

Analysis and Optimization of
Data Storage

using Enhanced Object Models
in the .NET Framework

ASHISH TANDON

Submitted in partial fulfilment of the requirements of
Napier University for the degree of

Master of Science with Advanced Software Engineering

Napier University
School of Computing

September 2007

Authorship Declaration

I, Ashish Tandon, confirm that this dissertation and the work presented in it are my
own achievement.

1. Where I have consulted the published work of others this is always clearly
attributed;

2. Where I have quoted from the work of others the source is always given. With
the exception of such quotations this dissertation is entirely my own work;

3. I have acknowledged all main sources of help;
4. If my research follows on from previous work or is part of a larger

collaborative research project I have made clear exactly what was done by
others and what I have contributed myself;

5. I have read and understand the penalties associated with Academic
Misconduct.

6. I also confirm that I have obtained informed consent from all people I have
involved in the work in this dissertation following the School's ethical
guidelines

Signed: Date:

Matriculation no:

Data Protection declaration

Under the 1998 Data Protection Act we cannot disclose your grade to an unauthorised
person. However, other students benefit from studying dissertations that have their
grade s attached.

Please sign your name against one of the options below to state your

preference.

 The University may make this dissertation, with indicative grade,
available to others.

 The University may make this dissertation available to others, but the
grade may not be disclosed.

 The University may not make this dissertation available to others.

2

Signature (you must sign and date this page) Date

3

Abstract

The purpose of thesis is to benchmark the database to examine and analyze the
performance using the Microsoft COM+ the most commonly used component
framework heavily used for developing component based applications. The prototype
application based on Microsoft Visual C#.NET language used to benchmark the
database performance on Microsoft .NET Framework environment 2.0 and 3.0 using
the different sizes of data range from low (100 Rows) to high volume (10000 Rows)
of data with five or ten number of users connections. There are different type of
application used like COM+, Non-COM+ and .NET based application to show their
performance on the different volume of data with specified numbers of user on the
.NET Framework 2.0 and 3.0.

The result has been analyzed and collected using the performance counter variables of
an operating system and used Microsoft .NET class libraries which help in collecting
system’s level performance information as well. This can be beneficial to developers,
stakeholders and management to decide the right technology to be used in conjunction
with a database. The results and experiments conducted in this project results in the
substantial gain in the performance, scalability and availability of component based
application using the Microsoft COM+ features like object pooling, application
pooling, role- based, transactions isolation and constructor enabled.

The outcome of this project is that Microsoft COM+ component based application
provides optimized database performance results using the SQL Server. There is a
performance gain of at least 10% in the COM+ based application as compared to the
Non COM+ based application. COM+ services features come at the performance
penalty. It has been noticed that there is a performance difference between the COM+
based application and the application based on role based security, constructor enable
and transaction isolation of around 15%, 20% and 35% respectively. The COM+
based application provides performance gain of around 15% and 45% on the low and
medium volume of data on a .NET Framework 2.0 in comparison to 3.0. There is a
significant gain in the COM+ Server based application on .NET Framework 3.0 of
around 10% using high volume of data. This depicts that high volume of data
application works better with Framework 3.0 as compared to 2.0 on SQL Server.

The application performance type results represents that COM+ component based
application provides better performance results over Non-COM+ and .NET based
application. The difference between the performance of COM+ application based on
low and medium volume of data was around 20% and 30%. .NET based application
performs better on the high volume of data results in performance gain of around
10%.

Similarly more over the same results provided on the test conducted on the MS
Access. Where COM+ based application running under .NET Framework 2.0
performs better result other than the Non-COM+ and .NET based application on a low
and medium volume of data and .NET Framework 3.0 based COM+ application
performs better results on high volume of data.

4

Contents
Authorship Declaration...2

Abstract...3

Contents ..4

List of Figures...8

List of Charts ..9

List of Tables...10

Acknowledgements... 11

1 Introduction ..12

1.1 Project Overview ...12

1.2 Background ..13

1.3 Aims and Objectives ..13

1.4 Thesis Structure..14

2 Theory...15

2.1 Introduction..15

2.2 COM ..15

2.3 Microsoft® Transaction Server (MTS)..15

2.4 COM+ ..16

2.4.1 Object Pooling ..16

2.4.2 Just In Time Compiler (JIT)..16

2.5 .NET Framework ...17

2.5.1 .NET Framework 1.1 ..17

2.5.2 .NET Framework 2.0 ..18

2.5.3 .NET Framework 3.0 ..18

2.6 SQL Server 2005..18

2.7 C# .NET 2005 ..18

2.8 Conclusion ...20

3 Literature Review ..21

3.1 Introduction..21

3.2 Importance of Data Storage ...21

3.3 Microsoft COM+ ...22

3.4 COM+ Services..23

3.4.1 JITA ..23

3.4.2 Transactions ..26

3.4.3 Object Pooling ..26

3.4.4 Transaction Scenario...29

5

3.5 Conclusion ...29

4 Design...30

4.1 Introduction..30

4.2 Requirement and Analysis ...30

4.3 Interface design..31

4.4 Analysis of Development environment..33

4.5 Analysis of Database..33

4.6 Project and Classes Implementation ..33

4.6.1 Client Application ...33

4.6.2 COM Access ...33

4.6.3 COM SQL...34

4.6.4 NoOMAccess..34

4.6.5 NoCOM SQL..34

4.7 Evaluation design...34

Experiment 1:..34

Experiment 2:..34

Experiment 3:..34

Experiment 4:..34

Experiment 5:..35

Experiment 6:..35

Experiment 7:..35

Experiment 8:..35

Experiment 9:..35

Experiment 10:..35

Experiment 11:..35

Experiment 12:..35

Experiment 13:..35

Experiment 14:..35

Experiment 15:..36

Experiment 16:..36

Experiment 17:..36

Experiment 18:..36

Experiment 19:..36

Experiment 20:..36

Experiment 21:..36

Experiment 22:..36

Experiment 23:..36

6

Experiment 24:..36

Experiment 25:..36

Experiment 26:..37

Experiment 27:..37

Experiment 28:..37

Experiment 29:..37

Experiment 30:..37

Experiment 31:..37

4.8 Conclusion ...37

5 Implementation ..38

5.1 Introduction..38

5.2 Configuration Information ...38

5.3 Pooled Component Implementation...39

5.4 Non Pooled Component Implementation...39

5.5 JITA..40

5.6 Matrix Implementation ..40

5.7 Calculation of Median and Standard Deviation ...41

5.8 Data Grid Implementation ...42

5.9 Dynamic Query ..42

5.10 Testing Implementation..43

5.11 Conclusion ...43

6 Evaluation...45

6.1 Introduction..45

6.2 Methodology ..45

6.3 SQL Server Experiments Results...46

6.4 MS Access Experiments Results..65

6.5 Conclusion ...74

7 Conclusion ...75

7.1 Introduction..75

7.2 Conclusion ...75

7.3 Critical Analysis...76

7.4 Future Work ...77

8 References...78

Appendix 1 ..82

A. PrototypeApplication.cs...82

B. Assembly info [PrototypeApplication.cs] ..96

C. COMAccess.cs ...97

7

D. Assembly info [COMAccess.cs] ..99

E. COMSQL.cs ...100

F. Assembly info[COMSQL.cs]..101

G. NoCOMAccess.cs ..102

H. Assembly info [NoCOMAccess.cs] ...103

I. NoCOMSQL.cs ...104

J. Assembly info [NoCOMSQL.css]...105

K. AppConfig..106

Appendix 2 ..107

A. GANTT Chart ..107

8

List of Figures

Figure 1.1 Microsoft COM+ Evolution ...12

Figure 2.1 Microsoft .NET Framework (Microsoft, 2007). ...17

Figure 2.2 Microsoft C# Project life cycle (Visual C# Developer Center, 2007).19

Figure 3.1 Microsoft COM+ TPC Performance Result ...22

Figure 3.2 Microsoft COM+ Non JITA Performance Result ...23

Figure 3.3 Microsoft COM+ JITA Performance Result ...24

Figure 3.4 Microsoft COM+ and Enterprise Services Performance Result25

Figure 3.5 Microsoft COM+ and ES Typical Method Performance Result25

Figure 3.6 Microsoft COM+ and ES Typical Method [No Transaction Performance Result].26

Figure 3.7 The life cycle of a component using JITA and object pooling (Löwy, 2001).........27

Figure 3.8 Pooled and Non Pooled Component Performance ...28

Figure 4.1 Prototype application..32

Figure 4.2 Prototype application Database and COM+ option ..32

Figure 4.3 Prototype application Data volume and Users option ...32

Figure 5.1 Show Data in the DataGrid option..42

Figure 5.2 Show Data Volume and User option...43

9

List of Charts

Chart 6.3-1 COM+ Application Performance [No Object Pooling and JIT]46

Chart 6.3-2 COM+ Application Performance [Object Pooling and JIT]47

Chart 6.3-3 COM+ Application Performance ..48

Chart 6.3-4 COM+ v/s Non COM+ Component Performance ..49

Chart 6.3-5 COM+ Role Based Security Component Performance ..50

Chart 6.3-6 COM+ Transaction Component Performance ..51

Chart 6.3-7 COM+ Component features and their Performance ...52

Chart 6.3-8 Non-COM+ component performance on SQL Server (5 Users)53

Chart 6.3-9 Non-COM+ component performance on SQL Server (10 Users).........................54

Chart 6.3-10 COM+ component performance on SQL Server (5 Users).................................55

Chart 6.3-11 COM+ component performance on SQL Server (10 Users)...............................56

Chart 6.3-12 .NET component performance on SQL Server (5 Users)57

Chart 6.3-13 .NET component performance on SQL Server (10 Users)58

Chart 6.3-14 Application performance on SQL Server (5 Users and 100 Rows)59

Chart 6.3-15 Application performance on SQL Server (10 Users and 100 Rows)60

Chart 6.3-16 Application performance on SQL Server (5 Users and 1000 Rows)61

Chart 6.3-17 Application performance on SQL Server (10 Users and 1000 Rows)62

Chart 6.3-18 Application performance on SQL Server (5 Users and 10000 Rows)63

Chart 6.3-19 Application performance on SQL Server (10 Users and 10000 Rows)64

Chart 6.4-1Non-COM+ component performance on MS Access (5 Users)65

Chart 6.4-2 Non-COM+ component performance on MS Access (10 Users)66

Chart 6.4-3 COM+ component performance on MS Access (5 Users)....................................66

Chart 6.4-4 COM+ component performance on MS Access (10 Users)..................................67

Chart 6.4-5 .NET Application performance on MS Access (5 Users)68

Chart 6.4-6 .NET Application performance on MS Access (10 Users)68

Chart 6.4-7 Application performance on MS Access (5 Users and 100 Rows)69

Chart 6.4-8 Application performance on MS Access (10 Users and 100 Rows)70

Chart 6.4-9 Application performance on MS Access (5 Users and 100 Rows)71

Chart 6.4-10 Application performance on MS Access (10 Users and 1000 Rows)71

Chart 6.4-11 Application performance on MS Access (5 Users and 10000 Rows)72

Chart 6.4-12 Application performance on MS Access (10 Users and 10000 Rows)73

10

List of Tables

Table 1 Pooled Object Performance..28

Table 6.2.1 Experiment Matrix ..45

Table 6.3.1COM+ Application Performance Data [No Pooling and JIT]................................46

Table 6.3.2 COM+ Application Performance Data [Pooling and JIT].....................................47

Table 6.3.3 COM+ v/s Non COM+ Component Data Performance ..48

Table 6.3.4 COM+ v/s Non COM+ Component Data Performance ..49

Table 6.3.5 COM+ Role Based Component Performance Data...50

Table 6.3.6 COM+ Transaction Component Performance Data ..51

Table 6.3.7 COM+ Component features Data Performance ..52

Table 6.3.8 Non-COM+ component Data performance on SQL Server (5 Users)53

Table 6.3.9 Non-COM+ component Data performance on SQL Server (10 Users)54

Table 6.3.10 COM+ component Data performance on SQL Server (5 Users).........................55

Table 6.3.11 COM+ component Data performance on SQL Server (10 Users).......................56

Table 6.3.12 .NET component data performance on SQL Server (5 Users)57

Table 6.3.13.NET component data performance on SQL Server (10 Users)58

Table 6.3.14 Application performance data on SQL Server (5 Users and 100 Rows)59

Table 6.3.15 Application performance data on SQL Server (10 Users and 100 Rows)60

Table 6.3.16 Application performance data on SQL Server (5 Users and 1000 Rows)61

Table 6.3.17 Application performance data on SQL Server (10 Users and 1000 Rows)62

Table 6.3.18 Application performance data on SQL Server (5 Users and 10000 Rows)63

Table 6.3.19 Application performance data on SQL Server (10 Users and 10000 Rows)64

Table 6.4.1 Non-COM+ component performance data on MS Access (5 Users)65

Table 6.4.2 Non-COM+ component performance data on MS Access (10 Users)66

Table 6.4.3 COM+ component performance data on MS Access (5 Users)67

Table 6.4.4 COM+ component performance data on MS Access (10 Users)67

Table 6.4.5 .NET Application performance data on MS Access (5 Users)68

Table 6.4.6 .NET Application performance data on MS Access (10 Users)69

Table 6.4.7 Application performance data of MS Access (5 Users and 100 Rows).................69

Table 6.4.8 Application performance data of MS Access (10 Users and 100 Rows)...............70

Table 6.4.9 Application performance data of MS Access (5 Users and 1000 Rows)...............71

Table 6.4.10 Application performance data of MS Access (10 Users and 1000 Rows)...........72

Table 6.4.11 Application performance data of MS Access (5 Users and 10000 Rows)...........72

Table 6.4.12 Application performance data of MS Access (10 Users and 10000 Rows).........73

Acknowledgements

William Buchanan

First and foremost, thanks to Professor Bill Buchanan, Napier University for giving
me the opportunity to participate in this project under his valuable guidance. He also
helped make this project better than what I had written, for which I will forever be in
his debt.

Additional thanks to Lecturer Alistair Lawson and Dr. Emma Hart for their constant
support and guidance during the academic year study.

Last but certainly not least I must thank my wife Ashima for providing unconditional
support and encouragement throughout the project.

Ashish Tandon
1-Sep-07

11

http://www.dcs.napier.ac.uk/%7Ebill/newpics/feb13_04.jpg

Ashish Tandon | MSc Advanced Software Engineering | 2007 12

1 Introduction

1.1 Project Overview

There are problems associated in the earlier Microsoft Windows development
environments with the development and deployment of applications. The new
framework platform which has been launched by Microsoft attempts to solve this
problem. In the Microsoft development IDE versions, Microsoft Visual Studio 6.0
and earlier, it was difficult and require lot of time to write a code to write a Java or
C++ class, and to derive, or to use it directly in the Visual Basic code. Microsoft
solved this problem by creating the Component Object Model (COM) which allows
compiled components to communicate with each other, over a binary language.

Unfortunately COM has its own defects and there is no way in which COM
technologies which allows the components to be managed and discovered during the
runtime. The .NET Framework solves this problem using the concept know as
reflection, or also solves the error handling issues which came across while making
an API call, the API might raise an error, or might return an error code. If the error
code is being returned, the calling component must have the knowledge of the known
errors. (Bayer, 2001)The .NET Framework solves this problem as it raises exceptions
for the all errors. It also provides the low - level features which were difficult to write
and requires more time to code using the earlier development versions like COM+
Object Pooling; Role based security; access to SMTP, HTTP and FTP. This can be
possible now for the Visual Studio .NET developers. (Figure 1.1)

Figure 1.1 Microsoft COM+ Evolution

MTS is the extended version of COM and it is an important feature of the Microsoft
Windows NT® operating system that simplifies the development and deployment of
server centric applications built using Microsoft Component Object Model (COM)
technologies. The thesis uses COM+ features, in conjunction with a data source and
.NET Framework. Database performance is benchmarked on low and high volumes

Ashish Tandon | MSc Advanced Software Engineering | 2007 13

of data in database using variation of COM+ application components and COM+
settings under the Microsoft .NET Framework environment.

1.2 Background

We can say that Microsoft’s initiative in middleware started with its introduction of
MTS (Microsoft Transaction Server). MTS provides us many useful features for
developing and deploying multi-tier enterprise applications. However, the name
MTS is somewhat confusing, because it does a lot more than transaction handling.
That is why when Microsoft released Windows 2000, it bundled COM+ with it,
included within it all the useful features of COM and MTS. And unlike MTS, COM+
is not an optional feature under Windows (Global Architect, 2007).

Recently, there's been much said about Enterprise JavaBeans (EJB) and Microsoft's
COM+ technologies. Some assert that EJB is new, and is therefore not ready for
prime-time. Others question the historical scalability of Windows, and are uneasy
about using Windows 2000 in their mission-critical deployments. However, those
real, successful E-Commerce systems are being developed todayS to both EJB and
COM+. Despite the lack of support for certain features in each platform, today's
development teams have learned to cope with some of the limitations of their chosen
platform, such as lack of persistent components in COM+, or lack of queued
components in EJB. It is very rare that an architectural decision will be made solely
on the basis of features, as the two architectures are very, very similar. Rather, the
overwhelming business forces at play are much greater factors.

