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Athos: An Extensible DSL for Model Driven Traffic and
Transport Simulation

Benjamin Hoffmann! Neil Urquhart? Kevin Chalmers? Michael Guckert*

Abstract: Multi-agent systems may be considered appropriate tools for simulating complex systems
such as those based around traffic and transportation networks. Modelling traffic participants as agents
can reveal relevant patterns of traffic flow. Upsurging traffic in urban areas increases the relevance of
such simulations and the insight they provide into reducing congestion and pollution. Developing
multi-agent traffic simulations is a challenging task even for professional software developers. In
contrast, domain experts need tools that can be quickly adapted to new questions emerging in their
research without potentially error-prone communication with software developers. There is a need for
simulation tools that are intuitive to domain experts yet flexible and adaptable by software developers
as required. A model driven approach with an extensible domain specific language delivers an answer
for both of these opposing requirements. The modeller is relieved from implementing time consuming
programming details and can focus on the application itself. We present the domain specific language
Athos that allows to create simulations of traffic and transport related problems declaratively. The
models are platform independent and executable code can be generated for appropriate multi-agent
platforms. The language is flexible and can be easily extended by exploiting the structure of the
problem domain itself. In this paper, we present Athos and focus on how it can be extended by arbitrary
traffic and routing algorithms through an annotation-based extension mechanism.

Keywords: Domain Specific Language; Traffic Simulation; Multi Agent System;

1 Introduction

Human cognition alone can no longer comprehend the growing complexity observed in
many world systems. Instead, such systems must be analysed using experimentation and
simulations that reveal some of the system’s internal mechanisms. Transport networks and
the associated traffic flows in urban areas are examples of such complex systems. Increasing
traffic, congestion, and a rising number of last-mile deliveries call for new ideas that must be
assessed before implementation because real-world testing would be too expensive. Tools
that allow realistic simulation of alternative traffic scenarios offer insight into the feasibility
and effects of the options.

! Kompetenzzentrum fiir Informationstechnologie — Technische Hochschule Mittelhessen benjamin.hoffmann@
mnd.thm.de

2 School of Computing — Edinburgh Napier University N.Urquhart@napier.ac.uk

3 Department of Media, Culture and Language — University of Roehampton Kevin.Chalmers @roehampton.ac.uk

4 Kompetenzzentrum fiir Informationstechnologie — Technische Hochschule Mittelhessen michael.guckert@mnd.
thm.de

©®O®


https://creativecommons.org/licenses/by-nc/3.0/
benjamin.hoffmann@mnd.thm.de
benjamin.hoffmann@mnd.thm.de
N.Urquhart@napier.ac.uk
Kevin.Chalmers@roehampton.ac.uk
michael.guckert@mnd.thm.de
michael.guckert@mnd.thm.de

2 Benjamin Hoffmann, Neil Urquhart, Kevin Chalmers, Michael Guckert

Rapidly changing requirements and the potential variety of alternative scenarios require
software solutions that can be easily adapted and extended. When using general-purpose
languages (GPLs), traffic domain experts must rely on software engineers to modify the sys-
tem. Communication of experts of different domains is a known source of misunderstanding
and may lead to weak models and error-prone systems [DC12]. The typically low-level
abstraction in GPLs prevents reuse of larger building blocks so that implementations have to
start from scratch each time a new problem has to be solved. Conversely, using a proprietary
simulation platform often does not provide sufficient flexibility to deliver answers to specific
questions and may create undesirable dependencies.

Model-driven approaches offer potential to overcome this dilemma (see [Ho18a]). Domain-
Specific Languages (DSLs) can overcome the problems of platform dependency and
miscommunication. Due to their higher abstraction level, and a notation specific to the
underlying domain, they more expressiveness [va00, do12]. With our DSL, named Athos,
domain experts can specify traffic simulations and related optimisation problems declar-
atively without lower-level programming concerns. Athos models follow a multi-agent
paradigm and are accessible to humans and can be transformed into executable programs
for given target platforms (e.g., NetLogo> or Repast Simphony?®).

As a language for modelling simulations and optimisation problems, Athos targets do-
main experts as language users. Algorithms are considered to be part of the supporting
infrastructure that runs the simulations. Therefore they are not implemented in the Athos
language itself. This approach keeps models as computationally-independent as possible.
Nevertheless, Athos has an elaborate mechanism that allows developers access and integrate
external algorithms into the development and runtime environment. This is an important
feature, as, in dynamic simulations of traffic scenarios, optimisation problems have to be
solved to measure relevant indicators of the subject of investigation. For example, when
simulating a multi-vehicle delivery problem, we must first solve the underlying routing
problem and then test against dynamic traffic patterns (see [Ho18b, Ho19b]). According to
the philosophy of Athos, implementing basic algorithms is not within scope and must be
provided externally through problem solvers that must integrate transparently. This way,
Athos is an interface between domain experts and algorithm developers from academia.
Domain experts do not only put academic algorithms to real-world application, but also
define requirements and discover potential for improvement. Algorithm scientists possess the
expertise required for the creation of efficient algorithms that fulfill the defined requirements.

