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Abstract 

The analysis of the Stirling engine has long been hampered by a lack of 

understanding of the complex relationship between the mechanical dynamics, 

thermodynamics and fluid dynamics operating within the engine. 

This thesis outlines the research into Low Temperature Differential Stirling 

Engines (L TDSE) at Napier University. These engines typically operate at 

temperatures between 273K and 373K. The pressure profile within the engine 

varies about atmospheric pressure. As such they are naturally able to exploit heat 

sources such as process waste heat, solar passive collectors and geothermal hot 

springs. So far the majority of investigations have been in the field of high 

temperature engines, with a temperature differential counted in the thousands of 

Kelvin. 

This work presents a third order analysis of the low temperature differential 

Ringbom - Stirling engine (L TDRSE). This is achieved by identifying the key 

elements of the engine. The laws of conservation and the ideal gas law are 

applied to each of these elements. From this a series of equations is written 

down, describing each element in turn. Simplifying assumptions are used to set 

boundary and limiting conditions. The equations are encoded to form the 

prediction program presented in the work. A test engine has been designed and 

manufactured, which, when equipped with a data logging system designed 

specifically for the engine, produces data sets for comparison purposes. 

It was found that the prediction program indicated many of the unique operating 

characteristics of the L TDRSE that were confirmed by the data for the test engine. 

These showed a good correlation between the piston and displacer phase 

relationship, the discontinuous motion of the displacer and the pressure profiles. 

Accuracy of the prediction program data was found to be within 30% of the values 

for test engine data. 
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Label Description Unit Variable 

a Angle formed by piston axis and con-rod at joint radian alpha 

ar Second angle formed by piston axis and con-rod at joint radian alpha1 

I1t Delta t, time step s delta 

t+M First time step s delta1 
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ev 
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DDe Diameter of displacer chamber m dde 
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DH Diameter of hot plate m dh 

Dp Diameter of piston m dp 

DR Diameter of regenerator m dr 

DRW Diameter of regenerator wire m drw 
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EE Energy in expansion space - total, specific kJ, kJ/kg ee 

EH Energy in hot plate per degree K kJ eh 

EK Energy in compression space - total, specific kJ, kJ/kg ek 

FA Force operator for the displacer stub springs N fa 

g 
Acceleration due to gravity m/s2 

9 

H,h Enthalpy - total, specific kJ, kJ/kg h 
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hD Height of displacer m hd 

hDe Height of displacer chamber m hde 
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me 
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mDR Mass of displacer rod kg 
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mE Mass of working fluid in expansion space kg 
me 

mEl Mass of working fluid in expansion space previous time-step kg 
me1 

mE2 Mass of working fluid in expansion space calculation time-step kg 
me2 

mH Mass of hot plate kg 
mh 

mK Mass of working fluid in compression space kg 
mk 

mK1 Mass of working fluid in compression space previous time-step kg mk1 

mK2 Mass of working fluid in compression space current time-step kg mk2 

mM Mass of matrix material kg mm 

mMC Mass of matrix material in cell kg mme 
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mMD Mass flow to/from atmosphere via displacer rod gap kg/s 
mddot 

mMP Mass flow to/from atmosphere via piston gap kg/s 
mpdot 

m Mass flow rate kg/s 
mdot 

mA Mass flow via piston and displacer rod gaps kg/s 
madot 

mR Mass flow rate through the regenerator kg/s 
mrdot 

NR Number of regenerators in displacer nr 

PA Pressure of atmosphere Pa pa 

PE Pressure in expansion space Pa pe 

PE,] Pressure in expansion space previous time-step Pa pe1 

PE,2 Pressure in expansion space current time-step Pa pe2 

PK Pressure in compression space Pa pk 

PK,] Pressure in compression space previous time-step Pa pk1 

PK,2 Pressure in compression space current time-step Pa pk2 

Q, q Heat transfer - total, specific kJ, kJ/kg q 

r Radius for crank arm length m 

Ra Gas constant for air kJ/kgoK 
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S Entropy kJ/K s 

TA Temperature of surroundings (ambient) K ta 

Tc Temperature of cold plate K tc 
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Chapter 1 Introduction 

1 Introduction and Historical Background 

One of the earliest records of an operating closed cycle heat engine is attributed to 

Philo of Byzantium in the second century B.C. [Sier 1999]. This is a description of 

the operation of temple doors by the heating and cooling (therefore expansion and 

contraction) of air enclosed in an offering alter. 

During the following two thousand years the heat engine has developed into the 

ubiquitous internal combustion engine. The poor relation in this development has 

been the external combustion engine. This disparity is now being addressed with 

favourable applications as diverse as solar power [Bonnet 2003], [Bin Li 2005], 

combined heat and power [Tomas 2005], and also from potential third world 

applications [Mendoza 2003] to power for space exploration [Lanney 2002]. The 

following chapter aims to give a background as to how the external combustion 

engine, in the form of that proposed and built by the Reverend Robert Stirling, has 

developed. 

In 1816 the Reverend Robert Stirling, aided by his brother James, patented 

'Improvements for Diminishing the Consumption of Fuel, and in particular 

an Engine capable of being Applied to the Moving of Machinery on a 

Principle Entirely New. ' 

[UK Patent Number 4081 of 1816] 

The patent introduced two inventions, the hot air engine and the thermal 

regenerator (or economiser). Being the first to file for patent, the subsequently 

identified cycle became known as the Stirling cycle. Throughout his life, Stirling 

continued to improve the design of the closed cycle regenerative heat engine with 

external combustion. 

The Stirling engine has gone through several periods of investigation since its 

invention, notably by the early mechanists of the European industrial revolution 

[Sier 1999], Phillips of Eindhoven (electrical manufacture) in the nineteen-forties 

1 



Chapter 1 Introduction 

[Hargreaves 1991], General motors and the Ford motor company in the nineteen­

seventies, Kokums of Sweden [Walker et al 1994] and at the turn of the twenty first 

century British Gas [Microgen Energy Ltd 2003] and Power Gen [EON UK 2005] in 

the UK. 

As with many scientific inventions there is an abstract argument that Stirling was 

not the first to produce a working hot air engine. Further it could be argued that Sir 

George Cayley had built a hot air engine as early as 1807, so has more right to be 

thought of as the father of hot air engines (although the Cayley engine of 1807 

operated on an open cycle with internal combustion [Walker 1980], [Sier 1999], 

[Finkelstein and Organ 2001 D. 

1.1 A definition of the Stirling engine 

In this thesis the Stirling engine will be classified as a closed cycle regenerative 

heat engine. This would be a true description of the engine described in the 

patent of 1816 by Robert Stirling. This statement will benefit from some 

clarification. 

An engine utilising a closed cycle is one where the working fluid is retained within 

the engine and so undergoes successive process cycles. In the case of this work, 

the working fluid is air. 

The regenerator is a specialised heat exchanger constructed of many wire mesh 

screens laid one on top of another. When hot working fluid is passed through the 

cooler screens heat from the flow is transferred and stored, raising the 

temperature of the matrix. If the flow is reversed with colder fluid being passed 

through a hotter matrix, then heat is given up to the fluid from the matrix. Thus the 

regenerator abides by the laws of thermodynamics, where processes occur in the 

direction of decreasing quality of energy. Although the regenerator is not an 

essential part of a heat engine, this retention of a proportion of available energy 

improves the thermal efficiency. 

2 



Chapter 1 Introduction 

The term heat engine comes from the fact that the engine operates because of a 

temperature differential between the hot end heat exchanger and the cold end 

heat exchanger. 

A simple physical description of the Stirling engine could be an engine with three 

heat exchangers (Hot end, Cold end and Regenerator), a power piston and a 

displacer (maybe connected through some form of crank / lost motion mechanism) 

housed within a casing. 

Since the patent in 1816 to the work of the Phillips laboratories in the 1940's, 

many engines that do not fall into this classification have been labelled as Stirling 

engines, which caused some confusion over what is and is not a Stirling engine. 

This situation was clarified by Meijer, head of the Stirling Research at Phillips 

laboratories who 

'coined the generic title 'Stirling engines' to embrace all types of closed 

cycle regenerative gas engines regardless of the identity of the working 

fluid' 

[Walker et a11994] 

With this in mind, one may safely say that Stirling is indeed the father of the closed 

cycle regenerative heat engine, and his place in history is correct. 

1.2 Stirling engine types 

The layout of all Stirling Engines has been categorised into three distinct types 

following the work of Kirkley [Kirkley 1962], as alpha, beta and gamma as 

described below. 

Alpha (a). An alpha engine, shown in figure 1.1 consists of two opposed 

pistons separated by a heater, regenerator and cooler, all arranged in 

series with no displacer. 

3 



Chapter 1 Introduction 

Beta (J3). The beta type layout, shown in figure 1.2 is discerned by having a 

displacer, which occupies the same cylinder as the piston with the displacer 

rod piercing the piston. This is considered as the classic configuration, as 

the original patent shows an engine operating with this arrangement. 

Gamma (y). The gamma layout as shown in figure 1.3 is distinguished by 

the power piston and the displacer occupying separate cylinders. This 

removes the need to seal the path of the displacer rod through the piston, 

but tends to increase the dead space within the engine. 

compressiol~n r,-----:---~~~~------l'-:Expansion 
Piston Piston 

Compression Space Cooler Regenerator Heater Expansion Space 

Figure 1.1 Alpha Stirling Engine 

Compression Space Expansion Space 

Displacer 

Cooler Regenerator Heater 

Figure 1.2 Beta Stirling Engine 
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Expansion Space 

Displacer 

Compression Space 

Cooler Regenerator Heater 

Piston 

Figure 1.3 Gamma Stirling Engine 

Each configuration favours a different type of analysis; most of the available 

analytical literature has been undertaken upon the a configuration, this is due, in 

the main part to the ease with which the alpha layout can be adapted to a double 

action upon the piston making it more desirable to design engineers as a prime 

mover. 

1.2.1 Drive Methods 

The drive for Stirling engines can be split into two types, kinematic and free piston. 

• Kinematic. Utilises mechanical elements such as cranks, con-rods and 

flywheels where thermodynamic work is translated into shaft power. Engine 

performance is calculated from set parameters and dv/dt. 

• Free piston. Variations in working fluid pressure and the use of spring 

elements produce and maintain the motion and phase relationship of the 

pistons and displacer. Engine performance is an amalgam of 

thermodynamic and kinematic phase relationships. 
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Figure 1.4 Free Piston Stirling Engine 

1.2.2 Engine configurations advantages and disadvantages 

Alpha configurations have mainly been used for automotive engines where 

compact, multi cylinder, double acting layouts provide high specific power output. 

These machines require extensive and difficult (expensive) to achieve sealing 

solutions, as well as either sinusoidal crank shafts (inherent loss), or cam-follower 

actuators to achieve a (more) suitable piston phase relationship. The design often 

becomes 'overcomplicated' with high wear of timing components. The space 

occupied by the heater, regenerator and cooler is dead space, reducing the 

specific power output. 
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Beta configuration is the classic layout for the Stirling engine, being the one which 

the Rev. Stirling used in his patent of 1816. The piston and displacer being in the 

same cylinder means that at different parts of the cycle the swept volumes of the 

compression and expansion space can overlap, reducing dead space. Free piston 

designs have tended to be based on the beta layout and benefit from an absence 

of a physical linkage between the components. An added benefit is the ability to 

be hermetically sealed, have a simple design with minimal moving parts (two), 

hence having reliable operation and long working life(also can be self starting). 

The gamma configuration has separate cylinders for the piston and displacer with 

an inherent increase in dead space and an attendant lowering in specific power. 

1.3 The Ringbom Variant 

In 1905 Ossian Ringbom published a monograph detailing his observations on 

reducing the mechanical complexity of the Stirling engine. The breakthrough 

which Ringbom made was to use the pressure differential between the inside of 

the engine and the atmosphere to cause the displacer to move. In Ringbom's 

United States of America patent of 1907 the illustration shows that the upward 

movement of the displacer is actuated by the pressure differential, and the return 

stroke of the displacer by gravity and a snifter port. 

1.4 The Low Temperature Differential Stirling Engine (L TDSE) 

Previous to the early nineteen eighties investigations had concentrated on the high 

temperature variant of the engine requiring highly engineered and, by inference, 

high cost solutions. In 1983 Kolin [Senft 2000c] introduced the Low Temperature 

Differential Stirling Engine (L TDSE) at the Inter University Centre, Dubrovnik, 

during a short course on Stirling engines, followed six months later by Senft. Over 

the next ten years Kolin and Senft set themselves the target of finding the lowest 

possible temperature difference at which a Stirling engine would operate. Senft 

demonstrated an Ultra Low Temperature Differential Stirling Engine at the 5th 
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International Stirling Engine Conference, Dubrovnik, 1991, which achieved 

sustained motion with one half a Kelvin temperature difference [Senft 2000c], 

[Walker et al 1994]. The ultra low temperature work of Kolin and Senft has not 

addressed the question of whether any useful work can be extracted from the 

L TDSE. Kolin did investigate the energy production potential, but his work 

appears to have been more theoretical in nature than practical [Kolin 2000]. Some 

work has been undertaken in Japan and Germany to investigate L TDSEs in the 

100W to 1 kW range [National Maritime Research Institute, Japan 1995 to present], 

[Bonnet 2003], [Kolin 1986] 

1.5 The Low Temperature Differential Ringbom - Stirling Engine 

During the work carried out by Senft on L TDSE's he applied the principal of the 

Ringbom variant to the low temperature engine. Senft modified the Ringbom 

design by removing the snifter port. This modification allows for greater engine 

running speeds as both displacer strokes are now initiated under the action of the 

pressure differentials. 

1.6 Analysis of the Stirling engine 

The first analysis which produced closed form solutions was developed by Gustav 

Schmidt in 1871 [Schmidt 1871], [Reader and Hooper 1983]; [Urieli and 

Berchowitz 1984]. This was based upon an assumption that the processes were 

ideal, often referred to as an isothermal analysis. Schmidt encountered the 

problem of oversimplification of the complex interactions of cycles of operation and 

these assumptions flaw this analysis, resulting in over optimistic predictions of 

output power. This said, the Schmidt analysis stands as the first credible attempt 

to formulate a mathematical equation to describe the Stirling cycle. 

Much effort has been applied to improving the Schmidt analysis, Kolin [Walker 

1980] produced a graphical representation, Berchowitz [Urieli and Berchowitz 

1984] reduced the classic Schmidt analysis [Reader and Hooper 1983] to a simple 
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equation multiplied by a complex 'Schmidt number' and Organ applied further 

simplifying criteria for non sinusoidal motion. Beale analysed several engines and 

formed an equation that is scaled by an empirically derived 'Beal number' [Walker 

1980], [Reader and Hooper 1983], [Urieli and Berchowitz 1984], [Walker et al 

1994]. The usefulness of the modified Schmidt equation and Beal equation is that 

they may be used for 'back of the envelope' calculations. 

The complexity of analysis methods has increased as an understanding of the 

engine operation has developed. The most rigorous analysis available is the third 

order or nodal analysis which is used in this work 

1.7 The relevance of this work 

This work is to investigate the possibility of optimising the design of the Low 

Temperature Differential Stirling Engine so that it can produce power from low 

quality heat sources such as the output from solar hot water panels or waste heat 

from power generation. 

With the possibility of an energy shortfall for the United Kingdom in the next ten to 

fifteen years, alternatives to the traditional generating plant need to be explored 

[lEA 2001], [lEA 2006], [BP 2002], [BP 2006], [BBC 2003]. This technology may 

help improve the efficiency of energy usage, or give the opportunity to incorporate 

Micro Combined Heat and Power (MCHP) into the local electricity distribution 

network. 

The global demand, and by inference supply of primary energy, is continually 

increasing. Evidence of this phenomenon is available from agencies involved in 

gathering energy usage data. Examples to illustrate energy trends for this paper 

, are taken from the International Energy Agency (lEA), Key World Energy Statistics 

[lEA 2001], [lEA 2006] and from British Petroleum (BP) Statistical review [BP 

2002], [BP 2006]. A more focused view of energy usage in the United Kingdom 

(UK) may be found in The Digest of United Kingdom Energy Statistics (DUKES) 

[DTI DUKES 2006] or Energy Trends from the UK Statistics Office. With the 
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majority of world primary energy supply derived from fossil fuel there are major 

implications for resource depletion and greenhouse gas propagation. 

Between 1973 and 2001 world primary energy supply increased by 4 billion tonnes 

of oil equivalent (btoe), from 6 btoe to 10 btoe. The I EA projects that this trend will 

increase, and by 2030 world primary energy supply will reach 16.3 btoe. 

It is suggested by the lEA that the geographic use of energy will change, with the 

traditional high-energy users such as the Organisation of Economic Cooperation 

and Development (OECD) countries taking a lower percentage of world energy 

supply. Countries with emerging economies and increased industrialisation such 

as Africa, Asia, China, Latin America and the Middle East are expected to become 

the main energy users. What is apparent is that all countries are increasing their 

energy dependence year on year. 

Fossil fuels such as oil, coal, gas, oil sands and oil shale account for 75% of the 

world primary energy supply for 2001. This is set to rise to 83% by 2030. In 

context in 2001, 75% of 10 btoe came from fossil fuel, in 2030 it is expected that 

83% of 16.3 btoe will come from fossil fuel. This rise in both percentage and 

amount in btoe has significant implications upon greenhouse gas (ghg) emissions. 

(many of the future major green house gas contributors are not signatories to the 

Kyoto Protocol). 

The time required for the formation of fossil fuels precludes the natural 

replacement of reserves. Extraction far outstrips the replacement process. As 

such, fossil fuels should be considered as a finite resource. Any technology that 

reduces the rate of extraction and usage must be considered beneficial. 

Methods of predicting the quantity of reserves fall short. Geographic interpretation 

has proven unreliable, and test drilling costly. The logistics curve method overlays 

a curve, which describes the extraction of a finite resource over time. This relies 

upon an accurate estimation of the resource size [Cassedy and Grossman 1998]. 

This shows that there are many differing estimates as to the size of the world fossil 

fuel reserve. 
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Current predicted worldwide reseNe to production ratios estimate that at present 

and predicted rates of extraction/ the supply of primary energy will consume the oil 

reseNe in 50 years, the natural gas reseNe in 75 years and the coal reseNe in 

200 years [BP 2002], [BP 2004], [BP 2006]. Improvements in exploration and 

extraction techniques will lengthen the life of the reseNe. 

To reduce the rate of exhaustion, the way in which fossil fuel derived energy is 

used must be improved, either by a move away from fossil fuels or by improving 

the efficiency of processes using fossil fuel. There are many technologies being 

investigated as to suitability for this purpose, including the classical wind, wave 

and tidal approaches, and the less mature technologies of photo voltaics, fuel 

cells, also carbon neutral fuels such as ethanol and hydrogen. 

When combined with a conventional heating boiler the Stirling engine also joins 

this group of technologies. The Sankey diagram of a micro combined heat and 

power plant (MCHP) indicates that the main loss of energy is keeping the flue 

gases hot enough to avoid harmful condensation forming. 

The introduction of a 'disruptive technology' such as Low Temperature Differential 

Stirling Engines (L TDSE) working in the kW range, capable of utilising process 

waste heat or solar hot water as the motive energy source. may be one of many 

options used to improve energy efficiency. 

The opportunity for the Stirling engine in the 21 st century may be in domestic 

combined heat and power or micro combined heat and power (MCHP). The 

objective is to integrate a small Stirling engine into a domestic gas boiler, which 

will generate electricity whenever the boiler is operating. Several companies are 

readying themselves for production, notably in the UK, British Gas with its 

MicroGen unit developed in conjunction with Sunpower USA [Microgen Energy Ltd 

2003]; and Power Gen is developing a unit with Whisper Tech from New Zealand 

[Cogeneration and On-Site Power Production 2003] [1 ih International Stirling 

Engine Conference, Durham Keynote speech by Don Clacus]. These MCHP units 

produce around 1 kW of electricity. 
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By just replacing one or two central heating boilers with MCHP units no advantage 

to society would be gained. Where the technology becomes 'disruptive' is when 

several thousand units are all operating at the same time. A disruptive technology 

is one that has the potential to substantially disrupt an established industry, both 

economically and technologically. 

The boiler churn (replacement) market is in the order of 850 000 units per year in 

the UK [EST 2001]. With a similar take up of the new technology as there was for 

condensing boilers (10%), within 5 years a capacity of 1 GW (electric) will be 

installed, and within 10 years there could be a capacity of 5 GW (electric) installed. 

With the market place 'pump primed' then take-up will happen in a shorter 

timescale. All these investigations have concentrated on the high temperature 

variant of the engine, requiring highly engineered and by inference, high cost 

solutions. 

On a global scale this technology may provide a low cost low technology solution 

for stand alone small-scale power. Potential applications range from providing 

water pumping, power for medicinal refrigeration, and communications to simple 

lighting. The only limiting factor being a requirement of suitable solar radiation 

intensity, low quality hot water from process plant or geothermal hot water. It is 

felt that an opportunity has been identified for a low - tech, inexpensive engine 

that could be built and maintained by the 'village handyman' who does not need to 

know how it works, just that it does. 

The author sees a design such as a Ringbom - Stirling engine [Senft 1993], [Senft 

2000] that may be reduced to two moving parts and a housing incorporating a 

linear motion induction generator or linear pump as having the mechanical 

simplicity called for by this application. 

1.8 Advantages of the Stirling engine 

The Stirling engine offers several advantages over conventional internal 

combustion engines, having: 
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• Multi fuel/heat source capacity 

• Possible high thermal efficiency 

• Self starting capability (for some designs) 

• Option of using several working fluids 

• Minimal lubrication requirements 

• Long operating life (Harwell engine ran for over eight years, only requiring 

refuelling) 

• Virtually silent operation, as no explosive detonation of fuel 

• Burners (if used) may be set to the optimum for economy and emissions 

• No requirement for valves 

• Few moving parts within the engine 

1.9 A Brief History 

The table below gives a brief outline of events with the Stirling engine history, for a 

more comprehensive treatise upon the historic aspect the reader is directed to Sier 

[Sier 1999] 

Table 1.1 Mileposts in Stirling engine development 

Date Event 

1807 Sir George Cayley experiments with his first hot air engine 

1816 Rev. Robert Stirling patents his first engine 

1824 Sadi Carnot describes a fully reversible thermodynamic cycle and an 

impossible engine 

1849 James Prescott Joule establishes the 'mechanical equivalent of heat' 

refuting 'caloric' 

1850 Rudolf Gottlieb (Clausius) speculates on heat as a property of a particle of 

matter 

1851 Lord Kelvin publishes 'On the Dynamical Theory of Heat' 

1853 James Robert Napier and William McQuorne Rankine patent an air engine 

with extended heat transfer su rfaces (Patent 1416 of 1853) 

1854 William McQuorne Rankine provides one of the first explanations of the 
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Stirling cycle 

1871 Gustav Schmidt produces the "Classical" Stirling engine analysis with 

closed form solutions 

1878 Slaby Produces the first classifications for Stirling Engines 

Open Cycle, where a fresh charge of working fluid is mixed with the 

products of combustion (internal combustion), such as Cayley's engine 

Open Cycle, where a fresh charge of working fluid is heated externally but 

without mixing with combustion products, such as Ericsson's engines 

Closed Cycle, the charge of working fluid is retained within the engine and 

repeatedly used, such as the Stirling engine 

1905 Ossian Ringbom publishes his monograph on reducing the mechanical 

complexity of the Stirling engine and UK patent 10,675 

1907 Ossian Ringbom Patents an engine incorporating the improvements from 

1905 in the United States of America patent number 856,102 

1927 Helmuth Hausen produces his first study of periodic flow heat exchangers, 

to be distilled into his heat transfer book of 1957 

1937 Phillips of Eindhoven begins an analysis of the Stirling engine 

1950 Phillips of Eindhoven end their work for radio generators with the advent 

of the silicone transistor. Phillips continues development of larger 

automotive and marine engines up to 1979. This later work was carried 

out in collaboration with the Ford motor company, the US navy, United 

Stirling of Sweden (Kokums) and NASA 

1953 Rhombic drive by Meijer of Phillips enables better balancing of rotating 

components thus allowing higher working pressures (higher power output) 

1960 Finklestein presents hi~ first analysis using adiabatic working spaces and 

ideal heat transfer 

1962 Kirkley identifies that Stirling engines may be categorised into three types 

and suggests a naming strategy as Alpha Beta and Gamma 

configurations. This is expanded upon below in section 1.2 

1962 General Motors (USA) a. Outboard motor / automotive engine 

b. Solar heated generator for space 

exploration 

c. Ground Power Unit for US military 
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1964 Beale 'invents' the free piston Stirling engine 

1968 General motors nears completion of automotive engine and torpedo 

engine work 

1968 Free Piston / Displacer investigations by Beal et al and by Harwell (UK) 

1969 General Motors terminates all Stirling work in response to fears of 

litigation over school bus brake issues (unconnected with Stirling work) 

1974 MAN / MWM concentrate on underwater power plant. Later work is taken 

over by the German Government and declared state secret. 