The great feature of Microsoft technology is they always seem to undercut the
competition when it comes to price. There is a remarkably low cost per transaction
in Windows 2000, and this stems from the volume pricing Microsoft employs.
Furthermore, the COM+ subsystem ships with Windows 2000, whereas EJB-based
application servers are sold separately from the underlying platform. When you
couple low-cost Intel hardware with a Microsoft-based middleware solution, the cost
per transaction is remarkably low (Roman, 2007).

1.3 Aims and Objectives

The aim of this thesis is to optimize and analyse the performance of a COM+ based
application, under the .NET framework environment. This is achieved using the
following objectives:

- Improve database performance through enhanced COM+ techniques such as object
pooling, and the ability to adjust the transactional isolation level for database
operations.

- Conduct a critical review of appropriate literature and benchmarking techniques
performed on different data sources.

- Conduct experiments and evaluation on COM+ settings and how this reflects in
database and application performance.

- Analyze and optimize Microsoft COM+ based application scalability and
availability.

Ashish Tandon | MSc Advanced Software Engineering | 2007 14

1.4 Thesis Structure

Chapter 1 Introduction. This chapter outlines the background, scope and
 objective, along with the thesis structure of the work performed.

Chapter 2 Theory. This chapter outlines the underlying theory of commonly
 used technology and terminology which are required to understand the
 context of the project.

Chapter 3 Literature Review. This chapter outlines the literature review and
 research conducted in the areas of Microsoft COM+ and the
 performance of the database used with COM+ services.

Chapter 4 Design. This chapter outlines the application information which
 includes the design, architecture, prototyping and experiments
 performed using the Microsoft COM+ core services.

Chapter 5 Implementation. This chapter outlines the details behind the
 implementation of experiments conducted and explained in this
 chapter.

Chapter 6 Evaluation. The results from the experiments obtained are analyzed
 and evaluated considering the parameters.

Chapter 7 Conclusion. This chapter summarises the work performed for this
 project, presents the findings and suggest further work required in this
 field.

Ashish Tandon | MSc Advanced Software Engineering | 2007 15

2 Theory

2.1 Introduction

This chapter outlines and describe the theory required to understand the project. This
includes the technologies used in the presentation, business and data tier layer. The
theory behind the COM, MTS and COM+ technologies will help in understanding
the features exposed by these middleware technologies and also help in
understanding the application language and their features in conjunction with the
database used. We also looked into the detailed features provided by different
Microsoft .NET Framework and the application compilation process cycle used for
the language.

2.2 COM

COM (Component Object Model) is the Microsoft technology which enables
software applications and components to communicate with each other. It is used to
build re-usable software components, which can be linked together to build the
applications, and take advantage of Microsoft Operating System services. COM was
initially used in the Microsoft Office products and allows dynamic linking of the
Microsoft Word documents to the Excel spreadsheets and allows users to build
scripts using COM automation (Microsoft, COM: Component Object Model
Technologies, 2007).

COM is designed primarily for Microsoft Visual Basic® and C++ developers. COM
is a distributed, platform independent and object oriented system for creating binary
software component that can interact with other components. COM runs on wide
variety of operation systems and COM family includes technologies like COM+,
Distributed COM (DCOM) and ActiveX® controls (MS, 2007).

2.3 Microsoft® Transaction Server (MTS)
MTS is a Microsoft component-based transaction processing system for building and
deploying high performance, scalable and robust enterprise level, production quality
database applications, which can be deployed and administered using the rich
graphical tool. It is ideal for developing e-commerce and business intranet and
internet application, and works with any application development tool capable of
producing an ActiveX DLL. This includes application development tools like
Microsoft Visual C++, Visual Basic and Visual J++ IDE. By providing a true
component - oriented run time environment, MTS 1.0 changed the way developers
built server centric applications and has eliminated the infrastructure code (Technet,
2007).

MTS version 2.0 is an important feature of the Microsoft Windows NT® operating
system and simplifies the development and deployment of server - centric
applications built using COM technologies. It also extends the environment by
integrating the following technologies:

Ashish Tandon | MSc Advanced Software Engineering | 2007 16

• Microsoft Internet Information Server 4.0 (IIS).

• Transactional connectivity to Oracle and DB2 databases.

• Integration with Microsoft Message Queue Server 1.0 (MSMQ).

• Connectivity through Microsoft SNA Server 4.0.

• COM Transaction Integrator (Corporation, 1998).

2.4 COM+

COM+ is the evolution of MTS and COM and COM+ is the name of the COM-based
services and technologies first released in Windows 2000 (Microsoft, COM:
Component Object Model Technologies, 2007). COM+ provides new features which
extend applications written using MTS and COM - based technologies. Developers
can now handle the management tasks which were difficult to program using COM,
such as thread security and allocation (Bayer, 2001).

COM+ is designed primarily for Microsoft Visual Basic and Visual C++ developers.
COM+ version 1.0 ships with Microsoft Windows 2000 and COM+ version 1.5 ships
with Microsoft Windows 2003 operating system and Microsoft Windows XP (MS,
2007). It is being widely used to develop high - level mission critical, enterprise level
distributed applications on the Microsoft operating systems (MS, 2007). COM+ 1.5
has functional features for distributed application which helps in increased
performance and scalability (McKeown, 2003).

2.4.1 Object Pooling
Object pooling is an automatic service provided by COM that enables the developer
to configure a component to have instances of it kept active in a pool, and it is
available any client that request the component. Using the object pooling significant
performance and scaling benefits can be achieved by reusing objects (MSDN, 2007).
Bayer (2001) defines that:

Pooling is an object pool is a collection of pre-instantiated objects and use
object pooling when your object needs to acquire expensive database
resources such as database connections (Bayer, 2001).

2.4.2 Just In Time Compiler (JIT)
When the Microsoft .NET application code is compiled, the complier generates code
written in the Microsoft Intermediate Language (MSIL). The JIT compiler is
responsible to convert the MSIL instructions into the native machine code that a CPU
understands, and it also responsible for performing the verification process that the
class loader performs. The concept that not all of an application’s code is always
executed by JIT, this improves the performance and the scalability of the .NET
application (Bayer, 2001). Troelsen(2007) defines:

The entity that compiles CIL code into meaningful CPU instructions is
termed a just-in-time (JIT) compiler, which sometimes goes by the friendly
name of Jitter. The .NET runtime environment leverages a JIT compiler for

Ashish Tandon | MSc Advanced Software Engineering | 2007 17

each CPU targeting the runtime, each optimized for the underlying platform
(Troelsen, 2007).

2.5 .NET Framework

The Microsoft .NET framework provides many services that simplify application
deployment and development. The Common language Runtime (CLR) is able to
provide the services that all applications run on the top of the same execution engine
Figure 2.1.It also consists of collection of Framework Class library (FCL). This
libraries are used to create different types of applications like windows, web, mobile
and distributed applications. (Microsoft, .NET Framework Conceptual Overview ,
2007). Liberty & MacDonald (2006) defines that:

The .NET Framework sits on top of any flavour of the Windows operation
system. The most important components of the Framework are the Common
language Runtime (CLR) and the Framework Class Library (FCL), which
provides an enormous number of predefined types or classes for developers to
use in program (Liberty & MacDonald, 2006).

Figure 2.1 Microsoft .NET Framework (Microsoft, 2007).

There are several releases of the .NET Framework. This are outlined next:

2.5.1 .NET Framework 1.1
.NET Framework 1.1 is the first major Microsoft Framework upgrade and release. It
includes the following main features:

• Built in ASP.NET controls for mobile application.

• Built in support for ODBC and oracle database.

• Integration of IPv6 protocol and numerous API changes.

Ashish Tandon | MSc Advanced Software Engineering | 2007 18

2.5.2 .NET Framework 2.0
The .NET Framework 2.0 was released with the launch of Visual Studio .NET 2005.
The following are the features included since 1.1 Framework.

• Providing full 64 - bit application support.

• ASP.NET personalization features.

• Release .NET Micro Framework (Compact Framework).

2.5.3 .NET Framework 3.0
.NET Framework 3.0 formerly named WinFX is the vital component of the Windows
vista operating systems, such that:

With the release of the Vista operating system (OS), Microsoft officially
shipped the third version of the .NET base class libraries. Within this release,
developers are provided with several new technologies represented by a set of
new .NET assemblies (Troelsen, 2007).

2.6 SQL Server 2005

Databases are the building blocks for the distributed and enterprise - level intranet
and internet applications. Microsoft SQL Server is the Relational Database
Management System (RDBMS) and analysis platform for large scale e-commerce,
data warehousing and online transaction processing (OLTP) applications. The
Database engine provides the controlled access and rapid transaction processing, and
it is the core service for storing, processing, and securing data. Microsoft SQL Server
2005 is focused on making it easier to deploy, create and manager enterprise level
database systems and applications, while increasing scalability, performance,
reliability, security, availability and programmability (Whalen, Gracia, Patel, Misner,
& Isakov, 2007), and it is highlighted by:

Some things are, however, worth waiting for, and SQL Server 2005 falls
squarely in that camp. The number and importance of new or rewritten
Features is almost staggering (Vieira, 2007).

Microsoft SQL Server 2005 includes key enhancements to manageability,
availability, scalability and security to enterprise data management. New
technologies have brought significant increase in developer productivity which
includes new and expanded development tool which are integrated with the
application framework, XML and Web services (Vieira, 2007).

2.7 C# .NET 2005

Figure 2.2, Microsoft C# is a type safe object - oriented language which enables
developers to build a wide range of robust and secure applications run on the .NET
framework. Developers can use C# for various kinds of applications such as client,
Web and distributed applications (Troelsen, 2007).

Microsoft Visual C# 2005 provides advanced features, including:

• Advanced IDE for code development.

• Convenient user interface for development.

Ashish Tandon | MSc Advanced Software Engineering | 2007 19

• Integrated debugger and many more tools to provide rapid application
development based on version 2.0 of the C# language.

• Provides features like re-factoring, debugging code, code snippets, database
explorer and powerful navigation and searching.

• Support for all three coding models: inline, code - behind and mixed inline
and code behind.

• Ability to import and export user preferences (Liberty & MacDonald, 2006).

C# language is highly expressive and easy to learn for the developers from Java, C++
background and designed to take advantage of the Common Language Runtime
(CLR) that .NET program all rely upon (Kingsley & Kingsley-, 2007).

Figure 2.2 Microsoft C# Project life cycle (Visual C# Developer Center, 2007).

Ashish Tandon | MSc Advanced Software Engineering | 2007 20

2.8 Conclusion

This chapter gives the outline and brief description about the relevant topic which are
required to be understood for the thesis. This chapter outline how COM+ have
emerged from COM and MTS and what are the new features are available in COM+
and what are the new features available in the database. There is also a brief
introduction about the process compilation for C# .NET application. All of the
mentioned Microsoft technologies COM, COM+, MTS, SQL Server and C#.NET
contributing towards the achievement of the objectives. Different .NET Framework
are backward compatible, but with new features must be assessed for usefulness.

Ashish Tandon | MSc Advanced Software Engineering | 2007 21

3 Literature Review

3.1 Introduction

This section of the research paper emphasizes on the COM+ features and the
research/test conducted using the COM+ settings on the data storage in the industry.
Test result and data has been used and evaluated for the analysis.

The following section describes the importance of data storage and how the COM+
features like Object Pooling and Just in time compiler provides significant
performance gain over the non pooled components.

3.2 Importance of Data Storage

The explosion of data on the web has taken new dimensions as data storage has been
tremendously increased in the past 25 years from merely a Kilobyte (KB) data to
gigantic Petabyte (PB) of data stored data centre servers. It has become a challenging
task for Database researchers and developers who are building the interoperable
business and enterprise components, heterogeneous query processor, clustered
database and database extensions to provide consistent data access to diverse data
sources. All this diverse information can be accessed using data access API’s,
abstraction and common data exchange formats (Deshpande & Blakeley, 2000).

Database management system are required to store, retrieve and manipulate large
amounts of data in an efficient and reliable manner for the industry growing at the
rate of 35% per year and generated the revenue of more than 7 billion in 1994. In
order to efficiently manage the data storage it must have the specialized high level
language to read data from the database, data structures to physically store the data
and provide the reliability and integrity when database is accessed concurrently by
many users (Yannakakis, 1995).

Microsoft data access API known as OLEDB builds on Microsoft's Component
Object Model (COM) having the universal Access strategy which can access data to
both database and non database irrespective of the location or format. However, most
of the data of the mission critical application is stored in the multiple storage location
for the purpose of performance and functionality purpose. Although most database
companies follows Universal Storage strategy which provides user to store data of
different type such as video, text, audio and pictures inside the database. By
providing the integration of wide variety of data sources on a central location
efficient and reliable applications can be developed (Blakeley, 1997).

Ashish Tandon | MSc Advanced Software Engineering | 2007 22

3.3 Microsoft COM+

One component framework heavily used for developing component-based software
systems is Microsoft’s COM+ (Martin Pinzger, 2003). COM+ covers two main areas
which are fundamental programming architecture for building software application
components as defined in the COM specification and a group of component services
using the COM+ runtime environment. Microsoft developed the Microsoft
Transaction Server (MTS), the first Windows – based implementation of a runtime
environment to provide component services (Eddon, 1999). and MTS is used to
develop and deploy scalable, high performance and reliable distributed application.
Which can be achieved by combining the technology of Component based
environment (Limprecht, 1997). COM+ is a much more powerful runtime
environment than anything else that is ever been deployed on a PC platform (Platt,
2000).

The Figure 3.1 below shows the performance result of the Microsoft COM+
Technology by the TPC. The TPC is a non-profit corporation founded to define
transaction processing and database benchmarks and to disseminate objective,
verifiable TPC performance data to the industry (TPC, 2007).

Figure 3.1 Microsoft COM+ TPC Performance Result

Ashish Tandon | MSc Advanced Software Engineering | 2007 23

3.4 COM+ Services

To measure the performance of Enterprise Services compared to COM+, components
in the following languages:

• Visual C++ .NET and ATL COM+
• Visual Basic 6 COM+
• C# and .NET Framework 1.1 Enterprise Services
• Visual Basic .NET and .NET Framework 1.1 Enterprise Services

Each component contains two public methods:

• The trivial SUM () method adds two numbers together to simulate a
lightweight operation that performs no disk or database access operations.

• The Trivial method Sale () typical method is transacted and calls the private
method InsertSale () that inserts a record into a table and completes the
transaction before returning. This method illustrates the performance
characteristics of a "real-world" method doing typical business application
work.

3.4.1 JITA

The Figure 3.2 below shows the number of calls per second achieved by repeatedly
creating an object, calling its trivial method, and releasing it.

Figure 3.2 Microsoft COM+ Non JITA Performance Result

Ashish Tandon | MSc Advanced Software Engineering | 2007 24

The Figure 3.3 illustrates what happens if we run a modified test that takes advantage
of JIT-activation by creating a single object, and repeatedly calling a trivial method
that adds two numbers together and then releases the object at the end of the test
loop.

These results show a significant performance improvement in the number of calls per
second when using JIT-activation. Using JIT-activation and Visual Basic 6 produces
results that are almost 33 times faster than C++ without using JIT-activation
(approximately 8600 Visual Basic 6 JIT-activated calls per second compared to
approximately 261 Visual C++ non-JIT-activated calls per second).

Figure 3.3 Microsoft COM+ JITA Performance Result

The Figure 3.4 below shows the performance of Enterprise Services using C# and
Visual Basic .Net that calls the trivial method. Most of the cost of activating and
releasing the object is gone, but the cost of delivering the call is still there, due to
operations such as marshaling the buffers and converting to a call stack. Even with
this very simple method, Enterprise Services is very close to the performance of
Visual Basic 6 when going cross process. When calling across machines, all the
languages perform very closely to each other.

Ashish Tandon | MSc Advanced Software Engineering | 2007 25

Figure 3.4 Microsoft COM+ and Enterprise Services Performance Result

The Figure 3.5 shows the relative performance of the same application written in
four different languages that repeatedly calls a typical method to open a database
connection and execute a simple SQL statement while inside a distributed transaction

Figure 3.5 Microsoft COM+ and ES Typical Method Performance Result

Ashish Tandon | MSc Advanced Software Engineering | 2007 26

The preceding results show that, within the experimental error, all languages give
equivalent results when doing significant work inside the method. COM+ native
applications written using C++ and Visual Basic 6 using ADO perform at the same
speed as C# or Visual Basic .NET applications using Enterprise Services. Note that it
matters very little from a performance perspective if you are running cross-process or
cross-machine.

The object oriented language community has changed and there are now some good
OO languages like C# .NET which is having excellent implementations and
development environments (Gray, 2004).

3.4.2 Transactions

After turning off the “require transaction” setting in COM+ for each components
gives the answer to "How much impact does COM+ distributed transactions have on
the performance of these components?", The Figure 3.6 shows the results.

Figure 3.6 Microsoft COM+ and ES Typical Method [No Transaction
Performance Result]

As can be seen from the chart above, the performance of the components without
COM+ transaction support is practically identical to the performance of the
components with transactions turned on. This clearly illustrates that the impact of
COM+ transactions is negligible in these tests (Turne, Burek, & Driver, 2004).

3.4.3 Object Pooling

Figure 3.7, COM+ activates and deactivates objects to achieve efficient memory
usage. In this discussion, COM+ pools components that use the thread-neutral
apartment (TNA) model. Although Visual Basic does not currently support this
model, pooling can allow COM+ to use memory more efficiently by avoiding the
overhead of repetitive resource allocation. By avoiding the resource allocation is a

Ashish Tandon | MSc Advanced Software Engineering | 2007 27

key concept for designing scalable systems and applies to all resources not just in the
memory. The object pooling provides the significant performance improvement when
objects are dealing with the database connection resources. Object pooling bypass
the process of repeatedly connecting to a database.

