken to execute bubble sort
test results (2D) for the PDA, server, laptop, and
workstation, for each one of the 20 iterations

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16 18 20

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16 18 20

Iterations

Ti
m

e
(s

)

PDA

Server

Laptop

Workstation

0
50

100
150
200
250
300
350
400
450
500

0 2 4 6 8 10 12 14 16 18 20
0

50
100
150
200
250
300
350
400
450
500

0 2 4 6 8 10 12 14 16 18 20

Iterations

Ti
m

e
(s

)

PDA

Server

Laptop

Workstation

Figure 5.80: Time taken to execute the bubble
sort test (3D) for the PDA, server, laptop, and
workstation, for each one of the 20 iterations

Figure 5.81: Time taken to execute the bubble
sort test (4D) for the PDA, server, laptop, and
workstation, for each of the 20 iterations

According to Figures 5.78 - 5.81, it can be observed that the PDA was above 50 times
slower than the workstation, in most cases, and approximately 20 times slower than the
laptop. In addition, all devices performed better when fewer dimensions were used, even
though the amount of integers required by the devices to sort was approximately the
same for all algorithmic-depths. In particular, as shown in Section 4.4.1, the 4D bubble
sort algorithm was requested to sort less numbers than the 3D, and so on, which is
probably why the difference of the tests is not clearly visible. However, this experiment
shows that as the complexity of a sorting algorithm increases, the execution speed de-
creases, and is very similar for all device types. In more detail:

 141

• The PDA required 9.54% more time to execute the 2D algorithm than it needed for
the 1D, 19.37% more time for the 3D, and 21% more time for the 4D.

• The laptop required 59.46% more time for the 2D, 56.24% more time for the 3D,
and 83.42% more time for the 4D.

• The server required 70.43% more time for the 2D, 136.53% more time for the 3D,
and 175.53% more time for the 4D.

• Workstation required 78.57% more time for the 2D, 58.32% more time for the 3D,
and 67.85% more time for the 4D.

Table 5.16 summarises the average time taken for each device to complete the bubble
sort test with increased intensity. It can be seen that the workstation achieved the worst
time in the 2D test, which may be a result of some internal processing that was required
by the OS, and was hidden at the level of the test. Figures 5.82 - 5.83 present the time
taken for the PDA’s battery to discharge by 1% throughout the bubble sort experiment
with 1D complexity and 3D respectively. The battery measurements taken during the
tests were continuous. In particular, at the beginning of each test the battery was fully
charged, and when the battery dropped below 10% the test was stopped.

Table 5.16: Average values for the Bubble sort experiment with in depth complexities

Bubble sort test
depth

PDA
time (s)

Laptop
time (s)

Server
time (s)

Workstation
time (s)

1D 318.32 13.94 26.11 5.60
2D 348.71 22.23 44.50 10.01
3D 379.99 21.78 61.76 8.90
4D 385.18 25.57 71.91 9.41

A couple of insignificant anomalies can be observed in Figure 5.83, where the battery dis-
charged by 1% in approximately 20s. However, the battery discharge rates, in both tests
were normally in the range of 80s to 120s. The discharge rate was, on average, very simi-
lar in both tests, and in particular 84s per 1% battery drop for the 1D bubble sort and
83s per 1% battery drop for the 3D. This suggests that although the battery was shown
to discharge at a higher rate while the resource-constrained device was performing rout-
ing tasks, which is clearly a CPU-intensive task (see Section 5.2), the battery does not
necessarily discharge at a higher rate while the device is performing a less intensive algo-
rithm, such as the 3D bubble sort.

 142

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

Time (min)

Ti
m

e
(s

)

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

PDA battery discharge rate for 1 (%)

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

Time (min)

Ti
m

e
(s

)

PDA battery discharge rate for 1 (%)

Figure 5.82: Battery discharge rate for the PDA
executing the 1D bubble sort test

Figure 5.83: Battery discharge rate for the PDA
executing the 3D bubble sort test

5.3.3 Memory test results
Figures 5.84 - 5.87 present the results gathered by each device executing the creation of
one and 16 files with constant file-sizes, and the creation of a constant number of files
with 1KB and 16KB file-sizes tests. Specifically, results show the time taken by each de-
vice for each of the total 20 iterations. The memory tests could reveal insight information
concerning the buffering capabilities of devices that use their RAM as a persistent storage,
whereas for devices that use a hard-drive as a persistent storage, the test is probably lim-
ited, as the speed of accessing and storing data to the hard drive does not relate to ad-hoc
routing. Thus, test result for devices equipped with a hard-drive, such as the workstation
and laptop (see Appendix A), are presented here only for comparison reasons.

Results show the differences in the performance capabilities of each device in relation
to their specifications. The difference between the PDA and the other devices is, how-
ever, not nearly as great as in the bubble sort tests. For example, for the test of creating 16
files per size the PDA is only, on average 12.68 times slower than the workstation. This
could be mainly due to the fact that the PDA uses electronic memory to store its files,
which has a far quicker access time than a hard drive. This pattern is slightly different for
the second test, which demands more processing power from the device, as it creates
more files. In the case of the second test, the PDA is, on average, 30 times slower than
the workstation. A possible reason for this is that the PDA runs low on memory as it cre-
ates the files in its RAM. For example, for the PDA to create 2000 files of 16KB, it
requires nearly 32MB of its memory. This could impair performance as it has only a total
of 64MB, which almost half of it is occupied by the OS. Thus, the PDA should not be
used to buffer large amounts of information, which is often caused when a device is fre-
quently used for ad-hoc routing.

 143

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20

Iterations

Ti
m

e
(s

)

PDA

Server

Laptop
Workstation

0

30

60

90

120

150

180

210

240

270

0 2 4 6 8 10 12 14 16 18 20

0

30

60

90

120

150

180

210

240

270

0 2 4 6 8 10 12 14 16 18 20

Iterations

Ti
m

e
(s

)

PDA

Server

Laptop

Workstation

Figure 5.84: Time taken to create one file of
varied sizes for each one of the 20 iterations

Figure 5.85: Time taken to create 16 files of
varied sizes for each one of the 20 iterations

500

1500

2500

3500

4500

5500

6500

7500

0
2 4 6 8 10 12 14 16 18 20

500

1500

2500

3500

4500

5500

6500

7500

0
2 4 6 8 10 12 14 16 18 20

Iterations

Ti
m

e
(s

)

PDA

Server

Laptop

Workstation

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2 4 6 8 10 12 14 16 18 20

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2 4 6 8 10 12 14 16 18 20

Iterations

Ti
m

e
(s

)

PDA

Server

Workstation

Laptop

Figure 5.86: Time taken to create varied number
of files of 1KB size, for each one of the 20 itera-
tions

Figure 5.87: Time taken to create varied number
of files of 16KB size, for each one of the 20 itera-
tions

Figures 5.88 - 5.91 present the time taken for the PDA to discharge by 1%, while con-
ducting the memory tests. Figures 5.88 and 5.89 present the results obtained during a
continuous file creation test, which creates fixed files of a varied sizes. Figures 5.90 and
5.91 present the results obtained during a continuous file creation test, which instead,
creates varied number of files of fixed sizes.

The same data size of 21,000KB was used in the following tests: fixed number of files
(one file) of varied sizes; and varied number of files of fixed sizes (1KB). Similarly, a total
of 336,000KB was used for the second set, respectively. In the first case, the battery dis-
charge was approximately equal to 119s and 114s, while, in the second case, the discharge
was 93s and 62s, respectively. This shows that the discharge of the battery was raised by
33.33% when more files of fixed sizes were created, even though the same total amount
of data was used. Overall, the experiments prove that resource-constrained devices con-
sume increased amounts of energy, when they constantly store large amounts of
information to their memory, which may be related to the buffering process while rout-
ing. Thus, a resource-constrained device should not be regularly used to route heavy
network traffic because of its limited buffering speed, and the increased battery consump-
tion which is required by this process.

 144

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

)

Time (min)

PDA battery discharge rate for 1 (%)

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90 100

Time (min)

Ti
m

e
(s

)

PDA battery discharge rate for 1 (%)

Figure 5.88: Time taken for the battery to dis-
charge by 1% for 1 file of varied sizes

Figure 5.89: Time taken for the battery to dis-
charge by 1% for varied number of files of 1KB
sizes

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90 100

Time (min)

Ti
m

e
(s

)

PDA battery discharge rate for 1 (%)

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

Time (min)

Ti
m

e
(s

)

PDA battery discharge rate for 1 (%)

Figure 5.90: Time taken for the battery to dis-
charge by 1% for 16 files of varied sizes

Figure 5.91: Time taken for the battery to dis-
charge by 1% for varied number of files of 1KB
sizes

5.3.4 CPU merge test results
As previously mentioned, this test is provided as an alternative to the bubble sort test, as
it less CPU-intensive, and can thus, possibly, be executed by limited devices, such as mo-
bile phones. Figure 5.92 illustrates the results from running the CPU merge test on all
devices. In this, the PDA achieved the worst results, as it was 11 times slower than the
server, 45 times slower than the laptop, and 103 times slower than the workstation. In
addition to results obtained by bubble sort test execution, merge sort results further indi-
cate the difference in processing power between PDAs and other higher-end devices.
Although 80,000 integers were used for sorting by the merge sort algorithm, which is
50,000 more than the ones used in the bubble sort test, the time taken was significantly
less. This is because merge sorting is using a less intense algorithm. Figure 5.93 illustrates
the time taken for the PDA’s battery to discharge by 1%, while executing the merge sort
test, in a continuous manner. The average discharge time was 94s, which when compared
with Figure 5.82, it can be seen that the battery discharge rate in this experiment was al-

 145

most 10% less than the respective 1D bubble sort. This further suggests that less CPU-
intensive algorithms cause the battery to discharge at a lower rate.

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16 18 20

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16 18 20

PDA

Server
Laptop

Workstation

Ti
m

e
(s

)

Time (min)

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20

PDA battery discharge rate for 1 (%)

Ti
m

e
(s

)

Time (min)

Figure 5.92: Time taken to sort 80,000 integers
using the CPU merge sort agent for all devices

Figure 5.93: Time taken for the PDA’s battery
to discharge by 1 (%) while conducting the
merge sort test for 80,000 integers

5.3.5 Internet connectivity test results
As previously mentioned, results from this test do not participate in the metric calcula-
tion process, as the test is not related to ad-hoc routing (see Section 3.11). The details of
this experiment can be found in Section 4.4.4. The results from running the Internet
connectivity test in each device are illustrated in Figures 5.94 - 5.96. The results show
consistent connection, download, and total times for all devices apart from the PDA. Ta-
ble 5.17 presents the average, connection, download and total times per device. It can be
seen that the time taken for the PDA to conduct the experiment is nearly 50 times more
than the workstation and laptop.

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20

Server

Laptop

PDA

Workstation

Iterations

Ti
m

e
(s

)

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16 18 20

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16 18 20

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12 14 16 18 20

Iterations

Ti
m

e
(s

)

PDA

Laptop Server Workstation

Figure 5.94: Remote page connection times Figure 5.95: Remote page download times

 146

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14 16 18 20

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14 16 18 20

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14 16 18 20

PDA

Laptop Server Workstation

Iterations

Ti
m

e
(s

)

Figure 5.96: Remote page total times

Table 5.17: Average connection, download and total times for each device

Internet Connectivity test PDA Laptop Server
Connect (s) 7.46 1.27 0.22
Download (s) 91.47 1.18 1.63
Total (s) 98.93 2.46 1.85

5.3.6 Summary of battery power consumed by each test
Table 5.18 summarises the total battery power consumed by each test, over an average of
20 iterations, as described in previous sections. It highlights various patterns in respect to
the loss of battery power. For example, it can be clearly seen from the results of the bub-
ble sort test that, as the intensity of the processing task is increased, the amount of battery
reserves consumed is also increased. In addition, the creation of large number of files has
a severe effect on the reduction of the battery capacity, whereas, for the same amount of
data, the creation of larger files can significantly reduce the battery consumption. Result
such as these, were used to identify the issues involved with ad-hoc routing devices, and
were further used to model the devices in terms of their routing ability and resource-
consumption rates.

Table 5.18: Average battery consumption during each of continuous tests

Test Battery used (%)
1D Bubble 3.00
2D Bubble 3.20
3D Bubble 3.40
4D Bubble 5.00
File test 1 - 1KB 0.67
File test 1 - 16KB 2.90
File test 2 - 1KB 27.50
File test 2 - 16KB 34.40
Merge Sort 0.55
Download HTML file 0.79

 147

5.3.7 Outcomes and evaluation of the BASS experimentation
This experimentation phase presented the Benchmarking multi-Agent Software System
(BASS), which is light-weighted and can execute on resource-constrained devices, as well
as high-end devices. Its purpose is to benchmark the routing fitness of ad-hoc devices by
conducting a number of preliminary and continuous tests. Preliminary tests include: the
group-level; bubble sort; memory test; CPU merge; Internet connectivity; client-server
and proxy throughput; while, continuous tests include: the error packets monitoring;
CPU and memory utilisation; Java threads monitoring; and battery reserves monitoring.
As previously mentioned, test results from the group-level, the Internet connectivity, and
the Java threads monitoring agents do no participate in the metric calculation process due
to their lack of relevance with ad-hoc routing. Preliminary tests are required to execute
only once, while continuous tests constantly execute in the background. Preliminary tests
were shown to require large resources for their execution, and should thus be executed
when the device is idle. On the other hand, continuous tests require fewer resources, even
when they are executed on handheld devices. Preliminary and continuous test results are
used by MARIAN in order to produce a metric representing the device’s routing capabil-
ity, which is then tailored to various routing scenarios.

5.4 Mobile agent migration

This chapter presents results regarding the ability of agents to migrate over the wireless
medium. The first phase of the experimentation attempted to benchmark the average
time required for an agent migration and provided evidence which suggested that migra-
tion time is related to the hardware characteristics of the devices involved. The second
phase investigated the ability of agents to migrate to and from handheld devices, and fur-
ther appraised the general assumption which suggests that mobile agents can reduce
network load, under certain circumstances.

The experimentation cycle of mobile agent migration was conducted with purpose to:
benchmark the migration requirements of mobile agents; investigate the effect of hard-
ware performance on migration times; and evaluate the assumption that mobile agents
can reduce network load when compared to static approaches. In particular, the aims are:

• Benchmark the average time required by two successive hosts to dispatch, and receive

a mobile agent which carries no data.
• Investigate the effect of varying hardware capacity on mobile agent migration times.
• Prove the feasibility of agent migration through a series of wireless handhelds.
• Determine the circumstances under which mobile agent technology can reduce net-

work load compared to static approaches.

 148

5.4.1 Mobile agent migration time requirements
As previously mentioned, this experimentation cycle is aiming to benchmark the time
requirements for an agent migration, and investigate whether agent migration is related
to the hardware characteristics of devices involved. When a Java-based mobile agent re-
quests its migration, the underlying mobile agent system initially performs the necessary
preparations, then serialises the agent, and transmits it to the next hop. Table 5.19 pre-
sents the average migration times achieved by the runner agent (see Appendix A), which
travelled through a series of superior devices (see Appendix A). Table 5.20 presents similar
results, however, in this case the agent travelled through a series of inferior devices (see
Appendix A). Figure 5.97 illustrates the runner agent’s round trip time (RTT) values,
and compares the superior and inferior results.

Table 5.19: The average migration times and RTT values for the superior group

Superiors
Hop count Migration time RTT (s)

1 1.047 1.047
2 1.25 2.297
3 1.031 3.328
4 1.047 4.375
5 0.985 5.360
6 1.015 6.375
7 0.976 7.351
8 1.102 8.453

Table 5.20: The average migration times and RTT values for the inferior group

Inferiors
Hop count Migration time RTT (s)

1 1.297 1.297
2 1.109 2.406
3 1.187 3.593
4 0.97 4.563
5 1.14 5.703
6 0.469 6.172
7 1.593 7.765
8 1.078 8.843

According to Tables 5.19 - 5.20, it can be seen that the agent’s average migration time is
approximately 1.057s for the superiors and, approximately, 1.105s for the inferiors. The
RTT is approximately 8.453s for the superiors and, approximately, 8.843s for the inferi-
ors. In relation to these figures, it can be clearly seen that the hardware characteristics of a
device can influence an agent’s migration time, and, in particular, low performance de-
vices can delay the agent’s migration compared to high performance devices. Even

 149

though these figures do not provide an absolute distinction, they indicate that hardware
performance is a factor. Specifically, the average agent’s migration was further delayed by
approximately 49ms, while the total RTT of the agent was further delayed by approxi-
mately 392ms.

Host Performance

0

1

2

3

4

5

6

7

8

9

10

Hop Count (n)

R
TT

 (s
)

Superiors
Inferiors

1 2 3 4 5 6 7 8

Figure 5.97: The RTT values for the superior and inferior groups

5.4.2 Data gathering based on static and mobile agents
As previously mentioned, a frequently proposed advantage of mobile agent technology is
its ability to considerably reduce network load in comparison to standard static ap-
proaches. This experimentation phase aims to investigate this and provide definite
conclusions on under which circumstances this is possible. For this purpose, a data re-
trieval application scenario has been designed, as described in section 4.5, and used to
compare both static agent and mobile agent approaches.

Figures 5.98 - 5.99 present the time required by the static agent and mobile agent ap-
proaches, respectively, in order to complete the data gathering process for data sizes of
100Kbits, 200Kbits, and 300Kbits. The average time required, over 20 iterations, for the
static agent approach is approximately 4.82s for 100Kbits, 4.85s for 200Kbits, and 4.98s
for 300Kbits, while for the mobile agent approach it is approximately 44.18s for
100Kbits, 51.17s for 200Kbits, and 64.25s for 300Kbits. Therefore, the increase in the
size of returned hits increases the time taken to complete, for each approach, as expected.
The static agent approach has handled the size increases efficiently as the time incre-
mented by a negligible amount, specifically of the scale of 30ms for additional 100Kbits,
and 160ms for additional 200Kbits. In contrast, the mobile agent approach required con-
siderably more time for successive data size increases. Specifically, it required 7s
additional for an increase of 100Kbits and 20s additional for an increase of 200Kbits.

 150

4

4.5

5

5.5

6

6.5

0 2 4 6 8 10 12 14 16 18 20
4

4.5

5

5.5

6

6.5

0 2 4 6 8 10 12 14 16 18 20

300 Kbits
data

100 Kbits
data

200 Kbits
data

Iterations

St
at

ic
 d

at
a

re
tr

ie
va

l t
im

e
(s

)

30

35

40

45

50

55

60

65

70

0 2 4 6 8 10 12 14 16 18 20

30

35

40

45

50

55

60

65

70

0 2 4 6 8 10 12 14 16 18 20

300 Kbits
payload

200 Kbits
payload

100 Kbits
payload

Iterations

M
ob

ile
 d

at
a

re
tr

ie
va

l t
im

e
(s

)

Figure 5.98: Data gathering based on the static
agent approach for 100Kbits, 200Kbits, and
300Kbits

Figure 5.99: Data gathering based on the mobile
agent approach for 100Kbits, 200Kbits, and
300Kbits

Figure 5.100 compares the average time required by both the static and mobile agent ap-
proaches. Accordingly, the mobile agent approach was 10 times more time consuming
than the respective static agent approach. This considerable difference may be attributed
to the JVM and the agent platform’s migration component, as they are responsible for
capturing the agent’s state, and serialising the agent, before its actual transmission to the
next hop. Therefore, as it can be clearly seen from this particular experiment, the mobile
agent data gathering is significantly slower than its counterpart, and can thus not be effi-
ciently used to replace static approaches.

Figure 5.101 illustrates the time required by the mobile agent with filtering approach
to retrieve 15Mbits of data, and contrasts the results to the time taken to retrieve the
same amount of data by the static agent approach. Results show that the mobile agent
with filtering approach significantly improved the time required in relation to the static
agent approach. Particularly, the average time required by the mobile agent with filtering
approach was approximately 42s, while the average time required by the static agent ap-
proach was approximately 62s. Thus, the filtering approach was nearly one third faster
than the static agent approach. This was due to the fact that the mobile agent retrieved
the data from the database, which was initially of size 15Mbits, and performed data filter-
ing locally based on its user’s preferences, which, in this case, reduced the data from
15Mbits to only 56Kbits. Thus, the agent only stored 56Kbits of data in its payload. The
static agent approach had no filtering capability, and thus retrieved the full amount of
data. Therefore, mobile agent technology can be considered to be more efficient for data
gathering than static approaches, under certain circumstances, such as, if mobile agents
are capable of intelligent filtering, and that the data to be retrieved is relatively large.

The mobile filtering approach can also be also used in ad-hoc networking applica-
tions, such as in MARIAN's proactive network discovery process, where each topology

 151

gathering mobile agent has the capability to filter and discard repeated information. In
this way, the agents reduce the amount of information they carry, and thus decrease their
migration time, and, consecutively, decrease the time taken by the proactive approach to
collect the complete network's topology.

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20

Static approach
Average time

Mobile approach
Average time

Iterations

A
ve

ra
ge

 d
at

a
re

tr
ie

va
l t

im
e

(s
)

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18 20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18 20

D
at

a
re

tr
ie

va
l t

im
e

(s
)

Iterations

Mobile filtering approach
reduced payload

Static approach
15 Mbits data

Figure 5.100: Average time taken for the static
agent and mobile agent approaches

Figure 5.101: Data gathering based on the static
agent and mobile agent with filtering approaches
for 15Mbits

5.4.3 Outcomes and evaluation of mobile agent migration ex-
perimentation

Experimentation results presented throughout this section show that a Grasshopper mo-
bile agent requires approximately 1s for its migration when the underlying hosts
(transmitter and receiver) are composed of high performance hardware characteristics,
such as the devices defined in Appendix A. However, in the case of handhelds, it can be
estimated that this figure significantly increases, reaching up to five times more. This
chapter also presented a data gathering application scenario, where the static and mobile
agent approaches were compared in terms of the time taken to retrieve varying size of
data. The static agent approach was proved to be the most efficient, at all times, apart
from the case where the mobile agent was capable of intelligent filtering of data. In this
case, the mobile agent approach improved on the static agent approach by nearly one
third. The results of this experimentation phase contributed in designing MARIAN’s
proactive network discovery to allow mobile agent filtering. Therefore, each generation of
propagating network discovery mobile agents is designed to filter network topology in-
formation in such as way so as to eliminate unnecessary redundant routing information.

5.5 Metrics simulation experimentation

This chapter demonstrates the assignment of routing metrics to both devices and re-
trieved routes, which are initially expressed in the form of capability/incapability, and,

 152

then, in case of capability, to a meaningful expression, such as poor, good, and so on. As
previously discussed in Section 3.13, a single routing metric is assigned for each defined
routing scenario, and, thus, it is possible for a device to be determined capable of accom-
plishing a particular routing scenario, while incapable for another. Then, results obtained
from a preliminary metric simulation are presented. Specifically, throughout the simula-
tion, critical factors, such as battery capacity, memory and CPU utilisation, have being
varied, and, consequently along with them, the corresponding preliminary metrics, in
order to measure the effect that these variations have on the routing capabil-
ity/incapability and final metric of a device.

The main aim is to demonstrate the accuracy of the metric calculation process, and its
dynamics in rapidly responding to critical changes of a device’s routing capabilities. In
particular to:

• Demonstrate the routing metric calculation process.
• Prove the accuracy of the routing metric assignment process.
• Prove the ability of the design to respond to sudden changes of a device’s vital ele-

ments.

5.5.1 Routing metric calculation
In order to demonstrate the routing metric calculation process, six distinct device types
have been defined, as previously presented in section 4.6. The experimentation results
presented in Sections 5.1 - 5.3 are being recapitulated, and further enhanced for the pur-
poses of this section. Thus, in relation to data from Sections 5.1 - 5.3, Table 5.21
presents the test results, which have been achieved by each of the previously defined de-
vice types (see Section 4.6). Based on the mathematical equations defined in Section 3.13
and on test results presented on Table 5.21, the preliminary metrics for each device type
can be calculated, as shown in Table 5.22.

Table 5.21: Test results for each device type

 DT1 DT2 DT3 DT4 DT5 DT6 DT7 DT8 DT9
T1 (s) 31.83 31.83 31.83 31.83 31.83 31.83 2.61 1.395 0.56
T2 (s) 76.34 76.34 76.34 76.34 76.34 76.34 7.38 1.69 0.74
T3 (s) 16.99 16.99 16.99 16.99 16.99 16.99 2.58 0.27 0.24
T4 (s) 5313.7 5313.7 5313.7 5313.7 5313.7 5313.7 1127 279.3 196
T5 (%) 0 0 0 0 70 0 0 0 0
T6 (%) 0 0 0 0 70 0 0 0 0
T7 (%) 20 20 20 20 85 20 0 0 0
T8 (s) 52.544 52.544 52.544 52.544 52.544 52.544 44.52 38.104 28.32
T9 (s) 80.5 80.5 14 299.985 80.5 80.5 5.25 2.625 1.75
T10 (%) 3 89 3 3 3 3 2 2 1
T11 (%) 56 56 56 56 56 56 50 40 30

 153

T12 (%) 98 98 98 98 98 19 98 98 N/A

Once the preliminary metrics have been calculated, the next step involves their transla-
tion into an overall metric, specifically tailored for each predefined objective (see Section
3.13). Thus, each device calculates a single overall metric for each predefined objective,
which is principally distinct and ranges between 0 and 100. Table 5.23 presents the out-
comes of applying the overall metric calculation process to the predefined devices’
preliminary metrics (see Table 5.22).

Table 5.22: Preliminary metrics derived from test results

 DT1 DT2 DT3 DT4 DT5 DT6 DT7 DT8 DT9
pm1 63.66 63.66 63.66 63.66 63.66 63.66 5.22 2.79 1.12
pm2 76.34 76.34 76.34 76.34 76.34 76.34 7.38 1.69 0.74
pm3 84.95 84.95 84.95 84.95 84.95 84.95 12.9 1.35 1.2
pm4 75.91 75.91 75.91 75.91 75.91 75.91 16.1 3.99 2.8
pm5 0 0 0 0 70 0 0 0 0
pm6 0 0 0 0 70 0 0 0 0
pm7 20 20 20 20 85 20 0 0 0
pm8 65.68 65.68 65.68 65.68 65.68 65.68 55.65 47.63 35.4
pm9 23 23 4 85.71 23 23 1.5 0.75 0.5
pm10 1.9 92.435 1.9 1.9 1.9 1.9 1.54 1.6 1.33
pm11 64 64 64 64 64 64 54.84 39.32 25.23
pm12 0.31 0.31 0.31 0.31 0.31 80.52 0.31 0.31 0

The overall metric calculation is simple and should thus not over-utilise a device’s re-
sources irrespectively of its general processing strength, as a device is only required to
perform a single mathematical calculation for each objective. The next step involves the
determination of the device’s capability/incapability of accomplishing certain routing
scenarios. Based on the desired ranges of six previously defined objectives (see Section
3.13) and on the overall metrics presented in Table 5.23, the capability/incapability de-
termination can be calculated, as shown in Table 5.24.

Table 5.23: Overall metric values for each device type and objectivity combination

 Energy Synch Asynch Critical Secure Burst
Av. PDA (DT1) 23.05 26.22 27.85 16.54 45.63 44.87
High CPU util. PDA (DT2) 40.20 39.53 36.90 26.07 55.69 60.21
Good throughput PDA (DT3) 22.33 22.73 27.85 16.14 44.93 44.54
Poor throughput PDA (DT4) 25.43 37.75 27.85 17.86 47.95 45.93
High network errors PDA (DT5) 27.71 30.74 48.35 48.90 53.22 48.34
Low battery PDA (DT6) 53.43 49.81 48.72 33.42 54.54 58.46
Av. laptop (DT7) 17.01 13.90 15.20 8.79 13.85 17.56
Strong laptop (DT8) 12.45 9.97 10.98 6.32 8.85 10.12
Powerful workstation (DT9) 8.15 6.76 7.00 4.14 5.70 6.67

 154

According to Table 5.24, the average PDA is classified as capable of routing energy effi-
cient network traffic, since its memory, CPU, and battery preliminary metrics are fairly
low. However, it falls outside the limits of synchronous traffic requirements, as its net-
work throughput was not within the required limits. For asynchronous traffic, an average
PDA is sufficient to route data, as this type of traffic does not have any special require-
ments, apart from the battery metric which is always a key metric in all of the objectives.
The average PDA is also capable of routing critical traffic, as its network protocol error
rates are significantly low. Finally, it is classified as incapable of routing secure traffic or
burst traffic, as it has low buffering capabilities and normally takes considerable time to
perform intensive calculations.

Table 5.24:
Capability/incapability determination of 6 predefined device types for 6 predefined routing objectives

 O1 O2 O3 O4 O5 O6

DT1 Capable Incapable Capable Capable Incapable Incapable
DT2 Incapable Incapable Capable Incapable Incapable Incapable
DT3 Capable Capable Capable Capable Incapable Incapable
DT4 Capable Incapable Capable Capable Incapable Incapable
DT5 Capable Incapable Capable Incapable Incapable Incapable
DT6 Incapable Incapable Incapable Incapable Incapable Incapable
DT7 Capable Capable Capable Capable Capable Capable
DT8 Capable Capable Capable Capable Capable Capable
DT9 Capable Capable Capable Capable Capable Capable

The final stage, which involves the classification of capability to a meaningful QoS meas-
urement, is demonstrated in Section 5.6. The rest of this section is concentrated on the
variation of critical elements of the device’s resources, and, specifically, on the effect that
this may have in the capability/incapability determination.

5.5.2 Simulation results
Simulations were conducted for each device/objectivity combination by varying a num-
ber of key preliminary metrics, including: CPU utilisation, memory utilisation, and
battery level. For example, the CPU utilisation of a device can easily decrease or increase
according to the user’s actions, such as the user has started a resource-consuming applica-
tion, which increased the CPU utilisation by 35%. Along the same line, the amount of
free memory available to the system can change for the same reasons. The battery, a met-
ric of vast significance, varies with time and type of usage. For example, if a resource-
constrained device is used as an ad-hoc router, it will cause the battery to decrease at a
rate of approximately 30% faster that if it was idle (Migas, N., et. al., 2005).
 Figure 5.102 presents the variation of the overall metric when the average PDA’s CPU
preliminary metric ranges from 0 to 100. According to Table 5.25, if the CPU prelimi-

 155

nary metric exceeds the value of 40.43, the PDA becomes incapable of routing energy
efficient network traffic. This is due to the fact that increased CPU utilisation can cause
the battery to decrease at a much faster rate. In contrast, the CPU increase does not cause
the overall metric to exceed the upper limit for asynchronous traffic, and thus the PDA
will always be capable of routing this type of traffic, irrespective of the current CPU utili-
sation. However, if the CPU preliminary metric exceeds the predefined value of 95.25,
the system automatically detects this and sets the overall metric to point to infinity (see
Section 3.13). This is not illustrated in the graphs throughout this section for presenta-
tion purposes. Finally, the PDA turns to the incapable state for critical traffic after the
CPU preliminary metric exceeds the threshold value of 35.03. A description of the results
achieved for the remaining objectives is omitted, as the average PDA was incapable of
achieving these objectives in the first place. Table 5.25 summarises the threshold values
for each simulated preliminary metric, which can cause an average PDA to inverse its ca-
pability state for objectives O1, O3 and O4, while Table 5.34 maps these threshold values
to the actual corresponding CPU utilisation, memory usage, and battery level.

Figure 5.103 presents the variation in the overall metric for the PDA with high CPU
utilisation device type, where the battery preliminary metric was variable. It can be seen
that the battery level can have a strong impact on the overall metric, especially when the
PDA’s CPU is heavily utilised. Thus, as the CPU being overutilised, the PDA can only
route asynchronous traffic (see Table 5.26). However, if the battery exceeds the threshold
values of 66.65 the PDA moves to the incapable state for this type of traffic. As constant
high CPU utilisation causes the battery to discharge at considerably faster rate than low
utilisation (by almost 30%) (Migas, N., et. al., 2005), it is important to exclude it from
routing when the remaining battery approaches low levels.

10

20

30

40

50

60

0 20 40 60 80 100

O1

O2

O3

O4

O5

O6

CPU preliminary metric variation

O
ve

ra
ll

m
et

ric

10

20

30

40

50

60

0 20 40 60 80 100

O1

O2

O3

O4

O5

O6

CPU preliminary metric variation

O
ve

ra
ll

m
et

ric

Energy efficient

Synchronous

Asynchronous

Critical

Secure
Burst

Figure 5.102. The effect of CPU’s variation on the overall metric for the average PDA

 156

Table 5.25: Threshold values for each simulated preliminary metric for the average PDA

 CPU Memory Battery
O1 Metric ≥ 40.43 Metric ≥ 91.96 Metric ≥ 21
O3 Metric ≥ 95.25 Metric ≥ 95.83 Metric ≥ 87.37
O4 Metric ≥ 35.03 Metric ≥ 91.38 Metric ≥ 17.38

20

30

40

50

60

70

80

0 20 40 60 80 100

O1

O2

O3

O4

O5

O6

Battery preliminary metric variation

O
ve

ra
ll

m
et

ric

Synchronous

Asynchronous

Critical

Secure

Burst

Energy efficient

Figure 5.103:
The effect of battery’s variation on the overall metric for the PDA with high CPU utilisation

Table 5.26:
Threshold values for each simulated preliminary metric for the PDA with high CPU utilisation

 CPU Memory Battery
Asynchronous Metric ≥ 95.25 Metric ≥ 95.83 Metric ≥ 66.65

Figure 5.104 presents the variation in the overall metric for the PDA with a good
throughput device type, where the memory metric was variable. This type of device is
capable of routing synchronous network traffic, which is not supported by the average
PDA, in addition to energy efficient, asynchronous, and critical. Table 5.27 summarises
the preliminary threshold values for the CPU, memory, and battery that can cause the
PDA to turn to incapable state. For the energy efficient, asynchronous, and critical traffic
types, the threshold values are similar, however, a bit more relaxed, to the ones recorded
for the average PDA. This close association is because these three objectives are not usu-

 157

ally strongly linked to high-throughput. Even though this device type is allowed to route
synchronous traffic, hard restrictions are imposed in terms of CPU utilisation, memory
usage, and battery capacity, in order to protect the PDA from becoming unusable. This is
evident in Table 5.28, where the threshold values for CPU, memory, and battery are sig-
nificantly lower than the corresponding values for the rest of the supported objectives.

10

20

30

40

50

60

64 70 76 82 88 94 100

O1

O2

O3

O4

O5

O6

Memory preliminary metric variation

O
ve

ra
ll

m
et

ric

Synchronous

Asynchronous

Critical

Secure

Burst

Energy efficient

Figure 5.104: The effect of memory’s variation on the overall metric for the PDA with good throughput

Table 5.27: Threshold values for each simulated preliminary metric for the PDA with good throughput

 CPU Memory Battery
Energy efficient Metric ≥ 43.23 Metric ≥ 93.82 Metric ≥ 21

Synchronous Metric ≥ 18.04 Metric ≥ 80.04 Metric ≥ 8.56
Asynchronous Metric ≥ 95.25 Metric ≥ 95.83 Metric ≥ 87.37

Critical Metric ≥ 39.05 Metric ≥ 94.8 Metric ≥ 19.74

Figure 5.105 presents the variation in the overall metric for the PDA with a poor
throughput device type, where the battery preliminary metrics was variable. This shows
that a PDA with poor throughput can still maintain the ability to achieve the same objec-
tives as an average PDA, however, for the energy efficient objective, heavier restrictions
are imposed in terms of CPU utilisation, memory usage, and battery capacity. According
to Table 5.28, the threshold value of the CPU preliminary metric is reduced by 13 units,
and approximately eight units for the memory and battery. The reason for this is that a
PDA with low throughput consequently requires more time to route data, and thus more
battery is consumed throughout this process, and also more CPU and memory is used.

 158

10

20

30

40

50

60

70

0 20 40 60 80 100

O1

O2

O3

O4

O5

O6

Battery preliminary metric variation

O
ve

ra
ll

m
et

ric
Synchronous

Asynchronous

Critical

Secure

Burst

Energy efficient

Figure 5.105: The effect of battery’s variation on the overall metric for the PDA with poor throughput

Table 5.28: Threshold values for each simulated preliminary metric for the PDA with poor throughput

 CPU Memory Battery
Energy efficient Metric ≥ 27.56 Metric ≥ 83.29 Metric ≥ 13.28
Asynchronous Metric ≥ 95.25 Metric ≥ 95.83 Metric ≥ 87.37
Critical Metric ≥ 32.45 Metric ≥ 93.82 Metric ≥ 16.28

Figure 5.106 presents the variation in the overall metric for the PDA with high error
network protocol rate device type, where the battery metric was variable. As shown in
Table 5.29, this device type can only support two objectives: energy efficient and asyn-
chronous. Due to its high network protocol error rates, critical network traffic cannot be
supported in contrast to the average PDA device type. In addition, high network protocol
error rates have a significant impact on both energy efficient and asynchronous objec-
tives. In comparison to the average PDA device type (see Table 5.25), the threshold
values for energy efficient traffic is reduced by 25 units for the CPU, 17 units for the
memory, and 14 units for the battery. Similarly, for asynchronous traffic the threshold
values were reduced by 75 units for the CPU, 26 units for the memory, and 80 units for
the battery. The reason for these significant differences is that high network protocol er-
ror rates can cause multiple retransmissions of the same data packets, and, thus, it
requires more CPU time, memory usage, and battery.

 159

20
25
30
35
40
45
50
55
60
65
70

0 20 40 60 80 100

O1

O2

O3

O4

O5

O6

Battery preliminary metric variation

O
ve

ra
ll

m
et

ric

Synchronous

Asynchronous

Critical

Secure

Burst

Energy efficient

Figure 5.106: The effect of battery’s variation on the overall metric for the PDA with high error rate

Table 5.29: Threshold values for each simulated preliminary metric for the PDA with high error rate

 CPU Memory Battery
Energy efficient Metric ≥ 15.34 Metric ≥ 75.19 Metric ≥ 7.32
Asynchronous Metric ≥ 19.97 Metric ≥ 69.81 Metric ≥ 9.24

Figure 5.107 presents the variation in the overall metric for the PDA with low battery
device type, where the CPU preliminary metric was variable. This device type is the least
competent, as battery resources are vital for operation. The overall metric is extremely
sensitive for low battery readings in a similar way to high CPU utilisation. However, in
this case the effect is more severe. In particular, the device can only support asynchronous
traffic, if, and, only if, the CPU preliminary metric is lower than 17 and the memory pre-
liminary metric is lower than 71 (see Table 5.30). This demonstrates the significance
which battery power and utilisation status has on the overall metric calculation. Justifia-
bly, these two factors are significantly important for any device, especially when intended
to be used as an ad-hoc router.

 160

20

30

40

50

60

70

80

0 20 40 60 80 100

O1

O2

O3

O4

O5

O6

CPU preliminary metric variation

O
ve

ra
ll

m
et

ric

20

30

40

50

60

70

80

0 20 40 60 80 100

O1

O2

O3

O4

O5

O6

CPU preliminary metric variation

O
ve

ra
ll

m
et

ric

Synchronous

Asynchronous

Critical

Secure

Burst

Energy efficient

Figure 5.107: The effect of battery’s variation on the overall metric for the PDA with low battery

Table 5.30: Threshold values for each simulated preliminary metric for the PDA with low battery

 CPU Memory Battery
Asynchronous Metric ≥ 17.11 Metric ≥ 71.20 Metric ≥ 85.76

Figure 5.108 presents the variation in the overall metric for the average laptop device
type, where the battery preliminary metric was variable. As shown in Table 5.31, an aver-
age strength laptop is capable of supporting all objectives. This device type is preferable
for objectives, such as energy efficient, synchronous, asynchronous, and critical, rather
than objectives such as secure and burst. This can be seen by examining the threshold
values for each simulated preliminary metric in relation to each objective. Accordingly,
this device type can cope better with CPU and memory increases, as well as battery re-
serve decreases, for the first four objectives than it can for the last two. Comparing these
values to the average PDA results, it can be seen that the average laptop device type is
given higher priority for all objectives, apart from asynchronous which is set to be equal.

 161

0

10

20

30

40

50

0 20 40 60 80 100

O1

O2

O3

O4

O5

O6

Battery preliminary metric variation

O
ve

ra
ll

m
et

ric

Synchronous

Asynchronous

Critical

Secure

Burst

Energy efficient

Figure 5.108: The effect of battery’s variation on the overall metric for the average laptop

Table 5.31: Threshold values for each simulated preliminary metric for the average laptop

 CPU Memory Battery
Energy efficient Metric ≥ 72.33 Metric ≥ 92.83 Metric ≥ 36.47
Synchronous Metric ≥ 78.9 Metric ≥ 95.83 Metric ≥ 40.14
Asynchronous Metric ≥ 95.25 Metric ≥ 95.83 Metric ≥ 87.37
Critical Metric ≥ 95.25 Metric ≥ 95.83 Metric ≥ 56.18
Secure Metric ≥ 12.88 Metric ≥ 65.5 Metric ≥ 11.53
Burst Metric ≥ 17.11 Metric ≥ 68.4 Metric ≥ 16.28

Figure 5.109 presents the variation in the overall metric for the good fitness laptop device
type, where the memory metric was variable. Similarly to results obtained for the average
laptop, this device type also supports all objectives. In addition, it provides a better solu-
tion by further stretching most of the threshold values (see Table 5.32). The advantage of
this device type is clearly visible for the security and burst objectives, where the threshold
values are on average increased by 45 units for CPU, 19 units for memory, and 46 units
for battery. Thus, it is safe to conclude that this device type could be more efficiently
used by the routing protocol for these two objectives, whereas, all previously stated de-
vices may struggle to cope with this, or may not cope at all.

 162

5

10

15

20

25

30

55 65 75 85 95

O1

O2

O3

O4

O5

O6

Memory preliminary metric variation

O
ve

ra
ll

m
et

ric

Synchronous

Asynchronous

Critical

Secure

Burst

Energy efficient

Figure 5.109: The effect of memory’s variation on the overall metric for the strong laptop

Table 5.32: Threshold values for each simulated preliminary metric for the strong laptop

 CPU Memory Battery
Energy efficient Metric ≥ 94.92 Metric ≥ 95.83 Metric ≥ 49.97
Synchronous Metric ≥ 95.25 Metric ≥ 95.83 Metric ≥ 54.09
Asynchronous Metric ≥ 95.25 Metric ≥ 95.83 Metric ≥ 87.37
Critical Metric ≥ 95.25 Metric ≥ 95.83 Metric ≥ 70.77
Secure Metric ≥ 59.36 Metric ≥ 82.25 Metric ≥ 58.27
Burst Metric ≥ 62.31 Metric ≥ 89.41 Metric ≥ 62.47

Figure 5.110 presents the variation in the overall metric for the workstation device type,
where the memory metric was variable. This device type has the advantage over the pre-
vious device types, in that it does not rely on battery power to achieve any of the
objectives, since workstations are not battery-driven. This certain advantage along with
its greater strength in networking and calculations power brings this device type in the
position to be the perfect candidate to achieve all 6 objectives in the most efficient man-
ner. This can be verified by examining the data in Table 5.33, where all threshold values
are the most stretched, apart from asynchronous objective, which is purposely set to be
equal for all device types, in order to allow load balancing between weak and strong de-
vices.

 163

0

5

10

15

20

25

30

25 40 55 70 85 100

O1

O2

O3

O4

O5

O6

Memory preliminary metric variation

O
ve

ra
ll

m
et

ric

0

5

10

15

20

25

30

25 40 55 70 85 100

O1

O2

O3

O4

O5

O6

Memory preliminary metric variation

O
ve

ra
ll

m
et

ric

Synchronous

Asynchronous

Critical

Secure

Burst

Energy efficient

Figure 5.110: The effect of memory’s variation on the overall metric for the powerful workstation

Table 5.33: Threshold values for each simulated preliminary metric for the powerful workstation

 CPU Memory
Energy efficient Metric ≥ 95.25 Metric ≥ 95.83
Synchronous Metric ≥ 95.25 Metric ≥ 95.83
Asynchronous Metric ≥ 95.25 Metric ≥ 95.83
Critical Metric ≥ 95.25 Metric ≥ 95.83
Secure Metric ≥ 86.73 Metric ≥ 89.41
Burst Metric ≥ 81.32 Metric ≥ 91.38

Table 5.34:

The threshold values mapped to the actual CPU utilisation (C), memory usage (M), and battery level (B)

Energy efficient Synchronous Asynchronous Critical Secure Burst
C M B C M B C M B C M B C M B C M B

DT1 48 82 49 - - - 95 95 85 44 81 46 - - - - - -
DT2 - - - - - - 95 95 74 - - - - - - - - -
DT3 50 86 49 29 68 36 95 95 85 47 89 48 - - - - - -
DT4 38 71 42 - - - 95 95 85 42 86 45 - - - - - -
DT5 26 64 34 - - - 31 60 37 - - - - - - - - -
DT6 - - - - - - 28 61 84 - - - - - - - - -
DT7 70 95 59 75 95 61 95 95 85 95 95 69 23 57 40 28 59 45
DT8 94 95 66 95 95 68 95 95 85 95 95 76 61 70 70 63 78 72
DT9 95 95 N/A 95 95 N/A 95 95 N/A 95 95 N/A 82 78 N/A 77 81 N/A

 164

5.5.3 Outcomes and evaluation of the metrics simulation experi-
mentation

This section demonstrated the calculation of the overall routing metric, based on test re-
sults obtained for various device types (see Section 5.1 - 5.3), which were further
enhanced in order to provide support for the each device type that is defined in Section
4.6. For the purposes of this section, six distinct objectives and nine device types were
defined, all with different requirements and characteristics, respectively. It has been
shown that the metric calculation process is correct, as each device type is assigned a dis-
tinct metric for each objective, and determined as capable or incapable according to the
desired configuration. In this way, QoS can be guaranteed, as each device will always be
assigned to certain routing scenarios according to its capabilities, utilisation, and network
status. In addition, this method allows low-requirements network traffic to flow through
non-optimal routes, and therefore optimal routes may not be overburdened.