1974 Bradley demonstrates a low temperature differential Stirling engine 

(probably the first) 

1975 NASA takes over the running of the DoE Stirling engine automotive 

programs 

1980 Japanese Government begins funding of four research projects 

1980 First run of Kolin's Itdse 

1983 First demonstration of Kolin's Itdse 

1991 NASA works on space power demonstration engines 

2000 NASA continues work at the Glen Research Centre 

2004 In recent years disclosure of work in progress tends to be sketchy, with 

tantalising glimpses of current state of the art given at conferences. 

Unfortunately security, both national and commercial, means that full 

disclosure is not a possibility. 

Notable successes for hot air engines of this time were the Ericsson water pump 

(open cycle external combustion engine) and later the Ky-Ko (generic) fan. 

1.10 An outline of this work 

In this work a full differential analysis is developed. The validity of this analysis is 

shown by comparison with a test engine. 

To this end, the author has created (and will present) a generic set of equations 

describing the operation of a L TDSE Ringbom type engine. Developing a 
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FORTRAN program of a virtual engine (the parameters of which may be changed), 

the results of which, when compared to a physical engine will test the equations 

Chapter two forms the literature review; this presents the development of the 

analysis from trivial to third order. Chapter three describes the aims of the work. 

Chapter four covers the experimental aspect of the work which includes design of 

the engine, development of the instrument and monitoring package, and the 

results gained from the experimental engine. Chapter five uses third order 

analysis techniques. Equation sets are derived from first principles and developed 

to a form ready for encoding into a computer program. The results from the 

analysis are then presented. Chapter six discusses the results. Chapter seven 

closes the body of the thesis with conclusions and gives recommendations for 

future work. 
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2 Literature review 

The field of Stirling engine research is the province of academics and research 

engineers undertaking specific investigations. The outcome of many of these 

investigations is a report. These reports, and the distilled information, are often 

reported in scientific magazines and presented in subject specific books. 

This has resulted in a large body of literature covering the Stirling engine, and the 

regenerator becoming available, but often in very general terms. The analysis of 

engine operation remains the province of research theses and commercially 

sensitive research and development. 

This situation causes the formation of small centres of excellence in academic 

institutions. These institutions, engaged in free research, aim to disseminate the 

work they are engaged in, and to discuss techniques and approaches for analysis. 

The antithesis is drawn from the commercial development of Stirling engine 

technology, where disclosure of techniques may give a competitor an advantage. 

Today, several companies are on the brink of large-scale commercialisation of 

Stirling Engine (and family derivative) technology. British Gas alone has invested 

over £40M [Conversation with David Bryce, 30th Oct 2002] into its MicroGen 

project. PowerGen working with Whisper Tech of New Zealand are also just about 

to release their micro combined heat and power unit [12th International Stirling 

Engine Conference 2005]. 

The main outlets for contemporary information are engineering journals and the 

proceedings form conferences such as the International Stirling Engine 

Conference (ISEC) and European Stirling Engine Forum. With such a small 

community, publicising research being carried out is often by word of mouth at 

conferences. This means it is not always easy to discover who is working on what 

and at which locations. 
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2.1 The advent of the Stirling engine 

To understand the reason for the Stirling engine invention, one would need to look 

at the social and economic drivers for the period. Water power was on the wane 

therefore a new motive power was required, a prime mover which was not 

restricted by geography or seasonal variations in weather. Steam was at the 

beginning of its development and the main rival to hot air engines. This 

development pushed the boundaries of contemporary metallurgy. For steam, a 

greater specific power meant increasing steam pressures, making boiler 

explosions an everyday hazard rather than an unusual occurrence. These 

explosions, if not immediately fatal, would at least be harmful to anybody in the 

vicinity. The economic driver was based upon how much work could be extracted 

from the engine per bushel of coal. 

The hot air engine appeared to solve many of these issues. The inclusion of the 

regenerator helps to improve the economy of the engine. By retaining heat within 

the engine, less coal would be required for an equivalent amount of work. Using 

air as the working medium meant that explosions were less likely to cause injury or 

death to those nearby. Eventually steam came out as the medium of choice. For 

many years, the Stirling engine may have been considered as being a solution in 

search of an application. 

It may be true that attempts to produce a working hot air engine existed before 

Stirling [Hargreaves 1991 ][Sier 1999]. What sets Sterling above these earlier 

forays is the fact that he was the first to patent a working engine. 

2.2 The classic Stirling cycle 

It is worth considering how the classic Stirling cycle is described, using the Alpha 

configuration as an example [Reader and Hooper 1983], [Walker et al 1994]. 
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I I 

Figure 2.1 Stage 1 Isothermal expansion 

At state 1, shown in figure 2.1, all the working fluid is in the expansion space. The 

compression piston is held in place at inner dead centre by the action of the 

flywheel and eccentric (lost motion) linkage. The working fluid is at T max, P max and 

V min . The heating of the working fluid causes the high pressure, which pushes the 

expansion piston out, performing work upon the flywheel. The volume increases 

and pressure decreases as the expansion process continues. Tmax is maintained 

as a constant by additional heat from the hot end heat exchanger. 

I I 

Figure 2.2 Stage 2 Isochoric displacement 

At state 2, shown in figure 2.2, the expansion piston is at its outer dead centre. 

The expansion piston and compression pistons begin an inward and outward 

movement (respectively) under control of the flywheel and crank linkages. The 

working fluid is transferred at constant volume from the hot end into the cold end 

via the regenerator. As the fluid passes through the regenerator it gives up some 

of its thermal energy to each matrix layer, thus enters at Tmax and leaves at T min 

I I1IIII I 

Figure 2.3 Stage 3 Isothermal compression 
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At stage 3, shown in figure 2.3, the compression piston is at its outer dead centre 

and the compression piston is at its inner dead centre, all the working fluid is in the 

compression space at Tmin, P min and Vmax. 

Figure 2.4 Stage 4 Isochoric displacement 

At stage 4, shown in figure 2.4, the compression piston is pushed inwards by the 

action of the flywheel, whilst the expansion piston is held in place by a lost motion 

linkage. In most applications the motion of the displacer and piston is usually 

sinusoidal. 

The above phase relationship between the pistons of the alpha configuration is 

similar to that of the phase relationship between the piston and displacer in beta 

and gamma configuration Stirling engines. 

Much has been written about the original engine of Robert Stirling, notably by 

Organ [Organ 2000b]. In his work Organ has analysed the original Stirling engine 

in depth, as well as more contemporary engines. The analysis of the Stirling cycle 

notably begins with Schmidt, in his analysis of 1871 [Schmidt 1871], although it 

should be put in context. 

The general operation of the Stirling engine can be described as: 

• Heat is applied to the hot end of the engine; this may be from any thermal 

generation. For example, combustion of hydrocarbons, heat from radio 

isotopes or solar concentrators 

• The working fluid expands doing work on the piston 

• The working fluid is moved from the expansion space to the compression 

space by means of the displacer 

• During this displacement heat is given up by the fluid to the regenerator 
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• The working fluid is then cooled and compressed 

• Heat is removed from the engine via the cold plate 

• The working fluid is then moved from compression space to the expansion 

space, by means of the displacer 

• During this displacement heat is given up by the regenerator to the working 

fluid 

• The working fluid is once again expanded in expansion space by the 

addition of heat from the hot end 

2.3 Previous analysis 

2.3.1 The isothermal analysis 

The classic or textbook isothermal analysis as given by Walker (Walker 1980, 

1994) and Reader and Hooper (Reader and Hooper 1983) may be summed up as 

follows 

For the isothermal analysis several assumptions are made 

• The working fluid is an ideal gas and can be described by the ideal gas law 

• The system is closed so the mass of the working fluid remains constant 

• There is no pressure drop throughout the system (no pumping loss) 

• Working fluid in the expansion space is all at Tmax 

• Working fluid in the compression space is all at Tmin 

• Continuous motion of the piston and displacer 

• (Schmidt uses sinusoidal to give closed form) 

• Isothermal working spaces, heat exchangers and regenerator 

• There is no dead space; all the fluid is available to do work 

• No parasitic losses such as friction 

• Steady state flow and thermodynamic conditions apply (not pulsed) 

• No aerodynamic effects around the displacer or through the regenerator 

• No heat is lost to the surroundings 
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The ideal isothermal model assumes the following temperature profile (figure 2.5) 

T (K) 
I 

_·_·_·_·_·_·_·_··T
r 

T min I-------~ 

Cooler Regenerator 

Figure 2.5 Temperature profile across the ideal regenerator 

Where 

T min is the cooler space internal temperature 

Tmax is the heater space internal temperature 

Tr is the regenerator average temperature defined as 

Tiso = Temperature ratio = T min / Tmax 

r = volume ratio = Vmax / Vmin 

The ideal gas law is given as 

PV=mRT 

I 

Heater 

Equation 2.1 

Equation 2.2 

Since the system is closed, mass is conserved, at any instantaneous point in the 

cycle the mass balance can be described as 

m system = m expansion + m regenerator + m compression 
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By transposing the ideal gas law, mass conservation can be rewritten as 

(PV) (PV) (PV) 
mSystem = - + - + -

RT Expansion RT Regenerator RT Compression Equation 2.3 

Rewriting for constants P and R 

m =p(Ve+Vr+v;,J~ 
system T T T R ere Equation 2.4 

Putting Tr in the form of equation 2.4 gives 

m =p[ve +[v, If7rJ] + Vc]~ 
system TIT - T . T R 

e max rum c 

Equation 2.5 

For the isothermal analysis Tmax = Te and Tmin = Tc 

So, equation 2.5 can be rewritten as 

m =p[ve +[v, .1n(~J]+ Vc]~ 
system TIT - T T R 

e e c c 

Equation 2.6 

Solving for pressure 

Equation 2.7 

Work balance within the engine due to volume change 
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Over a complete cycle, assuming that the piston and displacer movement is 

sinusoidal. 

Equation 2.8 

w = l p(dVe + dVc ) 

J dB dB Equation 2.9 

The classic closed form gives results in the following P-V and T-S diagrams, an 

explanation of which is given below. 

1 1 2 

/; T = constant v = constant 

\ 
2 T 

4 

3 4 

v S 

Figure 2.6 P-V and T -S diagrams and the ideal Stirling cycle 

For the process paths 

1 - 2 Isothermal Expansion 

Heat is supplied at Tmax, work is performed by the working fluid upon the piston, 

equal in magnitude to the heat supplied. 
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Heat transfer = work done: Q = W 

No change in internal energy U 

Change in entropy (increase), (S2 - S1) = R In r 

2 - 3 Isochoric regenerative working fluid transfer 

Working fluid is transferred from the hot end to the cold end of the engine by 

action of the displacer. The working fluid passes through the regenerator 

separating the two ends, energy in the form of heat is given up to the regenerative 

matrix. Ideal operation has the fluid entering the matrix at Tmax and leaving the 

matrix at Tmin • No work is extracted from the cycle by the displacer operation. 

Internal energy and entropy are decreased 

P3 = P2T2 / T3 = P3 'Ciso 

V3 = V2 

Heat transfer (Q) = CV(T3 - T2) 

Change in entropy = (S3 - S2) = Cv In 'Ciso 

3 - 4 Isothermal Compression 

Heat is removed from the working fluid and rejected at the minimum cycle 

temperature. Work is done to the working fluid equal in magnitude to the heat 

rejected. 

No change in internal energy: Decrease in entropy 
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Q = W =P3V3In(l/r) = RT3In(l/r) 

Change in entropy (S4 - S3) = R In(J/r) 

4 - 1 Isochoric regenerative transfer of working fluid 

Working fluid is transferred from the cold end to the hot end of the engine under 

the action of the displacer. Heat is transferred from the regenerative matrix to the 

working fluid raising the temperature of the working fluid from T min to Tmax. 

No work is done, W = 0: Internal energy and entropy of the working fluid 

increase 

p] = P 4 T] / T4 = P 4 / Tiso 

V4 = V] 

Heat transfer (Q) = Cv(T] - T4) 

p 4 = P 3 V3 / V4 = P 3 r 

Change in entropy (S] - S4) = Cv In (l/riso) 

2.3.2 Limitations of the isothermal analysis 

The isothermal analysis is based upon an ideal cycle and, as such, various 

assumptions have been made to aid in simplification. 

In process 1 -2 (isothermal expansion), all the working fluid is believed to be in the 

expansion space, this neglects dead space such as clearances and the 

regenerator. The regenerator will have imparted some heat to the working fluid, 

but no expansion of the working fluid occurs until all the working fluid is in the 
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expansion space. All the fluid is heated / expanded equally, ignoring any turbulent 

of thermal conduction effects. The expansion is isothermal, so takes place at one 

constant temperature, this assumes a perfect heat exchanger. 

In process 2 -3 (isochoric displacement), all the working fluid is moved under the 

action of the displacer from the hot end to the cold end of the engine. This is 

considered instantaneous, with perfect regeneration as the working fluid is passed 

through the regenerative matrix. The volume of the working fluid does not change 

until all the working fluid is in the cold end at temperature Tmin . The action of the 

displacer requires no work input to overcome friction or working fluid resistance 

(pumping loss). 

In process 3 - 4 (isothermal compression), all the process work is done on the 

working fluid, friction effects are neglected. Any thermal gain from the 

compression of the working fluid is removed by the cold end heat exchanger. 

Assumption is made of a uniform temperature and pressure distribution throughout 

the working fluid. 

In process 4 - 1 (isochoric displacement), the working fluid is moved under the 

action of the displacer from the cold end to the hot end of the engine. Once again, 

a perfect regenerative heat exchanger is assumed and instantaneous mass 

transfer without pressure anomalies. 

From the above cycle one could almost imagine a 'perpetual motion machine', as 

the energy required for expansion and compression is the heat stored in the 

regenerator being used repetitively, this ignores conversion losses and assumes a 

perfect regenerator. 

2.3.3 The isothermal problem is four fold: 

1. Friction and leakage is assumed to be zero. 

2. There is a requirement for infinite heat transfer rates, or an infinite 

time for the process to be completed. 
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3. It assumes that the dead space (unused volume) reduces the 

effective mass of working fluid for the process reducing performance. 

4. It presumes the discontinuous motion required for the displacer and 

piston in the ideal cycle. 

Gustav Schmidt [Reader and Hooper 1983]; [Urieli and Berchowitz 1984] went on 

to improve the accuracy of the isothermal analysis, but the basic problem of 

oversimplification and sweeping assumptions flaws this analysis as over optimistic 

by 100 to 200 percent (as suggested by both the references in this paragraph). 

2.4 Introduction to the theoretical analysis 

Previously, the theoretical analysis of the Stirling cycle has been categorised in 

four classes or orders. These range from the 'zeroeth' order analysis to the third 

order analysis, [Martini, 1983]. 

In the literature, different authors give alternative definitions, with the next most 

common being first to fourth order. Where there is consistency throughout the 

literature is that there are four types of analyses available, increasing in rigour. 

In this work the definitions given by Martini [1983] will be used, these are outlined 

below. 

The zeroeth order or 'trivial' analysis is reproduced in thermodynamic text books, 

and is outlined below. This proposes that the engine power and efficiency may be 

calculated purely as a function of variations in fluid characteristics; such as 

temperature, pressure and volume changes. The cycle is assumed to be 

operating without losses and that the regenerator can be represented as a perfect 

heat exchanger. As such the cycle is considered an ideal, reversible cycle. The 

idealised process paths are indicated in figure 5.1. The implications of this 

analysis are discussed earlier. 
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Figure 2.7 P-V diagram of ideal Stirling cycle 

Where the indicated process path is described as: 

1 - 2 Isothermal Expansion 

2 - 3 Isochoric regenerative fluid transfer (displacement) 

3 - 4 Isothermal Compression 

4 - 1 Isochoric regenerative transfer of working fluid (displacement) 

Subsequent analyses become progressively more thorough in defining Stirling 

engine operation. 

The first order analysis attempts to relate engine power output and efficiency to 

the source and sink temperatures (hot plate and cold plate respectively), and 

engine speed and volumes (usually the swept volume of the power piston). 

Examples of this type of analysis are Schmidt [Schmidt 1871] and Beale [Beale 

1980]. 

The second order analysis uses an equation to describe the engine which 

indicates power output and heat input, such as the Schmidt equation. Mechanical 

losses are then calculated separately (both kinematic and fluid) and subtracted 

from the output, and thermal losses are calculated separately and added to the 

input. Thus an approximation of real mechanical output and thermal input may be 
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made in a straightforward process. The accuracy of prediction is a function of the 

ability to identify and quantify kinematic and thermal losses throughout the engine. 

The Martini-Weiss code [Walker et al 1994] is one computer program using 

second order analysis techniques. The main reason for error in prediction using a 

second order analysis is the fact that this analysis ignores the complex interactions 

of the kinematic, thermal and fluid cycles. 

The third order analysis considers the engine as comprising discrete nodes or 

elements. Laws of conservation of mass, momentum and energy are applied to 

each of the nodes and a gas state equation is applied to the working fluid at each 

relevant node. This allows the development of a set of differential equations, 

describing the processes occurring at all the nodes at any given time. Thus all 

processes are considered to happen simultaneously and to interact with each 

other. In this thesis the term third order analysis will be used as defined above. 

To enable coding for computer simulation of engine operation, the differential 

equations describing the simultaneous processes are manipulated to form discrete 

terms within the time domain (one dimensional form). 

Presently, there are several third order analyses that use numerical methods to 

return nodal solutions, namely Finklestein [Finklestein 1961], Ureili-Berchowitz 

code [Ureili-Berchowitz 1984], and the Stirling Numerical Analysis Program code 

[Chen and Griffin 1983], [Altman 2003]. These analyses concentrate upon sealed 

engines with positive drive to the displacer. As yet there is no third order analysis 

of the Ringbom variant of the Stirling engine. 

The third order analysis of the Ringbom Stirling engine is significant due to a 

unique feature of operation within the engine. The Ringbom variant, as discussed 

in chapter 2 section 5, uses a pressure differential to drive the displacer. The more 

common method attaches the displacer to the drive shaft or flywheel, with the 

phase angle between the displacer and piston being set and remaining constant 

as the engine runs. This translates the sinusoidal motion of the piston to the 

displacer, unless a discontinuous motion link is utilised [Kolin 1986]. The pressure 

differential is formed between the atmosphere outside the engine and the working 

fluid inside the engine. For part of the cycle the internal pressure is greater than 
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atmospheric, and for part of the cycle the internal pressure falls below 

atmosphere. This pressure differential acting across the displacer rod provides the 

motive force for displacer movement. 

2.5 Modern analysis 

Finkelstein took the Schmidt analysis a stage further by defining two limiting cases 

for the expansion and compression processes. This analysis takes the two 

extremes of isothermal and adiabatic processes and tries to quantify the degree to 

which each type of process affects the cycle, thus introducing a method of non­

isothermal analysis. 

Walker and Kahn carried this work forward showing that thermal efficiency for the 

Stirling engine was not just a function of temperature (as in Carnot) but is also a 

function of swept volume, phase angle and dead space [Walker 1980]. 

Feurer (Walker 1980) working for MAN / MWM (before the German government 

classified the work of MAN / MWM as secret), developed an adiabatic cycle 

analysis corrected for residual losses (accounts for phase difference between 

temperature changes and pressure changes) and aerodynamic losses. 

Finkelstein in Newark N.J. at the 10th IECEC Aug 17 - 22 1975 produced a nodal 

analysis for the Stirling engine. This analysis uses the conservation equations for 

mass, momentum and energy resolved for nodes, cells or elements. 

This can be used to create a model that indicates all the processes occurring 

within the engine simultaneously, be it energy flow, fluid flow or displacement of 

the displacer or piston. The equation sets are discretised into the time domain to 

form algorithms which can then be calculated with small changes in time. This 

method has formed the basis of many of the computer programs developed to 

simulate Stirling engines. 

Urieli [Urieli and Berchowitz 1984] further developed the computational approach 

and uses parts of his analysis as a teaching aid for his lectures. Schock [Walker 
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1980] has developed a similar approach (and program) as Urieli, producing a 

commercial code, the Stirling Numerical Analysis Program (SNAP). The SNAP 

program has been developed over the years as a commercial tool and draws upon 

the works of Martini, 8erchowitz, Senft, Thomas, Urieli and Organ [I.S.E.C. 2003, 

pp166-172] 

The direction of research thus far has been in high temperature applications, the 

analysis of low temperature engines being limited, with Kolin and Senft 

contributing mainly to the body of knowledge. 

2.6 Operation of the Ringbom - Stirling engine. 

Ossian Ringbom showed that the drive and synchronisation mechanism for the 

Stirling engine could be greatly simplified. In his American patent of 1907 lines 

seven to 15 states: 

The aim of the present invention is to produce a hot air engine in which the 

movement of the displacing piston is obtained without the connection of 

rods or cranks or eccentrics or other mechanical parts of the engine, but 

solely by the expansion of the heated air and the weight of the piston; and 

to obtain at the same time a simple regulating device for the velocity.' 

(US Patent No. 856,102 of 1907) 

The way in which Ringbom simplified his engine was to rely upon gravity for the 

return stroke of the displacer and the higher pressure difference between internal 

and external spaces acting upon the displacer rod for the upward stroke, 

incorporating dashpots at each stroke end to cushion the deceleration. An idea 

that is both elegant in conception and straightforward to put into operation. 

Ringbom had a small port in the power piston to allow the minimum cycle pressure 

to adjust to atmospheric. A modification suggested by Senft [Senft 1993 pg 36] 

does away with this port, has the atmospheric pressure as the mean cycle 

pressure which means that not only is the displacer up stroke initiated (and 
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propelled) by the internal/external pressure difference, but also the return stroke, 

allowing faster engine operation. 

The author feels that the Ringbom - Stirling engine shows great promise for the 

application of low-tech power supply. If the fly wheel and crank assembly were 

removed from the power piston and replaced with a gas spring and the piston 

made of magnetic material the whole device could be constructed from five parts, 

only two of which are moving, thus creating a free piston Stirling engine. In this 

unique type of Stirling engine, displacer movement is achieved by pressure 

differences caused by the piston motion and the thermodynamic cycle. 

2.6.1 The Ringbom cycle using a gamma configuration 

I 
CD 
Q) ....... 
CD 
...... 

Figure 2.8 Ringbom compression stroke 

() 
o 
o 
CD ...... 

At the start of the compression stroke as shown in figure 2.8, the displacer is at 

rest in the hot end and the working fluid is in the cold end, the state is Pmin, Tmin, 

and Vmax. The pressure of the working fluid is below that of the surrounding 

atmosphere. This keeps the displacer pushed inwards and pushes the piston 

inwards (assisted by the flywheel). The volume decreases and the internal 

pressure rises. The engine geometry is proportioned so that when the crank angle 

reaches point A indicated on the fly wheel above Oust before inner dead centre), 

internal and external pressures equalise. The momentum of the flywheel/con­

rod/piston assembly causes the piston to move further into the cylinder, causing 
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the internal pressure to rise above the external pressure. This pressure difference 

causes the displacer to be pushed outwards into the cold end, forcing the working 

fluid into the hot end, thus beginning the transfer stroke. 

~~ () 
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0 

"A (1) ., 
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I 
'-----

Figure 2.9 Ringbom first transfer stroke 

The momentum of the flywheel assembly causes the piston to go through inner 

dead centre; the displacer continues to move outward by the internal/external 

pressure difference, as shown in figure 2.9. Working fluid is transferred from the 

cold end into the hot end, raising the internal pressure (as it is heated), causing 

the displacer to accelerate into the cold end. Movement of the displacer is 

arrested by means of a dash pot or cushion. At the completion of the transfer 

stroke the condition of the engine is Vmin, Pmax , and Tmax. 
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Figure 2.10 Ringbom expansion stroke 
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As the working fluid is expanding as shown in figure 2.10, internal pressure 

remains above external pressure until the crank angle reaches the equilibrium 

point labelled B above. The flywheel assembly causes the piston to continue on 

its outward journey, reducing the internal pressure below that of the surroundings. 

This causes the displacer to begin its motion into the hot end. 

I 
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m -CD ..... 

Figure 2.11 Ringbom second transfer Stroke 
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The working fluid is transferred from the hot end to the cold end, lowering the 

internal pressure, further accelerating the displacer motion as shown in figure 

2.11. The displacer completes its transfer stroke and stops just as the piston 

reaches outer dead centre ... so the cycle continues. 