COM+ and ADO 2.5/.NET classes can be used to efficiently manage the database
connections through a process known as session pooling.

In Visual Studio 2005, Enterprise Services will be enhanced to eliminate one
of the activation round trips, yielding a 20-30% improvement in performance
(compared to the .NET Framework 1.1) when using the "activate/single
call/release" pattern. However, user should avoid this pattern if at all possible
(Turne, Burek, & Driver, 2004).

Figure 3.7 The life cycle of a component using JITA and object pooling (Löwy,
2001)

Ashish Tandon | MSc Advanced Software Engineering | 2007 28

//Enabling COM+ Object Pooling Feature
[System.EnterpriseServices.ObjectPooling
(true, 10, 100, CreationTimeout = 5000)
]

//Enabling COM+ JIT Feature
[System.EnterpriseServices.JustInTimeActivation(true)]

//Enabling COM+ Transaction Option
[System.EnterpriseServices.Transaction
(TransactionOption.NotSupported)
]

The result in Table 1 shows Pooled Object results which were based on the COM+
with Object pooling and JTI. The Non Pooled Objects results were based on COM+
services without the Object pooling and JIT. When we run this on my machine, we
got the following output:

Results Ticks
Pooled Objects 404234
Non Pooled Objects 595959

Table 1 Pooled Object Performance

The results may differ somewhat depending on system configuration. The Figure 3.8
shows the performance gain for using the pooled component and COM+ object
pooling can provide significant benefits (Bayer, 2001).

Figure 3.8 Pooled and Non Pooled Component Performance

Ashish Tandon | MSc Advanced Software Engineering | 2007 29

3.4.4 Transaction Scenario
In a relational database system, all modifications occur as a result of an INSERT,
DELETE, or UPDATE statement. The accounting transactions on a database have
implemented using different database tables. The basic rule of accounting is that
everything should balance; so for every debit, there must be a corresponding credit,
and vice versa. For example, if user a want to pay a £50 bill to XYZ Corp, system
debit Cash for 100 and credit Accounts Payable for 100. These two T ledgers are
represented by database tables (Brill, 2000).

3.5 Conclusion

The results above illustrate how important JIT-activation and the "create/repeat
call/release" calling pattern are as an aid to ensuring that your components perform
as well as possible. By holding and reusing references to pooled and JIT-activated
components, user can minimize component activations and disposals and achieve
high levels of performance. In order to optimize the performance of COM+
components, it is important to minimize the number of cross-process or cross-
machine calls made between caller and component. (Turne, Burek, & Driver, 2004).
A good way to achieve this is to design COM+ components with methods that
perform as much work as possible in a single call, even if that means designing
components that deviate from architectural purity. It has been noticed from the
research and the literature studied COM+ component which uses the Object Pooling
and JITA features providing the significant performance gain over the non-COM+
based components.

Ashish Tandon | MSc Advanced Software Engineering | 2007 30

4 Design

4.1 Introduction

This chapter defines how the prototype application was designed which are based on
the earlier research and literature review. There are various test and experiments are
mentioned in the literature review aided in designing the prototype application. The
previous research on the COM+ Object Pooling and JITA also facilitates to plan the
experiments on the new features of the technology.

The research also helped to design the interface which covers basic foundation for all
the experiments based on data storage and enhance object model using the .NET
framework. All the experiments are documented and used for the purpose of
evaluating the application prototype.

This chapter outlines two main areas. The first consists of design, requirement and
analysis of the underlying prototype application to conduct the experiments using the
enhance object model. The second area covers a brief discussion about the evaluation
design methodology which helps in identifying the information required for
conducting the experiments at an early stage and also eases the evaluation process.

4.2 Requirement and Analysis

The requirement is the first phase for designing prototype application. The main
objective of the prototype application is to benchmark different databases to analyse
and optimize their performance using the enhance object model i.e. Microsoft
COM+. The final prototype has to provide the answer to the following requirements:

• Object Pooling: The COM+ component must communicate with the
database layer and provides the result of the query passed by the presentation
layer. This can be evaluated by enabling the Object Pooling feature on / off.
All these results must be documented, analyzed and evaluated against the
time taken for the request.

• JITA: The COM+ component must communicate with the database layer and
provides the result of the query passed by the presentation layer. This can be
evaluated by enabling the JIT compilation features on / off. All these results
should be documented, analyzed and evaluated against the time taken for the
request.

• Databases: At the database layer, different databases must be used to
distinguish the performance of COM+ component. This would provide the
information on how COM+ component behave on the specific databases.
Data storage performance can be benchmarked as per the numbers of user
who are requesting the data. This will provide the information about the
impact of users on the performance of databases in conjunction with the
Microsoft COM+ settings. The database should have the different volumes of
data. Analysis and evaluation can be performed on different data volume.
This enables to analysis the COM+ component performance on the data.

Ashish Tandon | MSc Advanced Software Engineering | 2007 31

• Framework: The experiments must be performed on the different Microsoft
.NET Framework to analyse the performance of the COM+ components
behaviour under the .NET environment.

• User Preference: The prototype presentation layer must give the following
choices to the user for conducting the experiments:

o User should have the option to choose the database for getting the
results on the presentation layer.

o User should have the flexibility to show data on the presentation
screen.

o User should have the option of COM+ functionality to choose from
i.e. COM+ using object pooling and JITA and COM+ not using the
Object pooling and JITA.

o User should have the option of choosing a database of different
volume sizes and should have the option to benchmark the selected
database with different number of users load.

4.3 Interface design

In earlier research work and literature review there was an option to conduct the
experiment using the specific features. The idea is to integrate most of the COM+
features and provide common interface to benchmark and analyse the database
performance.

The interface Figure 4.1 used for the prototype application have all the options which
are required to perform experiments on the databases using the COM+ settings under
the controlled .NET environment. The prototype application is having a user friendly
interface, which gives the ease of option to choose from database selection,
technology and data volume selection in an easy manner.

Ashish Tandon | MSc Advanced Software Engineering | 2007 32

Figure 4.1 Prototype application

The information provided in the Figure4.2 allows the user to choose the database and
the COM+ application type i.e. with or without object pooling and JITA option.

Figure 4.2 Prototype application Database and COM+ option

The information provided in the Figure 4.3 allows the user to choose the data which
ranges from low to high volume and allows the user to choose the user load.

Figure 4.3 Prototype application Data volume and Users option

Ashish Tandon | MSc Advanced Software Engineering | 2007 33

4.4 Analysis of Development environment

The main requirement is to benchmark the database performance using the Microsoft
COM+ object model in the .NET Framework. It requires the language that gives the
better Integrated Development Environment (IDE) and provides readily available
components or framework classes that could be easily used to develop the prototype
application. The integration between the business layer and the database layer should
take less time and provides the flexibility to change the code easily.

Microsoft Visual Studio .NET provides the rich experience of GUI and a vast
collection of the framework class library. It provides features of creating GUI with
the relevant components, automated code snippets, better integration with the
Microsoft database applications, less time spent on coding and deploying the
components.

Microsoft Visual C# .NET was used in the prototype application. The other .NET
languages run under the same .NET environment. There are few minor differences in
functionality between the two languages as all .NET languages are interoperable. The
decision is mostly driven by personal preference to write the code in C# as the syntax
is more widely adopted.

4.5 Analysis of Database

The database and its integration with the language play an important role in
achieving the overall performance. Microsoft SQL Server 2005 and Microsoft
Access 2003 are used to conduct experiments. As SQL Server 2005 is the Relational
Database Management System (RDBMS) which provide diverse features for
transaction processing and provides the controlled access for storing and processing
the data.

The integration of Microsoft Visual Studio and SQL Server and Microsoft Access
provides the rich collection of framework class library which gives the power to
create, manage and developed database applications in less time.

4.6 Project and Classes Implementation
There are three main projects used in the overall prototype application architecture
that consist of four component application and one client application which is
consuming these components to get the desired results. The following are the project
categorization and the classes used in these projects.

4.6.1 Client Application

PrototypeApplication.cs: This class file is used for developing C#.NET based
application who calls the other project for getting the results for the experiments
conducted.

4.6.2 COM Access
COMAccess.cs: This class file is used for developing non-COM+ application with
COM+ pooling and JIT for Access database.

Ashish Tandon | MSc Advanced Software Engineering | 2007 34

4.6.3 COM SQL
COMSQL.cs: This class file is used for developing non-COM+ application with
COM+ pooling and JIT for SQL database.

4.6.4 NoOMAccess
NoCOMAccess.cs: This class file is used for developing non-COM+ application
without COM+ pooling and JIT for Access database.

4.6.5 NoCOM SQL
NoCOMSQL.cs: This class file is used for developing non-COM+ application
without COM+ pooling and JIT for SQL database.

4.7 Evaluation design

Evaluation of the prototype application is the primary reason for analysing the
COM+ behaviour under the .NET Framework. Therefore it is really important to
judge the performance result of the COM+ components on different databases. The
following experiments are used to evaluate the performance of COM+ component on
different databases on the different COM+ parameters i.e. object pooling, JITA,
transaction support, constructor used.

Experiment 1: COM+ Application Performance with No Object Pooling and JITA:
The fundamental idea behind this experiment was to analyze the performance of
COM+ Server and COM+ Library applications without using the COM+ 1.5 Object
Pooling and JITA activation features running under the .NET Framework. This
experiment was aimed to achieve the objective which identify that which COM+
application provides better performance and results against the database retrieval
query.

Experiment 2: COM+ Application Performance with Object Pooling and JITA: The
fundamental idea behind this experiment was to analyze the performance of COM+
Server and COM+ Library applications using the COM+ 1.5 Object Pooling and
JITA activation features running under the .NET Framework. This experiment was
aimed to achieve the objective which identify that which COM+ application provides
better performance and results against the database retrieval query.

Experiment 3: The Comparative Performance of COM+ application: The main idea
for this experiment was to compare the performance difference between the COM+
Server application and COM+ Library application. This experiment was aimed to
achieve the objective to comparatively show the difference between the components
using the COM+ features and COM+ component not using the COM+ features.

Experiment 4: COM+ and Non COM+ Component Performance: This experiment
was performed to test the performance of COM+ component developed on .NET
Framework using the .NET System.EnterpriseServices and the performance of the
.NET class library component. The aim of this experiment was to identify the
performance gap between the COM+ and Non COM+ components under the .NET
Framework.

Ashish Tandon | MSc Advanced Software Engineering | 2007 35

Experiment 5: COM+ Role Based Component Performance: This experiment was the
step forward towards the COM+ features implementation and experimentation. This
experiment performed to test COM+ role base component and was aimed to achieve
the objective that does COM+ role based security features having a performance cost
or not.

Experiment 6: COM+ Transaction Based Component Performance: This experiment
was another implementation of COM+ features implementation and experimentation.
This experiment performed on the COM+ component with the transaction required
new mode. It was aimed to achieve the objective that does COM+ transaction
required mode was having a performance cost or not.

Experiment 7: COM+ component features and their performance: This experiment
was aimed to compare the performance of the COM+ component with JIT,
component with role based and transaction required mode.

Experiment 8: Non-COM+ component performance on SQL Server: This experiment
was aimed to compare the performance of Non-COM+ component using the SQL
Server 2005 data of different volume with 5 users on Microsoft Framework 2.0 and
3.0.

Experiment 9: Non-COM+ component performance on SQL Server: This experiment
was aimed to compare the performance of Non-COM+ component using the SQL
Server 2005 data of different volume with 10 users on Microsoft Framework 2.0 and
3.0.

Experiment 10: COM+ component performance on SQL Server: This experiment was
aimed to compare the performance of Non-COM+ component using the SQL Server
2005 data of different volume with 5 users on Microsoft Framework 2.0 and 3.0.

Experiment 11: COM+ component performance on SQL Server: This experiment was
aimed to compare the performance of Non-COM+ component using the SQL Server
2005 data of different volume with 10 users on Microsoft Framework 2.0 and 3.0.

Experiment 12: .NET based application component performance on SQL Server: This
experiment was aimed to compare the performance of Non-COM+ component using
the SQL Server 2005 data of different volume with 5 users on Microsoft Framework
2.0 and 3.0.

Experiment 13: .NET based application component performance on SQL Server: This
experiment was aimed to compare the performance of Non-COM+ component using
the SQL Server 2005 data of different volume with 10 users on Microsoft Framework
2.0 and 3.0.

Experiment 14: Application performance on SQL Server (5 Users + 100 Rows): This
experiment was aimed to compare the application type performance on Microsoft
.NET Framework 2.0 and 3.0 using the low volume (100 Rows) of SQL Server data
and 5 users.

Ashish Tandon | MSc Advanced Software Engineering | 2007 36

Experiment 15: Application performance on SQL Server (10 Users + 100 Rows):
This experiment was aimed to compare the application type performance on
Microsoft .NET Framework 2.0 and 3.0 using the low volume (100 Rows) of SQL
Server data and 10 users.

Experiment 16: Application performance on SQL Server (5 Users + 1000 Rows):
This experiment was aimed to compare the application type performance on
Microsoft .NET Framework 2.0 and 3.0 using the medium volume (1000 Rows) of
SQL Server data and 5 users.

Experiment 17: Application performance on SQL Server (10 Users + 1000 Rows):
This experiment was aimed to compare the application type performance on
Microsoft .NET Framework 2.0 and 3.0 using the medium volume (1000 Rows) of
SQL Server data and 10 users.

Experiment 18: Application performance on SQL Server (5 Users + 10000 Rows):
This experiment was aimed to compare the application type performance on
Microsoft .NET Framework 2.0 and 3.0 using the high volume (10000 Rows) of SQL
Server data and 5 users.

Experiment 19: Application performance on SQL Server (10 Users + 10000 Rows):
This experiment was aimed to compare the application type performance on
Microsoft .NET Framework 2.0 and 3.0 using the high volume (10000 Rows) of SQL
Server data and 10 users.

Experiment 20: Non-COM+ component performance on MS Access: This experiment
was aimed to compare the performance of Non-COM+ component using the MS
Access data of different volume with 5 users on Microsoft Framework 2.0 and 3.0.

Experiment 21: Non-COM+ component performance on MS Access: This experiment
was aimed to compare the performance of Non-COM+ component using the MS
Access data of different volume with 10 users on Microsoft Framework 2.0 and 3.0.

Experiment 22: COM+ component performance on MS Access: This experiment was
aimed to compare the performance of COM+ component using the MS Access data
of different volume with 5 users on Microsoft Framework 2.0 and 3.0.

Experiment 23: COM+ component performance on MS Access: This experiment was
aimed to compare the performance of COM+ component using the MS Access data
of different volume with 10 users on Microsoft Framework 2.0 and 3.0.

Experiment 24: .NET based application component performance on MS Access: This
experiment was aimed to compare the performance of .NET based component using
the MS Access data of different volume with 5 users on Microsoft Framework 2.0
and 3.0.

Experiment 25: .NET based application component performance on MS Access: This
experiment was aimed to compare the performance of .NET based component using

Ashish Tandon | MSc Advanced Software Engineering | 2007 37

the MS Access data of different volume with 10 users on Microsoft Framework 2.0
and 3.0.

Experiment 26: Application performance on MS Access (5 Users + 100 Rows): This
experiment was aimed to compare the application type performance on Microsoft
.NET Framework 2.0 and 3.0 using the low volume (100 Rows) of MS Access data
and 5 users.

Experiment 27: Application performance on MS Access (10 Users + 100 Rows): This
experiment was aimed to compare the application type performance on Microsoft
.NET Framework 2.0 and 3.0 using the low volume (100 Rows) of MS Access data
and 10 users.

Experiment 28: Application performance on MS Access (5 Users + 1000 Rows): This
experiment was aimed to compare the application type performance on Microsoft
.NET Framework 2.0 and 3.0 using the medium volume (1000 Rows) of MS Access
data and 5 users.

Experiment 29: Application performance on MS Access (10 Users + 1000 Rows):
This experiment was aimed to compare the application type performance on
Microsoft .NET Framework 2.0 and 3.0 using the medium volume (1000 Rows) of
MS Access data and 5 users.

Experiment 30: Application performance on MS Access (10 Users + 10000 Rows):
This experiment was aimed to compare the application type performance on
Microsoft .NET Framework 2.0 and 3.0 using the high volume (10000 Rows) of MS
Access data and 5 users.

Experiment 31: Application performance on MS Access (10 Users + 10000 Rows):
This experiment was aimed to compare the application type performance on
Microsoft .NET Framework 2.0 and 3.0 using the high volume (10000 Rows) of MS
Access data and 5 users.

4.8 Conclusion

This chapter outlines the design framework used by the prototype application and
how the COM+ components are designed and developed, and how COM+ features
has been effectively used to benchmark the database. The experiment structure
mentioned the brief details about the nature of experiment which uses the two major
databases, SQL Server and MS Access. COM+ features like pooling, JIT, role base
security and constructor object have been designed and will be tested on the different
.NET Framework environment.