Furthermore, a number of simulation cases were presented in order to demonstrate
the effect that changes of vital device elements can have on the overall metric. Results
show that when key metrics are changed, such as the remaining battery drops, or that the
CPU is highly utilised, or that the device is running low on available memory, the device
turns to the incapable state of routing high-requirements traffic types. The variation of the
overall metric is adequately sensitive in all cases, and thus this demonstrates the ability of
the proposed scheme to rapidly respond to critical changes. In addition, the threshold
values, when a device becomes incapable of achieving a certain objective, are presented
and are fully justified.

5.6 A MARIAN-enabled ad-hoc network application
scenario

The aim of this section is to provide a demonstration of MARIAN’s main aspects. For
this purpose, an ad-hoc network has been defined with a total of 44 nodes in order to
provide in-depth analysis. Aspects which are covered by this include: the metric-driven
clustering formation process; the reactive route discovery process; the proactive network
topology gathering process; and the routing decisions taken by a source node in relation
to the gathered routing metrics. In addition, it provides network overhead information
imposed by both reactive and proactive network discovery processes for this particular ad-
hoc network example. Initially, each node's routing fitness, in the example network to-
pology, is classified according to the device type that the node has been defined to belong
to. Then an overall routing metric and the capability/incapability determination is calcu-
lated for all the distinct routes, which resulted from the previously initiated reactive route
discovery. The capable routes are then further classified into a final metric. Three routing

 165

scenarios, which use these routes to transmit different types of traffic, have been defined
and presented here. The first scenario assumes that each node remains stationary, and the
metrics supplied remain the same. In contrast, in the second scenario, critical elements of
intermediate devices are set to be variable in order to demonstrate the MARIAN’s
adaptability in critical changes. Finally, the third scenario incorporates nodal movements,
in order to demonstrate the effect that these have on the routing decisions taken by a
source node.

It should thus demonstrate MARIAN’s clustering formation process, reactive and pro-
active route and network discovery processes, and, most importantly, the metric-driven
properties which are proposed to effectively provide QoS and route redundancy. In addi-
tion, it demonstrates how devices’ critical variations force the protocol to change its
capability/incapability applied policy, and rapidly respond to new demands. Specifically,
the aims are:

• Demonstrate MARIAN’s clustering formation process.
• Demonstrate the on-demand route discovery, as well as the proactive network topol-

ogy acquisition processes.
• Identify the network overhead imposed by an initiated route discovery, where the

distance of the source and destination is the distance of the network’s diameter.
• Identify the total network discovery mobile agent migrations, and the network over-

head imposed.
• Measure the time taken for each approach to complete the network discovery process.
• Demonstrate the determination of the capability/incapability metrics for all the re-

trieved routes based on the predefined objective.
• Demonstrate the effect that variation of critical devices’ elements can cause to the ap-

plied capability/incapability metrics for each route involved.
• Demonstrate the effect that mobility can cause to the applied capability/incapability

metrics for each route involved.

5.6.1 The ad-hoc network’s topology used in the application sce-
nario

Figure 5.111 presents an ad-hoc network consisting of a total of 44 network nodes,
where the communication link between two neighbouring devices is represented by a
straight line. Accordingly, N1 and N2 are neighbouring nodes, as well as nodes N2 and
N3.

 166

N1 N44

N6

N8

R10

N12 N13 N22 N23

N24 N25

N27

N34 N35

N38

N40

N28

N2 N4 N9

N3

N5 N11

N18

N17

N7

N16 N21

N32

N33

N39

N41N37N31N29

N20N15

N14 N19

N26 N30 N36 N42

N43

N1 N44

N6

N8

R10

N12 N13 N22 N23

N24 N25

N27

N34 N35

N38

N40

N28

N2 N4 N9

N3

N5 N11

N18

N17

N7

N16 N21

N32

N33

N39

N41N37N31N29

N20N15

N14 N19

N26 N30 N36 N42

N43

Figure 5.111: An example of an ad-hoc network topology

In order for this topology to be grouped into clusters, the cluster-head metric (node-ID)
of each participating node is required. These metrics can be calculated by using the
weighting system defined for the cluster-head objective (OCH) (see Section 3.13), in rela-
tion to the devices’ preliminary metrics. As previously mentioned (see Section 3.13), an
additional preliminary metric (Tm) is used for this calculation, which represents the de-
vices’ mobility patterns. However, throughout this routing scenario the devices are
assumed to be stationary, thus Tm is set to zero for all cases. Accordingly, the cluster-head
metrics (node-IDs) have been determined for each device type and are:

• Average-strength PDA (P). Cluster-head metric of 24.
• Average-strength laptop (L). Cluster-head metric of 11.
• Strong-fitness laptop (SL). Cluster-head metric of 7.
• Powerful workstation (W). Cluster-head metric of 5.

In relation to the above values, a device which belongs to any one of these device types
(DTs) inherits the corresponding cluster-head metric. For instance, as shown in Table
5.35, N1 and N6 belong to the first category and thus both inherit the cluster-head metric
of 24. Although the cluster-head metrics (node IDs) must be represented by a unique
value (see Appendix B.7-B.8), for the purposes of this example, all nodes were assumed to
perfectly match one of the previously presented categories, and, consequently, some
nodes ended up having the same cluster-head metric. Nevertheless, this was carefully de-
signed in such a way so as to leave the clustering formation process unaffected.

Table 5.35: Each node categorised into four distinct device types

Node N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16
DT P W L L SL P W P W P W P P SL P SL

 167

Node N17 N18 N19 N20 N21 N22 N23 N24 N25 N26 N27 N28 N29 N30
DT P P L SL W P P P P W P P W P

Node N31 N32 N33 N34 N35 N36 N37 N38 N39 N40 N41 N42 N43 N44
DT L SL P P P W W P W P SL W W P

According to MARIAN’s clustering formation process (see Section 3.5.1) and in relation
to Table 5.35, the ad-hoc network presented in Figure 5.111 gets transformed to an or-
ganised clustered network, as shown in Figure 5.112. The square boxes represent the
cluster-head nodes, the circular ones are the member nodes, and the triangular ones are
the gateway and distributed gateway nodes. As shown in Figure 5.112, there are a total of
12 cluster-heads, 11 gateways, four distributed gateways, and 14 members. Table 5.36
presents the clusters formed, as well as the cluster-head and members of each cluster.

G1

R1

S

R2

R3

R4

R5

R10

D

M1

M2

M3

M4 M5

G2

G3

G4

G5

G8

G15

G6

G7

G9

G10

R7

R6 G12

G11
R8

R9

R11

R12

M10 M11

M6 M7

M8

M12 M13

M14

M15

G13

G14

M9
Cluster A

Cluster B

Cluster C

Cluster D

Cluster E

Cluster F

Cluster G

Cluster H

Cluster I

Cluster J

Cluster K

Cluster L

G1

R1

S

R2

R3

R4

R5

R10

D

M1

M2

M3

M4 M5

G2

G3

G4

G5

G8

G15

G6

G7

G9

G10

R7

R6 G12

G11
R8

R9

R11

R12

M10 M11

M6 M7

M8

M12 M13

M14

M15

G13

G14

M9
Cluster A

Cluster B

Cluster C

Cluster D

Cluster E

Cluster F

Cluster G

Cluster H

Cluster I

Cluster J

Cluster K

Cluster L

Figure 5.112: The example ad-hoc network organised into clusters

Table 5.36: The clusters formed, along with their respective cluster-heads and non cluster-head nodes.

Cluster Cluster-head Members
A R1 S, G1, G2, G3
B R2 M1, M2, G1, G4, G5
C R3 M3, G2, G6, G7
D R4 M4, M5, G3, G8
E R5 M6, M7, M8, G4, G5, G11
F R6 M9, G9, G10, G12
G R7 M10, M11, G8, G13, G14
H R8 M12, M13, G11, G15
I R9 M14, G12, G15
J R10 M15, G13, G14, G15
K R11 G15
L R12 D, G15

 168

5.6.2 Reactive route discovery – network overhead
This section assumes that node S requires to communicate with node D, but does not
have a route for it. In this case, node S initially constructs a minimal propagation RREQ
packet (see Section 3.6.1), and send it to its cluster-head (R1). If R1 has single or multiple
routes to D, it will reply with single or multiple minimal propagation RREPs, respec-
tively, otherwise it will reply with a route-not-available (RNA) packet (see Section 3.6.1).
This example, assumes that R1 has no route to D, and thus it replies back to S with a
RNA packet. In this case, S constructs a full-propagation RREQ and sends it to R1,
which will forward it to its neighbouring cluster-head(s), and along this fashion, the
RREQ will be flooded throughout the network, traversing only through key nodes, such
as cluster-heads, gateways, and distributed gateways. In other words, member nodes
which usually have the lowest performance characteristics (due to metric-driven cluster-
ing formation) are typically not used.

Once D receives the first RREQ packet, it immediately constructs a RREP packet and
sends it to its own cluster-head, which in this case is R12. The RREP is then propagated
back to the source, along the same chain of cluster-heads that the corresponding RREQ
took. Since MARIAN utilises multiple routes, more RREQs which followed a different
chain of cluster-heads will eventually arrive at D, and consequently D will transmit mul-
tiple RREPs. Each RREP packet gathers the node and agency IDs, as well as the routing
metrics of each node along its journey. In addition, when a cluster-head identifies more
than a single gateway leading to the next clusterhead, it clones the RREP packet and
sends one copy to each gateway (or distributed gateway) leading to the next cluster-heads.
This process is also performed by distributed gateways. Table 5.37 shows the transmis-
sions of all RREQ and RREP packets that were necessary for S to retrieve all possible
routes to D.

Table 5.37: RREQ and RREP packet transmission for reactive route discovery from S to D

Iterations Parallel
transmission

Parallel
transmission

Parallel
transmission

Parallel
transmission

Parallel
transmission

1 S → R1
2 R1 → G1
3 G1 → R2 R1 → G2
4 R2 → G4 G2 → R3 R1 → G3
5 G4 → R5 R3 → G6 G3 →R4
6 R5 →G11 G6 →G10 R4 →G8
7 G11 →R8 G10 →R6 G8 →R7
8 R8 → G15 R6 → G12 R7 →G13
9 G15 → R9 G13 → R10
10 G12 → R9 R10 → G15
11 G15 → R8 R9 → G12
12 R8 → G11 G12 → R6 R9 → G15
13 G11 → R5 G15 → R8

 169

14 R8 → G15
15 R8 → G11 G15 → R10
16 G11 → R5 R10 → G15
17 G15 → R9 R10 → G13
18 R9 → G15 G13 → R7
19 R9 → G12 G15 → R10
20 R8 → G15 G12 → R6 R10 → G13
21 G15 → R11 G13 → R7
22 R10 → G15
23 G15 → R11
24 R9 → G15
25 G15 → R11
26 R8 → G15
27 G15 → R12
28 R12 → D R10 → G15
29 R9 → G15 D → R12
30 G15 → R12
31 R12 → G15
32 G15 → R8 R12 → D
33 R8 → G11 G15 → R12
34 G11 → R5 D → R12
35 R5 → G4 R12 → D
36 G4 → R2 R5 → G5 R12 → G15
37 R2 → G1 D → R12 G15 → R10
38 G5 → R2 G1 → R1 R12 → G15 R10 → G13
39 R2 → G1 R1 → S G15 → R9 G13 → R7 R10 → G14
40 G1 → R1 R9 → G12 R7 → G8
41 R1 → S G12 → R6 G14 → R7 G8 → R4
42 R6 → G9 R7 → G8 R4 → G3
43 G9 → G6 R6 → G10 G8 → R4 G3 → R1
44 R1 → S G6 → R3 G10 → G7 R4 → G3
45 G10 → G6 R3 → G2 G3 →R1
46 G7 → R3 R1 → S
47 G6 → R3 G2 → R1
48 R3 → G2 R1 → S
49 G2 → R1
50 R3 → G2 R1 → S
51 G2 → R1
52 R1 → S

As an example, Figures 5.113 and 5.114 show the packet transmissions that took place at
iteration 20 and 39, respectively. Where, three packets are transmitted, in total, one by
R8, G12, and R10, to G15, R6, and G13, respectively. As shown by the packets’ identifiers,
they are all RREQs. At iteration 39, five packets are transmitted, in total, one by G15,
G13, R10, R2, and R1 to R9, R7, G14, G1, and S, respectively. As shown by the packets’
identifiers, they are all RREPs.

 170

G1

R1

S

R2

R3

R4

R5

R10

D

M1

M2

M3

M4 M5

G2

G3

G4

G5

G8

G15

G6

G7

G9

G10

R7

R6 G12

G11
R8

R9

R11

R12

M10 M11

M6 M7

M8

M12 M13

M14

M15

G13

G14

M9 S_R1_2_G2_R3_G6_G10_
R6_G12_R9_2_G15_R10

S_R1_1_G1
_R2_G4_R5
_G11_R8_3

S_R1_3_G3_R4_G8_R7_
G13_R10_2_G15_R9_G12

G1

R1

S

R2

R3

R4

R5

R10

D

M1

M2

M3

M4 M5

G2

G3

G4

G5

G8

G15

G6

G7

G9

G10

R7

R6 G12

G11
R8

R9

R11

R12

M10 M11

M6 M7

M8

M12 M13

M14

M15

G13

G14

M9 S_R1_2_G2_R3_G6_G10_
R6_G12_R9_2_G15_R10

S_R1_1_G1
_R2_G4_R5
_G11_R8_3

S_R1_3_G3_R4_G8_R7_
G13_R10_2_G15_R9_G12

Figure 5.113: A snapshot of the network’s RREQ transmissions at iteration 20

G1

R1

S

R2

R3

R4

R5

R10

D

M1

M2

M3

M4 M5

G2

G3

G4

G5

G8

G15

G6

G7

G9

G10

R7

R6 G12

G11
R8

R9

R11

R12

M10 M11

M6 M7

M8

M12 M13

M14

M15

G13

G14

M9 D_R12_G15

D_R12_G15_R10_G13

D_R12_G15_R10

D_R12_G15_R8_
G11_R5_G4_R2_
G1_R1

D_R12_G15_R8_G11_R5_G5_R2

G1

R1

S

R2

R3

R4

R5

R10

D

M1

M2

M3

M4 M5

G2

G3

G4

G5

G8

G15

G6

G7

G9

G10

R7

R6 G12

G11
R8

R9

R11

R12

M10 M11

M6 M7

M8

M12 M13

M14

M15

G13

G14

M9 D_R12_G15

D_R12_G15_R10_G13

D_R12_G15_R10

D_R12_G15_R8_
G11_R5_G4_R2_
G1_R1

D_R12_G15_R8_G11_R5_G5_R2

Figure 5.114: A snapshot of the network’s RREP transmissions at iteration 39

MARIAN’s reactive route discovery complexity in terms of time and communication is
similar to CBRP (see Section 2.2), and thus imposes a certain network overhead in terms
of throughput consumption. This overhead has been approximately calculated for this
topology, specifically for S requesting a route to D. The route discovery process requires
52 iterations in total to complete, and the maximum and minimum packets transmitted,
at any given time, is five and one, respectively. This is illustrated in Figure 5.115, while
Figure 5.116 presents the total network throughput consumed over the total time re-
quired for this process to complete.

 171

0

1

2

3

4

5

6

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Iterations

Pa
ck

et
s

tr
an

sm
is

si
on

s

0

1

2

3

4

5

6

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Iterations

Pa
ck

et
s

tr
an

sm
is

si
on

s

0

5

10

15

20

25

30

0.3 1.9 4.2 7.2 10.8 15.0 19.8 25.3 31.5 38.3 45.7

Time (ms)

Th
ro

ug
hp

ut
 (K

bi
ts

)

0

5

10

15

20

25

30

0.3 1.9 4.2 7.2 10.8 15.0 19.8 25.3 31.5 38.3 45.7

Time (ms)

Th
ro

ug
hp

ut
 (K

bi
ts

)

Figure 5.115: The total number of packets
transmitted for each iteration

Figure 5.116: Total throughput consumed over
the total time taken for route discovery to be
completed

According to Figure 5.116, the total time taken by the route discovery to D was ap-
proximately 47ms. This was calculated by assuming that all communication links were
based on the IEEE 802.11b standard and provided an average throughput of 4Mbits/s,
which is logical to assume, since the 11Mbits/s upper limit is never reached. In addition,
it was assumed that the first packet’s size was 1KB and that it increased by 10% for each
forthcoming iteration. Thus, the packet’s size at the last iteration was approximately
6KB. The overall throughput overhead (oTHo) for this scenario was calculated based on:

oTHo =
()

()∑

∑
=

=

=

=
52i

1i
n

52i

1i
n

)I(T

)I(TH

 (5.1)

According to this, the oTHo is given by the summation of the throughput consumed by
the total transmission at each iteration, divided by the summation of the total time con-
sumed by each iteration. Thus, the overall network’s overhead for route discovery from S
to D was shown to be approximately 8,900Kbits/s. However, the throughput overhead
imposed at each routing link (rl) is calculated slightly differently and is given by:

lTHo =
()∑ rl

oTHo (5.2)

The link throughput overhead (lTHo) is defined as the average throughput reduction
experienced by a routing link on the network, which is caused by the route discovery
process. According to this, the link throughput overhead can be calculated by dividing
the overall network’s throughput overhead (oTHo) over the total number of routing
links in the network. In this routing scenario, 32 routing links exist in total, thus, the
throughput required by each link for network discovery is approximately 278.125Kbits/s.

 172

The overhead percentage (LO) that this process imposes at each link is given by:

LO (%) =
UpBandLim

lTHo (5.3)

According to this, the average throughput percentage consumed by each routing link for
route discovery is given by the division of the link’s throughput overhead over the link’s
practical upper bandwidth. For example, assuming that the practical maximum band-
width of an IEEE 802.11b link is 4Mbits/s and the average throughput overhead of a
link is 278.125Kbits/s, thus the 6.95 (%) of the links capacity is consumed by the propa-
gation of RREQ and RREP packets.

5.6.3 Routes retrieved by the reactive network discovery
The following summarises the routes that source node S has learned by the initiated reac-
tive route discovery targeted for node D. Along with the routes, node S also gathers the
routing metric (the array of PMs) of each individual node, such as:

1. S → R1 → G1 → R2 → G4 → R5 → G11 → R8 → G15 → R12 → D

PM[S], PM[R1], PM[G1], PM[R2], PM[G4], PM[R5], PM[G11], PM[R8], PM[G15], PM[R12], PM[D]
2. S → R1 → G1 → R2 → G5 → R5 → G11 → R8 → G15 → R12 → D

PM[S], PM[R1], PM[G1], PM[R2], PM[G5], PM[R5], PM[G11], PM[R8], PM[G15], PM[R12], PM[D]
3. S → R1 → G2 → R3 → G6 → G9 → R6 → G12 → R9 → G15 → R12 → D

PM[S], PM[R1], PM[G2], PM[R3], PM[G6], PM[G9], PM[R6], PM[G12], PM[R9], PM[G15], PM[R12],

PM[D]
4. S → R1 → G2 → R3 → G6 → G10 → R6 → G12 → R9 → G15 → R12 → D

PM[S], PM[R1], PM[G2], PM[R3], PM[G6], PM[G10], PM[R6], PM[G12], PM[R9], PM[G15],

PM[R12], PM[D]
5. S → R1 → G2 → R3 → G7 → G10 → R6 → G12 → R9 → G15 → R12 → D

PM[S], PM[R1], PM[G2], PM[R3], PM[G7], PM[G10], PM[R6], PM[G12], PM[R9], PM[G15],

PM[R12], PM[D]
6. S → R1 → G3 → R4 →G8 → R7 → G13 → R10 → G15 → R12 → D

PM[S], PM[R1], PM[G3], PM[R4], PM[G8], PM[R7], PM[G13], PM[R10], PM[G15], PM[R12], PM[D]
7. S → R1 → G3 → R4 → G8 → R7 → G14 → R10 → G15 → R12 → D

PM[S], PM[R1], PM[G3], PM[R4], PM[G8], PM[R7], PM[G14], PM[R10], PM[G15], PM[R12], PM[D]

5.6.4 Proactive network topology discovery – network overhead
There are cases in which a node can significantly benefit from considerably low route dis-
covery times. These cases often include applications with low latency requirements and
strict timing restrictions. Mobile agents can enhance a routing protocol by proactively
gathering routing and metric information in favour of their cluster-heads from which

 173

they originate. By providing this information, cluster-heads can be fairly well informed,
at all times, of available routes and the metrics associated. In this way, they can provide a
reliable and fast medium that maintains routing information for themselves and their reg-
istered members, resulting in reduced latency, often imposed by a non-cluster-head route
discovery.

Cluster-heads can be programmed to create a topology discovery agent in a periodic
fashion and/or based on triggered events (see Section 3.6.2). Assuming that cluster-head
R1 creates a network topology gathering mobile agent based on a triggered event. The
mobile agent will initially examine R1’s neighbouring cluster-head information and will
then create a number of clones that exactly match the number of R1’s neighbouring clus-
ter-heads. The clones will then be dispatched to the intermediate gateway nodes leading
to these cluster-heads. Once the cloned agents reach a point where they cannot progress
any further, they will return back home gathering the network topology and the associ-
ated routing metrics along their way back. When all agents return back to R1, they
cooperatively build a routing database which can be later used by either R1 or the mem-
bers which are registered to R1. Table 5.38 presents the agent migrations necessary for R1
to collect the whole network’s topology which was presented in Figure 5.112.

Table 5.38: Mobile agent migrations necessary for R1 to collect the full network topology.

Iterations Parallel mi-
gration

Parallel mi-
gration

Parallel mi-
gration

Parallel mi-
gration

1 R1 → G1
2 G1 → R2 R1 → G2
3 R2 → G4 G2 → R3 R1 → G3
4 G4 → R5 R3 → G6 G3 →R4
5 R5 →G11 G6 →G10 R4 →G8
6 G11 →R8 G10 →R6 G8 →R7
7 R8 → G15 R6 → G12 R7 →G13
8 G15 → R9 G13 → R10
9 G12 → R9 R10 → G15
10 G15 → R8 R9 → G12
11 R8 → G11 G12 → R6 R9 → G15
12 G11 → R5 G15 → R8 R6 → G12
13 R5 → G11 R8 → G15 G12 → R9
14 R8 → G11 G15 → R10
15 G11 → R5 R10 → G15
16 R5 → G11 G15 → R9 R10 → G13
17 G11 → R8 R9 → G15 G13 → R7
18 G11 → R8 R9 → G12 G15 → R10 R7 → G13
19 R8 → G15 G12 → R6 R10 → G13
20 G15 → R11 R6 → G12 G13 →R7
21 G12 → R9 R10 → G15 R7 → G13
22 G15 → R11 G13 → R10
23 R9 → G15 G13 → R10
24 G15 → R11

 174

25 R8 → G15
26 G15 → R12
27 R10 → G15
28 R9 → G15
29 G15 → R12
30 G15 → R12
31 R9 → G15
32 R8 → G15
33 R8 → G15
34 R11 → G15
35 R9 → G15
36 R10 → G15
37 R11 → G15
38 R10 → G15
39 R11 → G15
40 R12 → G15
41 R12 → G15
42 R12 → G15
43 G15 → R8
44 R8 → G11 G15 → R10
45 G11 → R5 G15 → R9 R10 → G13
46 G15 → R8 R9 → G12 G13 → R7
47 R8 → G11 G12 → R6 G15 → R10
48 G11 → R5 G15 → R8 R10 → G13
49 R8 → G11 G15 → R10 G13 → R7
50 G11 → R5 G15 → R9 R10 → G13
51 G15 → R9 G13 → R7
52 G15 → R8 R9 → G12
53 R8 → G11 G12 → R6 G15 → R10
54 G11 → R5 G15 → R9 R10 → G13
55 R5 → G4 R9 → G12 G13 → R7
56 G4 → R2 G12 → R6 R7 → G8
57 R2 → G1 R9 → G12 G8 → R4
58 G1 → R1 G12 → R6 R4 → G3
59 R6 → G10 G3 → R1
60 G10 → G6
61 G6 → R3
62 R3 → G2
63 G2 → R1

Figure 5.117 shows the mobile agent migrations which take place at iteration 18. At this
stage the mobile agents are propagating throughout the network in order to gather rout-
ing information. As shown, four mobile agents were transmitted in this iteration, from
G11, R9, R7, and G15 to R8, G12, G13, and R10, respectively. Figure 5.118 shows the mobile
agent migrations which took place at iteration 56. At this stage the mobile agents are re-
turning to their corresponding home platforms. Accordingly, three mobile agents were
transmitted, from G4, G12, and R7, to R2, R6, and G8, respectively.

 175

G1

R1

S

R2

R3

R4

R5

R10

D

M1

M2

M3

M4 M5

G2

G3

G4

G5

G8

G15

G6

G7

G9

G10

R7

R6 G12

G11
R8

R9

R11

R12

M10 M11

M6 M7

M8

M12 M13

M14

M15

G13

G14

M9

R1,G2,R3,G6,
G10,R6,G12,
R9,G15

R1,G3,R4,G8,R7,G13,R10,G15,R9

R1,G1,R2,G4,R5,G11,R8,G15,R10,G13,R7

R1,G2,R3,G6,G10,R6,G12,R9,G15,R8,G11,R5,G11

Figure 5.117: Total mobile agent migrations at iteration 18

G1

R1

S

R2

R3

R4

R5

R10

D

M1

M2

M3

M4 M5

G2

G3

G4

G5

G8

G15

G6

G7

G9

G10

R7

R6 G12

G11
R8

R9

R11

R12

M10 M11

M6 M7

M8

M12 M13

M14

M15

G13

G14

M9

R1_G2_R3_G6_G10_R6_G12_R9_G15
_R11_G15_R9_G12

R1_G1_R2_G4_R5_G4

R1_G3_R4_G8_R7

G1

R1

S

R2

R3

R4

R5

R10

D

M1

M2

M3

M4 M5

G2

G3

G4

G5

G8

G15

G6

G7

G9

G10

R7

R6 G12

G11
R8

R9

R11

R12

M10 M11

M6 M7

M8

M12 M13

M14

M15

G13

G14

M9

R1_G2_R3_G6_G10_R6_G12_R9_G15
_R11_G15_R9_G12

R1_G1_R2_G4_R5_G4

R1_G3_R4_G8_R7

Figure 5.118: Total mobile agent migrations at iteration 56

MARIAN’s proactive network topology gathering complexity, in terms of time, and
communication, is similar to the respective reactive approach (see Section 5.6.2), how-
ever, the migration times involved with mobile agents are considerably higher than
packets propagation. Specifically, as shown in Section 5.4.1, the average mobile agent
migration is approximately 1s, and thus this approach will always require significantly
more time than the reactive. However, as nothing is dependant on the proactive ap-
proach, mobile agent delays should not influence the network’s performance, as the
proactive approach was specifically designed as an additional feature in order to enhance
the reactive approach. Figure 5.119 presents the total number of migrations required in
order for R1 to gather the network’s topology information. As shown, the total number of
migrations required was 128, split over 63 iterations, with a maximum of four and a

 176

minimum of 1 migration. Figure 5.120 presents the total network throughput consumed
over the total time required for the network topology gathering process.

0

1

2

3

4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Iterations

Pa
ck

et
 T

ra
ns

m
is

si
on

s

0

1

2

3

4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Iterations

Pa
ck

et
 T

ra
ns

m
is

si
on

s

0

5

10

15

20

25

30

35

40

1.01 7.5 15.0 23.3 32.5 42.6 53.7 65.6 78.4 92.1 106.8

Time (s)

Th
ro

ug
hp

ut
 (K

bi
ts

)

0

5

10

15

20

25

30

35

40

1.01 7.5 15.0 23.3 32.5 42.6 53.7 65.6 78.4 92.1 106.8

Time (s)

Th
ro

ug
hp

ut
 (K

bi
ts

)

Figure 5.119: The total number of mobile agents
migrated in each iteration

Figure 5.120: Total throughput consumed over
the total time taken for the proactive approach
to be completed

According to Figure 5.120, the total time taken by the mobile agents to retrieve the net-
work’s topology and associated metrics is approximately 112s. This is calculated by
assuming that the mobile agent, at the first iteration, required 1s to migrate, while at
each, consecutive, iteration it required an additional 2.5% of the original time. This is
due to the fact that as mobile agents gather network topology information, their sizes in-
creases. In the iteration 63 the mobile agent required 2.55s to migrate.

The overall throughput overhead for the proactive network discovery scenario was cal-
culated based on the equation 6.1. Thus, the overall network overhead imposed by
network topology and routing metrics collection agents, which were originated from clus-
ter-head R1, is approximately 9,295Kbits/s, which is similar to the overhead imposed by
the static approach. However, their main difference is the time taken to complete, where
the static approach accomplished the task of retrieving all routes from S to D within
47ms, while the mobile agent approach required 112s to retrieve the complete network
topology and metrics. Even though the mobile agents are required to deliver a lot more
information than the static agents, the significant difference in time is mainly due to the
migration module of Grasshopper, which serialises the mobile agents and transmits it to
the next hop, in a slow way. A solution to this problem may be a light-weighted mobile
agent system which is only targeted for ad-hoc routing with an optimal time migration
module incorporated.

The link throughput overhead, imposed by mobile agent migrations, is given by the
mathematical expression presented in equation 5.2. Thus, the throughput consumed over
each link is approximately 290.48Kbits/s. The overhead percentage imposed by the mo-
bile agents is given by the mathematical expression in equation 5.3 and is equal to
7.262%. All possible routes to every possible destination, along with the preliminary met-

 177

rics of each node in the graph are now known to R1. All members of R1 can quote its ser-
vices for route discovery of a required route, along with the associated routing metrics.

5.6.5 Routing scenarios
Source node S can now estimate the QoS offered by the retrieved routes to D (see Section
5.6.3) in relation to each predefined objective. This is achieved by passing the prelimi-
nary metrics of each device along a desired route to the overall metric calculation process
(see Section 3.13). Once that capability/incapability determination of each device has
been deduced, node S can then estimate the capability/incapability of each retrieved
route. This is performed in a simple manner, where a node sets capability flags to a route
that consists of capable nodes only, and sets an incapability flag to a route that consists of
at least one incapable node. Accordingly, Table 5.39 summarises the capabil-
ity/incapability results for each of the retrieved routes. Node S then calculates the average
route metric value, the minimum and maximum routing metrics, and the standard devia-
tion, for each retrieved route (see Section 5.6.3) and supported objective combinations, as
shown in Table 5.40 and Table 5.41.

Table 5.39: Capability/incapability determination results for each of the retrieved routes

 Energy (O1) Synch (O2) Asynch (O3) Critial (O4) Secure (O5) Burst (O6)
Route 1 Capable Incapable Capable Capable Incapable Incapable
Route 2 Capable Incapable Capable Capable Incapable Incapable
Route 3 Capable Capable Capable Capable Capable Capable
Route 4 Capable Capable Capable Capable Capable Capable
Route 5 Capable Incapable Capable Capable Incapable Incapable
Route 6 Capable Capable Capable Capable Capable Capable
Route 7 Capable Incapable Capable Capable Incapable Incapable

Table 5.40:
Average metric, minimum and maximum, and standard deviation for each route for objectives O1 - O3

 Energy efficient (O1) Synchronous (O2) Asynchronous (O3)
 AV MIN MAX SD AV MIN MAX SD AV MIN MAX SD

R1 13 23 8 11 12 26 7 13 13 28 7 15
R2 13 23 8 11 12 26 7 13 13 28 7 15
R3 12 17 8 6 10 14 7 5 10 15 7 6
R4 11 17 8 6 9 14 7 5 10 15 7 6
R5 12 23 8 11 11 26 7 13 12 28 7 15
R6 10 12 8 3 8 10 7 2 9 11 7 3
R7 11 23 8 11 10 26 7 13 11 28 7 15

Table 5.41:
Average metric, minimum and maximum, and standard deviation for each route for objectives O4 - O6

 178

 Critical (O4) Secure (O5) Burst (O6)
 AV MIN MAX SD AV MIN MAX SD AV MIN MAX SD

R1 8 17 4 9 16 46 6 28 17 45 7 27
R2 8 17 4 9 16 46 6 28 17 45 7 27
R3 6 9 4 4 9 14 6 6 11 18 7 8
R4 6 9 4 4 9 14 6 6 10 18 7 8
R5 7 17 4 9 12 46 6 28 14 45 7 27
R6 5 6 4 1 7 9 6 2 8 10 7 2
R7 6 17 4 9 11 46 6 28 12 45 7 27

According to Tables 5.40 - 5.41, the following can be deduced:

• The most optimal route for all routing scenarios is R6, at the average metric is the

lowest for all objectives and the standard deviation is also the lowest.
• The second most optimal route for all routing scenarios is R4. This is because the av-

erage metric and the standard deviation is the second lowest for all objectives.
• R1 and R2 are of identical strength for all objectives as they share the same characteris-

tics, that is, they are composed of devices with identical characteristics. Also, they are
the worst routes for all routing scenarios.

• R1, R2, R5, and R7 seem to be ideal for low requirements traffic, while the remaining
routes seem ideal for high, as well as for low requirements traffic. However, in order
to provide load balancing, the first set of routes should be used for low requirements
traffic, while the second for high.

Based on Tables 5.40 and 5.41 and Table 3.19, node S can translate these values into a
final metric representing the strength of each route to accomplish each of the predefined
objectives, as presented in Table 5.42.

Table 5.42: Final metric for each route/objective combination

 O1 O2 O3 O4 O5 O6
R1 Good N/A V. Good V. Good N/A N/A
R2 Good N/A V. Good V. Good N/A N/A
R3 V. Good V. Good Excellent V. Good Good Good
R4 V. Good V. Good Excellent V. Good Good Good
R5 Good N/A V. Good V. Good N/A N/A
R6 Excellent V. Good Excellent Excellent Good Good
R7 Good N/A V. Good V. Good N/A N/A

By referring to Table 5.42, node S can deduce the best route for the network traffic it
aims to transmit. Also, node S must pay careful attention to the requirements imposed by
the type of traffic it aims to transmit, and thus must choose the best route, accordingly.
For example, if node S needs to transmit critical network traffic with high requirements,
it should choose route R6 which offers excellent QoS. In the case that the network traffic

 179

requirements are greater than the offered QoS, the node can either select a route provid-
ing the highest possible maximum QoS, or abandon its transmission until its
requirements are fully met. It is assumed that all nodes adhere to the following rules:

• Nodes are honest about their QoS requests, and thus get only what they need pro-

vided that such a route exists.
• A node avoids frequently selecting a single route for transmitting network traffic,

provided that there exists at least another route which offers the same QoS.
• A node wishing to transmit network traffic with higher requirements than the avail-

able QoS offered by any possible route, may either decide to select a route less
optimal or abandon transmission until such a route is found.

• A node wishing to transmit network traffic with lower requirements than the avail-
able QoS offered by any possible route, may transmit over the route which offers the
lowest QoS.

To illustrate this, a simple case scenario where, node S wishes to send asynchronous, syn-
chronous, and critical network traffic to D. Table 5.43 shows this, along with the
sequence and iteration of each transmission, as well as the requirements imposed by each
type of traffic. Thus, node S wishes to send asynchronous traffic at its first, third, and
sixth transmissions, while synchronous, energy efficient, and critical traffic at its second,
forth, and fifth transmissions, respectively. The requirements vary with respect to the
traffic scenario, that is, for asynchronous, it does not require any special QoS, for syn-
chronous the level of QoS requested is medium-high, and for energy efficient and critical
is set to high.

Table 5.43: A simple routing scenario

Traffic scenario Sequence Iteration Requirements
Asynchronous 1, 3, 6 3 Low, Low, Low
Synchronous 2 1 Medium-high

Energy efficient 4 1 High
Critical 5 1 High

For the first transmission, node S chooses randomly between routes R1, R2, R5, and R7, as
these are the closest to S’s requirements, where, at this instance, it is assumed that node S
chose route R1. Decisions of this nature are kept in memory in order to assist the node in
future decisions of a similar nature. For the second transmission, node S chooses ran-
domly between routes R3, R4, and R6, which is assumed to have chosen route R4. For the
third transmission, node S chooses randomly between routes R2, R5, and R7, as route R1
has been previously used. It is assumed that node S chose R2. For the fourth transmission

 180

the only available choice which matches S’s criteria is R6. For the fifth transmission, node
S chooses route R6 since it is the only one that matches S’s criteria. Even though route R6
has been used to route energy efficient network traffic before, there are no alternative
routes that provides the same required QoS for critical network traffic, and therefore
node S is forced to select route R6 for this type of traffic. Finally, for the last transmission,
node S can choose between routes R5 and R7, as routes R1 and R2 have been previously
selected. It is assumed that node S chose route R7. Node’s S decisions are summarised as:

• Network traffic asynchronous, Sequence 1, Iteration 1, Requirements Low, Route R1.
• Network traffic synchronous, Sequence 2, Iteration 1, Requirements Medium-high,

Route R4.
• Network traffic asynchronous, Sequence 3, Iteration 2, Requirements Low, Route R2.
• Network traffic energy efficient, Sequence 4, Iteration 1, Requirements High, Route

R6.
• Network traffic critical, Sequence 5, Iteration 1, Requirements High, Route R6.
• Network traffic asynchronous, Sequence 6, Iteration 3, Requirements Low, Route R7.

Thus, node S receives the required QoS and does not overburden the best route, which in
this scenario is route R6, when there are alternative routes that offer equivalent QoS.

5.6.6 Variable preliminary metrics – Routing scenario
As previously mentioned, preliminary metrics are not fixed and they change over-time
due to factors, such as decrease in the battery reserves, high utilisation status, and so on.
Cluster-heads monitor the preliminary metrics of neighbouring nodes which are gateways
or distributed gateways, as well as their own metrics. This is achieved by constantly read-
ing broadcasted NNTs used by the clustering maintenance process (see Section 3.5.1).
Cluster-heads compare new values with previously received information, and highlight
sudden changes. Cases such as these include, but are not limited, to the following:

• Sudden increase of a routing device’s utilisation status, such as CPU utilisation has

increased by 60%.
• Sudden drop in battery level, such as battery level has dropped by 45%.
• Increased network protocol errors, such as the packet error rate has increased by 30%.

In the case where a cluster-head identifies a significant change in the preliminary metrics
of one of its registered routing devices, including itself, it reports these changes by flood-
ing the network with a metric update. In order to keep these updates at a minimum level,
without compromising the network’s reliability, these update messages are only transmit-

 181

ted when changes of critical metrics are persistent over a sufficient amount of time.
For the purposes of this illustration, it was assumed that source node S is required to

transmit a number of different types of network traffic to the destination node D. The
topology remains as depicted in Figure 5.112, however, some routing devices within the
network have undertaken some changes in their critical metrics. Table 5.44 presents these
changes, while Table 5.45 presents the metric values before and after these changes took
place.

Table 5.44: Changes in key elements for nodes G5, G10, and G13-G14

Node Change Old_Role New_Role
G5 High error rate Gateway Gateway
G10 High memory & CPU utilisation Distributed Gateway Distributed Gateway
G13 Low battery Gateway Gateway
G14 Increased throughput Gateway Gateway

Table 5.45: Metric changes for nodes G5, G10, and G13-G14

Objectives G5 G10 G13 G14
 Old_m New_m Old_m New_m Old_m New_m Old_m New_m

Energy eff. 23 28 12 39 12 39 23 22
Synch 26 31 10 28 10 31 26 23
Asynch 28 48 11 30 11 37 28 28
Critical 17 49 6 20 6 21 17 16
Secure 46 53 9 24 9 17 46 45
Burst 45 48 10 33 10 22 45 45
Clustering 24 33 7 21 7 19 24 22

These changes had a crucial effect on the capability/incapability determination on each of
the retrieved routes and objectives combination, which were previously presented in Ta-
ble 5.39. Once node S receives the metric updates, it calculates a new capability
/incapability determination, as shown in Table 5.46. The routes that are left out are the
ones that are not affected by the changes.

Table 5.46:
The new capability/incapability determination information resulted from the metric updates

 O1 O2 O3 O4 O5 O6
Route 2 Capable Incapable Capable Incapable Incapable Incapable
Route 4 Incapable Incapable Capable Capable Incapable Incapable
Route 5 Incapable Incapable Capable Capable Incapable Incapable
Route 6 Incapable Incapable Capable Incapable Incapable Incapable
Route 7 Capable Capable Capable Capable Incapable Incapable

Tables 5.47 and 5.48 present the new average, minimum and maximum, and standard
deviation metric values for routes R2, R4, and R5 - R7, after the metric updates have been

 182

received by node S.

Table 5.47: New information for each route and objectives O1 - O3 due to metric variations

 Energy efficient Synchronous Asynchronous
 AV MIN MAX SD AV MIN MAX SD AV MIN MAX SD

R2 13 28 8 14 13 31 7 17 15 48 7 29
R4 14 39 8 22 11 28 7 15 12 30 7 16
R5 15 39 8 22 13 28 7 15 13 30 7 16
R6 13 39 8 22 11 31 7 17 12 37 7 21
R7 11 22 8 10 10 23 7 11 11 28 7 15

Table 5.48: New information for each route and objectives O4 - O6 due to metric variations

 Critical Secure Burst
 AV MIN MAX SD AV MIN MAX SD AV MIN MAX SD

R2 11 49 4 32 17 53 6 33 17 48 7 29
R4 7 20 4 11 10 24 6 13 12 33 7 18
R5 8 20 4 11 14 24 6 13 16 33 7 18
R6 7 21 4 12 8 17 6 8 10 22 7 11
R7 6 16 4 8 11 45 6 28 12 45 7 27

Source node S recalculates the final metric for each route and objective combination,
based on the values in Tables 5.47- 5.48, as shown in Table 5.49.

Table 5.49: Final route metrics for each objective, taking into account the metric changes

 Energy Synch Asynch Critical Secure Burst
R1 Good N/A V. Good V. Good N/A N/A
R2 Good N/A Poor N/A N/A N/A
R3 V. Good V. Good Excellent V. Good Good Good
R4 N/A N/A Good Good N/A N/A
R5 N/A N/A Good Good N/A N/A
R6 N/A N/A Poor N/A N/A N/A
R7 V. Good Poor V. Good V. Good N/A N/A

It is assumed that source node S wishes to transmit the same types of traffic, at the same
sequence and iterations, as shown in Table 5.43. The route selection is, at this stage, to-
tally different than previously stated, and it thus adapts to dynamic changes in order to
meet QoS requirements. The new route selections for the same type of data traffic are
shown bellow:

• Network traffic asynchronous, Sequence 1, Iteration 1, Requirements Low, Route R6.
• Network traffic synchronous, Sequence 2, Iteration 1, Requirements Medium-high,

Route R3.
• Network traffic asynchronous, Sequence 3, Iteration 2, Requirements Low, Route R6.

 183

• Network traffic energy efficient, Sequence 4, Iteration 1, Requirements High, Route
R7.

• Network traffic critical, Sequence 5, Iteration 1, Requirements High, Route R1.
• Network traffic asynchronous, Sequence 6, Iteration 3, Requirements Low, Route R6.

This demonstrates the strength of the routing protocol to dynamically adapt to critical
changes in the devices’ metrics in order to meet QoS requirements. In addition, it avoids
overburdening optimal routes by routing lower requirement network traffic through less
optimal routes.

5.6.7 Nodal movements – Routing scenario
This routing scenario assumes that nodes G10, G6, M13, and G15 have left from their pre-
vious positions and moved towards the direction of the arrows, as depicted in Figure
5.121, resulting in new network topology which is presented in Figure 5.122.

G1

R1

S

R2

R3

R4

R5

R10

D

M1

M2

M3

M4 M5

G2

G3

G4

G5

G8

G15

G6

G7

G9

G10

R7

R6 G12

G11
R8

R9

R11

R12

M10 M11

M6 M7

M8

M12 M13

M14

M15

G13

G14

M9

G1

R1

S

R2

R3

R4

R5

R10

D

M1

M2

M3

M4 M5

G2

G3

G4

G5

G8

G15

G6

G7

G9

G10

R7

R6 G12

G11
R8

R9

R11

R12

M10 M11

M6 M7

M8

M12 M13

M14

M15

G13

G14

M9

Figure 5.121: The movement direction of nodes: G10, G6, M13, and G15

G1

R1

S

R2

R3

R4

R5

R10

D

M1

M2

M3

M4 M5

G2

G3

G4

G5

G8

G15

G7

G9

R7

R6 G12

G11
R8

R9 R12

M10 M11

M6 M7

M8

M12

M14

M15

G13

G14

M9

G16

G6

R11

G1

R1

S

R2

R3

R4

R5

R10

D

M1

M2

M3

M4 M5

G2

G3

G4

G5

G8

G15

G7

G9

R7

R6 G12

G11
R8

R9 R12

M10 M11

M6 M7

M8

M12

M14

M15

G13

G14

M9

G16

G6

G1

R1

S

R2

R3

R4

R5

R10

D

M1

M2

M3

M4 M5

G2

G3

G4

G5

G8

G15

G7

G9

R7

R6 G12

G11
R8

R9 R12

M10 M11

M6 M7

M8

M12

M14

M15

G13

G14

M9

G16

G6

R11

Figure 5.122: The new network topology after the movement of nodes: G10, G6, M13, and G15

 184

The overall network’s structure has now been changed with new routes having been
formed and some of the old routes having been released. In more detail, node G10 left the
network, while node G6 moved away from the clusters formed by R3 and R6 and joined
the clusters formed by R7 and R10. Node G15 moved away from R11 and R8, which resulted
in breaking the links with these nodes. Node M13 replaced G15’s position by moving
closer to R11 and R12, and thus forming a link with each. In all cases, nodes maintained
their previous role in their new positions, with the only exception being that of M13 has
became a gateway node and has thus renamed to G16.

Assuming that source node S wishes to transmit asynchronous, secure, burst, and en-
ergy efficient traffic types, at a sequence and iterations, as shown in Table 5.50.