2.7 The Free Piston Stirling Engine (FPSE) 

The title of free piston Stirling engine (FPSE) is used as a generic term for any 

Stirling engine where one of the reciprocating elements that make up the engine is 

not coupled directly to any other element. [Walker and Senft 1984]. Rather, the 

motion of the element is imparted from working fluid pressure changes due to 

thermal effects. Work is delivered from reciprocating motion as opposed to 

rotational motion. 

To expand, the term FPSE covers a multitude of different configurations, from 

having one free element such as the piston or displacer (sometimes called a 
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hybrid engine) as found in the Ringbom Stirling engine, to ones where either the 

piston and displacer are free to move, or where the cylinder casing and displacer 

are free to move as in the Beale / Sunpower FPSE. 

The kinematic cycle for a FPSE is designed as a stable tuned resonant circuit, 

classic vibration theory will be used to help explain the action of the cycle, 

beginning with a brief description and notation. 

Consider a damped mass system, as shown in figure 2.12, a single coordinate, x(t) 

can completely define the system. The number of coordinates required to fully 

define a system specifies the number of degrees of freedom (dof) which a system 

possesses. 

At equilibrium, the mass M is motionless. The upward force (resisting the product 

of gravity and the magnitude of the mass) is created from torsion in a mechanical 

spring or by a magnetic spring. 

Mass M 

c 
0 (J) 0 

"C ~ III 
:::::!. 0 3 
::J ~ "C co ..... CD 

........... 0 ..., 
7" CJ) 

........... 
"-" 0.. ·x "-" « 

Figure 2.12 Simple damped mass system (1 dot) 

If the mass is raised, its potential energy is increased and work is done against the 

spring and damper. If the mass is then released the mass falls due to the force of 

gravity and also the restorative force of the spring (equal to the product of the 

36 



Chapter 2 Literature Review 

spring constant k and extension). As the mass reaches the rest position, there is 

no spring restorative force in action, the mass continues its downward travel due 

to inertia, and compresses the spring. If there were no damping forces present the 

spring compression would equal that of the extension and the system would 

continue to oscillate about the rest position ad infinitum. The presence of damping 

reduces the amplitude of the oscillation during each half cycle; damping may be in 

the form of air damping, fluid friction, magnetic damping or gas spring hysterisis 

and may be intentional or parasitic. 

In many of the standard texts and even recently published papers there is a belief 

that the motion of both the displacer and piston may be (for ease of analysis) 

described using simple harmonic motion (SHM) (the same texts that dismiss the 

thermal analysis of the FPSE as identical to that of the isothermal kinematic 

engine cycle). It is the opinion of the author that the piston may be analysed using 

SHM, but only as long as the engine is operating in a stable tuned resonant mode. 

This caveat becomes more important in the description of the displacer movement, 

especially if the engine is operating at the overdriven limit to improve cycle 

performance. Stable resonant operation tends to be achieved in a narrow 

operating band; fluctuations in load can easily push the operation into under-driven 

or overdriven modes. Mode of operation will be covered later. 

In a spring mass system without damping, the acceleration of the mass is 

proportional to the distance of the mass from the static equilibrium point. 

The motion can then be described by using rotating vectors of magnitude X 

Instantaneous displacement x 

x=XCosmt Equation 2.10 

I nstantaneous velocity x 
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i = -X{))SinOJt = xmCOS(OJt + '/'i) Equation 2.11 

Instantaneous acceleration x 

Equation 2.12 

The amplitude of i is ro that of the displacement leading by a phase angle of 90° 

(n/2 rad) 

The amplitude of x is ro2 that of the displacement leading by a phase angle of 180° 

(n rad) 

x 
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Displacement x, Amplitude X 

Velocity i, Amplitude roX 

Acceleration x, Amplitude ro2X 

Figure 2.13 Graph of displacement velocity and acceleration 
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38 



Chapter 2 Literature Review 

Vibration can be classified in one of two ways: 

• Free vibration where the vibration is caused by a single impulse, the 

amplitude of which dies away in accordance to the damping forces applied, 

the mass oscillating at its natural frequency (In). 

• Forced vibration where vibration is caused by a force of uniform period or 

cycle, often described in the form F(t) = F sin 0Jt or F(t) = F cos 0Jt, and 

settles down to steady state vibration at the frequency of the applied force 

(F), with the natural frequency effects dissipating through damping. 

By reference to standard texts for vibration such as Rao [Rao 1995], it can been 

shown that when the natural frequency and the applied frequency of a spring­

damped system are the same, the system enters resonance, with the amplitude of 

oscillation increasing towards the resonant point and decreasing either side of the 

resonance condition. The amplitude of oscillation being solely a function of 

viscous damping present in the system. 

Displacement is given by x = Il F 
k 

Where Il is the amplification factor. 

The frequency ratio r is defined as: 

r = frequency of imposed force / natural frequency 

Viscous damping p is defined as: 

C 
p=-

Ccrit 

Equation 2.13 

Equation 2.14 

Equation 2.15 
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Where C is the coefficient of viscous damping 

C crit is the coefficient of viscous damping for a critically damped system 

For a FPSE with a bounce space, hysteresis damping is considered the main 

secondary parasitic loss, where the friction between the working fluid molecules 

converts some of the energy imparted to the gas spring into heat. Coulomb or dry 

sliding damping imposes a constant resistive force in the annular spaces between 

the piston and the cylinder wall. Viscous damping will be present due to the 

movement of working fluid by the displacer Non-viscous damping (dashpot) will 

be present due to working fluid movement around the displacer and if dashpots 

have been used to decelerate the displacer at each end of its travel. 

The equation of motion for the spring damped mass system is taken from 

Newton's second law of motion, IF = Ma, which for a single mass gives: 

MX+Ci+h=O Equation 2.16 

2.7.1 Multi element multi degree of freedom system 

The system represented in figure 2.14 is a generalised spring damper mass 

system for FPSEs consisting of three masses. All the masses are constrained so 

that they can only move in one ordinate, as such the system may be fully 

described by the use of three coordinates at any instant in time. The masses are 

connected by spring forces and damping forces. 

The elements have an axis of symmetry about which they may rotate, the degrees 

of freedom required to describe this motion are ignored, as any change in the 

angular position has no bearing on the motion of the element in the operational 

axis. Hence the above system is a damped spring mass system with three 

degrees of freedom. 
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Figure 2.14 The FPSE as a multi degree of freedom system 
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Md = displacer mass 

Mp = piston mass 

Me = cylinder mass 

k1, k2, k3 and k4 = Spring 

constants 

In real applications the piston may be made so large that it is virtually an 

immoveable object, or the casing may be attached firmly to a large mass, reducing 

the analysis to a two-degree of freedom spring mass system. 

2.7.2 Two degree of freedom damped spring mass system 

The system has a light displacer, typically between one-third and one-tenth the 

mass of the piston. There are two springs kd and kp for the displacer and piston 

respectively, which apply restorative forces to the masses. Restorative in this 

sense is to return the mass to its equilibrium position. The action of the springs 

can readily be described by SHM. 
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The amplitude of the oscillation is a function of the forcing frequency with constant 

damping, thus as the frequency ratio r approaches 1, the amplitude of oscillation 

increases. 

The working area of the displacer is one quarter that of the piston, thus any 

pressure acting on each will only have a quarter of the surface to act upon in 

relation to the piston. 

Kd ....... . 

Fp = Pp cos rot 

Piston 

..... C
p 

Figure 2.15 Two degree of freedom spring damped mass system 

Therefore Fb = % Fp <=> Fp = 4Fb 

By a similar argument, as the spring is provided by the bounce space the spring 

constant for the two elements may be defined as: 
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The above consideration assumes SHM for the system elements. In reality the 

systems are non linear to some degree, in the FPSE analysis during the 

expansion stroke the displacer accelerates from top dead centre until it contacts 

with the top of the piston. At this point the piston has gained an extra quarter of 

surface area for the pressure to act upon. 

Simple analysis of FPSEs assumes a linear system where all reciprocating 

elements may be described by SHM; in most cases it is safe to assume SHM for 

the piston (or cylinder). It would be erroneous to assume SHM for displacer 

motion in anything other than stable resonant operation. If the displacer is 

'overdriven' then it assumes the motion described in the thermal FPSE and 

Ringbom operation, the advantage of which is to bring the real cycle closer to the 

theoretical cycle. This results in an engine with both linear and non-linear motions 

for different elements. Figure 2.16 indicates the phase relationship of the 

displacer and piston in the overdriven engine. 

In kinematic engines the phase angle of the reciprocating elements may be 

calculated by the use of trigonometric relationships. The motion of elements in the 

FPSE is not constrained by linkages, rather controlled by the laws of motion and 

working fluid pressure effects. It is these pressure effects (created by temperature 

differences) that govern the mode of operation of the engine, resulting in under­

driven, resonant and overdriven modes. 

In the under-driven state the reciprocating elements vibrate within the confines of 

the cylinder due to the energy supplied, but never achieve cyclic operation. 

In the stable resonant state of operation the piston (cylinder) and displacer operate 

with a constant phase angle, the reciprocating elements never contact and their 

motions can be described using SHM equation sets. Analysis may be undertaken 

using rotating vectors. 
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I nertia force Mo}X 
Velocity roX Displacement X 

Spring force kX 

Acceleration ro2X Damping force CroX 

Figure 2.16 Vectors for a) acceleration, velocity and displacement and b) forces. 

I nertia force M x always resists the acceleration of the mass and is represented by 

a vector Mro2X in the opposite sense to the acceleration vector. 

Damping force Cx always resists the motion of the mass (due to its velocity) and is 

represented by a vector CroX in the opposite sense to the velocity vector. 

Spring force kx always resists the displacement of the mass and is represented by 

a vector kX in the opposite sense to the displacement vector. 

The imposed or excitation force which would be a vector in the opposite sense to 

the resolved vector may also be placed on the vector diagram, its position given by 

an angle a leading the displacement, with magnitude F at phase cos (rot +a). 

If ro imposed < ro natural then a is between 0 and nl2 

If ro imposed = ro natural then a = nl2 

If ro imposed> ro natural then a is between nl2 and n 

Hence the classic FPSE describing equation may be written as 

Mi + ex + kx = F cos( mt + a) Equation 2.17 

In the overdriven mode the use of vectors is not appropriate apart from one very 

specialised case laid out below. 
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In the overdriven mode the displacer action is discontinuous, with dwell points at 

top and bottom dead centre. It is interesting to note that as the engine speeds up 

the dwell period reduces, until a point called the overdriven limit is reached. At this 

point there is no dwell period, although the transit time for the displacer is still the 

same. Beyond the overdriven limit the engine operation becomes erratic due to 

the phase relationship being able to slip or jump cycle; thus an inherent over­

speed limiter is built in. At the overdriven limit the phase relationship between the 

Piston (displacer) and the displacer can be described as quasi-simple harmonic 

motion. 

2.7.3 Vibrating systems and the limit cycle 

As discussed earlier the FPSE operates due to a complex interaction of 

thermofluid and kinematic forces, which create the reciprocating motion of the 

machine elements. The way in which the present cycle operates is governed by 

the previous cycle and the next cycle will be governed by the present cycle. This 

type of feed forward system is often referred to as a limit cycle. 

After start up the system will reduce to a stable resonant or overdriven state of 

operation. A change in the magnitude of the driving force (through temperature 

change) will tend to move the cycle envelope within a velocity displacement graph 

as shown in figure 2.17 below. 

Hamilton's Principle of minimum energy states covers this settling of the cycle into 

a stable state. This says that any system will seek the lowest energy state, or will 

be in its lowest (present) energy state when at equilibrium. 

Walker and Senft (1983) take this further and state 

'The implication of this is that an FPSE has a preferred stable operating frequency, 

close to the resonant frequency of the largest dynamic mass' 
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Beale (1973) suggests that the operating frequency may be calculated as: 

where C is a constant between 0.7 and 1 

k is the spring stiffness 
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M is the mass of the piston. 
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Equation 2.18 

Figure 2.17 Diagram suggesting different stable and quasi-stable operating states 

Much of the work on analysis of the FPSE assumes stable resonant operation so 

that simple harmonic motion may be applied. This allows for linear solutions for 

the motion of reciprocc,tting elements. The author suggests that stable resonant 

motion only occurs at resonance and at the overdriven limit, at all other times the 

cycle is either under-driven, so no complete cycle is achieved or overdriven where 

the displacer motion is discontinuous. 
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In stable resonant operation the displacer and piston never contact, in overdriven 

operation the displacer contacts with the piston; although the displacer is in the 

order of one tenth of the mass of the piston, it has three times the acceleration, so 

the momentum of the displacer after contact must be added to that of the piston. 

After making contact the effective surface area of the displacer rod is added to the 

area of the piston, increasing the area of action for the applied pressure. Hence 

not only is the motion of the displacer discontinuous, but also that of the piston. 

The author feels that the advantages of operating in the overdriven region make 

this a desirable option. Hence the methods of analysis for discontinuous motion 

should be the next logical step. The Ringbom offers other advantages in this free 

piston free displacer mode discussed below. 

2.7.4 Advantages of the FPSE Stirling engine 

The FPSE offers many advantages over the more conventional layouts, these 

being: 

• The FPSE is in effect a dynamic resonant circuit. When heat is applied to 

the engine the temperature rise of the working fluid causes a resulting 

pressure change, the system then enters a phase of unstable equilibrium, 

the slightest vibration will cause the engine to start. Consider a mass on 

top of a column with a pin joint at the base, only the slightest of forces 

causes the system to go from vertical to horizontal. This 'property' of the 

FPSE means that it has a self-starting capability. 

• The reciprocating elements operate axially with no crank linkage, 

eliminating side loading of the components and the resulting wear and 

fouling. This has the advantage of adding longevity to the engine and 

increasing the time between services. The need for lubrication is also 

reduced to the level that the working fluid is used as the lubricant. 

• The cylinder may be hermetically sealed allowing the use of more exotic if 

difficult to restrain working fluids, removing the requirement for external 

seals. 
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• The engine is self-regulating (to a point). When the resistive force (load) is 

low then the piston assumes a long stroke. As the load increases, the 

stroke shortens and the acting force increases. As such, it is very unlikely 

that an FPSE would stall, there would always be some miniscule vibration 

left to restart the engine as the load reduces. 

• There is a reduction in the number of moving parts down to two in the most 

reduced of cases. 

2.7.5 Disadvantages of the FPSE 

As with any system there are also some disadvantages associated with the FPSE, 

these being: 

• Loss of phase angle between the vibrating elements due to imperfect 

sealing between the bounce space and the working space also termed as 

piston centring. This may be eradicated by the use of a displacer relief 

valve or bypass valve to maintain phase relationship. 

• The output is in the form of linear motion. This may be considered by some 

as a disadvantage, but linear motion alternators can be used, or linear 

pumps may be employed as such this disadvantage may be arguable. If 

rotary motion is required there are many solutions such as wobble or 

Scotch yokes or other linear to rotary mechanical converters. 

2.7.6 Modes of operation 

In kinematic engines, also known as disciplined motion engines, the phase angle 

of the reciprocating elements may be calculated by the use of trigonometric 

relationships. The motion of elements in the FPSE is not constrained by linkages, 

rather controlled by the laws of motion and working fluid pressure effects. These 

pressure effects (created by temperature differences) govern the mode of 

operation of the engine, resulting in under-driven, resonant and overdriven-modes. 

As such the analysis of the FPSE is inherently complicated, with dynamically 
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indeterminate phases for the reciprocating elements, the solution of which requires 

iterative methods. The three modes of operation for the FPSE are: 

• In the under-driven state, the reciprocating elements vibrate within the 

confines of the cylinder due to the energy supplied, but never achieve cyclic 

operation. 

• In the stable resonant state of operation the piston and displacer operate 

with a constant phase angle, the reciprocating elements motions can be 

described using simple harmonic motion. 

• In the overdriven mode the displacer, action is discontinuous, with dwell 

periods at top and bottom dead centre. It is interesting to note that as the 

engine speeds up the dwell period reduces, until a point called the 

overdriven limit is reached. At this point, there is no dwell period, although 

the transit time for the displacer is still the same. Beyond the overdriven 

limit the engine operation becomes erratic due to the phase relationship 

being able to slip or jump cycle, thus an inherent over-speed limiter is built 

in. At the overdriven limit the phase relationship between the Piston 

(displacer) and the displacer can be described as quasi-simple harmonic 

motion. 

Displacer 

o ........................ ··i······················{······················:.····· ................. ; .................. ··i······················~······················:····· .............. . 
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Figure 2.18 Phase relationship of displacer and piston overdriven mode 
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Figure 2.19 Phase relationship of displacer and piston at the overdriven limit 

From this the advantage of the FPSE running in overdriven mode may be stated 

as: 

Any FPSE operating in the overdriven mode has the advantage of being 

able to accept changes in engine speed due to load or operating condition 

changes, without becoming unstable. 

2.7.7 Self starting FPSE 

To start up, energy is applied to the hot end and the system enters a state of 

instability where the slightest vibration will set the system into motion. Taking the 

system from a point at rest, the self start may be described as follows: 

• The system is at rest (no heat applied), the position of the displacer and 

piston being maintained by either bounce space pressure or mechanical 

spring. 

• The fluid temperature and pressure are in equilibrium, the pressure being 

that of the bounce space, point S in figure 2.20 below. Internal pressure is 

made up of the pressure in the expansion/compression space above the 

piston. 

• Energy is applied at the hot end causing the temperature of the hot end to 

increase, which is in turn transferred to the working fluid. Expansion of the 
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working fluid increases the pressure, causing the displacer and piston to 

move downward within the cylinder, point 1 in figure 2.20 below. 

• The displacer is designed to be much lighter than the piston (at least 1/3rd 

the mass). This means that if the pressure acting upon the piston and 

displacer is the same (as it is in this case), then the displacer will accelerate 

faster than the piston for any given pressure scenario. Also the piston has 

greater momentum than the displacer. 

• Working fluid in the compression space is transferred into the expansion 

space via the regenerator. This results in further expansion of the working 

fluid and a rise in internal pressure. The displacer, having greater 

acceleration than the piston over the same given time, catches up with the 

piston and assists the piston on its downward journey. 

• As the displacer and piston are in face-to-face contact, all the working fluid 

must be in the expansion space. The movement of the displacer/piston 

group downwards causes the internal pressure to decrease, point 3 in 

figure 2.20. 

• Expansion continues, at point 4 in figure 2.20 the internal pressure and the 

bounce space pressure are equal. 

• The inertia of the displacer/piston group causes a continued motion 

downward into the bounce space. This lowers the internal pressure but 

increases the bounce space pressure. The pressure difference causes a 

greater upward force than downward force on the displacer/piston group. 

The pressure difference increases as the displacer/piston group moves 

further downward, increasing the net upward force. 

• Eventually the upward force overcomes the downward momentum of the 

displacer and the displacer stops. 

• The piston, having greater momentum continues downward, thus the 

displacer and piston separate, and some of the working fluid is drawn into 

the now forming compression space. The downward motion continues to 

cause an increase in pressure difference between the internal space and 

the bounce space. This pressure increase in the bounce space and 

decrease in the internal space causes the displacer to begin its upward 

journey, transferring working fluid from the expansion space into the 
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compression space (hot to cold). The decrease in fluid temperature causes 

the pressure in the internal space to drop further, increasing the upward 

acceleration of the displacer. The displacer moves into the top of the 

expansion space, pushing all of the working fluid into the compression 

space. The displacer is held in position due to the higher bounce space 

pressure. 

• The power piston reaches its bottom dead centre and begins an upward 

movement under the action of the high bounce space pressure, 

compressing the working fluid. 

• As the working fluid is compressed the internal pressure and bounce space 

pressure equalise, the fluid is further compressed due to the upward 

movement of the piston through inertia. This reversal in pressure difference 

causes the displacer rod to begin its downward motion. The piston then 

goes through top dead centre. As the expansion space is formed and fluid 

begins to expand, the displacer is accelerated toward the piston, catches it 

and continues the cycle. 

v 
Figure 2.20 P-V diagram for the self starting FPSE 
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2.7.8 Discontinuous motion of the displacer 

As has been expressed above and can be seen in the displacement diagrams for 

the displacer the motion of the displacer in a FPSE is not sinusoidal of even 

continuous. This can be shown through a calculation of the pressure gradient 

within the engine against the external pressure for the Ringbom engine, or of the 

mass difference of the piston and displacer in a sealed FPSE. The sealed case is 

expanded below for the engine represented in figure 1.4. 

Acceleration ratio for the FPSE 

Heat is applied to the expansion end heat exchanger thus raising the expansion space pressure (a.k.a. working space 
pressure), so the force on the piston is: 

F piston = (P working space - P bounce space) (A piston - A displacerrod) ................. (1) 

From Newton's second law of motion 

F=M a ............................................................................ (2) 

For the piston 

a piston = F piston 1 M piston ............................................................ (3) 

Putting 1 into 3 gives: 

a piston = (Pw-P b) (Ap-Adr)IMp ............................................ (4) 

For the displacer 

F d= (P w- P b) (A dr) ............................................................. (5) 

a d = (P w - P b) (A dr) 1 Md ....................................................... (6) 

Typically the displacer mass is one tenth the mass of the piston, or M pi M d =1011 

Typically the effective area of the displacer rod is one quarter that of the piston, 
or Api A dr = 411 

Ratio of accelerations 

ad Mp Adr 

ap == Md X (Ap - Ad,) ............................................................... (8) 

ad 10 1 
-=-x--

ap 1 (4-1) ....................................................................... (9) 

:.~=3.333 
a p ...•••.•••••.•.••••.••••.•••••••••••.....•••.•..•••.•• ......•••••••••••.•• (10) 

Hence the displacer accelerates 3.3 times faster than the piston. 

Figure 2.21 Results to indicate discontinuous motion of displacer 
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Walker and Senft (1984) give the results in figure 2.21 as an indication (proof) of 

the discontinuous motion of the displacer in a FPSE. 

2.7.9 The free displacer Ringbom - Stirling engine 

This engine has a free displacer with the power piston attached to a flywheel via a 

connecting rod as Ringbom intended. The analysis of this type of engine is in 

some ways more straightforward than the free piston-free displacer engine 

described above. This is due in the main part to always being able to determine 

the location of the piston within the cylinder if the phase angle is known. 

A second advantage is that the motion is now rotary in nature and a load may be 

applied by means of a simple brake. 

As the test engine is equipped with the flywheel crank assembly, it is felt that for 

the initial analysis this type of layout should be used; this means that the virtual 

model created by the computer program would mimic the physical engine. 

The nature of the free displacer also means that the cycle efficiency is improved. 

Kolin [Kolin 1986], suggested that as the displacer actually touches the faces of 

the source and sink (or heater and cooler) then dead space would be minimised, 

thus increasing the cycle work envelope. This envelope could be modified further 

by the action of discontinuous motion, allowing more time for the expansion and 

compression phases, and due to the nature of the acceleration of the displacer 

means that the isochoric displacement would happen in a shorter time period, 

hence staying closer to the process paths. 

2.7.10 The Regenerator 

The ability to analyse the effects of changing mesh size and spacing will form a 

part of the optimisation of regenerator efficiency. The regenerator is analysed on 

the basis of energy balance, where the change of energy within the system is 

formed from two distinct parts, the flow energy balance and the matrix material 

energy balance. 
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The regenerator is constructed by placing several hundred mesh screens one on 

top of the other. Mesh geometry is defined by the mesh number and wire 

thickness from which several valuable properties may be derived. Mesh number is 

defined as the number of holes per inch [ISO 4783-2] from which one cell may be 

discerned. The following guideline has been modified by the author for a 

rectangular matrix of uniform mesh. 

For a known mesh, taken from catalogue data the aperture 'a' may be found for 

any given wire diameter 'd', for this we use. 

a = [25.4XIO-
3

J - d 
Mesh N<!. 

from this surface porosity '8' may be calculated using 

~-~~-~/ - v 
a+2(d/2) 

Figure 2.22 Single cell for a mesh screen 

Equation 2.19 

Equation 2.20 

a 

d 
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For a rectangular matrix of length x, height y 

Length of wire in one screen 

Ls = x( Y J + Y( x J (a+d) (a+d) 

Heat transfer area 

Wire volume 

v - (J'l11
2 

J(x( Y J + ( x JJ 
w - 4 (a+d) Y (a+d) 

Wire mass 

Wire thermal capacitance 
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Equation 2.21 

Equation 2.22 

Equation 2.23 

Equation 2.24 

Equation 2.25 

This is for one screen for total screen properties multiply the above equations by 

the number of screens 
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2.8 Final remarks 

As was said at the beginning of this chapter, the body of information available for 

the researcher in the field of Stirling engines is limited to older texts and 

conference reports. The author has only found minimal information for low 

temperature engines, mainly from Senft [Senft 1993], [2000a,b,c] and even less 

information on Ringbom Stirling engines [Ringbom 1907]; [Senft 1993, 2000b, c]. 