The experiments designed for evaluating the prototype have been developed to test
on the different .NET Framework, database and user load. They will test the
performance of COM+, Non-COM+ and .NET based application on the different
volume of data ranges from low (100 Rows) to high volume (10000 Rows) and also
with the user connection under the Microsoft .NET Framework 2.0 and 3.0
environment.

Ashish Tandon | MSc Advanced Software Engineering | 2007 38

5 Implementation

5.1 Introduction

The focal point of this chapter will be on the implementation of the prototype
application. Each section defines and explains how it was programmed. The
prototype application has been developed and implemented using the Microsoft C#
.NET. Moreover we will explain about the following COM+ features implementation
in this chapter.

• Object pooling

• JITA

• Role Based Security

• Transaction isolation level

We will also explain about the how configuration information is handled, dynamic
attributes for pooled and non pooled components, dynamic SQL query, mathematic
function used to calculate median and standard deviation, activity matrix
implementation and explain about the testing methodology used for calculation the
time between the call request and reply received.

5.2 Configuration Information

The following code explains how the prototype application uses the two database
connection information. We can customize how the common language runtime
locates and loads assembly files by adding application configuration files (app.config
files) to Visual C# .NET project and we have stored the database connection
information in the configuration file.

The information stored in the app.config is a XML file and we have added one node
named as ‘add’ for each database and provides the information in their attributes
which includes name, provider Name and connection String. This information is
required for the COM+ to establish and perform the relevant database operation on
the database.
<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<connectionStrings>
<add name="SQL Server"
providerName="System.Data.SqlClient"
connectionString="Data Source=.\SQLEXPRESS;Initial
Catalog=OfficeMart;Integrated Security=True;"/>
<add name="MS Access" providerName="System.Data.OleDb"
connectionString="Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=|DataDirectory|\Databases\MyData.mdb;Persist
Security Info=True" />

 </connectionStrings>
</configuration>

Ashish Tandon | MSc Advanced Software Engineering | 2007 39

When we build the project, the development environment automatically creates a
copy of app.config file, changes its file name so that it has the same file name as your
executable (MSDN2, 2007).

5.3 Pooled Component Implementation

The following code explains how we can make a pooled COM+ component. The
class uses the System.EnterpriseServices namespace which is used to derive an
object from a service component and then give that object a transaction attribute that
would specify how it uses transactions (TV, 2007). Using the
EnterpriseServices.ObjectPooling we can make the component pooled by providing
the parameters like Min Pool, Max Pool and the timeout value of a pooled
component. We can also turn on or off the JITA activation and provide the
transaction option to supported or not supported.
namespace ObjectPoolServer
{
 using System;
 using System.Xml;
 using System.EnterpriseServices;
 using System.Data;
 using System.Data.SqlClient;

 [System.EnterpriseServices.ObjectPooling
 (true, 10, 100, CreationTimeout = 5000)
]
 [System.EnterpriseServices.JustInTimeActivation(true)]
 [System.EnterpriseServices.Transaction
 (TransactionOption.NotSupported)
]

 public class PooledObject : ServicedComponent
 {
 private System.Data.SqlClient.SqlConnection _cnn;
 private System.Data.SqlClient.SqlCommand _cmd;

 public PooledObject()

}

5.4 Non Pooled Component Implementation

The following code explains how to turn off the COM+ Object Pooling feature to
false which builds the component without the object pooling feature. We developed
the non - pooled and non JITA enabled COM+ component by setting their parameter
value to false. This component will not use the COM+ object pooling and JITA
features and will treated as the dynamic link library.

Ashish Tandon | MSc Advanced Software Engineering | 2007 40

namespace ObjectPoolLibrary
{
 //Pooling without object pooling and JIT
 using System;
 using System.Xml;
 using System.EnterpriseServices;
 using System.Data;
 using System.Data.SqlClient;
 using System.Reflection;

 [System.EnterpriseServices.ObjectPooling(false)]
 [System.EnterpriseServices.JustInTimeActivation(false)]
 [System.EnterpriseServices.Transaction
 (TransactionOption.NotSupported)
]

 public class PooledObject : ServicedComponent
 {
 private System.Data.SqlClient.SqlConnection _cnn;
 private System.Data.SqlClient.SqlCommand _cmd;

 public PooledObject()

5.5 JITA

Microsoft COM+ Component can be build with JITA enabled or disabled. The
following code explains how to turn the COM+ JITA feature on or off by setting the
JustInTimeActivation attribute to true or false.

[System.EnterpriseServices.JustInTimeActivation(false)]

5.6 Matrix Implementation

The Matrix implementation has been developed by placing the various label objects
on the interface and interface has the functionality to record the last 5 performance
result. Once the performance is recorded user has to click on the Matrix button to
transfer the result in their respective tables and their respective cell values.

act1.Text = sArr[0]; act2.Text = sArr[1]; act3.Text = sArr[2];
act4.Text = sArr[3]; act5.Text = sArr[4];sd5r2.Text =
SDInitiate().ToString();

Ashish Tandon | MSc Advanced Software Engineering | 2007 41

5.7 Calculation of Median and Standard Deviation

This is been the good idea to calculate the median and the standard deviation of the
results collected using the different experiment (MSDN2, 2007). The following code
is used to calculate the variance which accepts the last 5 recorded performance result
and firstly it calculates the average and uses the .NET framework class library
method which returns a specified number raise to the specified power (Easy
Calculation, 2007).
 public static double GetVariance(double[] data)
 {
 int len = data.Length;
 // Get average
 double avg = Average(data);

 double sum = 0;
 for (int i = 0; i < data.Length; i++)
 sum += Math.Pow((data[i] - avg), 2);
 return sum / len;
 }
 public static double GetStdev(double[] data)
 {
 return Math.Sqrt(GetVariance(data));
 }

 private static double Average(double[] data)
 {
 double DataTotal = 0;
 try
 {
 for (int i = 0; i < data.Length; i++)
 {
 DataTotal += data[i];
 }
 //return SafeDivide(DataTotal, data.Length);
 }
 catch (Exception e)
 {
 MessageBox.Show("Error 111: There was an error
 in processing the request" + e.Message, "Error
 Calculating Average", MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }
 return SafeDivide(DataTotal, data.Length);
 }

Ashish Tandon | MSc Advanced Software Engineering | 2007 42

5.8 Data Grid Implementation

The Data Grid implementation gives the flexibility to the user to view the data
returned from the backend databases. User can check and uncheck this option by
checking the checkbox ‘Show DataGrid’ on the interface as mentioned in the Figure
5.1. Also the following code binds the data returned from the database with the Data
Grid control lying on the application interface only if the check box control value is
true.

if (cbShowDBGrid.Checked==true)
 displayDataGridView.DataSource = myDataSet.Tables[0];

Figure 5.1 Show Data in the DataGrid option

5.9 Dynamic Query

The Dynamic Query enables the user to experiment and benchmark the database on
different volume of data. The following code explains how the low, medium and high
volume of data is retrieved from the backend databases. In the database there is only
one table which consist of more than 10000 records and a few cities are having are
having the least and maximum records.

The query is dynamically created on the basis of the user’s input and the same
application logic is user for the user load. See Figure 5.2 which allows the user to
choose the volume of data range from 100 Rows to 10000 Rows which is termed as
low volume to high volume of data. User can also choose the number of user
connection to be used while performing the database operation.

//Set the value and query for Rows selected
 if (rbLowVolumeData.Checked == true)
 {
 //The following query returns 100 Row(s)
 myQuery = "SELECT * FROM Customers where
 city='London'";

 //The query considered under the low volume data
 sVolume = "low";
 }

 else if (rbAverageVolumeData.Checked == true)
 {
 //The following query returns 1000 Row(s)
 myQuery = "SELECT * FROM Customers where
 city='Livingston'";

Ashish Tandon | MSc Advanced Software Engineering | 2007 43

 //The query considered under the medium volume data
 sVolume = "medium";
 }

 else if (rbHighVolumeData.Checked == true)
 {
 //The following query returns 10000 Row(s)
 myQuery = "SELECT * FROM Customers where
 city='New Delhi'";

 //The query considered under the high volume data
 sVolume = "high";
 }

Figure 5.2 Show Data Volume and User option

5.10 Testing Implementation

The following code explains how the time taken between the request made and
received is calculated. The .NET function “DateTime.Ticks” have been used to
implement this functionality. .NET DateTime.Ticks “The value of this property
represents the number of 100-nanosecond intervals that have elapsed since 12:00:00
midnight, January 1, 0001”. As measurements are purely comparative, (MSDN,
.NET Framework Developer Center, 2007). no need to have an accurate timing
functions, as .NET Data Time functions have the sufficient and suitable grain.
Stopwatch myWatch = new Stopwatch();
myWatch.Start();
myWatch.Stop();

elapsedTimeTextLabel.Text = "Elapsed Time (Ticks): " +
myWatch.ElapsedTicks.ToString() + " ticks";

millisecondsTextLabel.Text = "Elapsed Time (Ms):";
lblms.Text = myWatch.ElapsedMilliseconds.ToString();

5.11 Conclusion

This chapter of the thesis include all the features that were discussed during the
prototype design. The decision to choose the Microsoft Visual Studio .NET
environment and C# .NET as language to implement the prototype features, due to
the nature of implementation required and the rapid application tool to develop the
application of this type. The programming required for this prototype application was
not difficult in comparison to enterprise level application. All the application method
have the structured exception handling to catch any exception comes during the
running instance.

Ashish Tandon | MSc Advanced Software Engineering | 2007 44

The ability to generate forms quickly, performing mathematical calculation,
displaying the data in a right and a proper manner for the ease to understand and
analyze and also the integration with other type of application type projects makes
the right choice of choosing the environment and language. This saves lot of time
which can be used on the testing and integration of the system. All the unit testing
and integration with other project has been performed to make sure that system
should provide the consistent and reliable data information of the experiments
conducted. The simplicity of the system makes gathering the results of experiments
from different sources easier. The final prototype possesses all of the requirements
and features needed to facilitate a successful evaluation of the COM+ services on the
data storage.

Ashish Tandon | MSc Advanced Software Engineering | 2007 45

6 Evaluation

6.1 Introduction

In this chapter of the thesis, we will attempt to evaluate the Prototype Application
used to analyse and optimize the database performance using the enhance object
model in .NET Framework and also attempt to determine whether it fulfils the
requirement of this project as mentioned at the beginning of this project. To evaluate
the success of this prototype application a series of experiments were designed to test
each experiment with the relevant set of parameters. These experiments tested the
COM+ server and library application performance and how database performance
was reflected using the COM+ features on the .NET Framework environment 2.0 and
3.0. Other experiments conducted on the application type like; COM+ component,
non-COM+ component and .NET based application performance on the .NET
Framework 2.0 and 3.0.

Different types of experiments were chosen to contribute in the overall evaluation
process. They represented different application performance, different databases
used, range of data volume and range of user load.

6.2 Methodology

The experiments were carried out using the following matrix. The Row value
contains the value in average milliseconds for the last 5 database performance
results. The column value having the details of the number of hit ranges from 1 to 5.
Every hit time was placed on the mentioned hit column against their respective row
value. The value of the median calculated from the last 5 response time and the
standard deviation value is calculated using the median.

The same matrix was used to calculate the median and standard deviation values for
the pooled, non pooled component and .NET connection pooling for both the SQL
Server and MS Access databases.

 Hit 1 Hit 2 Hit 3 Hit 4 Hit 5 Median SD

Rows 100

Rows 1000

Rows 10000

Table 6.2.1 Experiment Matrix

Ashish Tandon | MSc Advanced Software Engineering | 2007 46

6.3 SQL Server Experiments Results

Following are the series of experiments conducted using the developed prototype
application.

The chart 6.3.1 shows that COM+ library application has taken more time for the
request as compared to the server application using the COM+ object model under
the .NET environment. As per the table 6.3.1, it has been notice that on the
concurrent connections of ten users, server application results are twice faster than
the library application and there is an in the increase up to 210 % in time for the
library application. The results are based on the trivial method performing read
operation on the database. The chart represents that COM+ Server application gives
significant performance gain over the COM+ library application with no pooling and
JIT features.

Chart 6.3-1 COM+ Application Performance [No Object Pooling and JIT]

 COM+ Server COM+ Library No of Users

Average 164 34 10
% Up 100 211 10

Table 6.3.1COM+ Application Performance Data [No Pooling and JIT]

Ashish Tandon | MSc Advanced Software Engineering | 2007 47

The chart 6.3.2 shows pooling and JIT enabled results of server and library
applications using ten concurrent users. The results represents that there is slight
performance gain using the server application over library application. As per the
table 6.3.2, it has been notice that on the concurrent user connections, server
application results are 10 % faster than the library application based on the trivial
method performing read operation on database. Thus COM+ server application
provides performance gain over the library application even when the object pooling
and JIT is enabled.

 Chart 6.3-2 COM+ Application Performance [Object Pooling and JIT]

 COM+ Server COM+ Library No of Users
Average 29 32 10
% Up 100 110 10

Table 6.3.2 COM+ Application Performance Data [Pooling and JIT]

Ashish Tandon | MSc Advanced Software Engineering | 2007 48

The chart 6.3.3 shows the comparative summary of the COM+ server and library
application type results which uses the trivial method which established the
connection with the database to perform the read operation. The results are the Avg.
time taken by the trivial method using the ten user connections. The results
represents that there is a significant performance gain with server application having
no poling and JIT and slightly better performance gain even with pooling and JIT. In
both the cases out - process application has better performance results over the in -
process application.

Chart 6.3-3 COM+ Application Performance

 COM+Server

COM+Server
[Pooling and
JITA] COM+Library

COM+Library
[Pooling and
JITA]

Average Time 164 30 348 32
Table 6.3.3 COM+ v/s Non COM+ Component Data Performance

Ashish Tandon | MSc Advanced Software Engineering | 2007 49

The chart 6.3.4 shows the performance results of COM+ and non COM+ component
application. The experiment is performed using the pooling and JIT features of
COM+ and trivial method performing read operation on the database. The results
represents that COM+ component provides better performance results over non
COM+ component and they are twice faster than the other. As per the table 6.3.4, it
has been notice that COM component provides better result over non COM
component, it can be seen that there is more than 225% increase in time taken for
non COM component. Thus creating a COM component using the pooling and JI
features for performing the database operation is a better choice over a non COM
component.

Chart 6.3-4 COM+ v/s Non COM+ Component Performance

Table 6.3.4 COM+ v/s Non COM+ Component Data Performance

 COM+ Component Non COM+ Component
Average Time 32 74

% Up 100 232

The chart 6.3.5 shows the results of component with pooling, JIT and component
with pooling, JIT and role based security. The results represents that role based
security features comes at the performance cost, which shows that non role based
component provides better results over the role based component with JIT and
pooling. As per the table 6.3.5, it has been notice that on the concurrent user
connections, component with role based security features was taking 20% more time
than other component with pooling and JIT enabled.

Ashish Tandon | MSc Advanced Software Engineering | 2007 50

Chart 6.3-5 COM+ Role Based Security Component Performance

Table 6.3.5 COM+ Role Based Component Performance Data

 COM+[JITA + OP] COM+[JITA + OP] + Role Based Security
Average Time 631 761

% Up 100 121

The chart 6.3.6 shows the results of component with pooling, JIT and other
component with pooling, JIT and transaction required new property. The results
represents that component with transaction required new property performs slightly
slower than the component with the role based property. As per the table 6.3.6, it has
been notice that on the concurrent user connections, component with transaction
required new property was taking around 35% more time over the component with
pooling and JIT enabled.

Ashish Tandon | MSc Advanced Software Engineering | 2007 51

Chart 6.3-6 COM+ Transaction Component Performance

 Table 6.3.6 COM+ Transaction Component Performance Data

 COM+[JITA + OP] COM+[Transaction Required New]
Average Time 631 861

% Up 100 137

The chart 6.3.7 shows the comparative results of the COM+ property component
which are based on the trivial read method on the database. As per the table 6.3.7, it
has been notice that by making use of the COM+ features into a component slighter
performance cost comes into play. The difference between the COM+ server
application with pooling, JIT and COM+ transaction property component is around
30%. This makes the component capable of providing COM+ features

Ashish Tandon | MSc Advanced Software Engineering | 2007 52

Chart 6.3-7 COM+ Component features and their Performance

 COM+ Server

COM+
Constructor
Enabled

COM+ Role
Based

COM+
Transaction
Isolation

Avg.
Time(Ticks)'0000 631 731 761 861

Table 6.3.7 COM+ Component features Data Performance

Ashish Tandon | MSc Advanced Software Engineering | 2007 53

The chart 6.3.8 shows the results of non - COM+ component tested on two different
Microsoft .NET Framework (version 2.0 and 3.0). The results were based on the
trivial database read method performed using the five database users. The results
represents that Framework 2.0 provides better results over 3.0 on low and medium
volume of data and minor performance gain on high volume of data under 3.0
Framework. As per the table 6.3.8, it has been noticed that medium volume of data
took around 43% of more time on 3.0 to perform the operation as compared to time
taken by 2.0.

Chart 6.3-8 Non-COM+ component performance on SQL Server (5 Users)

 100 Rows 1000 Rows 10000 Rows
.NET 2.0 35 37 162
.NET 3.0 40 53 160

% Difference 14.29 43.24 1.23

Table 6.3.8 Non-COM+ component Data performance on SQL Server (5 Users)

Ashish Tandon | MSc Advanced Software Engineering | 2007 54

The chart 6.3.9 shows the results of non - COM+ component tested on two different
Microsoft .NET Framework (version 2.0 and 3.0). The results were based on the
trivial database read method performed using the ten database users. The results
represents that Framework 2.0 provides better results over 3.0 on low and medium
volume of data and minor performance gain on high volume of data under 3.0
Framework. As per the table 6.3.6, it has been noticed that high volume of data
provides better performance results with the .NET 3.0 Framework, which reduced the
time taken to around 14%.