The rest of this paper is organised as follows: Section 2 introduces Athos, points out the
need for an extension mechanism, and outlines how such a mechanism was implemented
for Athos. Section 3 provides an example that illustrates how to extend Athos by integration
of an external algorithm. In Section 4, other languages in the domain of agent-based traffic
modelling are discussed. Finally, section 5 concludes the paper and identifies important
future work.

5https://ccl.northwestern.edu/netlogo/
Shttps://repast.github.io/
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2 Athos

Athos is a DSL for the specification of traffic and transport simulations that comprise vehicle
routing problems (VRPs). Written with the Xtext framework?’, it features a full set of tools
for developing models (e.g. a textual editor, model checking, and a generator). Our approach
is platform independent, though we currently use NetLogo as our main target platform.
This section introduces the reader to the language before it discusses the challenges of the
domain. These challenges are then shown to be the catalyst that led to the development of
the extension mechanism presented in the final part of this section.

2.1 A Domain-Specific Language for Vehicle Routing Problems

Athos is a declarative language designed for domain experts with little to no programming
experience. In a typical traffic and transport scenario, vehicles, agents (the terms are used
interchangeably in this paper) aim to perform given tasks or solve predefined problems, such
as following a predefined route or delivering goods from depots to a list of targets. Athos is
designed for tasks ranging from simple routing problems — e.g., the travelling salesman
problem (TSP) or the vehicle-routing problem with time-windows (VRPTW) — to models of
complex urban scenarios that respect the dynamics of traffic flow. In Athos, agents mutually
influence each other. Congestion effects that occur due to parts of the road network being
frequented by too many agents can thus be observed and examined. Due to congestion,
agents may reconsider their original plan and adapt their behaviour according to the present
situation; e.g. by avoiding congestion. Athos can thus be used to specify scenarios in which
emergent phenomena may occur and new insights into the flow of traffic gained.

1 model VRPTW_Example

world xmin 0 xmax 75 ymin O ymax 75

products product soap weight 1.0

agentTypes

agentType staticDelivery congestionFactor 60.0 maxWeight 200.0
behaviour awt awaitTour when finished do die;
behaviour die vanish;

functions

9 durationFunction normal length default

10 complete network

11 nodes

12 node nl (35.0, 35.0)

13 ...

14 node n51 (47.00, 47.00)

15 edges

I N Z I RN

List. 1: General structure of an Athos model

Listing 1 demonstrates the structure of an Athos program. It defines a network, agent
behaviour and details of the delivery problem. The network or graph defines the roads
(edges) that vehicles can traverse. A complete graph is generated and the Euclidean distance

7 https://www.eclipse.org/Xtext/
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is used as length. Alternatively, a graph can be specified with individual attributes for its
edges. Listing 2 demonstrates how sources and demands can be specified using nodes of the
network. The keyword ea indicates that an evolutionary algorithm is to be used to compute
the tours for the vehicles. Additional parameters for the algorithm are provided. For each
demand node, quantities, time windows, and service time are defined.

Implementing such simulations with a GPL and using problem solver libraries leads to code
in which the original problem is difficult to manipulate. By contrast, Athos is a declarative
language that focuses on the specification of the actual problem rather than its solution. The
solution is determined by the behaviour of the agents. In Athos, behaviour specifications
are encapsulated in Agent-Behaviour Blocks (ABBs) that are associated with appropriate
algorithms (see Listing 2). These algorithms provide solutions for the respective problem
which are finally re-translated into observable agent behaviour.

1 sources

2 nl isDepot soap sprouts (staticDelivery) agentsStart route
3 ea (n2, n3, n4, ..., n48, n49, n50, n51) popSize 30
4 demands

nl hasDemand soap absQuantity 0.00 earliestTime ©0
latestTime 230 serviceTime 0

n51 hasDemand soap absQuantity 13.00 earliestTime 124
latestTime 134 serviceTime 10

List. 2: Sources and demand specification in Athos

Athos models are processed by a generator that creates code for an appropriate target
platform. In order to create this code, the generator applies a set of transformations to the
model and generates code that can be executed on the target platform. Currently, the generator
features a complete set of transformations for the NetLogo platform. NetLogo is a DSL for
multi-agent programming that is supported by a suitable simulation environment [TWO04].
Though NetLogo specialises on the technical domain of multi-agent simulations, it is not
tailored towards a specific application domain. Therefore, a language like Athos, which is
specifically designed for the domain of traffic and transport simulation, further facilitates the
creation of appropriate models. Since Athos models are platform independent, the creation
of additional transformation sets designed for other target platforms is straightforward and
has already been described in our previous work [Ho18a].