Table 5.50: The sequence, iterations, and traffic type required for transmission by node S

Traffic scenario Sequence Iteration Requirements
Asynchronous 1, 3 2 Low, Medium-high
Secure 2 1 Average
Burst 4 1 Medium-high
Energy efficient 5 1 High

Also, assuming that source node S maintains the same routing information as before the
nodal movements, and therefore is totally unaware of the changes performed in the net-
work. Then, the source node initiates an asynchronous communication over route R2 as
remembered in the previous scenario, which is:

• S → R1 → G1 → R2 → G5 → R5 → G11 → R8 → G15 → R12 → D

PM[S], PM[R1], PM[G1], PM[R2], PM[G5], PM[R5], PM[G11], PM[R8], PM[G15], PM[R12],

PM[D]

According to S’s information, the most optimal routes for asynchronous traffic with low
requirements are R2 and R6. However, according to S’s memory in routes utilisation, R6
has been previously overused by S’s transmissions and therefore S decides to transmit over
R2. However, G15 along route R2 is no longer reachable, and will thus create an error
when network traffic reaches node R8, as there is not a direct link between these two
nodes. Although R8 now knows that it can reach R12 through G16 (through NNT broad-
casts) and thus could dynamically alter the route, it will have to discard the data and
transmit a route error (RERR) back to the source. The reason of doing so is because R8
does not know the QoS required by the source, or the QoS offered by G15 for this par-
ticular routing scenario. Once the source node S receives a RERR packet it has two
options:

 185

• Immediately resume transmission over an alternative route which offers the same
QoS (R6 as remembered by S).

• Initiate a new route discovery request for destination node D.

As a general rule, any node which knows an alternative route that is offering the same
QoS as the previously unavailable route, always resumes its communication through the
alternative route, if, and only if, the transmitting node has not received a RERR packet
twice for the same destination. In this way, the network transmission overhead from
route request packets is minimised. However, if the node has no alternative route in its
routing tables that it could use to reach destination D with the required QoS, the node
could then initiate a new route discovery request for destination node D.

In this particular scenario, node S retransmits the information over the alternative
route R6, which is remembered by S as:

• S → R1 → G3 → R4 →G8 → R7 → G13 → R10 → G15 → R12 → D

PM[S], PM[R1], PM[G3], PM[R4], PM[G8], PM[R7], PM[G13], PM[R10], PM[G15], PM[R12], PM[D]

This time the transmission is successful and thus the source node S continues with its
second transmission which is secure traffic, with medium-high requirements, over the
most optimal route remembered by node S, which is R3, such as:

• S → R1 → G2 → R3 → G6 → G9 → R6 → G12 → R9 → G15 → R12 → D

PM[S], PM[R1], PM[G2], PM[R3], PM[G6], PM[G9], PM[R6], PM[G12], PM[R9], PM[G15], PM[R12],

PM[D]

Yet again, the transmission causes an error at node R3 due to the fact that R3 cannot find
the next node in the transmission chain (node G6). Thus, R3 drops the data and replies
back to the source with a RERR packet. Once the RERR packet is received, node S re-
quests a new route from cluster-head R1. Assuming that R1 does not have a route, node S
is forced to initiate a new route discovery for destination node D. This is possible at this
stage, as node S has failed twice to reliably transmit network traffic to D. This process
results in the following routes being identified:

1. S → R1 → G1 → R2 → G4 → R5 → G11 → R8 → G16 → R12 → D

PM[S], PM[R1], PM[G1], PM[R2], PM[G4], PM[R5], PM[G11], PM[R8], PM[G16], PM[R12], PM[D]
2. S → R1 → G1 → R2 → G5 → R5 → G11 → R8 → G16 → R12 → D

PM[S], PM[R1], PM[G1], PM[R2], PM[G5], PM[R5], PM[G11], PM[R8], PM[G16], PM[R12], PM[D]
3. S → R1 → G2 → R3 → G9 → R6 → G12 → R9 → G15 → R12 → D

PM[S], PM[R1], PM[G2], PM[R3], PM[G9], PM[R6], PM[G12], PM[R9], PM[G15], PM[R12], PM[D]
4. S → R1 → G2 → R3 → G7 → R6 → G12 → R9 → G15 → R12 → D

 186

PM[S], PM[R1], PM[G2], PM[R3], PM[G7], PM[R6], PM[G12], PM[R9], PM[G15], PM[R12], PM[D]
5. S → R1 → G3 → R4 →G8 → R7 → G6 → R10 → G15 → R12 → D

PM[S], PM[R1], PM[G3], PM[R4], PM[G8], PM[R7], PM[G6], PM[R10], PM[G15], PM[R12], PM[D]
6. S → R1 → G3 → R4 → G8 → R7 → G13 → R10 → G15 → R12 → D

PM[S], PM[R1], PM[G3], PM[R4], PM[G8], PM[R7], PM[G13], PM[R10], PM[G15], PM[R12], PM[D]
7. S → R1 → G3 → R4 → G8 → R7 → G14 → R10 → G15 → R12 → D

PM[S], PM[R1], PM[G3], PM[R4], PM[G8], PM[R7], PM[G14], PM[R10], PM[G15], PM[R12], PM[D]

Node S can recalculate the capability/incapability determination for each route and ob-
jective combination using the information above, as shown in Table 5.51. Then, node S
can produce the average, minimum and maximum, and standard deviation values for the
new routes R1 - R7, as shown in Tables 5.52 and 5.53. Finally, node S can deduce the fi-
nal metric for each route and objective combination, as shown in Table 5.54.

Table 5.51:
Capability/Incapability determination for the new routing information resulted from the nodal movements

 Energy Synch Asynch Critical Secure Burst
Route 1 Capable Incapable Capable Capable Incapable Incapable
Route 2 Capable Incapable Capable Incapable Incapable Incapable
Route 3 Capable Capable Capable Capable Capable Capable
Route 4 Capable Incapable Capable Capable Incapable Incapable
Route 5 Capable Capable Capable Capable Capable Capable
Route 6 Incapable Incapable Capable Incapable Incapable Incapable
Route 7 Capable Capable Capable Capable Incapable Incapable

Table 5.52: New information for each route and objectives O1 - O3 due to mobility

 Energy efficient Synchronous Asynchronous
 AV MIN MAX SD AV MIN MAX SD AV MIN MAX SD

R1 14 23 8 11 14 26 7 13 15 28 7 15
R2 15 28 8 14 15 31 7 17 17 48 7 29
R3 11 17 8 6 10 14 7 5 10 15 7 6
R4 14 23 8 11 11 26 7 13 12 28 7 15
R5 10 12 8 3 8 10 7 2 9 11 7 3
R6 13 39 8 22 11 31 7 17 12 37 7 21
R7 11 22 8 10 10 23 7 11 11 28 7 15

Table 5.53: New information for each route and objectives O4 - O6 due to metric variations

 Critical Secure Burst
 AV MIN MAX SD AV MIN MAX SD AV MIN MAX SD

R1 9 17 4 9 20 46 6 28 21 45 7 27
R2 12 49 4 32 21 53 6 33 21 48 7 29
R3 6 9 4 4 9 14 6 6 11 18 7 8
R4 7 17 4 9 10 46 6 28 13 45 7 27
R5 5 6 4 1 7 9 6 2 8 10 7 2

 187

R6 7 21 4 12 8 17 6 8 10 22 7 11
R7 6 16 4 8 11 45 6 28 12 45 7 27

Table 5.54: Final route metrics for each objective, taking into account the metric changes

 Energy Synch Asynch Critical Secure Burst
R1 Good N/A V. Good V. Good N/A N/A
R2 Good N/A Poor N/A N/A N/A
R3 V. Good V. Good Excellent V. Good Good Good
R4 Good N/A V. Good V. Good N/A N/A
R5 Excellent V. Good Excellent Excellent Good V. Good
R6 N/A N/A Poor N/A N/A N/A
R7 V. Good Poor V. Good V. Good N/A N/A

Node S erases from its memory the sequence of previously used routes to destination
node D. This is because node S has built new routing information, and thus it is memo-
rising the sequence of transmissions from the beginning. Thus, since node S has not
maintained previous knowledge of its transmission sequence, it will transmit secure traf-
fic, as defined in Table 5.50, over either R3 or R5 since both exactly match node’s
requirements. In this scenario the route is randomly selected to be R3. The following
transmission is asynchronous traffic with medium-high requirements, and thus the best
routes are either R1 or R4 or R7. Route R1 was randomly selected among these options. For
burst traffic with medium-high requirements there is only one route that exactly satisfies
node’s requirements, which is route number R5. Similarly, for energy efficient network
traffic with high requirements, route R5 is the only optimal route that fully satisfies node’s
requirements. The route selections performed by node S are:

• Network traffic secure, Sequence 2, Iteration 1, Requirements Average, Route R3.
• Network traffic asynchronous, Sequence 3, Iteration 2, Requirements Medium-high,

Route R1.
• Network traffic burst, Sequence 4, Iteration 1, Requirements Medium-high, Route

R5.
• Network traffic energy efficient, Sequence 5, Iteration 1, Requirements high, Route

R5.

5.6.8 Outcomes and evaluation of the MARIAN-enabled ad-hoc
network application scenario

This section demonstrated the most intriguing aspects of MARIAN’s routing through the
use of a number of routing scenarios. Specifically, this section demonstrated the cluster-
ing formation process, the reactive and proactive route and network discovery processes,
and highlighted the routing decisions taken by a source node in relation to gathered rout-

 188

ing metrics. The routing scenarios include: a stable network topology; a network topol-
ogy with devices’ varying routing metrics; and a network topology with nodal
movements. In all cases, the strength of the routing protocol to adapt with various rout-
ing conditions, such as mobility and changes in routing devices' critical elements, is
thoroughly demonstrated. In addition, network overhead imposed by reactive route dis-
covery and proactive network discovery processes, has been calculated and presented for
the defined network topology.

 189

6 Evaluation

6.1 Research findings discussion

This chapter summarises the research findings and evaluates their significance. Initially, the
novelties that this research is claiming to have achieved are presented and backed-up with
results derived from the experimentation and modelling phases. Then, the successful culmi-
nation of this research is justified by an overall discussion and by referring to resulting
publications in major journals, IEEE-level conference proceedings, and symposiums papers.
In addition, the work performed for the scope of this PhD is compared to other related work
and evaluated. Specifically, strong evidence on how this research work improves on standard
methods and on how it may be used to extend these is provided.

6.2 Novelties justification

This section presents the novelties that have been achieved by this research and provides ap-
propriate justification by referring to the proposed model and most importantly the
experimentation results. For this purpose, the following sub-sections (6.2.1 - 6.2.7) present
the appropriate evidence in an attempt to confirm that these novelties fulfil the proposed
aims (see Section 1.5, Migas, N., et. al., 2003a.).

6.2.1 Maximised network performance
The proposed routing protocol is able to retrieve multiple redundant routing paths through
its reactive route discovery and proactive network topology gathering processes, as specified
in Sections 3.6.1 and 3.6.2, and demonstrated in Sections 5.6.2 and 5.6.4. Each retrieved
routing path is guaranteed to be distinct due to the careful and precise modelling of the reac-
tive and proactive route and topology discovery algorithms (see Algorithms 3.2 - 3.7), and
loop-freedom due to the fact that the underlying protocol (CBRP), which MARIAN bases its
fundamental functionality on, is also loop-free. Specifically, a node never forwards the same
RREQ or RREP packet twice to another node, since the history list of the visited nodes for
this particular packet is maintained in the packet itself as well as in the forwarding node. In
the same fashion, a network topology mobile agent never visits the same node twice while
Exploring or ReturningHome (see Section 3.6.2). This approach also applies to the multiple
redundant routing paths discovery, since each cloned packet/agent is handled individually.

 190

This is achieved by utilising an identification number that is unique for each original or
cloned packet/agent, and thus assists in forwarding/migrating decisions making, respectively.
This way, a node/agent is further protected from undesirable visitations/migrations that
might result because of mobility or any other unexpected environmental or parameter
changes.

Multiple redundant routing paths maintained at a node's routing cache and at a node's
cluster-head routing tables can be especially useful in maximising the network's performance,
since a node can utilise multiple routes for its data transmission instead of a single route.
Therefore, the load is distributed evenly among each intermediate node along each available
routing path, and thus single nodes are not overburdened with frequent routing requests.
MARIAN's design allows a source node to transmit different types of traffic along multiple
paths, and as a result of that, routing is performed virtually in parallel. This may be corre-
lated to the ability of a multi-processor device to assign each distinct task to each processing
unit, and thus perform these in parallel. However, the analogy is not so accurate, since re-
trieved routing paths are likely to be composed of one or more common nodes, and therefore
routing is unlikely to be thus efficient.

MARIAN's strongest element that significantly enforces its ability of multiple redundant
routing paths utilisation is its ability to determine the routes' appropriateness in relation to
the type of traffic that is to be routed. As shown in Sections 5.1 - 5.3, the routing fitness of
devices with different hardware and software characteristics, as well as devices with different
current utilisation status, significantly varies (Migas, N., et. al., 2005, Buchanan, W., el. al,
2004a). Therefore, it makes little sense if a source node is allowed to decide on routing paths
utilisation at a random basis, since this would probably result in a totally inefficient scenario,
as the various data traffic specific requirements as well as the intermediate devices' through-
out capabilities are not taken into account.

In order for this issue to be resolved, MARIAN assists a source node by providing routing
capability determination criteria for each retrieved routing path on which the source can be
based on, in order to efficiently utilise these paths. Specifically, determination criteria incor-
porate information concerning the available throughput that intermediate devices along a
routing path can provide, which is multiplexed with other factors, such as the devices' utilisa-
tion status, network error, and so on (see Section 3.13). Therefore, a source node can
quantify the efficiency of each retrieved routing path, and thus transmit high requirements
network traffic through highly capable routes, while low network traffic through less capable
routes. This way, the network gets fully utilised in a totally distributed and efficient manner,
resulting in an overall maximised network performance. This was demonstrated in the pro-
vided routing scenario (see Section 5.6.5), where a source node successfully determined the

 191

routing capabilities of each retrieved route, and transmitted its network traffic through the
appropriate one, e.g. asynchronous network traffic with low requirements, through route R1,
while synchronous network traffic with medium-high requirements, through route R4.

Another novelty that has the potential of maximising the network's performance is the
agents' capability of intelligent filtering. As specified in Section 3.6.2, network topology
gathering mobile agents are required to filter collected data in order to remove unnecessary
redundant routing information, and thus help themselves to become lighter in terms of mi-
gration requirements. This property, once used efficiently, can significantly minimise the
network load when compared to standard static agent approaches. As shown in the data
gathering database application scenario (see Section 5.4.2), the mobile agent with intelligent
filtering approach significantly improves upon the standard static agent approach, when the
data volume is large (Migas, N., et. al., 2004a). Similarly, intelligent filtering network topol-
ogy gathering agents can significantly minimise the information carried with them without
compromising it, and therefore compensate for their high migration time requirements, or
even improve upon the static agent reactive approach in situations where the ad-hoc network
is large, and perhaps mobility is low. This thesis is not concerned in providing detailed in-
formation on the specifics of the intelligent filtering methods, as this can significantly vary
according to implementation.

In terms of reducing latency, MARIAN provides a concrete solution. The protocol's nov-
elty lies on the utilisation of a combination of the reactive route discovery and proactive
network discovery approaches. As defined in Section 3.6.2, network discovery mobile agents
update the cluster-heads that created them, in a periodic fashion, with routing information
concerning the whole network's topology as well as the routing metrics involved. As a result,
cluster-heads are well informed most of the time with fresh routing information for each pos-
sible destination, which is held and maintained in local routing tables. A cluster-head's
registered nodes can significantly benefit from this functionality as they can on-demand re-
quest routing information from their own cluster-heads in the form of a minimal
propagation RREQ, and receive it through one or multiple corresponding minimal propaga-
tion RREPs (see Section 3.6.1). The benefit lies on the rapid request and reply times involved
with minimal propagation packets, as in principle, the propagation distance is always one
hop. Therefore, registered nodes can rapidly retrieve on-demand routes and hence minimise
latency.

6.2.2 Increased scalability
MARIAN organises the network into a hierarchical structure, similarly to CBRP (Jiang, M.,

 192

et. al., 2001). As previously mentioned (see Section 3.5.1), a clustering structure is imposed
to the network, which results in grouping each device to one or more adjacent or disjoint
clusters, where each device has certain responsibilities according to the role that it is given.
Nodes with the highest responsibilities are cluster-heads, which maintain intra- and inter-
cluster routing information and also provide routing services. In the contrary, member nodes
have very limited responsibilities, which are only concentrated on periodically broadcasting
information necessary for the clustering formation and maintenance processes that is a re-
quirement for every participating node. Therefore, the clustering structure can be efficiently
utilised to minimise the route discovery packets' propagation as well as the network discovery
mobile agent migrations, since they are always forwarded and migrated, respectively, along a
repeated sequence of alternating cluster-head and gateway node pair(s).

As a consequence, the network becomes more scalable, and can thus accommodate and
cope better with increased number of participating devices than standard flat routing proto-
cols. This is evident in Table 2.4, which shows that CBRP's time and communication
complexities for route discovery are far less than other routing protocols of the same cate-
gory. Since MARIAN's clustering formation is based on CBRP's, MARIAN inherits the
benefits mentioned above.

As previously stated, MARIAN's clustering formation process is based on a variation of
the standard lowest-ID algorithm, which utilises cluster-head metrics (CHM) for clustering
formation and maintenance instead of meaningless IDs. The cluster-head metric is a mixture
of various factors, such as the devices' mobility patterns (Basu, P., et. al., 2001), buffering
capabilities, throughput, network error percentage, utilisation status, battery level, and so on
(see Section 3.1). Therefore, nodes that are less mobile and have a lower utilisation status,
higher battery capacity, and so on, are more likely to become cluster-heads. In this fashion,
re-clustering should occur less frequently due to occasional cluster-heads movements. As a
result, the network overhead often involved with re-clustering should be minimised, and
therefore the network should become even more scalable. In addition to mobility criteria for
cluster-head selection, this research work extends the one presented in (Basu, P., et. al.,
2001) by incorporating other equally important factors, which were mentioned above.
Therefore, cluster-heads are deliberately chosen to be the fittest devices in terms of processing
capacity, battery level, and network ability, in order to allow services to be offered more effi-
ciently and further extend their lifetime, resulting in an overall highly scalable solution.

Furthermore, mobile agents are inherently distributed, and thus they provide a totally dis-

tributed solution, which adapts to the increasing and decreasing network population. For

instance, a smaller ad-hoc network consisting of only a few cluster-heads will be required to

transmit a significantly smaller number of data gathering agents, at any given time, than a

 193

larger ad-hoc network possibly consisting of a couple of hundred cluster-heads. However, the

overall network overhead percentage imposed at each link because of agent migrations

should be approximately equal for any ad-hoc network size. As shown in Sections 5.6.2 and

5.6.4, approximately 7% was consumed by each link for agent migrations, while approxi-

mately the same percentage was consumed by each link for route discovery packets

propagation. These figures are expected to be relatively constant for any ad-hoc network size

and structure due to agents' inherent characteristics and the employment of the clustering

structure. Therefore, this can further enhance network scalability.

6.2.3 Dynamic in nature
The cluster-head and routing metrics are based on standard performance tests executed in
advance, as well as on varying parameters, such as mobility and battery level, respectively (see
Section 3.10). Therefore the metrics are not fixed, and may considerably vary as these pa-
rameters change. Specifically, MARIAN defined a point to infinitive value (∞) which is
allocated to preliminary metrics that have reached a critical level. For instance in case that the
battery level of a device drops below a certain threshold, the battery preliminary metric
points to infinitive, which results in the overall cluster-head and routing metrics to point to
infinitive as well. Therefore, in case that a critical change occurs in either a cluster-head or
routing device that caused the overall cluster-head or routing metric to point to infinitive,
the device discards its role and moves to 'undecided' state (see Section 3.13). In this fashion,
network nodes are protected from running out of vital resources, and thus the routing proto-
col dynamically adapts to devices' critical changes.

The routing scenarios presented in Sections 5.6.6 - 5.6.7 demonstrate an example of the
protocols dynamic adaptation in terms of varying preliminary metrics and mobility, respec-
tively. According to results presented in the first scenario, the source node got informed
about critical changes in the intermediate devices' vital resources by means of disseminated
metric updates. Specifically, each cluster-head is responsible for identifying sudden prelimi-
nary metric changes in its registered devices. As previously mentioned (see Section 5.6.6), this
is achieved by constantly monitoring broadcasted NNTs and comparing the previously re-
ceived metrics to new ones. In case a sudden change is identified, it constructs a metric
update packet and broadcasts it. Receiving devices update their information and re-broadcast
the packet. In this fashion, a source node currently utilising the forwarding services of the
node undertaken critical changes, re-calculates the routing metrics of each route in which
that node is found and consequently rejects the route. The example provided (see Section
5.6.6) demonstrates the ability of the routing protocol to dynamically adapt to such changes

 194

and rapidly respond by rejecting the utilisation of the problematic routes.
Similarly, the mobility scenario demonstrates a dynamic adaptation case in which a source

node gets informed of intermediate nodal movements by means of a RERR message. Specifi-
cally, a node along the route which realises that the incoming packet's next hop is
unavailable, constructs a RERR packet, specifying the unavailable hop, and transmits it back
to the source. Upon receiving two consecutive RERR packets for the same destination, the
source node has to initiate a new minimal or full propagation RREQ. This demonstrates that
the routing protocol is highly capable of rapidly responding to topology charges due to mo-
bility.

Another example of the protocols dynamic adaptation can be found in the network dis-
covery mobile agent process (see Algorithm 3.6 - 3.7). Accordingly, mobile agents that are
discovering or returning home can dynamically alter their itinerary in case of the destination
being unreachable, after waiting for a predefined amount of time. This problem could occur
in situations with high mobility. A mobile agent can dynamically find an alternative path by
examining the current visited node's NNT, 2-hop NNT, and NCT and utilise it in order to
reach the desired destination. If the agent succeeds, it dynamically alters its previously stale
routing information with this new one, otherwise it kills itself. There is also a scope to allow
mobile agents to initiate reactive route discovery processes in order to find a viable routing
path that leads to the desired destination. However, this was omitted by the current specifi-
cation because of concerns that this could lead to increased overhead in situations with high
mobility.

6.2.4 Quality of Service (QoS)
This is probably the most important novelty that this research has achieved. QoS is non-
trivial in highly dynamic environments, such as in multi-hop ad-hoc networks. In order for a
network to provide QoS, there must be a way of calculating the quality offered by each avail-
able routing path along with estimating the requirements that are imposed by different types
of traffics as well as the specific application requirements. For instance, a user application at
node A might require to transmit synchronous traffic to another application at node D,
which is 4 hops away. Assuming that the QoS required by the application at node A is high
and further assuming that there are 3 routes that can reach D, in total. MARIAN would ini-
tially require from node A to calculate a capability/incapability determination for each route
and in relation to the type of traffic required for transmission. This calculation would be
based on the preliminary metrics (see Table 3.14) associated with each node along each route,
and in relation to the weighting system and desired range for synchronous traffic routing ob-

 195

jective (see Table 3.17 - 3.18). Node A would then calculate a final metric (see Table 3.19)
for each route that was found capable. Since the required QoS for this example was assumed
to be high, node A would decide on routes that were found to be capable of providing excel-
lent QoS for synchronous network traffic.

By default, MARIAN provides support for six routing objectives, including: energy effi-
cient, synchronous, asynchronous, critical, secure, and burst traffic. Each objective was
carefully designed by taking into consideration the different requirements imposed by each
type and applying the weighting system (see Table 3.17), which has been deduced through
experimentation. In particular, energy efficient traffic has high battery capacity requirements,
while, in addition to that, synchronous has high buffering and low latency requirements. In
contrast, asynchronous network traffic has low buffering requirements and no latency prob-
lems. Critical network traffic has low network error percentage requirements, while secure
network traffic has high requirements in terms of processing power because of complex en-
cryption and decryption algorithmic executions. Finally, burst network traffic has extremely
high buffering requirements.

In addition, each objective was designed in such a way so as to be very sensitive to critical
metrics variations. These include: battery and memory capacity, and CPU utilisation. There-
fore, if a device is determined to be capable of accomplishing a certain set of routing
scenarios now, but at some point in time, a number of critical elements change, e.g. the CPU
utilisation gets increased by a high percentage, the capability/incapability determination is
being recalculated and consequently the device gets excluded from its routing responsibilities.
This is particularly useful, in that, the protocol can predict when participating devices are
likely to become unavailable because of low remaining battery, high CPU utilisation, or high
memory usage, and thus protects them by withdrawing all routing requests. However, when
a device, that has suffered a critical change, e.g. its CPU utilisation has considerably dropped,
returns back to normal, the protocol re-considers the device's routing fitness.

As shown in Section 5.5.2, simulation results proved that when key metrics are suddenly
changed, e.g. the remaining battery drops, or the CPU is highly utilised, or the device is
running low on available memory, the device immediately turns to incapable state of routing
high requirements traffic types. In addition, it was shown that the variation of a device's
overall metric was high in all cases, and thus this demonstrates the ability of the protocol to
rapidly respond to critical changes (Migas, N., and Buchanan, W., 2005).

Furthermore, MARIAN's metric-driven clustering formation process takes into account
various factors for electing the most suitable cluster-heads, such as network mobility, utilisa-
tion status, battery capacity, throughput error percentage, and so on (see Section 3.13).
Therefore, it is highly probable, that in a large ad-hoc network with devices having various

 196

hardware characteristics, the network's backbone will be consisting of high performance de-
vices with low or no mobility, and thus the provided QoS can be significantly increased.
This is due to the fact, that cluster-heads have vast responsibilities in the routing processes,
and thus, selecting the most appropriate devices for this role can be significantly beneficial.

6.2.5 Enabled energy conservation
The most vital resource of a mobile device is its battery. Consequently, since ad-hoc net-
works are mainly comprised of mobile devices, battery is the most important factor. In order
to allow energy conservation, the routing protocol must take into account the battery level of
each device involved or is likely to be involved in the routing process. MARIAN calculates a
battery preliminary metric (see Section 3.13) based on the current battery level of each device
in the network and incorporates it to the overall cluster-head and routing metrics. According
to the weighting applied to the cluster-head and each routing objective (see Table 3.17), the
battery capacity always obtains a substantial amount when compared to other preliminary
metrics. The only exception is the cluster-head objective in which battery obtains 30 (%) less
than mobility. For example, although synchronous network traffic has high throughput re-
quirements, battery obtains twice as much weighting as throughput, due to its vast
importance in every routing scenario.

According to results presented in Sections 5.1 - 5.3, the battery discharge rate was shown
to be significantly decreased (the battery was reducing at a faster pace) while the device was
being used as a router, or, being used to perform complex tasks, and was also shown to vary
in relation to the OS and JVM used. Therefore, MARIAN excludes devices with low battery
capacity from taking the role of a cluster-head or taking active part in data routing, provided
that there is another more charged device in the general vicinity. Therefore, MARIAN allows
devices with low battery capacity to join an ad-hoc network and benefit from its services,
without exhausting their limited battery capacity.

Furthermore, MARIAN provides an explicitly defined energy efficient routing objective,
where battery capacity obtains ten times more weighting than throughput, fifty times more
weighting than complex algorithmic calculation ability, and so on (see Section 3.13). This
scenario was specifically designed to provide energy efficient routing, rather than deliver data
within certain time frames. In particular, a source node wishing to send its network traffic
along an energy efficient routing path, in principle selects the path that consists of the most
devices that do not rely on battery power for their operation, or alternatively consists of de-
vices that have their batteries fully charged. Therefore, an ad-hoc network operating on an
energy efficient principle should be able to significantly extent the participating devices' life-

 197

time, and consequently its own lifetime.

6.2.6 Improved reconfigurability
In a pure agent-based implementation of the protocol’s specification (see Section 3.2), where
every entity is deployed as either a stationary or a mobile agent, reconfigurability can be eas-
ily achieved by on-demand reconfiguration agents. Specifically, authenticated mobile agents
carrying protocol updates in their payloads can be dynamically dispatched in the ad-hoc
network in order to automatically update or replace certain protocol components, or to re-
configure the protocol in such a way so as to adapt in various environmental changes.

The main advantage of this strategy is that it eliminates the need of manual update instal-
lations. Particularly, in a routing scenario implemented with traditional mechanisms, one
would have to gather every mobile device in the network and update it separately, while the
devices should have to be cut-off from the network. This approach may not sound particu-
larly difficult when dealing with a small-scale ad-hoc network, possibly consisting of a few
dozens of devices, however, in a large-scale network with possibly a couple of hundred or
even thousand of devices this is unrealistic. MARIAN provides the fundamental mechanisms
to achieve efficient and effective reconfiguration (see Section 3.2), without needing to shut
down the network or even reboot a single device. This lies in the agent’s specific characteris-
tics, such as ease of installation and removal, agent communication, and mobility. A few
agent-based reconfiguration examples include but are not limited to the following.

A recently developed mobile agent is dispatched to replace an existing stale clustering
agent. The agent is dispatched to the nearest node, and finds its way to the cluster-head.
Once the agent arrives, it clones itself and leaves for the next cluster-head. The cloned agent
delivers the credentials of its developer and its version number to the guard stationary agent.
The guard agent then authenticates the mobile agent and compares its version to the version
of the current clustering agent. If the authentication is successfully completed and the ver-
sion number is the latest, the guard agent kills the previous clustering agent, and installs the
newer one. In this fashion, the up-to-date mobile agent could visit every single cluster in the
network, and leave its clone. Updates are then disseminated from the cluster-head towards its
members.

Another example is an agent carrying a routing metric calculation update. For instance,
the update provides a better way of calculating the routing metric of a device required to
route asynchronous network traffic. The agent can be dispatched and authenticated at each
cluster in the same way as the agent in the previous example. Then, the agent can deliver the
update to the metric agent by message exchange.

 198

Finally, an agent could carry an update towards the frequency of network discovery agent
initiations performed by each cluster-head. In addition, a new propagation limit may be
specified in the update. For instance, assuming that the cluster-heads by default initiate such
a process every fifteen seconds, and the span covers the whole network, these measurements
are inefficient because of high mobility experienced by the network nodes, at a particular in-
stance. Thus, the mobile agent could instruct the cluster-heads to delay the initiation of this
process or cut it off until instructed otherwise.

6.2.7 Improved security
Although MARIAN's specification (see Section 3.1) is not specifically tailored to provide
strong security measurements, it provides the required infrastructure for enhancing security.
By providing only the fundamentals, MARIAN aims to provide a balance between security
and performance, and allow specific implementations to allocate the weighting according to
the desired principle. For instance, in case of a strictly secure implementation, confidential-
ity, integrity, and availability of the network's resources need to be guaranteed at all times.
This would, however, enforce strong encryption and authentication techniques, as well as the
need for guaranteeing that routing information is kept private. In such an extreme scenario,
large network overhead would be generated, in addition to high processing tasks imposed on
special nodes. This may be impractical on large networks with high mobility patterns, or un-
desirable in networks that only require lighter forms of security.

The clustering formation process (see Section 3.5.1) was designed to be fairly open, as par-
ticipating devices are required to frequently broadcast their cluster-head metric (CHM) as
well as their test results to other devices in their general vicinity. Although this information
could be encrypted and decrypted at the receiving nodes in order to provide confidentiality,
this would result in significant clustering maintenance overheads, especially in situations
were clusters need to be constantly reformed because of high mobility. Therefore, security at
this level was omitted.

The reactive route discovery and proactive topology information gathering approaches
were designed in such a way so as to provide appropriate levels of security. A source node
requesting a routing path by either utilising the minimal RREQ or the standard RREQ
propagation method is limited on the frequency and iterations that these are invoked for a
single destination (see Section 3.6.1). Specifically, if the node fails to receive a corresponding
RREP it enters a backoff algorithm before initiating the same process again. Therefore, clus-
ter-heads are protected from receiving uncontrolled numbers of RREQs, and thus availability
is ensured without compromising performance, as the failed reception of a RREP implies

 199

that such a route is unavailable, at this instance. Along the same fashion, a cluster-head can-
not initiate a topology discovery agent before the time threshold is reached or a collection of
certain triggered events occur. Therefore, special nodes are also protected from frequent mo-
bile agent visitations that generally require their services, and thus availability is ensured
without compromising performance, as frequent agent migrations would by themselves
compromise performance because of their high requirements in terms of processing power
and throughput.

Furthermore, the proactive approach was designed in such a way so as to provide confi-
dentiality at a certain extent (see Sections 3.10 - 3.12). Specifically, a network discovery
mobile agent is denied direct access to a node's database by a stationary guard agent, whereas
the legal form of accessing the node's information is by contacting the librarian agent (see
Section 3.12) and requesting the desired information. In order to guarantee that information
is not passed to malicious external objects or agents, the requesting entity is required to au-
thenticate itself to the database agent. Data gathering agents can then encrypt the
information obtained and decrypt it once arrived to their originating platforms. However,
this setting has not been included in MARIAN's specification due to the large processing
overheads involved with frequent data encryptions and decryptions.

As specified in Section 3.8, in addition to the static routing approach, mobile agents can
also be used to route data by appending them to their payload and travelling along the speci-
fied route in order to deliver them to the destination. Mobile agents can be used to guarantee
communication confidentiality between two or more parties, by initially distributing the
public keys of the users who are willing to participate in confidential communications. Then,
a routing agent can encrypt its user’s message with the other user's public key and append
the encrypted message to its payload. The agent can then deliver the message at the destina-
tion, where it can get decrypted with the corresponding private key.

6.3 Limitations of MARIAN

MARIAN was shown to have achieved a set of novelties, which are not present in the major-
ity of existing ad-hoc routing protocols, and, thus, provides an enhanced solution for ad-hoc
routing and automatic network reconfiguration. However, MARIAN has certain limitations:

• Temporary routing-loops. MARIAN may suffer from temporary routing-loops, as it

bases the fundamental aspects of its route-discovery process on CBRP, which is known to
produce temporary routing-loops. Although, these should be short-lasting, and should
thus not significantly influence the performance of the routing protocol.

 200

• Mobile agents time overhead. Although MARIAN's proactive network discovery ap-
proach can significantly minimise latency within a proactive routing-zone, it may involve
long waiting-times for far-reaching zones (in terms of hops). Thus, a proactive routing
zone should be defined small enough, to guarantee that mobile agents will retrieve the
correct topology information.

• Moderate mobility support. As a consequence of the long migration times, which are
involved with mobile agents, MARIAN's proactive network discovery process may not
adequately cope with high nodal mobility. Thus, in scenarios with high mobility, the
proactive network discovery process should be either switched off, or, the routing zones
spectrum should be minimised, as such as to allow the discovery of the neighbouring
cluster-heads of the cluster-head's neighbouring cluster-heads.

• Critical nodes. Although MARIAN uses a metric-driven approach to clustering forma-
tion, which ensures that fitter nodes with less mobility will be elected as cluster-heads, it
cannot guarantee that this will always be the case, as it is possible for participating devices
to have similar routing strength and mobility patterns. In this case, cluster-heads may be-
come bottlenecks, and, thus, unfairly exhaust their battery reserves and consume their
resources, where other nodes benefit from the cluster-head's services.

• Interoperability. At present, MARIAN does not offer interoperability with other non-
agent-based and agent-based routing protocols, as interoperability was left for future de-
velopment.

• Security. Although MARIAN provides the fundamental infrastructure for ad-hoc routing
security, at present, it does not fully support security, as it was left for future develop-
ment.

6.4 Comparison of this work with other related research

As previously mentioned, the main aim of this research work was to develop a concrete solu-
tion for routing in multi-hop ad-hoc networks. For this purpose, a novel hybrid routing
protocol, named MARIAN, was specifically designed in order to maximise network perform-
ance, increase scalability, respond dynamically to changing factors, guarantee QoS, be energy
efficient, reconfigurable, and provide the basic infrastructure for security. As previously dis-
cussed (see Section 6.2.1 - 6.2.7), each aim set by this research was fully met, and justified.
The most important outcomes from the modelling and experimentation phases were pub-
lished in major journals, IEEE-level conference proceedings, and further presented in the
recent BCS Symposium on Artificial Intelligence, which were further published in the Expert
Update journal. This section compares these outcomes with traditional and agent-based

 201

methods in this area, and provides concrete evidence on the improvements that this research
work has achieved.

MARIAN bases its clustering formation process on the lowest-ID algorithm (Gerla, M.
and Tsai, J. T.-C., 1995) and further extends it. Initially, the LCC proposed in (Chiang, C.-
C., et. al., 1997) has been adopted in order to enforce the least cluster-head changes, and
thus minimise overhead involved with frequent re-clustering. In addition, MARIAN em-
ploys the mobility scheme presented in (Basu, P., et. al., 2001) for cluster-head elections and
enhances it with other equally important parameters. Specifically, the work proposed in
(Basu, P., et. al., 2001) proved with the aid of simulations that, when devices' mobility pat-
terns are taken into consideration in the clustering formation process, cluster-head changes
can further decrease by 30% when compared to the LCC enhanced, lowest-ID algorithm.
However, their work does not take into account the capabilities or utilisation status of the
devices involved in the elections. Accordingly, a device with low remaining battery, high
CPU utilisation, or low available memory, can be elected as a cluster-head, which is obvi-
ously undesirable. Therefore, MARIAN multiplexes mobility criteria with performance and
utilisation factors, as described in Section 3.1. In addition, MARIAN senses the devices'
critical changes and dynamically responds by allowing cluster-heads which have undertaken
critical changes to discard their roles and move to an Undecided state. Therefore, this research
work employs a sophisticated cluster-head metric, which is highly dynamic and accurate.

As defined in Section 3.1, MARIAN is a hybrid routing protocol that utilises both sta-
tionary and mobile agents for route discovery and network topology gathering. The on-
demand approach is similar to the one presented in (Jiang, M., et. al., 2001), however,
MARIAN enhances it with support for multiple redundant routing paths discovery. There-
fore, a source node gets informed of every possible loop-free routing path leading to a
specific destination, which generally adds redundancy in such a way so as to allow the source
to rapidly switch to an alternative route in case of primary failure. As a result, the source is
not required to initiate a new route discovery, which would otherwise generate network over-
head.

Route redundancy is also offered by several routing protocols, including DSR (Johnson

D. B., et. al., 2004), TORA (Corson, S., 2000), ARA (Bouazizi, I., 2002), SLURP (Woo, S.-

C. and Singh, S., 2001), and DST (Radhakrishnan, S., et. al., 1999), a full list is provided in
Tables 2.1, 2.3, and 2.5. However, these protocols either provide no mechanisms for decid-
ing on the optimal paths or they are based on the standard shortest path routing mechanism.
However, this mechanism oversimplifies such a complex decision by ignoring the fact that
participating devices may have considerably unequal performance characteristics and current
utilisation status. Accordingly, it is possible for a best route to be composed of devices with

 202

high utilisation status or low battery level, which results in an overall unreliable route. Along
the same line, a routing path composed of less nodes that another, would be considered more
efficient in terms of data delivery time, even though the former may be comprised of PDAs
and the latter of powerful workstations. However, as shown in Sections 5.1 - 5.4, this is to-
tally untrue, as PDAs can be up to 100 times less optimal than high-end devices.

MARIAN tackles this issue by providing an intelligent decision making mechanism,
which takes into consideration various parameters (see Section 3.13) and applies distinct
weighting to each one, according to the routing objective the device aims to accomplish.
Therefore, this scheme protects routing devices from becoming network bottlenecks by tak-
ing into consideration key elements, and intelligently deciding on optimal routes based on
accurate and diverse metrics, which are appropriately weighted to conform to the require-
ments imposed by each predefined routing objective. This is evident in the application
scenario presented in Section 5.6, which demonstrated MARIANs full potential in optimal
route determination, as well as its dynamic nature to adapt to metric variations (see Section
5.5) and nodal movements.

Furthermore, although a few routing protocols, such as FORP (Su, W. and Gerla, M.,

1999), SSA (Dube, R., et. al., 1997), ABR (Toh, C., 1996), and DDR (Nikaein, N., et. al.,

2000), use metrics for optimal route discovery, these are vastly incomplete, and they do not
provide any adaptability to different routing scenarios' requirements.

The proactive network topology information gathering approach has been designed to
enhance the on-demand route discovery approach in order to minimise latency, which is of-
ten involved with purely reactive protocols. As shown in (Marwaha, S., et. al., 2002), the
combination of an on-demand route discovery approach with a proactive distributed topol-
ogy discovery mechanism can significantly reduce frequent update disseminations, usually
required by proactive protocols, and further reduce route discovery latency and end-to-end
delays, usually found in reactive protocols. In contrast to the work presented in (Marwaha,
S., et. al., 2002), MARIAN delivers full control to the cluster-heads which can responsibly
define the propagation horizon of the network topology gathering mobile agents, as well as
the frequency of their creation, according to the clusters' needs. Therefore, assuming that a
cluster-head receives frequent minimal propagation RREQs from its members for several in-
ter-cluster diverse destinations with low latency requirements, it can dynamically dispatch a
network topology discovery agent, as it is likely to assist in reducing latency, since routing
information is publicly accessible to its local cluster. Similarly, a cluster-head that has not
heard any such activities from its members over a certain period of time, can suspend the
agent migrations until a certain triggered event has occurred or a time threshold has been
exceeded.

 203

In addition, network discovery mobile agents are equipped with intelligent filtering capa-
bilities (see section 3.6.2), which were shown to significantly reduce network overhead (see
Section 5.4.2), an aspect that was not covered by either (Marwaha, S., et. al., 2002), nor any
other agent-based routing protocol (Anderegg, L. and Eidenbenz, S., 2003, Bandyopadhyay,
S. and Paul, K., 1999). Furthermore, MARIAN provides security against potentially mali-
cious agents by means of agent authentication. Specifically, a network topology gathering
mobile agents is not allowed to directly access the node's database, whereas, the only legal
form of data retrieval is by authenticating itself to the database agent, which, in turn, for-
wards the agent's query to the database and returns the results back to the gathering agent
(see Section 3.12). MARIAN could be effectively extended to incorporate the agent-based
security proposals found in (Ping, Y., et. al., 2004, Peysakhov, M., et. al., 2004). As dis-
cussed in Appendix B.10, the former proposed a totally distributed and scalable security
solution for ad-hoc networks, which relies on a multi-agent system to provide functions simi-
lar to those of the body’s immune system, while the latter suggested a build-in network
awareness capability to mobile agents that would enable them to reason on whether a host
has been compromised or not, and act based on this knowledge.

As previously discussed in Sections 3.7 and 3.8, MARIAN provides two alternatives for
data packets routing, a static agent and a mobile agent approach. The former is similar to
DSR (Johnson D. B., et. al., 2004), while the latter was specifically defined to add robustness
to the protocols source routing mechanism. In both approaches, the source route is a re-
quirement, and thus, in the first case, the complete route must be supplied to the packet's
header, while in the second case, the complete itinerary must be supplied to the mobile agent
on creation. However, in the mobile agent approach, the agent is allowed to dynamically al-
ter its own itinerary, in case of unreachable next hop, often resulting because of nodal
movements, and dynamically seek an alternative path. In this fashion, MARIAN extends
DSR with robust source routing agents that can guarantee the successful delivery of informa-
tion, however, this cannot be used as a primary routing method, because of the high
migration timing requirements involved with mobile agents (see Section 5.4.2). Nevertheless,
robustness can compensate for slow data routing, possibly under extreme circumstances, such
as in situations where there is high mobility.

MARIAN's mobile agent source routing is rather similar to the agent-based scheme pro-
posed in Bandyopadhyay, S. and Paul, K., 1999, which propose messenger mobile agents for
ad-hoc routing, however, as a primary mechanism. Specifically, agents append communica-
tion data in their payload, autonomously navigate through the ad-hoc network, using an
efficient routing protocol infrastructure, find the destination, and deliver the message. How-
ever, as shown in Section 5.4, mobile agent migration times are far greater than standard

 204

data packets routing, and thus it is unrealistic to dispatch a mobile agent for every message
that needs to be routed through an ad-hoc network. MARIAN resolves this issue, by defining
the static agent approach always as a primary mechanism for source routing (see Section 3.7),
whereas it defines the mobile agent approach as a secondary mechanisms, which can be used
in situations where robustness of data delivery is necessary and fast delivery is not required.

The agent-based ad-hoc-VCG protocol (Anderegg, L. and Eidenbenz, S., 2003) takes a
different approach to ad-hoc routing than MARIAN, in that it utilises selfish agents that ac-
cept payments for forwarding data for other agents, and thus uses cost as the primary metric,
which represents the real costs of intermediate nodes for forwarding communication data.
The protocol is financially cost-efficient, and thus guarantees that data packets are being
routed along the most cost-efficient path. As a consequence, the optimal route is chosen to
be the one that is composed of the most efficient routing nodes, that is, the nodes with high
battery reserves, low utilisation status, high throughput, and so on, as these are likely to have
low costs for forwarding data. Thus, ad-hoc-VCG maximises network performance, is dy-
namic in nature, and enables energy conservation, similarly to MARIAN, however, ad-hoc-
VCG requires knowledge of the underlying topology, which inevitably creates a large over-
head in the route discovery phase, whereas MARIAN does not requires this information. In
addition, ad-hoc-VCG does not take into consideration the diverse requirements of different
traffic types, and, thus, irrespectively, each type of traffic is routed along the most cost-
efficient path, which reduces load-balancing.

Ant-AODV (Marwaha, S., et. al., 2002) is a hybrid routing protocol rather similar to
MARIAN, as it combines an on-demand route discovery approach with a proactive distrib-
uted topology discovery approach using ant-like mobile agent. As previously discussed in
Section 2.4, the normalised overhead of the Ant-AODV was shown to be slightly greater
than AODV, however, it achieved the highest connectivity and fewer end-to-end delays, at a
cost of extra processing of the ant messages, and a slightly higher overhead in occupying net-
work capacity. However, their simulation was based on a constant mobile agent migration
time, which was set to be very small, that contradicts the experimentation results that were
presented in Section 5.4, which showed that mobile agents require approximately 1s to mi-
grate from/to high-end devices, whereas they require 3s-5s to migrate from/to resource-
constrained devices, thus, their original assumption was exaggerated. In contrast, MARIAN
takes a more realistic approach to its proactive network discovery approach, where cluster-
heads are responsible for defining the agent's horizon, that is, the zone that the cluster-head
receives routing information proactively. Thus, MARIAN allows mobile nodes to benefit
from reduced latency within their own zone, and, at the same time, reduces the long waiting
times that are involved with routing zones equal to the complete, large ad-hoc network.