It is the author's belief that no satisfactory model of the Low Temperature 

Differential Ringbom Stirling Engine is available. This belief has been reached by 

searching the available literature and the www.theses.com web site, which lists all 

theses accepted for higher degrees in Great Britain and Ireland since 1716. 

European and American searches have also been carried out. This said, one of 

the main aims of this work is to develop a mathematical model through a generic 

equation set, thus creating a virtual engine, then validate the virtual engine against 

an actual engine and use the mathematical model to optimise the engine design. 
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3 Research Aims 

The aim of this research is to derive an equation set which when encoded into a 

computer program will provide a tool to aid in the optimisation of low temperature 

differential Ringbom Stirling engines. 

To achieve this, the following questions are presented: 

3.1 Research Questions 

What are the optimum design parameters for a L TDRSE? 

By altering one parameter what effect will it have upon: 

• The engine power? 

• Operation of other engine components? 

• Engine efficiency? 

3.2 Focus of Study 

• Create a generic equation set describing the operation of a simple 

L TDRSE, complete with stated simplifying assumptions 

• Encode the generic equation set into a suitable programming language 

(FORTRAN PLUS) to create a virtual engine (mathematical model) 

• Verification of mathematical model by: 

• Running the virtual engine to gather data sets of expected behaviour, power 

output and efficiency 

• Running the physical (real) L TDRSE to gather equivalent data sets 

• Comparing results of real and virtual engine 

• If the results show divergence then investigate assumptions made to 

improve (incorporate) the mathematical model 
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If the results show convergence then alter parameters of both engines and re run 

tests 

• Run the virtual model with different parameters to optimise engine design 

• Build physical engine to virtual model dimensions and test accuracy 
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4 Experimental work 

The verification strategy for the simulation program required that a test engine be 

built. The test engine was used to produce sets of experimental results. These 

results were used for comparison with the predicted output of the simulation 

program. Two engines were manufactured for this research. 

The first engine was taken from the design by Senft [Senft 2000], which proved 

useful for early research and observation of engine operation. Unfortunately this 

design proved problematic when applying the instrument package. 

The second experimental engine was designed to overcome the shortcomings of 

the first. The second design used much greater mass for the hot and cold plates, 

thus the amount of energy stored or released for any run could be calculated. The 

new design did away with the cylinder dead space of the original, with the face of 

the piston at bottom dead centre being set to the top of the compression space. 

The other modification was the application of stub springs in the expansion and 

compression spaces. The stub springs act upon the displacer as it approaches 

the limit of travel in each space. This avoids damage and allows the energy 

possessed by the displacer due to its motion to be quantified. 

In the original design by Ringbom a dashpot arrangement created an 'air spring' to 

provide deceleration for the displacer. The purpose of the dash pot was to 

eliminate percussive damage to the displacer or its rod. The Senft LTDRSE did 

not use a spring for the displacer. The cylindrical shape of the second engine was 

much easier to insulate. 

The simulation program produced data for flywheel angle, piston and displacer 

location, and expansion space and compression space pressure and temperature. 

Therefore it was these quantities which the test engine was designed quantify. 
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4.1 Methodology 

The gathering of useful, reproducible data from the experimental engine was 

undertaken in several phases. Firstly the design for the experimental engine 

needed to be decided upon and the engine built. Once built, the engine needed to 

be commissioned and run in. This involved static balancing of the flywheel, 

breaking unwanted thermal pathways, sealing air leaks and applying an insulating 

jacket. 

Secondly, with a working test engine, an instrumentation package was developed. 

This included sensors for temperature, pressure and location. The signal from the 

sensors was conditioned and then collected by a data acquisition system. The 

system was designed and setup by the author using components and software 

from National Instruments. 

Once the data had been gathered any further manipulation such as signal 

conditioning and conversion to graphics could be undertaken. With these points 

fully addressed, experimental data was taken and compared with the predicted 

data. 

4.2 The unmodified Senft Ringbom L TOSE 

Plans for this engine are readily available in 'Miniature Ringbom Engines' [Senft 

2000]. The displacer chamber walls are made up from three polycarbonate rings, 

each 10mm high. This allows the displacer chamber volume to be changed by 

adding or removing rings. The connecting rod attaches to the crank disk by 

means of a locknut and threaded bar (forming the crank pin). This bar runs in a 

slot in the crank disk, enabling the swept volume of the power piston to be altered. 

Initially a crank arm length of 10mm was used, giving a swept volume of 16 cubic 

centimetres. An exploded assembly drawing is given in figure 4.1. 
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These plans were used to manufacture the parts for the low temperature 

differential Ringbom - Stirling engine (L TDRSE) at Napier University Edinburgh. 

The only parts not manufactured on site were the micro bearings, bolts and 

pressure fittings. The displacer was made from 10mm thick expanded polystyrene 

sheet with cut outs for inserting the regenerator. The displacer had springs 

attached to the top and bottom surfaces, it is these springs which were the first 

modification upon the Senft design. The application of these springs was to 

protect the displacer from damage and to quantify the energy transferred by the 

displacer as it came to rest at the end of each displacement stroke. 
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Figure 4.1 Exploded assembly of the first test engine - enlargement in appendix A 

The displacer rod was turned from polycarbonate rod, and attached to the 

displacer by means of a nylon bolt. The displacer rod runs in the brass displacer 

rod guide, machined for a sliding fit. The piston and piston cylinder were both 

turned from brass rod. The first piston used was turned from nylon 6,6 rod. This 

was chosen to reduce weight and to assist in reducing sliding friction between the 

two surfaces. The dissimilar expansion rate of the materials caused the piston to 
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seize in the cylinder. The brass piston was not ideal; being heavier it required 

greater pressure within the engine to lift it; piston mass was investigated during 

engine development, resulting in the choices of an aluminium piston running in an 

aluminium liner. 

The cylinder was screwed on top of a mounting block, which also held the bearing 

plate. This block introduced a dead space into the system of approximately 1.6 

cubic centimetres. The top and bottom plates were of aluminium to aid in heat 

transfer from and to the engine. The first regenerator was made of high density 

foam qawnmower air filter), as suggested by Senft [Senft 1993, 2000]. This was 

changed for a more densely woven filter material in an attempt to improve heat 

capacity and heat transfer. The regenerator material chosen was steel wool. 

Regenerative meshes of woven sheet using materials such as copper and steel 

were considered for investigation, but not applied for this work. As can be seen in 

figure 4.1 the regenerator was embedded in the displacer (as per Kolin's and 

Senft's designs). It has been noted that the mass of the displacer is raised 

considerably by doing this. The effect of a static displacer mounted in the annular 

gap between the displacer side wall and the chamber wall was considered as 

future work. 

This engine had several inherent design problems. These include the mass of the 

piston, misalignment of the crankshaft axis to the piston axis, and flexing of the 

bearing plate. Issues over the method to quantify energy entering and leaving the 

engine and fitting the instrument package were deciding factors in commissioning 

the second engine. 

4.3 The modified Senft Ringbom L TOSE 

Several of the parts for the second engine were recycled from the first engine, 

these being the flywheel, drive shaft, bearing housing and bearings. All other parts 

were manufactured specifically for the second engine. Modifications made for the 

second engine, shown in figure 4.2 and appendix A, include the following 

considerations: 
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• The connecting rod was made from M4 diameter threaded rod. This 

allowed the piston face to be aligned with the face of the cold plate for any 

piston throw, thus eliminating piston cylinder dead space. 

• The flywheel had slots cut into the perimeter for an opto-switch to give thirty 

six, ten degree angular increments for data logging. 

• The most straight forward piston location to accurately set was bottom dead 

centre (by applying a downward force to the piston it settles at bottom dead 

centre). A second opto-switch was set up to read the edge of a second 

flange screwed onto the flywheel side. The position of the displacer was 

found by using a third opto-switch and a scale mounted on the top of the 

displacer rod. All three optical sensors were adjustable in the x, y, and z 

planes to aid calibration. 

• The piston was manufactured from aluminium to reduce weight. The piston 

runs in an aluminium liner, sleeved into the cold end block. This was so 

that matched pairs of pistons and liners of differing diameter can be 

inserted in the cold block. This allowed an experimental comparison of 

changing engine geometry with predicted results. This forms a part of 

future work. 

• The displacer rod was manufactured from aluminium. The displacer rod 

now runs in an aluminium sleeve, which slides into the cold block. With the 

entire engine cold block components being manufactured from aluminium, it 

was envisaged that there would be fewer issues with dissimilar material 

expansion. It is acknowledged that aluminium running against aluminium is 

not an ideal mechanical situation, but the engine is being run for test 

purposes only, hence longevity of running parts was not an issue. 

• The cold block was tapped for pressure sensors to be attached, and drilled 

for thermocouples to be mounted. The bearings for the flywheel were 

mounted in a carrier which is clamped to the wall of the top end. The 

design of the top end allowed for the modification of the bearings either side 

of the crank disk to help balance the drive shaft, to be addressed in future 

work. The chamber was formed from three laminates of 10mm thick acrylic 

sheet bonded together and then turned to size. The engine bolts locate into 

threads cut into the chamber wall. Flanges cut into the chamber surfaces fit 

64 



Chapter 4 Experimental work 

into rebates cut into the hot and cold block surfaces. These rebates were 

designed to accept gaskets to stop air leakages through surface 

imperfections and interrupt the thermal path from chamber wall to hot and 

cold blocks. The hot block also had tapings for pressure instruments and 

drillings for thermocouples. 
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Figure 4.2 Exploded assembly of second engine - enlargement in appendix A 

As can be seen from the list of modifications, the experience gained from the first 

engine has proved useful in design changes for the second experimental engine. 

Figure 4.3 shows the key dimensions for the second engine. 
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Three types of data were required from the test engine for comparison with the 

predicted data, these being temperature, pressure and location. The package was 

designed specifically for the test engine. 

4.4.1 Temperature 

Several sensors for measuring the temperatures across the engine were 

considered, these being: 

• Resistance temperature detectors (RTO's) 

• Thermocouples 
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• Infra-red thermometry (video) 

• Integrated circuits with inbuilt thermal elements 

Each type of sensor has been investigated for appropriateness in measuring 

temperature within the engine. 

4.4.1.1 Resistance temperature detector (RTO) 

The RTD investigated was the PT100 device, pad mounted and bonded to the 

reading surface using high thermal conductivity epoxy. Connecting wires are 

electrically isolated from the surface and each other by a sandwich of insulating 

tape. The change in resistance of the RTD is a function of temperature. The 

change is not linear in character, but the non linearity function is known and 

detailed in BS EN 60584-2:1993. The change in resistance is converted into a 4-

20 mA signal. This signal is then converted into a 0 - 5 V signal which is fed into a 

data acquisition system. 

The system produces a smooth output with minimal noise over the signal. The 

system exhibited slow response times (in the order of 1 - 2 seconds from step 

change), this was due in the main to the thermal pathway traversing the surface 

bond and the mounting pad. Calibration of a system of several RTDs proved 

problematic with the original circuit board design, due to interference of current by 

neighbouring circuits. The system had an uncertainty of ± 2.5 degrees Celsius per 

reading. 

4.4.1.2 Thermocouples 

It has been observed and documented that when two dissimilar metals are bonded 

together to form a junction, an electrical potential difference is created. As the 

temperature of this junction is changed, so does the potential difference. 

Thermocouples are divided into types, with each type constructed of known 
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materials. The electrical characteristics of each type of dissimilar material junction 

are well documented, and the linearising equations available as part of British 

Standards. The measuring junction is formed as a bead, and for this work a spark 

discharge method of fusion is used to form the bead junction. Materials used are 

nickel constan to form a K type thermocouple. 

The bead is in direct contact with the surface giving faster response times in 

comparison to an RTD. The response time is a function of bead size, where the 

smaller the bead the lower the 'thermal inertia' of the junction and the faster the 

response. For small beads the response for a step change can be as low as 20 

mill i-seconds. The change in potential difference with junction temperature is non 

linear. The polynomials required to linearise the change in potential difference are 

well known and documented in BS EN 60751. The data acquisition system used 

automatically applied linearising signal conditioning to the junction signal. 

Calibration of the thermocouples used cold junction compensation. The reading 

junction and secondary junctions were calibrated using ice / water baths. 

Theoretical uncertainty at 100 degrees Celsius is ±2.11 035 degrees Celsius. The 

data acquisition system will detect changes of 0.61035 degrees Celsius. 

The thermocouples have a cable run of one meter and are un-amplified. As such 

the issue of induced noise is a problem. Strategies to control induced noise are: 

• Hardware filters 

• Software filters 

• Numerical techniques 

• Software smoothing 

4.4.1.3 Hardware filters 

Hardware low pass filters could be applied to the transmission lines, using either 

inductor - capacitor (L-C) or resistance - capacitor (R-C) designs. These circuits 

are designed to attenuate signal noise beyond a pre-defined frequency. Typically 

for a balanced L-C circuit the inductor and capacitor values are high when 
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attenuating from low frequencies. For the circuit given in figure 4.4 the values are 

calculated for attenuation beyond 25 Hz, and are found to be: 

Inductance = 0.159 Henrys per leg 

Capacitance = 2.547 farad 

e-~~ 
c 

e-~~ 
L3 L4 

Where L1=Lz=L3=L4 

Figure 4.4 Balanced L-C low pass filter 

Inherent in the use of a hardware filter is an attenuation of the wanted frequency, 

and signal phase shift. 

4.4.1.4 Software filters 

The application of a software low pass filter produces a rising waveform for each 

scan, starting at the origin and ending at the temperature of the thermocouple. 

With a scan rate of one kilo hertz the data soon becomes hard to interpret. Any 

data which are contained within the rise time of the filter are lost. 

4.4.1.5 Numerical techniques 

The main noise appears to be from the 50Hz mains. By sampling at an integer 

number of the noise frequency (say 500Hz) for one second half the points will be 

above the true signal level and half the points will be below the true signal level. 

Therefore the noise may be averaged out of the signal. This has a drawback, of 

only being able to remove a truly sinusoidal noise which is symmetrical about the 
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true signal level and which is divisible as an integer of the sampling frequency. 

Any other noise will not be removed from the signal. 

4.4.1.6 Software smoothing 

The smoothing filter produces a smoothed waveform, where each thermocouple 

can be identified individually and calibrated. Transient noise is also reduced. 

4.4.1.7 Infrared thermometry 

A thermal camera has been used to monitor the engine as it warms up and runs. 

The inherent drawback of the thermal camera is scan rate (refresh rate of the ccd) 

and that it can only produce surface temperature plots. To 'see' inside the engine, 

a thermally transparent lens would need to be manufactured and fitted. This type 

of device is not appropriate to read gas temperatures directly, but requires a 'skin' 

or surface to read from. The polished surfaces of the engine also confused the 

thermal image. 

Figure 4.5 Thermal image of the first engine 
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4.4.1.8 Integrated circuits 

Integrated circuits with inbuilt temperature sensors have high refresh rates, but 

with a large silicone wafer enclosing the sensor, the response times are slow. The 

physical size of the silicon wafers also cause issues with mounting, and interfe 

with the operation of the engine. 

4.4.2 Sensor and filter choice for temperature readings 

Initially the stable and predictable operation of the RTD was considered as the 

most desirable solution. The required signal conditioning circuits are 

manufactured at Napier University. During calibration it is found that the circuits 

have excellent noise rejection capabilities, but the response to thermal changes is 

slow, in the order of one to two seconds. To speed up the response time would 

require separating the platinum wire resistance element from the pad and cover; 

this action was considered but rejected. The manufacture of bare RTDs was also 

considered, but rejected on the grounds that the calibration and set up of such a 

device is, in essence, a research project in itself. 

For an internal sensor attempting to read the gas flow temperature, the response 

time is critical. For an engine running at 2 revolutions per second, there will be 

four displacement operations per second. To try to approximate the temperature 

profile of the gas flow, many data points are required. It is considered that a 

thermocouple with a small bead size will react quickly to any change in 

temperature. With a response time of 0.2 of a second this is still too slow to gain 

any meaningful data in a single scan. It can be argued that if the simulation 

program were to be comprehensive enough then, by confirming the validity of the 

results that can be gathered, by inference the projected gas temperature is 

probably correct. 

The temperature sensor chosen for the engine is a thermocouple, using software 

smoothing. 
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4.4.3 Location of temperature sensors 

The first engine used Resistance Temperature Detectors rather than 

thermocouples. Initially eight RTDs were employed as shown in figure 4.6, with 

signal wires being fed out through a tapping in the bearing plate mounting block. 

i-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'-'! 
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Figure 4.6 RTD placement for first engine 

The temperature sensors were changed for thermocouples for the second engine, 

as these are easier to calibrate and operate than the RTD sensors. 

In the second engine each of the blocks has drillings for thermocouples to be 

placed exactly in a known location, as indicated in figure 4.7. For the hot block, 

thermocouples are set both radially and axially. This is to read the temperature 

profile throughout the block. The data from these locations also give an indication 

of the heat flow through the hot plate during operation of the engine. The cold 

block has two sets of five drillings which position thermocouples close to the 

cylinder wall and into to main thermal mass. The locations are chosen to show the 

temperature profile in the cold block. The numbered locations for the 

thermocouples are also given in figure 4.7. 
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I ± 6894Pa 

Figure 4.7 Second test engine showing the location of drillings and tappings 

4.4.4 Pressure 

The first engine has tappings for pressure sensors in the source and sink, 

arranged as shown in figure 4.8. 

Where 

Pressure sensor 1 (PS1) has a range of ± 6894 Pa (1 psi) 

Pressure sensor 2 (PS2) has a range of ± 100 Pa 

Pressure sensor 3 (PS3) has a range of ± 6894 Pa (1 psi) 

Each of the transducers has an output voltage range of 4 volts, sitting at 3.5V ± 

2.0V 
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• PS1 measures the pressure differential between the compression space 

and atmosphere during the cycle. The refresh rate of the device is given as 

200 hertz (Hz), although it appears to function quite adequately at 1 kHz 

sampling rate. This is PK of the program. 

• PS2 measures the pressure differential across the displacer, the driving 

pressure for fluid flow through the regenerator. This is the PrPK term of the 

program. 

• PS3 measures the pressure differential between the expansion space and 

the atmosphere during the cycle. This device has a refresh rate of 200 Hz, 

and like PS 1, appears to work at 1 kHz. This is pe of the program. 

With the pressure tappings piercing the hot and cold plates vertically as shown in 

figure 4.8, it was difficult to uniformly heat or cool the plates. This led to the 

modification shown in figure 4.7. 

...---011 11 ± 6894 Pa II 

Atmos 

Compression Space 

II ± 100 Pa II 

Expansion Space 

Atmos 

± 6894 Pa II 

~ 

Figure 4.8 First engine pressure tapping layout 

The pressure transducers used to measure the differential pressure between the 

engine spaces and the atmosphere required only two decoupling capacitors to 
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complete the sensing circuit for data logging. The circuit is given below in figure 

4.9. In the second engine pressure tappings are routed through the hot and cold 

blocks so that the exit is now horizontal and does not interfere with the heat 

transfer surfaces. The large mass of the hot and cold blocks allows heat flow to be 

quantified. 
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Figure 4.9 Pressure transducer circuit 

The uncertainty for the ASDX series of transducers is given as ±2% of full scale of 

4V (Data sheet in Appendix D). Hence there is an uncertainty of ±O.08V per 

reading as detailed in the following paragraph. 

The larger range transducers have a stated range of ±6894Pa (1 psi), the output of 

which covers a deflection of 4 volts. The zero pressure differential is set and 

calibrated to 3 volts output. From this it can be seen that half range (be it positive 

or negative) is 2V. A transducer multiplication factor may be found from this by 

finding the 1 volt value for the pressure range, here 1 volt = 3447Pa Therefore for 

any voltage output from the transducer a multiplication factor of 3447 may be used 

to convert voltage to pressure. The reading uncertainty given above, becomes 

±(O.08*3447), which gives an uncertainty of ±275Pa per reading. 

The pressure sensor for the internal pressure differences had all the conditioning 

circuitry already installed, so just required connections to power, and output to the 

75 



Chapter 4 Experimental work 

data acquisition system. The uncertainty for this transducer was calculated in a 

similar way to that outlined above, giving an uncertainty of 3.8Pa per reading. 

4.4.5 Location 

To compare the virtual engine, with the real engine the location of the piston and 

displacer must be known at any point in the cycle. Several methods were 

considered to find the locations, these being: 

• Photographic interpretation 

• Slotted optical switches 

• Reflective optical switches 

4.4.5.1 Photographic interpretation 

The flywheel and displacer rod were fitted with graded scales, with known datum 

marks, as shown in figure 4.10. Whilst the engine was running several hundred 

photographs were taken. The angle of the flywheel and displacer height were 

taken from each photograph and plotted against each other. 

Although this produced a representation of displacer and piston relationship, the 

trace can not indicate engine component velocity or acceleration. Another 

drawback was, that as the engine speed changes, so does the motion of the 

displacer (from observation). This change in motion appeared as an error rather 

than a phenomenon during the photo analysis. 

76 



Chapter 4 Experimental work 

Figure 4.10 Example of photograph from photo-analysis 

Photo analysis 
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Figure 4.11 Photo analysis of dis placer location 
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A plot of the displacer position against flywheel angle is shown in figure 4.11, 

piston location could be added to the figure, but would not add to the value of the 

graph. It has been observed that at the overdriven limit, not only can cycles be 

jumped by the displacer, but the length of the displacement stroke is reduced. The 

scatter of data points on the plot is indicative of this. 

4.4.5.2 Slotted optical switch (optical integrated circuit) 

A slotted optical switch consists of an infra red diode and optical transistor. The 

energy emitted by the diode energises the base of the transistor, switching it on. 

The voltage across the emitter collector pathway can then be seen. The circuit for 

the optical switch is given in figure 4.12. 

The rise time of the optical switch used was typically 50 nanoseconds, with a 

propagation delay of 3 micro seconds. An array of 36 slots was machined into the 

perimeter of the flywheel. Each slot had a nominal height of 7.75mm ±0.02mm, 

and a width of 1.44mm ±0.02mm. The optical integrated circuit (optical i.c.) 

package was mounted so that the beam is parallel to the axis of the flywheel at a 

distance of 80mm ±1mm from the centre of rotation. Each slot had a 10° (0.1745 

radians) separation from leading edge to leading edge. 

+5V de e__---; 

270 R 

OV 

Figure 4.12 Optical switch circuit 

+5Vde 

OV 

DAQ 

A second optical switch was fitted to read a second flange mounted to read the 

piston bottom dead centre position. 
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0.' ....... 0 tJ 

IJ \l 

Figure 4.13 Flywheel with slots 

The uncertainty for this type of sensor and the flywheel slots was calculated using 

the following reasoning. The test engine runs at speeds between one and three 

revolutions per second. At three revolutions per second the engine was near the 

overdriven limit and cannot run any faster. Thus using a limit speed of three Hz 

was not unrealistic. The time the optical path was interrupted is called the space, 

and the time the optical path was clear is called as the mark. The mark begins 

with the leading edge of the slot and ends with the trailing edge of the slot, and 

was read by the DAQ as output high (+5V). The angle subtending the slot width 

was 0.018 radians ±252E-6 radians. The optical switch had a response time in the 

order of 3 micro seconds, data logging was at a rate of 1 milisecond; therefore any 

error in response time would not be seen by the data logger. 

4.4.5.3 Procedure for dispJacer position 

There is no end of stroke mark for the displacer optical track; this was not an 

oversight, but more of a response to the observed behaviour of the displacer. This 

behaviour includes a reduction of displacer stroke as the cycle approaches the 

overdriven limit. The second engine has been operated below the overdriven limit 
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so a reduction in displacer stroke would not become problematic to the data 

recording system. 

The following argument was put forward as one way to determine the location of 

the displacer during the cycle. 

With the piston at bdc the internal pressure is at a maximum, this became evident 

from an inspection of the graph of the bdc mark and space lines and space 

pressures. This pressure was the mechanism by which the displacer moves to, 

and dwells in the top of the displacer chamber. 

The working fluid was expanding, performing work upon the piston and forcing it 

upwards. As this happened the pressure in the engine dropped and the displacer 

began its downward journey, assisted by gravity. 

With this process complete, the piston was now moving downwards due to the 

energy stored in the flywheel. The pressure change within the engine now pushes 

the displacer up against gravity. 