2.2 Modelling Vehicle Routing Problems

Since Athos is tailored towards the domain of traffic simulation and transport optimisation,
the language must offer means to concisely formulate VRPs. Thus, the meta model of
the language provides elements to define various types of routing problems (see [Ho18a,
Ho18b, Ho19a]). Surveying the literature reveals that there is a range of problems that can
be subsumed under the general term VRP.
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From a mathematical point of view, the process of adding additional requirements to a
problem is referred to as the generalisation of the problem. For example, a TSP can be
generalised to a problem that defines time windows for each node that must be visited.
The TSP may then be considered as a special case of the more general problem, in which
the time windows are maximised. From the perspective of modelling this relation can be
inverted as the TSP with time windows owns potentially more attributes and each TSP with
time windows certainly is a TSP. From a syntactical object-oriented perspective, adding
attributes and behaviour specialises a more general concept. In our hierarchy we consider a
TSP with time windows as a specialisation of TSP, i.e., TSP is the more general problem.

The family of VRPs can be arranged in a taxonomy. At the top, there is the most general
problem that offers the fewest definable attributes. The deeper the problem is located within
this hierarchy, the more variables are required by the problem type. The most general
problem type is the TSP (see Dantzig et al. [DFJ54] for its original formulation). The TSP
can be modelled on a complete graph with n vertices or customers c¢;(i = 1,...,n) are
connected by edges (or arcs, depending on whether the problem is symmetric or asymmetric,
respectively). Beginning at a given vertex, referred to as the base or depot, we find a
minimal-cost path of nodes (costs occur upon usage of an edge/arc that connects the two
respective nodes) that starts and ends at the depot and visits every other vertex exactly once.

By adding the requirement that the touring vehicle must return to the depot after m nodes have
been visited, we get the Clover Leaf Problem (CLP) [DFJ54].The TSP can be considered a
special instance of the CLP in which m > n — 1 holds. Nevertheless, we see the CLP as a
more specific problem as the TSP and classify it as a successor of the TSP in our taxonomy.

In the Capacitated Vehicle Routing Problem (CVRP) [BTV10], each vertex is assigned a
predefined demand d; (i = 1, ..., n), while the vehicle has a limited capacity g. Since the
vehicle may not perform partial deliveries, it is assumed that none of the demands exceed
the capacity of the vehicle.

The Heterogeneous Vehicle Routing Problem (HVRP) [BBV08] accepts different vehicle
types with different capacities, unlike the one vehicle type allowed in the CVRP. This
problem can be further extended by introducing:

e fixed costs for each vehicle type that occur upon deployment of a vehicle of the
respective type (the problem is then referred to as the HVRP with Fixed-costs
(HVRPF)).

e vehicle-type dependent routing costs, i.e., the costs that occur for travelling a given
edge depend on the type of the respective vehicle (this is known as the HVRP with
vehicle-Depending routing costs (HVRPD))

The HVRP is a special case in which the fixed costs are set to zero and the costs that occur
are the same for all vehicle types (c.f. [BBVO0S8]).
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Fig. 1: Excerpt of Vehicle Routing Problem hierarchy

All the problem types defined above can further be extended by assigning time-windows
to each customer. A time-window is a time-interval in which a visit must begin. If the
vehicle arrives early, it is required to wait until the customer is ready (start of the interval).
Conversely a vehicle that arrives after the end of the time window will be unable to service
that customer. The depot is assigned a time-window which defines the time by which all
vehicles have to return. Figure 1 illustrates the described hierarchy with the generalises
relationships and the possible adoption of time windows.

This problem hierarchy represents a small excerpt of the taxonomy of VRP types found
in the literature. Algorithms for solving such problems have been published and, as most
of the problems are NP-hard, for larger problem instances meta-heuristics are applied to
find feasible solutions of sufficient quality in a reasonable time. Algorithms and heuristics
have elaborate sets of parameters controlling the operation of the computations for which
appropriate values have to be provided. Athos transparently integrates such algorithmic
solutions for problems underlying the simulations with an open mechanism for extended
problems and algorithms. The language design must therefor address three major issues:

1. It must allow for an integration of various algorithmic approaches (e.g., ant colony-
based or evolutionary algorithms) for each specific type of problem.

2. It must act as an interface that allows users to pass parameters together with their
respective values to the chosen algorithms.