 205

As previously discussed in Section 2.4, RoyChoudhury, R., et. al., 2000, propose a multi-
agent based framework for topology discovery in wireless ad-hoc networks, which utilises the
notion of stigmergic communication, link stability, and information aging that are used to assist
a node with predicting the current network topology, based on the current network informa-
tion stored at the node. This is achieved with a recency token, which reveals the freshness of
routing information stored at each node. MARIAN is not using the concept of recency to-
kens, as, unlike the framework proposed in RoyChoudhury, R., et. al., 2000, each network
discovery mobile agent, that is, the parent agent and its children, is an independent entity,
and, thus, it does not cooperate with other network discovery mobile agents which are initi-
ated at foreign cluster-heads. MARIAN's underlying idea of proactive network discovery is
based on the fact that each cluster-head maintains up-to-date routing information for its own
routing zone, and not the complete ad-hoc network, which would involve large network
overhead and long waiting times.

A cluster-head, agent-based routing protocol, rather similar to MARIAN, was proposed
by Denko, M. K., 2003. Specifically they propose the use of mobile agents for clustering
formation, clustering maintenance, cluster size adjustment, re-clustering, continuous cluster
status monitoring, and routing information collection. The disadvantage of their approach is
that clustering and routing information is solely collected by mobile agents, and thus the
long migration times involved contribute to an overall slow convergence scheme. In particu-
lar, the scheme could only cope with small ad-hoc networks with relatively slow mobility,
whereas MARIAN can cope with large-scale ad-hoc networks with relatively moderate mo-
bility, and large-scale ad-hoc networks with relatively high mobility, if the proactive network
discovery approach is disabled.

Due to the small number of existing agent-based ad-hoc routing protocols, this section

only compares MARIAN to the available ones, which are analysed in Section 2.4.

 206

8 Conclusions

8.1 Chapter Overview - Conclusions

This chapter is the epilogue of this thesis. It summarises the most significant findings, which
were derived from this research work, and rationally assess the success of this PhD. In addi-
tion it presents the future work.

8.2 Thesis epilogue

The research work presented in this thesis aims to provide a concrete solution to the prob-
lems involved with multi-hop ad-hoc routing, which generally include the lack of an
infrastructure, the limited capabilities of participating devices, and the disoriented as well as
mobile nature of the network. As shown throughout Chapter 2, and Appendix D, current
routing schemes are incapable of providing the complete set of essential principles, such as
maximum network performance, route redundancy, scalability, dynamic adaptability, QoS,
energy conservation, reconfigurability, and security. The main reasons for this are the ab-
sence of a logical network structure, the unclassified performance, utilisation, and mobility
characteristics of participating devices, and the lack of robust mechanisms in place. This re-
search combines all vital properties into a novel hybrid multi-hop ad-hoc routing protocol,
which is metric-driven, highly sensitive, dynamic, scalable, energy efficient, reconfigurable
and secure.

In summary, MARIAN provides novel metric-driven methods, which can be efficiently
utilised for state of the art clustering formation, reactive route discovery, proactive network
topology gathering, and routing. MARIAN pays enough attention to the requirements im-
posed by various network traffic scenarios and appraises those in terms of the routing fitness
of intermediate devices along each routing path. In this fashion, the retrieval of the best rout-
ing path is always guaranteed, and the QoS each path is able to offer, at any given instance, is
always precisely calculated. In addition, it provides a clear separation between high-end and
low end-devices, where fitter devices have increased routing responsibilities than resource-
constrained ones. Therefore, routing tasks as well as clustering formation responsibilities are
performed more efficiently, and most importantly a balance of the utilisation of devices is
achieved. Devices' vital resources are often overlooked by most current routing protocols,
whereas MARIAN strongly relies on these in order to take optimal routing decisions. Fur-

 207

thermore, it is extremely sensitive in critical changes, such as low devices' remaining battery
life, high utilisation and mobility patterns, and so on, and can thus dynamically adapt its
routing strategy based on these criteria. Finally, the protocol's novel agent-based modelling
principles resulted in a totally distributed routing scheme that has the ability to automatically
reconfigure itself on real-time, and provide the ground for enhanced security and survivabil-
ity.

Several publications have been achieved throughout this PhD, eight, in total, and one
currently under the reviewing process. Two papers were concerned with the modelling phase,
while the rest were concerned with the experimentation phases. Therefore, each phase pre-
sented in this thesis is published in major journals and IEEE-level conference proceedings,
and thus well recognised as novel. This fact, as well as my personal opinion, leads me to con-
clude that this research work is novel and that it has totally achieved its goals.

8.3 Future work

Based on the outcomes that were derived from this research along with the publications
achieved, it is safe to conclude that this research was successful. Currently, MARIAN offers a
concrete solution to ad-hoc routing along with novel functionality which is beyond the exist-
ing standards (Abolhasan, M., et. al., 2004). MARIAN's hierarchical structure as well as its
hybrid nature, coupled with the advanced mobile agent features and its multi-dimensional
super fine sensitivity routing metrics makes it a state of the art routing protocol that provides
maximised network performance, scalability, dynamic adaptation, QoS, energy conservation,
reconfigurability, and fundamental security. Nevertheless, this work can be extended even
further in many multiple ways. This section discusses the potential for future work and
builds-up a case for a postdoctoral research.

This research has been based on experimental research, and therefore a bottom-up ap-
proach has been taken. Accordingly, each experiment was based on real hardware and
software, with the only exception being the simulations that were conducted for the metrics
sensitivity experiments (see Section 5.5). For this reason, MARIAN's specification has not
been implemented nor tested in a discrete event simulator, such as ns2. Given that
MARIAN's specification is comprehensive and includes innovative mechanisms, such as mo-
bile agents and routing metrics, a wide-range experiment based on ns2 would definitely be an
excellent opportunity for a postdoctoral research. However, a challenging one, as ns2 would
probably have to get modified in order to provide accurate support for simulating the net-
work discovery mobile agent concept, in addition to defining a wide-range of devices with
different performance characteristics and utilisation status, as well as implementing various

 208

routing scenarios based on this information.
In addition to the simulation work, a large-scale real-world application scenario, similar to

the one presented in Section 2.3, would provide excellent insight into the protocol's behav-
iour and performance. For this purpose, MARIAN would had to be implemented fully in
various platforms, including PocketPC/Familiar Linux and Windows/Linux targeted for de-
vices, such as PDAs and laptops, respectively. Unlike the outdoor experimentation study (see
Section 2.3), this particular experiment would produce novel results in terms of the capabil-
ity and performance of resource-constrained devices, which are considered to be the
fundamental building blocks of ad-hoc networking. Although the complete MARIAN im-
plementation in minimalistic platforms, such as PocketPC and Familiar Linux would have
been a challenging issue, which would require intensive programming and state of the art
software engineering principles, it could definitely be accomplished within a postdoctoral
timeframe, since the fundamental aspects of this protocol have already been determined. The
proposed experiment could be based on two mobility scenarios, particularly, the first having
all regions stationary over a large geographical span, and the second having each node dis-
tributed and mobile. The experiments could be repeated with various changing factors, such
as partially charged devices, medium or highly utilised, with low or extreme mobility, and so
on.

As previously mentioned, the implementation part of this work was based on Grasshopper
ME/SE mobile agent system. However, as proven in Section 5.4.2, Grasshopper's migration
module is considerably slow, consuming just above 1 (s) for a mobile agent migration, and
even worse, approximately three times more when an agent is transmitted from a PDA. In
relation to results presented in Section 5.6.4, a network discovery mobile agent, originating
from R1 (see Figure 5.112), would approximately require 112s to collect the complete net-
work topology. However, this could be totally unacceptable in scenarios with frequent nodal
movements and constant changing factors. Therefore, a light-weighted mobile agent system
especially targeted for multi-hop ad-hoc routing, with an optimised migration module, is
necessary. Innovative work in this direction was presented in (Braun, P., 2003), where the
author developed Tracy, a mobile agent system with an optimised mobile agent migration
component, which has the ability to reduce migration times approximately by 60%, when
compared to Grasshopper. Future research in this direction would be advantageous for a
practical deployment of the network discovery mobile agent process.

Interoperability with fixed networks, as well as with ad-hoc networks operating under the
principles of other multi-hop ad-hoc routing protocols, is an issue that perfectly fits into fu-
ture work. Interoperability is an important issue, however, a challenging one, especially in
the context of ad-hoc networking, and requires extensive research into standardisation proc-

 209

esses by which distinct routing protocols could effectively communicate, possibly cooperate,
and finally, offer fundamental services to each other. In this fashion, a MARIAN RREQ
packet, once arrived at a DSR-enabled territory, could be translated into a corresponding
DSR packet, processed, and returned back translated to a MARIAN RREP. Interoperability
gets even harder, if one considers the vast number of proposed routing protocols for multi-
hop ad-hoc networks. Therefore, this issue could well fit in a post-doctoral research.

Although MARIAN provides the basic infrastructure for enhanced security (see Section
6.2.7), an ad-hoc network is inherently open to external security attacks (see Section 2.1).
Further research into prevention and detection mechanisms would be beneficial in enhanc-
ing the protocol's survivability properties. Novel research in this direction was presented in
(Ping, Y., et. al., 2004) and (Peysakhov, M., et. al., 2004), and is described in Appendix
B.10. According to both, there is scope for a totally distributed security architecture based on
mobile agents, which can effectively protect a totally distributed and dynamic network. Their
proposals could easily adapt with MARIAN, since the protocol provides the necessary infra-
structure for mobile agent execution, migration, communication, and intelligent reasoning
about the nodal behaviour. For example, security enforcement agents could read in test re-
sults maintained in nodal databases, and collectively reason about the integrity of each visited
node. In this fashion, compromised nodes can be identified and security measurements can
be enforced. These actions, for instance, may include: cutting out the node complete of
communicating with the rest of the network, or rejecting its role, if applicable.

The research proposals, presented above, are just a few of many possible ways that this re-
search could progress in the future. Other potential future work includes the definition of
several more diverse routing objectives, the integration of application specific information
that the protocol would automatically adapt by changing its internal structure, and fuzzy
logic support for clustering formation. Another interesting approach would be to allow rout-
ing agents to negotiate exchanges of the workload delegated to them, in a similar manner as
the proposal in (Urquhart, N., et. al., 2003).

 210

References:

Abolhasan, M., et. al., 2004. A review of routing protocols for mobile ad hoc networks. Ad hoc Networks. Vol.

2. pp. 1-22.

Aggelou, G., et. al., 1999. RDMAR: A bandwidth-efficient routing protocol for mobile ad hoc networks.

WOWMOM '99: Proceedings of the 2nd ACM international workshop on Wireless mobile multimedia.

Seattle, Washington, USA. pp. 26-33.

Alaettinoglu, C., 1994. Design and implementation of MaRS: A routing testbed. Journal of Internetworking:

Research and Experience. Vol. 5. No. 1. pp. 17-41.

Anderegg, L. and Eidenbenz, S., 2003. Ad hoc-VCG: a truthful and cost-efficient routing protocol for mobile

ad hoc networks with selfish agents. MobiCom '03: Proceedings of the 9th annual international conference

on Mobile computing and networking. San Diego, CA, USA. pp. 245-259.

Anderson, R. and Kuhn, M., 1996. Tamper Resistance - a Cautionary Note. Proceedings of the Second Usenix

Workshop on Electronic Commerce. Oakland, California. pp. 1-11.

Aron, I. D., and Gupta, S. K. S., 1999. A Witness-aided Routing Protocol for mobile ad-hoc networks with

Unidirectional links. Proceedings of the first international conference on Mobile Data Access (MDA).

Hong-Kong, China. pp. 24-33.

Aron, I. D., and Gupta, S. K. S., 2000. Analytical comparison of local and end-to-end error recovery in reactive

routing protocols for mobile ad hoc networks. MSWIM '00: Proceedings of the 3rd ACM international

workshop on Modelling, analysis and simulation of wireless and mobile systems. Boston, Massachusetts,

USA. pp. 69-76.

Artz, D., 2003. Network Meta-Reasoning for Information Assurance in Mobile Agent Systems. Eighteenth

International Joint Conference on Artificial Intelligence. Acapulco, Mexico. pp. 1455-57.

Baldi, M. and Picco, G. P., 1998. Evaluating the tradeoffs of mobile code design paradigms in network

management applications. Proceedings of the 20th International Conference of Software Engineering.

Kyoto, Japan. pp. 146-155.

Bandyopadhyay, S. and Paul, K., 1999. Evaluating the performance of mobile agent-based message

communication among mobile hosts in large ad hoc wireless network. MSWiM '99: Proceedings of the 2nd

ACM international workshop on Modeling, analysis and simulation of wireless and mobile systems. Seattle,

Washington, USA. pp. 69-73.

Basagni, S., et. al., 1998. A distance routing effect algorithm for mobility (DREAM). MobiCom '98:

Proceedings of the 4th annual ACM/IEEE international conference on Mobile computing and networking.

Dallas, Texas, USA. 76-84.

 211

Basu, P., et. al., 2001. A Mobility Based Metric for Clustering in Mobile Ad Hoc Networks. In International

Workshop on Wireless Networks and Mobile Computing (WNMC2001). Scottsdale, Arizona, USA. pp.

16-19.

Baumann, J., et. al., 1998. Mole-concepts of a mobile agent system. World Wide Web. Vol. 1, No. 3. pp.123-

37.

Bellavista, P., 2000. Protection and interoperability for mobile agents: a secure and open programming

environment. IEICE Transactions on Communications. Vol. E83-B, No. 5. pp. 961-72.

Bellavista, P., et. al., 2001. Middleware services for interoperability in open mobile agent systems.

Microprocessors and Microsystems. Vol. 25, No. 2. pp. 75-83.

Bellavista, P., et. al., 2003. Java for On-line Distributed Monitoring of Heterogeneous Systems and Services.

The Computer Journal. Vol. 45. No. 6. pp. 595-607.

Bertsekas, D. and Gallager, R., 1987. Data Networks. Prentice-Hall, Inc. pp. 297-333.

Binder, W. and Roth, V., 2002. Secure mobile agent systems using Java: where are we heading?. Proceedings of

the 2002 ACM symposium on Applied computing. Madrid, Spain. pp. 115-119.

Blackdown, 2004. Java - Linux. Available from <http://www.blackdown.org>. Visited 08/2004.

Bommaiah, E, et. al., 1998. AMRoute: Ad-hoc multicast routing protocol. Internet-Draft, draft-talpade-manet-

amroute-00.txt. Work in progress.

Boppana, R. and Konduru, S., 2001. An adaptive distance vector routing algorithm for mobile, ad hoc

networks. IEEE INFOCOM 2001 - The Conference on Computer Communications, no. 1. pp. 1753-

1762.

Bouazizi, I., 2002. ARA - The Ant-Colony Based Routing Algorithm for MANETs. ICPPW '02: Proceedings

of the 2002 International Conference on Parallel Processing Workshops. Washington, DC, USA. pp. 79.

Braun, P., 2003. The Migration Process of Mobile Agents - Implementation, Classification, and Optimization.

PhD Dissertation, Friedrich-Schiller-Universität Jena, 315 pages.

Broch, J., et. al., 1998. A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing

Protocols. In Proceedings of the Fourth Annual ACM/IEEE International Conference on Mobile

Computing and Networking (MobiCom’98). Dallas, USA. pp. 85-97.

Buchanan, W. J., 2000. Distributed Systems and Networks. Published by McGraw-Hill. ISBN: 0-07-709583-9

Buchanan, W. J., et. al., 2004a. Analysis of an Agent-based Metric-Driven for Ah-hoc, On-Demand Routing.

Ad Hoc Networks. In Press, Corrected Proof. Available online 3 July 2004.

Buchanan, W. J., et. al., 2004b. Agent-based Clustering over Ad-hoc Networks. Expert Update. Vol 7, No 3.

pp. 4-8.

Buchanan, W. J., et. al., 2005. Agent-based Forensic Investigations with an Integrated Framework, 4th

European Conference on Information Warfare and Security (EICW). UK.

Cardi, G., et. al., 2000. Agents for information retrieval: Issues of mobility and coordination. Journal of

 212

mobility and coordination. Vol. 46, No. 15. pp. 1419-1433.

Case, J., et. al., 1990. Simple Network Management Protocol. STD 15, RFC 1157, SNMP, Research,

Performance Systems International, MIT Laboratory for Computer Science.

Ceruti, M. G., 2001. Mobile Agents in Network-Centric Warfare. IEICE Transactions on Communications.

Vol. E84-B, No.10. pp.2781-5.

Chatzipapadopoulos, F. G., et. al., 1999. Mobile agent standards and available platforms. Computer Networks.

Vol. 31. No. 19. pp. 1999–2016.

Chen, S. and Nahrstedt, K., 1999. Distributed Quality-of-Service Routing in Ad Hoc Networks. IEEE Journal

on Selected Areas in Communications. Vol. 17, No. 8. pp. 1488-1505.

Chen, T.-W. and Gerla, M., 1998. Global State Routing: A New Routing Scheme for Ad-hoc Wireless

Networks. IEEE International Communications Conference. Atlanta, GA, USA. pp. 171-175.

Cheng, C., et. al., 1989. A loop-free extended Bellman-Ford routing protocol without bouncing effect. Vol. 19.

No. 4. ACM SIGCOMM Computer Communication Review. pp. 224-236.

Chess, D. M., 1998. Security issues in mobile code systems. Lecture Notes in Computer Science. Vol. 1419.

pp. 1-14.

Chess, D., et. al., 1995. Itinerant Agents for Mobile Computing. IEEE Personal Communications. Vol. 2, No.

5. pp. 34-49.

Chiang, C.-C., et. al., 1997. Routing in Clustered Multihop, Mobile Wireless Networks with Fading Channel.

Proceedings of IEEE Singapore International Conference on Networks (SICON). Singapore. pp. 197-211.

Chpudhury, R. R., et. al., 2000. A distributed mechanism for topology discovery in ad-hoc networks using

mobile agents. Proceedings of 1st Annual Workshop on Mobile Ad-Hoc Networking Computing,

MobiHOC Mobile Ad-Hoc Networking and Computing. Boston, USA.

Cisco Academy, 2003. CCNA 1: Networking Basics. Available from <http://cisco.netacad.net>. Last visited

21/07/2005.

Corradi, A., et. al., 2001. Security of mobile agents on the Internet. Internet Research: Electronic Networking

Applications and Policy. Vol. 11, No. 1. pp.84-95.

Corson, M. S. and Ephremides, A., 1995. A distributed routing algorithm for mobile wireless networks.

Wireless Networks. Vol. 1. No. 1. pp. 61-81.

Corson, S., 2000. Temporally-Ordered Routing Algorithm (TORA). IETF MANET Working Group -

Internet Draft. draft-ietf-manet-tora-spec-03.txt.

Das, S. R., et. al., 2000. Simulation-based performance evaluation of routing protocols for mobile ad hoc

networks. Mobile Network Applications. Vol. 5. No. 3. pp. 179-189.

Dasgupta, D. and Brian, H., 2001. Mobile Security Agents for Network Traffic Analysis. Proceedings DARPA

Information Survivability Conference and Exposition II, DISCEX'01. IEEE Computer Society Los

Alamitos, USA. pp. 332-40.

 213

De, S., et. al., 2002. Trigger-Based Distributed QoS Routing in Mobile Ad hoc Networks. SIGMOBILE

Mobile Computing and Communications Review. Vol. 6, No. 3. pp. 22-35.

Denko, M. K., 2003. The use of mobile agents for clustering in mobile ad hoc networks. SAICSIT '03:

Proceedings of the 2003 annual research conference of the South African institute of computer scientists

and information technologists on Enablement through technology. pp. 241-247.

Dube, R., et. al., 1997. Signal Stability-Based Adaptive Routing (SSA) for Ad-Hoc Mobile Networks. IEEE

Personal Communications Magazine. Vol. 4. No. 1. pp. 36-45.

Dyer, T. D. and Boppana, R. V., 2001. A comparison of TCP performance over three routing protocols for

mobile ad hoc networks. MobiHoc '01: Proceedings of the 2nd ACM international symposium on Mobile

ad hoc networking & computing. Long Beach, CA, USA. pp. 56-66.

Elaarag, H., 2002. Improving TCP performance over mobile networks. ACM Computing Surveys (CSUR).

Vol. 34, No. 3. pp. 357-374.

Emmerich, W., 1997. An introduction to OMG/CORBA. Proceedings of the 19th International Conference on

Software Engineering. Boston, USA. pp. 641-642.

Ephremides, A., et. al., 1987. A design concept for reliable mobile radio networks with frequency hopping

signalling. Proceedings of IEEE. Vo. 75. No. 1. pp.56-73.

Fall, K. and Varadhan, K., 2005. The ns Manual. The VINT Project, collaboration between researchers at UC

Berkeley, LBL, USC/ISI, and Xerox PARC. Available from <http://www.isi.edu/nsnam/ns/>. Last visited

15-July 2005.

Familiar Project, 2004. The Familiar Project - Familiar v.0.7.2. Available from <http://familiar.handhelds.org>.

Visited 08/2004.

Farmer, W. M., et. al., 1996. Security for mobile agents: authentication and state appraisal. Computer Security

ESORICS 96, 4th European Symposium on Research in Computer Security Proceedings. Berlin, Germany.

pp.118-30.

Fasbender, A., et. al., 1999. Any network, any terminal, anywhere. IEEE Personal Communications. Vol. 6.

No. 2. pp. 22 – 30

FIPA, 1997. FIPA: Foundation for Intelligent Physical Agents. Specifications. Available from

<http://www.fipa.org>. Last visited 21/07/2005.

Fischmeister, S., et. al., 2001. Evaluating the Security of Three Java-Based Mobile Agent Systems. G.P. Picco

(Ed.). Vol. 2240. pp. 31–41.

FleetNet, 2003. Inter-vehicle communications. Available from <http://www.fleetnet.de>. Last visited

21/07/2005.

Franklin, S. and Graesser, A., 1996. Is it an Agent, or just a Program?: A Taxonomy for Autonomous Agents.

Proceedings of the 3rd International Workshop on Agent Theories, Architectures, and Languages. Berlin,

Germany. pp. 21-35

 214

Franz, W., et. al., 2001. FleetNet - Internet on the Road. Proceedings of the 8th World Congress on Intelligent

Transportation Systems. Sydney, Australia. pp. 46-55

Fritzinger, J. S. and Mueller, M., 1996. JavaTM Security. White Paper. http://java.sun.com/docs/white/.

Frodigh, M., et. al., 2000. Wireless ad-hoc networking – The art of networking without a network. Ericsson

Review. No. 4. http://www.ericsson.com/about/publications/revie w/2000_04/files/2000046.pdf.

Funfrocken, S., 1998. Transparent Migration of Java-Based Mobile Agents. Proceedings of the Second

International Workshop on Mobile Agents (MA'98). Stuttgart, Germany. pp. 26-37.

Garcia-Luna-Aceves, J. J., 1989. A unified approach to loop-free routing using distance vectors or link states.

SIGCOMM '89: Symposium proceedings on Communications architectures & protocols. Austin, Texas,

USA. pp. 212-223.

Garcis-Luna-Aceves, J. J. and Spohn, M., 1999a. Source-Tree Adaptive Routing (STAR) Protocol. IETF

MANET Working Group-Internet Draft. draft-ietf-manet-star-00.txt. Work in progress.

Garcis-Luna-Aceves, J. J. and Spohn, M., 1999b. Source-Tree Routing in Wireless Networks. Proceedings of

the 7th International Conference on Network Protocols. Toronto, Canada. pp. 273-282.

Garside, R. and Mariani, J., 1998. Java: First Contact, An Introduction to the Java Language and Object-

Oriented Programming. Published by Course Technology. ISBN: 185032316X.

Gavalas, D., et. al., 2001. Mobile software agents for decentralised network and systems management.

Microprocessors-and-Microsystems. Vol. 25, No. 2. pp. 101-109.

Geier, J. 2003. Overview of Wireless IEEE 802.11 Standards. Available from <http://www.wi-

fiplanet.com/tutorials/article.php/1439551>. Last visited 21/07/2005.

Gerla, M. and Tsai, J. T.-C., 1995. Multicluster, mobile, multimedia radio network. Wireless Networks. Vol.

1. No. 3. pp. 255-265.

Gerla, M., et. al., 2001. Fisheye State Routing Protocol (FSR) for Ad Hoc Networks. IETF MANET Working

Group-Internet Draft. draft-ietf MANET-fsr-02. txt. Work in progress.

Ghanea-Hercock, R., 2001. Mobile Software Agents. Journal of the Institution of British Telecommunications

Engineers. Vol. 2, Pt. 2. pp.54-8.

Gong, L., 1998. Java Security Architecure. Sun Microsystems, Inc. Available from

<http://java.sun.com/products/jdk/1.2/docs/guide/security/spec/security-specTOC.fm.html>. Last visited

21/07/2005.

Gosling, J., et. al., 2000. The Java Language Specification, 2nd edition. The Java Series. Published by Addison-

Wesley. USA. ISBN: 0201310082.

Gray, R. S., 1995. Agent Tcl: A transportable agent system. In Proceedings of the CIKM Workshop on

Intelligent Information Agents, 4th International Conference on Information and Knowledge Management.

Baltimore, USA.

Gray, R. S., 1998. D'Agents: Security in a multiple-language, mobile-agent system.

Gray, R. S., et. al., 2004. Outdoor experimental comparison of four ad hoc routing algorithms. MSWiM '04:

 215

Proceedings of the 7th ACM international symposium on Modelling, analysis and simulation of wireless

and mobile systems. Venice, Italy. pp. 220-229.

Graziano, A. M. and Raulin, M. L., 1993. Research Methods, A Process of Inquiry. 2nd edition. Published by

Allyn & Bacon. ISBN: 0065010906

Green, S., et. al., 1997. Software agents: A review. IAG report. Dublin, Ireland. Broadcom `Ereann Research,

Intelligent Agents Group.

Gupta, P. and Kumar, P. R., 1997. A system and traffic dependent adaptive routing algorithm for ad hoc

networks. Proceedings of the 36th IEEE Conference on Decision and Control. San Diego. pp. 2375-2380.

Haas, Z. J., et. al., 2002a. The Zone Routing Protocol (ZRP) for Ad Hoc Networks. Internet-Draft. draft-ietf-

manet-zone-zrp-04.txt. Work in progress.

Haas, Z. J., et. al., 2002b. Bordercasting Resolution Protocol (BRP). IETF Internet Draft, draft-ietf-manet-

brp-02.txt.

Haas, Z. J., et. al., 2002c. Intrazone Routing Protocol (IARP). IETF Internet Draft. draft-ietf-manet-iarp-

02.txt.

Hadjiefthymiades, S., et. al., 2002. Supporting the WWW in wireless communications through mobile agents.

Mobile Networks & Applications. Vol. 7, No. 4. pp. 305-313

Hagimont, D. and Ismail, L., 1997. A protection scheme for mobile agents on Java. Proceedings of the third

annual ACM/IEEE international conference on Mobile computing and networking. Budapest, Hungary.

Pp. 215-222.

Harrison, C. G., et. al., 1995. Mobile Agents: Are they a good idea. Technical Report. IBM T.J. Watson

Research Centre. New York, USA.

Hassanein, H. and Zhou, A., 2001. Routing with load balancing in wireless Ad-Hoc Networks. Proceedings of

the 4th ACM International Workshop on Modelling, Analysis, and Simulation of Wireless and Mobile

Systems. Rome, Italy. pp. 89-96.

Hayes-Roth, B., 1995. An Architecture for Adaptive Intelligent Systems. Artificial Intelligence: Special Issue on

Agents and Interactivity. Vol. 72. pp. 329-365.

Hemphill, D., 2003. J2ME Gets Personal. JAVAPro. Available from

<http://www.fawcette.com/javapro/2002_12/magazine/features/dhemphill/default_pf.asp>. Last visited

21/07/2005.

Hohl, F., 1998. Time Limited Blackbox Security: Protecting Mobile Agents from Malicious Hosts. Lecture

Notes in Computer Science. Vol. 1419. pp. 92-113.

Hu, Y. C. and Johnson D. B., 2004. Securing Quality-of-Service Route Discovery in On-Demand Routing for

Ad Hoc Networks. SASN '04: Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor

networks. Washington DC, USA. pp. 106-117.

Hurley, S. and Whitaker, R. M., 2002. An agent based approach to site selection for wireless networks.

Proceedings of the 2002 ACM symposium on Applied computing. Madrid, Spain. pp. 574-577.

 216

Hwang, K. and Gangadharan, M., 2001. Micro-Firewalls for Dynamic Network Security with Distributed

Intrusion Detection. Proceedings IEEE International Symposium on Network Computing and

Applications. Los Alamitos, USA. pp.68-79.

IBM, 2004. WebSphere Everyplace Micro Environment. Available from <http://www-

306.ibm.com/software/wireless/weme>. Visited 08/2004.

IBM, Inc., 1997. IBM Aglets software development kit. Technical Report home page. Available from

<http://www.trl.ibm.co.jp/aglets>. Last visited 21/07/2005.

IEEE Standards Association, 2003. Overview of IEEE Wireless Standards. 802.11™ Working Group for

Wireless Local Area Networks. Available from <http://standards.ieee.org/wireless/overview.html#802.11>.

Last visited 21/07/2005.

IEEE Standards, 802.11, 1999. IEEE Computer Society LAN MAN Standards Committee. Wireless LAN

Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11-1997. The

Institute of Electrical and Electronics Engineers, New York, USA.

http://grouper.ieee.org/groups/802/11/index.html.

IKV++, Inc., 2003. Grasshopper mobile agent system. Grasshopper Documentation. Available from

<http://www.grasshopper.de>. Last visited 21/07/2005.

Ince, D. and Freeman, A., 1997. Programming the Internet with Java. Published by Addison-Wesley. ISBN:

0201175495.

Insignia, 2004. Jeode - Java Virtual Machine for resource-constrained devices. Available from

<http://www.insignia.com/content/products/jvmProducts.shtml>. Visited: 08/2004.

Jacquet, P., et. al., 2000. Optimized Link State Routing (OLSR) Protocol, Internet Draft, draft-ietf-manet-olsr-

01.txt. Work in progress.

Jacquet, P., et. al., 2001. Optimized Link State Routing Protocol for Ad Hoc Networks. IEEE INMIC

Conference. Lahore, Pakistan.

Jaffe, J. M. and Moss, F. H., 1982. A Responsive Distributed Routing Algorithm for Computer Networks.

IEEE Transactions on Communications. Vol. 30. No. 7. pp. 1758-1762.

Jansen, W., 2000. Countermeasures for Mobile Agent Security. Computer Communications: Special Issue on

Advanced Security Techniques for Network Protection. Elsevier Science BV.

Jennings, N. and Woolridge, M., 1998. Agent Technology: Foundations, Applications and Markets. Published

by Springer.

Jiang, M., et. al., 2001. Cluster Based Routing Protocol (CBRP). Internet-Draft. draft-ietf-manet-cbrp-spec-01.

Work in progress.

Jiang, M.-H., et. al., 2002. An efficient multiple-path routing protocol for ad hoc networks. Computer

Communications. Vol. 25. No. 5. pp. 478-484.

Joa-Ng, M. and Lu, I.-T., 1999. A Peer-to-Peer zone-based two-level link state routing for mobile Ad Hoc

 217

Networks. IEEE Journal on Selected Areas in Communications, Special Issue on Ad-Hoc Networks. Vol.

17. No. 8. pp.1415-1425.

Johnson D. B., et. al., 2004. The Dynamic Source Routing protocol for Mobile Ad Hoc Networks (DSR).

Internet Engineering Task Force (IETF). Mobile Ad Hoc Networking working group (MANET) Official

Internet Draft. draft-ietf-manet-dsr-10.txt. Work in progress.

Johnson, D. B. and Maltz, D. A., 1996. Dynamic source routing in ad-hoc wireless networks. In Mobile

Computing. Chapter 5. Kluwer Academic Publishers. pp. 153-181.

Johnson, D. B., et. al., 2004. The Dynamic Source Routing protocol for Mobile Ad Hoc Networks (DSR).

Internet Engineering Task Force (IETF). Mobile Ad Hoc Networking working group (MANET) Official

Internet Draft. draft-ietf-manet-dsr-10.txt. Work in progress.

Jonsson, U. and Alriksson, F., 2000. MIPMANET: mobile IP for mobile ad hoc networks. Proceedings of the

first ACM international symposium on Mobile and ad hoc networking & computing. Boston, USA. pp.

75-85.

Jubin, J. and Tornow, J. D., 1987. The DARPA Packet Radio Network Protocols. Proceedings of the IEEE.

Vol. 75. No. 1. pp. 21-32.

Jul, E., et. al., 1988. Fine-grained mobility in the Emerald System. ACM Transactions on Computer Systems

(TOCS). Vol. 6, No. 1. pp. 109-133.

Kaplan, E. D., 1996. Understanding GPS: principles and applications. Artech House. Boston, MA.

Kapoor, R., et. al., 2001. Multimedia support over Bluetooth Piconets. Proceedings of the first workshop on

Wireless mobile Internet. Rome, Italy. pp. 50-55.

Karjoth, G. and Posegga, J., 2000. Mobile agents and telcos' nightmares. Annales des Telecommunications. vol.

55, no.7-8. pp. 388-400.

Karnik, N. M. and Tripathi, A. R., 2001. Security in the Ajanta mobile agent system. Software Practice and

Experience. Vol. 31, No. 4. pp.301-29.

Karp, B. and Kung, H. T., 1998. Dynamic neighbor discovery and loopfree, multi-hop routing for wireless,

mobile networks. Hardvard University, Draft. Available at <http://www.eecs.harvard.edu/~karp/aprl.ps>.

Last visited, 16-07-2005.

Keeble, S., 1995. Experimental Research 1, An introduction to Experimental Research. Published by the Open

Learning Foundation. ISBN: 0443052700

Ko, Y.-B. and Vaidya, N. H., 1998. Location-aided routing (LAR) in mobile ad hoc networks. MobiCom '98:

Proceedings of the 4th annual ACM/IEEE international conference on Mobile computing and networking.

Dallas, Texas, USA. pp. 66-75.

Kotz, D., et. al., 1997. Agent TCL: Targeting the needs of Mobile Computers. IEEE Internet Computing. Vol.

1, No. 4. pp. 58-67.

Kotzanikolaou, P., et. al., 2000. Secure Transactions with Mobile Agents in Hostile Environments. Fifth

Austalasian Conference on Information Security and Privacy. Brisbane, Australia. pp. 289-297.

 218

Krugel, C., et. al., 2002. SPARTA-a mobile agent based intrusion detection system. Advances in Network and

Distributed Systems Security, First Annual Working Conference on Network Security. Norwell, USA. pp.

361–370.

Lang, G. and Heiss, G. D., 1984. A Practical Guide to Research Methods. Published by University Press of

America. ISBN: 081913726X

Lange, D. B. and Oshima, M. 1999. Seven good reasons for mobile agents. Communications of the ACM. Vol.

42, No. 3. pp 88-89.

Lee, S. J., et. al., 2002. On-demand multicast routing protocol in multihop wireless mobile networks. Mobile

Network Applications. Vol. 7. No. 6. pp. 441-453.

Lee, S.-J., et. al., 2001. Wireless ad hoc multicast routing with mobility prediction. Mobile Network

Applications. Vol. 6. No. 4. pp. 351-360.

Lee, T. O., et. al., 2001. An agent-based micropayment system for E-commerce. E-commerce agents,

Marketplace solutions, security issues, and supply and demand. Berlin, Germany. pp.247-63.

Lindholm, T. and Yellin, F., 1999. The Java Virtual Machine Specification, 2nd edition. The Java Series.

Published by Addison-Wesley. USA. ISBN: 020163452X

Liu, J., et. al., 2002. A Unified Framework for Resource Discovery and QoS-Aware Provider Selection in Ad

Hoc Networks. SIGMOBILE Mobile Computing and Communications Review. Vol. 6, No. 1. pp. 13-21.

Maes, P., 1995. Artificial Life Meets Entertainment: Life like Autonomous Agents. Communications of the

ACM. Vol. 38, No. 11. pp. 108-114.

Marques, P., et. al., 2001. Providing applications with mobile agent technology. IEEE Open Architectures and

Network Programming Proceedings. Piscataway, USA. pp.129-36.

Marrow, P. and Ghanea-Hercock, R., 2000. Mobile software agents-insect-inspired computing. BT

Technology Journal. Vol. 18, No. 4. pp. 129-139.

Marwaha, S., et. al., 2002. Mobile Agents based Routing Protocol for Mobile Ad Hoc Networks. Symposium

of Ad-hoc networks. Proceedings of the IEEE Globecom.

McDonald, A. B. and Znati, T., 2000. Predicting node proximity in ad-hoc networks: a least overhead adaptive

model for selecting stable routes. MobiHoc '00: Proceedings of the 1st ACM international symposium on

Mobile ad hoc networking & computing. Boston, Massachusetts, USA. pp. 29-33.

McQuillan, J. M., et. al., 1980. The New Routing Algorithm for the ARPANET. IEEE Transactions on

Communications. Vol. 28. No. 5. pp. 711-719.

Microsoft, Corporation, 2004. Windows Mobile-based Pocket.PCs. Available from

<http://www.microsoft.com/windowsmobile/pocketpc/ppc/default.mspx>. Visited: 08/2004.

Migas, N. and Buchanan, W. J., 2005. Ad-hoc Routing Metrics and Applied Weighting for QoS support. Ad-

hoc networks. To be published.

 219

Migas, N., et. al., 2003a. Mobile Agents for Routing, Topology Discovery, and Automatic Network

Reconfiguration in Ad-Hoc Networks. 10th IEEE International Conference and Workshop on the

Engineering of Computer Based Systems. Huntsville, USA, pp. 200-206.

Migas, N., et. al., 2003b. MARIAN: A Framework using Mobile Agents for Routing in Ad-hoc Networks.

IADIS International Conference on WWW/Internet, Algarve, Portugal. pp. 1129-1134.

Migas, N., et. al., 2004a. Migration of Mobile Agents in Ad-hoc, Wireless Networks. 11th IEEE International

Conference and Workshop on the Engineering of Computer-Based Systems (ECBS'04). Brno, Czech

Republic. pp. 530-535.

Migas, N., et. al., 2004b. Benchmarking Bandwidth and Resource Consumptions of Java-based Proxy PDAs in

Ad-hoc Networks. Expert Update. Vol. 7, No. 3. pp. 9-17.

Migas, N., et. al., 2005. Metric Evaluation of Embedded Java-Based Proxies on Handheld Devices in Cluster-

Based Ad Hoc Routing. 12th IEEE International Conference and Workshops on the Engineering of

Computer-Based Systems (ECBS'05). Washington D.C., USA. pp. 147-154.

Mills, D.L., 1991. Internet time synchronization: the Network Time Protocol. IEEE Transactions on

Communications Vol. 39. No. 10. pp. 1482-1493.

Minar, N., et. al., 1999. Cooperating Mobile Agents for Dynamic Network Routing. Published by Springer-

Verlag. ISBN: 3540655786

Mitsubishi, Electric, 1997. Concordia. Available from <http://www.merl.com/projects/concordia2>. Last

visited 21/07/2005.

Mohapatra, P. K., 2000. Public key cryptography. Crossroads. Vol. 7, No. 1. pp. 14-22.

Murthy, S. and Garcia-Luna-Aceves, J. J., 1995. A routing protocol for packet radio networks. Proceedings of

the 1st annual international conference on Mobile computing and networking. Berkeley, California, USA.

pp. 86-95.

Necula, G. and Lee, P., 1996. Safe Extensions without Run-Time Checking. Proceeding of the 2nd Symposium

on Operating System Design and Implementation (OSDI ’96). Seattle, USA. pp. 229-243.

Nikaein, N., et. al., 2000. DDR: distributed dynamic routing algorithm for mobile ad hoc networks.

International Symposium on Mobile Ad Hoc Networking & Computing. Proceedings of the 1st ACM

international symposium on Mobile ad hoc networking & computing. Boston, Massachusetts, USA. pp.

19-27.

Nikaein, N., et. al., 2001. HARP: Hybrid Ad hoc Routing Protocol. Proceedings of IST: International

Symposium on Telecommunications. Teheran, Iran.

Nishiyama, H. and Mizoguchi, F., 2001. Design of security system based on immune system. Proceedings of

the 10th IEEE International Workshop on Enabling Technologies: Infrastructure for Collaborative

Enterprises. Los Alamitos, USA. pp. 138-43.

 220

NSICom, 2004. CrEme™ - The Java™ Enabler for Windows® CE. Available from

<http://www.nsicom.com/Default.aspx?tabid=138>. Visited: 08/2004.

ObjectSpace, Inc, 1997. ObjectSpace Voyager Core Technology. Technical report.

http://www.cis.upenn.edu/~bcpierce/courses/629/papers/unfiled/AgentPlatformsW97.PDF.

Ogier, R., et. al., 2003. Topology Dissemination Based on Reverse-Path Forwarding (TBRPF).Internet draft.

draft-ietf-manet-tbrpf-10.txt. Work in progress.

OMG, MASIF, 1997. Mobile Agent Facility Specification. Object Management Group (OMG). Available

from <http://www.omg.org/docs/orbos/97-10-05.pdf>. Last visited 21/07/2005.

Papadimitratos, P., et. al., 2002. Path Set Selection in Mobile Ad Hoc Net-works. MobiHoc '02: Proceedings

of the 3rd ACM international symposium on Mobile ad hoc networking & computing. Lausanne,

Switzerland. pp. 1-11.

Parekh, A. K., 1994. Selecting routers in ad-hoc wireless networks. Proceedings of the SBT/IEEE International

Telecommunications Symposium.

Pei, G., et. al., 1999. A Wireless Hierarchical Routing Protocol with Group Mobility. Proceedings of IEEE

Wireless Communications and Networking Conference (WCNC). New Orleans, LA, USA. pp. 1538-1542.

Perkins, C. and Bhagwat, P., 1994. Highly Dynamic Destination-Sequenced Distance-Vector Routing

(DSDV) for Mobile Computers. Proceedings of the ACM SIGCOMM'94 Conference on Communications

Architectures, Protocols and Applications. London, UK. pp. 234-244.

Perkins, C. E. and Royer, E. M., 1999. Ad-hoc On-Demand Distance Vector Routing. Proceedings of the 2nd

IEEE Workshop on Mobile Computing Systems and Applications. New Orleans, USA. pp. 90-100.

Perkins, C. E., 2001. Ad-hoc networking: an introduction. Ad-hoc networking. Published by Addison-Wesley.

ISBN: 0201309769

Perkins, C. E., et. al., 2000. Quality of Service for Ad Hoc On-Demand Distance Vector Routing. IETF

Internet draft. draft-ietf-manet-aodvqos-00.txt. Work in progress.

Perkins, C. E., et. al., 2003. Ad hoc On-Demand Distance Vector (AODV) Routing. Internet Draft. draft-ietf-

manet-aodv-13.txt. Work in progress.

Peysakhov, M., et. al., 2004. Network Awareness for Mobile Agents on Ad Hoc Networks. Third International

Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS'04). Vol. 1. No. 1. pp. 368-

376.

Pfleeger, C. P., 1997. Security in Computing, 2nd edition. Published by Prentice Hall. ISBN: 0-13-185794-0.

Pham, V. A. and Karmouch, A., 1998. Mobile software agents: an overview. IEEE Communications. Vol. 36,

No. 7. pp. 26-37.

Phan, T., et al., 2002. Challenge: integrating mobile wireless devices into the computational grid. Proceedings

of the eighth annual international conference on Mobile computing and networking. Atlanta, USA, pp

271-278.

 221

Ping, Y., et. al., 2004. Securing ad hoc networks through mobile agent. InfoSecu '04: Proceedings of the 3rd

international conference on Information security. Shanghai, China. pp. 125-129.

Powell, M. L. and Miller, B. P., 1983. Process migration in DEMOS/MP. Proceedings of the ninth ACM

symposium on Operating systems principles. Bretton Woods, USA. pp. 110-119.

Puliafito, A., et. al., 2000. MAP: Design and implementation of a mobile agents' platform. Journal of Systems

Architecture. Vol. 46, No. 2. pp.145-62.

Qi, H. and Wang, F., 2001. Optimal itinerary analysis for mobile agents in ad hoc wireless sensor networks.

Proceedings International Conference on Wireless Communications. Calgary, Canada. pp. 147-153.

Radhakrishnan, S., et. al., 1999. DST - a routing protocol for ad hoc networks using distributed spanning trees.

IEEE Wireless Communications and Networking Conference. New Orleans, USA. pp. 100-104.

Rajaraman, R., 2002. Topology control and routing in ad hoc networks: a survey. ACM SIGACT News. Vol.

33, No. 2. pp. 60-73.

Raju, J. and Garcia-Luna-Aceves, J. J., 1999. A New Approach to On-demand Loop-Free Multipath Routing.

Proceedings of the 8th Annual IEEE International Conference on Computer Communications and

Networks (ICCCN). Boston, Massachusetts. pp. 522-527.

Ramanathan, R. and Steenstrup, M., 1998. Hierarchically-organized, multihop mobile wireless networks for

quality-of-service support. Mobile Network Applications. Vol. 3. No. 1. pp. 101-119.

Ramarathinam, V. and Labrador, M. A., 2002. Performance Analysis of TCP over static Ad-Hoc Wireless

Networks. In Proceedings of the ISCA 15th International Conference on Parallel and Distributed

Computing Systems (PDCS). Louisville, USA. pp. 410-415.