Chart 6.3-9 Non-COM+ component performance on SQL Server (10 Users)

 100 Rows 1000 Rows 10000 Rows

.NET 2.0 73 72 328

.NET 3.0 78 99 281
% Difference 6.85 37.50 ‐14.33

Table 6.3.9 Non-COM+ component Data performance on SQL Server (10 Users)

Ashish Tandon | MSc Advanced Software Engineering | 2007 55

The chart 6.3.10 shows the results of COM+ component with pooling and JIT tested
on two different Microsoft .NET Framework (version 2.0 and 3.0). The results were
based on the trivial database read method performed using five database users. The
results represents that Framework 2.0 provides better results over 3.0 on low and
medium volume of data and minor performance gain on high volume of data under
3.0 Framework. As per the table 6.3.10, it has been noticed that high volume of data
provides better performance results with the .NET 3.0 Framework, which provides
performance gain of 7%.

Chart 6.3-10 COM+ component performance on SQL Server (5 Users)

 100 Rows 1000 Rows 10000 Rows

.NET 2.0 31 37 162

.NET 3.0 38 53 150
% Difference 22.58 43.24 ‐7.41

Table 6.3.10 COM+ component Data performance on SQL Server (5 Users)

Ashish Tandon | MSc Advanced Software Engineering | 2007 56

The chart 6.3.11 shows the results of COM+ component with pooling and JIT tested
on two different Microsoft .NET Framework (version 2.0 and 3.0). The results were
based on the trivial database read method performed using ten database users. The
results represents that Framework 2.0 provides better results over 3.0 on low and
medium volume of data and minor performance gain on high volume of data under
3.0 Framework. As per the table 6.3.11, it has been noticed that high volume of data
provides better performance results with the .NET 3.0 Framework, which provides
performance gain of 12%.

Chart 6.3-11 COM+ component performance on SQL Server (10 Users)

 100 Rows 1000 Rows 10000 Rows

.NET 2.0 58 70 320

.NET 3.0 67 101 280
% Difference 15.52 44.29 ‐12.50

Table 6.3.11 COM+ component Data performance on SQL Server (10 Users)

Ashish Tandon | MSc Advanced Software Engineering | 2007 57

The chart 6.3.12 shows the results of Microsoft .NET connection pooling component
tested on the two different Microsoft .NET Framework (version 2.0 and 3.0). The
results were based on the trivial database read method performed using the five
database users. The results represents that Framework 2.0 provides better results over
3.0 on low and medium volume of data and significant performance gain on high
volume of data under 3.0 Framework. As per the table 6.3.12, it has been noticed that
high volume of data provides better performance results with the .NET 3.0
Framework, which provides performance gain of around 13%.

Chart 6.3-12 .NET component performance on SQL Server (5 Users)

 100 Rows 1000 Rows 10000 Rows
.NET 2.0 34 66 1005
.NET 3.0 54 110 873

% Difference 58.82 66.67 ‐13.13

Table 6.3.12 .NET component data performance on SQL Server (5 Users)

Ashish Tandon | MSc Advanced Software Engineering | 2007 58

The chart 6.3.13 shows the results of COM+ component with pooling and JIT tested
on two different Microsoft .NET Framework (version 2.0 and 3.0). The results were
based on the trivial database read method performed using ten database users. The
results represents that Framework 2.0 provides better results over 3.0 on low and
medium volume of data and significant performance gain on high volume of data
under 3.0 Framework. As per the table 6.3.13, it has been noticed that high volume of
data provides better performance results with the .NET 3.0 Framework, which
provides performance gain of around 15%.

Chart 6.3-13 .NET component performance on SQL Server (10 Users)

 100 Rows 1000 Rows 10000 Rows

.NET 2.0 67 132 2140

.NET 3.0 91 188 1804
% Difference 35.82 42.42 ‐15.70

Table 6.3.13.NET component data performance on SQL Server (10 Users)

Ashish Tandon | MSc Advanced Software Engineering | 2007 59

The chart 6.3.14 shows the results of the different application type performance
which were tested on the two different Microsoft .NET Framework (version 2.0 and
3.0) along with five database users for each database hit of low volume (100 Rows).
The results were based on the trivial database read method performed using the five
database users. The results represents that COM+ component based application
provides better performance results over non-COM+ and .NET based application.

As per the table 6.3.14, it has been noticed that COM+ based application took 38ms
for the same database read operation as compared to 54ms taken by .NET application
on Framework 3.0 and the performance difference between 2.0 and 3.0 Framework
for the NET application was around 59%.

Chart 6.3-14 Application performance on SQL Server (5 Users and 100 Rows)

 Non COM+ COM+ .NET
.NET 2.0 35 31 34
.NET 3.0 40 38 54

% Difference 14.29 22.58 58.82

Table 6.3.14 Application performance data on SQL Server (5 Users and 100
Rows)

Ashish Tandon | MSc Advanced Software Engineering | 2007 60

The chart 6.3.15 shows the results of the different application type performance
which were tested on the two different Microsoft .NET Framework (version 2.0 and
3.0) along with ten database users for each database hit of low volume (100 Rows).
The results were based on the trivial database read method performed using the ten
database users. The results represents that COM+ component based application
provides better performance results over non-COM+ and .NET based application.

As per the table 6.3.15, it has been noticed that COM+ based application took 67ms
for the same database read operation as compared to 91ms taken by .NET application
on Framework 3.0 and the performance difference between 2.0 and 3.0 Framework
for the NET application was around 35%.

Chart 6.3-15 Application performance on SQL Server (10 Users and 100 Rows)

 Non COM+ COM+ .NET
.NET 2.0 73 58 67
.NET 3.0 78 67 91

% Difference 6.85 15.52 35.82

 Table 6.3.15 Application performance data on SQL Server (10 Users and 100
Rows)

Ashish Tandon | MSc Advanced Software Engineering | 2007 61

The chart 6.3.16 shows the results of the different application type performance
which were tested on the two different Microsoft .NET Framework (version 2.0 and
3.0) along with five database users for each database hit of medium volume (1000
Rows). The results were based on the trivial database read method performed using
the five database users. The results represents that COM+ component based
application provides better performance results over non-COM+ and .NET based
application.

As per the table 6.3.16, it has been noticed that COM+ based application took 53ms
for the same database read operation as compared to 110ms taken by .NET
application on Framework 3.0 and the performance difference between 2.0 and 3.0
Framework for the NET application was around 66%. Moreover Non-COM+ and
COM+ based application showed the same performance.

Chart 6.3-16 Application performance on SQL Server (5 Users and 1000 Rows)

 Non COM+ COM+ .NET
.NET 2.0 37 37 66
.NET 3.0 53 53 110

% Difference 43.24 43.24 66.67
Table 6.3.16 Application performance data on SQL Server (5 Users and 1000

Rows)

Ashish Tandon | MSc Advanced Software Engineering | 2007 62

The chart 6.3.17 shows the results of the different application type performance
which were tested on the two different Microsoft .NET Framework (version 2.0 and
3.0) along with ten database users for each database hit of medium volume (1000
Rows). The results were based on the trivial database read method performed using
the ten database users. The results represents that COM+ and Non COM+ component
based application provides better performance results over .NET based application.

As per the table 6.3.17, it has been noticed that COM+ based application took 101ms
for the same database read operation as compared to 188ms taken by .NET
application on Framework 3.0 and the performance difference between 2.0 and 3.0
Framework for the NET application was around 42%. Moreover Non-COM+
provides better results on .Framework 3.0.

Chart 6.3-17 Application performance on SQL Server (10 Users and 1000 Rows)

 Non COM+ COM+ .NET

.NET 2.0 72 70 132

.NET 3.0 99 101 188
% Difference 37.50 44.29 42.42

Table 6.3.17 Application performance data on SQL Server (10 Users and 1000
Rows)

Ashish Tandon | MSc Advanced Software Engineering | 2007 63

The chart 6.3.18 shows the results of the different application type performance
which were tested on the two different Microsoft .NET Framework (version 2.0 and
3.0) along with five database users for each database hit of high volume (10000
Rows). The results were based on the trivial database read method performed using
the five database users. The results represents that COM+ component based
application provides better performance results over non-COM+ and .NET based
application.

As per the table 6.3.18, it has been noticed that there was a significant performance
gain of around 7% and 13% using COM+ and .NET based application on Framework
3.0. Therefore results showed that Framework 3.0 was optimized for the high volume
of database operations.

Chart 6.3-18 Application performance on SQL Server (5 Users and 10000 Rows)

 Non COM+ COM+ .NET
.NET 2.0 162 162 1005
.NET 3.0 164 150 873

% Difference 1.23 ‐7.41 ‐13.13

Table 6.3.18 Application performance data on SQL Server (5 Users and 10000
Rows)

Ashish Tandon | MSc Advanced Software Engineering | 2007 64

The chart 6.3.19 shows the results of the different application type performance
which were tested on the two different Microsoft .NET Framework (version 2.0 and
3.0) along with ten database users for each database hit of high volume (10000
Rows). The results were based on the trivial database read method performed using
the ten database users. The results represents that COM+ component based
application provides better performance results over non-COM+ and .NET based
application.

As per the table 6.3.19, it has been noticed that there was a significant performance
gain of around 14% and 12% using Non COM+ and COM+ based application on
Framework 3.0. However the .NET based application were taking more time on high
volume of data compared with COM+ based application.

Chart 6.3-19 Application performance on SQL Server (10 Users and 10000 Rows)

 Non COM+ COM+ .NET

.NET 2.0 328 320 2140

.NET 3.0 281 280 1804
% Difference ‐14.33 ‐12.50 ‐15.70

Table 6.3.19 Application performance data on SQL Server (10 Users and 10000
Rows)

Ashish Tandon | MSc Advanced Software Engineering | 2007 65

6.4 MS Access Experiments Results

Following are the series of experiments conducted using the developed prototype
application on Microsoft Access database.

In the charts through 6.4.1 to 6.4.6, we have performed the test on MS Access
database. The results represents that MS Access database performance tested on two
different Microsoft .NET Framework (version 2.0 and 3.0). The results were based
on the trivial database read method performed using the five or ten database users.

In the charts through 6.4.7 to 6.4.8, we have performed the test on MS Access
database using the different application types. The results represents that MS Access
database performance tested on two different Microsoft .NET Framework (version
2.0 and 3.0).

The chart 6.4.1 shows the results of non - COM+ component tested on two different
Microsoft .NET Framework (version 2.0 and 3.0). The results were based on the
trivial database read method performed using the five users. The results represents
that Framework 2.0 provides better results over 3.0 on the entire three data volume
category. As per the table 6.4.1, it has been noticed that the maximum performance
difference between the two frameworks were around 280%.

Chart 6.4-1Non-COM+ component performance on MS Access (5 Users)

 100 Rows 1000 Rows 10000 Rows

.NET 2.0 25 27 38

.NET 3.0 95 100 93
%Difference 280 270 144

Table 6.4.1 Non-COM+ component performance data on MS Access (5 Users)

Ashish Tandon | MSc Advanced Software Engineering | 2007 66

The chart 6.4.2 shows the results of non - COM+ component tested on two different
Microsoft .NET Framework (version 2.0 and 3.0). The results were based on the
trivial database read method performed using the ten users. The results represents
that Framework 2.0 provides better results over 3.0 on the entire three data volume
category. As per the table 6.4.1, it has been noticed that the maximum performance
difference between the two frameworks were around 250%.

Chart 6.4-2 Non-COM+ component performance on MS Access (10 Users)

 100 Rows 1000 Rows 10000 Rows

.NET 2.0 57 54 79

.NET 3.0 172 189 181
%Difference 201 250 129

Table 6.4.2 Non-COM+ component performance data on MS Access (10 Users)

The chart 6.4.3 shows the results of COM+ component tested on two different
Microsoft .NET Framework (version 2.0 and 3.0). The results were based on the
trivial database read method performed using the five users. The results represents
that Framework 2.0 provides better results over 3.0 on the entire three data volume
category. As per the table 6.4.3, it has been noticed that the maximum performance
difference between the two frameworks were around 116%.

Chart 6.4-3 COM+ component performance on MS Access (5 Users)

Ashish Tandon | MSc Advanced Software Engineering | 2007 67

 100 Rows 1000 Rows 10000 Rows
.NET 2.0 23 26 25
.NET 3.0 38 40 54

%Difference 65 53 116

Table 6.4.3 COM+ component performance data on MS Access (5 Users)

The chart 6.4.4 shows the results of COM+ component tested on two different
Microsoft .NET Framework (version 2.0 and 3.0). The results were based on the
trivial database read method performed using the ten users. The results represents
that Framework 2.0 provides better results over 3.0 on the entire three data volume
category. As per the table 6.4.4, it has been noticed that the maximum performance
difference between the two frameworks were around 235%

Chart 6.4-4 COM+ component performance on MS Access (10 Users)

 100 Rows 1000 Rows 10000 Rows
.NET 2.0 47 48 59
.NET 3.0 142 161 158

%Difference 202 235 167

Table 6.4.4 COM+ component performance data on MS Access (10 Users)

The chart 6.4.5 shows the results of .NET based application tested on two different
Microsoft .NET Framework (version 2.0 and 3.0). The results were based on the
trivial database read method performed using the five users. The results represents
that Framework 2.0 provides better results over 3.0 on the low volume of data and
almost similar on medium volume of data. As per the table 6.4.5, it has been noticed
that the Framework 3.0 better results on high volume of data.

Ashish Tandon | MSc Advanced Software Engineering | 2007 68

Chart 6.4-5 .NET Application performance on MS Access (5 Users)

 100 Rows 1000 Rows 10000 Rows
.NET 2.0 132 792 6940
.NET 3.0 204 792 6099

%Difference 54.55 0.00 ‐12.12

Table 6.4.5 .NET Application performance data on MS Access (5 Users)

The chart 6.4.6 provides the nearly the same results performed using the ten users.
The results represents that Framework 2.0 provides better results over 3.0 on the low
volume of data and almost similar on medium volume of data. As per the table 6.4.5,
it has been noticed that the Framework 3.0 better results on high volume of data.

Chart 6.4-6 .NET Application performance on MS Access (10 Users)

Ashish Tandon | MSc Advanced Software Engineering | 2007 69

 100 Rows 1000 Rows 10000 Rows
.NET 2.0 259 1575 13865
.NET 3.0 353 1481 12132

%Difference 36.29 ‐5.97 ‐12.50

Table 6.4.6 .NET Application performance data on MS Access (10 Users)

The chart 6.4.7 shows the results of the different application type performance which
were tested on the two different Microsoft .NET Framework (version 2.0 and 3.0)
along with five database users for each database hit of low volume (100 Rows). The
results were based on the trivial database read method performed using the five
database users. The results represents that COM+ component based application
provides better performance results over non-COM+ and .NET based application on
MS Access database. As per the table 6.4.7, it has been noticed that COM+ based
application took 38ms for the same database read operation as compared to 204ms
taken by .NET application on Framework 3.0 and the performance difference
between 2.0 and 3.0 Framework for the NET application is around 280% on using
non COM+ application.

Chart 6.4-7 Application performance on MS Access (5 Users and 100 Rows)

 Non COM+ COM+ .NET

.NET 2.0 25 23 132

.NET 3.0 95 38 204
%Difference 280.00 65.22 54.55

Table 6.4.7 Application performance data of MS Access (5 Users and 100 Rows)

Ashish Tandon | MSc Advanced Software Engineering | 2007 70

The chart 6.4.8 shows the results of the different application type performance which
were tested on the two different Microsoft .NET Framework (version 2.0 and 3.0)
along with ten database users for each database hit of low volume (100 Rows). The
results were based on the trivial database read method performed using the five
database users. The results represents that COM+ component based application
provides better performance results over non-COM+ and .NET based application on
MS Access database. As per the table 6.4.8, it has been noticed that COM+ based
application took 38ms for the same database read operation as compared to 204ms
taken by .NET application on Framework 3.0 and the performance difference
between 2.0 and 3.0 Framework for the NET application is around 280% on using
non COM+ application.

Chart 6.4-8 Application performance on MS Access (10 Users and 100 Rows)

 Non COM+ COM+ .NET

Table 6.4.8 Application
performance data of MS

Access (10 Users and 100 Rows)

.NET 2.0 57 47 259

.NET 3.0 172 142 353
%Difference 201.75 202.13 36.29

The chart 6.4.9 shows the results of the different application type performance which
were tested on the two different Microsoft .NET Framework (version 2.0 and 3.0)
along with five database users for each database hit of medium volume (1000 Rows).
The results were based on the trivial database read method performed using the five
database users. The results represents that COM+ component based application
provides better performance results over non-COM+ and .NET based application on
MS Access database. As per the table 6.4.9, it has been noticed that there is not much
performance difference between .NET application performance running on 2.0 and
3.0 Framework.