3. The language must be designed in a way so to support modelling the entire VRP
hierarchy as far as reasonably possible.

2.3 Extensibility of the Language

Athos features a built-in extension mechanism that allows algorithm developers to integrate
their implementations into the Athos environment. There is no need for a language developer
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Fig. 2: Architecture of the Athos Development Environment

to change definition of the DSL,; i.e., its abstract or concrete syntax, or its static semantics.
There is also no need for a language developer to adapt the transformations to the respective
target platform. Instead, all an algorithm provider needs to do is to create a Java class that
extends a given base class, using two Java annotations provided by the Athos framework.
The domain expert will then be able to use the newly integrated algorithm almost as if it
was natively supported by the environment.

Figure 2 illustrates the general architecture of the DSL and its development framework.
In the described scenario, NetLogo is used as a target platform. However, this approach
works in principle with any Java-based multi-agent-simulation platform. Inside the Athos
editor, an Athos model is developed and then further processed by the generator. The
generator uses a subset of its transformations in order to generate a program that can be
run on the NetLogo multi-agent simulation platform. The generated NetLogo program
requires the provision of a special Athos extension package referred to as the generic
optimisation algorithm library. Note that different target platforms might require to
adapt this library to the respective target platform. The package encapsulates all routing-
related algorithms that can be used inside the NetLogo program. In order to integrate
an algorithm into the DSL framework, algorithm providers have to extend the base
class ExtendedOptimisationBehaviourImplementation and use two distinct
annotations provided by Athos. These annotations provide information to the extension
algorithms. Moreover, the Athos Editor can use the information provided with these
annotations to check certain constraints and provide code completion proposals. It is also
important to note that an algorithm in the extension package can also manipulate the
specifications of the NetLogo program. In the case study in Section 3, this will be used to
assign routes of nodes to the vehicles.

Figure 3 provides an overview of the annotations and their respective attributes required for
the integration of an algorithm into the Athos framework. The first of these two annotations
is @Algorithm that marks a class as an algorithm that will be accessible in an Athos
model. It features a name attribute that is used to assign a name to the algorithm for
invocation inside an Athos model. The second annotation is KeyTypeSet. It is used to
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<annotation>> <annotation>> <enumeration>>
Algorithm KeyTypeSet Types
uses
name:String="none" D keys : String[] * INT, DOUBLE,
typeConstraints : Types|[] NODE,AGENT, ...

Fig. 3: Annotations Used to Integrate Additional Algorithms into Athos

Type Explanation

INT,DOUBLE, Primitive types must meet the lexical requirements of the respective type.

STRING

AGENT Parameter must refer to an existing agent type declared in the agents
section of the model.

NODE Parameter must refer to an existing node declared in the network.

START_POS. Parameter must refer to a node in the network. This node should also

sprout (create) the correct number of vehicles.
LINK Parameter must refer to an edge declared in the network.

Tab. 1: Type System Applied in the Athos Extension Annotations

provide additional information that cannot be modelled with the native language elements
provided by Athos. As an example, consider the implementation of a new heuristic that
features a probabilistic parameter. It can also be used to model vehicle routing problems for
which Athos does not natively feature the required modelling elements. The KeyTypeSet
annotation has a String and a Type array as its attributes. Algorithm developers can
assign a name to each parameter required by their algorithms and at the same time ensure
type-safety by providing a type for each parameter. The parameter names and their types
simply have to be at corresponding positions inside the respective array, i.e., the parameter
with the name provided at keys [0] is of type typeConstraints[0] and so on.
Parameters can have the primitive types string, integer, double. They can also have the
complex types node, START_POSITION, or AGENT. Each of these types can also be
defined as a one- or two-dimensional array. Table 1 gives an overview of the allowed
parameter types together with a brief explanation of their semantics (an example will also
be discussed in the case study in Section 3).

1 @Algorithm (name="EAForVRPTW")

2 @KeyTypeSet(

3 keys= { "startCity", "customers", "vehicleCapacity",

4 "populationSize", "probabilityForGreedyCreation"},

5 typeConstraints={Types.NODE, Types.NODE_ARRAY, Types.INTEGER,
6 Types.INTEGER, Types.DOUBLE}

4

8

9

)
public class EvolutionaryAlgorithmForVRPTW
extends ExtendedOptimisationBehaviourImplementation {