Reilly, D. and Reilly, M., 2002. Java Network Programming and Distributed Computing. Published by

Addison-Wesley. ISBN: 0201710374.

Riordan, J. and Schneider, B., 1998. Environmental Key Generation Towards Clueless Agents. Lecture Notes

in Computer Science. Vol. 1419. pp. 15-24.

Roberts, L. G., 1967. Multiple Computer Networks and Intercomputer Communication. Proceedings of the

ACM Symposium on Operating System Principles. 1967, pp. 3.1-3.6.

Roth, V., 1998. Secure Recording of Itineraries through Cooperating Agents. In Proceedings of the 4th

ECOOP Workshop on Mobile Object Systems: Secure Internet Mobile Computations. Brussels, Belgium.

pp. 147-154.

RoyChoudhury, R., et. al., 2000. A distributed mechanism for topology discovery in ad hoc wireless networks

using mobile agents. MobiHoc '00: Proceedings of the 1st ACM international symposium on Mobile ad

hoc networking & computing. Boston, Massachusetts, USA. pp. 145-146.

Royer, E. M. and Toh C. K., 1999. A Review of Current Routing Protocols for Ad-Hoc Mobile Wireless

Networks. IEEE Personal Communications Magazine. Vol. 6, No. 2, pp. 46-55.

Samaras, G. and Panayiotou, C., 2002. Personalized Portals for the Wireless User based on Mobile Agents.

International Conference on Mobile Computing and Networking, Proceedings of the second International

 222

Workshop on Mobile Commerce. Atlanta, USA. pp. 70-74.

Sander, T. and Tchudin, C. F., 1998. Mobile Agents against Malicious Hosts. Lecture Notes in Computer

Science. Pp. 44-60.

Schneider, F. B., 1997. Towards Fault-Tolerant and Secure Agentry. Proceedings of 11th International

Workshop. Saarbr cken, Germany. pp. 1-14.

Schwartz, M. and Stern, T. E, 1980. Routing Techniques Used in Computer Communication Networks. IEEE

Transactions on Communications. Vol. 28. No. 4. pp. 539-552.

Sedgewick, R., 1983. Weighted Graphs. Chapter 31. Addision-Wesley.

Shankar, A. U., et. al., 1992a. Transient and steady-state performance of routing protocols: Distance vector

versus link-state. Journal of Internetworking: Research and Experience. Vol. 6. pp. 59-87.

Shankar, A. U., et. al., 1992b. Performance comparison of routing protocols using MaRS: distance-vector

versus link-state. SIGMETRICS Performance Evaluation Review. Vol. 20. No. 1. pp. 181-192.

Silva, A. R., et. al., 2001. Towards a reference model for surveying mobile agent systems. Autonomous Agents

and Multi Agent Systems. Vol. 4, No. 3. pp.187-231.

Smith, D. C., et. al., 1994. KidSim: Programming Agents Without a Programming Language. In

Communications of the ACM. Vol. 37, No. 7. pp. 54-67.

Spafford, E. H. and Zamboni, D., 2000. Intrusion detection using autonomous agents. Computer Networks.

Vol. 34, No. 4. pp.547-70.

Stajano, F. and Anderson, R., 2000. The resurrecting duckling: Security issues for ad-hoc wireless networks. In

the Proceedings of the 7th International Workshop on Security Protocols. Cambridge, UK. pp. 172-182.

Stamos, J. W. and Gifford, D. K., 1990. Remote Evaluation. ACM Transactions on Programming Languages

and Systems (TOPLAS). Vol. 12, No. 4. pp. 537-564.

Su, W. and Gerla, M., 1999. IPv6 flow handoff in ad hoc wireless networks using mobility prediction.

GLOBECOM: IEEE Global Telecommunications Conference. Rio de Janeiro, Brazil. pp. 271-275.

Su, W., et. al., 2001. Mobility prediction and routing in ad hoc wireless networks. International Journal of

Networks Management. Vol. 11. No. 1. pp. 3-30.

Sun, Microsystems, 2003a. Java™ 2 Platform, Micro Edition. Available from <http://java.sun.com/j2me/j2me-

ds.pdf>. Last visited 21/07/2005.

Sun, Microsystems, 2003b. The Java™ 2 Platform, Standard Edition. Available from

<http://java.sun.com/j2se>. Last visited 21/07/2005.

Sun, Microsystems, 2003c. JavaTM 2 Micro Edition (J2METM). Sun Community Source Licensing (SCSL).

Available from <http://wwws.sun.com/software/communitysource/j2me/index.html>. Last visited

21/07/2005.

Tanenbaum, A. S., 1996. Computer Networks 3rd Edition. Published by Prentice Hall, Inc. ISBN: 013394248-

1.

 223

Tay, B. H. and Ananda, A. L., 1990. A survey of remote procedure calls. ACM SIGOPS Operating System

Review. Vol. 24, No. 3. pp. 68-79.

Tcl, Developer, 2003. Tcl language. Available from <http://www.tcl.tk>. Last visited 21/07/2005.

Tianfield, H., 2001. Enterprise Federation and Its Multi-agent Modelization. E-Commerce Agents,

Marketplace Solutions, Security Issues, and Supply and Demand. pp. 295--322.

Tianfield, H., 2003. Multi-Agent Autonomic Architecture and Its Application in E- Medicine. IEEE/WIC

International Conference on Intelligent Agent Technology (IAT'03). pp. 601.

Toh, C., 1996. A novel distributed routing protocol to support ad-hoc mobile computing. IEEE 15th Annual

International Phoenix Conference. pp. 480 - 486.

Tripathi, A. R., 1998. Design Issues in Mobile Agent Systems. PhD Thesis. Computer Science & Engineering,

University of Minnesota, USA. pp. 1-136.

Tripathi, A. R., et. al., 2000. Experiences and Future Challenges in Mobile Agent Programming.

Microprocessors and Microsystems. Vol. 25, No. 2. pp. 121-129.

Urquhart, N., et. al., 2003. Routing Using Evolutionary Agents and Proactive Transactions. EvoWorkshops.

pp. 696-705.

Vigna, G., 1997. Protecting Mobile Agents through Tracing. Proceedings of the Third Workshop on Mobile

Object Systems. Jyvalskyla, Finland.

Vigna, G., 1999. Mobile Agents and Security. Published by Springer-Verlag. ISBN: 3540647929.

Vinaja, R., 2001. Mobile agents, mobile computing and mobile users in global e-commerce. Managing

Information Technology in a Global Environment, Information Resources Management Association

International Conference. PA, USA. pp.173-6.

Wahbe, R., 1994. Efficient software-based fault isolation. Proceedings of the fourteenth ACM symposium on

Operating system principles. Asheville, USA. pp. 203-216.

Wang, H., 2000. On mobile agent-based scheme for e-commerce on the Internet. 16th World Computer

Congress 2000, Proceedings of Conference on Intelligent Information Processing. Beijing, China. pp. 386-

9.

Wang, X., et. al., 2001. A Multicast Routing Algorithm Based on Mobile Multicast Agents in Ad-Hoc

Networks. Special Issue on Internet Technology, IEICE TRANS. COMMUN. Vol. E84-B, No. 8. pp.

2087-2094.

Wang, Y. and Pang, X., 2003. Security and robustness enhanced route structures for mobile agents. Mobile

Network Applications. Vol. 8. No. 4. pp. 413-423.

White, J., 1996. Mobile Agents White Paper. Technical report. General Magic.

White, J., 1997. Telescript technology: An introduction to the language. General Magic Inc. White paper.

Wolthusen, S. D., 2002. Access and use control using externally controlled reference monitors. ACM SIGOPS

Operating Systems Review. Vol. 36, No. 1. pp. 58-69.

Wong, D., et. al., 1997. Concordia: An Infrastructure for Collaboration Mobile Agents. In Proceedings of the

 224

first International Workshop on Mobile Agents (MA97). Berlin, Germany. pp. 86-97.

Woo, S.-C. and Singh, S., 2001. Scalable Routing Protocol for Ad Hoc Networks. Wireless Networks. Vol. 7.

No. 5. pp. 513-529.

Wooldridge, M. J. and Jennings, N. R., 1995. Agent Theories, Architectures, and Languages: a Survey.

Intelligent Agents; Workshop on Agent Theories, Architectures, and Languages. Berlin, Germany. pp. 1-39.

Wu, H. K. and Chuang, P. H., 2001. Dynamic QoS Allocation for Multimedia Ad Hoc Wireless Networks.

Mobile Networks and Applications. Vol. 6, No. 4. pp. 377-384.

Yi, Y., et. al., 2002. The selective intermediate nodes scheme for Ad Hoc on-demand routing protocols. ICC

2002 - IEEE International Conference on Communications. Vol. 25. No. 1. pp. 3191 - 3196.

Zhang, M., et. al., 2001. Towards a Secure Agent Platform Based on FIPA. MATA 2001. Montreal, Canada.

pp. 277-289.

Zhang, R., et. al., 2001. Multi-agent Based Intrusion Detection Architecture. Proceedings of 2001

International Conference on Computer Networks and Mobile Computing, IEEE Computer Society. Los

Alamitos, USA. pp. 494-501.

Zorzi, M., 1998. Mobile and Wireless Telecommunication Networks. Centre for Wireless Communications.

University of California San Diego, UCSD. February 18, 2000.

 225

A Appendix - Additional information

A.1 Java Micro Edition (J2ME)

The Java 2 Micro Edition (J2ME) is the developers’ platform for consumer and embedded
devices, such as mobile phones, PDAs, TV set-top boxes, and in-vehicle telematics systems
(Sun, Microsystems, 2003a, Sun, Microsystems, 2003c). It is highly suitable for the high-end
PDA market. It contains full support for graphical user interfaces (GUI), including support
for applets, as well as a complete toolkit. The initial implementation of J2ME specification
was PersonalJava, which was created a few years ago to support Java on Pocket PCs (Win-
dows OP) and other handheld devices. A new implementation is Personal Profile, which
allows moving code between more limited devices (such as PalmOS devices) and more pow-
erful devices (such as Pocket PC) with little or no modification. Since J2ME is designed for
limited devices, it contains a subset of classes when compared to Java 2 Standard Edition
(J2SE) (Sun Microsystems, 2003b), and also includes classes specific to J2ME that are not
present in the J2SE libraries. Figure A.1 illustrates the relationship of J2ME (Sun Microsys-
tems, 2003a, Sun Microsystems, 2003c) with J2SE.

J2SE

J2ME

J2SE

J2ME

Figure A.1: Relationship between J2ME and J2SE

J2ME has powerful capabilities since it is based on JDK 1.3.1 (Sun, Microsystems, 2003b),
although it does not fully support JDK 1.3.1 because of the requirement of a small footprint,
since it aims at limited devices such as PDAs. Some of the most important features supported
by J2ME are (Hemphill, D., 2003):

• Collections Framework. The full set of collections framework is supported in J2ME such

 226

as Vector, Hashtable, Arrays, Linked lists, and so on.
• Interface Capabilities. J2ME provides full AWT support. However, Swing is not sup-

ported.
• Networking. J2ME provides fundamental networking support such as HTTP, File,

TCP/IP Socket, and Datagram connections, while other connection types are optional
(such as HTTPS, SMTP, or FTP).

• Data Storage. A variety of support is provided for data storage, such as File, RandomAc-
cesFile, FileInputStream, FileOutputStream, and so on. JDBC support (the java.sql
packages) is not included in J2ME, however, implementers may choose to provide sup-
port as part of their offering.

• Alpha Blending. J2ME provides support for alpha blending, which offers the ability to
mix source and destination pixels together to provide transparency and blended image ef-
fects.

• Remote Method Invocation (RMI). J2ME supports a subset of RMI, namely the Re-
mote and Registry interfaces. The role of Remote and Registry interfaces is somewhat
different than RMI. It exists to provide a way to manage intra-JVM class communica-
tions, or more specifically, it provides an interface to manage interactions between classes
that are loaded into the same JVM, but by different class loaders.

• Java Native Interface (JNI). This is optional, and thus it is up to the user to decide
whether there is adequate storage space in her/his devices for this package. On the other
hand, portability issues may arise due to the fact that JNI support is not present by de-
fault.

A.2 Suitability of Java for the Mobile Agent Paradigm

As a language, Java is ideally suited to the development of software agents (Reilly, D. and
Reilly, M., 2002). Also, Java is the predominant language for mobile agent systems, both for
implementing mobile agent execution environments and for writing mobile agent applica-
tions (Binder, W. and Roth, V., 2002). Java has several features that are not found in any
other language, which may directly facilitate efficient implementation of mobile agents (Fun-
frocken, S., 1998). Therefore, mobile agent and mobile agent system design and
development may directly benefit from key features of Java:

• Portability of mobile code. Code portability is achieved by the extra layer of code inter-

pretation (Hagimont, D. and Ismail, L., 1997). Java Runtime Environments (JREs) are
available for most hardware platforms and operating systems, such as Linux, Windows,

 227

and so on. Thus, mobile agent systems written in Java can in theory run flawlessly on any
heterogeneous machine that has a Java runtime environment installed.

• Java object serialisation. Java’s serialisation support allows the conversion of an agent
and its state into a form suitable for network transmission, and the reconstruction of the
agent on the other end. This process is almost transparent to the programmer.

• Dynamic class loading. This technique allows the dynamic loading of classes included in
an application either locally or through the network by means of a hierarchy of class
loaders.

• Multi-threading. A mobile agent system may execute multiple agents and service com-
ponents concurrently in a time-sharing fashion. Multi-threading can effectively and
efficiently cope with this demand.

• Java’s security model. It generally imposes security restrictions for code which may be
considered untrusted. Code loaded by Java’s class loaders is subject to security restric-
tions, and thus protects the agents and the host from unauthorised access. Also, classes
that are downloaded from the Internet are placed within the sandbox and executed with
certain limitations.

• Separate class naming space. Each class loader constitutes a separate name space that can
be used to isolate classes of the agent system and of different agents from each other, and
thus provides security against agent-to-agent attacks.

• Type-Safe language. It does not allow direct access to the address space of the program
and it is strongly typed, implementing rigorous compile and runtime checks. Therefore,
when a block of code is executed, Java makes sure that types are not misunderstood and
data is not mistaken.

Other features include: bytecode verification, strong typing, automatic memory manage-
ment, dynamic bound checks, and exception handlers (Fritzinger, J. S. and Mueller, M.,
1996).

A.3 Wireless Standards: IEEE 802.11

The IEEE 802.11 specifications are wireless standards that detail an "over-the-air" interface
between a wireless client and a base station or access point, as well as among wireless clients
(IEEE Standards Association, 2003). The specifications address both the Physical and Media
Access Control (MAC) layers, which are adapted to resolve compatibility issues between
manufacturers of Wireless Local Area Network (WLAN) equipment. The 802.11 wireless
standards include (IEEE Standards, 802.11, 1999, Geier, J. 2003):

 228

• IEEE 802.11a. This is a Physical Layer (PHY) standard that specifies operating in the

5GHz UNII (Unlicensed National Information Infrastructure) band using Orthogonal
Frequency Division Multiplexing (OFDM). This standard supports data rates ranging
from 6 to 54Mbps. Because of operation in the 5 (GHz) bands, 802.11a offers much less
potential for radio frequency (RF) interference than other PHYs (e.g., 802.11b and
802.11g) that utilize 2.4 (GHz) frequencies.

• IEEE 802.11b. Also known as Wi-Fi is the most commonly used standard in WLAN
communications. It operates in the 2.4 (GHz) band and can transmit up to 11 (Mbps).
The maximum bandwidth can be achieved if wireless devices implementing this standard
are in a distance within 100 feet. Bandwidth gradually decreases as the source and the
destination are moving further apart. Most wireless devices such as mobile phones,
PDAs, laptops, and so on, utilise this standard to create ad-hoc networks.

• IEEE 802.11c. It defines wireless bridge operations. This standard is mainly utilised by
developers of access points.

• IEEE 802.11d. It defines standards for companies developing wireless products in differ-
ent countries. This is especially important for operation in the 5 (GHz) bands because
the use of these frequencies differ widely from one country to another.

• IEEE 802.11e. It defines enhancements to the 802.11 MAC for Quality of Service
(QoS) support, in order to optimise the transmission of multimedia traffic such as voice
and video. Upgrading an existing 802.11 access point to comply with 802.11e standard,
may be achieved through relatively simple firmware changes.

• IEEE 802.11f. It specifies an inter access point protocol that provides the necessary in-
formation that access points need to exchange, in order to provide support for 802.11
distribution system functions (e.g., roaming).

• IEEE 802.11g. It aims on the development of a higher speed extension to the 802.11b
PHY, while operating in the same 2.4 (GHz) band. Available bandwidth may be up to
54 (Mbps). 802.11g is a strong candidate for the wireless format of the near future.
Thus, allowing users to create ad-hoc networks at higher speeds.

• IEEE 802.11h. It provides dynamic channel selection (DCS) and transmit power control
(TPC) for devices operating in the 5 (GHz) band (802.11a), aiming to avoid interference
with satellite communications and any other communications operating in the 5 (GHz)
band.

• IEEE 802.11i. It defines enhancements to the MAC Layer in order to provide Wired
Equivalent Privacy (WEP). This standard aims to provide stronger encryption techniques
such as Advanced Encryption Standards (AES), and thus enhance security in wireless

 229

communications.

A.4 MARIAN Terminology

This section summarises the terminology that is used in Chapter 3.

• Node-ID. A unique, real number between the range of 0 and 100, which results from

the device’s mobility patterns, multiplexed with the device’s performance characteristics.
Its uniqueness may be guaranteed in a distributed environment by translating the node’s
address into an integer number and appending the number into the decimal part of the
original cluster-head metric.

• Routing-ID. An array of preliminary metrics, deduced by the output of standard per-
formance tests and monitoring status. The performance tests are executed on each device,
in advance, including tests, such as complex calculation, buffering capability, network
throughput, error packet percentage, and so on. The monitoring status includes varying
parameters, such as the CPU utilisation, memory usage, and battery level, if applicable.

• NodeAddress. It is a string which uniquely identifies a mobile node within an ad-hoc
network. The node address is typically the IP address of the node’s wireless interface and
is used for the purpose of routing and interoperability with fixed networks. Similarly to
CBRP, the node address is represented by the IP address in this specification. In case of a
node having two or more IP addresses, the default address is selected for its node address.

• AgencyAddress. Similarly to node address, the agency address is essentially a string, con-
sisting of a node’s IP address along with the protocol and port number used for agent
communications, and the given name of the mobile agent system. The agency address
can be customized by each node, however, its uniqueness among a distributed environ-
ment is guaranteed, as long as there are no IP address duplicates. The agency address is
required for mobile agent migration and agent communication services.

• RegionAddress. It is very similar to the agency address, with the only difference being
that the region registry implements a registration service for agencies, agents, and ser-
vices, rather than an execution environment for agents. In particular, only cluster-heads
are required to implement a region registry, with purpose of maintaining information
about all other agencies, stationary and mobile agents, and services, which may exist
within their own clusters. Therefore, a node can effectively and efficiently retrieve infor-
mation about other nodes (within its cluster) that are two hops away by quoting the
cluster-head’s region registry.

 230

• Cluster. A cluster, in respect to ad-hoc networks, is defined as a collection of mobile
nodes sharing some common characteristics, such as nearby geographical position, in
which devices are at a maximum of N hops away, where N is defined by the cluster-
horizon. MARIAN defines the horizon being at most two hops away, while cluster-
horizon values greater than two hops will be investigated in further work. The cluster-
head, elected by the clustering process, is always directly linked to every node in its clus-
ter, whereas the remaining nodes may be up to two hops away. Thus, the size of the
cluster is defined by the wireless transmission range of the cluster-head. A node is elected
as a cluster-head, if and only if, its cluster-head metric is the strongest amongst its
neighbouring nodes or the node has no neighbours.

• Host cluster. A mobile node can belong to one or more clusters, providing that the node
is in direct communication range to the cluster’s (s’) cluster-head(s). Therefore, a node X
regards cluster Y as its host cluster, if and only if, it has a communication link to the clus-
ter-head of cluster Y. Along this principle, a node can have two or more host clusters.

• Cluster-head. Elections take place in the beginning of the clustering formation process.
The fitter device is elected as a cluster-head and a cluster is formed. The cluster-head is
always in direct communication range to every device in the same cluster. In addition,
two or more cluster-heads must not be directly linked. If this happens, the fitter device is
chosen to remain as a cluster-head and the remaining devices change their roles accord-
ingly. Criteria that make one device fitter than another include: low mobility, high
processing power, high memory and battery capacity, and low utilisation factors, and so
on. A cluster-head’s main responsibilities include: routing within its own cluster, main-
taining a region registry, and maintaining routing tables for inter-cluster routing.

• Cluster address. The cluster address of a cluster Y with cluster-head X, is X’s node ad-
dress, or, a combination of X’s region registry and agency addresses.

• Undecided. A node that has not decided its role yet, and has thus not completed its clus-
tering formation process as yet.

• Member. A node N which belongs to one, and only one, cluster Y. Member nodes have
no routing responsibilities.

• Gateway. A node which belongs to two or more clusters and is thus responsible for inter-
cluster routing.

• Distributed Gateway. A pair of nodes which are directly linked, however, each node be-
longs to different clusters. Thus these clusters, which these nodes belong to, are linked
with this distributed gateway pair. This pair can be used for inter-cluster routing, in a
similar way to gateway nodes.

 231

A.5 Benchmarking the routing capabilities of a proxy-based ad-
hoc routing device

As previously mentioned, the proxy throughput agent requires the assistance of other agents,
such as the TCP transmitter agent, the TCP receiver agent, and the throughput calculation
agent (see Figure A.2). In addition to these, a number of other agents are linked to this test,
such as the battery monitoring agent, the temperature variation monitoring agent, the CPU
utilisation monitoring agent, and the heap memory usage monitoring agent. This is due to
the fact that CPU, memory, battery, and temperature measurements may provide a better
insight in the performance of a routing device than throughput alone.

This test requires three networked nodes, a transmitting, a proxy, and a receiving, where
raw data are passed from the transmitting to the proxy and from the proxy to the receiving
device. The throughput calculation is derived by measuring the time taken for certain
amounts of data to arrive at the destination through the intermediate device. This test can
also be used to measure the speed of the local network protocol stack by running the trans-
mitter, proxy, and receiver agents on the same machine.

File outputFile output

Librarian

Test results
gathering

Proxy
TCP transmitter TCP receiver

Throughput
calculation

Battery

Heap memory

Temperature
variation

CPU utilisation

Figure A.2: Proxy throughput and resource consumptions multi-agent model

 232

The TCP transmitter agent resides in the transmitter device, while agent the TCP receiver
agent resides in the receiver device, while agent the throughput calculation agent resides in
both. The remaining agents reside in the PDA, apart from the data gathering agent which is
mobile, and its purpose is to collect the throughput results, which are generated by the
throughput calculation agents. In particular, the TCP transmitter agent is responsible for
transmitting heavy network traffic to the proxy agent, which then forwards it to the TCP
receiver agent. The throughput calculation agent is responsible for calculating the through-
put achieved by the proxy device, for each successful iteration, from the perspective of the
transmitting device, as well as the receiving device. The agent measures the time taken for the
data to arrive at the destination and calculates the throughput by performing simple arithme-
tic calculations. This test is likely to yield important results concerning the performance of
different device types, when used as routing elements. Similarly to all other tests, the results
are then passed to the librarian agent for storage, and maintenance.

Hardware used for the preliminary experimentation cycle
Three different device types were selected, including a workstation, a laptop, and a PDA.
The hardware characteristics are summarized below:

Workstation

Processor: 1000 MHz Intel Pentium III.
Memory: 512-MB SDRAM.
WiFi: IEEE 802.11b enabled.
Support: USB and Serial.

Laptop

Processor: 750 MHz Intel Pentium II.
Memory: 256-MB SDRAM.
WiFi: IEEE 802.11b enabled.
Support: USB and Serial support.

Handheld (PDA)

Processor: 400 MHz Intel PXA250.
Memory: 64-MB SDRAM; 48-MB Flash ROM Memory.
Support: USB and Serial cable.
Bluetooth: enabled.
WiFi: IEEE 802.11b enabled.
Display: 64K colour TFT LCD.
Power Supply: 1250 mAh Lithium-Ion Polymer removable / rechargeable battery.

 233

Software used for the preliminary experimentation cycle
The Operating System, Java Runtime environment, agent-platform, and agent-based soft-
ware, used throughout this experimentation cycle, are presented bellow:

Workstation

OS: Microsoft Windows XP Professional.
Java: Sun Microsystems, J2SE v. 1.4.2 Java Runtime Environment (JRE).
Agent platform: Grasshopper v2.2.4 (SE)
Agent-based software: BASS (reference 4.2.1)

Laptop

OS: Microsoft Windows XP Professional.
Java: Sun Microsystems, J2SE v. 1.4.2 Java Runtime Environment (JRE).
Agent platform: Grasshopper v2.2.4 (SE)
Agent-based software: BASS

Handheld (PDA)

OS: Microsoft Pocket PC 2002 (Microsoft, Corporation, 2004).
Java: Insignia Jeode (Insignia, 2004).
Agent platform: Grasshopper v2.2.4 (ME)
Agent-based software: BASS

The agents used include the following:

Proxy throughput agent. As previously mentioned, its task is to forward incoming network
traffic from a source node to a destination node. The proxy can be dynamically configured to
listen for incoming network traffic to a certain port and transmit it to another, however, the
destination IP address must also be specified. It is based on Java’s multithreading and can
thus accept multiple connections at a single time.

TCP transmitter agent. As previously mentioned, its purpose is to transmit network traffic
to a receiving machine, which can be dynamically defined by its IP address and port number.
In addition, the buffer size and the number of buffers required to transmit can also be de-
fined.

TCP receiver agent. As previously mentioned, its purpose is to receive incoming network
traffic from other transmitting nodes. This agent can be dynamically configured to listen for
incoming network traffic to a certain port, using a certain buffer size and number, usually set
to be the same as the TCP transmitter agent’s.

 234

Throughput calculation agent. As previously mentioned, this agent resides on both the
transmitting and receiving devices, and its purpose is to calculate the available throughput
provided by the proxy device, from both the perspectives of the transmitter and receiver
node.

Gathering agent. As previously mentioned, its task is to hop from device to device and
gather the results when they are available.

Librarian agent. As previously mentioned, its purpose is to store data from test results into a
local database or file output, and also provide an interface to external objects or agents that
require this information.

Memory and battery monitoring agent. As previously mentioned, its task is to constantly
measure the battery discharge rate and the memory utilisation. This agent was developed in
the Microsoft Visual Studio environment, which provides support for developing code for
handheld platforms in Visual Basic. In order to provide interoperability with Java-based
agents, this agent stores retrieved information to a number of text files, which can be later
used by other agents, and include the following:

BSSCurrentState.txt: This file gets overwritten every 10 seconds with information including
the current battery strength, memory utilisation, and the corresponding timestamp. Java-
based agents can read this file to obtain the current state information.
BSSMemoryCE.txt: In this file the current memory utilisation and corresponding time-
stamp are constantly appended every 10 seconds.
BSSMonCEBattery.txt: In this file the current battery strength and corresponding time-
stamp are constantly appended every 10 seconds.

Hardware used for the proxy experimentation cycle
Two different device types were selected, including a workstation and a PDA. The hardware
characteristics of these devices are the same as presented in the hardware used for the prelimi-
nary experimentation section.

Software used for the proxy experimentation cycle
The software used for this cycle of experimentation is shown below. The PDA was equipped

 235

with three different OS, four JVMs, and two agent platforms. Due to the lack of space and
the lack of dual OS support in the PDA, each defined OS, JVM, and agent platform was in-
stalled in turn for the respective experiment. The two workstations were kept unchanged in
terms of software for this cycle of experiments.

Workstation

OS: Microsoft Windows XP Professional.
Java: Sun Microsystems, J2SE v. 1.4.2 Java Runtime Environment (JRE).
Agent platform: Grasshopper v2.2.4 (SE).
Agent-based software: BASS (reference 4.2.1).

Handheld (PDA)

OS: Microsoft Pocket PC 2002/2003 (Microsoft, Corporation, 2004).
Familiar Linux v0.7.2 with GPE (Familiar Project, 2004).

Java: Insignia Jeode (Insignia, 2004).
IBM, J9 (IBM, 2004).
NSIcom, CrEme (NSICom, 2004).
Blackdown, JRE 1.3 (Blackdown, 2004).

Agent platform: Grasshopper v2.2.4 (ME)/(SE).
Agent-based software: BASS.

Temperature variation monitoring agent. As previously described, this agent is responsible
for measuring the temperature variation each time the battery drops by 1 (%). For example if
the temperature of the device is 25 (Co) when the remaining battery is 75 (%), and the tem-
perature becomes 26 (Co) when the remaining battery becomes 74 (%), the agents calculates
the temperature variation being 1 (Co) for that particular measurement.

Heap memory usage monitoring agent. As previously described, this agent constantly moni-
tors the amount of heap memory used by Java objects. It differs from the CPU, memory, and
overall utilisation agent in that it does not monitor the JVM’s memory requirements, but
instead only the memory allocated to running agents.

CPU and memory utilisation agent. This agent calls native code via the JNI in order to ob-
tain current CPU and memory usage per process running in the system as well as total
utilisation. This agent can be used to determine whether the device has available resources.

Hardware used for the BASS experimentation cycle
The hardware equipment used for this experimentation cycle include low, medium, me-
dium-high, and high performance devices, and, in particular, a PDA, a server, a laptop, and a

 236

workstation. The PDA’s hardware characteristics are the same as in the hardware used for the
preliminary experimentation section, while the rest are shown in the following:

Workstation

Processor: 1999 MHz Intel Pentium IV.
Memory: 512-MB SDRAM.
Support: USB and Serial.

Laptop

Processor: 1100 MHz, Intel Pentium III.
Memory: 512-MB SDRAM.
WiFi: IEEE 802.11b enabled.
Support: USB and Serial support.

Server

Processor: 450 MHz, Intel Pentium III.
Memory: 256-MB SDRAM.
WiFi: IEEE 802.11b enabled.

Connected to a wireless base station.
Also connected to a broadband router providing Internet access.

Support: USB and Serial support.

Software used for the BASS experimentation cycle
The workstation and PDA were equipped with exactly the same OS, JVM, and agent plat-
form as in the Section software used for the preliminary experimentation. The only difference
was the server and laptop which were equipped with a different OSs, Microsoft Windows
2000 Professional and Microsoft Windows 2000 Server respectively.

Laptop

OS: Microsoft Windows 2000 Professional.
Java: Sun Microsystems, J2SE v. 1.4.2 Java Runtime Environment (JRE).
Agent platform: Grasshopper v2.2.4 (SE)
Agent-based software: BASS (reference 4.2.1)

Server
OS: Microsoft Windows 2000 Server.
Java: Sun Microsystems, J2SE v. 1.4.2 Java Runtime Environment (JRE).
Agent platform: Grasshopper v2.2.4 (SE)
Agent-based software: BASS (reference 4.2.1)

Group-level agent. This agent is required to run only once and gather system information, at

 237

runtime. System-level information includes the OS architecture, name, and version, the Java
Runtime name and JVM version, the main IP address and hostname, and so on. It achieves
this by calling the method getProperty of the Java System class.

Bubble sort agent. The purpose of this agent is to test the processing capabilities of a device’s
CPU by implementing a complex sorting algorithm. The computational complexity of this
algorithm grows exponentially for each added number, at a rate of O (2n-1). In addition, the
agent offers multiple complexity dimensions, i.e. 1-Dimensional sorting array, 2D, 3D, and
4D. Accordingly, if a value of 13 is entered for the 4D bubble sort test, this will equate to
28,561 (13×13×13×13) values being sorted, which results to roughly
(2,8561×2,8561×2,8561×2,8561)-1 comparisons.

CPU merge agent. This agent is very similar to the bubble sort, however, it implements a
less complex sorting algorithm. Its purpose is to test the processing capabilities of the device’s
CPU by spending, on average, less time. As with the bubble sort agent, this agent can be
dynamically instructed on the amount of numbers required for sorting.

Memory and hard-drive test agent. This agent is particularly useful for handhelds, which
usually use their memory as their permanent storage medium, and thus this agent exercises
their buffering capabilities. It achieves this by performing two similar tests: creation of vary-
ing number of files with constant file-sizes and creation of a constant number of files with
varying file-sizes. In case of a non-handheld device, this test may be particularly useful in
situations where the device is using Virtual memory to accomplish routing tasks.

Internet-connectivity agent. This test attempts to download a HTML page. If successful, it
calculates the time taken to connect and download and ultimately shows that there is a con-
nection, otherwise it shows that there is no Internet connection. The HTML page to
download is passed to the agent, on creation, by its supervisor agent.

Error packets monitoring agent. The purpose of this agent is to monitor the TCP, UDP, IP
protocol data rates and dynamically calculate the error percentage in each. It achieves this by
calling native code via Java JNI. Currently, this agent’s implementation version does not
support handheld devices.

Java threads monitoring agent. This agent is responsible for monitoring the number of Java
threads running and the CPU percentage each one of them is utilising. This test may be par-

 238

ticularly useful in situations where local security needs to be enforced. The agent performs
calls to native code via Java JNI. This code has been supplied by a cooperative researcher in a
similar research field, specifically in agent-based on-line distributed monitoring systems at
different levels of abstraction (MAPI) (Bellavista, P., et. al., 2003).

Hardware used for the experimentation of mobile agent migration
As previously mentioned, the superior group consisted of identical workstations far greater in
performance than the workstations in the inferior group:

Superior group:

Processor: 2800 MHz Intel Pentium IV.
Memory: 512-MB SDRAM.
WiFi: IEEE 802.11b enabled.
Support: USB and Serial.

Inferior group:

Processor: 1000 MHz Intel Pentium III.
Memory: 128-MB SDRAM.
WiFi: IEEE 802.11b enabled.
Support: USB and Serial.

The laptops used to maintain the database and the region registry, as well as the PDAs used
as a client and proxy, had identical hardware characteristics as the respective ones presented
in Section hardware used for the preliminary experimentation, and are thus not presented here.

Software used for the experimentation of mobile agent migration
The devices were equipped with the same OS, JVM, and agent-platform, as in Section soft-
ware used for the preliminary experimentation. The agents that were implemented for this
experimentation cycle are presented and described bellow:

Runner mobile agent. This agent was used in the first phase of this experimentation cycle.
Its main task was to migrate along a route, as defined in its itinerary, and measure the time
taken to reach the next hop and the total RTT. Its itinerary was fixed and was composed of
the agent-platform addresses of each device in the group. Analytically, the agent measured
the current time, upon its creation, and stored this information locally. Then the agent re-
quested its migration to the next hop along its itinerary. Once the agent was re-instantiated
in the new platform, it measured the current time and compared it with the previous stored
value, and thus calculated the time taken to migrate to this new node. In this fashion, at the

 239

end of its itinerary, the agent calculated the total RTT. Each node along the agent’s itinerary
had its clock synchronised.

Database agent. This agent, as well as the following, was used for the second phase of this
experimentation cycle. It was designed to remain stationary on the database laptop, and its
main task was to maintain a public database of research articles from journals, conferences,
workshops, and tutorials. In addition, it provided a simple search facility that once a query
was passed, a number of hits was returned, that included the article’s unique identification
number, title, and so on.

Client agent. This agent was designed to remain stationary on the client PDA, and its main
task was to request a number of articles from the database, based on a default user’s query.
Since the client PDA was set to be not in direct communication range with the database lap-
top, the client agent had to pass its query to the appropriate intermediate proxy agent
(described below) and receive the resulting matches through it. In order to retrieve the
proxy’s location, the client initially requested this information from the region registry which
was maintained in the nearby laptop.

Client mobile agent. This agent’s task was identical to the previously described agent, with
the only difference being its mobility feature. In particular, the agent retrieved the proxy’s
location the same way as its stationary counterpart, but instead of passing its query, it mi-
grated to the actual gateway node. Once there, it contacted the region registry once more in
order to retrieve the location information of the database laptop. Then, it migrated to the
database and communicated with the database agent locally. Once the results were available,
it inverted its itinerary and returned to its home agent platform.

Proxy agent. This agent acted as a gateway between the client agent and the database agent,
in the static agent approach. In particular, once it received a query from the client agent, it
searched the region registry for the database agent’s location. Then, it passed the query to the
database agent and gathered the results. Finally, it allowed the client agent to gather the re-
turned hits by calling its getResults() method. This agent was bypassed in the mobile agent
approach.

Hardware used for metrics simulation experimentation cycle
A single workstation was required for this experimentation cycle. The hardware specification
is shown bellow:

 240

Workstation
Processor: 1000 MHz Intel Pentium III.
Memory: 512-MB SDRAM.
WiFi: IEEE 802.11b enabled.
Support: USB and Serial.

Software used for metrics simulation experimentation cycle
The simulation was implemented in Microsoft Excel and several scripts were developed and
used for this purpose. The implementation details of each script, along with its purpose, are
presented bellow:

Metric variation for O1. The purpose of this script was to individually vary the CPU, mem-
ory, and battery preliminary metrics from 0 to 100, for DT1 - DT9 in relation to O1, and
calculate the overall metric values for each variation. The script was designed in such a way
so as to gather preliminary information for each type of device and produce overall metric
results for each one in turn, in a totally automatic fashion. The implementation was based in
Visual Basic (VB).

Metric variation for O2. The purpose of this script was the same as the previous one, how-
ever, it was designed to produce results for O2. Similarly, the implementation was based in
VB.

Metric variation for O3. Similarly to metric variation for O1 script, however, this one was
simulating O3. Similarly, the script was implemented in VB and was designed to conduct
the simulation automatically.

Metric variation for O4. The purpose of this script was to vary the CPU, memory, and bat-
tery preliminary metrics from 0 to 100, for DT1 - DT9 in relation to O4, and calculate the
overall metric values for each variation.

Metric variation for O5. The purpose of this script was to vary the CPU, memory, and bat-
tery preliminary metrics from 0 to 100, for DT1 - DT9 in relation to O5, and calculate the
overall metric values for each variation.

Metric variation for O6. The purpose of this script was to vary the CPU, memory, and bat-
tery preliminary metrics from 0 to 100, for DT1 - DT9 in relation to O6, and calculate the

 241

overall metric values for each variation.

Error packets monitoring test results
Table A.1 presents a snapshot of the laptop’s network state, at a random instance. In this
particular case, the laptop’s network at that point seemed to have suffered a UPD packet loss,
however the single packet loss may constitute an insignificant glitch, and is thus difficult to
judge from such a small sample. Nevertheless, increased number of packet losses may con-
tribute to an overall unreliable link, and consequently to high demand for bandwidth
because of frequent packet retransmissions.

Table A.1: Sample data from error packets monitor test

Network traffic type
udp_in 0
udp_out 2
udp_err 1
tcp_in 4
tcp_out 8
tcp_con 0
ip_in 4
ip_out 8
ip_pack_err 0
lastUpdated 14:09:46

CPU, memory, and overall utilisation test
This test has the ability to monitor the CPU and memory utilisation at pre-defined time in-
tervals. As an example, a snapshot of this test results, obtained by its execution on the
workstation, is presented in Table A.2.

Table A.2: Sample results of the CPU, memory, and overall utilisation test

CPU and Memory utilisation
totalMemory 523,676
physicalMemoryUsed 214,960
VirtualMemoryUsed 2,317,516
availableMemory 308,716
cpuPercentUsed 91
numOfProcesses 41
numOfThreads 341
percentFreeMemory 58
lastUpdated 14:09:48

 242

Java threads monitoring test
This test is ideal in Java-based agent environments, since it has the ability to monitor each
agent’s resource-consumptions in terms of CPU, and thus keep a history of possible denial of
service activities. In addition, it can be used to identify the roots of high CPU utilisation,
observed by the CPU, memory, and overall utilisation agent. Table A.3 presents a snapshot
of the individual threads utilisation, while Table A.4 presents their overall utilisation. This
test has been executed on the laptop, at a random time.

Table A.3: Sample data captured from the Java threads test, individual Java thread utilisation

threadID cpuPercentUse cpuTimeUsed lastUpdated
1212 0 520 14:09:48
840 0 0 14:09:48

1132 0 0 14:09:48
620 0 0 14:09:48
976 0 0 14:09:48

1572 0 0 14:09:48
1632 0 0 14:09:48
1288 2 550 14:09:48
1628 0 430 14:09:48
1612 0 290 14:09:48
1664 0 0 14:09:48
1668 0 0 14:09:48
1672 0 0 14:09:48
1684 0 0 14:09:48

Table A.4: History of Java thread totals

NumOfThreads cpuPercentUse cpuTimeUsed lastUpdated
11 1 720 13:20:58
15 3 1750 13:21:05
11 4 3010 13:21:11
15 6 4540 13:21:17
11 7 6260 13:21:23
12 8 8210 13:21:28
11 10 10320 13:21:34
9 0 600 13:47:42
9 0 1310 13:47:48
18 2 820 14:09:27
14 4 1960 14:09:34
14 5 3370 14:09:41
14 9 5160 14:09:48

 243

B Appendix - Definition of concepts

B.1 Wireless networks

The most important concepts, which are required for understanding this project’s area of
research are defined in this Appendix, including: computer networks; wireless networks; ad-
hoc networks; ad-hoc routing; software agents; and mobile agents. Then similar novel re-
search in this field is presented.

A computer network allows many computers to communicate with each other, to inter-
change, and execute programs or data (Roberts, L. G., 1967). Accordingly, the motivation
for computer networks is: load sharing; messaging; data sharing; program sharing; remote
services; and scientific computation. Similarly, Tanenbaum, A. S., 1996, defines a computer
network as an interconnected collection of autonomous computers. Overall, two computers are
said to be interconnected if they are able to exchange information, while the term autonomous
excludes from the definition systems in which there is a clear master/slave relation.

A wireless network is defined as a network where computers can communicate with each
other by the use of radio signals (Zorzi, M., 1998). In wireless networks, communication is
facilitated by a collection of transmitters, each of which is configured to provide services over
a local region (Hurley, S. and Whitaker, R. M., 2002). The main benefit of wireless net-
works is the ability of users to communicate with each other, or with machines, such as
databases and e-mail servers, without being constrained to a fixed location. Wireless networks
emerged in 1970s and become popular in the computing industry. This is especially true
within the last decade, where wireless networks have been adapted to enable mobility, and
wireless interfaces were produced cost effectively, thus giving the opportunity for everyone to
create a wireless network. Nowadays, people carry numerous portable devices, such as lap-
tops, mobile phones, Personal Digital Assistants (PDAs), and MP3 players, for their
professional and private lives (Frodigh, M., et. al., 2000). Mobility is an important feature
that makes wireless networking so essential. In general, wireless networks can be grouped
into two categories:

• Infrastructure networks. These have fixed and wired gateways, which are typically

known as access points. A mobile unit within these networks connects to, and communi-
cates with (by the use of radio signals), the nearest access point that is within its
communication radius.

 244

• Infrastructure-less networks. These networks have no fixed or central infrastructure, and
can thus be formed on a temporary basis. Mobile devices within these networks are free
to move about in an arbitrary fashion, and act as routers for other nodes, so that multi-
path communications can take place (Royer, E. M. and Toh C. K., 1999).

B.2 Ad-Hoc Networks

There are many definitions in the literature for infrastructure-less networks, commonly
known as ad-hoc networks. However, each definition is specifically tailored to suite the con-
text in which it is defined. Accordingly, Jonsson, U. and Alriksson, F., 2000, consider an ad-
hoc network, as an alternative solution to a fixed network, which can be formed on a tempo-
rary basis, and provide the following benefits: easy to setup; and can operate without any
fixed infrastructure. The temporary aspect of ad-hoc networks is also highlighted in
(Frodigh, M., et. al., 2000), who suggest that there is no need for a central administration.
Wang, X., et. al., 2001, further suggest that routing and location management is entirely left
to the participating mobile nodes, which have to use their wireless interfaces to route data
packets in a multi-hop manner. An important issue that has not covered by these definitions
is suggested in Rajaraman, R., 2002, that is, ad-hoc networks have limited capabilities, as
participating mobile devices often rely on battery power for operation. Ramarathinam, V.
and Labrador, M. A., 2002, further suggest that because of the lack of an infrastructure, mo-
bile nodes must, at least, take one of the following roles: end system; a server; a router; a
gateway; or all of them at the same time. In the context of this thesis, an ad-hoc network is
defined as:

… a computer network that is typically formed in case of an emergency, which

does not have a fixed infrastructure that nodes could rely on for location manage-

ment and routing, and thus nodes have to create their own structure in a dynamic

way. Accordingly, nodes are required to use their wireless interfaces for forwarding

data packets to the next hop, along a multi-hop fashion, and participate equally in

the tasks delegated to them by the ad-hoc routing protocol.

Figure B.1 illustrates an abstract representation of a basic ad-hoc network. Each device de-
fines a wireless domain, where its radius is equal to the transmitting emission distance of its
wireless interface. The middle device is situated in the edges of wireless domain A, defined by
the device on the left, and wireless domain B, defined by the device on the right. Thus, the
middle device merges wireless domain A and B by acting as a routing device.

 245

Ad-hoc network

Wireless
domain A

Wireless
domain B

Ad-hoc network

Wireless
domain A

Wireless
domain B

Figure B.1: A typical ad-hoc network

B.3 Ad-hoc Routing

Traditional ad-hoc routing methods, initially designed for fixed networks, are typically based
on the shortest path calculation (Schwartz, M. and Stern, T. E, 1980), where each node ap-
plies a shortest path algorithm from itself to all other destination nodes, and transmits its
data packets through the shortest route. However, routing protocols for fixed networks have
not been designed specifically to provide the kink of dynamic, self-starting behaviour re-
quired for ad-hoc networks (Perkins, C. and Bhagwat, P., 1994). Two of the most
fundamental algorithms, are:

• Link-state (McQuillan, J. M., et. al., 1980). Each node in the network maintains a data-

base describing the complete network topology with a cost associated for each link.
Database maintenance is achieved by each node periodically broadcasting the link-state
costs of its neighbouring nodes to all other nodes by the means of a flooding strategy.
Nodes use the information from periodic broadcasts to update their current view of the
network topology, and their link-state information by applying a shortest-path algorithm
to choose the next hop node for each destination.