When inspecting the experimental data one can identify a dwell period just after 

the piston bottom dead centre mark. From this we may surmise that the displacer 

is at the top dwell. The fall of the displacer shows an acceleration until it reaches 

the expansion space stub spring and momentarily enters an indeterminate phase. 

There follows a dwell period and a steady uniform motion. It is put forward that the 

accelerated motion was the displacer falling under gravity and the pressure 

change, and the uniform motion was the rise of the displacer against gravity. Thus 

the different aspects of the cycle were identified. 
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Displacer and bdc marks 
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Figure 4.14 Displacer and bottom dead centre marks 

For the analysis of displacer location the track is divided into 1 mm light and dark 

stripes. As the displacer moves these graduations were recorded by an optical 

integrated circuit. 

From the operation of the Ringbom Stirling engine given in chapter 2, the reader is 

reminded that the displacer upper dwell coincides with piston bottom dead centre 

(bdc). Utilising the piston bdc, mark the upper dwell of the displacer may be 

ascertained. Figure 4.14 shows the piston bdc mark in relation to the displacer 

location marks. The piston bdc mark represents the displacer mid point 23mm 

above the hot plate inner surface. Thus the start location for each cycle was 

identified. 

The rising and falling edges of the track are then identified. A manual method of 

inserting location is employed. By identifying bdc the 23mm location is found, the 

next rising edge is allocated the value 22mm, descending on each edge until the 

7mm point is reached. The displacer is now in the lower dwell location. The next 

23mm point is identified and the points are inserted working backwards to the 
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7mm point. The two 7mm points are now joined. This method eliminates the 

indeterminate phase by assuming that the displacer is at rest at the 7mm height. 

4.4.5.4 Procedure for piston location 

The piston is directly linked to the flywheel by means of a connecting rod. 

Therefore it can be said that if a sensor is set to some arbitrary mark upon the 

flywheel and the piston location recorded, for any given change in flywheel angle 

the piston location can be calculated. 

The piston location chosen was bottom dead centre (bdc). This is the easiest 

point to be identified as, if a rod was used to apply a downward force to the piston, 

it sits at bdc whilst the sensors were aligned to the flywheel marks. Initially a 

series of coded slots were employed to indicate bdc and flywheel direction. This 

approach was found to be unreliable as in some cases the inter slots which form 

the code were skipped when the engine was running at high speed and the data 

acquisition system was writing data to file. To overcome this, a second positional 

sensor was fitted to the flywheel to solely indicate flywheel position at piston bdc. 

This signal is also used to reset the mark - space counter on the flywheel in case 

it becomes out of synchronisation due to a data acquisition system write cycle. 

4.4.6 Data acquisition 

Several methods of data acquisition were considered, ranging from direct data 

entry to an Excel workbook, (or via a FORTRAN program), utilising a direct link to 

the PC to proprietary data acquisition and logging systems. The suitability of each 

solution was decided upon the ease of use, functionality of the hardware and ease 

with which the system could be set up and availability. The system from Pico 

Technology was rejected due to lack of logging channels. Direct connection was 

not advisable due to the amount of signal conditioning required and the risk of 

damage to the PC components if there was a failure of the isolating circuits. The 

system which came out top was to use National Instruments data logging cards 
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and software, both of which were available through Napier University. A separate 

copy of LabVIEW express was obtained so there were no licensing issues. 

Signals from the sensors and transducers were sent to a National Instruments (NI) 

Data Acquisition (DAQ) card for signal conditioning and data logging. Data 

logging functions were controlled through the National Instruments 'Laboratory 

Virtual Instrument Engineering Workbench' (LabVIEW) software. LabVIEW uses a 

graphical programming language for applications such as data acquisition, signal 

analysis and instrument / process control. Three types of National Instruments 

data logging hardware have been investigated for suitability, being: 

• Traditional NI DAQ using LabVIEW 6 and AT-MIO-16E-10 card 

• USB DAQ using LabVIEW 7 Express and USB 9008 unit 

• DAQmx using LabVIEW 7.1 and PCI-6025E card 

DAQmx was used due to its superior user interface. 

The DAQ system was set to receive signals from three opto-switches reading 0 -

5 V d.c. which gave position data for the flywheel and displacer. There was the 

input from the three differential pressure transducers, two operating on a 2.5 V d.c. 

mid point with a ±2 V deflection representing ±6894 Pa, and one operating on a 

3.5 V d.c. mid point with a ± 2.5 V d.c. deflection representing ±100 Pa. A further 7 

channels were taken by K type thermocouples. The transfer function for the 

thermocouples is already loaded into the LabVIEW software, so they only require 

calibrating. 

4.4.7 Calibration of sensors 

4.4.7.1 Resistance Temperature Detectors 

Calibration for the resistance temperature detectors was undertaken by changing 

the value of one of the resistors in the detector circuit. Further trimming was 

achieved using the calibration function of the LabVIEW software. 
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Individual calibration tables for each channel are set up using boiling and freezing 

water and a reference thermometer. 

4.4.7.2 Thermocouples 

The DAQmx software interface was used to set up the data acquisition pc card. 

As part of the setup routine, channels were allocated pre-defined identities such as 

thermocouples. This gave the opportunity to calibrate each individual channel. In 

thermocouple setup, the sensing element may be allocated known temperatures, 

such as boiling water and freezing water with a reference alcohol thermometer and 

hand held thermocouple. This was performed for each of the thermocouple 

channels as part of the calibration routine. 

4.4.7.3 Pressure 

The pressure transducers come pre calibrated and are used with the 

manufacturers' given error, which is given in Appendix D. 

4.4.7.4 Location 

The leading edge of the datum slot on the flywheel was set with the piston at bdc. 

The flange was then set so its leading edge just cut the infra-red beam with the 

piston at bdc. The displacer location was set to just cut the last darkened area on 

the occulted strip, with the displacer pushed to its lowest extent. 

4.4.8 Experimental technique 

The experimental technique and procedure are described below with reference to 

figure 4.15 
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• With all the apparatus at ambient temperature the DAQ was run for five 

seconds. This provides calibration data in case of any calibration / signal 

drift 

• The laboratory hotplate was set to the experiment temperature 

• When the hot plate was at the desired temperature (confirmed with hand 

held thermal probe) the data logger was started and the engine placed 

upon the hot plate 

• Data was gathered until the hot plate and the hot block attain the same 

temperature (TC's 1 to 5) 

• With the hot block at the required temperature, the engine was transferred 

to its insulating jacket 

• The flywheel was turned (initially by hand), or the impetus applied. 

• The first two minutes of run data were gathered 

• After two minutes, five seconds of run data were collected every 30 

seconds until the engine stops 

• The gathered data was exported to an Excel workbook for further analysis 

Figure 4.15 Test apparatus in laboratory, engine without insulating jacket. 
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It should be noted that the load on the engine is provided by friction and, primarily, 

the windage losses on the flywheel. 

4.4.8.1 Experimental error 

The error has been given for each type of sensor as each is discussed above. 

4.5 Experimental results 

4.5.1 Qualitative observations and trends 

In this work two Low Temperature Differential Ringbom Stirling Engines have been 

manufactured at Napier University. The first was manufactured to the design 

given by Senft [Senft 2000], and the second one was a modified engine, based 

upon the Senft design. As alluded to above, the first engine has one slight 

modification to Senft's design, being the inclusion of stub springs in the 

compression and expansion spaces. The second engine is further modified by 

increasing the mass of the hot and cold plates, again described above. 

4.5.1.1 Starting procedure 

Heat was supplied to the hot plate by means of a laboratory electrical heater. As 

predetermined temperature differentials were reached (between the hot and cold 

plates) then the flywheel was turned by hand to provide the starting impetus. It 

was found that as long as the initial turn of the flywheel imparted enough inertia for 

the flywheel to turn approximately five times then the engine would run with 

sustained motion (with the caveat that the temperature differential was great 

enough). By increasing the force of the initial turn the engine would settle don to 

the same steady state angular velocity after approximately five seconds. This was 

also indicated by the predictive program. As such the engine is not particularly 

sensitive to the magnitude of the starting impetus, as long as the impetus is great 
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enough to initiate the engine cycle. This is considered to be due to engine 

damping at start-up. 

Various flywheel start angles were used, ranging in quarter n radian increments 

from bottom dead centre (zero radian) to top dead centre (n radian). This was 

achieved by utilising the optical slots. The piston was held down at bottom dead 

centre and the alignment of the slots and bdc mark checked. The flywheel was 

then rotated to the required position by counting slots, thus setting the start angle. 

The impetus was then applied with the flywheel in the selected start position. 

The height of the piston within the cylinder is a function of flywheel angle theta. 

The amount of working fluid contained within the engine is directly affected by the 

piston location, which will in turn affect the performance of the engine. 

It was observed that the engine was most likely to continue with self sustained 

motion if the start angle was between nl4 and n12. Below nl4 the flywheel turns 

but the engine motion decays to stop with a little rocking. Above nl2 the piston 

appears to stall at top dead centre and either 'bounces' in the top end for start 

angles close to nl2 or stops in the top dead centre location. 

It can be shown that the quantity of fluid retained within the engine is a function of 

flywheel angle. For any given temperature differential, the pressure of a restrained 

fluid will increase in relation to the fluid mass. Hence what is being seen for lower 

flywheel angles is not enough mass to create the pressure required for sustained 

running. For higher flywheel angles, the quantity of working fluid expands to such 

a degree that the inertia of the flywheel and piston assembly is lower than that of 

the resisting pressure, therefore the piston stops. 

4.5.1.2 Rocking phenomena 

It was observed that as the engine temperature differential increased toward the 

self sustaining temperature differential, the piston rocked up and down inside the 
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cylinder without attaining a full cycle. The amplitude of the rocking increased as 

the operating temperature differential was approached. 

4.5.1.3 The first engine 

As the engine warmed up the flywheel was turned by hand to impart the start 

energy. The starting behaviour for differing temperature differentials was found to 

be as follows: 

• For a temperature differential of 20K (20C to 40C) the engine did not 

sustain motion, the flywheel decelerates to stop 

• For a temperature differential of 40K (25C to 65C) the engine did not 

sustain motion, the flywheel decelerated to stop 

• For a temperature differential of 45K (25C to 70C) the engine did not 

sustain motion, the piston rocks two or three times, decaying from nl4 

symmetrical about bdc 

• For a temperature differential of 50K (25C to 75C) the engine did not 

sustain motion, the piston rocks several times, decaying from above nl4 

symmetrical about bdc 

• For a temperature differential of 55K (25C to 80C) the engine did not 

sustain motion, the piston rocks several times, decaying from around nl2 

• For a temperature differential of 60K (25C to 85C) the engine did not 

sustain motion, the piston exhibits sustained rocking motion above nl2 

• For a temperature differential of 65K (25C to 90C) the engine did not 

sustain motion, the piston exhibits sustained rocking motion 

• For a temperature differential of 70K (25C to 95C) the engine began to run 

• The engine continued to run until the temperature differential reduced to 

48K where rocking motion was then observed to decay over several 

minutes until the flywheel became stationary. 
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Once the engine began to run the engine speed increased to 280 to 300 rpm 

where stable operation was observed. The engine appeared to settle to steady 

state running at the ten second point. 

As engine speed increased the dwell time for the displacer reduced, it was also 

observed that the displacer stroke reduced. This had been observed to the point 

where the displacer is just vibrating upon the expansion space spring and not 

raising into the compression space at all, the displacer stroke being no greater 

than 5mm. 

4.5.1.4 The second engine 

For the second engine, several parts from the first engine were used, with some 

design differences being applied, these being: 

• A greater mass for the hot and cold plates 

• A lighter piston with a tighter tolerance on the fit in its running sleeve 

• More accurate alignment of the axis of the piston and drive axle 

• Removal of possibility of bearing carrier flexing 

• Displacer rod and guide sleeve made from the same material as the top 

end 

• Removal of dead space under the piston 

The piston and displacer with their respective guides are manufactured from 

aluminium; it is acknowledged that this is not the ideal material for sliding surfaces. 

It is considered that the reduction in the life of the engine is more than offset by the 

advantage of the identical expansion rates of all the sliding parts. Dissimilar 

expansion rates were found to be an issue with the first engine. 

As the engine warms up the flywheel is turned by hand to impart the start energy. 

The starting behaviour for differing temperature differentials was found to be as 

follows: 

89 



Chapter 4 Experimental work 

• For a temperature differential of 20K (20C to 40C) the engine did not 

sustain motion, with no discernable rocking of the piston 

• For a temperature differential of 30K (20C to 50 C) the engine did not 

sustain motion, with slight rocking of the piston 

• For a temperature differential of 40K (20C to 60C) the engine did not 

sustain motion, with decaying rocking of the piston 

• For a temperature differential of 50K (20C to lOC) the engine did not 

sustain motion, with decaying rocking of the piston 

• For a temperature differential of 60K (20C to 80C) the engine did not 

sustain motion, with sustained rocking of the piston 

• For a temperature differential of 62K (20C to 82C) the engine begins to run 

• The engine continues to run until the temperature differential reduces to 

54K 

Once the engine begins to run the engine speed increased from 160 to 180 rpm 

where stable operation is observed. With a greater temperature differential in the 

region of 80k, the engine speed settles around the 200 to 220 rpm mark. 

The second engine does not exhibit the reduced displacer stroke of the first 

engine. 

With both engines sealing the chamber has proved problematic. 

4.5.1.5 DispJacer motion 

The displacer is moved by the internal and external pressure differential acting 

across the displacer rod of the displacer. The motion of the displacer for the 

upward (outward) and downward (inward) strokes is not symmetrical. The main 

supplemental force acting upon the displacer assembly is that of gravity. With the 

displacer axis orientated to the vertical, the effect of gravity can be seen in the 

movement. As the internal pressure rises the pressure must be great enough to 

not only overcome the mass (supply impetus) of the displacer, but to also raise the 

mass against gravity. The motion is smooth and controlled as indicated by the 
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uniform mark and space gaps recorded during the displacer outward motion. 

When the pressure reversal causes downward movement of the displacer, the 

action of gravity is now assisting and the displacer accelerates until contact with 

the expansion space stub spring. The upward stroke tends to push the top of the 

displacer to a point where the compression space spring is fully compressed; even 

though the motion is slower, there is more pressure pushing the displacer upwards 

than downwards. This concurs with the description of the net work output for the 

cycle. With the working fluid expanding, work is done upon the piston and by 

inference displacer (the work required to raise the displacer); when the working 

fluid contracts, the displacer 'flops' down onto the expansion space stub spring, 

hence does not compress the stub spring by more than one or two millimetres. 

4.6 Quantitative results 

Data for several tens of runs was recorded by the DAQ system, this data was 

transferred to an Excel workbook and analysed. Initially this data is used to 

improve the experimental technique and modify the DAQ system. This is 

invaluable in the quest for clean, accurate, reproducible data. One series of 

results has been selected as representative for the engine logged data. Within the 

run data, key points were analysed, indication distinct operational modes these 

being: 

• For 0 to 2 seconds (start-up) 

• For 5 to 7 seconds (warming of regenerator) 

• For 12 to 14 seconds (stable running, source temperature stabilised) 

• For 21 to 23 seconds (stable running, source temperature dropping) 

• For 119 to 121 seconds (stable running, source temperature dropping) 

For each of the run times analysed the mid second temperature differential is 

taken, these being: 

Nominal temperatures at start up are: 

• Source (hot reservoir), TH = 100°C 
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• Sink (cold reservoir), Tc = 20°C 

• Ambient, TA = 20°C 

• Thermal jacket base = 100°C 

• Thermal jacket top = 20°C 

Table 4.1 Temperature change for periods of run time. 

1 st BO°C (1 second) 

2nd BO°C (6 seconds) 

3rd 73°C (13 seconds) 

4th 73°C (22 seconds) 

5th 70°C (120 seconds) 

For each of these times a series of graphs is generated from the data. These 

graphs are given in figures 4.16 to 4.30. 

Run time 0 to 2 seconds 

150,----------------------------------------------------, 6000 

4000 
~ 
~ 

~ 
50+-~----~-H~------+;~------~~------+;r+----~~-+ 2000 

::l 
en en 
~ 
Il. 

0 G) 
u 
C'O 
c-
en 

-50 +----+------jf--------I----+-----.I-----f---+---+-~--__tt--_+______t--____Tt___+--_+_t_ -2000 g 
'iii 
c: 
C'O 

-100 +----------"o,,,,L----+--------"T+------t-------'1.-------:lI------i------\r---t=-----------'------t+-----+_t_ -4000 ~ 
w 

-150 -6000 

0.000 0.200 OAOO 0.600 0.800 1.000 1.200 1AOO 1.600 1.800 2.000 

Time (s) 

- Piston location - TC3filter TC4 filter 
- Differential (Pa) - Displacer Location - Expansion (Pa) 

Figure 4.16 Run time 0 to 2 seconds 
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Run time 5.00 to 7.00 seconds 

15o,----------------------------------------------------------, 6000 

4000 
Ii e:. 
<I) ... 

50 ++~~----_+~~----_1~~-~--~~~------~~------~_+---+ 2000 
::l 
III 
III 
<I) ... 
Il. 

0 <I) 
U 
111 
Q. 
III 

-50 +-~----~--~--~_,~~--~~~-~--~_,~_+--~--+__4--~_+~000 ~ 
'iii 
t: 
111 

-100+-~--------~--~~--~--~~--~--~~--_+--~_+--~---4_+ 4000 ~ 

-150+-----,-----r-----,----,,----,-----,-----.-----.-----,----_+-6000 
~~ ~~ 5.~ 5.~ ~~ ~~ 6.~ ~~ 6.~ ~~ ~~ 

Time (s) 

- Piston location - TC31ilter TC41ilter 
- Differential (Pa) - Displacer Location - Expansion (Pa) 

Figure 4.17 Run time 5 to 7 seconds 

Run time 12 to 14 seconds 
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Figure 4.18 Run time 12 to 14 seconds 
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Figure 4.19 Run time 21 to 23 seconds 

Run time 119 to 121 seconds 
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Figure 4.20 Run time 119 to 121 seconds 

Each graph has six traces; the left hand axis represents general magnitudes for 

piston location, source and sink temperatures, pressure differential across the 
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displacer and displacer location. The right hand axis represents the expansion 

space pressure. 

These graphs have been further analysed to produce the series below. The 

temperature data is now omitted and two graphs are presented for each time 

under investigation. One shows the displacer and piston locations in relation to the 

expansion space pressure and the other shows the differential pressure (Pe - Pk) 

in relation to the expansion space pressure. The expansion space pressure is 

being used as a reference. This pressure drives the engine and it provides a 

useful link between the pressure cycle and kinematic cycle. 
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Run time 0 to 0.6 seconds 
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Run time 12.4 to 13 seconds 
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Figure 4.26 Differential Pressure referred to Pe (12.4 to 13s) 

Runtime 21.6 to 22.2 seconds 
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Figure 4.27 Piston and Displacer Location referred to Pe (21.6 to 22.2s) 
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Figure 4.28 Differential Pressure referred to Pe (21.6 to 22.2s) 

Runtime 120 to 120.6 seconds 
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Figure 4.29 Piston and Displacer Location referred to Pe (120 to 120.6s) 

99 



.:.:: 
0. 
Q, 
0. 
Q) ... 
~ 
UI 
UI ~ 
Q) ns 
"'0. 
0. -

~ 
'E 
Q) ... 
:! 
C 

150 

100 

50 

0 

-50 

-100 

-150 

Chapter 4 Experimental work 

Runtime 120 to 120.6 seconds 
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Figure 4.30 Differential Pressure referred to Pe (120 to 120.6s) 

4.7 Qualitative results 

Through the experimental phase the data for many tens of engine runs are 

collected and analysed. The above graphs have been taken from one such run 

and are considered representative of the body of data as a whole. Future work 

may consider further statistical analysis of the data sets. 

Figures 4.21 to 4.30 are given as a representative set of results for the first 120 

second of engine runtime. After this period the engine may be considered to have 

achieved stable running, with further changes in operation due to the decaying 

temperature differential. 

Table 4.1 shows that in the first twelve seconds the temperature differential drops 

by rc; from figures 4.16 to 4.18 inclusive it can be seen that this drop is almost 

totally due to the source temperature changing. 

From t = 12 to t = 120 the drop is only 3°C 
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Figure 4.21 shows the variations of the positions of the piston and displacer and 

the relative expansion pressure at start up. The relative expansion pressure is 

about 1800 anti-phase, lagging the piston slightly. When the pressure is at a 

maximum the piston is just after bottom dead centre on the upstroke. The 

movement of the displacer shows the expansion space pressure required to rise 

above a 'lifting' pressure in order to overcome gravity acting upon the displacer 

assembly mass. It can be seen that as soon as the pressure changes the 

displacer begins to drop, the drop gradient being noticeably sharper than the rise 

gradient. The flywheel is rotating at 150 rpm. 

Figure 4.22 shows the variations of the differential pressure across the displacer, 

measured from tapings shown in figure 4.14 at start up. The first spike coincides 

with the drop of the displacer, with 'ringing' at the point where the displacer 

contacts the expansion space spring and expansion space low pressure. The 

second spike coincides with the displacer rising and contacting with the 

compression space spring at compression space maximum pressure. 

Figures 4.23 and 4.24 show the variations for run time 3.4 to 4 seconds. The 

flywheel speed is now 176.7 rpm. The spikes in the differential pressure, 

coinciding with the displacer contacting the stub springs, have increased for the 

displacer drop, and decreased for the displacer rise. The relative pressure for the 

expansion space has dropped by 2000 Pa for the high pressure part of the cycle. 

The low pressure part remains the same. 

Figur~s 4.25 and 4.26 show the variations for run time 12.4 to 13 seconds. The 

flywheel speed remains at 176.7 rpm. A noticeable lag between the displacer and 

pressure variations is now developing. The spikes observed in the differential 

pressure are increasing in the negative direction. 

Figures 4.27 and 4.28 show the variations for run time 21.6 to 22.2 seconds. The 

flywheel speed is now 166.7 rpm. There appears to be no change in phase 

between displacer location and expansion space pressure. Differential pressure 

variations appear to be in steady state. 
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Figures 4.29 and 4.30 show the variations for run time 120 to 120.6 seconds, also 

considered to be steady state running for the engine. The flywheel speed is 166.7 

rpm, which is not too unexpected as the temperature differential from 22 seconds 

to 120 seconds has only dropped by 3°C. The phase difference between the 

displacer and expansion space pressure has remained the same. Only the 

differential pressure trace has become more pronounced. 

102 



Chapter 5 Theoretical Analysis and Numerical Techniques 

5 Theoretical Analysis and Numerical Techniques 

This chapter reproduces a full third order analysis of the low temperature 

differential Ringbom - Stirling engine, using conservation laws and the ideal gas 

law. 

5.1 The Ringbom Stirling engine and third order analysis 
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Figure 5.1 Schematic of Ringbom Stirling engine 

The analysis requires that each of the nodes, spaces and elements are identified. 

Figure 5.1 shows a schematic of a Ringbom Stirling engine with relevant points 

indicated. 

To simplify the governing equations, several assumptions are necessarily made, 

these being: 

• The engine alignment is vertical 

• Pressures in all spaces are uniform 

• Temperatures in all spaces are uniform 
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• The working fluid is air which behaves as a perfect gas 

• No flow through the annular gap formed by the displacer and chamber wall 

• The mass of working fluid in the regenerator is constant 

• The flow through the regenerator can be modelled as flow through pipes 

• Heat transfer within the matrix is solely between the matrix material and the 

working fluid, i.e. no alternative thermal pathways such as axial conduction 

• Temperatures of hot and cold plates are constant throughout the process 

• No frictional pressure drop losses in the regenerator 

• Adiabatic chamber walls and regenerator screen 

• Mechanical losses and windage may be accounted for in one term 

• Connecting rod has no mass 

The following conventions are used: 

• Work done on the system is negative 

• Thermal energy into the system is positive 

5.2 Analysis of the expansion space 

All mass flow to and from the expansion space is considered to traverse the 

regenerator, driven by the pressure difference either side of the regenerative 

matrix. Initially flow through the annular gap and consequent heat transfer to the 

chamber wall is included in the regenerator terms. A constant (KMR ) can be 

formed, which accounts for the flow properties of the fluid through the regenerator. 