List. 3: Annotation of an Algorithm for VRPTW
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In [Ho19a], we describe the implementation of an evolutionary algorithm for the VRPTW
based on that presented by Ombuki et al. [OmO06]. Since this algorithm was used in the
process of bootstrapping Athos, it is natively supported by the language. However, Athos
is also open for any other algorithm that solves VRPTWs. Listing 3 provides an example
that shows how the information required by Ombuki’s algorithm could have been provided
using Athos’ extension mechanism. The @A1gorithm annotation in line 1 marks the class
as an algorithm that can be invoked from an Athos model with the name EAForVRPTW.
This evolutionary algorithm requires some additional parameters (some omitted for brevity):
The first parameter, startcity, is required so that the algorithm knows the location
of the depot. The customers node array represents the customers of the problem —
the nodes that have to be visited. The integer parameter vehicleCapacity sets the
maximum capacity of the homogeneous fleet of vehicles assumed in the algorithm. The
populationSize parameter of type integer is a common parameter for evolutionary
algorithms that determines the number of chromosomes per generation. The parameter
propabilityForGreedyCreation of type double is more special to the chosen
algorithm. In the initialisation phase of the algorithm, it determines the probability for a new
chromosome to be created by the application of a greedy heuristic. With the complementary
probability the customers represented by the chromosome are simply ordered randomly.

1 sources

2 nl isDepot soap sprouts (deliveryl) agentsStart extended EAForVRPTW
3 startCity (nl)

4 customers (n2, n3, n5, n9, nl0, nl2, nl5, n22)

5 vehicleCapacity 200

6 populationSize 20

7 probabilityForGreedyCreation 0.7

8 at 2

List. 4: Example Model With Behaviour Specification

The annotated algorithms in the package are inspected by the Athos framework. The validator
uses the information provided via the annotations to determine new keywords that are valid
when defining depots in the network. Listing 4 defines node n1 as a depot from which a
homogeneous fleet of vehicles with a capacity of 200 start their tour. In addition to the
problem-related parameter values, the model also specifies parameter values that affect
the execution of the algorithm. In this example, the population size is set to 20 and the
probability that a chromosome is created with a greedy approach is set to 70 per cent.

113 sources

114 nl isDepot soap, towels sprouts (deliveryl ) agentsStart
115 extended EAForVRPTW startCity ni (|
116 demands

customers : NODE_ARRAY
117 n23 hasDemand soap absQuantity 40.0, t s

Fig. 4: Proposal Provision in the Athos Editor

Additionally, the proposal provider inspects the annotations in order to provide valid
proposals. This is especially important given that the targeted users of the language are
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domain experts rather than professional software engineers. In Figure 4, it is illustrated how
the Athos IDE provides support in the invocation of the EAFor VRPTW algorithm. After the
specification of the name of the algorithm, the Athos framework inspects the associated
KeyValue-Annotation in order to help the user specify the parameters in the correct order
and with the correct types. In the illustrated example, the framework can deduce from the
position of the cursor and the previous information, that the next parameter to be defined
must be the customers parameter. A corresponding proposal is thus provided to the user
who runs little risk of specifying the parameters incorrectly. The framework can also check
that the provided information matches the types expected by the algorithm.

3 Example Use Case

In this section, we will provide a detailed examination on how to use the extension mechanism
of Athos in order to integrate and apply new routing algorithms. We will show that this does
not only allow integration of the most efficient algorithms, but also to extend the language
and its infrastructure in a way that new problem types can be modelled and solved.

3.1 The HVRPD and an Instance Model

In section 2.2, the HVRPD was defined as a generalisation of the TSP from a mathematical
point of view and as a specialisation of the TSP from an object-oriented point of view.
In this example use case, we will model an even more specialised variant of the HVRPD.
Here, there is not only one but two different products that are to be delivered. Hence, for
each customer, two different demands have to considered, and for each vehicle type of the
heterogeneous fleet two different capacities have to be modelled. Moreover, in this variant
of the VRP, the vehicles do not start their tour from a central depot but from different nodes
of the network. However, for the sake of modelling, the vehicles are regarded as being
coordinated by one depot inside the network, even though they are not parked there.

Listing 5 shows how the HVRPD with multiple products and non-central vehicle starting
locations can be modelled with Athos. The first two lines set the formal name of the model
and the boundaries of the environment. Line 3 defines the product types that are to be
delivered. In line 4, the required agent attributes are declared. As each vehicle has routing
costs and a maximum quantity for each product, there are three declared attributes. Lines 5
to 15 define the agents that form the heterogeneous vehicle fleet. In this example, the fleet
consists of three different agent types. The declaration of the first vehicle type spans from
line 6 to 11. Lines 7 to 9 assign an actual value to each of the declared agent attributes. The
behaviour exhibited by the first vehicle type is modelled in lines 10 and 11. The modelled
behaviour has the vehicle waiting at its starting location (in a parking position) until it is
assigned a route by the coordinating depot. After the route was performed, the agent is to
disappear from the simulation.
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1 model id00O1