Ashish Tandon | MSc Advanced Software Engineering | 2007 71

Chart 6.4-9 Application performance on MS Access (5 Users and 100 Rows)

 Non COM+ COM+ .NET
.NET 2.0 33 26 792
.NET 3.0 100 40 790

%Difference 203 53 ‐0.25

Table 6.4.9 Application performance data of MS Access (5 Users and 1000 Rows)

The chart 6.4.10 shows the results of the different application type performance
which were tested on the two different Microsoft .NET Framework (version 2.0 and
3.0) along with ten database users for each database hit of medium volume (1000
Rows). The results were based on the trivial database read method performed using
the five database users. The results represents that COM+ component based
application provides better performance results over non-COM+ and .NET based
application on MS Access database. As per the table 6.4.10, it has been noticed that
there is slight performance difference between .NET framework 2.0 and 3.0.

Chart 6.4-10 Application performance on MS Access (10 Users and 1000 Rows)

Ashish Tandon | MSc Advanced Software Engineering | 2007 72

 Non COM+ COM+ .NET

.NET 2.0 54 48 1575

.NET 3.0 189 161 1491
%Difference 250 235 ‐5

Table 6.4.10 Application performance data of MS Access (10 Users and 1000
Rows)

The chart 6.4.11 shows the results of the different application type performance
which were tested on the two different Microsoft .NET Framework (version 2.0 and
3.0) along with five database users for each database hit of high volume (10000
Rows). The results were based on the trivial database read method performed using
the five database users. The results represents that COM+ component based
application provides better performance results over non-COM+ only on Framework
2.0. As per the table 6.4.11, it has been noticed that there is slight performance gain
for .NET based application running on framework 3.0 accessing high volume of data.

Chart 6.4-11 Application performance on MS Access (5 Users and 10000 Rows)

 Non COM+ COM+ .NET
.NET 2.0 38 25 6940
.NET 3.0 93 54 6099

%Difference 144.74 116.00 ‐12.12

Table 6.4.11 Application performance data of MS Access (5 Users and 10000
Rows)

Ashish Tandon | MSc Advanced Software Engineering | 2007 73

The chart 6.4.12 shows the results of the different application type performance
which were tested on the two different Microsoft .NET Framework (version 2.0 and
3.0) along with ten database users for each database hit of high volume (10000
Rows). The results were based on the trivial database read method performed using
the five database users. The results represents that COM+ component based
application provides better performance results over non-COM+ only on Framework
2.0. As per the table 6.4.12, it has been noticed that there was a performance gain of
around 12% for .NET based application running on framework 3.0 accessing high
volume of data.

Chart 6.4-12 Application performance on MS Access (10 Users and 10000 Rows)

 Non COM+ COM+ .NET

.NET 2.0 79 59 13865

.NET 3.0 181 158 12132
%Difference 129.11 167.80 ‐12.50

Table 6.4.12 Application performance data of MS Access (10 Users and 10000
Rows)

Ashish Tandon | MSc Advanced Software Engineering | 2007 74

6.5 Conclusion

This chapter was aimed to evaluate the experiments conducted on SQL Server and
MS Access database using the COM+ services. SQL Server database was being
benchmarked with five or ten database users on .NET Framework 2.0 and 3.0 and
also on different volume of data. Similarly MS Access also being benched marked
with five or ten users on different .NET Framework 2.0 and 3.0 with different
volume of data. Both the SQL Server and Access databases were also benchmarked
using the different application types i.e. COM+, non-COM+ and .NET based
application and on different user and data volume load.

The SQL Server tested on the different .NET Framework, which concludes in the
results that .NET Framework 2.0 provides better results on the low and medium
volume of data although Framework 3.0 provides better performance results on the
high volume (10000 Rows) of data around 10% of performance gain over
Framework 2.0. COM+ based application provides the better performance results for
the low and medium volume of data nearly the same performance response for the
non COM+ based application. The .NET based application provides the performance
gain when high volume database operation is performed.

The MS Access database performance tested on two different Microsoft .NET
Framework (version 2.0 and 3.0). The results were based on the trivial database read
method performed using the five or ten database users. It is clearly visible from the
results that Framework 2.0 provides better performance over 3.0 on low and medium
volume of data and Framework 3.0 provides major performance gain on high volume
of data.

Moreover it has been noticed from the experiments conducted on MS Access that the
results provides the same performance which we have seen in the past experiments
on SQL Server except the significant performance gain on .NET application running
on Framework 3.0 when accessing the high volume data (10000 Rows) and COM+
application have provided better performance results over the non-COM+ and .NET
based application.

Ashish Tandon | MSc Advanced Software Engineering | 2007 75

7 Conclusion

7.1 Introduction

This thesis aimed at analyzing and optimizing the database performance using
enhanced object model in the .NET Framework. This is carried out by implementing
a prototype application which integrated the COM+ pooled component, COM+ non
pooled component and .NET connection pooling projects to measure the
performance. The Microsoft SQL Server and MS Access databases were used to
benchmark and analyze the database performance under the different experimental
conditions.

This chapter provides the critical analysis of the whole project that includes both
design and implementation cycle. Suggestions on future work that could be carried
out further are also included. In addition, it also highlights other areas of technology
in which technology in which next version of application or experiment could be
performed.

7.2 Conclusion

This thesis was aimed to show how COM+ services can be used to analyze and
optimize the database performance. The experiments were based on developed
prototype windows based application having the trivial database read method for
both the databases, option to increase or decrease the user load and volume of data
using different application types. One of the initial experiments showed the impact of
using the COM+ server and COM+ library application, and their performance based
on both the databases. The basic task like component initialization, role bases,
constructor initialization, component task and other we can use COM+ server
application to save time in writing the code, programmers efforts and provides better
results over the COM+ library application.

COM+ can provides the supply of powerful services that can help to create quickly
sophisticated and stable application. The main drawback of using COM+ services is
performance cost. We saw that we can use part of COM+ services like Object
Pooling, JITA, application partitioning and role based security and COM+ library
application with acceptable cost. COM+ server that provides most of the interesting
services has bad influence over performance mainly due to its usage of DCOM. In
the experiments conducted in this thesis it has been noticed that COM+ based
application provides better results as compared to the .NET based application when
retrieving the large volume of data from the database.

The initial experiments showed that COM+ library application took more time to
process the request as compared to the server application under the .NET
environment and on a ten database user connection server application with no
pooling and JIT performed twice faster than the library application. The server
application provides better results and performance gain of more than 10% even
when the object pooling and JIT is enabled. The server application was the better
choice over library application which performed the trivial database read operation.
COM+ component using the pooling and JIT provide better results and were twice

Ashish Tandon | MSc Advanced Software Engineering | 2007 76

faster than the non-COM+ component. As features comes at the cost, on the
concurrent user connections component with the role base security feature was taking
20% more time than component not using role based security. Similarly COM+
component with the transaction isolation and constructor enabled property was
taking around 35% and 20% more time over the component with pooling and JIT.

The performance of non-COM+ component on SQL Server low and medium volume
of data with five users showed that framework 2.0 provides better results over 3.0
and on the high volume of data with ten users framework 3.0 provides the
performance gain of around 14% over 2.0 component. The performance of COM+
component on SQL Server low and medium volume of data with five users showed
that framework 2.0 provides better results over 3.0 and there is also a slight
performance gain on 3.0 over 2.0 for medium volume of data and on the high volume
of data with ten users .NET Framework 3.0 provides the performance gain of around
12% over 2.0 component. This shows that Framework 3.0 is optimized for the high
end application having high volume of data.

7.3 Critical Analysis

The objective of this thesis is to analyse and optimize the performance of database
using the enhanced object model under the .NET Framework. Initially various
experiments has been conducted on the COM+ application type which includes the
COM+ Server application and COM+ Library application. During the initial design
phase of the prototype application, the interface was simple with basic controls to
initiate and process the request. However once the test or experiments has been
incorporated, we altered the basic interface to include rich user options thus
facilitating the user to test the database using different number of user connections
and application types. While performing experiments, we faced problems in
accessing MS Access database with more number of users. This resulted because we
were using the .NET Framework SQL class libraries instead of using OLEDB
connection which hindered the performance of the overall result. We have overcome
this issue by using Microsoft OLEDB class libraries on different volumes of data.
The successful experiments were conducted on different .NET Framework versions
2.0 and 3.0. However we have not tested the performance for the conducted
experiments on early versions of .NET Framework which can be considered in the
next version of this prototype application. Moreover the time taken and calculated for
all the experiments performed was comes as an average of five consecutive hits as
per user input instead of using two average hits data, this resulted in providing
consistent median time for various experiments.

The challenge was to find the median and the variance of the conducted experiments
which was performed manually in early phase of design. Consequently, we decided
and implemented the whole calculations for median and variance in the application
itself to avoid manual process of calculation. This saved not only the time but also
the efforts required in the manual process and also provided the application
performance results on a click of a button. Also the C# .NET code has been
implemented with structured exception handling. The application shows customised
error messages that contain relevant information regarding the exceptions. The
messages are easy to understand by a normal user using the prototype application as
well as helpful for the developer to quickly trace the root of exception.

Ashish Tandon | MSc Advanced Software Engineering | 2007 77

It has been noticed from the experiments conducted that COM+ Services feature
comes at a cost as COM+ component with role based security and transaction
isolation comes with the performance penalty to the operating system. Also writing a
.NET managed code provides the ease to the user to develop the application in a very
short span of time as compared to COM+ application in the unmanaged environment.
Although we can use .NET namespace for creating COM+ components but it takes
time and resources. Therefore the trivial database read operation method has been
tested on .NET based application and COM+ based application, which resulted in
that COM+ based application provide better results over .NET based application. So
the application scope and requirements must be analysed before choosing the
application type and .NET Framework.

7.4 Future Work

As the prototype application was architect around COM+ services and developed
using the C# .NET language. There will be a scope for the future work to be
performed on Microsoft .NET Framework 3.5 to analysis and assess the performance
of the database performance. The SQL Server new version can be benchmarked
using the different load based testing and other databases can be used to benchmark
the performance of the COM+ services which includes object pooling, JIT,
transaction isolation property and application recycling.

The experiments could be taken to the other platforms for their cross platform
performance and could be tested on the family of windows operating systems. The
following are the category where future work can be performed.

• Using the new .NET Framework and comparative study on the performance
of the previous versions.

• Conducting further experiments on other database like Oracle. MS access
2007, MY SQL and DB2.

• Implementation of COM+, non-COM+ and .NET based application on 64-bit
machine architecture.

• Implementation of COM+, non-COM+ and .NET based application on
COM+ components on different operating systems.

The above mentioned future area of work is wide in their operation but the features
of the COM+ should be assessed for usefulness.

Ashish Tandon | MSc Advanced Software Engineering | 2007 78

8 References

Bayer, D. (2001). C# COM+ Programming. New York, NY: M&T Books.

Blakeley, J. (1997). Universal Data Access with OLE DB. Proceedings of
COMPCON 97 , 2.

Brill, G. (2000). Applying COM+. SAMS.

Corporation, M. (1998). Microsoft Developer Network. Retrieved 11 August, 2007,
from Transactional Component Services: A Guide to Reviewing Microsoft
Transaction Server 2.0: http://msdn2.microsoft.com/en-us/library/ms810020.aspx

Deshpande, A., & Blakeley, J. A. (2000). Data Access. Proceedings of the 2000 ACM
SIGMOD international conference on Management of data (p. 579). Texas: ACM
Press, NY, USA.

Eddon, G. (1999). COM+: the evolution of component services. Computer , 104-106.

Global Architect. (2007.). Retrieved July 09, 2007, from
http://www.ciol.com/content/flavour/middleware/101032701.asp

Gray, J. (2004). The Revolution in Database Architecture. Extended abstract of talk
at ACM SIGMOD 2004, Paris, France, June 2004 (p. 4). Association for Computing
Machinery, Inc.

Kingsley, A., & Kingsley-, K. (2007). C# 2005 Programmer's Reference.
Indianapolis, IN 46256: Wiley Publishing, Inc.

Liberty, J., & MacDonald, B. (2006). Learnig C# 2005, Second Edition. Sebastopol,
CA: O' Reilly Media, Inc.

Limprecht, R. (1997). Microsoft Transaction Server. Proceedings of COMPCON 97 ,
14.

Löwy, J. (2001). COM and .NET Component Services. USA: O'Reilly.

Martin Pinzger, J. O. (2003). Analyzing and Understanding Architectural
Characteristics of COM+ Components . 11th IEEE International Workshop on
Program Comprehension (IWPC'03) , 54.

Ashish Tandon | MSc Advanced Software Engineering | 2007 79

McKeown, M. (2003). .NET Enterprise Services and COM+ 1.5 Architecture.
Enterprise Services Technical Articles .

Microsoft. (2007). .NET Framework Conceptual Overview . Retrieved August 1,
2007, from .NET Framework Developer Center : http://msdn2.microsoft.com/en-
us/library/zw4w595w.aspx

Microsoft. (2007). Retrieved July 18, 2007, from COM: Component Object Model
Technologies: http://www.microsoft.com/com/default.mspx

MS. (2007). Retrieved July 17, 2007, from COM+ (Component Services):
http://msdn2.microsoft.com/en-us/library/ms685978.aspx

MSDN. (2007). COM+ Object Pooling Concepts. Retrieved August 12, 2007, from
COM+ (Component Services): http://msdn2.microsoft.com/en-
us/library/ms682784.aspx

MSDN2 (2007). Visual C# Development Environment . Retrieved August 31, 2007,
from Visual C# Developer Center : http://msdn2.microsoft.com/en-
us/library/ms184658(vs.80).aspx

Platt, D. S. (2000). COM+ and Windows 2000: Ten Tips and Tricks for Maximizing
COM+ Performance. MSDN Magzine The Microsoft Journal for Developers .

Roman, E. (2007). Middleware. Retrieved Aug 11, 2007, from The Middleware
company: http://www.theserverside.com/tt/articles/article.tss?l=EJB-ComPlus

Technet, M. (2007). Quick Tour of MS Transaction Server. Retrieved August 10,
2007, from Microsoft TechNet:
http://www.microsoft.com/technet/archive/transsrv/quicktr.mspx?mfr=true

Templeman, J., & Mueller, J. P. (2003). COM Programming with Microsoft® .NET.
USA: Microsoft Press.

TPC. (2007). Retrieved September 20, 2007, from TPC: About the TPC:
http://www.tpc.org/information/about/abouttpc.asp

Troelsen, A. (2007). Pro C# with .NET 3.0. USA: Apress.

Turne, R., Burek, L., & Driver, D. (2004). COM+ Technical Articles. Retrieved
August 2, 2007, from .NET Enterprise Services Performance:
http://msdn2.microsoft.com/en-us/library/ms809840.aspx

Ashish Tandon | MSc Advanced Software Engineering | 2007 80

Vieira, R. (2007). Professional SQL Server™ 2005 Programming. Indianapolis,
Indiana: Wiley Publishing, Inc.

Visual C# Developer Center . (2007). Retrieved August 7, 2007, from Introduction to
the C# Language and the .NET Framework : http://msdn2.microsoft.com/en-
us/library/z1zx9t92(VS.80).aspx

Whalen, E., Gracia, M., Patel, B., Misner, S., & Isakov, V. (2007). Microsoft SQL
Server 2005 Administrator's Companion. Redmond, USA: Microsoft Press.

Yannakakis, M. (1995). Proceedings of the 36th Annual Symposium on Foundations
of Computer Science (FOCS'95). (p. 224). IEEE Computer Society, DC, USA.