Hence an equation describing the mass flow may be written as: 

Equation 5.1 

Where flow out of the expansion space is considered as positive, and inward flow 

as negative. 
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If PE > PK then riz is positive [rizR > 0] 
else 

If PE <PK then riz is negative [riz R < 0] Equation 5.2 

The mass conservation in the expansion space per unit time (rate of change in 

mass) may be expressed as: 

/j,mE = -rizR M 

dmE . --=-m 
dt R Equation 5.3 

The energy balance in the expansion space may be considered as the energy 

entering the space from the source (hot plate), minus the energy leaving the space 

due to mass flow (or plus the energy entering the expansion space on the 

conjugate cycle where flow enters the expansion space from the regenerator), and 

minus the energy required to perform work upon the displacer, which may be 

written as: 

Equation 5.4 

Where 

Equation 5.5 

And ESource is heat flow from the hot end heat exchanger which can be expressed 

as: 

Equation 5.6 

Where KHH is the constant of convective heat transfer for the source surface, TH is 

the source surface temperature, TE is the expansion space temperature and Lit is 

the time step for the rate of heat exchange. 
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Where EF10w is an expression for the energy in the mass exiting or entering the 

expansion space: 

If mR > 0 then 

EF/ow = CpTEmRM 

else 

If mR < 0 then 

EFlow = CpTREmR/).t Equation 5.7 

Where TRE is the temperature of the working fluid entering the expansion space 

from the regenerator. 

Where Wdisplacer is the work done to lift the displacer against external pressure. The 

pressure in the expansion space acts upon the available surface area of the 

displacer and will move the displacer a distance LlxD , this may be written as: 

Hence the energy balance equation may be written as: 

If PE '?PK then 

t1( Cvm ETE) = K HH (TH - TE )t1t - C pm RTEM - PEADL1x D 

else 

If PE <s'PK then 

t1( Cvm ETE) = K HH (TH - TE)M - C pm RT REM - PE AD L1x D 

Equation 5.9 may be rewritten as: 

t1(CvmETE) = KHH(TH -TE)M-CpmR7;*M-PEADL1xD 

where 

If mR >0 then 7;* = TE 

If mR <0 then 7;* = T RE 

Rewriting in terms of the rate of change (time domain) results in: 

Equation 5.8 

Equation 5.9 

Equation 5.10 
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Equation 5.11 

Inspecting EE = CvmETE and differentiating with respect to time, where Cv is a 

constant, the following result can be obtained: 

dEE = C dm E T + C m dTE 
dt v dt EVE dt Equation 5.12 

Noting that 

dmE . --=-m 
dt R Equation 5.13 

Equation 5.12 can be written as 

Equation 5.14 

Rewriting the expansion space inequality expression to include the modified left 

hand side gives: 

Equation 5.15 

which may be rewritten as: 

Equation 5.16 

The term containing the specific heat at constant pressure may be re written with 

Cp being expressed as Cv + R, where R is the gas constant for the working fluid. 
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Equation 5.17 

Rearranging this new term yields equation 5.18 

Equation 5.18 

The pressure in the expansion space may be calculated using the ideal gas law 

PV=mRT 

Which may be expressed as: 

Where VE is the instantaneous volume of the expansion space. 

Equation 5.20 may then be rewritten as: 

5.3 Analysis of the compression space 

Equation 5.19 

Equation 5.20 

Equation 5.21 

The compression space analysis follows a similar method to that employed for the 

expansion space. The mass flow term is modified to include mass ingress and 

egress due to imperfect sealing of the piston and dis placer in their respective 

linings. 

Following the reasoning as expanded for the expansion space then 

108 



Chapter 5 Theoretical Analysis and Numerical Techniques 

Equation 5.22 

And 

Equation 5.23 

dmK . . ( ) -- = m R + m A positive as mass is entering 
dt Equation 5.24 

But 

. .. 
m A consists of two components mMP and mMD 

hence 

Equation 5.25 

The energy balance for the compression space is made up of five terms. 

• Heat removed via the cold plate 

• Heat coming in from the regenerator 

• Heat removed due to leakage to the atmosphere 

• Work done by the displacer 

• Work done on the piston 

Which may be written as: 

tiE K = ( - E Sink + ERegen + E Leakage + WDisplacer - WPiston )L1t Equation 5.26 

This is developed in a similar way to the expansion space above, therefore only 

the key steps will be given. 
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Defining T*2 and T*3 as 

PE > PK then mR > 0 and r;* =TRK 

PE < PK then mR < 0 and r;* =TK 

PA < PK then m A < 0 and 1;* = TK 

PA > PK then mA > 0 and 1;* =TA 

The first expansion of the energy equation gives 

Equation 5.27 

Equation 5.28 

Inspecting EK = Cv mKTK and differentiating with respect to time where Cv is a 

constant; using the product rule, the following result can be obtained: 

dEK = C dmK T +C m dTK 
dt v dt K v K dt Equation 5.29 

Using a similar expansion to the equations for the expansion space, and 

remembering that the flow term is now positive, the equation for the compression 

space may be formed: 

Equation 5.30 

Transposing equation 5.30 

dTK ( ) ( )dxD dxp 
CvmK-=-KHC TK-Tc +PK AD-ADR --PKAp-

dt dt dt 

-CvmRTK +(Cv +R)mRr;* -CvmATK +(Cv +R)mAI;* Equation 5.31 

Rearranging equation 5.31 
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Equation 5.32 

Combining like terms 

Equation 5.33 

To develop equation 5.33 further, the piston velocity may be written in terms of the 

flywheel angle theta. Equation 5.35 is the equation for piston velocity. We may 

now substitute for xp by 8. This is derived from piston geometry as shown in figure 

5-7, which is defined by equation 5.34. 

Equation 5.34 

. [r2 sinBcosB . B] dB x = +rsm .-
P (e2 - {r sin BY ).5 dt 

Equation 5.35 

Gives: 

Equation 5.36 
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The pressure in the compression space is calculated using the ideal gas law, as 

before, resulting in: 

Equation 5.37 

5.4 Analysis of the displacer 

The displacer motion is caused by a pressure difference between the internal 

space and the atmosphere. 

Regenerator 

Expansion Space 

Figure 5.2 Forces acting upon the displacer 

In the region of unconstrained displacer travel, the line of action for the mid point 

of the displacer (centre of mass) XD will always be in the space bounded by the 

stub spring length and ± half the displacer height. Two inequalities may be set up 

to describe this region. 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
he .:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:. 

}- Compression space spring, KSK 

Free length hSK 

~-~~ ::::: ::::::::::::::::::::::::::: ::::::::::::::::::::::::::: Displacer, height hD 

1
······························1 } 

Region of 

unconstrained 

displacer travel 

XD 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

} 

Figure 5.3 Detail section of stub springs and displacer 

Expansion space spring, KSE 

Free length hSE 

Consider the arrangement shown in figure 5.2 and 5.3 

For the expansion space spring 

Equation 5.38 

For the compression space spring 

Equation 5.39 

Thus the equation for motion not constrained by the action of either of the stub 

springs becomes: 

Equation 5.40 

It should be remembered that there are two caveat conditions, one where the 

length of the compressed springs should not be greater than the void which they 

fill, and one where the extreme surfaces of the displacer are not allowed to travel 

beyond the physical boundaries set by the inner surfaces of the hot and cold 

plates, which can be written as: 
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XD > O.5hD 
XD < he -O.5hD Equation 5.41 

Only in the regions controlled by the stub springs will equation 5.40 require 

modification by the addition of forces representing the spring. 

For the expansion space controlled by the spring of length hSE, the additional force 

is 

Equation 5.42 

For the compression space controlled by the spring of length hSK the additional 

force is 

Equation 5.43 

Introducing parameter FDA the three conditions of upper restraint, no restraint and 

lower restraint may be described using one equation. The operator is set by the 

inequality below: 

for O.5hD <XD < hSE+O.5hD then FDA =FDE =KSE(hsE+O.5hD-XD) 

for hSE +O.5hD ~XD ~ he -hSK -O.5hD then FDA = 0 

for he -hSK -O.5hD < xD < he -O.5hD then FDA = FDK = KsAhe -hSK -O.5hD -xD) 

Equation 5.44 

And the governing equation for the displacer becomes: 

Equation 5.45 

Which may be rewritten as: 
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5.5 Analysis of the piston I flywheel assembly 

"0 
0 
'-

~ 
~ 
0 
Q) 

~ 
0 
0 

Pi~on 
I 

, , 
, , , , 

Figure 5.4 Piston and flywheel assembly 

, , 

, , 

A 

D' ....................................... B-e-
Yr = Y£ 

X£ 

£ , , , , , , 

C -E--

Equation 5.46 

XT 

Figure 5.4, shows the piston flywheel assembly, the position of the crank pin, the 

length of the crank r and the angle theta, from a given datum. Similarly the 

connecting rod end point can be calculated from length £ and pivot angle alpha. 

Alternatively by considering the geometry in Cartesian coordinates the location of 

the crank pin may be described by two dimensions (x and y). 

As an analytical tool it is useful to describe either alpha in terms of theta or theta in 

terms of alpha. This means that only one angle is required, with the other being 
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automatically evaluated. From the geometrical construction above it may be seen 

that each triangle has one side in common (the length Yr subtending Band YR, 

subtending a); it is this communality which will allow one angle to be written in 

terms of the other. 

From the above construct the components of the triangles may be written as: 

Xr =rcosB Equation 5.47 

Yr = rsinB Equation 5.48 

Xe =fcosa Equation 5.49 

Ye = fsina Equation 5.50 

As stated above and by inspection it can be seen that 

Yr = Ye Equation 5.51 

Hence 

r sin B = f sin B Equation 5.52 

And, transposing for sin a 

. r . B sma =-sm 
f Equation 5.53 

since 
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1 

cosa = ±(1-sin2 a)2 

and inserting the above identity for sin a 

Equation 5.54 

Equation 5.55 

The positive root is taken for the upward stroke, and the change in quadrant 

accounts for the negative root so the ± operator may be omitted. 
/ 

As 

X f =Rcosa Equation 5.56 

Then 

Equation 5.57 

From inspection 

Equation 5.58 

And 

Equation 5.59 

Rewriting 
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1 

x, =XT-{l-(%J sin2 eT -rcose 
Equation 5.60 

Or 

1 

Xp = X T _(e2 _r2 sin 2 B)2 -rcosB 
Equation 5.61 

5.5.1 Piston 

With reference to figure 5.5, the forces acting upon the piston may be written as: 

Equation 5.62 

Figure 5.5 Piston forces 
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5.5.2 The flywheel 
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Figure 5.6 Piston-flywheel dynamics 
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Similarly, the balance of the flywheel in the region 

O<8<n 

Shows that 

\ 
\ 

\ 
\ 

\ 

A 

D\········ .. ························· B-r 
Yr= Ye 

Xe 

XT 
\ 

\ 
\ 

\ 
\ 

\ 

C -t-

Equation 5.63 

Where the loss function is assumed to be represented by 
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Equation 5.64 

And TF , the torque acting upon the flywheel, equals to the force multiplied by the 

perpendicular distance to axis of rotation, or to be precise, the component of force 

transmitted via the connecting rod, acting tangentially to the flywheel multiplied by 

the axis to crankpin length. 

Rewriting 

Equation 5.65 

Hence 

Equation 5.66 

Angle ADC is calculated from the sum of angles inside a triangle equal to Jr, so 

LADC= Jr-(O+a) Equation 5.67 

And r is the angle formed by the tangential force and the connecting rod. Thus it 

is deduced that part of the angle ADC will always have a component of value Jr. 

Hence 

r=Jr-(O+a) 
2 Equation 5.68 

By applying the double angle formula to equation 5.68 it may be rewritten as 

cosr =sin(a + 0) Equation 5.69 
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The above derivations result in two equations which describe the system of forces 

acting upon the piston and flywheel arrangement, re written as equations 5.70 and 

5.71 below. 

Equation 5.70 

Equation 5.71 

By multiplying equation 5.70 by r cos r 

And multiplying equation 5.71 by cos a 

We get 

Equation 5.72 

And 

IF cosae = Fp cosr ·cosa .r-KDiJ ·cosa Equation 5.73 

Rewriting equation 5.73 for Fp cos r' cos a . r 

Equation 5.74 

Substitute equation 5.74 into equation 5.72 

mpxp{rcosr) = Ap{p" - PAXrcosr)- mpg{rcosr)- IFecosa - KDFBcosa 

Equation 5.75 

Moving the acceleration terms to the left hand side gives 
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Equation 5.76 

For the downward stroke from top dead centre (tdc) to bottom dead centre (bdc), 

where 11: < 8 < 211:. Changes in polarity that account for the force direction change 

during the downward stroke are accounted for by trigonometric relationships. 

From equation 5.61 the displacement of the piston (xp ) can be calculated for any 

angleB. The first and second derivatives (w.r.t. time) will yield equations for 

velocity and acceleration of the piston. 

Thus the equation 5.61 for displacement of the piston can be used to find velocity 

and acceleration respectively. 

(Copy of equation 5.61) 

Equation 5.77 

(d
2BJ (dB)2 +rsinB dt 2 +rcosB dt 

Equation 5.78 

Equations 5.61 and 5.77 are my own derivations, which were checked using Math 

Cad software. Equation 5.78 was generated using Math Cad. 

Putting the identity from equation 5.78 into 5.76 the force balance may be rewritten 

as 

122 



Chapter 5 Theoretical Analysis and Numerical Techniques 

Equation 5.79 

Rearranging equation 5.79 into separate terms in acceleration 

Equation 5.80 

Rewriting equation 5.80 gives 

Equation 5.81 
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5.6 Analysis of the regenerator 

The regenerator is arguably the major contribution to science that the Rev. Stirling 

[Stirling 1816] introduced. It defied analysis for many years, and now, even with 

advanced computational fluid dynamics (with programs such as FLUENT [NASA 

2004]) the internal workings of the regenerator are still indeterminate. As such the 

regenerator is often treated as a 'black box' with many simplifying assumptions 

over the aerodynamic effects and screen orientation made. 

The regenerator is complex, and the final design is a compromise of four 

conflicting requirements. 

• To minimise temperature fluctuations within the matrix (thermal instability 

and loss of efficiency), the ratio of the heat capacity of the matrix to that of 

the working fluid should be minimised, suggesting a large low porosity 

matrix 

• To reduce the pressure drop as the fluid passes through the matrix 

(pumping loss), fluid friction should be minimised, suggesting a small highly 

porous matrix 

• The dead space within the matrix reduces the compression ratio (and by 

implication cycle power), suggesting a small dense matrix 

• To improve heat transfer performance at low temperature differentials, the 

heat transfer area must be maximised, suggesting a large finely divided 

matrix 

5.6.1 Simple regenerator 

The regenerator is usually a series of mesh screens stacked one on top of the 

other. For the first analysis a single screen is employed as shown in figure 5.7 

below. This screen forms a cell that completely fills the void length with the free 

flow cross sectional area defined by mesh geometry. Several simplifying 

assumptions made for the first model are detailed in the bullet points below. 
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• Each screen is thermally isolated from adjacent screens thus eliminating 

axial heat transfer by conduction 

• The regenerator walls are perfect insulators 

• Specific heat capacity of materials and fluid are constant across the 

operating range 

• Inlet and outlet temperatures are uniform over the screen 

• Material properties remain constant throughout the operating range 

Figure 5.7 Simple one cell regenerator 

For the flow through the cell 

Where, as before it was considered that 

Displacer 

Matrix material 

Free flow path 

Equation 5.82 

Equation 5.83 
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dE R = C dmR T + C m dTR 
dt v dt R v R dt Equation 5.84 

It should be remembered that, as the mass flow entering the regenerative space is 

equal to the mass flow leaving the regenerative space (conservation of mass and 

definition of a control volume), then the mass within the control volume will remain 

constant, nullifying the mass flow term of equation 5.84. 

Hence 

dER =C m dTR 
dt v R dt Equation 5.85 

And, for the fluid 

Equation 5.86 

For the matrix material 

Equation 5.87 

Which, when a similar process as above is applied and using an inequality 

statement as before, the conjugate action of the flow may be accounted for 

for PE ?:. PK , ~ = (TE - TR ) 

else 

for PE <PK , ~ =(TR -TK ) 

Resulting in, for the flow 

Equation 5.88 

Equation 5.89 
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And for the !)latrix 

Equation 5.90 

5.6.2 Multi cell regenerator 

Displacer 

Matrix material 

Free flow path 

( 

~I 
fc 

Figure 5.8 The multi cell regenerator 

The analysis of the multi cell regenerator is similar to that of the single cell, with 

the inclusion of one more term in the flow equation. 

This extra term accounts for the fact that the entry temperature for any cell is no 

longer the source (or sink on return blow) temperature, but the preceding cell exit 

temperature. 

Special cases are the outer cells, which are in contact with the source (or sink). 

Following the same steps as outlined in section above two equations are formed, 

as given below. 

The general case for a regenerator made of N cells (screens) 
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Compression Space 

~~ 
i~B TM,N TR.N 

:;: T M,N-1 T R.N-1 :"2: 

:~.' 
:~l 

T M,N-2 T R.N-2 

it 

I 
I I 
I I 
I I 
I I 
I I 
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I I 
I I 
I I 

i{~ 

i~ 
~~ T M1 T R1 

~~ 
Expansion Space 

Figure 5.9 Regenerator of N cells 

For PE ';?:PK 

Cell 1, next to the expansion space 

TMI = KHRM (r. - r. ) 
dt C 

Rl Ml 
MmMC 

~~ } 
~( } 
\~: 

~;i } 
"\ 

~: 

~} 

Cell N 

Cell N-1 

Cell N-2 

N (-$) Cells 

Where $ is any 

number of 

Cell 1 

Equation 5.91 

Equation 5.92 

For cells 2 to N, where N is the total number of cells, and I = 2 to N, then the 

generic form may be written as 
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dTR1 

dt 

c . 
p m R (1', _ 1', )_ K HRM (1', - 1', ) 

C R,I-l R,I C R,I M,I 
vmRC vmRC 

TM,I _ KHRM (1', -1', ) 
dt - C R,I M,I 

MmMC 

And for the last cell which bounds the compression space, I=N, 

dTR,N 

dt 

c· 
p mR (1', -1',) KHRM (1', -1', ) C R,N-l R,N C R,N M,N 

v m RC v m RC 

TM,N _ KHRM (1', - 1', ) 
dt - C R,N M,N 

MmMC 

Equation 5.93 

Equation 5.94 

Equation 5.95 

Equation 5.96 

Remember that the temperature of the air in the last cell is also the temperature 

T RK. Hence the last cell may be rewritten as: 

dTRK 

dt 

c . 
pmR (T 1',) KHRM (1', 1',) C R,N-l - RK C R,N - M,N 
vmRC vmRC 

TM,N _ KHRM (1', - 1', ) 
dt - C R,N M,N 

MmMC 

For PE < PK , using a similar method to the one above 

Cell 1 (adjacent to expansion chamber) where TRI = TRE 

c· 
dT RE = P m R (1', _ 1',) K HRM (1', - 1', ) 

dt C RE R2 C RE Ml 
v m RC v m RC 

Equation 5.97 

Equation 5.98 

Equation 5.99 
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Equation 5.100 

The general term becomes 

dTR,I _ Cp mR (T. _ T. ) KHRM (T. _ T. ) 
dt 

- C R,I R,I+! C R,I M,I 
v m RC v m RC Equation 5.101 

TM,I = KHRM (T. - T. ) 
dt C R,I M,I 

MmMC Equation 5.102 

Cell N becomes 

dTR,N = Cp mR (T -T.) KHRM (T -T. ) 
d C R,N K C R,N M,N 

t v m RC v m RC Equation 5.103 

TM,N = KHRM (T. - T. ) 
dt C R,N M,N 

MmMC Equation 5.104 

5.7 Summary of governing equations 

Expansion space 

(copy of equation 5.1) 

dmE . --=-m 
dt R (copy of equation 5.3) 

(copy of equation 5.18) 
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(copy of equation 5.21) 

Compression space 

(copy of equation 5.23) 

dmK . . ( . ) 
-- = m R + m A positive as mass is entermg 

dt (copy of equation 5.24) 

_ ~ A [ r2 sinOcosO + r sin 0] . dO 
K P (e2 _ r\sin 0) )0.5 dt 

(copy of equation 5.36) 

(copy of equation 5.37) 

Displacer 

mDxD =AD(PE -PK)-mDg+ADApK -~)+FDA (copy of equation 5.46) 

for O.5hD <XD <hSE+O.5hD then FDA =FDE =KsAhsE+O.5hD-XD) 

for hSE +O.5hD SXD she -hSK -O.5hD then FDA = 0 

for he -hSK -O.5hD < XD < he -O.5hD then FDA = FDK = KsAhe -hSK -O.5hD '-xD) 

(copy of equation 5.44) 

Piston / flywheel assembly 

. r . 0 sma =-sm 
£ (copy of equation 5.53) 
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cosy =sin(a + e) (copy of equation 5.69) 

1 

X, ~ XT -{l-( ~J sin' or -rcosO 
(copy of equation 5.60) 

(copy of equation 5.62) 

(copy of equation 5.81) 

Regenerator 

(copy of equation 5.89) 

(copy of equation 5.90) 

5.8 Numerical techniques 

In the previous section the equations required to describe the engine processes 

were developed. 

These equations are discretised using the following approximations. 
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dx = Xt+/';,t -Xt 

dt M Equation 5.105 

And 

d
2 
x xt+2bt - 2xt+/';,t + Xt 

dt 2 M Equation 5.106 

5.8.1 Flywheel location 

Auxiliary angles 

. r . B sma =-sm 
f Equation 5.107 

a = arcsin( ~ sin B ) 
Equation 5.108 

cosr =sin(a + B) Equation 5.109 

r = arccos(sin(a + B)) Equation 5.110 

{ 
(sinB)(cosB) . }(d2B) m r3cos r 2 . 205 +r2mpcosrsmB+IFcosa -2- = 

P (f - (rsm B) ) . dt 

dB 
- K cos a - + A (p. - P )r cos r - m . g . r cos r 

DF dt p k A P 

Equation 5.111 

Let 
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(sin B)(cos B) . 
A = mp r3 cosy +r2m cosysmB+i cosa 

(£2 -(rsinB)2)0.5 p F 
Equation 5.112 

Equation 5.113 

c= -KDF cosa Equation 5.114 

'Equation 5.115 

Simplifying the expression to 

Equation 5.116 

Expanding the differential terms for small changes 

Equation 5.117 

And dividing through by A 

Equation 5.118 

Multiplying by ~t2 
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Equation 5.119 

Making 0t+2M the subject 

Equation 5.120 

Rewriting with identities inserted 

+ 

(sin O)(cos 0) 2 • 
m p r3 cos r 2 • 2 05 + r m p cos r sm 0 + IF cos a 

(£ - (r sm 0) ) . 

dO 
KDF cosa-

------(-. -n-)(--I1-)--..::::d.::....t --------- (O(t+M) + O(t)).M 
3 sm u cos u 

m r cos r + r 2 mp cos r sin 0 + IF cos a 
p (£2 _ (rsin 0)2)0.5 

Ap(Pk - PA)rcos r - mp . g. rcos r 
_____ ~~~-~~--~--------- ~t2 

3 (sin O)(cos 0) 2 • 
m r cos r 2 • 2 ° 5 + r m p cos r sm 0 + I F cos a 

p (£ - (r sm 0) ) . 