2 world xmin O xmax 40 ymin O ymax 22

3 products product soap, product towels

4 agentAttributes soapCapacity, towelsCapacity, costPerDistance
5 agentTypes

6 agentType deliveryl congestionFactor 0.0

7 attr soapCapacity 120.0

8 attr towelsCapacity 240.0

9 attr costPerDistance 1.0

10 behaviour awt awaitTourExternal when finished do die;

11 behaviour die vanish;

12 agentType delivery2 congestionFactor 0.0

13 // omitted for reasons of brevity

14 agentType delivery3 congestionFactor 0.0

15 // omitted for reasons of brevity

16

17 // network specification omitted for reasons of brevity
18

19 sources

20 nl isDepot soap, towels sprouts (deliveryl )

21 agentsStart extended JSpritHVRPSolver

22 customers (nl, n2, n3, n4) demands ("soap", "towels")

23 vehicleTypes ("deliveryl", "delivery2", "delivery3")

24 capacities ("soapCapacity", "towelsCapacity")

25 costsPerDistance (1.0, 1.1, 1.2) instancesPerType (2.0, 1.0, 1.0)
26 startLocations ((nl,nl), (n2), (n4)) at 2

27 nl sprouts quantity 2 (deliveryl) at 1

28 n2 sprouts quantity 1 (delivery2) at 1

29 n4 sprouts quantity 1 (delivery3) at 1

30 demands

31 n23 hasDemand soap absQuantity 40.0, towels absQuantity 50.0
32 // additional demands omitted

List. 5: General Structure of an Athos Model

The declaration of the other types is done analogously and was omitted for reasons of
brevity. The same goes for the specification of the network which was already explained
in section 2.1. Line 19 starts the definition of sources — nodes inside the network where
vehicles enter the simulation. Line 20 marks node n1 as a depot. The agentsStart
keyword followed by the extended keyword allows the invocation of an algorithm that
possesses the aforementioned extension annotations required by Athos.

Lines 21 to 26 represent the code that invokes an externally provided algorithm. Line 21
specifies that the JSpritHVRPSover provided in the generic optimisation algorithm
library is to be invoked. Line 22 specifies that n1, n2, n3, n4 arethe customers
that have to be supplied with soap and towels. The actual demands of the customers
are specified beginning in line 31. However, it would also be possible to use the extension
mechanism to specify the demands of each customer®. Line 23 specifies the vehicle types
that comprise the heterogeneous fleet controlled by the depot. Line 24 is required so that the
algorithm can infer how to query for the actual capacities of a vehicle type®. In line 25, the

8 This could actually be achieved in more than one way. It is possible to define two arrays, one containing the soap
and the other the towel demand for each customer. Alternatively, a two-dimensional array could be specified that
has both demands for each customer inside a tuple.

9 Not every agent attribute is necessarily a capacity attribute. In lines 7 to 9 only two of the defined attributes are
actually capacity attributes. To allow the algorithm to infer this fact, this information has to be provided



12 Benjamin Hoffmann, Neil Urquhart, Kevin Chalmers, Michael Guckert

distance-dependent routing costs for each vehicle are defined, e.g. one distance unit travelled
by a vehicle of type deliveryl adds 1.0 cost units while the same distance adds 1.2 cost
units when a vehicle of type delivery? is used. In the same way, the number of actual
instances of each vehicle type is defined in this line. Finally, in line 26 the starting positions
of the vehicles inside the network are defined. The two instances of type deliveryl both
start at node n1. The instance of delivery?2 starts at node n2, while the vehicle of type
delivery3 begins its tour at node n4. The keyword at defines at what point in time
(which is measured in ticks) the coordinating depot has the vehicles start their tour.

It is important to note, that in this scenario the startLocations parameter is used to
inform the algorithm on where the vehicles are to start their tour, i.e., at what node they
wait for an order from the coordinating depot. However, the creation of these vehicles is
initialised by the code provided in lines 27 to 28. The nodes defined as start locations
in line 26 have to correspond to the actual start locations defined in lines 27 to 28. To
enable the validator to check the model for this correspondence, the startLocations
parameter was assigned the type Types.START_POSITION_ARRAY_ARRAY. This way,
the validator automatically checks that each node declared as a starting location creates
a sufficient number of vehicles prior to the execution of the algorithm. However, if the
constraint fails, the validator only issues a message instead of an error. The reason for this is
that the algorithm creator can perform the creation of the cars inside the algorithm.