• Distance vector. This approach is based on the fundamental principles of the Distributed
Bellman-Ford (DBF) algorithm (Bertsekas, D. and Gallager, R., 1987). Each node i
maintains a set of distances for every destination x, where j ranges over the neighbours of
node i. Node i selects a neighbour, say k, to be the next hop for x if:

 246

x
k iD = ()x

j ij Dmin (B.1)

Nodes periodically disseminate their current estimates of the shortest distance to every
node in the network. When a node receives a routing vector from a neighbouring node,
it updates its distance to all other destinations via this neighbour.

Link-state methods often suffer from routing loops, however, they are temporary. This be-
haviour is usually linked to inconsistent views of the link costs maintained on the nodes’
databases, caused by long propagation delays, partitioned network, and so on. Distance vec-
tor methods are computationally more efficient, requiring less storage space, and are
relatively easier to implement when compared to link-state methods. However, the underly-
ing algorithm (DBF) of distance vector is known to cause the formation of long-lived routing
loops, as well as temporary loops, which respond slowly to link failures, and provide no guar-
antees for successful termination (Cheng, C., et. al., 1989). The primary cause for formation
of routing loops is that nodes choose their next hop in a totally distributed manner, based on
information which may be stale, and thus incorrect. The slow response to link failures could
be a direct result of these routing loops formation. Proposed modifications (Jaffe, J. M. and
Moss, F. H., 1982, Garcia-Luna-Aceves, J. J., 1989) to the basic DBF algorithm were shown
to eliminate the formation of routing loops by providing some form of inter-nodal coordina-
tion protocol where each node is required to participate.

Link-state and distance-vector algorithms, unfortunately, impose scalability problems in
large ad-hoc networks (Shankar, A. U., et. al., 1992a), where frequent periodic updates may
cause large amounts of network overhead, and thus consume a valuable amount of the avail-
able bandwidth. Shared workload by each participating node, even by the weakest
performance nodes, such as PDAs, can rapidly increase their utilisation status and decrease
their power capacity. Several routing methods have been proposed in the literature, which
either aim to enhance these algorithms, or totally replace them (see Appendix D).

B.4 Software Agents

In general, agents are software programs which aim to automate user tasks and have signifi-
cant applicability in mobile and distributed applications (Jennings, N. and Woolridge, M.,
1998). White, J., 1997, distinguished software agents from normal programs due to the
agents’ abilities to execute in distributed computing environments and their ability to supply
domain specific knowledge in automating user-tasks. Hayes-Roth, B., 1995, suggest that in-
telligent agents typically perform three functions: sense the environment they live in; reason

 247

about the environment; and perform actions that affects the environment. A similar view-
point is suggested in Maes, P., 1995, that is, intelligent agents realise the purpose of their
existence by sensing and acting autonomously in the environment they live in. Smith, D. C.,
et. al., 1994, suggest that two properties, which distinguishes intelligent agents from subrou-
tines, are: persistency; and goal-orientation, that is, agents autonomously decide on their own
actions and are designed to accomplish small tasks. Wooldridge, M. J. and Jennings, N. R.,
1995, propose that intelligent agents typically have characteristics, such as: autonomy, that is,
they can operate without any direct intervention from humans or other software; social abil-
ity, that is, they communicate with other agents; reactivity, that is, they sense their
environment and perform actions based on this knowledge; and pro-activeness, that is, they
are goal-oriented. In the context of this thesis, an intelligent agent is defined as:

… a software entity that is typically light-weighted, and precise about its goal, which
is often required to monitor its environments and act upon critical changes, and pos-
sibly cooperates with other agents to serve an overall goal.

The fundamental properties of an intelligent software agent are (Franklin, S. and Graesser,
A., 1996):

• Reactive (sensing and acting). Monitor the environment and act upon critical changes.
• Autonomous. Controls its own actions.
• Goal-oriented (proactive purposeful). Plans its actions in relation to its goal.
• Temporally continuous. It is a continuously running process.
• Communicative (socially able). Communicates with other agents including people.
• Learning (Adaptive). Changes its behaviour based on its previous experience.
• Flexible. Its actions are not scripted.
• Character. Believable personality and emotional state.

B.5 Mobile Agents
In general, mobile agents are software agents that have one extra feature, which is mobility of
code, state, and, possibly, execution state. Thus they inherit all, or some, of the intelligent
software agent properties. Tripathi, A. R., et. al., 2000, propose that users should be kept
fully responsible for their mobile agents' actions, as the autonomy of agent migration is an
issue that may raise security concerns, whereas, Pham, V. A. and Karmouch, A., 1998, sug-
gest that mobile agents act on behalf of the user, as well as other entities that need their

 248

services. Karjoth and Posegga, 2000, propose that a mobile agent usually has knowledge on
its user's ideas and problem-solving techniques in a specific context, which then efficiently
implements in an automated manner. Harrison, C. G., et. al., 1995, as well as White, J.,
1997, identified mobile agent essential models, which include: a life-cycle model; a computa-
tional model; a security model; a communication model; and, finally, a navigation model.

In the context of this thesis, an intelligent agent is defined as:

… a software agent that has some, or, all characteristics of an intelligent agent, and,
in addition, it has the ability to initiate its own migration, that is, it data state, code,
and possibly, its execution state, and thus transfer itself to another agent-enabled host
and resume execution on the new host.

The mobile agent paradigm greatly differs from the traditional client-server communications
model (Figure B.2).

Response
messa ge

Get
messa ge

Mobile a gent mig ra tes
to the server

Mobile
Agent

Agent communica tes
with the server loca lly

S erver

Client

Traditional client/
server architecture

Mobile agents
communication
model

NetworkNetwork

S erver

Response
messa ge

Get
messa ge

Mobile a gent mig ra tes
to the server

Mobile
Agent

Agent communica tes
with the server loca lly

S erver

Client

Traditional client/
server architecture

Mobile agents
communication
model

NetworkNetwork

S erver

Figure B.2: Mobile agents versus client-server model

As shown in Figure B.2, in the client-server case, the client requests a service from the server,
and the server replies back with the results, while, in the mobile agent case, the actual com-
putation is transferred to the server computer, and all interactions are performed locally.

 249

B.6 Mobility prediction

In an attempt to improve performance of traditional routing protocols, Lee, S.-J., et. al.,
2001, proposed the incorporation of mobility prediction metrics with standard on-demand
routing protocols, in order to reduce the control overhead generated through route discovery,
and the route maintenance process. The underlying idea of their proposal is based on the as-
sertion that by exploiting non-random behaviours of the mobility patterns that mobile users
exhibit, the future state of the network topology can be predicted, and route reconstruction
can be performed proactively. Mobility prediction can be achieved using a number of differ-
ent methods, such as by utilising the location and mobility information provided by GPS, or
by periodically measuring the transmission power samples from received data packets from a
mobile node’s neighbours. With GPS, if the mobility speed, direction of movement, and the
propagation range of two mobile nodes is known (from GPS), the remaining connection
time of these two nodes can be approximately predicted. In contrast, according to the second
method a mobile node can compute the rate of change in the transmission power of its
neighbours, and can thus forecast the time expected for the transmission power to drop be-
low an acceptable level.

Accordingly, mobility prediction information can be used to estimate the link expiration
time (LET) of all possible links between any two adjacent mobile nodes, and the route expi-
ration time (RET) of each route, maintained in a node’s route cache. Based on this
prediction information, routes can then be reconstructed before they actually expire. Thus,
there is scope for providing a seamless connection service by reacting before the connectivity
breaks. The underlying assumptions are: a free propagation space, where the received signal
strength solely depends on its distance to the transmitter; and nodal clock synchronisation by
either using the network time protocol (NTP) (Mills, D.L., 1991) or the GPS clock itself.

Rerouting before link disconnections may assist in minimising packet losses and further
increase the overall performance of the routing protocol. A simple example is illustrated in
Figure B.3, where, assuming that the LETs are known, the RETs can be calculated, and thus
assist the routing protocol in finding the potentially more robust routes. For example, route
A → B → C → E → F, provides a total RET of 5 + 4 + 3 + 7, which is 19. However route A
→ B → D → E → F, provides a RET of 5 + 6 + 5 + 7, which is 23, and, therefore, this route
is chosen over the former, as the route is expected to be available for a longer time based on
the gathered information.

 250

A 5

4

5

7

3

Link expiration times

DestinationSource

E F

D

C

B

6

A 5

4

5

7

3

Link expiration times

DestinationSource

E F

D

C

B

6

Figure B.3: Routing using prediction based on LET and RET

In their later work, Su, W., et. al., 2001, applied their mobility prediction mechanism to
three representative ad-hoc routing protocols, including: on-demand multicast routing pro-
tocol (ODMRP) (Lee, S. J., et. al., 2002); highly dynamic-sequenced distance-vector DSDV
(Perkins, C. and Bhagwat, P., 1994); and multicast routing protocol (AMRoute) (Bom-
maiah, E, et. al., 1998). Simulation results showed that with prediction enhancements in
place, more data packets were delivered to their destination, while the routing overhead was
considerably reduced in low-mobility simulations and in high-mobility control packets were
utilised more efficiently. In addition, the routing protocols with mobility enhancements were
shown to effectively choose more stable routes that did not become invalid due to node
movements.

An ad-hoc, node proximity model, proposed by McDonald, A. B. and Znati, T., 2000,
enhanced the performance of routing algorithms by selecting stable routes, and further facili-
tated mobility-adaptive dynamic clustering. The proximity model was designed to provide a
quantitative metric in order to reflect to the future stability of any given link in an ad-hoc
network, with minimum information gathering requirements. Accordingly, the initial base-
line link availability is calculated by assuming random-independent mobility similarly to
(Fasbender, A., et. al., 1999). The model then adapts future computations depending on the
expected time-to-failure of the link based on the independence assumption and a parameter
that reflects the environment.

B.7 Clustering

The clustering process involves the organisation of mobile nodes with similar geographical
position in an ad-hoc network, which are grouped into adjacent or disjoint clusters. A clus-
ter-head is elected in order to provide coordination of data transmissions within its own
cluster. The wireless range of a cluster-head defines a cluster, and thus every node within its
transmission range belongs to this cluster. Therefore, every node within a cluster can com-
municate with the cluster-head, and, possibly with each other. Nodes which are situated in

 251

the edges of two or more clusters are called gateways and are responsible for inter-cluster
routing. A cluster-head ad-hoc routing protocol can take advantage of the clustering forma-
tion, and thus efficiently minimise the flooding traffic during route discovery by allowing
packets to be routed only through cluster-heads and gateways. In addition, such a structure
may also provide a convenient framework for the development of important features such as
wireless channel separation (among clusters), routing, and bandwidth allocation (Chiang, C.-
C., et. al., 1997).

Cluster-formation
The main objective of the cluster-formation process is to create a feasible interconnected set
of clusters covering the entire node population. A good clustering algorithm should not
change the clustering configuration too drastically when nodes are moving slowly, and
should maintain cluster-heads, as much as possible. Two fundamental clustering algorithms
have been initially proposed in the literature: lowest-ID (Ephremides, A., et. al., 1987); and
highest-connectivity (Parekh, A. K., 1994), and they have both been later revised in (Gerla,
M. and Tsai, J. T.-C., 1995).

Lowest-ID algorithm
Each node is assigned a distinct ID which it periodically broadcasts, alongside with the list of
nodes it can hear. The node with the lowest ID in a neighbourhood becomes a cluster-head.
The detailed algorithm is:

• Each node is assigned a distinct ID.
• Each node periodically broadcasts its ID, and the list of nodes that it can hear (including,

itself).
• A node which only hears nodes with IDs higher than itself is a cluster-head (CH).
• The lowest-ID node that a node hears is its clusterhead, unless the lowest-ID specifically

gives up its role as a clusterhead (deferring to a yet lower ID node).
• A node which can hear two or more clusterheads is a gateway.
• Otherwise, a node is an ordinary node.

Figure B.4 illustrates the clustering process using the lowest-ID algorithm to an example to-
pology. For instance, in the lower cluster, node 4 has been elected a cluster-head as it has the
lowest-ID from its neighbouring nodes (7 and 9).

Highest-connectivity algorithm
Each node periodically broadcasts the list of nodes it can hear, including itself. A node is

 252

elected as a clusterhead if it is the most highly-connected. The detailed algorithm is:

• A node is elected a cluster-head, if it is the most highly-connected node of all uncovered

neighbour nodes (in case of a tie, the lowest ID wins).
• A node which has not elected its cluster-head, yet, is an uncovered node, otherwise it is a

covered node.

Figure B.5 illustrates the clustering process using the highest-connectivity algorithm to an
example topology. For instance, in the middle cluster, node 8 has been elected a cluster-head
as it is the most highly connected node, among its neighbours (9, 3, 1, 6, 10, and 2).

4 7 3

10 2

5

1

6

8

9

CH node

Member of CH

Gateway

4

7

3

10

2

5

1

6

8

9

CH node

Member of CH

Gateway

Figure B.4 (Gerla, M. and Tsai, J. T.-C., 1995):
Application of the highest-connectivity algorithm
to a random topology

Figure B.5 (Gerla, M. and Tsai, J. T.-C., 1995):
Application of the highest-connectivity algorithm
to a random topology

Clustering properties
The following properties apply to both lowest-ID and highest-connectivity clustering algo-
rithms:

• No cluster heads are directly linked.
• In a cluster, any two nodes are, at most, two hops away, as the clusterhead is directly

linked to every other node in the cluster.

Thus, each node can either be a cluster-head, or directly linked to one or more clusterheads.
In addition, only one cluster-head is allowed per cluster. The clustering algorithm must be

 253

performed as rapidly as possible, so that each clusterhead can take and maintain control of its
members efficiently. Chiang, C.-C., et. al., 1997, has shown that, in most situations, the
lowest-ID algorithm performs better than the highest-connectivity in terms of cluster stabil-
ity. Thus, lowest-ID is the most stable algorithm with the least cluster-head changes. In
addition, the authors proposed a number of modifications to the lowest-ID, and highest-
connectivity algorithm, in order to improve its performance. The modified version is named
least cluster-head change (LCC) and its operation is:

• A clustering algorithm, such as lowest-ID or highest-connectivity, may be initially used

to form the clusters.
• A non-cluster-head never challenges the status of an existing cluster-head.
• Only when two cluster-heads move next to each other, one of them looses the cluster-

head role, such as the one with the highest ID, or with the least neighbours.
• When a non-cluster-head node moves out of its cluster, and does not enter into any ex-

isting cluster, it forms a new cluster and becomes the cluster-head of this cluster.
• Member nodes which leave their cluster(s), will have to re-execute the clustering algo-

rithm.

This has the potential to significantly reducing the number of cluster-head changes, which
often occur due to re-clustering. The convergence time of the proposed modified algorithm
is O(d), where d is the diameter of the whole ad-hoc network, in terms of hops, and thus has
good scalability.

B.8 Cluster-head metrics
The lowest-ID algorithm uses the node’s ID metric, which may simply be the node’s IP ad-
dress, whereas the highest-connectivity algorithm uses the node’s connectivity metric, which
is simply the number of mutual bi-directional links among the node, and its neighbours.
However, since mobility can significantly influence the stability of clusters, it is logical to
assume that mobility should be a key factor in clustering formation process. In other words,
nodes with high mobility patterns should not be chosen to become cluster-heads, as their
rapid movements may result in frequent cluster rearrangements. A study which proposed the
usage of mobility metrics for cluster formation and selection can be found in (Basu, P., et.
al., 2001). The authors proposed a novel mobility metric, called MOBIC, which is based on
the ratio of power levels due to successive receptions at each node. The calculation of the
MOBIC metric does not involve a GPS, and generally assumes that any signal strength

 254

measured by a receiving node, PxPr, directly indicates the distance between the transmitter
and receiver node pair. Although this method cannot be used to accurately measure distance
in a real-life application, successive power measurements of two or more consecutive trans-
missions from a neighbouring node may allow the calculation of the relative mobility
between the nodes. The relative mobility metric, at a node Y with respect to X, is defined as
follows:

()
old

YX

new
YX

10
rel
Y

RxPr

RxPr
10logXM

→

→= (B.2)

If old

YX
new

YX RxRrRxRr →→ < , then 0)X(M rel
Y < (B.3)

A negative value of the relative mobility between two nodes may thus indicate that the nodes
are moving away from each other. In case of a positive value, it may thus indicate that these
nodes are moving closer to each other. A node Y having a number of neighbours n, can cal-
culate m such values for rel

YM . It can then calculate the aggregated local mobility (MY) by
calculating the variance (with respect to zero) of the entire set of mobility samples ()i

rel
Y XM ,

where Xi is Y’s neighbour:

(){ } ()[]2rel
Y

m

1jj
rel
Y0Y MEXMvarM ==

=
 (B.4)

Accordingly, every node Y can measure the power levels of successive transmissions from all
its neighbours, and also calculate the aggregated local mobility (MY). The underlying princi-
ple of the aggregated local mobility is that node Y may infer its mobility pattern in respect to
its neighbouring nodes. In particular, a low MY value may indicate that Y is relatively less
mobile, with respect to its neighbours, while a high value of MY may indicate that Y is highly
mobile, with respect to its neighbouring nodes. Thus, a mobile node Y with lower aggregated
relative mobility than its neighbours should be favoured in becoming a cluster-head. The
authors suggest that the calculation of this mobility metric is a simple task, and can be
achieved by any mobile device in a distributed way, whereas, the incoming signal power
measurements can be easily achieved with existing hardware.

A number of simulation experiments were conducted using ns2 simulator, and proved
that MOBIC can reduce the rate of cluster-head changes by 33% when compared to the
standard lowest-ID algorithm. Thus, the mobility criteria for cluster-head selection may pro-
vide a better metric than the node ID, which could allow the formation of a more stable

 255

structure, with minimal cluster-head changes.

B.9 QoS for Ad-hoc networks

Almost every routing protocol discussed so far, utilises a standard shortest-path mechanism
in order to decide on optimal routes. This typically requires every route to be represented by
a metric which is essentially the number of intermediate nodes that need to be traversed to
reach the destination. For example, if node A maintains two routes for a destination node B,
where the first route defines a path of five hops, while the second route defines an alternative
path of four hops, the shortest path in terms of hops will be selected, which, in this case, is
the second one. Also, there is normally minimal, or no, support for multiple redundant
paths. The most common case, involves the usage of multiple redundant paths in the case of
primary shortest-path failures. In this way, the source node can immediately resume trans-
mission over an alternative path, and thus save additional latency from an on-demand route
discovery process.

Although shortest-path routing, and single route maintenance, are normally two funda-
mental mechanisms found in most traditional ad-hoc routing protocols, they considerably
limit the support a routing protocol can offer. The goal of QoS is thus to provide certain
guarantees on the ability of a network route to support the transfer within a certain time
limit, and offer the required throughput, latency and error rate. The shortest-path algorithm
assumes that participating devices are of equal strength, such that they can offer the same
throughput, perform equally reliably, have the same utilisation status; and battery capacity, at
any given time (Migas, N. and Buchanan, W. J., 2005). In addition, single routes are nor-
mally used for routing instead of multiple routes, and, thus, the expense of route rediscovery,
in the case of primary failure, can be high. Furthermore, even if multiple redundant paths are
available, they are not utilised to their full potential.

Recently, a number of innovative methods have been proposed in the literature, which
aim to provide path redundancy and QoS support by keeping the network overhead low.
Papadimitratos, P., et. al., 2002 proposed a new ad-hoc routing protocol, called Disjoint
Path Selection Protocol (DPSP), which supports communication between networked nodes
over multiple diverse paths. The goal of DPSP is to determine a small number of diverse
paths that remain operational with high probability, and can be used simultaneously by the
communicating nodes. Initially, DPSP’s path selection algorithm constructs a set of reliable
disjoint paths, iteratively. The first step involves finding the most reliable path on the given
graph. When no interlacing is present, the newly found path is appended to the existing path
set. A non-interlacing path Pi is defined as a path that is already edge-disjoint to all Pj ∈ Dk,

 256

which is an existing path set. In the case of an interlacing path, the algorithm makes the deci-
sion on whether by removing the interlacing, and consequently re-arranging Dk, leads to a
more reliable path set, and it then proceeds, based on this decision. The authors claim that
their protocol can discover a set of paths with significantly longer lifetimes than those found
by previously proposed protocols, such as the signal stability adaptive (SSA) and associativity-
based routing (ABR) (Toh, C., 1996). They further claim that DPSP is flexible, has easy-to-
compute metrics, allows for fast convergence, and provides other benefits, such as less fre-
quent route discoveries; significantly lower routing overhead; lower transmission delays; and
improved load balancing.

A novel QoS-aware resource discovery framework for ad-hoc networks has been proposed
by Liu, J., et. al., 2002, which is built on the application layer and aims to provide generic
and efficient tools for QoS-aware resource discovery. Initially, each node is assigned to one or
more of the following three roles:

• Client. A node that initiates a query for resource discovery and uses resources.
• Resource provider (RP). A node that provides resources for clients.
• Discovery agent (DA). A node that collectively maintains directory information of the

resources using hash indexing. Also, dynamically partitions the network into dynamic
domains, and monitors the QoS information of the RPs in its domain and responds to
discovery queries from clients in the domain. Finally, they exchange messages between
other DAs, concerning registration and query information.

The DA nodes are elected using an algorithm similar to lowest-ID, and periodically broad-
cast their addresses. A non-DA node sets its home to a DA node in close proximity, and joins
that DA’s domain. A DA is also responsible for QoS information collection and prediction.
The information collected includes the CPU usage and available memory of a RP, and the
path delay between two nodes. The authors proposed that each DA node should be equipped
with a GPS and, that, by using the universal time coordinate (UTC) service along with time-
stamps, they could efficiently measure the delay. Preliminary simulation results showed that
the proposed framework enhances QoS-awareness compared to traditional centralised ap-
proaches, and further achieves lower query latency.

Furthermore, an innovative routing scheme called trigger-based distributed routing
(TDR) for supporting real time QoS traffic in mobile ad-hoc networks (MANETs) was pro-
posed by De, S., et. al., 2002. TDR is a hybrid routing algorithm, which incorporates link
failure prediction, and provides real-time support, while keeping the network overhead low.
The underlying principle is, that, in order to reduce network overhead, only active routes

 257

need to be maintained, and GPS-based location information of the destination should be
used to selectively broadcast reroute queries when a link failure is imminent. Another advan-
tage of this failure prediction-based alternate route discovery is the fact that it avoids the
maintenance of unnecessary routes, and thus reduces the size of nodal databases. However,
this protocol imposes an extra nodal overhead which is attributed to the computation for se-
lecting appropriate nodes to forward route requests. A number of simulation experiments
were conducted in order to study and compare the protocol’s performance with traditional
QoS protocols for ad-hoc networks. The prediction-based TDR outperformed prediction-less
QoS routing protocols, such as E-AODV (Perkins, C. E., et. al., 2000) and DQoSR (Chen,
S. and Nahrstedt, K., 1999).

A different approach to dynamic QoS allocation for multimedia ad-hoc networks was
taken by Wu, H. K. and Chuang, P. H., 2001, who propose the usage of carrier sense multi-
ple access/collision avoidance (CSMA/CA) medium access protocol, along with reservation
and control mechanisms in order to guarantee QoS in ad-hoc networks. Their scheme uses a
link-state routing protocol, where each node broadcasts its neighbour list to all other nodes.
The standard Dijkstra’s algorithm (Sedgewick, R., 1983) is then used to find the shortest
route. Along with neighbour lists broadcasted by nodes, the reservation tables are also broad-
casted. In this way, a network node builds the network topology along with QoS
information. In addition to periodic exchange of reservation tables, they are also dynamically
broadcasted each time a new reservation is made. A node that accepts a new incoming re-
quest for a QoS reservation, checks its QoS table, and determines whether a new reservation,
with the specified demand, can be established, or not. Two simulation experiments were
conducted in their study, the first on a single-hop topology, and the second on a multi-hop
topology. In the single-hop simulation, the system was shown to be able to guarantee trans-
mission performance, however, in the multi-hop simulation, although the network traffic
was controlled, the request to send/clear to send (RTS/CTS) message exchange was not
proved to be sufficient for solving the hidden node problem. In addition, the average packet
loss rate was higher than the single-hop simulation.

Relative research work in QoS, can be found in (Hu, Y. C. and Johnson D. B., 2004),
who proposed SQoS, a secure form of QoS-Guided route discovery for on-demand, ad-hoc
network routing, which uses symmetric cryptography to secure route discovery requests. Ac-
cording to the authors, the symmetric cryptography is preferable in this area, due to its faster
execution, when compared to asymmetric cryptography, which is typically three to four
times slower. In general, QoS-Guided route discovery has an exponential relation to the
number of network nodes, for a route discovery to a single destination, however, SQoS re-
duces the overhead to a linear relation.

 258

Even though these QoS methods are shown to improve over traditional techniques, they
take little, or no consideration, of key metrics, such as node computation strength, current
utilisation status, and battery level. In an attempt to prove the need for these parameters to
be taken into account as well, Buchanan, W. J., et. al., 2004a showed that wireless devices
not only have huge performance differences in calculation speed, but, also, in network
transmission reliability, and throughput. Furthermore, it was shown that heavy routing im-
poses higher resource consumptions, in terms of CPU, memory, and battery discharge, to
resource constrained devices, than in devices of a fitter category (Buchanan, W. J., et. al.,
2004a). Similarly, it was demonstrated that the maximum throughput, which can be offered
by an ad-hoc routing device, is highly-dependant on the device’s hardware characteristics
(Migas, N., et. al., 2004b, Migas, N., et. al., 2005). Throughput was also shown to be di-
rectly linked to the Operating System (OS) and Java Virtual Machine (JVM) used, in the
case of the proxy software being developed in Java. Furthermore, both studies provided clear
evidence that the battery discharge rate is dependent on the routing scenario the device is
trying to accomplish.

B.10 Agent-based ad-hoc security

In contrast to their wired counterparts, mobile ad-hoc networks have no clear line of defence,
and therefore traditional security solutions are hardly applicable. In addition to proposals for
agent-based solutions to ad-hoc routing, there have been numerous proposals for enhancing
security with agent-based solutions. Some of these include (Wang, Y. and Pang, X., 2003,
Ping, Y., et. al., 2004, and Peysakhov, M., et. al., 2004).

Wang, Y. and Pang, X., 2003, investigated a parallel dispatch model with secure route
structures for protecting the dispatch route information of mobile agents. In contrast to the
sequential mobile agent migration model, the proposed model facilitates efficient dispatching
of agents in a hierarchical manner, while simultaneously providing route security by exposing
minimal route information to hosts. Briefly, the proposed model is a typical parallel dispatch
model, where each parent agent, an agent that created a clone of itself, can dispatch two chil-
dren agents, the cloned copy of the original agent, resulting in a tree structure. In order for
the proposed model to provide security and robustness, cryptographic techniques were ap-
plied to the basic binary dispatch model. Employed mechanisms included the popular
public-key encryption algorithm, signature generation algorithm, and X.509 authentication
framework (Pfleeger, C. P., 1997). Although the authors suggested an e-commerce applica-
tion of their scheme, where e-shops could possibly deny the dispatch of a mobile agent, if the
agent’s itinerary is known to the e-shops, to its next hop (e-shop) for competitive reasons,

 259

another potential application could possibly be ad-hoc routing.
In routing protocols, such as Ant-AODV, and in protocols proposed in (Bandyopadhyay,

S. and Paul, K., 1999, RoyChoudhury, R., et. al., 2000, Denko, M. K., 2003), where mobile
agents are responsible for routing, the scheme proposed by Wang, Y. and Pang, X., 2003,
could be beneficial. In particular, hiding routing agent’s sensitive information, such as their
dynamic itinerary, could enhance the security and robustness of an agent-based routing pro-
tocol, in the sense that a malicious node would not be able to exploit the routing agent's
behaviour so as to alter its decision making. However, there are certain limitations in the
proposed scheme, imposed by the assumption of an existing secure environment, including
the generation, certification, and distribution of public keys. A totally-distributed and scal-
able security solution for ad-hoc networks has been proposed in Ping, Y., et. al., 2004. The
architecture relies on a multi-agent system to provide functions similar to those of the body’s
immune system:

• It is totally-distributed, consisting of many components which interact locally in order to

provide global protection, and there is thus no central control, and consequently no sin-
gle point-of-failure.

• It is dynamic in the sense that, whenever, necessary, individual components are continu-
ously being created, destroyed, and circulated throughout, allowing the system to discard
useless and dangerous components, while improving on existing ones.

• It is adaptable by learning to recognise and respond to new enemies, and retains a mem-
ory to facilitate future responses.

• It is autonomous, as agents take autonomous decisions on invaders based on the collected
information, and act independently.

• It is based on behaviour analysis and not on standard node ID to isolate the invader
node, and, thus, even if the node, changes its ID, such as its IP address, it will be found,
as long as its behaviour remains the same.

• It is scalable, as the computational requirements are not increased by the addition of new
nodes into the ad-hoc network.

The overall architecture of the proposed system is illustrated in Figure B.6.

 260

Mobile ad-hoc network

Collection

Filter

Code

Communication

Monitor agent

Communication

Analyse

Response

Im
m

une m
em

orySe
cu

rit
y

po
lic

y

Decision agent

Move

Locate

Isolate

Suicide

Killer agent

Mobile ad-hoc network

Collection

Filter

Code

Communication

Monitor agent

Collection

Filter

Code

Communication

Monitor agent

Communication

Analyse

Response

Im
m

une m
em

orySe
cu

rit
y

po
lic

y

Decision agent

Communication

Analyse

Response

Im
m

une m
em

orySe
cu

rit
y

po
lic

y

Decision agent

Move

Locate

Isolate

Suicide

Killer agent

Move

Locate

Isolate

Suicide

Killer agent

Figure B.6: An immune-like system with mobile agents for security in mobile ad-hoc networks

The system’s three essential components are:

• Monitor agent. It resides on each node and monitors its neighbouring nodes’ behaviour.

The collected information is passed to the filter component, which reduces the amount
of information collected. The filtered information is then passed to the code component,
which analyses the information and codes them by number, such as 1 - RREQ sent.

• Decision agent. These are distributed over the network in order to save network re-
sources, and compose the core of the system by analysing information collected by
monitor agents.

• Killer agent. They are created on-demand by decision agents, to isolate found invader
node(s). These agents can get into the invader’s neighbouring area and surround it. They
respond by cutting off the routing requests of the invader and dropping its transmitting
data packets.

A utility-based model for balancing information availability and integrity in agent systems
running on ad-hoc networks was initially proposed in (Artz, D., 2003). The model was fur-
ther advanced to handle multiple compromised hosts and included the introduction of
weight labels to the host and agent topology graphs (Peysakhov, M., et. al., 2004). The basic
principle of this approach is, that, agents reasoning about how they communicate over the

 261

mobile agent system’s underlying network, and by having some sort of build-in network
awareness capability, it could possibly lead to major improvements concerning the survivabil-
ity and efficiency of the mobile agent system. Among other potential applications of this
model, the compromised-node problem, that is, a node launching a denial-of-service attack,
and specifically how agents should react after the intruder has been detected, was investigated
by the authors. The process is:

• Agents cooperatively identify the magnitude of the effect which the compromised host

has on the integrity of messages among agents.
• Agents cooperatively select a security policy with respect to message integrity, and the

compromised host.

The set of security policies which can be implemented by the agents are the following:

• Reroute. This operation generates a new set of network routes which try to avoid the

compromised host.
• Ignore. This operation has no effect on the compromised host or any other host in the

network, and thus the state of the network remains the same.
• Remove. It has the effect of totally removing any links to/from the compromised host, so

that it is no longer capable of participating in the agent’s system underlying network.

Figure B.7 (a) illustrates an example topology with eight ad-hoc nodes, and eight links be-
tween them. It is assumed here that the compromised host is H8. Figure B.7 (b) illustrates all
routes to H1 after the reroute operation has been applied to H8. As shown, possible routes
involving the host pair H5 - H8 were not included in the new set of network routes. In con-
trast, the ignore operator had no effect on the network state, as it can be seen in Figure B.7
(c). Removing the compromised host H8 from participating in the agent system’s underlying
network, resulted in a single route to H1 (H6→H5→H4→H3→H2→H1), while H8 and con-
sequently H7 were cut off from being able to communicate with H1 and any other node in
the network.

 262

H2

H3

H4

H5 H6

H7

H1

H8

H2

H3

H4

H5

H6

H7

H1

H8

H2

H3

H1

H8

H5 H7

H4 H6

H2

H3

H4

H5

H6

H7

H1

H8

(a) (b) (c) (d)

H2

H3

H4

H5 H6

H7

H1

H8

H2

H3

H4

H5

H6

H7

H1

H8

H2

H3

H1

H8

H5 H7

H4 H6

H2

H3

H4

H5

H6

H7

H1

H8

(a) (b) (c) (d)

Figure B.7: Agent decisions on compromised host, (a) Initial topology,
(b) reroute (N, hc), (c) ignore (N, hc), d) remove (N, hc)

In order to provide the agents with the ability to reason on whether a host has been com-
promised or not, the agents can sense and observe the signal strength, signal to noise ratio,
delay, and jitter. Agents can then decide on which security policy should be applied by per-
forming a series of mathematical calculations which are thoroughly presented in (Peysakhov,
M., et. al., 2004).

 263

C Appendix - Intelligent software agents

C.1 Introduction

This Appendix presents the literature review in the area of intelligent mobile agents. Initially,
a historical evolution of the mobile agent paradigm, along with its advantages in the context
of distributed systems, and especially wireless ad-hoc networks, is presented. Overall, intelli-
gent agents have novel characteristics, such as asynchronous communications, autonomy,
goal-orientation, reactiveness, and mobility of code and data state, which makes them an
ideal solution for unreliable and highly-dynamic environments, such as wireless ad-hoc net-
works, as their operation can remain unaffected by frequent communication disconnections,
or, limited bandwidth, which is normally the case for ad-hoc networks.

C.2 Intelligent Agent

According to Franklin, S. and Graesser, A., 1996, autonomous agents can be generally
grouped into three categories: biological, robotic, and computational. A software agent is
generally a sub-class of an autonomous computational agent, which can be further divided
into task-specific, entertainment and virus. Figure C.1 illustrates the taxonomy using a tree-
like structure.

Autonomous

Biological Robotic Computational

Artificial life

Task-specific Entertainment

Software

Virus

Autonomous

Biological Robotic Computational

Artificial life

Task-specific Entertainment

Software

Virus

Figure C.1: Generic agent taxonomy

Traditionally, applications in distributed systems have been structured using the client-server
paradigm, in which client and server processes communicate either through message passing,
or remote procedure calls (RPC) (Tay, B. H. and Ananda, A. L., 1990). This communica-

 264

tions model is normally synchronous, that is, the client blocks after sending a request to a
server, waiting for the results of the call. A number of alternative communication models
have been proposed and implemented in order to improve to traditional RPC for distributed
programming, including: process migration (Powell, M. L. and Miller, B. P., 1983); remote
evaluation (Stamos, J. W. and Gifford, D. K., 1990); and mobile objects (Jul, E., et. al.,
1988).

According to process migration, an entire address space can be moved from one host to
another. The basic drawback of this model is that it does not allow an easy way to return
data back to the originator node, without the entire process returning, as well. According to
remote evaluation, a host can send a request in a form of a program to another host on the
network. The remote host would then run the program in its own address space, and return
the results to the originating host. Remote evaluation improved on process migration, as
process control data was not required to be transmitted by the source host to the destination
host. The main drawback was the absence of state information in the executable program at
the remote host. The mobile object communications model further improves on remote
evaluation as it allowed objects to migrate from node-to-node while carrying: program code;
data in the form of variables state; and, optionally, other information. The main drawback of
mobile objects is that they are only suitable for homogeneous local area networks (LANs).

In contrast to its previous counterparts, the mobile agent paradigm allows the migration
of an agent, with code, data, and, possibly, execution context, from node-to-node between
heterogeneous networks, in an autonomous way. Thus, the agent decides the resources re-
quired and finds its way in a heterogeneous network, such over the Internet. It can then
perform calculations and appropriate information filtering, and finally return home, to the
host who created the agent, to present the results to the user. Figure C.2 illustrates the evolu-
tion of the mobile agent paradigm from its ancestors.

 265

Client Server

Request

Response

Node A Node B

Code A,
Data

Code A,
Data

Node A Node B

Code A,
Data

Data

Node B Node C

Node A Node D

Dispatch

Migration

Migration

Migration

Homogeneous
network

Object A,
Code

Node B Node C

Node A Node D

Homo/Heterogeneous
network

Dispatch

Migration

Migration

Migration

Object A,
Code

RPC Client-Server
Process migration from A to B

Remote evaluation from A to B

Mobile object migration from A to B to C to D to A

Mobile agent migration from A to B to C to D to A

Client Server

Request

Response

Node A Node B

Code A,
Data

Code A,
Data

Node A Node B

Code A,
Data

Data

Node B Node C

Node A Node D

Dispatch

Migration

Migration

Migration

Homogeneous
network

Object A,
Code

Node B Node C

Node A Node D

Homo/Heterogeneous
network

Dispatch

Migration

Migration

Migration

Object A,
Code

RPC Client-Server
Process migration from A to B

Remote evaluation from A to B

Mobile object migration from A to B to C to D to A

Mobile agent migration from A to B to C to D to A

Figure C.2: Evolution of the mobile agent paradigm

C.3 Advantages of Mobile Agents

The main advantages of the mobile agent paradigm lie in its ability to move client code and
computation to remote server resources, and in permitting increased asynchrony in client-
server interactions (Harrison, C. G., et. al., 1995). By moving the computation close to the
needed resources, mobile agents can reduce communications that would otherwise take place
over the network, and thus reduce bandwidth and latency requirements. Two principal net-
work features, which motivate the need for mobility, are (Marrow, P. and Ghanea-Hercock,
R., 2000):
• Discontinuous network communication or limited bandwidth, such as wireless devices.
• Remote operations or distributed processing.

The mobile agent paradigm may offer a large amount of advantages compared to traditional

 266

client-server approaches, including (Lange, D. B. and Oshima, M. 1999):

• Reduce network load. A mobile agent can be dispatched to a remote host and thus avoid

multiple interactions of communication protocols that often result in a good deal of net-
work traffic. In addition, instead of transferring large amounts of data over the network,
the computation is moved to the remote machine.

• Overcome network latency. Control of critical real-time systems by a central controller
through a network often involves significant latency. Instead, a mobile agent can be dis-
patched from the central controller to act locally, and execute the instructions directly.

• Encapsulate protocols. A mobile agent can be dispatched to a network carrying an im-
plementation of a protocol in its payload, and thus use this implementation to establish
channels between remote hosts, or, update remote host’s protocols with a newer version.

• Execute asynchronously and autonomously. A user can delegate a set of tasks to a mo-
bile agent, dispatch it from their mobile device to a fixed network, and then switch the
device off. When the agent finishes its task, it can notify the user by means of an SMS
message to their mobile phone, so that the user can switch the mobile device back on,
and allow the mobile agent to return home, and present the results. After being dis-
patched, the mobile agent becomes independent of the process that created it and can
operate asynchronously, and autonomously. In this way, the user can save valuable time,
money, and also avoid the hassle of intermittent wireless connections.

• Use parallel processing. A mobile agent can clone itself, and dispatch copies to other re-
mote hosts, and thus accomplish tasks in parallel.

• Are robust and fault tolerant. A mobile agent has the ability to react dynamically to un-
favourable situations and events, which makes it easier to build robust and fault-tolerant
distributed systems.

• Adapt dynamically. A mobile agent can sense changes in the execution environment and
react autonomously.

• Are naturally heterogeneous. A mobile agent is generally host and transport layer inde-
pendent, and thus suits network computing environments which are typically
heterogeneous.

C.4 Mobile Agents Applications

Mobile agents offer a set of additional features that make them suitable for a number of ap-
plication areas. In addition, mobile agent technology can be used in combination to
traditional approaches, such as with the client-server communications model, to provide an

 267

extensive number of applications. Although, none of the following applications require the
use of mobile agents (Harrison, C. G., et. al., 1995), their usage can contribute to a simpler,
and, more effective, development of these distributed applications (Puliafito, A., et. al.,
2000). Mobile, or wireless computing, is the most frequently proposed application area of
mobile agent technology (Kotz, D., et. al., 1997), and two most important features that
make mobile agents ideal for dynamic environments are:

• Task continuation. An agent can autonomously migrate to a server and continue its

processing task, while the user can disconnect from the network.
• Minimal connection use. The agent can pre-process information locally, at, either the

server, or the mobile device, and thus reduce network overhead which would otherwise
be required for large data transmissions.

In addition to these, an extra feature that makes mobile agents ideal for mobile computing is
their ability to operate asynchronously (Hadjiefthymiades, S., et. al., 2002). Even if band-
width is readily available in the near future, battery life on mobile devices is likely to be
restricted (Ghanea-Hercock, R., 2001). Also, wireless bandwidth is expected to remain high-
priced and thus worth making applications as more efficient as possible.

Information retrieval using mobile agents, suit the requirements of the new dynamic sce-
narios, such as the one derived from the Internet (Cardi, G., et. al., 2000). This is due to
their capability of moving to the place where the information is stored, thus saving band-
width, and to their robustness in the presence of unreliable connections.

E-commerce has become the focus of information technology development in recent
years. For this, mobile agents can search, find, and purchase products and services, in favour
of a user (Tianfield, H., 2001). Lee, T. O., et. al., 2001, proposed an agent-based model for
processing micropayment transactions in a distributed environment, which is secure, and
avoids calculation of complex cryptographic and authentication mechanisms that often re-
quire high-processing. Wang, H., 2000, proposes a mobile agent scheme for implementing
secure business transactions on the Internet, which improves on security, in comparison to
traditional business transaction protocols.

Network and Systems Management (N&SM) using mobile agent technology has been
proposed as an answer to the scalability limitations of centralised models, and the flexibility
problems of static hierarchical frameworks (Gavalas, D., et. al., 2001). Traditional network
management protocols, such as Simple Network Management Protocol (SNMP) (Case, J.,
et. al., 1990), offer a largely centralised approach to network management, thus posing a
challenge to scalability, and often cause network congestion. Baldi, M. and Picco, G. P.,

 268

1998, investigated an alternative approach of network management using mobile agents, and
compared the traffic generated by standard SMNP against their approach. They concluded
that the mobile agent approach could save up to 95 (%) of network traffic, if, and only if, the
mobile agents perform appropriate filtering in visiting nodes. Similarly, Marques, P., et. al.,
2001, also came to the same conclusion after conducting research on the usage of mobile
agents in network management.

Intrusion detection research has been conducted for nearly 20 years, but still remains in
its infancy (Zhang, R., et. al., 2001). Unfortunately, traditional intrusion detection systems
pose a number of limitations in terms of configurability, scalability, and efficiency. A number
of novel intrusion detection systems have been proposed in the literature aiming to overcome
limitations of traditional approaches. Autonomous agents for intrusion detection (AAFID)
was the first architecture that proposed the use of autonomous agents for intrusion detection
(Spafford, E. H. and Zamboni, D., 2000), whereas Zhang, R., et. al., 2001, proposed a
multi-agent based intrusion detection architecture that improves on scalability, where intru-
sion detection is performed in a totally distributed manner. A network security system using
an analogy of natural world immunology, where each cell is represented by a respective mo-
bile agent, was proposed by Nishiyama, H. and Mizoguchi, F., 2001, of which additional
research material can be found in: (Krugel, C., et. al., 2002), (Hwang, K. and Gangadharan,
M., 2001), and (Dasgupta, D. and Brian, H., 2001).

Collaborative applications may also benefit from mobile agent technology, where complex
tasks can be divided into smaller pieces, and be delegated to mobile agents that can migrate
throughout the network to accomplish them. These agents could perform computations,
synchronously share results, and, collaboratively, determine changes to future actions (Wong,
D., et. al., 1997). These agents could behave in a totally automatic fashion, and thus require
no further assistance subsequent to their dispatch (Tianfield, H., 2003). In this way, users
could share data, documents, and various network resources effectively, and efficiently.

Phan, T., et al., 2002, introduced a challenging area of research and development, which
involved the integration of wireless mobile devices into the global computational Grid (Phan,
T., et. al., 2002), and Migas, N., et. al., 2003b, proposed a framework using mobile agents
for routing in ad-hoc networks, which may be used in parallel with alternative architectures,
such as the global computational Grid. The idea is based on the fact that static agents moni-
toring the mobile node’s available resources could inform the Grid to use a small part of their
computational power, when the node is inactive. Ceruti, M. G., 2001, proposed that the
mobile agent paradigm could be used to command, and control, communications, in gen-
eral, and to network centric warfare, in particular. The authors strongly suggested that agents
could provide a key technology to achieve enhanced capabilities in future military informa-

 269

tion system.
Furthermore, Buchanan, W. J., et. al., 2005a, propose a novel agent-based framework,

which introduces the concept of automatic agent-based forensic investigators. The frame-
work suggests that forensic investigator mobile agents, can migrate to terrorist computer
networks, create their own execution environment, scan the host computers for terrorism
material, and remaining unnoticed. The agents can then meet-up in trusted agent environ-
ments, and, cooperatively, decide on the validity of a terrorism threat. In the case of a
positive outcome, the mobile agents can inform the appropriate authority.

C.5 Mobile Agent Systems

A system infrastructure is required to support stationary and mobile agents, which provides
the functionality for the agents to move, communicate with each other, and interact with the
underlying computer system (Baumann, J., et. al., 1998). Furthermore, this infrastructure
must guarantee the privacy and integrity of agents, and the underlying system must prevent
malicious agents from attacking other agents, or the execution environment (Baumann, J.,
et. al., 1998). Such an infrastructure is often called a mobile agent system, or an agent plat-
form. For the purposes of this thesis, when referring to such a system infrastructure, the
phrase mobile agent system will be used, since it is a more general one. In general, a mobile
agent system is responsible for the execution, management, communication, migration, secu-
rity, naming, persistency, interoperability, and monitoring of mobile agents. Figure C.3
illustrates a number of computer nodes within a network, all running a mobile agent system,
where a single mobile agent visits each of the nodes, in a sequential order.