Equation 5.121 

5.8.2 Piston location 
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Xp =XT _(e2 _r2sin2e)0.5 -rcose 
Equation 5.122 

5.8.3 Displacer location 

Equation 5.123 

Equation 5.124 

XD,(t+nt)-2XD,(t+M)+XD,(t)=_1_[A (p -p)- A (p -P)+F ] 
I1t m D D E K m Dg + DR K A DA 

Equation 5.125 

XD,(t+2~t) = 2XD,(t+M) -XD,(t) + :t [AD(PE -PK )-mDg+ ADR(PK -pJ+FDJ 
D 

Equation 5.126 

Where the inequality for the spring forces may be declared by 

for O.5hD <XD <hSE +O.5hD then FDA =FDE = KsAhsE +O.5hD -xD) 

for hSE + O.5hD 5,xD 5, he - hSK - O.5hD then FDA = 0 

for he -hSK -O.5hD <xD <he -O.5hD then FDA =FDK = Kse(he -hSK -O.5hD -XD) 

Equation 5.127 

And bounded by upper and lower limits of 

Equation 5.128 
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5.8.4 Compression space temperature 

P. A [ 
r2 sinBcosB . B] dB - +rsm .-

K P (£2 -r2(sinB) )0.5 dt 

Equation 5.129 

Equation 5.130 

Equation 5.131 

Equation 5.132 
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PK Ap [ r2 sin B cos B . B]f() () ) 
--- 2 . 2 0.5 +rsm ~ (t+~t) - (t) 

CVmK (.e - (rsmB) ) 

Where 

mA = mMP + mMD 

and if 

PE >PK and mR > o then r:; =TRK 

PE < PK and rnR < o then 7;* =TK 

PA < PK and rnA < o then 1;,* =TK 

PA > PK and rnA> o then 1;,* =TA 

Equation 5.133 

Equation 5.134 

Equation 5.135 

Equation 5.136 
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5.8.5 Mass flow for compression space 

dmE . --=-m 
dt R 

5.8.6 Expansion space temperature 

Equation 5.137 

Equation 5.138 

Equation 5.139 

Equation 5.140 

Equation 5.141 

TE,(t+!;.t)-TE,(t) =_l_[K (T -T )-P,A XD,(t+M)-XD,(t)+C m (T -1',*)-Rm 1',*] 
f1t CVmE HH H E,(t) E D f1t v R E,(t) 1 R 1 

Equation 5.142 

Equation 5.143 
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Where 

If PE > PK then 1;* = TE 

If PE < PK then 1;* = TRE 

5.8.7 Mass flow for expansion space 

dmK . . 
--=mR+mA 

dt 

mK,(t+Llt) = mK,(t) +(mR + mA)M 

5.8.8 Compression space pressure 

Equation 5.144 

Equation 5.145 

Equation 5.146 

Equation 5.147 

Equation 5.148 

Equation 5.149 

Equation 5.150 
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5.8.9 Compression space mass 

5.8.10 Expansion space pressure 

5.8.11 Expansion space mass 

5.8.12 Regenerator 

Cell 1, fluid in regenerator 

TR1(t+M) - TR1(t) 

~t 

Equation 5.151 

Equation 5.152 

Equation 5.153 

Equation 5.154 

Equation 5.155 

Equation 5.156 
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Equation 5.157 

Equation 5.158 

Equation 5.159 

Cell 1, matrix material 

Equation 5.160 

TM1{t+M) -TM1{t) _ KHRM (T -T ) 
- Rl Ml 

!1t CM m MC Equation 5.161 

KHRM!1t (T T ) 
TM1{t+M) = TM1{t) + C Rl{t) - Ml{t) 

MmMC Equation 5.162 

Equation 5.163 

General term for cells J to N, where J = 2 to N 

C . K 
p mR (T T) HRM (T T) C R,J-l - R,J C R,J - M,J 

v m RC v m RC Equation 5.164 
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Equation 5.165 

T, -T, + CpTizRM(T, -T,) KHRMM(T, -T, ) 
R,J(t+!lt) - R,J(t) C R,J-J R,J C R,J M,J 

v m RC vmRC 

Equation 5.166 

Equation 5.167 

General term for matrices J to N, where J = 2 to N 

TM,J _ KHRM (T -T, ) 

dt - C R,J M,J 
MmMC Equation 5.168 

Equation 5.169 

For PE < PK (conjugate flow) 

Fluid now enters from the compression space into the first (also the Nth cell) at TK , 

the temperature of the fluid in the cell and the matrix have been calculated 

previously (on first blow set to T ambient) 

Cell N, fluid in regenerator 

Equation 5.170 
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1', -1', C liz ( ) K ( ) R,N{t+l'.t) R,N{t) _ P R 1', _ 1', HRM 1', - 1', 
I1t - C K{t) R,N{t) C R,N(t) M,N(t) 

vmRC vmRC 

Equation 5.171 

Equation 5.172 

Equation 5.173 

More generally for cells N-1 to 1, for J=N-1 to 1 

dTRJ CplizR ( ) KHRM ( ) --' - 1', -T 1', -1', 
dt - C R,J+l R,J C R,J M,J 

v m RC vmRC 

Equation 5.174 

1', ( )-1', () C liz ( ) K ( ) R,J t+f'..t R,J t _ P R T _ T _ HRM T - 1', 
I1t - C R,J+l(t) R,J(t) C R,J(t) M,J(t) 

v m RC v m RC 

Equation 5.175 

1', - 1', '+ C p liz R I1t (1', _ 1', ) K HRM I1t (1', - 1', ) 
R,J(t+l'.t) - R,J(t) C R,J+l R,J C R,J M,J 

v m RC v m RC 

Equation 5.176 

Equation 5.177 
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Equation 5.178 

Cell N, matrix material 

TM,N _ KHRM (1', -1', ) 
dt - C R,N M,N 

MmMC Equation 5.179 

TM,N(t+I::.t) - TM,N(t) = KHRM (1', _ 1', ) 
At C R,N M,N 
Ll MmMC Equation 5.180 

T KHRM~t( ) 
M,N(t+l::.t) = TM,N(t) + C TR,N(t) - TM,N(t) 

MmMC Equation 5.181 

Equation 5.182 

General term for matrices N-1 to 1, where J = N-1 to 1 

TM,J _ KHRM (1', -1', ) 

dt - C R,J M,J 
MmMC Equation 5.183 

Equation 5.184 

5.9 Preparation of data for the program 

Thus far a third order analysis has been applied to the Ringbom Stirling engine. 

The use of numerical techniques has produced a series of equations ready for 

encoding. The order in which these equations are applied will now be discussed. 
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The program is divided into six discrete parts, but has been written as one 

program rather than subroutines or modules. These parts are: 

• Declaring variable names with kind parameters 

• Initialise variables by allocating values 

• Initial calculations for engine geometry and start up values (t = 0) 

• Calculations for the first time step (t = L1t) 

• Calculations for the second time step (t = t+L1t) 

• Third and subsequent time step calculations 

The programming language chosen has changed as the complexity and amount of 

data generated has increased. The final program is written in FORTRAN in 

preference to Microsoft VBA or Excel. The time step requires that 1 million sets of 

calculations are performed for one second of predicted engine run time. Each set 

is performed upon the governing equations as expanded in section 5.8 and given 

in appendix B, thus for one second of predicted run time over one hundred million 

calculations are performed. VBA and Excel are limited in their application as they 

are high level languages, residing five levels above machine code. This severely 

reduces run speed when compared to FORTRAN which resides just one level 

above machine code. Issues with errors due to translation tables and rounding 

are also eliminated. 

5.9.1 Order of calculations 

In deciding upon the order of calculation, the way in which the engine operates 

must be considered. Although some Stirling engines, such as the free piston 

variants are self starting, this particular design is not. Therefore to start the engine 

an impetus is applied to the flywheel. 

The starting angle (theta) of the flywheel is important as the location of the piston 

is calculated using theta. This has a direct implication with respect to engine 

starting, as the location of the piston with the engine cold in effect controls the 
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quantity of working fluid (mass) contained within the engine. The relevance of this 

should be clear from chapter 2. Suffice to say that if the piston starts at bottom 

dead centre then there will not be enough fluid within the engine to sustain 

operation, and if the piston starts too high in its cylinder then there will be too 

much expanded fluid within the engine to allow the piston to complete its cycle. 

For the initial condition calculation, the piston location is required when calculating 

the volume of the compression and expansion spaces. This in turn is used to 

calculate the mass of air contained in the compression space. Other initial 

conditions are set as given in tables 5.1, 5.4, 5.5 and 5.6. 

At start-up, an impetus is applied to the flywheel; hence the first calculation is for 

the new flywheel angle. The piston, being directly connected to the flywheel, is the 

next element to be addressed. Next the displacer location is calculated. Knowing 

the displacer location allows expansion and compression space pressures to be 

calculated. This pressure differential is the driving gradient for mass flow through 

the regenerator; hence the mass balance can be calculated. This now means that 

fluid temperatures for the regenerator, expansion space and compression space 

can be calculated. 

The expressions for flywheel angle and displacer location are discretised from 

second order differential equations. This means that the first and second time 

step calculations for any run must have specific conditions applied. The third and 

subsequent calculations will be able to use previous time step values. Hence the 

order of calculation is: 

1. Flywheel angle e 
2. Piston location 

3. Displacer location 

4. Expansion space and compression space pressures 

5. Mass flow and mass balance 

6. Matrix temperatures 

7. Expansion and compression space temperatures 
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5.10 Testing the program 

The program has undergone several stages of development and refinement 

resulting in code for one cell, two cell and multiple cell regenerators. Before any 

data generated by the programs was considered to be 'predictive', the operation of 

the program had to be confirmed by testing. 

Initially the program was tested for stability, with the internal temperatures and 

pressures for all nodes throughout the engine set to equal the ambient conditions. 

The flywheel angle at start-up was set to n14, this was to approximate correct 

amount of working fluid within the engine. This is taken from the description of 

operation of the Ringbom - Stirling engine variant as modified by Senft [Senft 

2000]. The positive direction of rotation is taken as anti-clockwise (as viewed 

toward the engine), hence the piston is rising. 

For the Ringbom engine to operate correctly the working fluid must be fully 

expanded within the engine at a point in the cycle when the piston is just below top 

dead centre. The energy stored within the flywheel (and the piston itself) will 

cause the piston to continue on its path upwards. As this happens the increased 

volume causes the fully expanded gas to create a vacuum with relation to the 

surrounding pressure, taken as atmospheric. It is this vacuum which initiates the 

return stroke of the displacer to begin. This implies that for a fully sealed engine 

the working temperature differential must be critical. If in the above scenario the 

internal mass occupies a greater volume when expanded (say by an increase in 

heat), then the internal pressure cannot fall below that of the surrounding fluid 

(air), and the displacer will never fall. 

All leakages and losses are set to zero, and an impetus equal to the starting 

velocity of 25 radians per second is applied to the flywheel. Due to the complex 

and fast initial transients, the time interval required for convergence has to be 1 E-7 

of a second or less. The implication of this is that simulations require long run 

times, with 120 seconds of simulated run requiring one hour of computer run time. 
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It is seen that with the initial conditions set as given in the text, the simulation will 

run continuously at the given start impetus, which is expected. 

It was considered that 120 seconds of engine run time was sufficient for the 

simulation to be representative of steady state operation. 

For the first runs of the simulation, the values for the variables that define the 

engine are set as closely as possible to those known for the physical engine. As 

more realistic values for the engine variables became available, they were 

incorporated into the program. 

The reason for this is to investigate how closely the simulation will predict stable 

engine operation when compared to a known working engine. As such, this will 

assist in the verification of the program. 

5.10.1 Parameters of the model 

The characteristics of the various components, such as their dimensions and 

masses for the virtual engine, are given in table 5.1. These were taken directly 

from the second test engine built at Napier University, the engineering drawings 

being given in Appendix A. 

The standard physical constants used in the modelling are given in Table 5.5. 

The remaining parameters, which are given in Table 5.6, were determined by a 

combination of analytical and experimental considerations, described below. 

The regenerator is made from coils of steel wool packed into the regenerator void. 

As indicated in the literature review, the flow path through the regenerator may be 

modelled as axial flow through tubes. The equations used to simulate the engine 

use several constants, these are defined below. 
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Table 5.1 Physical characteristics of the test engine 

Component Mass Unit 

Base 2170 g 

Cylinder 3129 g 

Head 1703 g 

Piston and connecting rod assembly 35.8 g 

Displacer and regenerator assembly 33.56 g 

Component Length Unit 

Base 46 mm 

Cylinder 70 mm 

Head 70 mm 

Piston 20 mm 

Connecting rod 65.0 mm 

Displacer and regenerator assy 10 mm 

Displacer chamber 29 mm 

Stub spring 5 mm 

Crank arm 11 mm 

Component Diameter Unit 

Base 152 mm 

Cylinder 152 mm 

Head 152 mm 

Piston 34 mm 

Displacer 115 mm 

Displacer chamber 116 mm 

Effective heat transfer surface 116 mm 

Displacer rod 14 mm 

Regenerator diameter 25 mm 
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5.10.2 Inertia of the flywheel 

The value for the inertia of the flywheel was approached in two ways. The first 

was to take the value generated by a commercially available computer aided 

design package. The second was to make a hand calculation. 

The inertia value for the flywheel is taken directly from AutoCAD Inventor 10. This 

is calculated by the program for any model drawing 

Iyy = 534 kg mm2 

This value has some error due to the density value used by Inventor in its 

computations 

For the hand calculation the density of the flywheel material is calculated from the 

mass and volume of the actual part. From this the actual density of 2270 kg/m3 

was calculated, almost double that of the Inventor 10 value. This has lead to the 

use of the hand calculation value being used, as detailed below. 

This approach broke the flywheel into two disks, one taking the flywheel as a 

whole solid. The other disk represents the amount of mass cut out of the flywheel, 

using the standard formula 

I 1 2 
FW = zmr Equation 5.185 

Considering the physical form of the flywheel as shown in appendix A, this gives a 

value for the inertia as 

/Pw = 0.00068616 kg m2 
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5.10.3 Spring constant 

The stub springs were cut from the same length of coiled steel; hence it was 

assumed that the expansion space spring and compression space spring can be 

rated equally. 

The spring rate was calculated empirically, with a given deflection per unit force 

being used. The spring constant is calculated from transposition shown in 

equation 5.186. 

F=Ks·x 

whereF =m·g 

hence K = m . g / 
s Ix 

The mass and deflection being: 

Spring compression mass 0.55 kg 

Spring compression 0.005 m 

Gives the spring rate as: 

KSE = 1079.1 N/m 

KSK = 1079.1 N/m 

5.10.4 Flow leakage constants 

Equation 5.186 

Philosophy: A cylinder, sealed at one end, has a piston inserted in the open end. 

The piston is allowed to fall under the control of gravity. As the piston falls, fluid is 

displaced due to the reduction of volume. By timing the fall over a known distance 

the mass flow may be calculated. Knowing the mass flow rate the flow constant 

may be calculated. 

152 



Chapter 5 Theoretical Analysis and Numerical Techniques 

Pressure due to piston under gravity 

Equation 5.187 

hence 

Equation 5.188 

If the system is perfectly sealed, then the downward force will be atmospheric 

pressure plus the piston pressure, setting up an equal and opposite reactive force. 

As the system is not perfectly sealed then this downward pressure causes a mass 

flow out of the system. 

m . = (Palm· Vp )/( ) 
Qlr !(R.T Equation 5.189 

where 

Equation 5.190 

And 

m A = K MP (p cylinder - P almos ) Equation 5.191 

But 

m-mass/ 
- /unittime Equation 5.192 

therefore 
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K MP = ( ) remember ~Ylinder = ~tmos + ~ue to mass 
P cylinder - P atmos 

Equation 5.193 

Table 5.2 Experimental data for mass flow constant 

Piston drop height 0.017 m 

Displacer rod drop height 0.04 m 

Displacer drop height 0.015 m 

Piston drop time 145 s 

Displacer rod drop time 70 s 

Displacer drop time 0.3 s 

Table 5.3 Intermediate values 

Mass of air piston moved 1.87903E-05 Kg 

Mass of air displacer guide moved 7.49623E-06 Kg 

Mass of air displacer chamber moved 0.00019299 kg 

MFR piston 1 .29588E-07 kg/s 

MFR displacer guide 1.07089E-07 kg/s 

MFR regenerator 0.000643299 kg/s 

Pressure due to piston 321.9864204 N/m2 

Pressure due to displacer rod 637.2693844 N/m2 

Pressure due to displacer 23.20615327 N/m2 

Table 5.4 Mass flow constants 

KMP = 4.0246E-10 

KMD = 1.6804E-10 

KMR = 2.7721 E-05 
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5.10.5 Flywheel loss parameters 

The flywheel loss parameter was determined directly by measuring the 

deceleration of the flywheel/piston assembly. The test engine was split so that the 

bottom and the top of the piston were open to atmosphere. Thus ensuring that the 

pressures above and below the piston were identical. The engine orientation was 

maintained as vertical. The piston movement within its containing cylinder was 

included, since it allowed a comprehensive modelling of the whole flywheel 

assembly. It was estimated that the friction between the piston and its containing 

cylinder accounted for about 60% of all losses. 

Assuming that the losses are proportional to the angular velocity, ill the 

instantaneous velocity is given as 

Equation 5.194 

where all symbols have their usual meaning. 

From the measured position of the flywheel, as a function of time, the 

instantaneous angular velocity was determined, also as a function of time. A 

typical example is shown in Figure 5.10. 

An exponential trend line was then applied, which showed that the overall loss 

coefficient is about 0.00003 kg m2 S-1. Hence kDP, which accounts for about 40% is 

approximately 10-5 kg m2 S-1. This value is used, but the sensitivity of the results to 

this choice was also investigated. 
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Figure 5.10 Graph of change in angular velocity with respect to time 

5.10.6 Heat transfer parameter for internal surfaces 

5.10.6.1 Heat transfer from hot reservoir 

The analysis of heat transfer from the source and sink to and from the working 

fluid is a difficult problem. This is due to the flow in the expansion and 

compression spaces being complex. Hence, only an estimate will be made. 

The estimate is based upon the flow of fluid past the surface of the source and 

sink. 

The typical movement of the displacer taken from the prediction program data is 

shown in figure 5.11 below. 
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The displacer descends in about 15% of the duration of each cycle, or more 

generally, fraction r of the cycle. The total stroke of the displacer is about 16mm, 

hence the average velocity of the displacer during this period is: 
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Equation 5.195 

Where tc is the period of each cycle, defined by convention as 

1 
t=-

C f 
Equation 5.196 

therefore 

Equation 5.197 

If one was to assume further that the typical position of the displacer was half way 

down. The thickness or the gap between the bottom of the displacer and the heat 

transfer surface is 10mm, 

Hence the area of the cylinder on the outside of the displacer through which all the 

fluid will pass is 

Equation 5.198 

Since the frontal area of the displacer is 

Equation 5.199 

The velocity of the fluid across the surface of the cylinder, Vc is 

Equation 5.200 
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It is next assumed that we can approximate with flow over a flat plate, hence from 

Incropera [Incropera 2002]. 

- l 1 
Nu =O.66Re 2 Pr3 

And 

hDD 

Nu=_2-
k 

Rearranging 

- Nu k 
h=-­

DD 

2 

Inserting values 

And 

But, earlier we defined 

Hence 

KHH=h As 

Equation 5.201 

Equation 5.202 

Equation 5.203 

Equation 5.204 

Equation 5.205 

Equation 5.206 
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Therefore KHH :: 0.15 

However it must be considered that the flow is highly turbulent and must include 

the characteristics of an impinging jet. It will be assumed that: 

If it is further assumed that KHC =KHH 

A sensitivity analysis was performed by using different values for KHC =KHH 

5.10.6.2 Porosity of regenerator matrix 

The porosity is a measure of how densely the regenerator is packed and is defined 

as the proportion of non solid volume to the total volume of material. 

To find the non solid volume of the wire wool regenerator the mass and density of 

which are known, is straightforward, and may be calculated using the relationship 

volume:: mass divided by density. 

The volume which the regenerator will occupy is again easily calculated from the 

diameter and depth of the void. 

By subtracting the solid volume from the total volume the non solid volume can be 

found. 

Thus for the dimensions and materials used the regenerator has a porosity of 95% 
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5.10.6.3 Structure of regenerator cells 

The regenerator is defined by two elements, one being the mass of working fluid 

occupying the free flow volume. The other element is the regenerator matrix itself, 

considering its geometry and mass. 

The matrix in this case is wire wool, the total mass of which is known, as well as 

the nominal diameter. From this information the total volume occupied by the 

regenerator may be calculated. As previously stated the porosity is 95%, so the 

volume occupied by the mass within the regenerator must be 5% of the total 

volume, leaving 95% of the total volume to be occupied by the working fluid mass. 

Knowing this volume and the density of air means that the total mass of air may be 

calculated. 

The masses were modified by being divided by the number of cells to yield the 

mass of matrix material and mass of air per cell. 

5.10.6.4 Heat transfer within the regenerator matrix 

Pressure drop in the annular space between the displacer and displacer chamber: 

Figure 5.13 Displacer inside the displacer chamber showing annular gap 
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The thickness of the annular gap may be found from the difference of the two 

diameters. It is assumed that the gap is uniform, and that the displacer is uni-axial 

with the displacer chamber. 

Hence 

Equation 5.207 

The result of which, using the above parameters is 5E-4. 

If we now assume that the annulus can be unravelled, the space may now be 

approximated as the gap between two parallel plates. The flow regime for parallel 

plates is well studied and the following expansions may be applied. 

Mass flow rate per unit width for laminar flow. 

Equation 5.208 

Therefore 

Equation 5.209 

Total flow becomes 

Equation 5.210 

Inserting identities becomes 

Equation 5.211 
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Flow 

Figure 5.14 Equivalent annular gap shown as two plates 

But from previous work we know that 

Equation 5.212 

So 

Equation 5.213 

Using this equation KA is calculated as 2.2E-5. The experimental value is 2.1 E-5 

indicating that the majority of the flow is via the annular gap formed between the 

displacer and displacer chamber wall. 

To find the heat transfer rate into the two walls from the fluid we may use 

Q = hAi1T Equation 5.214 
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And the surface area is 

Equation 5.215 

Then for two surfaces, with different heat transfer coefficients we have 

If it is assumed that h disp ~ hdc then 

For this type of flow regime Nu ~ 8 [Incropera and De Witt] 

Where 

hDeq 
Nu=--

k 

And equivalent diameter Deq is defined as 

D = 4A 
eq p 

When inserting identities becomes 

Rewriting equation 5.216 gives 

Equation 5.216 

Equation 5.217 

Equation 5.218 

Equation 5.219 

Equation 5.220 
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Inserting this identity into equation 5.215 gives 

Rewriting yields 

Previously we defined Q as 

So now an equation describing KHRM may be written 

NukrcDDf 
KHRM =----

to 

Equation 5.221 

Equation 5.222 

Equation 5.223 

Equation 5.224 

Equation 5.225 

The calculations indicate a value of approximately 1.5 W IK; however some flow 

does go through the regenerator, so a reasonable assumption for the value of 

KHRMis: 

KHRM~ 2 I ns 

Where ns is the number of matrix screens making up the regenerator and is used 

in table 5.6. This value is used, and its sensitivity was investigated. 
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5.10.6.5 Parameters for engine 

Table 5.5 Physical constants used for the engine 

Description Value Unit 

Acceleration due to gravity 9.80665 m/sL. 

Ambient temperature 280 K 

Atmospheric pressure 101325 Pa 

Cold plate temperature 280 K 

Density for stainless steel 7850 kg/mJ 

Density of air 1.2 Kg/mJ 

Gas constant for air 287 J/kg K 

Hot plate temperature 355 K 

Cp constant pressure for air @ 300K 1005 J/kg K 

Cv constant volume for air @ 300K 718 J/kg K 

Cp matrix iron 448 J/kg K 

Table 5.6 Geometry and constants calculated by the prediction program 

Description Value Unit 

Area of cold plate internal transfer via mL. 

compression space 0.010568318 

Area of displacer chamber 0.010568318 mL. 

Area of displacer effective 0.010568318 mL. 

Area of displacer rod (CSA) 0.000153938 mL. 

Area of displacer solid 0.010386891 mL. 

Area of hot plate heat transfer surface 0.010568318 mL. 

Area of piston 0.00090792 mL. 

Combined flywheel I piston losses 1E-5 kg mL. S-1 

Constant for mass flow past displacer rod 1.1209E-10 m2 s 

Constant for mass flow past piston 4.02465E-10 mL. s 

Constant for mass flow through regenerator 2.05646E-05 mL. s 

Convective heat transfer for cold plate 0.3 W/K 
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Convective heat transfer for hot plate 0.3 W/K 

Heat transfer constant for matrix 2/ns W/K 

Initial flywheel angular velocity 25 Radian/s 

Mass of regenerator material in regenerator cell 0.00753/ns Kg 

Mass of working fluid in regenerator cell 0.000022/ns Kg 

Moment of inertia 0.00068616 kg mL 

Number of cells 2 

Number of regenerators 4 

Regenerator porosity 95 % 

Spring rate constant for compression space kg/m 

spring 1000 

Spring rate constant for expansion space spring 1000 kg/m 

Time step in seconds 0.0000001 s 

Total length of crank arm and connecting rod 0.076 m 

Total mass of matrix material 0.00753 kg 

* Where ns is the number of screens in the matrix (cells) 
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5.11 Theoretical results 

5.11.1 Quantitative results 

The development and testing of the computer program involved many runs, 

collecting very large amounts of data. Each data set varies with the change in 

variable value and in some cases such as regenerator definition, calculation 

philosophy. 

To standardise a series of runs for comparison purposes was a necessity. As 

detailed above, the values for constants and geometry are taken from the engine. 

In this way the physical engine is replicated as closely as possible by the computer 

program. 

Time windows used in the physical engine are: 

o to 0.6 seconds 

3.4 to 4.0 seconds 

12.4 to 13 seconds 

21.6 to 22.2 seconds 

119.4 to 120.0 seconds 

It can be seen that each interval time slot lasts for a period of 0.6 of a second, this 

is due to the limitations of the data logging system. 

The time windows used for the computational model are: 

12 to 14 seconds 

21 to 23 seconds 

118 to 120 seconds 
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These time slots were chosen to mirror those for the test engine data, but also 

neglecting start up behaviour at this point and concentrating on steady state 

operation. 