3.2 Implementation of the Algorithm

ExtendedOptimisationBehaviourImplementation JSpritHVRPSolver

getNodeList(k:String):List<Turtle>
getNodeList(k:String,f:Function<Turtle, T>):List<T>
createTranslatedCostMatrix(k:String,f: Function,t: Transformer)
getIldFunction():Function<Turtle,String>

reportPrimitive():Object

Fig. 5: Convenience Methods Provided by the Extension Framework to Extension Algorithms

The annotation of the algorithm functions as discussed in section 2.3 and exemplified in
Listing 3. An example implementation is provided online!°. As is depicted in Figure 5,
classes that implement an algorithm must implement the reportPrimitive ()-Method.
The obtainment of the required extension parameter values is facilitated by convenience
methods (e.g. getNodeList ()) provided by the base class. Though the extension
mechanism works for all Java-based simulation platforms, in this example the extensions
for the NetLogo platform are presented. Since the algorithms that solve the problems are
independent of the NetLogo platform, there must be a conversion mechanism, that allows a
mapping from NetLogo nodes (known within NetlL.ogo as Turt les) to the corresponding
node data structures used in the algorithm (e.g. Location that can be identified by a

10 https://athos.mnd.thm.de/public/JSpritHVRPSolver.txt
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String id). For this, a default mapping Function is provided by a base class that can
be changed by overwriting the get IdFunct ion method. The base class also provides
facilitated access to the agents of the simulation together with their data structures. This
way, the algorithm can easily obtain and manipulate data from entities of the simulation.
This mechanism is used to equip each agent with a tour from the solution of the algorithm.

4 Related Work

Literature on DSLs specifically designed for the domain of transportation and traffic
scenarios incorporating multi-agent environments and VRPs is scarce. Research has been
published that examines general DSLs with a domain in the context of multi-agent systems.
This section compares Athos with DSL-like approaches as well as with simulation platforms.

Steil et al. [St11] present a model for the expression, execution, evaluation and engagement
of routing plans for patrols (e.g. police patrols) which they call the 4Es model. A DSL
named Turn is used to describe algorithms that allow an agent to successively determine the
next node on a route in a given graph network. Turn lets the user specify algorithms for
the target selection as a composition of set reduce functions (SRFs). An SRF takes a set of
possible target nodes and reduces this set according to certain criteria. Turn is used to chain
and configure an arbitrary number of SRFs. An SRF chain is executed until only one node
is left which then becomes the next target node. If the subset comprises multiple nodes,
one of these nodes is chosen randomly. Algorithms written in Turn are executed by the
PatrolSim environment which also evaluates routes produced by the algorithms according to
a predefined set of metrics. A geographic information system (GIS) engages users through
provision of patrol routes upon request.

Similar to Athos, the 4Es model can be used to model specific routing problems. The creation
of satisfactory patrol routes is a problem related to the VRPTW. Though Athos and Turn can
both be used to direct agents through a network of nodes, they differ in the way target nodes
are specified. While Turn is mainly a composition of rules that successively reduce a set of
potential target nodes, Athos allows an explicit specification of which node (or set of nodes)
to visit next or requires that a set of nodes must be visited in an optimal order according
to a given cost function. Another difference is the way behaviour changes are defined in
both languages. In Turn, events that lead to a change of behaviour are transparently “hidden”
inside the SRF and controlled by changing the SRF. Whenever an SRF returns an empty set
of nodes it is skipped and replaced by another SRF which leads to a change of behaviour. In
Athos, it is possible to explicitly state when a change of behaviour has to occur.

While in the 4Es model the cost to travel between any two nodes is defined as the minimum
number of vertices between these nodes (i.e., the minimum hop-count), Athos allows the
definition of arbitrary cost functions on the edges of the network. Turn does not reflect
dynamic changes in the network, but uses the same distances throughout the entire simulation.
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Athos cost functions can contain factors that dynamically change depending on the current
traffic situation and allow for richer scenarios.

The GAMA framework [Gr13] supports the creation of spatialised, multi-scale agent-based
models. It features a DSL named GAML with which agent-based simulation experiments
can be designed. Hence, it seeks to raise the abstraction and allow for easy parameterisation
and flexible visualisation of the models. GAML allows description of arbitrary details of
the model. Multiple levels of abstraction can be used inside a simulation. So it is possible
to look at a coarse-granular model for a road network with multiple detailed models that
represent the inside of buildings adjacent to the roads. GAML can be considered a language
that increases the abstraction level of models compared to those created in other simulation
platforms like Repast Simphony or Netlogo. Since the GAMA framework does not focus on
one specific application domain, models written in GAML can get complex. Data types
and the definition of aspects to visualise agents in the simulation are hard to understand for
domain experts with only limited experience in software engineering.