Ashish Tandon | MSc Advanced Software Engineering | 2007 81

Appendix

APPENDIX SECTION FOLLOWS:

Appendix 1

Appendix 2

Ashish Tandon | MSc Advanced Software Engineering | 2007 82

Appendix 1
A. PrototypeApplication.cs

// ***
// Name: PrototypeApplication.cs
// Author: Ashish Tandon
// Version: Version 1.0.1.3
// Updated On: 08-Oct-07
// Created On: 15-May-07
/* Description: This class file perfoms the client application
 functionality consist of interface request and process.
 This also calls the other class library as per the
 information provided by the user on the interface
 */
// ***

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Windows.Forms;
using System.Data.Common;
using System.Configuration;
using System.Diagnostics;
using System.Collections;

// Namespace for COMSQLServer
using ObjectPoolServer;

// Namespace for NoCOMSQLServer
using ObjectPoolLibrary;

// Namespace for NoAccessCOM
using NoCOMAccess;

// Namespace for AccessCOM
using COMAccess;

namespace DBFactory
{
 public partial class factoryClassesForm : Form
 {
 //sDatabase contains the name of the database
 string sDatabase;

 //sType contains the application type i.e
 //1. COM+ No Pooling n JIT
 //2. COM+ Pooling n JIT
 //3. .NET Pooling
 string sType;

 //myQuery contains the query as per the data volume
 string myQuery;

Ashish Tandon | MSc Advanced Software Engineering | 2007 83

 //sVolume contains low, medium and high value of data volume
 string sVolume;

 //iUser, Number of users selected to benchmark the database
 int iUser;

 //sArr, Array records the last 5 transaction time
 string[] sArr = new string[5];
 //Used for the transaction count
 int Rcounter = 0;

 public factoryClassesForm()
 {
 InitializeComponent();
 providerComboBox.SelectedIndex = 0;
 }

 //Interface Record Button Event
 private void cmdRecord_Click(object sender, EventArgs e)
 {
 RecordLastResult();
 }

 //Interface ToMatrix Button Event
 private void cmdToMatrix_Click(object sender, EventArgs e)
 {
 SendToMatrix();
 }

 //Interface Automate Button Event
 private void cmdAutomate_Click(object sender, EventArgs e)
 {
 GetUserInput();

 //Automation Test Sequence for SQL SERVER Database
 if (providerComboBox.SelectedItem.ToString() == "SQL
 Server")
 {
 //If application type is COM+ no Pooling n JIT
 if (sType == "NOCOM")
 {
 for (int i = 0; i < iUser; i++)
 {
 NoCOMSQL();
 RecordLastResult();
 }
 SendToMatrix();
 }
 //If application type is COM+ with Pooling n JIT
 else if (sType == "COM")
 {
 for (int i = 0; i < iUser; i++)
 {
 COMSQL();
 RecordLastResult();
 }
 SendToMatrix();
 }

Ashish Tandon | MSc Advanced Software Engineering | 2007 84

 //If application type is .NET Pooling
 else
 {
 for (int i = 0; i < iUser; i++)
 {
 NETPooling();
 RecordLastResult();
 }
 SendToMatrix();
 }
 }
 }

 //Interface GetData Button Event
 private void getDataButton_Click(object sender, EventArgs e)
 {
 try
 {
 GetUserInput();
 if (sDatabase == "MS Access")
 {
 if (rbCOMLibrary.Checked == true)
 //COM+ application no object pooling n JIT
 NonCOMAccess();
 else if (rbCOMServer.Checked == true)
 //COM+ application object pooling n JIT
 COMAccess();
 }
 else
 {
 if (rbCOMLibrary.Checked == true)
 //COM+ application no object pooling n JIT
 NoCOMSQL();
 else if (rbCOMServer.Checked == true)
 //COM+ application object pooling n JIT
 COMSQL();
 else if (rbNETPooling.Checked == true)
 //COM+ application no object pooling n JIT
 NETPooling();
 }
 }
 catch(Exception e1)
 {
 MessageBox.Show("Error 102: There was an error in
 processing the request" + e1.Message, "Error
 GetData Method", MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }
 }

 //GetUserInput()
 //This method read the users input from interface and sets
 //their respective values in the variables for further
 access
 private void GetUserInput()
 {
 try
 {
 //Set the value for Database selected

Ashish Tandon | MSc Advanced Software Engineering | 2007 85

 sDatabase =
 providerComboBox.SelectedItem.ToString();

 //Set the value for Users selected
 if (rbUser5.Checked == true)
 iUser = 5;
 else
 iUser = 10;

 //Set the value and query for Rows selected
 if (rbLowVolumeData.Checked == true)
 {
 //The following query returns 100 Row(s)
 myQuery = "SELECT * FROM Customers where
 city='London'";

 //The query considered under the low volume data
 sVolume = "low";
 }

 else if (rbAverageVolumeData.Checked == true)
 {
 //The following query returns 1000 Row(s)
 myQuery = "SELECT * FROM Customers where
 city='Livingston'";

 //The query considered under the medium volume data
 sVolume = "medium";
 }

 else if (rbHighVolumeData.Checked == true)
 {
 //The following query returns 10000 Row(s)
 myQuery = "SELECT * FROM Customers where
 city='New Delhi'";

 //The query considered under the high volume data
 sVolume = "high";
 }

 //Set the value for Application Type selected
 if (rbCOMLibrary.Checked == true)
 //Application which are not using COM+ Services
 sType = "NoCOM";

 else if (rbCOMServer.Checked == true)
 //Application which are using COM+ Services
 sType = "COM";

 else if (rbNETPooling.Checked == true)
 //Application which are using .NET Services
 sType = ".NET";
 }
 catch (Exception e1)
 {
 MessageBox.Show("Error 101: There was an error
 reading the user(s)input" + e1.Message, "Error
 Reading User Input", MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }

Ashish Tandon | MSc Advanced Software Engineering | 2007 86

 }

 //NonCOMAccess()
 //This method calls the library which are not using the COM+
 //features for their MS Access database read operation
 private void NonCOMAccess()
 {
 try
 {
 //Stopwatch for time recording
 Stopwatch myWatch = new Stopwatch();
 myWatch.Start();

 for (int i = 0; i < iUser; i++)
 {
 NoCOMAccess.NoCOMAccess oANonCom = new
 NoCOMAccess.NoCOMAccess();
 oANonCom.ExecuteQuery(myQuery);
 }
 //Stop the watch
 myWatch.Stop();

 //Convert time into TimeTicks
 elapsedTimeTextLabel.Text = "Elapsed Time (Ticks): "
 + myWatch.ElapsedTicks.
 ToString() + " ticks";

 //Convert time into Milliseconds
 millisecondsTextLabel.Text = "Elapsed Time (Ms): ";
 lblms.Text = myWatch.ElapsedMilliseconds.ToString();
 }
 catch (Exception e1)
 {
 MessageBox.Show("Error 103: There was an error in
 processing the request" + e1.Message, "Error Non
 COM Application Access", MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }
 }

 //COMAccess()
 //This method calls the library which are using the COM+
 //features for their MS Access database read operation
 private void COMAccess()
 {
 try
 {
 Stopwatch myWatch = new Stopwatch();
 myWatch.Start();

 for (int i = 0; i < iUser; i++)
 {
 COMAccess.COMAccess oACom = new
 COMAccess.COMAccess();
 oACom.ExecuteQuery(myQuery);
 }
 myWatch.Stop();

Ashish Tandon | MSc Advanced Software Engineering | 2007 87

 elapsedTimeTextLabel.Text = "Elapsed Time (Ticks): "
 + myWatch.ElapsedTicks.
 ToString() + " ticks";
 millisecondsTextLabel.Text = "Elapsed Time (Ms): ";
 lblms.Text = myWatch.ElapsedMilliseconds.ToString();
 }
 catch (Exception e)
 {
 MessageBox.Show("Error 104: There was an error in
 processing the request" + e.Message, "Error COM
 Application Access", MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }
 }

 //NonCOMSQL()
 //This method calls the library which are not using the COM+
 //features for their MS SQL Server database read operation
 private void NoCOMSQL()
 {
 try
 {
 Stopwatch myWatch = new Stopwatch();
 myWatch.Start();

 for (int i = 0; i < iUser; i++)
 {
 ObjectPoolLibrary.PooledObject po = new
 ObjectPoolLibrary.PooledObject();
 po.ExecuteLibQuery(myQuery);
 }
 myWatch.Stop();
 elapsedTimeTextLabel.Text = "Elapsed Time (Ticks): "
 + myWatch.ElapsedTicks.
 ToString() + " ticks";
 millisecondsTextLabel.Text = "Elapsed Time (Ms): " ;
 lblms.Text = myWatch.ElapsedMilliseconds.ToString();
 }
 catch (Exception e)
 {
 MessageBox.Show("Error 105: There was an error in
 processing the request" + e.Message, "Error Non
 COM Application SQL", MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }
 }

 //NonCOMSQL()
 //This method calls the library which are using the COM+
 //features for their MS SQL Server database read operation
 private void COMSQL()
 {
 try
 {
 Stopwatch myWatch = new Stopwatch();
 myWatch.Start();
 for (int i = 0; i < iUser; i++)
 {

Ashish Tandon | MSc Advanced Software Engineering | 2007 88

 ObjectPoolServer.PooledObject pos = new
 ObjectPoolServer.PooledObject();
 pos.ExecuteServerQuery(myQuery);
 }
 myWatch.Stop();
 elapsedTimeTextLabel.Text = "Elapsed Time (Ticks): "
 + myWatch.ElapsedTicks.
 ToString() + " ticks";
 millisecondsTextLabel.Text = "Elapsed Time (Ms): ";
 lblms.Text = myWatch.ElapsedMilliseconds.ToString();
 }
 catch (Exception e)
 {
 MessageBox.Show("Error 106: There was an error in
 processing the request" + e.Message, "Error COM
 Application SQL", MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }
 }

 //NETPooling()
 //This method calls the framework class library function
 //and features for their database read operation
 private void NETPooling()
 {
 try
 {
 string myName = getConnectionString();
 DataSet myDataSet = new DataSet();

 //Reading configuration data from app.config
 ConnectionStringSettings myConnectionSettings =
 ConfigurationManager.
 ConnectionStrings[myName];
 DbProviderFactory myProvider =
 DbProviderFactories.GetFactory
 (myConnectionSettings.ProviderName);

 Stopwatch myWatch = new Stopwatch();
 myWatch.Start();
 for (int i = 0; i < iUser; i++)
 {
 DbConnection myConnection =
 myProvider.CreateConnection();
 myConnection.ConnectionString =
 myConnectionSettings.ConnectionString;

 myConnection.Open();

 DbDataAdapter myAdapter =
 myProvider.CreateDataAdapter();
 DbCommand myCommand =
 myProvider.CreateCommand();

 myCommand.Connection = myConnection;
 myCommand.CommandText = myQuery;

 myAdapter.SelectCommand = myCommand;
 myAdapter.Fill(myDataSet);

Ashish Tandon | MSc Advanced Software Engineering | 2007 89

 }
 myWatch.Stop();
 elapsedTimeTextLabel.Text = "Elapsed Time (Ticks): "
 + myWatch.ElapsedTicks.
 ToString() + " ticks";
 millisecondsTextLabel.Text = "Elapsed Time (Ms):";
 lblms.Text = myWatch.ElapsedMilliseconds.ToString();
 if (cbShowDBGrid.Checked == true)
 displayDataGridView.DataSource =
 myDataSet.Tables[0];
 }

 catch (Exception e)
 {
 MessageBox.Show("Error 107: There was an error in
 processing the request" + e.Message, "Error
 Application .NET ", MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }
 }

 //getConnectionString()
 //This method provide the information about which
 //database is selected for database read operation
 private string getConnectionString()
 {
 string sCons = providerComboBox.SelectedItem.ToString();
 return sCons;
 }

 //RecordLastResult()
 //This method records the value of the last 5 database read
 operation
 private void RecordLastResult()
 {
 try
 {
 if (Rcounter == 5)
 cmdRecord.Enabled = false;
 if (Rcounter < 5)
 {
 cmdRecord.Enabled = true;
 sArr[Rcounter] = lblms.Text;
 lbllast5.Text += " -|- " +
 sArr[Rcounter].ToString() + " -|- ";
 Rcounter += 1;
 }
 else
 {
 Rcounter = 0;
 MessageBox.Show("Kindly convert the Displayed
 Last 5 Results to the relevant
 Matrix by Clicking on the - To Matrix - button",
 "Click on To Matrix Button", MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }
 }
 catch (Exception e)
 {

Ashish Tandon | MSc Advanced Software Engineering | 2007 90

 MessageBox.Show("Error 108: There was an error in
 processing the request" + e.Message, "Recording
 Last Transaction Time", MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }
 }

 //SendToMatrix()
 //This method sends the recorded values to their
 //respective matrix table as per the choice made by user
 private void SendToMatrix()
 {
 cmdRecord.Enabled = true;
 Rcounter = 0;

 try
 {
 if (providerComboBox.SelectedItem.ToString() == "SQL
 Server")
 {
 switch (sType)
 {
 case "NoCOM":
 {
 if (sVolume == "low")
 {
 snch1.Text = sArr[0]; snch2.Text
 = sArr[1]; snch3.Text = sArr[2];
 snch4.Text = sArr[3]; snch5.Text
 = sArr[4]; sd1r1.Text =
 SDInitiate().ToString();
 }
 else if (sVolume == "medium")
 {
 snct1.Text = sArr[0]; snct2.Text
 = sArr[1]; snct3.Text = sArr[2];
 snct4.Text = sArr[3]; snct5.Text
 = sArr[4]; sd1r2.Text =
 SDInitiate().ToString();
 }
 else if (sVolume == "high")
 {
 snctt1.Text = sArr[0];
 snctt2.Text = sArr[1];
 snctt3.Text = sArr[2];
 snctt4.Text = sArr[3];
 snctt5.Text = sArr[4];
 sd1r3.Text =
 SDInitiate().ToString() + "
 Avg: " +
 InitiateAverage().ToString();
 }
 }
 break;
 case "COM":
 {
 //Table 2
 if (sVolume == "low")
 {

Ashish Tandon | MSc Advanced Software Engineering | 2007 91

 sch1.Text = sArr[0]; sch2.Text =
 sArr[1]; sch3.Text = sArr[2];
 sch4.Text = sArr[3]; sch5.
 Text = sArr[4];sd2r1.Text =
 SDInitiate().ToString();
 }
 else if (sVolume == "medium")
 {
 sct1.Text = sArr[0]; sct2.Text =
 sArr[1]; sct3.Text = sArr[2];
 sct4.Text = sArr[3]; sct5.
 Text = sArr[4];sd2r2.Text =
 SDInitiate().ToString();
 }
 else if (sVolume == "high")
 {
 sctt1.Text = sArr[0]; sctt2.Text
 = sArr[1]; sctt3.Text = sArr[2];
 sctt4.Text = sArr[3];
 sctt5.Text = sArr[4]; sd2r3.Text
 = SDInitiate().ToString();
 }
 }
 break;
 case ".NET":
 {
 //Table 3
 if (sVolume == "low")
 {
 sh1.Text = sArr[0]; sh2.Text =
 sArr[1]; sh3.Text = sArr[2];
 sh4.Text = sArr[3]; sh5.Text =
 sArr[4];
 sd3r1.Text =
 SDInitiate().ToString();
 }

 else if (sVolume == "medium")
 {
 st1.Text = sArr[0]; st2.Text =
 sArr[1]; st3.Text = sArr[2];
 st4.Text = sArr[3]; st5.Text =
 sArr[4];
 sd3r2.Text =
 SDInitiate().ToString();
 }

 else if (sVolume == "high")
 {
 stt1.Text = sArr[0]; stt2.Text =
 sArr[1]; stt3.Text = sArr[2];
 stt4.Text = sArr[3]; stt5.Text =
 sArr[4];
 sd3r3.Text =
 SDInitiate().ToString();
 }
 }
 break;
 }
 }

Ashish Tandon | MSc Advanced Software Engineering | 2007 92

 else
 {
 //
 if (sType == "NoCOM" && sVolume == "low")
 {
 anch1.Text = sArr[0]; anch2.Text = sArr[1];
 anch3.Text = sArr[2]; anch4.Text = sArr[3];
 anch5.Text = sArr[4];
 sd4r1.Text = SDInitiate().ToString();
 }

 if (sType == "NoCOM" && sVolume == "medium")
 {
 anct1.Text = sArr[0]; anct2.Text = sArr[1];
 anct3.Text = sArr[2]; anct4.Text = sArr[3];
 anct5.Text = sArr[4];
 sd4r2.Text = SDInitiate().ToString();
 }

 if (sType == "NoCOM" && sVolume == "high")
 {
 anctt1.Text = sArr[0]; anctt2.Text =
 sArr[1]; anctt3.Text = sArr[2]; anctt4.Text
 = sArr[3]; anctt5.Text = sArr[4];
 sd4r3.Text = SDInitiate().ToString();
 }

 if (sType == "COM" && sVolume == "low")
 {
 ach1.Text = sArr[0]; ach2.Text = sArr[1];
 ach3.Text = sArr[2]; ach4.Text = sArr[3];
 ach5.Text = sArr[4];sd5r1.Text =
 SDInitiate().ToString();
 }

 if (sType == "COM" && sVolume == "medium")
 {
 act1.Text = sArr[0]; act2.Text = sArr[1];
 act3.Text = sArr[2]; act4.Text = sArr[3];
 act5.Text = sArr[4];sd5r2.Text =
 SDInitiate().ToString();
 }

 if (sType == "COM" && sVolume == "high")
 {
 actt1.Text = sArr[0]; actt2.Text = sArr[1];
 actt3.Text = sArr[2]; actt4.Text = sArr[3];
 actt5.Text = sArr[4];sd5r3.Text =
 SDInitiate().ToString();
 }

 //Table 3
 if (sType == ".NET" && sVolume == "low")
 {
 ah1.Text = sArr[0]; ah2.Text = sArr[1];
 ah3.Text = sArr[2]; ah4.Text = sArr[3];
 ah5.Text = sArr[4];sd6r1.Text =
 SDInitiate().ToString();
 }

Ashish Tandon | MSc Advanced Software Engineering | 2007 93

 if (sType == ".NET" && sVolume == "medium")
 {
 at1.Text = sArr[0]; at2.Text = sArr[1];
 at3.Text = sArr[2]; at4.Text = sArr[3];
 at5.Text = sArr[4];sd6r2.Text =
 SDInitiate().ToString();
 }

 if (sType == ".NET" && sVolume == "high")
 {
 att1.Text = sArr[0]; att2.Text = sArr[1];
 att3.Text = sArr[2];att4.Text = sArr[3];
 att5.Text = sArr[4];sd6r3.Text
 =SDInitiate().ToString();
 }

 }//else
 }
 catch (Exception e)
 {
 MessageBox.Show("Error 109: There was an error in
 processing the request" + e.Message, "Error Send Data To
 Matrix", MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }
 lbllast5.Text = "";

 }

 //GetVariance()
 //This method accepts the input as array of
 //double type and calculate the variance
 public static double GetVariance(double[] data)
 {

 int len = data.Length;
 double avg = Average(data);
 double sum = 0;
 for (int i = 0; i < data.Length; i++)
 sum += Math.Pow((data[i] - avg), 2);
 return sum / len;