Nowadays, there exist many mobile agent systems for commercial and educational use.
Some well-known mobile agent systems include: Telescript (White, J., 1997, White, J.,
1996); D’Agents (Gray, R. S., 1998, Gray, R. S., 1995); Mole (Baumann, J., et. al., 1998);
Aglets Workbench (IBM, Inc., 1997); Concordia (Wong, D., et. al., 1997, Mitsubishi, Elec-
tric, 1997); Voyager (ObjectSpace, Inc, 1997); Grasshopper (IKV++, Inc., 2003); and
Ajanta (Karnik, N. M. and Tripathi, A. R., 2001, Tripathi, A. R., 1998).

 270

Network

Operating
system

Mobile agent
system

Operating
system

Mobile agent
system

Operating
system

Mobile agent
system

Operating
system

Mobile agent
system

Network

Operating
system

Mobile agent
system

Operating
system

Mobile agent
system

Operating
system

Mobile agent
system

Operating
system

Mobile agent
system

Operating
system

Mobile agent
system

Operating
system

Mobile agent
system

Operating
system

Mobile agent
system

Operating
system

Mobile agent
system

Figure C.3: Mobile agent migration among four agent-enabled hosts

Although these systems have similar features, and functionality, they contain important
technical and even conceptual differences (Silva, A. R., et. al., 2001). The first commercial
agent system was Telescript by General Magic, which developed their own language and a
development environment for agents. However, Telescript failed because it was huge, and
unstable, had poor performance, and included a difficult-to-learn programming environment
(Silva, A. R., et. al., 2001). The widespread use of the Java programming language (Sun, Mi-
crosystems, 2003b), and its platform-independent features, favoured the design and creation
of several mobile agent systems such as Aglets, Grasshopper, Mole, Ajanta, Concordia, Voy-
ager, while they downgraded the usage of other languages for the same reason.

D’Agents (Gray, R. S., 1998), formerly called Agent-Tcl (Gray, R. S., 1995), is a mobile
agent system developed at Dartmouth College in the USA. Although it was based on a Tcl
interpreter, D’Agents was designed to be independent of virtual machines, and of their re-
spective languages (Silva, A. R., et. al., 2001). Currently, D’Agents support Tcl, Scheme,
Java, and C/C++. When an agent wants to migrate to a new machine, it calls a single func-
tion, which automatically captures the complete agent state and sends this state information
to the server on the destination host. The destination host starts up an appropriate execution
environment, such as a Tcl interpreter for an agent written in Tcl, and loads the state infor-
mation into its execution environment, and restarts the agent from the exact point at which
it was left off (Gray, R. S., 1998). Thus, D’Agents provides true independence between the
mobile agent system, and the programming language the agents have been written into. Also,
D’Agents supports strong migration, that is, it preserves agent code, data state, and execution
state (see Section C.6). According to Gray, 1998, the security architecture is prone to denial-

 271

of-service attacks, and may thus be considered incomplete.
Mole (Baumann, J., et. al., 1998) is the first mobile agent system that was developed in

the Java language (Gosling, J., et. al., 2000). Weak migration is used for the transportation of
mobile agents, as the Java language does not provide any mechanisms to capture execution
state information. Mole provides an execution environment for agents, as all other mobile
agent systems, which is mainly based on the concept of agents, and places. An agent system
consists of a number of places, being the home of various services (Baumann, J., et. al.,
1998). Agents are then active entities, which may move from place-to-place to meet other
agents, and access services in these places (Baumann, J., et. al., 1998). Mole provides a nam-
ing service that uniquely identifies mobile agents, and, is location independent, that is, it
does not change when the agents moves to a new place.

Aglets (IBM, Inc., 1997) is a Java-based mobile agent system developed by IBM Tokyo
Research Laboratory, and names mobile agents as aglets, which are Java Objects that can sud-
denly halt their execution, be dispatched to a remote host, and resume execution to the new
host (Green, S., et. al., 1997). Aglets support weak migration, that is, agent code and data
state (see Section C.6). The aglets mobile agent system contains the following components:
the Java Aglet API, the mobile agent system, and the Fiji. The Java Aglet API provides a set
of classes, and interfaces, which facilitate the implementation of agents and agent-based ap-
plications. The mobile agent system provides the execution and computational environment
for aglets, and Fiji allows for the creation of applets which support the aglets existence. It also
offers the following: naming service; persistence service; navigation; communication; access
to external resources; and security (Silva, A. R., et. al., 2001). Unfortunately, according to
Tripathi, 1998, Aglets have a limited security support.

Concordia (Wong, D., et. al., 1997) is another Java-based mobile agent system, which
was developed by Mitsubishi Electric (Mitsubishi, Electric, 1997). Like all mobile agent sys-
tems developed in Java language, it provides weak migration (see Section C.6). It has
extensive support for agent communication, and also provides asynchronous event signalling,
as well as a specialised group collaboration mechanism (Tripathi, A. R., 1998). It also ad-
dresses fault tolerance requirements with an object persistence mechanism that is used for
reliable agent transfer, and can be used by agents, or servers, to create checkpoints for recov-
ery purposes (Tripathi, A. R., 1998). Concordia implements security functions, such as
access control to local resources and certified mobile agents. Each mobile agent is associated
with a particular user, and carries a one-way hash of that user’s password, however, it only
applies to closed systems.

Voyager is a yet another Java-based mobile agent system developed by ObjectSpace (Ob-
jectSpace, Inc, 1997), which is novel in providing location-independent access to an instance

 272

of a class. A Java class, such as a mobile agent, is then transformed to a remotely-accessible
equivalent, called a virtual class. Thus, a mobile agent can locate another remote mobile
agent, in a similar way, as they both were on the same host. Voyager supports weak migra-
tion, that is, agent code and data state (see Section C.6). Agent communication is possible via
method invocation of virtual references (Tripathi, A. R., 1998). Agents can also make syn-
chronous, one-way, or future-reply-type invocations.

Grasshopper is a Java-based mobile agent system developed by IKV++ (IKV++, Inc.,
2003). It was developed to be compliant with the first mobile agent standard of the object
management group (OMG), the mobile agent system interoperability facility (MASIF) (see
Section C.7). The MASIF standard has been initiated in order to achieve interoperability
between mobile agent systems of different manufacturers. Grasshopper provides the follow-
ing services to mobile agents: communication; registration; management; transport; security;
and persistence. It supports multiple communication protocols, such as remote method in-
vocation (RMI), secure socket layer (SSL), plain socket, plain socket/SSL, and Internet inter-
ORB protocol (IIOP). Supported communication modes include: synchronous; asynchro-
nous; dynamic; and multicast communications. Interestingly, at least from the perspective of
this thesis, Grasshopper provides a version for resource-constrained devices, such as Personal
Digital Assistants (PDAs), which are Java 2 micro edition (J2ME)-enabled (see Appendix A).

Ajanta (Karnik, N. M. and Tripathi, A. R., 2001, Tripathi, A. R., 1998) is a Java-based
mobile agent system developed at Minnesota University, and provides a mobile agent infra-
structure which supports basic mobile agent features, that is, agent hosting and execution,
agent migration, and a binding to the host’s environment and resources. Special attention
has been focused on security-related features, as well as mechanisms that facilitate the pro-
grammer’s task of creating robust, agent-based applications. Security features and
mechanisms in Ajanta include: authentication for client-server interactions; class loading;
thread grouping to implement protection domains for agents; a secure protocol for the trans-
fer of an agent from one host to another; a secure binding mechanism which allows agents to
access host resources in a controlled fashion; agent monitoring; and control mechanisms.
Furthermore, Ajanta provides mechanisms to protect the agent’s state against attacks, origi-
nating from the mobile agent system by means of a read-only and append-only container,
and a selective encryption of the agent’s elements.

C.6 Agent mobility

Agent mobility can be grouped into two categories: strong and weak mobility. The highest
degree of mobility is strong mobility (Baumann, J., et. al., 1998), which allows a mobile agent

 273

system to capture the entire agent state, that is, data and execution state, before agent migra-
tion. In other words, the migrated agent can resume execution at exactly the same point of its
code just after the migration command. Although this approach is the most attractive one
from the programmer’s perspective, it can be inefficient, expensive, and time-consuming
from the network’s perspective, as the complete agent state can be large. Furthermore, only a
few languages allow externalisation of state at such a high level, such as Tcl (Tcl, Developer,
2003). When strong migration is supported; capturing, transfer and restoration of the com-
plete agent is done transparently by the underlying mobile agent system (Baumann, J., et. al.,
1998). Unfortunately, in the case of Java language (Gosling, J., et. al., 2000), which is the
favourable implementation language for most existing mobile agent systems, there are no
such mechanisms that would allow the capturing of execution state information. This can
only be achieved by modifying the Java Virtual Machine (JVM) (Lindholm, T. and Yellin,
F., 1999), which would cause compatibility concerns. Thus, if a mobile agent system is de-
veloped in Java, it is most likely that it will only support weak migration instead of strong
migration.

A novel approach for capturing and re-establishing the state of mobile agents is presented
by Funfrocken (Funfrocken, S., 1998), where the entire state of an agent is achieved on the
language-level, without modifying the JVM, by instrumenting the programmer’s original
code with a pre-processor. The automatically inserted code saves the runtime information
whenever the agent requests state saving and re-establishes the agent’s runtime state on re-
start.

On the contrary, weak migration allows a mobile agent system to only capture the data
state of a mobile agent, before dispatching the agent to a new location. This method signifi-
cantly reduces the amount of agent’s state, which is required to be transferred to another
location. The size of the transferred state information can be further reduced by allowing the
programmer to select the variables making up the agent state (Baumann, J., et. al., 1998). In
the case of Grasshopper (IKV++, Inc., 2003), any variable, or method, declared as transient is
not captured before the agent’s migration. In addition to reduced overhead, strong migration
is not a necessity, as it is always possible to provide the same program-functionality by explic-
itly coding a program specific migration mechanism on top of a non-strong migration system
(Funfrocken, S., 1998). Thus, weak migration is the most favourable adopted approach in
most recently developed mobile agent systems. However, the programmer needs to take the
appropriate steps in the agent’s code, on the basis of the enclosed state information, in order
to instruct the agent where to start after migration.

 274

C.7 Drawbacks of mobile agents - Interoperability

Interoperability is a crucial requirement in the Internet scenario: mobile agent applications
should be capable of interacting with any other application and service, independent of the
adopted programming style (Bellavista, P., 2000). Zhang, M., et. al., 2001, stated that most
existing mobile agent systems have their own platform-specific service ontology, encoding
mechanisms, and communication protocols, and thus implementation of interoperability as
an extension, at this stage, could possibly be unfeasible. Some of these systems are: Agent Tcl
(Gray, R. S., 1995); Concordia (Mitsubishi, Electric, 1997); and Voyager (ObjectSpace, Inc,
1997). Even though most of the existing mobile agent systems are well designed, their lack of
interoperability services downgrades their usefulness. The absence of appropriate counter-
measures for interoperability restricts the propagation of mobile agent technology.

OMG/CORBA
Distribution of applications and services over a network solves the problems of developing
and managing huge, centralised applications. However, it imposes several challenges on ap-
plication development. Autonomously-implemented application components tend to be
heterogeneous, as a result of being implemented in different programming languages, and are
targeted at different hardware and operating system (OS) platforms (Emmerich, W., 1997).
In order to support distributed applications in globally distributed systems, appropriate mid-
dleware layers aim to reduce the problems of distribution transparent to developers and
users1. CORBA is one of the most widely-used middleware in distributed environments, pro-
viding a distributed programming environment (DPE), according to which distributed
objects can transparently interact based on the client-server model (Bellavista, P., et. al.,
2001). It also hides the implementation and location of server objects from client objects,
and thus provides transparent communication, and interactions. Furthermore, CORBA al-
lows the integration of already-implemented software components by simply wrapping
around an interface definition language (IDL) that describes their behaviour. CORBA and
mobile agents can successfully complement each other, despite their differences. A major dif-
ference is that a mobile agent is a location-aware entity, whereas, CORBA hides the actual

1 Examples of such layers include the distributed computing environment (DCE) of the Open Software Foun-

dation, ISO’s ODP standard, various standards of the CCITT (such as X.400, X.500, and X.722), the

Common Object Request Broker Architecture (CORBA) of the Object Management Group (OMB), and the

evolving Distributed Component Object Model (formerly called Network OLE) from Microsoft (Emmerich,

W., 1997).

 275

location of objects. In addition, CORBA has reached a wide acceptance, while the mobile
agent paradigm has led to a great variety of different and non-interoperable mobile agent sys-
tems (Bellavista, P., et. al., 2001). Thus, CORBA integration is vital for emerging mobile
agent systems.

OMG MASIF
The OMG group works in different specialised areas. One sub-group has defined the mobile
agent system interoperability facilities (MASIF) standards (OMG, MASIF, 1997). MASIF is
an agent interoperability standard, built within the CORBA framework, mainly to support
agent tracking, mobility, and management (OMG, MASIF, 1997). As a result, it provides no
support for communication. MASIF allows interoperability between mobile agent systems
written in the same language, but, potentially, by different vendors and systems that are ex-
pected to go through many revisions within their lifetime. Language interoperability is
difficult to achieve, and, furthermore, unnecessary, as the support for different languages can
be replicated at each node. MASIF thus does not impose any requirements for rebuilding an
already existing mobile agent system, but instead it requires the development of an add-on
module which conforms to the MASIF specification. The module must then get plugged
into the existing mobile agent system. MASIF does not deal with standardisation of local
agent operations such as interpretation, serialisation, execution, and deserialisation, as these ac-
tions are application-specific, and there is no reason to limit mobile agent systems
implementation (Bellavista, P., et. al., 2001).

MASIF proposes standardisation for agent and agent system names, for agent system
types, and for local syntax. Two interfaces are proposed in the specification document:
MAFAgentSystem and MAFFinder. The former provides operations for the management
and transfer of agents, whereas the latter interface supports the localisation of agents and
mobile agent systems in the scope of an administered locality (Bellavista, P., et. al., 2001).
MASIF allows communication with a mobile agent system in a MASIF-compliant way,
which allows interoperability, or in a platform-specific way, which may provide additional
functionality.

FIPA
Foundation for Intelligent Physical Agents (FIPA) (FIPA, 1997) is an abstract architecture
that can be shared by different platform implementations, and agents of different systems or
providers, as far as they are all FIPA-compliant. Accordingly, agents can communicate and
interact directly by Agent Communication Language (ACL) (Zhang, M., et. al., 2001). The
main emphasis of FIPA specification is concentrated on the standardisation of agent com-

 276

munication and proposes an ACL in order to support interoperable communications be-
tween heterogeneous FIPA-compliant agents. FIPA proposes three basic services (Bellavista,
P., et. al., 2001):

 Agent Management System (AMS). This specification provides the normative frame-

work within which FIPA agents exist and operate. Its purpose is the establishment of the
logical reference model for the creation, registration, location, communication, and mi-
gration of agents.

 Directory Facilitator (DF). This service may be considered as the yellow pages directory.
Agents that want to offer their services to other agents may register to a DF, and thus al-
low other agents to request their services. Agent registration to a DF is optional, while
registration to an AMS is mandatory.

 Agent Communication Channel (ACC). This service allows communication between
agents of possibly heterogeneous mobile agent systems, using a message forwarding ser-
vice. This service requires ORB CORBA integration, which is considered mandatory for
any FIPA-compliant mobile agent system. Agent messages are transferred by CORBA
Internet Inter-Orb Protocol (IIOP).

Local communications between agents may be released by the mobile agent system’s native
communication protocol. However, any mobile agent system that is FIPA-compliant needs
to implement an ACC in order to forward ACL messages between heterogeneous agents.
FIPA-based communication between heterogeneous mobile agent systems requires an im-
plementation via a message forwarding service over CORBA.

C.8 Drawbacks of the mobile agents - Security weaknesses

The fundamental security requirements for any computer system are confidentiality, integ-
rity, and availability (Pfleeger, C. P., 1997). In order to ensure confidentiality, a computer
system must prevent unauthorised disclosure of information, while to ensure integrity, it
must prevent unauthorised modification of information. In order to ensure availability of a
computer system the prevention of unauthorised withholding of information is required.

Although the mobile agent paradigm extends the capabilities of traditional methods of
remote communication and distributed computing, it also raises new security issues (Chess,
D. M., 1998). Compared to the client-server model, mobility of code increases the threat of
security violations (Corradi, A., et. al., 2001). The reason for this lies largely on one intrinsic
characteristic of mobile agents: execution on remote unknown mobile agent systems rather

 277

than their safe home mobile agent system (the one a mobile agent originates from). This is
especially true in large heterogeneous and open computing environments, like the Internet
(Zhang, M., et. al., 2001). Figure C.4 illustrates a generic threat model of this new technol-
ogy.

1

2 3

4

Network
Mobile agent’s home platform Remote platform

Stationary
agents Mobile agent

Stationary agents

1

2 3

4

Network
Mobile agent’s home platform Remote platform

Stationary
agents Mobile agent

Stationary agents

Figure C.4: A threat model of a mobile agent and a mobile agent system

Security threats can be grouped in the following categories (Jansen, W., 2000):

 Agent against mobile agent system. An incoming mobile agent has two main lines of

attack. Firstly, it can gain unauthorised access to information residing at the agent plat-
form, and secondly it can use its unauthorised access in an unexpected and disruptive
fashion (Jansen, W., 2000). Attacks can be grouped into two categories: passive and ac-
tive (Zhang, M., et. al., 2001). Passive attacks include communications monitoring and
sensitive information pilfering, while active ones include the damage of the host’s re-
sources via deletion or modification. The problem of host protection against malicious
agents has already been extensively investigated (Corradi, A., et. al., 2001).

 Mobile agent system against agent. During the execution of a mobile agent, the agent is
in a very asymmetric relationship with regards to the server, since the server must be able
to access the agent’s code, data, and state, in order to execute it (Kotzanikolaou, P., et.
al., 2000). A receiving mobile agent system can easily isolate and capture an agent and
may attack it by extracting information, corrupting or modifying its code and state, de-
nying requested services, or simply by reinitialising or terminating it completely (Jansen,
W., 2000).

 Agent against other agents. An agent can target another agent using several approaches,
including actions to falsify transactions, eavesdrop upon conversations, or interfere with
an agent’s activity (Jansen, W., 2000). In addition, an agent can respond incorrectly to
direct requests sent by another agent or simply deny that a legitimate transaction oc-

 278

curred. Furthermore, agents may exploit security weaknesses of other agents or launch at-
tacks by repeatedly sending messages in an attempt to deny them the ability to
communicate.

 Other entities against mobile agent system. Even when assuming that the locally active
agents and the mobile agent system are well behaved, other entities both outside and in-
side the agent framework may attempt actions to disrupt, harm, or subvert the mobile
agent system (Jansen, W., 2000). For instance, a mobile agent is at risk from the outside
network when it is migrating or communicating with its home site (Zhang, M., et. al.,
2001). Typical attacks include eavesdropping, traffic analysis, tampering, and forging.

C.8.1 Security countermeasures for mobile agents
Countermeasures refer to any action, device, procedure, technique, or any other measure that
can potentially reduce the vulnerability of, or, the threat to a system (Jansen, W., 2000).
Most agent systems rely on a common set of baseline assumptions regarding security:

 The home mobile agent system of a mobile agent is always trusted.
 The home mobile agent system and other equally trusted mobile agent systems are im-

plemented securely, with no flaws or trapdoors.

To address the security issue, public key cryptography (Mohapatra, P. K., 2000, Buchanan,
W. J., 2000), primarily in the form of digital signature, is utilised through certificates and
revocation lists managed through a public key infrastructure. The following sections, briefly
present a number of countermeasures aiming to protect a mobile agent and a mobile agent
system.

Protection of the mobile agent system
A famous countermeasure to protect a mobile agent system against mobile agent attacks and
also avoid interference between agents is the usage of a reference monitor (Wolthusen, S. D.,
2002). A reference monitor can enforce separate isolated domains for each agent and the
mobile agent system, and also control all inter-domain access. An implementation of a refer-
ence monitor applicable in the mobile agent framework may employ a number of security
techniques (Jansen, W., 2000):

• Mechanisms to isolate processes from one another, and from the control process.
• Mechanisms to control access to computational resources.
• Cryptographic methods to encipher information exchanges.

 279

• Cryptographic methods to identify and authenticate users and mobile agent systems.
• Mechanisms to audit security relevant events occurring at the mobile agent system.

Several techniques have been developed with purpose to provide protection for the mobile
agent system, including:

• Software-based fault isolation (Wahbe, R., 1994). This is the method of isolating appli-

cation modules into distinct fault domains.
• Safe code interpretation (Gong, L., 1998). This is a technique that denies execution of

potentially harmful instructions in the agent’s code.
• Signed code (Mohapatra, P. K., 2000). Signing of agents by the use of public-key cryp-

tography (Mohapatra, P. K., 2000, Buchanan, W. J., 2000) provides a means of
confirming the authenticity, its origin, and its integrity.

• State appraisal (Farmer, W. M., et. al., 1996). This method may be applied to an agent
in order to detect if the agent has been subverted due to alterations in its state informa-
tion.

• Path histories (Chess, D., et. al., 1995). This mechanism maintains an authenticable re-
cord of the prior platforms visited by an agent, so that a newly visited mobile agent
system can determine whether to process the agent or not and what resource constraints
to apply.

• Proof-carrying code (Necula, G. and Lee, P., 1996). It obligates the code producer to
formally prove that the agent possesses safety properties previously stipulated by the code
consumer.

Protection of the mobile agent
Security countermeasures on this class of attacks represent a new and challenging area of re-
search (Corradi, A., et. al., 2001). The techniques to protect a mobile agent from host
attacks can be grouped into two categories: prevention of agent tampering and detection.
Prevention methods aim to stop an attack from actually succeeding. On the other hand, de-
tection methods aim to detect agent tampering, after an attack has taken place, trace the
identity of the illegitimate host, and prove its misbehaviour. These methods may provide
partial solutions to particular problems, and thus are not sufficient (Kotzanikolaou, P., et. al.,
2000). Well-known detection mechanisms include the following:

• Partial result encapsulation (Jansen, W., 2000). An agent encapsulates partial results of

the actions taken place, at each platform visited, for verification to a trusted host such as

 280

the home of the mobile agent.
• Mutual itinerary recording (Roth, V., 1998). It allows an agent’s itinerary to be recorded

and tracked by another cooperating agent and vice-versa, in a mutually supportive ar-
rangement.

• Itinerary recording with replication and voting (Schneider, F. B., 1997). This approach
suggests that multiple copies of an agent may be used to perform a task, thus even if a
malicious mobile agent system destroys some of the copies, enough replicas will remain
to accomplish the task.

• Execution tracing (Vigna, G., 1997, Vigna, G., 1999). Execution tracing is a technique
for detecting unauthorised modification of an agent, through the faithful recording of
the agent’s behaviour, during its execution on each mobile agent system.

Prevention methods can be grouped into two categories:

• Passive prevention mechanisms. These protect the agents by using organisational or ar-

chitectural solutions. This approach either makes strong arguments on the
trustworthiness of a host or compromises many of the advantages of mobile agents, such
as autonomy (Kotzanikolaou, P., et. al., 2000).

• Active mechanisms. These try to provide solutions without making any hard assump-
tions or compromising the advantages of mobile agent technology.

Some of the most well-known prevention mechanisms include the following:

• Environmental key generator (Riordan, J. and Schneider, B., 1998). It defines a scheme

for allowing an agent to take predefined action when some environmental condition is
true.

• Computing with encrypted functions (Sander, T. and Tchudin, C. F., 1998). This aims
to determine a method whereby mobile code can safely compute cryptographic primi-
tives, such as a digital signature, even though the code is executed in untrusted
computing environments, and operates autonomously without interaction with the home
mobile agent system.

• Obfuscated code (Hohl, F., 1998). This aims to scramble the code of an agent in such a
way that no one can completely understand its function, or to modify the resulting code
without detection.

 281

D Appendix - Ad-hoc networks

D.1 Problems and challenges of wireless networks

Wireless networks are fundamentally different from conventional stationary, wired computer
networks (Elaarag, H., 2002). Despite the great benefit of users to access information any-
time-and-anywhere, wireless networks have certain inherent problems. For instance, the
Quality of Service (QoS) is dramatically reduced compared to their wired counterpart. A
number of these problems and key challenges are (Elaarag, H., 2002, Zorzi, M., 1998, Qi,
H. and Wang, F., 2001):

• Channel unreliability. This is the most tarnished characteristic of wireless communica-

tions, due to a number of physical factors, such as signal propagation through such
channels being subject to severe impairments.

• High bit error rates. In some situations, considerable number of data packets and ac-
knowledgements may be lost.

• Disconnections. These may happen due to a number of reasons. For instance, when a
mobile device moves from one access point to another, the new access point takes over -
this is called handoff. During hand-offs, there is a brief disconnection period.

• Limited and variable bandwidth. The available bandwidth is often not large, as the radio
spectrum, itself, is an inherently public resource, and is already crowded due to the pres-
ence of other services, such as broadcast TV, military communications, and point-to-
point radio links. Thus, wireless systems are always limited by interference, which often
dictates the amount of bandwidth available.

• Dynamic network topology. Movement of mobile devices causes rapid changes in the
topology of the network.

• Fixed routing is impossible. This is the devices being mobile, as fixed routing becomes
impossible, and new routing strategies need to be adopted.

D.2 A general model for Ad-hoc networks

Wireless networks, using the IEEE 802.11 standard, allow greater flexibility, and mobility,
and can create ad-hoc networks. The wireless transmission range of IEEE 802.11 has a cer-
tain propagation limit, and beyond this point, a wireless device is considered not to be in the

 282

direct communication range of other devices. Thus, in an ad-hoc network, it may be neces-
sary for a mobile device to seek the aid of others in forwarding data packets to their
destination, due to the limited propagation range of each mobile device’s wireless transmis-
sions (Hassanein, H. and Zhou, A., 2001). In case that all wireless devices are in direct
communication range of each other, there is no need for routing, and the ad-hoc network is,
by definition, fully-connected. However, this is rare in practice, since wireless devices may be
spread over a large geographical area. The electrical power required to obtain full connec-
tivity, when mobile devices are spread over a large geographical region, may be impractical,
wasteful of important battery life, and too vulnerable to security threats. Thus, routing is
considered as the most essential, however, it is a challenging issue in the field of ad-hoc net-
working.

There is a set of basic assumption, often taken for granted, in the context of ad-hoc net-
working. According to Perkins, this set includes the following (Perkins, C. E., 2001):

• The nodes are far enough apart so that not all of them are within range of each other.
• The nodes may be mobile so that two nodes within range at one point, in time, may be

out of range moments later.
• The nodes are able to assist each other in the process of delivering packets of data.

As a simplified example of an ad-hoc network, Figure D.1 illustrates a collection of eight
mobile nodes belonging to a wireless network (WLAN1), and a collection of eight more mo-
bile nodes belonging to another wireless network (WLAN2). The double arrows represent the
links between mobile devices. The absence of double arrows between mobile devices denotes
that these devices are not in direct communication range. Initially, MH1, MH2, MH3,
…,MH8 belong to WLAN1, and MH9, MH10, MH11, …,MH16 belong to WLAN2. Devices
from WLAN1 cannot communicate with devices from WLAN2, because there is no interme-
diate device to route traffic. The nodes are able to move relative to each other and, as that
happens, the links between them are broken and other links are established. As Figure D.1
shows, MH3 moves away from MH2 and establishes new links with MH8 and MH16. In this
way, MH3 joins WLAN1 to WLAN2 and thus MH3 can be used as a router to forward net-
work traffic, originating from WLAN1 to WLAN2, and vice-versa. Thus, if mobile device
MH6 wants to communicate with MH15, it may send network traffic along a number of
routes. These routes include MH6 MH7 MH3 MH16 MH15, or MH6 MH5 MH8 MH7
MH3 MH16 MH15. Most routing techniques identify the shortest path as the path with the
fewest hops from source node to destination node. Thus, in this example, MH6 would use
the first route as this route is the shortest, in terms of hops.

 283

In addition, in such an environment, if a mobile device has a connection to the Internet,
other devices may send network traffic through it, so that the Internet-connected device for-
wards it out to the Internet. For instance, in Figure D.2, MH14 has a connection to the
Internet and MH4 wants to send an e-mail to a recipient somewhere on the Internet. The e-
mail may be routed from WLAN1 through node MH3 to WLAN2 and then out onto the
Internet.

MH1

MH2

MH3

MH4 MH5

MH6

MH7

MH8

MH9

MH10

MH11 MH12

MH13

MH14

MH15

MH16

MH3

WLAN 1

WLAN 2

Figure D.1: An example of an ad-hoc network topology with partial mobility

MH14MH4 MH3

WLAN 1 WLAN 2

Mobile device acting as
gateway between

WLAN 1 and WLAN 2

Information is routed
through node MH3 to
MH14 and then out
onto the Internet

Internet connection

MH14MH4 MH3

WLAN 1 WLAN 2

Mobile device acting as
gateway between

WLAN 1 and WLAN 2

Information is routed
through node MH3 to
MH14 and then out
onto the Internet

Internet connection

Figure D.2: An example of an ad-hoc network topology with partial mobility

 284

D.3 Ad-hoc network applications

Ad-hoc networks have been proposed as a networking solution where the network setup time
is a major constraint, and/or where a network infrastructure is either not available, or nor
desirable (Ramarathinam, V. and Labrador, M. A., 2002). The initial motivation for ad-hoc
networks was based on military applications, and while military applications still dominate a
great part of research in this field, the recent rapid development of mobile communications
brought a number of commercial applications of ad-hoc networks (Migas, N., et. al., 2003a).
Perkins describes some of the potential application for ad-hoc networks that might provide
the basis for commercially successful products (Perkins, C. E., 2001). Some of these include
conferencing, disaster relief, health care systems, personal area networks (PANs) and Blue-
tooth (Appendix A), embedded computing applications, sensor dust, and inter-vehicle
communications.

Conferencing is a typical application, where the establishment of an ad-hoc network is
necessary. In a conference-meeting, participants may want to exchange information in a form
of a document, presentation file, or database file, and so on, without using a fixed network
infrastructure, as it may not be available, or desirable. In addition, ad-hoc networks are espe-
cially attractive to disaster relief scenarios, where an existing infrastructure is damaged, or
out-of-service. In emergency situations, such as in an earthquake, ad-hoc networks may save
many human lives, as emergency services can still remain in touch and exchange necessary
information, by the use of ad-hoc equipment.

A PAN is usually considered as a highly-localised network, consisting of a number of net-
work nodes that are closely associated with a single person. For example, these nodes could
be attached to a person’s clothes, or carried in a bag. As these devices are associated with a
particular person’s activities, they will most probably need to communicate, and even fur-
ther, to be attached to the Internet. Mobility becomes crucial when interaction between
several PANs, or different people, is needed, as users do not stay in fixed locations with re-
spect to each other for long. Methods for establishing communications between nodes on
separate PANs could benefit from ad-hoc networks. Furthermore, ad-hoc networks could
prove very helpful in health-care system. In hospitals, for example, busy doctors and nurses
may want to rely on an administrative infrastructure, at some times, and to utilise direct
links, outside the infrastructure, at some other times. Tasks, such as retrieving a patient's re-
cords, can be achieved without interaction with the infrastructure, and, in certain cases, these
tasks may be accomplished more effectively, and efficiently, by allowing hospital personnel to
carry ad-hoc equipment with them at all times.

Another interesting possible application of ad-hoc networks is inter-vehicle communica-

 285

tions, such as FleetNet (Franz, W., et. al., 2001), which deals with inter-vehicle communica-
tions, where vehicles could dynamically create ad-hoc networks based on the IEEE 802.11
standard. The key features include (FleetNet, 2003):

• Cooperative driver assistance. This aims to provide the driver with emergency notifica-

tions, obstacle warnings on roads and overtaking assistance, which are designed to make a
journey safer.

• Decentralised journey data. This aims to provide information for traffic jam, road prob-
lems, dynamic navigation, and even route weather forecasts.

• User communications and information services. This aims to provide Internet access,
mobile advertising, distributed games, and, even, inter-vehicle chat making journeys
more enjoyable for passengers.

Overall, the world is full of intelligent machines that can be mobile and able to process in-
formation about the environment in which they operate. Even though ad-hoc networks may
not be a necessity, this technology is likely to provide more flexibility and convenient em-
bedded-computing applications.

D.4 Ad-hoc routing protocols

Ad-hoc routing protocols can be categorised by the way they maintain routing information.
For example, routing protocols which maintain routing information for each node on the
network, at all times, can be categorised as proactive, while protocols which discover routing
information only when it is required, can be categorised as reactive. A third category is hy-
brid, which shares common characteristics with proactive and reactive. A classification of
routing protocols is illustrated in Figure D.3.

Ad-hoc Routing Protocols

Reactive Protocols Hybrid Protocols

DSDV WRP GSR STAR DREAM CGSR

FSR

DSR AODV ROAM LMR ABR CBRP

TORA

ZRP ZHLS SLURP DST DDR

SSA

Proactive Protocols

Ad-hoc Routing Protocols

Reactive Protocols Hybrid Protocols

DSDV WRP GSR STAR DREAM CGSR

FSR

DSR AODV ROAM LMR ABR CBRP

TORA

ZRP ZHLS SLURP DST DDR

SSA

Proactive Protocols

Figure D.3: Classification of ad-hoc routing protocols (Royer, E. M. and Toh C. K., 1999)

 286

D.5 Proactive (table-driven) ad-hoc routing protocols

With proactive ad-hoc routing, the routes to all the destinations are found at the start-up,
and, maintained by periodically broadcasting route updates. Thus, each node maintains a
route to all other nodes within the network, including those to which no packets are sent.
Nodes also react to dynamic topology changes, even if these changes have no effect on the
traffic. Routing information is thus maintained at each node and stored in a number of ta-
bles. The main disadvantage of this method is that each device is required to store large
routing tables in its memory, and they often produce high network overhead by periodically
exchanging frequent routing updates. These updates are typically appended into a message,
commonly known as HELLO message, which is periodically broadcasted by each node in the
network. However, in reactive routing protocols, as there is no requirement for routing in-
formation exchange, the HELLO message contains minimum information, mainly for
connectivity verification purposes, which are typically known as beacons. Thus, proactive
routing protocols introduce scalability problems, as large amounts of data are often broad-
casted, and thus prohibit their use by resource-constrained handhelds. An extensive review of
proactive routing protocols can be found in (Abolhasan, M., et. al., 2004), but for the scope
of this thesis, only the main features of each protocol are presented here.

The Highly Dynamic-Sequenced Distance-Vector (DSDV) is a modification of the DBF
algorithm (see Appendix B.3), which unlike DBF, it guarantees loop-free routes (Perkins, C.
and Bhagwat, P., 1994). However, scalability problems have not been addressed properly,
whereas Wireless Routing Protocol (WRP) improves on scalability, and also guarantees loop-
free routes (Murthy, S. and Garcia-Luna-Aceves, J. J., 1995). However, it requires from each
node to maintain large routing tables in their memory, and frequently broadcast these, which
results in significant memory usage, especially for resource-constrained devices, and further
consumes significant bandwidth and electrical power.

The Global State Routing (GSR) enhances the traditional link-state algorithm (see Ap-
pendix B.3) by reducing the propagation of dissemination updates to neighbouring nodes
only (Chen, T.-W. and Gerla, M., 1998). Even though the propagation of these updates is
restricted, the size is still relatively large, and thus imposes scalability issues for large ad-hoc
networks. The Fisheye State Routing (FSR) bases its main functionality in GSR, however, it
provides a more scalable solution, as it reduces the size of the update messages by increasing
the frequency in which the nearby nodes are updated. However, as mobility increases, nodes
become less updated for routes to remote nodes, which results in an overall decrease in accu-
racy (Gerla, M., et. al., 2001). Another protocol which bases its functionality in the link-state
algorithm is the Source Tree Adaptive Routing (STAR), where each routing device maintains

 287

a source-tree structure, which encodes the preferred paths to destinations (Garcis-Luna-
Aceves, J. J. and Spohn, M., 1999a, Garcis-Luna-Aceves, J. J. and Spohn, M., 1999b). STAR
employs two mechanisms: least overhead routing approach (LORA); and optimum routing
approach (ORA), where the former significantly reduces the amount of routing information
disseminated through the network, while the latter eliminates the requirement for periodic
updates, which are commonly found in the link-state algorithm, by allowing updates to be
disseminated conditionally. Thus, STAR provides a more scalable solution with reduced la-
tency, however, there are still high-memory and high-processing problems, especially in
large, and dynamic networks, mainly because each node is required to constantly maintain a
partial view of the topology. In contrast, the Distance Routing Effect Algorithm for Mobility
(DREAM) uses GPS, and thus each node knows its geographical coordinates, at any given
time. Thus, nodes are only required to exchange location information, instead of complete
link-state, or distance vector. In this way, the bandwidth-overhead is even further reduced,
which means that it is more scalable (Basagni, S., et. al., 1998).

Unlike the flat-structured routing protocols mentioned above, the Multimedia support in
Mobile Wireless Networks (MMWN) organises the network into clusters, where each cluster
contains two distinct types of mobile nodes: switches; and endpoints (Ramanathan, R. and
Steenstrup, M., 1998). Each cluster has a location manager (LM), which is responsible for
managing the location of each node in its cluster. The main advantage is that location-
finding and updating is sorely left to LMs, and has been shown to significantly reduce the
routing overhead compared to standard link-state and distance-vector approaches. However,
the strong association of location-finding with the hierarchical structure makes MMWN
hard to cope in the presence of frequent changes in the hierarchy. Cluster-head Gateway
Switch Routing (CGSR) is similar to MMWN, as it organises the network into clusters,
however, its main advantage is that there is no requirement for cluster-hierarchy maintenance
(Chiang, C.-C., et. al., 1997). Although this provides a simpler overall structure, and nodes
are only required to maintain routes to their cluster-heads, there are overheads involved in
cluster maintenance.

The Hierarchical State Routing (HSR) is based on the link-state algorithm, and maintains
a hierarchical addressing and topology map (Pei, G., et. al., 1999). Clustering algorithms can
be used in conjunction with HSR in order to organise nodes into clusters and assign key
roles to each node within the cluster including: cluster-head, gateway node(s), and mem-
ber(s). Each node has a hierarchical ID (HID), which is a sequence of the MAC addresses
from the top hierarchy to the source node, and can be used to send a packet from any source
to any destination in the network. The main advantage of this routing protocol compared to
other hierarchical protocols is the separation of mobility management from the physical hier-

 288

archy, while the main disadvantage is the overhead imposed by clustering formation and
maintenance. The Optimised Link State Routing (OLSR) is a point-to-point routing proto-
col, which is also based on the link-state algorithm (Jacquet, P., et. al., 2000, Jacquet, P., et.
al., 2001). The novelty of OLSR is that it employs a multipoint replaying (MPR) strategy
which alleviates the size of the control messages, and minimises the number of nodes which
broadcast at each route update. Routes to every destination are maintained into each node’s
routing table, which selects the optimal route based on the numbers of hops.

The Topology Broadcast Reverse Path Forwarding (TBRPF) is based on the link-state al-
gorithm, and extends it with the concept of reverse-path forwarding (RPF), which is used to
distribute the update packets in the reverse direction along the spanning tree (Ogier, R., et.
al., 2003). Thus, each node is required to construct a source tree by applying a modified ver-
sion of the Dijkstra’s algorithm (Sedgewick, R., 1983) on the node’s partial topology
information. Network overhead is minimised by nodes exchanging only parts of their source
trees with their neighbours, in a periodic and differential manner, where the latter requires
reporting only the changes.

Even though all these protocols base their functionality on the standard proactive meth-
odology, they differ in the way route updates are detected, and disseminated through the
network. Thus, they provide different performances in terms of bandwidth-overhead, nodal
utilisation, battery consumption, and packet-transmitted-to-packets-received ratio. However,
pure proactive methods have been shown to have major scalability problems for large net-
work topologies, and have thus been ruled-out by many recent ad-hoc routing protocol
proposals.

D.6 Reactive (on-demand) ad-hoc routing protocols

The on-demand methods aim to reduce the high network overhead imposed by the proactive
methods. Network nodes only react when a route is required between a source and a destina-
tion node, and there is no need to maintain routes to destinations in which they are not
communicating with. Route discovery is normally performed by flooding the network with
route-request packets. When the destination, or a node that has a fresh route to the destina-
tion, receives such a packet, it reverses the route that the packet took (in case of intermediate
node, it also appends the route to the destination) and sends a route-reply along the route.
When the route-request propagated through bidirectional, as well as unidirectional links, the
route-reply typically contains the route-request piggybacked in the route-reply packet, which
is flooded to the network. The reactive method has been proven to be simpler, and more ef-
ficient and scalable, in comparison to the proactive method. However, it can introduce high-

 289

latency, as a node is required to initiate the route discovery process each time a data packet
needs to be transmitted to a destination for which the node does not have a route.

Reactive routing protocols can be grouped into two categories: hop-by-hop routing; and
source routing.

• Hop-by-hop routing. Each node in the ad-hoc network maintains a routing table listing

the optimal next hop for all reachable destinations. Thus, when a node receives a data
packet, it determines the optimal next hop for the destination found in the packet's
header, and transmits it.

• Source routing. Each data packet carries the complete, and ordered list of nodes in its
header, which the packet must traverse to arrive at the desired destination. Thus, inter-
mediate nodes do not need to maintain up-to-date routing information, as they can
always identify the next hop by examining the packet's header.

According to hop-by-hop routing, when a node receives a data packet destined for node D, it
consults its routing table, and forwards the data packet to the preferred neighbouring node
for destination D. This process iterates, with each receiving node forwarding the data packet
to the next hop, until the data packet eventually arrives at the destination. In contrast,
source-routing requires that each originator node wishing to transmit a data packet supplies
the complete route which the data packet must take, as an extension to the IP header, in or-
der for the packet to arrive at the destination. Source routing has the advantage that routing
nodes do not need to maintain up-to-date routing information in order to route the packets
they forward, as the packets, themselves, contain the complete route, and thus eliminates the
network overhead caused by periodic route advertisement in hop-by-hop approaches.

A large number of on-demand routing protocols has been defined in the literature (Abol-
hasan, M., et. al., 2004). The Dynamic Source Routing (DSR) belongs to the category of
source routing, as each data packet is required to carry the full-route address from the source
to the destination, including the intermediate hop addresses as an extension to the IP header
(Johnson, D. B. and Maltz, D. A., 1996, Johnson D. B., et. al., 2004). This means that the
overhead imposed by the source route included in the packet rises proportionally to the
number of nodes the packet is required to transverse, and, may, thus, impose a high overhead
for large ad-hoc networks. On the other hand, nodes are not required to maintain next hop
routing information, and thus the network overhead is significantly reduced by eliminating
the need of periodic HELLO messages exchange. The Ad-hoc On-demand Distance Vector
(AODV) is partially based on DSDV, and partially based on DSR (Perkins, C. E., et. al.,
2003, Perkins, C. E. and Royer, E. M., 1999). It borrows the periodic HELLO broadcasts,

 290

and the use of sequence numbers from DSDV, while it uses a route discovery process similar
to DSR. In contrast to DSR, routing is accomplished by requiring each data packet to carry
the source and destination IP only, which considerably reduces network overhead. In addi-
tion, route replies carry only the destination IP address and the sequence number of that
destination, while routing decisions are left to the intermediate nodes. Even though AODV
may be adaptable to highly dynamic networks, high latency may be imposed by dynamic
route construction, and link failures may result in initiating new route discoveries, which can
introduce additional delays and network overhead.

The Routing On-demand Acyclic Multi-path (ROAM) is a multi-path distance vector al-
gorithm, which uses inter-nodal coordination based on directed acyclic graphs (Raju, J. and
Garcia-Luna-Aceves, J. J., 1999). The advantages of this protocol are that it eliminates the
search-to-infinity problem, and that routers are only required to maintain routes to destina-
tions for which they actively forward data packets. In addition, ROAM defines a threshold
value for each router’s distance to a destination, which, once exceeded, causes the router to
broadcast update messages to its neighbouring nodes. The main disadvantage of this protocol
is that it requires the maintenance of state information at each node during route discovery,
and may thus not be suitable for highly dynamic networks. Another on-demand routing pro-
tocol is the Light-weight Mobile Routing (LMR), which uses a standard flooding route
discovery process (Corson, M. S. and Ephremides, A., 1995). The advantage of LMR is that
it allows nodes to maintain multiple routes to a single destination, and thus improves on the
protocols overall performance, as nodes can transmit through alternative routes, in case of
primary failure, whereas its disadvantage is that route-requests propagate throughout the
complete network, which results in significant bandwidth overhead. In addition, this proto-
col also suffers from temporary invalid routes which can introduce delays. The Temporally
Ordered Routing Algorithm (TORA) is based on LMR, and improves it by restricting the
propagation of route-request to only neighbouring areas in which topological changes have
occurred. Similarly to LMR, TORA suffers from temporary invalid routes.

A novel stability-driven routing protocol is the Associativity-Based Routing (ABR), which
unlike standard shortest-path algorithms, it primarily bases its route selection on stability
(Toh, C., 1996). With this, each node maintains an associatively tick with each of its
neighbours, and routes comprised of higher associatively ticks are considered more optimal
than others with lower ones. This often results in routes that generally last for a longer time,
and thus route discovery is expected to be invoked less frequently than in other methods, re-
sulting in bandwidth conservation. The disadvantage of this protocol is the lack of support
for multiple routes to a single destination, and the periodic HELLO message exchanges. Sig-
nal Stability Adaptive (SSA) is ABR's successor, which also uses route stability for optimal

 291

route discovery, however, the technique differs from ABR, in that SSA determines route sta-
bility by measuring signal strength and location stability (Dube, R., et. al., 1997). Compared
to DSR, it has the disadvantages that intermediate nodes cannot reply to route-requests, even
if they have a route to the requested destination. There is also lack of support for route repair
mechanisms.