MATSim [HNA16] is a multi-agent microsimulation system based on a principle of co-
evolution, in which agents are equipped with a set of plans which they can try and evaluate.
In each cycle a plan is selected, applied and evaluated. With a given probability, agents
modify different dimensions of their plans. For example, agents can vary the time they leave
a given location, choose a different route or switch to a different mode of transport. Each
agent seeks to optimise its individual outcome. Macijewski and Nagel present a MATSim-
based approach to evaluate algorithms for the DVRP [MN12]. Their work intends to plan
demand-responsive transport services (DRT severcies) using the MATSim framework.
Using the MATSIm framework again requires deep programming and does not have a
declarative perspective which we find more suitable for domain experts.

All of the approaches mentioned above can be used to model real-world VRPs and
simulations. However, none of them can be used to generate traffic simulations from a
pure specification in a DSL without considerable additional effort. This effort would be
required for the development of either an appropriate simulation platform that processes
the specification or a generator which would transform the specification to an executable
traffic simulation. In this aspect, Athos is a consequent implementation of an instrument
with which models of dynamic routing problems can be formulated and solved thus making
use of the capabilities of the agent-based philosophy.

5 Conclusion and Future Work

We have demonstrated how Athos was opened for integration of additional VRP algorithms
by the introduction of an annotation-based extension mechanism. We have also shown
how this extension mechanism can be used to control arbitrary parameters of additional
algorithms and how it allows for modelling additional problem properties not natively
supported by the DSL without changing core elements of the DSL. Moreover, we discussed
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how this extension mechanism can feature constraint checks. We see two perspectives that
have to be further elaborated next. One is the flexibility of the language for both the language
developer and the domain expert and the other is a systematic evaluation of the language.

Flexibility of Language The generic nature in which problem solvers can be accessed in
the generated code allows for future extension of the system. In section 2.3 we presented
two important roles: the domain-expert uses the language for their research into traffic and
transportation, the algorithm developer can extend the language. Domain-experts identify
specific requirements and formulate them so that software engineers can then implement
appropriate Athos extensions. Such individual changes do not affect the kernel of the
language and must not be integrated into the language itself.

Evaluation of the Language Initial experiments and interviews with domain experts have
shown that Athos code is easily comprehensible for a traffic expert even without training.
Writing models is obviously more difficult and requires at least a minimal amount of training.
Future work will evaluate the language in field experiments and results will be reflected back
to the language and its design in order to further improve its usability. Besides Challenger’s
multi agent systems specific SEA_ML framework [CKT15] for evaluating DSLs we plan to
also blend the Cognitive Dimension of Notations framework (see [BG03]) and additional
approaches (e.g., [RABZ17]) into our evaluation methodology.
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6 Reviewer’s remarks

6.1 Section 0 — The Abstract
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page 2.

ﬁfsEEGMS—paper—}ffev&ewS} Added last mlle deliverie’ in the 1ntr0duct10n as

something that calls for new ideas. It is already explained, how Athos can help
to alleviate the problem. The fourth paragraph explains, how routing problems
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6.3 Section 2 — Athos
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a list of requirements could have been presented earlier in the motivation (review
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thenestly,T-don’tsee-the-problem-in-that}: Taxonomy (Figure 1) was revised.
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It is argued that it is not evident that the extension mechanism can be applied to
arbitrary multi- agent platforms (review 4)
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why Athos models are even more concise was added.
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explains the purpose of the graph.
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the example algorithm uses libraries of NetLogo -> are the algorithm implemen-
tations always specific to a specific simulation platform [currently: indeed - they
are! perhaps this is someting that could be added to the future work section?]
(review 3)

6.4 Section 3 — Case study

eo[Ben]:

eo[Ben]:

Mention that there is currently no data on user acceptance but that we are
working on that.

First show the implementation of the algorithm, then show how it is used in the
model. some snippets from the java file would be nice as a complement to the
model [I guess we won’t be able to fit that into 10 pages](review 3)
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H Renamed section and changed the 1ntr0duct10n of the section to motivate it
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UML-diagram (Fig. 5) should be moved to previous section, since it describes
genral facts (main capabilities of the base class and the reportPrimitive ()
method. (review 1)

6.5 Section 4 — Related work
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topic of incorporation of external algorithms into a dsl is missing completely
(review 1)
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6.6 Section 5 — Conclusion and Future Work

eo[Ben]:

a more clear transition from conclusion to future work is required (review 1)

6.7 Genral problems
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A section or a paragraph on common problems in traffic simulation before
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Anoutline-of the paperstructureismissing(review3)Changed the last paragraph

of the introduction.

+H Removed the term "network based traffic simulation".
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the-werd—rele~evenused—(review—1) The word ‘role’ still isn’t used in section
3, however, it should be clear now, that the first paragraph of said section deals
with the different roles that develop/extend/use Athos.
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