 }

 //GetVariance()
 //This method accepts the input as array of
 //double type and calculate the standard deviation
 public static double GetStdev(double[] data)
 {
 return Math.Sqrt(GetVariance(data));
 }

 //Average()
 //This method accepts the input as array of
 //double type and calculate the average
 private static double Average(double[] data)
 {
 double DataTotal = 0;
 try

Ashish Tandon | MSc Advanced Software Engineering | 2007 94

 {
 for (int i = 0; i < data.Length; i++)
 {
 DataTotal += data[i];
 }
 //return SafeDivide(DataTotal, data.Length);
 }

 catch (Exception e)
 {
 MessageBox.Show("Error 111: There was an error
 in processing the request" + e.Message, "Error
 Calculating Average", MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }
 return SafeDivide(DataTotal, data.Length);
 }

 //SafeDivide()
 //This method accepts the two input parameter of
 //double values and performs the divide operation
 private static double SafeDivide(double value1, double
 value2)
 {
 double ret = 0;
 try
 {
 if ((value1 == 0) || (value2 == 0)) { return ret; }
 ret = value1 / value2;
 }
 catch (Exception e)
 {
 MessageBox.Show("Error 112: There was an error in
 processing the request" + e.Message, "Error Safe
 Divide", MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }
 return ret;
 }

 //SDInitiate()
 //This method converts the string value type to
 //double type
 private double SDInitiate()
 {
 double sd=0;
 double[] dConvert= new double[5];

 try
 {
 dConvert[0] = double.Parse(sArr[0]);
 dConvert[1] = double.Parse(sArr[1]);
 dConvert[2] = double.Parse(sArr[2]);
 dConvert[3] = double.Parse(sArr[3]);
 dConvert[4] = double.Parse(sArr[4]);
 sd = GetStdev(dConvert);
 //return Math.Round(sd, 2);
 }
 catch (Exception e)
 {

Ashish Tandon | MSc Advanced Software Engineering | 2007 95

 MessageBox.Show("Error 113: There was an error in
 processing the request" + e.Message, "Error Standard
 Deviation", MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }
 return Math.Round(sd, 2);

 }

 //InitiateAverage()
 //This method converts the string value type to
 //double type and return the average
 private double InitiateAverage()
 {
 double dAvg=0;
 double[] dAvgArr = new double[5];
 try
 {
 dAvgArr[0] = double.Parse(sArr[0]);
 dAvgArr[1] = double.Parse(sArr[1]);
 dAvgArr[2] = double.Parse(sArr[2]);
 dAvgArr[3] = double.Parse(sArr[3]);
 dAvgArr[4] = double.Parse(sArr[4]);

 dAvg = Average(dAvgArr);
 //return dAvg;
 }

 catch (Exception e)
 {
 MessageBox.Show("Error 114: There was an error in
 processing the request" + e.Message, "Error
 Calculate Average", MessageBoxButtons.OK,
 MessageBoxIcon.Information);
 }
 return dAvg;
 }
 }
}

Ashish Tandon | MSc Advanced Software Engineering | 2007 96

B. Assembly info [PrototypeApplication.cs]

using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;

// General Information about an assembly is controlled through the
following
// set of attributes. Change these attribute values to modify the
information
// associated with an assembly.
[assembly: AssemblyTitle("DBFactory")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("")]
[assembly: AssemblyProduct("DBFactory")]
[assembly: AssemblyCopyright("Copyright © 2005")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]

// Setting ComVisible to false makes the types in this assembly not
visible
// to COM componenets. If you need to access a type in this
assembly from
// COM, set the ComVisible attribute to true on that type.
[assembly: ComVisible(false)]

// The following GUID is for the ID of the typelib if this project
is exposed to COM
[assembly: Guid("8d67ec3f-efc6-4906-85c3-5829547ef8ab")]
[assembly: AssemblyVersion("1.1.0.0")]
[assembly: AssemblyFileVersion("1.1.0.0")]

Ashish Tandon | MSc Advanced Software Engineering | 2007 97

C. COMAccess.cs

// ***
// Name: COMAccess.cs
// Author: Ashish Tandon
// Version: Version 1.0.1.3
// Updated On: 08-Oct-07
// Created On: 03-May-07
/* Description: This class file perfoms the COM+ applicatoin
 functionality with object pooling and JIT for the
 MS Access database.*/
// ***

namespace COMAccess
{
 using System;
 using System.Xml;
 using System.EnterpriseServices;
 using System.Data;
 using System.Data.OleDb;
 using System.Data.SqlClient;
 using System.Reflection;

 //Enabling COM+ Object Pooling Feature
 [System.EnterpriseServices.ObjectPooling
 (true, 10, 100, CreationTimeout = 5000)
]

 //Enabling COM+ JIT Feature
 [System.EnterpriseServices.JustInTimeActivation(true)]

 //Enabling COM+ Transaction option
 [System.EnterpriseServices.Transaction
 (TransactionOption.NotSupported)
]

 public class COMAccess : ServicedComponent
 {
 private System.Data.OleDb.OleDbConnection _cnn;
 private System.Data.OleDb.OleDbCommand _cmd;

 public COMAccess()
 {
 _cnn = new
 OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data
 Source=C:\\Temp\\Test\\v1.0\\TestEnvironment\\DBFactory\\Datab
 ases\\MyData.mdb;Persist Security Info=True");
 _cmd = new OleDbCommand();
 _cmd.CommandType = System.Data.CommandType.Text;
 _cmd.Connection = _cnn;
 _cnn.Open();
 }
 [AutoComplete]

Ashish Tandon | MSc Advanced Software Engineering | 2007 98

 public void ExecuteQuery(string sQuery)
 {
 _cmd.CommandText = sQuery;
 _cmd.ExecuteNonQuery();
 }
 }
}

Ashish Tandon | MSc Advanced Software Engineering | 2007 99

D. Assembly info [COMAccess.cs]

using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;

// General Information about an assembly is controlled through the
following
// set of attributes. Change these attribute values to modify the
information
// associated with an assembly.
[assembly: AssemblyTitle("COMAccess_Server")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("Napier University")]
[assembly: AssemblyProduct("COMAccess_Server")]
[assembly: AssemblyCopyright("Copyright © Napier University 2007")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]

// Setting ComVisible to false makes the types in this assembly not
visible to COM components. If you need to access a type in this
assembly from COM, set the ComVisible attribute to true on that
type.
[assembly: ComVisible(false)]

// The following GUID is for the ID of the typelib if this project
is exposed to COM
[assembly: Guid("cdb58b3d-5c3b-409a-a12f-86029595e1b8")]

[assembly: AssemblyVersion("1.1.1.0")]
[assembly: AssemblyFileVersion("1.1.1.0")]

Ashish Tandon | MSc Advanced Software Engineering | 2007 100

E. COMSQL.cs

// ***
// Name: COMSQL.cs
// Author: Ashish Tandon
// Version: Version 1.0.1.3
// Updated On: 08-Oct-07
// Created On: 03-May-07
/* Description: This class file perfoms the COM+ applicatoin
 functionality with object pooling and JIT for the
 MS SQL SERVER Database.*/
// ***
namespace ObjectPoolServer
{
 using System;
 using System.Xml;
 using System.EnterpriseServices;
 using System.Data;
 using System.Data.SqlClient;
 //Enabling COM+ Object Pooling Feature
 [System.EnterpriseServices.ObjectPooling
 (true, 10, 100, CreationTimeout = 5000)
]

 //Enabling COM+ JIT Feature
 [System.EnterpriseServices.JustInTimeActivation(true)]
 //Enabling COM+ Transaction Option
 [System.EnterpriseServices.Transaction
 (TransactionOption.NotSupported)
]
 public class PooledObject : ServicedComponent
 {
 private System.Data.SqlClient.SqlConnection _cnn;
 private System.Data.SqlClient.SqlCommand _cmd;

 public PooledObject()
 {
 _cnn = new SqlConnection("Integrated
 Security=SSPI;Persist Security Info=False;Initial
 Catalog=OfficeMart;Data Source=.\\SQLEXPRESS;");
 _cmd = new SqlCommand();
 _cmd.CommandType = System.Data.CommandType.Text;
 _cmd.Connection = _cnn;
 _cnn.Open();
 }
 [AutoComplete]
 public void ExecuteServerQuery(string sSQLQuery)
 {
 _cmd.CommandText = sSQLQuery;
 _cmd.ExecuteNonQuery();
 }
 }
}

Ashish Tandon | MSc Advanced Software Engineering | 2007 101

F. Assembly info[COMSQL.cs]

using System.Reflection;
using System.Runtime.CompilerServices;
using System.EnterpriseServices;
using System.Runtime.InteropServices;

//
// General Information about an assembly is controlled through the
following
// set of attributes. Change these attribute values to modify the
information
// associated with an assembly.
//
[assembly: AssemblyTitle("")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("")]
[assembly: AssemblyProduct("")]
[assembly: AssemblyCopyright("")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]
[assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyDelaySign(false)]
[assembly: AssemblyKeyName("")]
[assembly: ComVisibleAttribute(true)]

Ashish Tandon | MSc Advanced Software Engineering | 2007 102

G. NoCOMAccess.cs

// ***
// Name: NoCOMAccess.cs
// Author: Ashish Tandon
// Version: Version 1.0.1.3
// Updated On: 08-Oct-07
// Created On: 03-May-07
/* Description: This class file perfoms the COM+ applicatoin
 functionality without object pooling and JIT for the
 MS Access database.*/
// ***

namespace NoCOMAccess
{
 //Pooling without object pooling and JIT
 using System;
 using System.Xml;
 using System.EnterpriseServices;
 using System.Data;
 using System.Data.OleDb;
 using System.Data.SqlClient;
 using System.Reflection;

 [System.EnterpriseServices.ObjectPooling(false)]
 [System.EnterpriseServices.JustInTimeActivation(false)]
 [System.EnterpriseServices.Transaction
 (TransactionOption.NotSupported)
]
 public class NoCOMAccess : ServicedComponent
 {
 private System.Data.OleDb.OleDbConnection _cnn;
 private System.Data.OleDb.OleDbCommand _cmd;

 public NoCOMAccess()
 {
 _cnn = new
 OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data
 Source=C:\\Temp\\Test\\v1.0\\TestEnvironment\\DBFactory\\Datab
ases\\MyData.mdb;Persist Security Info=True");
 _cmd = new OleDbCommand();
 _cmd.CommandType = System.Data.CommandType.Text;
 _cmd.Connection = _cnn;
 _cnn.Open();
 }
 [AutoComplete]
 public void ExecuteQuery(string sQuery)
 {
 _cmd.CommandText = sQuery;
 _cmd.ExecuteNonQuery();
 }
 }

}

Ashish Tandon | MSc Advanced Software Engineering | 2007 103

H. Assembly info [NoCOMAccess.cs]

using System.Reflection;
using System.Runtime.CompilerServices;
using System.EnterpriseServices;
using System.Runtime.InteropServices;

//
// General Information about an assembly is controlled through the
following
// set of attributes. Change these attribute values to modify the
information
// associated with an assembly.
//
[assembly: AssemblyTitle("")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("")]
[assembly: AssemblyProduct("")]
[assembly: AssemblyCopyright("")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]
[assembly: ApplicationActivation(ActivationOption.Library)]
//

[assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyDelaySign(false)]
[assembly: AssemblyKeyName("")]
[assembly: ComVisibleAttribute(true)]

Ashish Tandon | MSc Advanced Software Engineering | 2007 104

I. NoCOMSQL.cs

// ***
// Name: NoCOMSQL.cs
// Author: Ashish Tandon
// Version: Version 1.0.1.3
// Updated On: 08-Oct-07
// Created On: 03-May-07
/* Description: This class file perfoms the COM+ applicatoin
 functionality without object pooling and JIT for the
 MS SQL SERVER database.*/
// ***

namespace ObjectPoolLibrary
{
 //Pooling without object pooling and JIT
 using System;
 using System.Xml;
 using System.EnterpriseServices;
 using System.Data;
 using System.Data.OleDb;
 using System.Data.SqlClient;
 using System.Reflection;

 [System.EnterpriseServices.ObjectPooling(false)]
 [System.EnterpriseServices.JustInTimeActivation(false)]
 [System.EnterpriseServices.Transaction
 (TransactionOption.NotSupported)
]

 public class PooledObject : ServicedComponent
 {
 private System.Data.SqlClient.SqlConnection _cnn;
 private System.Data.SqlClient.SqlCommand _cmd;
 public PooledObject()
 {
 _cnn = new SqlConnection("Integrated
 Security=SSPI;Persist Security Info=False;Initial
 Catalog=OfficeMart;Data Source=.\\SQLEXPRESS;");
 _cmd = new SqlCommand();
 _cmd.CommandType = System.Data.CommandType.Text;
 _cmd.Connection = _cnn;
 _cnn.Open();
 }
 [AutoComplete]
 public void ExecuteLibQuery(string sQuery)
 {
 _cmd.CommandText = sQuery;
 _cmd.ExecuteNonQuery();
 }
 }

}

Ashish Tandon | MSc Advanced Software Engineering | 2007 105

J. Assembly info [NoCOMSQL.css]

using System.Reflection;
using System.Runtime.CompilerServices;
using System.EnterpriseServices;
using System.Runtime.InteropServices;

//
// General Information about an assembly is controlled through the
following
// set of attributes. Change these attribute values to modify the
information
// associated with an assembly.
//
[assembly: AssemblyTitle("")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("")]
[assembly: AssemblyProduct("")]
[assembly: AssemblyCopyright("")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]
[assembly: ApplicationActivation(ActivationOption.Library)]
//

[assembly: AssemblyVersion("1.0.*")]
[assembly: AssemblyDelaySign(false)]
[assembly: AssemblyKeyName("")]
[assembly: ComVisibleAttribute(true)]

Ashish Tandon | MSc Advanced Software Engineering | 2007 106

K. AppConfig

<?xml version="1.0" encoding="utf-8" ?>
<!-- This is where we store all the connection string information
 If we want to connect to a different data source, we can
reference
 this file to get the appropriate information, but do not need
to
 change any of the existing code.
-->
<configuration>
 <connectionStrings>
 <add name="SQL Server"
providerName="System.Data.SqlClient"
 connectionString="Data Source=.\SQLEXPRESS;Initial
Catalog=OfficeMart;Integrated Security=True;"/>
 <add name="MS Access" providerName="System.Data.OleDb"
 connectionString="Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:\Temp\Test\v1.0\TestEnvironment\DBFactory\Databases\MyData.
mdb;Persist Security Info=True" />
 </connectionStrings>

</configuration>

Ashish Tandon | MSc Advanced Software Engineering | 2007 107

Appendix 2

A. GANTT Chart

	Authorship Declaration
	Abstract
	Contents
	List of Figures
	List of Charts
	List of Tables
	Acknowledgements
	1 Introduction
	1.1 Project Overview
	1.2 Background
	1.3 Aims and Objectives
	1.4 Thesis Structure
	2 Theory
	2.1 Introduction
	2.2 COM
	2.3 Microsoft® Transaction Server (MTS)
	2.4 COM+
	2.4.1 Object Pooling
	2.4.2 Just In Time Compiler (JIT)

	2.5 .NET Framework
	2.5.1 .NET Framework 1.1
	2.5.2 .NET Framework 2.0
	2.5.3 .NET Framework 3.0

	2.6 SQL Server 2005
	2.7 C# .NET 2005
	2.8 Conclusion

	3 Literature Review
	3.1 Introduction
	3.2 Importance of Data Storage
	3.3 Microsoft COM+
	3.4 COM+ Services
	3.4.1 JITA
	3.4.2 Transactions
	3.4.3 Object Pooling

	
	3.4.4 Transaction Scenario

	3.5 Conclusion

	4 Design
	4.1 Introduction
	4.2 Requirement and Analysis
	4.3 Interface design
	4.4 Analysis of Development environment
	4.5 Analysis of Database
	4.6 Project and Classes Implementation
	4.6.1 Client Application
	4.6.2 COM Access
	4.6.3 COM SQL
	4.6.4 NoOMAccess
	4.6.5 NoCOM SQL

	4.7 Evaluation design
	4.8 Conclusion

	5 Implementation
	5.1 Introduction
	5.2 Configuration Information
	5.3 Pooled Component Implementation
	5.4 Non Pooled Component Implementation
	5.5 JITA
	5.6 Matrix Implementation
	5.7 Calculation of Median and Standard Deviation
	5.8 Data Grid Implementation
	5.9 Dynamic Query
	5.10 Testing Implementation
	5.11 Conclusion

	6 Evaluation
	6.1 Introduction
	6.2 Methodology
	6.3 SQL Server Experiments Results
	6.4 MS Access Experiments Results
	6.5 Conclusion

	7 Conclusion
	7.1 Introduction
	7.2 Conclusion
	7.3 Critical Analysis
	7.4 Future Work

	8 References
	Appendix 1
	A. PrototypeApplication.cs
	B. Assembly info [PrototypeApplication.cs]
	C. COMAccess.cs
	D. Assembly info [COMAccess.cs]
	E. COMSQL.cs
	F. Assembly info[COMSQL.cs]
	G. NoCOMAccess.cs
	H. Assembly info [NoCOMAccess.cs]
	I. NoCOMSQL.cs
	J. Assembly info [NoCOMSQL.css]
	K. AppConfig

	Appendix 2
	A. GANTT Chart