The Relative Distance Micro-discovery Ad-hoc Routing (RDMAR), uses a relative-
distance micro-discovery procedure for route discovery, which has a local effect, and thus
limits the propagation of route-requests to a localised region (Aggelou, G., et. al., 1999). It
achieves this by measuring the distance between the source and the destination, however, this
can only be applied if there is at least one record of communication between the source and
the destination. The advantage of this technique is that the propagation of route-requests is
generally low, conserving significant bandwidth and battery power. Another protocol which
attempts to reduce the control-overhead of far-reaching route-requests is the Location Aided
Routing (LAR) (Ko, Y.-B. and Vaidya, N. H., 1998), which uses location information ob-
tained by GPS. The protocol defines two schemes: a boundary-restricted, where the
propagation of a route-request is bounded, within a certain area; and a coordination-
oriented, where the route-request contains the actual coordinates of the destination, allowing
the packets to travel only towards the destination. Both proposed schemes reduce the route
discovery overhead, and thus save bandwidth and conserve battery life. However, the main
disadvantage is that each node is required to be equipped with GPS.

A novel agent-based routing protocol is the Ant-colony-based Routing Algorithm (ARA),
which utilises light-weighted mobile agents, called ants, and ants’ basic food search behav-
iour, for route discovery and route maintenance (Bouazizi, I., 2002). When a source node
requires a route to a destination, it broadcasts a forward ant (FANT) to all of its neighbour-
ing nodes. The ants propagate according to standard flooding algorithms, and leave a
pheromone at each node they visit. The pheromone value at each node is equal to the num-
ber of hops the ant took in order to reach this node. Once the destination node is reached, a
backward ant (BANT) is created with purpose to return to the source. Route maintenance
involves the increase and decrease of pheromone values kept on intermediate nodes. For ex-
ample, each time a data packet is routed through an intermediate node the pheromone value
of that node is increased, otherwise the pheromone value is decreased over time until it ex-
pires. A basic drawback of this approach is the relatively slow migration of ants, and
consequently the delays experienced by route discovery.

Another novel routing protocol, which uses link-failure prediction, is the Flow Oriented
Routing Protocol (FORP), which aims to forecast, when a route is going to be broken, and
thus assist the transmitting node to switch to an alternative route before experiencing route

 292

failure (Su, W. and Gerla, M., 1999). It achieves this by calculating the link expiration time
(LET) for each pair along the route (using GPS) in which the Flow_REQ packet propagates,
and appends this to the packet. Once the Flow_REQ reaches the destination, a route expira-
tion time is calculated using the minimum of all the LETs, and a Flow_SETUP is sent back
to the source. The source can then initiate data transmission over the route provided by the
Flow_SETUP packet. This allows the destination to predict when a link failure is likely to
occur and informs the source by transmitting a Flow_HANDOFF message to the source,
which can then switch its data transmission to an alternative route. This strategy can signifi-
cantly improve real-time data transmissions, however the flooding nature of the protocol
results in scalability problems in large ad-hoc networks.

The Cluster-Based Routing Protocol (CBRP), organises the participating nodes into logi-
cal clusters (Jiang, M., et. al., 2001), in a similar manner to CGSR, where in each cluster
there can exist only one cluster-head which is responsible for location management and intra-
cluster routing, whereas gateways typically lie on the edges of two, or more clusters, and are
responsible for inter-cluster routing. Unlike CGSR, this protocol uses an on-demand route
discovery process, where route-requests are always propagated along a repeated sequence of
alternating cluster-head and gateway node pair(s). This is CBRP's main advantage, as control
packets are not flooded throughout the complete network topology, and thus network over-
head is far less compared to traditional flooding techniques. However, as in most clustering
protocols, the clustering formation, and maintenance, imposes additional network overhead.
In addition, this protocol does not support multiple routes for a single destination, nor it
provides a means of selecting optimal routes.

Although the on-demand method has been proved to reduce high network overhead im-
posed by the proactive method, most routing protocols which belong in this category share
high routing overheads when considering the worst case scenario. This is a result of the un-
derlying flooding mechanism, which most protocols conform to, according to which route-
request packets have to be disseminated throughout the whole network. Hierarchical routing
protocols, such as CBRP, attempt to minimise control overheads by partitioning the network
into a number of logical domains. In particular, CBRP organises the nodes into small adja-
cent clusters in which a central cluster-head node is mainly responsible for routing within its
cluster and maintaining location management among its members. During the route discov-
ery process, only cluster-heads and gateway nodes (nodes situated at the edges of two or more
clusters) exchange route-request messages, resulting in an overall significant overhead reduc-
tion. However, in highly dynamic networks, CBRP may incur significant amounts of
overhead due to frequent reorganisation of clusters. On-demand network discovery can also
cause increased latency, as data packets are normally buffered until a suitable route to a des-

 293

tination is discovered.

D.7 Hybrid

The hybrid routing method is based on a combination of the proactive and reactive methods.
Hybrid routing protocols are innovative, which aim to increase scalability, and, at the same
time, reduce the on-demand route discovery overhead. Protocols in this category normally
organise the network into a number of logical structures, such as zones, trees, or clusters,
where, at each structure, nodes exchange routing information proactively, while they initiate
route discovery for distant nodes, that is, for nodes that do not belong to the same domain.
Only a few hybrid routing protocols have been defined in the literature, so far, as it is a fairly
new concept (Abolhasan, M., et. al., 2004). A well-known hybrid protocol is the Zone Rout-
ing Protocol (ZRP) that defines a routing zone in hops, which is fixed for every participating
node (Haas, Z. J., et. al., 2002a). Within this routing zone, nodes maintain topological
knowledge proactively, and thus a route from one node to another within the routing zone is
always available. In contrast, nodes that require a route to a destination, which is outside of
their routing zone, use an on-demand approach. The main advantage of ZRP is its ability to
reduce the amount of information exchanges when compared to pure proactive protocols,
and, at the same time, reduce the delays associated with pure reactive protocols. The main
disadvantage of ZRP is its limited flexibility of the threshold value which defines the routing
zone, and forces the protocol to behave more proactively for large values and more reactively
for small. Nodal movements does not cause burn.

The Zone-based Hierarchical Link State (ZHLS) uses the zone concept in a different way
to ZRP, that is, zones are non-overlapping, and GPS is used to calculate the node- and zone-
ID, which are used for location management (Joa-Ng, M. and Lu, I.-T., 1999). Thus, it
dismisses the requirement for a central node, and eliminates the processing overhead often
encountered with cluster-heads. ZHLS has been shown to reduce route discovery overhead,
when compared to pure flooding techniques, by allowing a source node searching for a re-
mote destination to broadcast a zone-level broadcast request to all other zones. In addition,
nodal movements, within the current zone, do not cause sources to initiate a new location
search, which generally comes in contrast with standard reactive protocols. The main disad-
vantage of this protocol is that all nodes must be equipped with GPS, and have a pre-
programmed static zone map. Similarly to ZHLS, the Scalable Location Update Routing
Protocol (SLURP organises the nodes into non-overlapping zones (Woo, S.-C. and Singh,
S., 2001). The novelty of SLURP is in its route discovery process, where, unlike ZHLS, it
assigns a home region to each node in the network, which is determined using a static map-

 294

ping function, and provides location information for its registered nodes to requesting nodes,
and thus eliminates a full-scale route discovery. Similarly to ZHLS, the main disadvantage is
the pre-programmed static zone map.

A tree structure is used by the Distributed Spanning Trees-based routing protocol (DST)
that aims to organise the nodes under the control of a central node, called root, which decides
on whether the tree should merge with another tree or not (Radhakrishnan, S., et. al., 1999).
The routing algorithm uses the forest of spanning trees to perform routing, using a process
called shuttling in combination with holding the packets at the intermediate nodes. Simula-
tion experiments have shown that increasing the holding time in stable and high-connectivity
systems can significantly improve reachability, while for systems with high-disconnectivity
which are highly-dynamic, increasing holding time does not significantly improve reachabil-
ity. The main disadvantage of this algorithm is that the root node is a single-point-of-failure.
Unlike DST, the Distributed Dynamic Routing (DDR) does not require a root node, as it
gathers the required information by periodic HELLO message exchanges between neighbour-
ing nodes. The trees in the network are linked together through gateway nodes, and thus
form a forest. The DDR algorithm consists of six fundamental phases: preferred neighbour-
ing election; forest construction; intra-tree clustering; inter-tree clustering; zone naming; and
zone partitioning. Route discovery is accomplished by the hybrid ad-hoc routing protocol
(HARP) (Nikaein, N., et. al., 2001), which uses the intra- and inter-zone routing tables cre-
ated by DDR to determine stable paths. The advantage of DDR when compared to ZHLS is
that it does not rely on a static zone map, and, unlike DST, it does not rely on root nodes for
coordination. However, nodes in DDR choose preferred neighbours, which are responsible
for routing of most of the data packets, and, thus may, become performance bottlenecks.

Hybrid protocols improve on scalability, while significantly reducing the frequency of
route discovery requests, and thus decrease the amount of routing overhead. As previously
mentioned, protocols in this category usually define a structure, which acts similarly to a
network backbone, allowing nodes belonging in that structure to work together by exchang-
ing routing information. When a node wishes to communicate with another node which
belongs to a different logical domain, route discovery is initiated. The direct benefit from this
approach is that route-requests can mainly be issued by nodes that are more suitable than
others, for example, nodes that are situated at the edges of their logical domains, and thus
force the minimum propagation of the route-request packets.

Ten of the most popular routing protocols are being examined into the following sections,
in greater detail. These protocols include the proactive DSDV, GSR, DREAM, and CGSR,
the reactive DSR, AODV, TORA, CBRP, and hybrid ZRP and DST. The analysis is based
on the protocols’ route discovery and maintenance processes, as well as their fundamental

 295

properties, and data packets routing.

D.8 Highly Dynamic-Sequenced Distance-Vector (DSDV)

As previously mentioned, this protocol is a modification of the DBF (Bertsekas, D. and Gal-
lager, R., 1987) routing algorithm, and addresses problems of BDF related to poor looping
properties in the face of broken links, and also related to time dependencies of the intercon-
nection topology. The DSDV protocol proactively builds and maintains routing tables at
each network node, which are used to route data packets along the most optimal routes. A
node’s routing table lists all available destinations and the numbers of hops required to reach
each of them. Each routing table entry is tagged with a sequence number which is originated
by the destination node. It achieves loop-freedom by tagging each route table entry with a
sequence number so that nodes can distinguish stale routes from the new ones. DSDV tries
to maintain routing tables, completely updated for all connections, at all times, by enforcing
that each node to periodically broadcast its routing table, and dynamically transmit updates
when significant changes occur. The data broadcasted by each node contain the node’s new
sequence number, along with the following information for each entry:

• The destination’s IP address.
• The number of hops required to reach the destination.
• The destination’s sequence number, as originally stamped by the destination.

In addition, the routing tables also contain the hardware address, and the network address of
the transmitting node, within the headers of the packet. Sequence numbers, coupled with the
number of hops that are required to reach a destination, indicate how fresh and short a route
is. According to DSDV, routes with more recent sequence numbers are always preferred for
making forwarding decisions, but, are not necessarily advertised. Of the paths with the same
sequence number, those with the smallest number of hops are used. Due to mobility, broken
links are likely to occur, which are detected by either the layer 2 protocol, or inferred, if no
broadcasts have been received for a while from a former neighbour. When a node senses, or
infers, that the link to the next hop has broken, it immediately assigns an infinity metric (∞)
to each route in its routing table that was using that link as an intermediate hop, and also
assigns an updated sequence number. Situations like this qualify as a substantial routing
change, and therefore modified routes are immediately disclosed in a broadcast routing in-
formation update, and are disseminated through the network.

In an attempt to reduce network overhead created by periodic broadcasts, DSDV defines

 296

two types of broadcasted packets. The first one is called full dump, which includes all routing
information, while the second one is called incremental, which includes only the updated
routing information since the last full dump. When nodes receive routing updates, they com-
pare the information of the update to the information already existing into their routing
tables. In case that an updated route has the same, or a higher sequence number, but smaller
number of hops, it replaces the existing entry with the entry found in the update. Figure D.4
illustrates a movement scenario in an ad-hoc network topology.

MH3

MH2

MH1

MH4

MH6

MH5

MH7

MH8

MH1

MH3

MH2

MH1

MH4

MH6

MH5

MH7

MH8

MH1

Figure D.4 (Perkins, C. and Bhagwat, P., 1994): DSDV - movement in an ad-hoc network scenario

As an example, the routing table maintained at MH4 (see Figure D.4) is presented in Table
D.1. Assuming that the address (MAC/IP) of each mobile host is represented as MHi, and
sequence numbers are denoted as SNNN_ MHi. The installation time, flags, and stable data
fields have been removed for simplicity compared to the original example which can be
found in (Perkins, C. and Bhagwat, P., 1994).

Table D.1: DSDV - Structure of the MH4 forwarding table

Destination Next Hop Metric Sequence number
MH1 MH2 2 S406_MH1
MH2 MH2 1 S128_MH2
MH3 MH2 2 S564_MH3
MH4 MH4 0 S710_MH4
MH5 MH6 2 S392_MH5
MH6 MH6 1 S076_MH6
MH7 MH6 2 S128_MH7
MH8 MH6 3 S050_MH8

If it is assumed that MH1 moves away from MH2, and towards the general vicinity of MH7
and MH8, then the routing table maintained at MH4 will looks as shown in Table D.2. The
difference in the metric, next hop, and sequence number for destination MH1, is obvious.
The example assumes that in the intervening time, many new sequence numbers have been
received. The first entry must thus be advertised in subsequent incremental routing informa-

 297

tion updates until the next full dump occurs. The new routing information for MH1, main-
tained by MH4, has been received along a chain of broadcasts, starting from MH7 and MH8,
which sensed the addition of a new node (MH1), and thus broadcasted the new information
which was received and re-broadcasted by MH5 and MH6, and finally received by MH4. Ac-
cordingly, routing updates are disseminated throughout the whole network.

Table D.2: DSDV - Structure of the MH4 updated forwarding table

Destination Next Hop Metric Sequence number
MH1 MH6 3 S516_MH1
MH2 MH2 1 S238_MH2
MH3 MH2 2 S674_MH3
MH4 MH4 0 S820_MH4
MH5 MH6 2 S502_MH5
MH6 MH6 1 S186_MH6
MH7 MH6 2 S238_MH7
MH8 MH6 3 S160_MH8

D.9 Global State Routing (GSR)

The global state routing protocol (GSR) was especially designed for routing in ad-hoc wire-
less environments. The underlying principle of this protocol is that each node is required to
exchange vectors of link-state information with its neighbours during routing information
exchange. Based on the link-state vectors, nodes are able to maintain a global knowledge of
the network topology, and optimise their routing decisions locally. GSR is based on the link-
state algorithm (McQuillan, J. M., et. al., 1980), and thus every node in the network main-
tains the knowledge of the full network topology, at all times. However, in contrast to link-
state algorithm, it uses an alternative method to standard flooding for disseminating link-
state updates, and is based to DBF algorithm (Bertsekas, D. and Gallager, R., 1987). Overall,
the DBF algorithm requires no flooding, and may thus be an improved solution for reduced
network overhead.

With GSR, each node i maintains one list and three tables: a neighbour list (Ai); a topol-
ogy table (TTi); a next hop table (NEXTi); and a distance table (Di). Ai is defined as a set of
nodes which are adjacent to node i. Each destination j has an entry in table TTi which con-
tains two parts: TTiLS(j) and TTiSEQ(j). TTiLS(j) denotes the link state information
reported by node j, while TTiSEQ(j) denotes the timestamp, which indicates the time node j
required to generate this link-state information. Similarly, for a destination j, the NEXTi(j)
denotes the next hop to forward packets destined to j on the shortest path, and Di(j) denotes
the distance of the shortest path from i to j.

 298

Initially, each node has an empty Ai and TTi. After proper initialisation of its local vari-
ables, node i examines its inbound queue for incoming messages. If the inbound queue is not
empty, the node examines the sender field of each incoming message, and places the address
in its neighbour list Ai. Node i then processes all received routing messages, which contain
the link-state information broadcasted by its neighbours. GSR requires that each node i com-
pares the freshness of the embedded sequence number (pkt.SEQ(j)), with the ones stored in i's
local storage, for each destination. If any entry in the incoming message has a newer sequence
number regarding destination j, then TTiSL(j) will be replaced by pkt.LS(j), and TTiSEQ(j)
will be replaced by pkt.SEQ(j). When all routing messages are examined, node i rebuilds the
routing table, based on the newly-computed topology table, which is then broadcasted to its
neighbours. This process is then performed periodically.

The key difference between GSR and the standard link-state algorithm is the way routing
information is disseminated. In link-state, whenever a node detects topological changes, it
generates, and floods the network, with link-state update packets. In contrast, nodes in GSR
maintain a global knowledge of the network topology, based on the up-to-date information
received from neighbouring nodes, and, periodically, exchange it with their local neighbour
nodes, only. Information freshness is guaranteed by the use of sequence numbers, similar to
DSDV (Perkins, C. and Bhagwat, P., 1994). GSR’s FindSP algorithm is used to create the
shortest-path tree rooted at node i, and is based on the Dijkstra’s algorithm with modifica-
tions, so that the next hop table (NEXTi) and the distance tables (Di) are computed in
parallel with the tree reconstruction.

D.10 Distance Routing Effect Algorithm for Mobility
(DREAM)

The distance routing effect algorithm for mobility protocol (DREAM) is designed for mobile
ad-hoc networks. This protocol is based on two ideas, the distance effect, and the triggering
of sending location updates. The first one is based on the fact that the greater the distance
separating two nodes, the slower they appear to be moving with respect to each other. In re-
lation to this observation, it is possible to update location information found in routing
tables as a function of the distance separating nodes, without compromising routing accu-
racy. The second mechanism requires that each node autonomously initiates the sending of
location updates, based on its own mobility rate. As a result, nodes with low-mobility pat-
terns are required to transmit their routing information less frequently as opposed to nodes
with high mobility patterns. Thus, each node can optimise the frequency at which it sends
updates to the network, and thus reduce the bandwidth and energy used, leading to a dis-

 299

tributed and self-optimising system.
In contrast to proactive and reactive routing protocols, where a node either stores the

source route to a destination or just to the next hop, respectively, DREAM requires that each
node stores the location information for every other node into its own routing table. In order
to achieve this, each node must be equipped with GPS (Kaplan, E. D., 1996), which pro-
vides geographical coordinates. Briefly, when a node A wants to send a message m to node B,
it uses the location information for B to obtain B’s direction, and then transmits m to all its
one-hop neighbours in the direction of B. This process is repeated by each neighbour, until B
is eventually reached. The location information dissemination process can influence the
probability of finding B in the computed direction. As previously mentioned, each node
transmits its current location to all the other nodes, and, at a frequency, which results from
the following:

• The distance effect. Nodes that are far-apart need to update each other’s location less

frequently than nodes which are closer. This is realised by associating with each control
message an age, which corresponds to how far from the sender that message travels.

• The mobility rate. Nodes moving faster than others need to communicate their location
more frequently. This allows each node to make precise judgements of its dissemination
frequency, and thus reduce overhead by transmitting location information only when
needed, and without sacrificing the route accuracy.

DREAM may be considered as bandwidth- and energy-efficient, especially when compared
to other protocols of the same category (proactive). This is due to the fact that each control
message caries only the coordinates and the identifier of a node, and thus the message is
small compared to messages used by proactive protocols, which often require the transmis-
sion of the complete routing tables. DREAM is inherently loop-free, as data packets always
travel away from the source and towards a certain destination, and it is robust as data mes-
sages can reach the intended destination by following, possibly, independent routes. Finally,
and most importantly, it is adaptive to mobility, as the frequency with which the location
information is disseminated depends on the mobility rate.

D.11 Cluster-head Gateway Switch Routing (CGSR)

The cluster-head gateway switch routing protocol (CGSR) was designed for multi-hop, mo-
bile wireless networks, and is based on a cluster-head token infrastructure, which uses the
least cluster change (LCC) algorithm in order to provide a stable clustering structure and ra-

 300

dio channel code allocation. CGSR’s cluster-head controlled token protocol allocates channel
access within a cluster-head, and facilitates data packet forwarding. The CGSR scheme deliv-
ers packets efficiently and provides cluster-head token scheduling and gateway code
scheduling. In addition, path reservation support makes token and code scheduling more
efficient.

CGSR uses a distributed clustering algorithm for cluster formation, which can either be
lowest-ID or highest-connectivity (Gerla, M. and Tsai, J. T.-C., 1995). Accordingly, a node
is elected to be a cluster-head among a set of network nodes, and, thus, a cluster is formed.
All nodes within transmission range of the cluster-head belong to the cluster defined by the
cluster-head. Thus, all nodes that belong to the same cluster can directly communicate with
the cluster’s cluster-head, and, possibly, with each other. When a node is directly linked to
more that one cluster-heads, it is called a gateway, and can be used for inter-cluster routing.
The complexity and overhead associated with cluster formation is related to cluster-head se-
lection. For example, a cluster-head which is stationary, such as dedicated workstation, is
likely to cause fewer cluster reformations, as frequent cluster-head changes adversely affect
the performance of the routing protocol, and thus CGSR uses a least cluster change cluster-
ing (LCC) algorithm. This defines only two conditions which can cause the cluster-head to
change:

• Two cluster-heads come within range of each other, such as due to mobility.
• A node becomes disconnected from any other cluster.

CGSR takes advantage of clustering organisation, and allocates wireless channels among dif-
ferent clusters. Across clusters, it enhances spatial reuse by different spreading codes, such as
CDMA (Gerla, M. and Tsai, J. T.-C., 1995). Within a cluster, CGSR uses a cluster-head
controlled token protocol, such as polling, in order to allocate the channel among competing
nodes. This approach is designed to give higher priority to cluster-heads over ordinary nodes,
and thus maximise channel utilisation and decrease delays. This is especially true, as cluster-
heads require more chances to transmit, as they are in charge of broadcasting within the clus-
ter, and for forwarding messages between member nodes which are not directly linked. The
channel access scheme in CGSR works as follows:

1. The cluster-head gets the permission token to access the radio channel, and transmits any

messages it has in its transmission queue.
2. The cluster-head passes the token to one of its neighbours, according to a separately-

defined scheduling algorithm.

 301

3. The member node returns the token to its cluster-head after it has transmitted its mes-
sage(s).

4. Repeat 1 to 3.

In CGSR, when a gateway node wishes to communicate with one of its clusters, it must se-
lect the code used by that cluster. In particular, the gateway can tune its code to match
another cluster’s code, receive the permission token, communicate, and, when finished,
change its code again to match the other cluster’s spreading code. Code scheduling can dra-
matically affect the message delivery performance, as, if gateway nodes are tuned to different
codes than the codes in which data packets are transmitted to them, results in loss. An alter-
native approach is to allow multiple radio interfaces to be used by each gateway node. In this
way, a gateway node could access multiple cluster channels by selecting corresponding codes
for each wireless interface, and thus reduce gateway conflicts and improve packet delivery
performance.

Routing in CGSR is based on a modified DSDV scheme (Perkins, C. and Bhagwat, P.,
1994), which uses a hierarchical structure to route data packets. In particular, each node
maintains a cluster member table which records the destination cluster-head for each node,
and broadcasts it, periodically. A node updates its cluster member table when it receives new
routing information from its neighbours. Routing information is then tagged with sequence
numbers (Perkins, C. and Bhagwat, P., 1994) in order to avoid stale tables, in a way similar
to DSDV. In more detail, each node maintains two tables: a cluster-member table; and a
routing table. The cluster-member table is used to map a destination address to the destina-
tion cluster-head address, while the routing table is used to select the next node to reach the
destination. When a node gets the permission token, it initially selects the shortest (minimal
hop) destination cluster-head according to the cluster member table and routing table, and
then selects the next node to transmit for that destination cluster-head, according to the
routing table.

D.12 Dynamic Source Routing (DSR)

The dynamic source routing protocol (DSR) was specifically designed for multi-hop wireless
ad-hoc networks with high mobility, and allows nodes to dynamically discover a source-route
across multiple network hops to any destination in the ad-hoc network. A source node, wish-
ing to transmit network traffic to a destination, creates the data packets and appends the
complete, ordered list of nodes through which the packet will pass, in their headers. This way
it allows packet routing to be loop-free and avoids the need for up-to-date routing informa-

 302

tion in the intermediate nodes through which the packet is forwarded. Thus, the protocol
imposes significantly less network overhead, and is able to react quickly to changes in the
network’s topology.

The route discovery and route maintenance processes operate on an on-demand manner.
In particular, DSR does not require any periodic routing advertisements, link-status sensing,
or neighbour-detection packets, and does not rely on any underlying network protocol. This
entirely, on-demand behaviour, and lack of periodic activity, allows the number of overhead
packets caused by DSR to scale all the way down to zero, when there is no mobility in the
network, and all routes needed have been discovered. If mobility is introduced in the net-
work, the routing overhead is only concentrated in an effort to maintain the routes currently
in use. Another advantage of DSR is that, in addition to route discovery, a node can learn
and cache multiple routes to a destination by investigating the packets’ source addresses
which are a promiscuous overheard. This allows the reaction of changes to be much more
rapid, as a node with multiple cached routes can immediately use an alternative route to a
destination in case of primary route failure, and can thus reduce overhead and latency by
multiple route discovery calls. Furthermore, DSR supports unidirectional and asymmetric
routes, as well as bidirectional and symmetric, thus improving overall performance and net-
work connectivity.

Figure D.5 shows a simple case of a route discovery initiated by node A for node E, and a
route-reply message sent back to A by E. Initially, node A transmits a route-request message
as a single local broadcast packet, which is received by all nodes currently within A’s wireless
transmission range, including B, in this case. Each route-request packet contains the address
of the initiator and target, and also contains a unique identification number created by the
source. Along with this, a route-request packet also contains the ordered list of intermediate
node addresses by which this particular copy has been forwarded, assuming that the packet
has now been received by B. Initially, node B will examine the unique identification number
of the route-request packet and compares it to the packets’ of the same kind which it has re-
cently seen. In case of a match, the packet will be dropped, otherwise, it will proceed by
examining the list of addresses contained in the route-request. If node B finds its own address
in the list, it drops the packet. Otherwise, it proceeds by examining the destination address of
the route-request. If node B is the target of the route discovery, it will return a route-reply
back to the initiator, giving a copy of the accumulated route record from the route-request.
When the initiator receives this route-reply, it caches this route in its route cache for use in
sending subsequent packets to this destination.

In the case that node’s B address does not match to the destination address of the route-
request packet, node B appends its own address and transmits it as a local broadcast packet

 303

with the same identification number. This process will be iterated by all nodes along the
chain to node E (C and D), until, eventually, the route-request packet arrives at node E.

A B C D E

RREQ: A
id = 2

RREQ: A, B
id = 2

RREQ: A, B, C
id = 2

RREQ: A, B, C, D
id = 2

RREP: A, B, C, DRREP: A, B, C, DRREP: A, B, C, D RREP: A, B, C, D

A B C D E

RREQ: A
id = 2

RREQ: A, B
id = 2

RREQ: A, B, C
id = 2

RREQ: A, B, C, D
id = 2

RREP: A, B, C, DRREP: A, B, C, DRREP: A, B, C, D RREP: A, B, C, D

Figure D.5: DSR - Route-request & Route-reply propagation

Once node E receives the route-request, it searches its own route cache for a route to A, and
if one is found, it uses it as a source route for delivering the route-reply, which contains the
route from A to E. Node E could have just reversed the route which was taken by the route-
request. However, this is not allowed, as there is no guarantee that the links along the route
from A to E are bidirectional. In the case that node E does not find a route to A in its route
cache, it will initiate a route discovery to A by piggybacking on the packet containing its won
route-request for A, in order to avoid infinite recursions.

When originating, or forwarding a packet, using a source route, each node transmitting
the packet is responsible for confirming that data can flow over the link from that node to
the next hop. For example, in Figure D.6, node A has originated a data packet for node E
with the source route through intermediate nodes B, C, and D. Node A is responsible for the
link from itself to B, node B for the link from itself to C, and so on. DSR relies on MAC
protocol acknowledgments, such as IEEE 802.11 (IEEE Standards, 802.11, 1999)) or passive
acknowledgments (Jubin, J. and Tornow, J. D., 1987) for confirmation of the capability of a
link to carry data. In the case where a built-in acknowledgment mechanism is not available,
the node transmitting the packet can explicitly request a DSR-specific software acknowledg-
ment to be returned by the next node along the route. If the acknowledgement request has
been retransmitted, the maximum allowed number of times, without any acknowledgment
having been returned, the sender treats the link to this next-hop destination as currently bro-
ken. This means that it removes this link from its route cache and returns a route error to
each node that has sent a packet routed over that link since an acknowledgment was last re-
ceived.

A B C D E?A B C D E?

Figure D.6: DSR - Route maintenance

 304

D.13 Ad-hoc On-demand Distance Vector (AODV)

AODV is intended to be used by mobile nodes in an ad-hoc network, and offers quick adap-
tation to dynamic link conditions, low processing and memory overhead, and low network
utilisation. With this, sequence numbers are used to ensure loop freedom at all times, even in
the face of the anomalous delivery of routing control messages, and eliminate problems, such
as counting-to-infinity, often associated with classical distance vector protocols. AODV allows
the rapid discovery of routes for new destinations, and does not require nodes to maintain
routes to destinations that are not in active communication. When a link breaks, AODV
causes the affected set of nodes to be notified, so that they are able to invalidate routes using
the lost link. Destination sequence numbers is an essential feature of the protocol, as nodes
choose between multiple routes to a single destination, based on the route with the greater
sequence number.

This protocol defines three message types: route-request (RREQ); route-reply (RREP);
and route error (RERR), which are received by UDP, and normal IP header processing ap-
plies. For example, RREQ message originating from node A, and intended for node C, will
have A’s source IP and C’s destination IP in the packet’s header, and will be broadcasted to
the IP limited broadcast address (255.255.255.255). Fragmentation of these packet types is
usually not required.

When a node requires a new route to a destination, it broadcasts a RREQ message, which
is propagated until it reaches the destination or an intermediate node which has a fresh
enough route to that destination. A fresh enough route is a route entry for that destination
whose associated sequence number is at least as great as that contained in the RREQ. If this
is the case, the intermediate node unicasts a RREP message back to the originator of the
RREQ. Each node receiving a RREQ message caches a route back to the originator of the
request, so that the corresponding RREP can be unicast from the destination along a path to
that originator, or likewise from any intermediate node that is able to satisfy the request.

Nodes are required to monitor the link status of next hops that belong to active routes. In
the event where a node senses a link breakage with a neighbouring node, it creates a RERR
message to notify other nodes, which are likely to use the broken link, that the link is no
more available. In order to enable this reporting mechanism, each node keeps a record (pre-
cursor list) of neighbouring nodes’ IP addresses which used this node as a router to a
destination which required the now unavailable link.

As previously mentioned, each node is required to cache a reverse route for each origina-
tor of a RREQ packet. Routing tables are used for caching, and have the following fields for
each route table entry: destination IP address; destination sequence number; valid destination

 305

sequence number; interface; hop counting, that is, the number of hops needed to reach the
destination; next hop; list of precursors; lifetime; routing flags; and state.

D.14 Temporally Ordered Routing Algorithm (TORA)

TORA is a distributed routing protocol for multi-hop wireless networks, which attempts to
uncouple the generation of far-reaching control messages propagation from the dynamics of
the network topology. The underlying algorithm is a member of a class referred to as link-
reversal algorithms, which is used for building a loop-free, multi-path routing structure
which is used as the basis for forwarding traffic to a given destination. A key advantage of
TORA is its support for both source-initiated, on-demand routing for some destinations,
and destination-initiated proactive routing for other destinations.

In TORA, network nodes need only to maintain routing information about adjacent
nodes, and maintain state on a per-destination basis similar to the distance-vector routing
approach. However, the metric used to establish the routing structure of the network does
not represent distance, which is a common case for distance-vector approach. The dual sup-
port for on-demand and proactive routing provides greater flexibility, and allows TORA to
be configured according to requirements. For example, in highly dynamic topologies, TORA
may be configured to act reactively, and thus have a sparse network overhead, as it is likely to
be inefficient to maintain routes between every source/destination pair, at all times. On the
other hand, in cases where routes are essential to a number of destinations at all times, such
as with servers or gateways in infrastructure networks, proactive operation can be beneficial.
TORA is thus designed to minimise the communication-overhead associated with adapting
to network topological changes. It achieves that by reducing the scope of control messaging
to a localised manner, affecting a small set of nodes near a topological change.

For proper operation, TORA requires lower-layer mechanisms, or protocols, that provide
the following basic services between neighbouring nodes: link status sensing and neighbour
discovery; reliable, in-order control packet delivery; link and network layer address resolution
and mapping; and security authentication. TORA assigns directions to the links between
nodes to a routing structure that is used to forward data packets to the destination. A node
assigns a direction to the link with a neighbouring-node based on their relative metric values,
which can be either upstream or downstream. The metric associated with each node can be
conceptually interpreted as the node’s height. Links are directed from the higher-node to the
lower-node, and, thus, a node may only forward packets downstream. Unknown, or unde-
fined link directions, prohibit their usage for packets forwarding. Collectively, the nodal
heights and the link-directional assignments form a loop-free, multi-path routing structure in

 306

which all directed paths lead downstream to the destination.
An example of a multi-path routing structure is presented in Figure D.7. Suppose that the

relative heights associated with the nodes A, B, C, D, E, and DEST are the following:

• H (C) > H (B) > H (E) > H (DEST)
• H (D) > H (A) > H (E) > H (DEST)

According to Figure D.7, it can be noted that although node C is closer to the destination
than node B in terms of hops count, the height metric of C is greater than that of B. Thus,
there is absolutely no guarantee that routes selected for any particular destination will involve
the minimum number of hops, as TORA does not base its route selection on a hop-counting
mechanism. TORA’s main functions include: the creation; maintenance; deletion; and opti-
misation of routes. Creating routes corresponds to the selection of heights to form a directed
sequence of links leading to the destination in a previously undirected network, or portion,
of the network. Maintaining routes refers to the dynamic adaptation of the routing structure,
in order to respond to topological changes. For instance, the loss of a node’s downstream link
may result in a structure that has no possible path leading to the destination. Such an event,
triggers a sequence of link reversals which re-orient the routing structure, such that all di-
rected paths lead to the destination again. In the case that the network becomes partitioned,
resulting in some links becoming partitioned from the destination, these links must be
marked as undirected in order to erase invalid routes. Optimisation is then the process in
which nodes reselect their heights, in order to improve the routing structure.

A B C

D E DEST

A B C

D E DEST

Figure D.7: TORA - A multi-path routing structure

D.15 Cluster-Based Routing Protocol (CBRP)

CBRP is designed for mobile ad-hoc networks, and imposes a hierarchy to the network by
organising the nodes into a number of overlapping, or disjoint, two-hop diameter clusters, in

 307

a distributed manner. A single cluster-head is elected for each cluster, and is responsible for
maintaining cluster membership information. CBRP discovers inter-cluster routes, on-
demand, using the cluster membership information kept at each cluster-head. The main
benefit of clustering is that flooding traffic is efficiently minimised during route discovery,
and that the process requires less time to complete. CBRP also takes into account both bidi-
rectional and unidirectional links, and uses them for both intra- and inter-cluster routing.
CBRP bases its clustering formation process to the lowest-ID algorithm (Gerla, M. and Tsai,
J. T.-C., 1995), which is presented in Appendix B.7.

In order to maintain the clustering formation, CBRP requires, from each node, to peri-
odically broadcast a HELLO message, which contains the node’s address and role, and its
neighbour table. Assuming that node A receives a HELLO message from node B, it performs
the following actions:

• It checks if B is already in the neighbour table, and, if it is not, it adds one entry for B.
• If B’s neighbouring table contains A, then node A marks the link to B as bidirectional in

the relevant entry.
• If B is a cluster-head, node A marks B as a cluster-head in the entry.

Each entry in the neighbouring table is associated with a timer. Once the timer expires the
entry is removed from the table. In order to avoid frequent cluster-head changes, CBRP uses
the following rules:
• A non cluster-head never challenges the status of an existing cluster-head.
• Only when two cluster-heads move next to each other, one of them looses the cluster-

head role (to one with the higher ID).

Figure D.8 presents a route discovery scenario, initiated by node S for destination node D.
As shown, only cluster-heads (1, 6, and 8) and gateways (4, 9, and 2) participate in the route
discovery process. When node D receives the RREQ packet, it immediately creates a RREP
and fills the cluster-head address entries with the list found in the RREQ. Thus, the RREP is
sent back to the source along the same line of cluster-heads, which was previously used by
the route discovery (Figure D.9). Each cluster-head along the way checks reachability be-
tween the node that received the RREP and the node which is the next hop along the route.
If reachability is verified, the current node sends the packet to the next hop without re-
cording its own address in the source route returned back to S. Figure D.10 shows the source
route now being used by S as ‘S → 4 → 9 → D’, instead of ‘S → 1 → 4 → 9 → 8 → D’,
which was the original route that the RREQ took.

 308

1
2

4

5

6

7

8
10

3 (S)

11 (D)

2

9

[3, 1, 6]

[3, 1, 8, 11]

[3, 1, 8]

[3, 1]

[3]

1
2

4

5

6

7

8
10

3 (S)

11 (D)

2

9

[3, 1, 6]

[3, 1, 8, 11]

[3, 1, 8]

[3, 1]

[3]

1
2

4

5

6

7

8
10

3 (S)

11 (D)

2

9
[11]

[11, 9]

[11, 9, 4]

[11, 9, 4]
1

2

4

5

6

7

8
10

3 (S)

11 (D)

2

9
[11]

[11, 9]

[11, 9, 4]

[11, 9, 4]

Figure D.8: CBRP - Route Discovery (S to D) Figure D.9: CBRP - Route-reply (D to S)

1
2

4

5

6

7

8

9

10

3 (S)

11 (D)

2

1
2

4

5

6

7

8

9

10

3 (S)

11 (D)

2

Figure D.10: CBRP - Transmission (S to D)

The actual routing of data packets in CBRP is achieved by source routing, similar to (John-
son, D. B., et. al., 2004). The most recent version of CBRP provides two additional
mechanisms: route shortening; and local repair. The first mechanism is used to shorten the
source route of the data packet being forwarded, and informs the source node about the
shortest route, in terms of hops. The second mechanism is used to automatically repair a
broken route, and thus avoid route re-discovery by the source.

D.16 Zone Routing Protocol (ZRP)

ZRP is designed for a wide variety of mobile ad-hoc networks, especially those with large
network spans and diverse mobility patterns. It uses the routing zone concept, which is de-
fined as a geographical region (in hop counts) in which a network node has full knowledge of
the entire zone’s topology. However, a node which requires a route to a destination outside
of its own routing zone, reactively discovers a route by an on-demand route discovery

 309

mechanism. By combining these principles, the protocol aims to improve the efficiency of a
globally-reactive route discovery mechanism, as well as improving the quality of discovered
routes, by making them more robust to changes in network topology. ZRP can be config-
ured to adapt the needs of a wide range of distinct ad-hoc networks, by proper selection of a
single parameter: the routing zone radius.

Some of the parameters that need to be taken into consideration, for optimally selecting
the routing zone radius, are: routing information demand; and mobility. A number of cases
where these two parameters can be varied are:

• High routing information demand and slow mobility, in this case, large routing zones are

preferred.
• Fixed topology and consequently no movement, in this case, the ideal routing zone ra-

dius would be infinite.
• Low routing information demand and moderate mobility, in this case, small routing

zones may be preferable.
• High routing information demand and high mobility, in this case, the most appropriate

would be routing zone of one-hop radius).

In addition, ZRP can be fine-tuned by implementing individual adjustments on each node’s
routing zone, in order to adapt to network scenarios whose behaviour may vary across differ-
ent regions. It thus requires that each node periodically exchanges neighbouring discovery
messages for routing zones maintenance. In addition to bidirectional links, ZRP also pro-
vides support for unidirectional links, as long as the link source and link destination lie
within the other's routing zone. A node’s routing zone is then defined as a collection of
nodes whose minimum distance in hops from the node is no greater than the zone radius.
For example, Figure D.11 shows node A’s routing zone, as well as node B’s, for a radius of 2-
hops. The area drawn by the dashed line illustrates node A’s routing zone, while the area
drawn by the dotted line illustrates node B’s routing zone. Each node within node A’s and
node B’s routing zone is a maximum of 2-hops away. For instance, node D and node F are
two hops away from A, while node C and node F are 2-hops away from node B. The intra-
zone routing protocol (IARP) is responsible for proactively maintaining routes to
destinations within a routing zone (Haas, Z. J., et. al., 2002c). For instance, node A knows
the route to every node, such as node E and node F, within its own routing zone, at all time.
It should be noted here that node G is outside node A’s and B’s routing zone, and thus, for
instance, if node A requires a route to node G, it would have to initiate an on-demand route
discovery for node G.

 310

A B

C

D E

F

G

A B

C

D E

F

G

Figure D.11: ZRP - Node's A routing zone (2-hops zone radius)

The ZRP's global route discovery mechanism is reactive, and can be used by a node which
requires routing information that is not immediately available in its routing table. In this case
a node initiates a route query packet, on-demand. The query packet propagation used by
ZRP is a modification of standard flooding, and is based on a special packet delivery service
called bordercasting (Haas, Z. J., et. al., 2002b). This delivery service uses knowledge of local
network topology to direct route queries away from the source. In more detail, the source
initiates a query packet, which is uniquely identified by a combination of the source node's
address and request number. The packet is then transmitted to a subset of the source’s
neighbours as determined by the bordercast algorithm. When a node receives a route query
packet, it checks if the destination belongs to its routing zone, or, alternatively, if it has a
valid route to the destination in its route cache. In the case that the node has such a route, it
sends a route-reply back to the source. Otherwise, it transmits the query packet using the
same approach as above.

Upon receipt of a route query packet, a node checks if the destination lies in its zone or if
a valid route to it is available in its route cache. If this is true, a route-reply is sent back to the
source. If not, the node broadcasts the query again. Overall, the operation of the IERP is suf-
ficiently general so that many existing reactive protocols can be used as an IERP, with
minimal modification.

D.17 Distributed Spanning Trees based routing protocol
(DST)

DST is designed for mobile ad-hoc networks, and bases its functionality on a distributed al-
gorithm which adapts to the topology by utilising spanning trees in the regions where the

 311

topology is stable. It also uses an intelligent flooding-like approach in highly dynamic regions
of the network. DST concentrates on networks where the topology can be highly dynamic in
some regions, and stable in others, at least during certain periods. Routing is then performed
by either hold-and-forward or a shuttling method, based on the information generated by the
spanning trees. It also introduces a new concept called connectivity-through-time, in which a
path exists both along the links, and, in time. Accordingly, a packet is held, or shuttled,
along a tree, which achieves a compromise between packets delivery and the population of
packets in the network at any given time. This scheme provides no guarantees for successful
packet delivery to the destination, however, it creates a balance between packet traffic and
connectivity requirement.

Overall, DST comprises a forest construction algorithm and a routing algorithm, which
are both executed in parallel on each node within the network. The basic idea underlying the
dynamic forest construction algorithm is the construction of a set of dynamic trees T1, T2, …
, Tk , where each Tr, at a given time, has mobile hosts h1, h2, … , hp such that any node hi can
communicate with a given host hj. It is assumed that each mobile host h knows the IDs of its
neighbouring nodes, and thus a node can communicate to one of its neighbours, directly.
However, if a node wishes to send a message to a node which is beyond its wireless reachabil-
ity, it would have to send its message via the tree edges.

In DST, each node hi is required to maintain the following information: its own ID (hi);
its parent’s ID (p(hi)); the ID of the root tree node (RootID(hi)), which hi belongs to; and its
childrens’ IDs (hi.child(j) for the jth child of hi). A node within a tree can be in one of the fol-
lowing three states:

• Router. A root node, or an internal node, in this state follows the routing algorithm.
• Merge. A node g∈Ti is in merge state when it comes in contact with a node h∈Tj, such

as that g and h are in direct communication range, and a merge attempt to combine the
trees Ti and Tj has been initiated. The joint tree structure is then re-aligned.

• Configure. A node in this state performs updates to its data structures when its parent or
child(s) move beyond its communication range, or when a new node comes in contact
with it.

In addition to theses, a bridge is defined as a connection between two nodes that are in direct
communication range, but belong to two spanning trees. Bridges are formed to achieve con-
nectivity between two distinct spanning trees likely to merge. However this condition is
preferred in situations where neither of the two nodes forming the bridge is likely to move
away, in the short term. Thus, by just forming a bridge, the heavy cost involved in re-

 312

aligning the tree is avoided.
Routing of data packets is accomplished by forwarding the packets via the tree edges, to

the most possible extent. A node h which receives a data packet for a destination j, forwards
the packet on the spanning-tree based on one of the two following algorithms:

• Hybrid-Tree-Flooding (HTF). Data packets are sent to all possible neighbours in the

tree including adjoining bridges in the spanning tree. In addition, packets are stored at
each node for a period of time called holding-time, after which the packet is deleted. Dur-
ing holding time, if new bridges are being created at the node, then packets are sent along
the bridges.

• Distributed-Tree-Shuttling (DTS). Packets are sent along the tree edges, starting from
the source node. When a packet reaches a leaf node in the tree, it is sent back up the tree
until a certain height is reached. This is called the shuttling level. The packets are then
sent down to the tree again, or to adjoining bridges.

The rationale for the holding time in the HTF algorithm is that, as a network is becoming
more stable and connected, it might be sensible to buffer data packets and route them as the
network connectivity increases over time. In contrast to the HTF algorithm, DST requires
smaller number of messages to accomplish its routing tasks.