The temperature differential is worked slightly differently to that of the real engine. 

In the case of the computer model the hot and cold ends are isothermal, where for 

the real engine the temperatures can be seen to decay. 

A temperature differential of 75K has been taken as representative of the starting 

differential of the test engine. 

Position of piston and relative expansion space pressure 
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Differential pressure and relative expansion space pressure 
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Position of piston and relative expansion space pressure 
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Predicted Locations and Partial Pressure 
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Differential pressure and relative expansion space pressure 
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5.11.2 Qualitative analysis 

The engine simulation program has been written in three forms, these having 

relevance as to the construction of the regenerator. The programs have been 

written to simulate a one cell 'black box' regenerator, a two cell regenerator and a 

multi cell regenerator. The one cell and multi cell regenerators were put aside in 

favour of a two cell regenerator. The one cell was found to be over simplistic, and 

could not show trends through the regenerator, taking the whole as one. The multi 

cell required noticeably longer run times and generated much larger data files. 

Regenerative matrices and their flow and thermal characteristics could easily 

occupy a research thesis by themselves. Therefore it was decided that a two cell 

matrix would be sufficient to show trends within the regenerator without over 

complication. 

It was decided that the data for a series of runs would be taken. These runs were 

designed to simulate the engine with differing flywheel angles and with different 

temperature differentials. The order for these runs is given in table 5.B. Runs 5, 11 

and 17 were given special attention as the temperature differential is the same as 

that for the real engine for start up and sustained motion. 

Table 5.7 Verification runs 

Start Displacer Ambient Hot plate Differential 

Run angle mass temperature temperature temperature File name 

1 "n/4" 25g 2BO 320 40 01 tc01 -

2 "n/4" 25g 2BO 330 50 01 tc02 -

3 "n/4" 25g 2BO 340 60 01 tc03 -

4 "n/4" 25g 2BO 350 70 01 tc04 -

5 "n/4" 25g 2BO 360 BO 01 tc05 -

6 "n/4" 25g 2BO 370 90 01 tc06 -

7 "n/5" 25g 2BO 320 40 01 tc07 -

B "n/5" 25g 2BO 330 50 01 tcOB -

9 "n/5" 25g 2BO 340 60 01 tc09 -
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10 "n/5" 25g 280 350 70 01~tc1 0 

11 "n/5" 25g 280 360 80 01 tc11 

12 "n/5" 25g 280 370 90 01 tc12 

13 "n/6" 25g 280 320 40 01 tc13 

14 "n/6" 25g 280 330 50 01 tc14 

15 "n/6" 25g 280 340 60 01 tc15 

16 "n/6" 25g 280 350 70 01 tc16 

17 "n/6" 25g 280 360 80 01 tc17 

18 "n/6" 25g 280 370 90 01 tc18 

A brief description of the runs will now be given in table 5.8. 

Table 5.8 Run description 

Differential Comment 

Run temperature 

1 40 The flywheel rotates several times before starting to rock 

2 50 The flywheel rotates several times before starting to rock 

Sustained motion from input of impetus, although reversal of 

3 60 direction of motion, 1050 rad in 120 seconds 

Initial rotation turns quickly to rocking/stall for short time, then 

4 70 sustained motion to 1320 rad in 120 seconds 

Initial rotation turns to stall which lasts slightly longer then 

5 80 sustained motion, 1584 rad in 120 seconds 

Initial rotation turns to stall which lasts slightly longer then 

6 90 sustained motion, 1855 rad in 120 seconds 

7 40 The flywheel rotates several times before starting to rock 

8 50 The flywheel rotates several times before starting to rock 

Sustained motion from input of impetus, although motion 

9 60 reverses, 1046 rad in 120 seconds 

Initial acceleration decreases, sustained motion to 1395 rad in 

10 70 120 seconds 
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Initial rotation turns to stall then sustained motion, 1594 rad in 

11 80 120 seconds 

Initial rotation turns to stall which lasts slightly longer then 

12 90 sustained motion, 1851 rad in 120 seconds 

13 40 The flywheel rotates several times before starting to rock 

14 50 The flywheel rotates several times before starting to rock 

Initial rotation turns to oscillating for short time then sustained 

15 60 motion to 1108 rad in 120 seconds 

Initial acceleration decreases, sustained motion to 1403 rad in 

16 70 120 seconds 

Initial rotation turns to stall then sustained motion, 1557 rad in 

17 80 120 seconds 

Initial rotation turns to stall which lasts slightly longer, then 

18 90 sustained motion, 1838 rad in 120 seconds 

The lowest temperature differential applied to the engine is 40K, it was seen that 

the flywheel rotates for 1.2 seconds before initial stall, and then rocks with 

decreasing amplitude. After 12 seconds the motion had almost ceased, with the 

engine components becoming stationary by 22 seconds. This series showed the 

inertia of the flywheel assembly driving the piston, and so driving the pressure 

variations within the engine, hence displacer location. 

The next temperature differential applied is 50K. It was deduced that the flywheel 

turns in the same direction for 6.24 seconds. After this time the flywheel stops 

momentarily and then commences small oscillations. At the 27 second point these 

oscillations suddenly triple in magnitude, and then very slowly increase; even with 

very long runs simulating ten minutes of engine run time, these oscillations do not 

become large enough to complete one revolution of the flywheel. The time 

between 6.24 seconds and 27 seconds may be the warm-up time for the 

regenerator. 

This series begins with the flywheel inertia driving the piston, causing the fluid 

motion within the engine. What can be seen after 6.24 seconds is the start of the 
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engine working as a heat engine. The sustained oscillations of the flywheel 

indicate that there must be a thermodynamic and fluid cycle occurring, but without 

sufficient energy density to complete the kinematic cycle. 

With a temperature differential of 60K and 70K the data showed the engine 

sustaining motion. The piston is leading the displacer and pressure is also leading 

the displacer. Maximum pressure is at bottom dead centre, or just before bottom 

dead centre for the piston. It can be seen that a bulk pressure is building up, so 

the displacer movement is not complete. This shows transition from being 

motored to motoring. This can also be a gas cycle being initiated. There are 

pressure spikes on differential pressure trace, which coincide with displacer 

contact of compression space spring. 

Higher temperature differentials showed the pressure drop and cycle initiation after 

the internal pressure has stalled the engine with the piston held at top dead centre. 

This pressure drop is due to the mass leaving the engine. Higher temperatures 

also indicated an increased angular velocity. 

This shows the engine with an increased internal temperature differential. There is 

a slight increase ion phase shift with the displacer with respect to the expansion 

space pressure. The simulation reproduces many of the motions seen on the test 

engine, such as rocking of the flywheel, and piston lock at top dead centre if the 

temperature or fluid mass is too great for the initial conditions for sustained motion. 

The runs described above are taken as representative of the type of testing the 

simulation has gone through, and only represent a very small amount of the 

simulated data gathered. 

For the final runs of the prediction program the values for the engine constants 

were all checked to be the latest, and the parameters of the engine all checked to 

be the correct value. 
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A representative starting differential of 75K was applied to the initial conditions and 

the simulation run for 125 seconds. A printout of the final program is given in 

appendix B. 

The chosen parameters show the engine starting immediately with no rocking or 

piston lock evident. 

Figure 5.15 shows the data for piston position and relative expansion space 

pressure for 12 to 14 seconds. At this point the engine is settling into steady state 

operation with a running speed of 114 rpm. The graph indicates that maximum 

expansion space pressure occurs at the same time as piston bottom dead centre. 

From the description of engine operation this is expected. It is noteworthy, that the 

pressure differential is not symmetrical about the zero pressure point. There is a 

range of +8KPa when the piston is at bdc to -6KPa when the piston is at tdc. 

Figure 5.16 shows the differential pressure in comparison to the relative expansion 

pressure. When the differential pressure is positive, then it is indicative that PE is 

greater than PK, and when the differential pressure is negative, then PE is less than 

then PK. It is interesting to see the differential pressure in antiphase to the relative 

pressure. 

By inspecting figure 5.17 the shape of the differential pressure line can begin to be 

explained. As the displacer dwells at bottom dead centre the piston descends 

using the energy stored by the flywheel on the upward stroke. Heat is still being 

rejected from the chamber to the cold plate, so the compression space pressure is 

still falling slightly. Eventually the point is reached where the compressed fluid can 

be compressed no more for the given conditions, and the pressure rises rapidly 

due to the piston downward movement. This increasing pressure begins to lift the 

displacer and mass flows from the compression space to the expansion space. 

The expansion space pressure begins to rise due to expansion of the working 

fluid. The expansion space pressure continues to increase and the displacer 

accelerates under the increasing pressure. At the point where the displacer 

contacts the compression space spring, there is a small bounce on the spring, 

which can also be seen in the differential pressure line. As the displace dwells in 
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the top of the engine the differential pressure becomes positive, and the expansion 

space pressure becomes greater than the compression space pressure; this is not 

surprising as the displacer is sitting in the compression space and the majority of 

fluid is in the expansion space. The expansion space pressure increases to a 

point just before top dead centre. It is at this point, if the literature is to be 

believed, that the displacer would begin its journey downwards. It is evident from 

the trace that the displacer has begun its journey downward at least two tenths of 

a second before this. This departure from the expected behaviour will be in some 

part due to the mass of the displacer under gravity, and in some part to the 

imperfect sealing of the engine. As the displacer falls, the working fluid will be 

passed through the regenerator and into the compression space. The almost 

instantaneous drop in expansion space pressure will be due in some part to the 

piston causing a vacuum to be formed as it continues towards top dead centre, 

and in some part to the cooling of the working fluid. A transient spike can be seen 

as the displacer contacts the expansion space spring and bounces slightly. There 

is then a gradual reduction in pressure to a point where the compression space 

pressure becomes greater than the expansion space pressure and the cycle 

continues. 

It should be noted that the displacer is leading the piston by approximately 180°. 

Figures 5.18 to 5.20 show the same graphs but for the time slot 21 to 23 seconds. 

The velocity is now 109 radians per second and the phase difference between the 

displacer and piston remains at about 180°. 

Figures 5.21 to 5.23 show the graphs for the time slot 118 to 120 seconds. 

The velocity is now 126 radians per second and the phase difference between the 

displacer and piston remains the same. 
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6 Discussion 

In this work the author has realised one main point about the Stirling engine and 

the Ringbom variant: very little is known about how the internal processes interact. 

In this thesis a third order method of investigating these processes for a Low 

Temperature Differential Ringbom - Stirling engine is presented. 

To illustrate the lack of understanding that exists, the author and the supervisory 

team, at the start of the analytical work, each came up with a brief description of 

how the engine operates. Each description was different, and in the final account 

the author would say that each member brought a different aspect to the table, so 

in some ways we were right, and in other ways the work has provided 

enlightenment. 

The work is divided into two distinct parts, firstly the computer model and secondly 

the test engine. The computer model, although following third order methodology, 

has been developed independently of any outside influence. Thus the derivation 

of the equation sets and application of numerical techniques are original to this 

work. The same is applicable to the computer program which has been written 

using the output from the numerical techniques. 

The test engine is based on a design by Senft, which in turn has come from the 

designs of Kolin and Ringbom. Two engines have been manufactured, the first 

one to the design of Senft, and the second one with modifications to accommodate 

the instrument package. 

As can be seen in the preceding chapters, the instrument package and data 

logging were designed and built (where required) at Napier University. 

This means that every aspect of the work, from theory to computer model and 

from engineering drawing to a fully instrumented engine with data logging, has 

been undertaken by the author. 
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This has culminated in the production of two sets of data, one predicting engine 

operation, and one of the engine itself. 

6.1 Comparison of the data sets 

The test engine was built to check the validity of the computer program, although it 

is the variables within the program which are set as close as possible to the test 

engine. As such, the nominal conditions are taken from the test engine runs. 

The theoretical predictions are given in chapter 5 section 10, and refer to figures 

5.15 to 5.23 inclusive. Experimental data is given in chapter 4 section 5, and 

refers to figures 4.21 to 4.30 inclusive. 

It can be seen that for similar conditions for the theoretical and experimental 

results, the variation of the differential expansion pressure (PE - PA) is 

approximately 1[ radian out of phase with the variation of the position of the power 

piston, Xp. This shows that the prediction of operation of the engine is correct and 

the theory behind the prediction is sound. To begin to test the accuracy of 

prediction, the amplitudes of the two results can be compared. It can be seen that 

the theoretical amplitude of the pressure variation is in the region of 6700Pa, 

whereas the variation for the experimental data is 4500Pa, a difference of about 

30%. There could be several possible reasons for this error, the most likely being 

the mass flow round the displacer rod and piston. The loss parameter is 

calculated from experimental data using the mass of the element under gravity to 

cause the flow. With the higher dynamic pressures encountered whilst the engine 

is running the flow loss parameter will be larger. There could also be additional 

quenching effects of the ingress mass; although this is considered in the 

theoretical work the degree of quenching upon the cycle as a whole may operate 

slightly differently. It is assumed in the model that all mass flow within the engine 

goes through the regenerator, and the annular gap formed between the displacer 

and chamber wall is included in this term. In reality we have seen that this is not 

the case, although the flow through the gap in some ways approximates the flow 

through the regenerator when considering heat transfer from the moving medium 
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and regenerative exchange. The porosity of the gap must be less than that of the 

regenerator, so the pressure difference can equalise at a greater rate 

experimentally than theoretically. 

In both the theoretical and experimental results, the phase relationship between 

the variations in piston, Xp, and displacer, XD, location are in the region of n rad. 

Although there is the expected offset to allow the change in pressure difference to 

initiate displacer strokes. The variation in position of the piston is approximately 

sinusoidal, as would be expected in the flywheel conrod system utilised in the 

engine and program. It is the motion of the displacer which is interesting, and 

which both the theoretical prediction and experimental results indicate would 

occur. The variation in location for the displacer is discontinuous in nature, with 

dwell points in the bottom and top of the displacer cylinder. Both sets of data 

indicate that the displacer will dwell in the bottom for a longer period than at the 

top of the displacer cylinder. This may be explained by the fact that the displacer 

has to be raised against gravity so; the lifting force has to overcome gravity acting 

upon the mass of the displacer before motion can begin. On the downward stroke 

the force of gravity upon the mass of the displacer is already trying to initiate the 

downward movement of the displacer, so the pressure differential does not need 

to be reversed to such an extent to initiate the downward displacement stroke. 

This effect of gravity upon the displacer may also be seen in the slow rise time and 

fast drop time for the displacer. It should also be noted that the contact and 

bounce with the stub springs is predicted and seen experimentally. The bounce is 

also indicated by rapid reversals in the differential pressure. 

The predicted and experimental variations of the pressure differential, PE-PIG 

indicate a good correlation, although the predicted value is yet again higher than 

the experimental value. Once again this is probably due to the dynamic loss value 

being greater than the experimentally derived one. 

It is interesting to note that the test engine would stop at a temperature differential 

of around 54K, whereas the prediction suggested a temperature differential of 

60K. 
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The engine speed increases with temperature differential, which once again shows 

a good correlation, with the predicted engine speed being slightly lower than that 

of the test engine. 

Different initial flywheel angles were tested; it may not be obvious at first glance, 

but the mass of the working fluid contained within the engine is a direct function of 

initial flywheel angle. This will have a critical bearing upon the working 

temperature differential for a well-sealed engine. Senft alluded to this when 

discussing the running in of a new engine, but did not give the critical reason, that 

in a well-sealed engine the amount of working fluid is fixed. In a Ringbom engine 

this is critical as the working fluid has to be expanded to its maximum extent, 

before the power piston reaches top dead centre or bottom dead centre, in order 

to initiate the displacement stroke. If the temperature is too great, then the 

pressure differential will never take place, hence the engine can never run. So in 

this engine it is the very fact that there are leaks that allows the engine to attain a 

working mass of fluid; this means that the engine is self regulating to a point. It the 

flow of mass to the atmosphere was to be reduced, the engine would run at lower 

temperature differentials, but not over such a wide range of differentials. 
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7 Conclusions and further work 

In this work, third order analysis methods have been applied to a Low 

Temperature Differential Ringbom - Stirling Engine (L TDRSE). A set of equations 

has been presented which describe the mechanical, thermal and fluid processes 

occurring for each element of the engine. A numerical program has been written 

to analyse the behaviour of the engine. A test engine has been built and the data 

from both compared. The theoretical prediction gives an excellent correlation for 

the variation in element location and pressures, the values of which have an error 

of between 25% and 30%. 

Phenomena which have been predicted were also observed on the test engine 

data, for example: 

• If the initial temperature differential falls below the required differential, the 

flywheel turns but does not complete one revolution, rather it is observed to 

'rock' back and forth. In chapter 4 the starting temperature for sustained 

engine operation was found to be 54K. Smaller temperature differentials 

would result in either rocking as described above or a natural decay of 

engine revolutions as the differential became much closer. This differential 

was noted to be in the order of 65K for the prediction program from chapter 

5. Thus the engine requires a 17% lower temperature differential than the 

prediction program to run in a sustained manner. This indicates that there 

is a minimum temperature differential required for sustained engine 

operation, with a strong correlation between predicted and actual operation. 

The difference may be explained by the way in which the constants for 

engine losses were calculated, given in chapter 5 section 10, and covered 

in the discussion, chapter 6. 

• The major theoretical advantage of the LTDRSE is the discontinuous 

motion of the displacer. As covered in the literature review, this type of 

motion brings the cycle process paths closer to the ideal set out as the 

Stirling cycle. In the results generated from the prediction program this is 
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evident, even to the degree of longer dwell times at bottom stroke to top 

stroke, where the rise of the displacer is slower than the fall of the displacer. 

• In the theoretical operation of the L TDRSE given in chapter 2 section 5, the 

piston is either just before top dead centre or just before bottom dead 

centre when displacer motion is initiated; from the figures giving test engine 

operation in chapter 4 and the predicted engine operation in chapter 5, this 

point of initiation can be seen. 

• The magnitude of the temperature differential has a direct effect upon the 

angular velocity of the flywheel. As the temperature differential is increased 

so does the angular velocity of the rotating elements. The prediction 

program under predicts engine running speed by 25%, as is discussed in 

chapter 6. 

• A sensitivity analysis has shown that the steady state operation is 

independent of the initial conditions, and appears to be mainly a function of 

temperature differential. 

The arena for this work is complex and there are many differing opinions as to how 

the L TDRSE operates and how an analysis should be applied. The author has 

tried to follow a unique path, being aware of, but not blindly following the work of 

others. As such the author believes that this is a credible attempt to produce a 

prediction program for a Low Temperature Differential Ringbom - Stirling Engine. 

The prediction program produces results which correlate well with the results from 

the test engine. Further work will need to be undertaken to improve the accuracy 

of prediction program by investigating the loss coefficients for the dynamic 

situation. Other areas will have to address the simplifying assumptions in more 

detail, as well as the regenerator model and other heat loss paths such as the 

displacer chamber wall. 
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7.1 Further work 

Further work to improve the accuracy of prediction will need to cover the 

regenerator in more depth. The heat and mass transfer parameters throughout 

the cycle need to be addressed more fully. Many simplifying assumptions were 

applied to the theoretical model, these will need to be addressed and where 

possible reduced or removed. 

The theoretical model needs to be modified to take into account the large masses 

of the hot and cold reservoirs; this way the quantity of heat energy being 

transferred from the source and rejected to the sink may be quantified, and infers 

that the gross heat energy converted by the engine to perform work during 

operation may also be quantified 

Improvements to the design of the L TDRSE, considered as a result of this work 

are as follows: 

• The orifice which leads to the piston / cylinder assembly should be 

connected directly to the expansion space. With the present design the 

expanding air within the engine is required to enter the compression space 

to exert any force upon the piston face. This calls for an additional traverse 

of the regenerator and the annular gap between the displacer and displacer 

chamber wall, and unnecessary contact with the cold plate thus, removing 

energy from the expansion process. 

• The hot and cold plates should have extended heat transfer surfaces to 

improve the heat flow in and out of the engine. 

• The regenerative matrix should be removed from the displacer, thus 

reducing displacer mass, and placed in the annular gap. This will reduce 

the amount of work required to move the displacer. 

186 



References 

References 

ALTMAN, A. 2003. SNAPpro Stirling Numerical Analysis Program. Proceedings of 

the 11th International Stirling Engine Conference, Rome. 19th - 21st November 

2003 pp166 -172. 

ATKINSON, L. HARLEY, P. and HUDSON, J. 1989. Numerical Methods with 

Fortran 77: A practical introduction. Addison Wesley: Wokingham. 

BACON, D. and STEPHENS, R. 1998. Mechanical Technology. Third Edition. 

Butterworth-Heinemann: Oxford 

BEAL, W. 1980. Paper in Energy for Rural Development. US national Academy of 

sciences. 

BERCHOWITZ, D,M 1988. Operational Characteristics of Free-Piston Stirling 

Engines. 23rd Inter Society Energy Conversion Engineering Conference Volume 1. 

BISHOP, R.H. 2004. Learning With LabVIEW 7 Express. Pearson Education Inc: 

New Jersey 

BIN LI. 2005. Development of a Solar Dish Stirling Power System in China. 

Proceedings of the 1 ih International Stirling Engine Conference, Durham. 1h _ 9th 

September 2005. pp 90-95. 

BLOCH, S. 2003. Excel for Engineers and Scientists. Second Edition. John Wiley 

and Sons I nc: New York 

BONNET, S. 2003. Thermodynamic Solar Energy Conversion: Reflections on the 

Optimal Solar Concentration Ratio. Proceedings of the 11th International Stirling 

Engine Conference, Rome. 19th - 21st November 2003 pp263 -271. 

BOSTOCK, L. and CHANDLER, S. 1991. Mathematics Mechanics and Probability. 

Sixth Reprint. ST(P): Cheltenham 

187 



References 

BRITISH PETROLEUM. June 2002. BP Statistical Review, (s.I.): (s.n.) 

BRITISH PETROLEUM. June 2006. BP Statistical Review, (s.I.): (s.n.) 

CASSEDY, E.S. and GROSSMAN, P.z. 1998. Introduction to Energy: Resources, 

Technology and Society. Second edition. Cambridge University Press: Cambridge 

CENGEL, Y. BOLES, M. 1994. Thermodynamics: An Engineering Approach. 

Second Edition. McGraw-Hili: New York 

CHAPMAN, S. 1998. Introduction to Fortran 90/95: Basic Engineering Series and 

Tools. McGraw-Hili: Boston MA. 

CHEN, N. C. J. and GRIFFIN, F. P. 1983. A review of Stirling Engine Mathematical 

Models. Oak Ridge National Laboratory. ORNLICON-135 

DEPARTMENT OF TRADE AND INDUSTRY. 2006. Digest of UK Energy 

Statistics. (DUKES). (s.l.) (s.n.) 

DHAR, M. 1999. Stirling Space engine program. Vol1 and 2. National Aeronautics 

and Space Administration (NASA): NASAICR 1999-209164NOL 1 and VOL2 

DOUGLAS, J. GASIOREK, J. and SWAFFIELD, J. 2001 Fluid Mechanics. Fourth 

Edition. Prentice Hall: Harlow 

EON UK. Powergen micro CHP. CHPA Members' Briefing 5th July 2005 

EASTOP, T. and McCONKEY, A. 1993. Applied Thermodynamics for Engineering 

Technologists. Fifth edition. Pearson Education: Harlow 

FIELD, A. and HOLE, G. 2003. How to Design and Report Experiments. Sage: 

London 

188 



References 

FINKLESTEIN, T. 1961. Generalised Thermodynamic analysis of Stirling Engines. 

Society of Automotive Engineers, Winter Annual Meeting, January 11 - 15 Detroit 

Michigan, Paper 118B 

FINKLESTEIN, T. ORGAN, A. 2001. Air Engines. Professional Engineering 

Publishing: London 

GEDEON, D.R. 1978. Optimisation of Stirling Cycle Machines. In: 13th Annual 

Intersociety Energy Conversion Engineering Conference. The American Society 

of Mechanical Engineers. 

HANN, B. 1998. Fortran 90 for Scientists and Engineers. Arrowsmith Ltd: London 

HARGREAVES C.M. 1991. The Phillips Stirling Engine. Elsevier: Amsterdam 

HOLMAN, J. 1992. Heat Transfer: in SI Units. Seventh Edition. McGraw-Hili: 

London 

HOLMAN, J.P. 2001 Experimental Methods for Engineers. Seventh Edition. 

McGraw-Hili: Boston 

GOSWAMI, D.Y. ed. 23rd Intersociety Energy Conversion Engineering 

Conference. The American Society of Mechanical Engineers. 

INCROPERA, F. DEWITT, D. 2002. Fundamentals of Heat and Mass Transfer. 

Fifth Edition. John Wiley and Sons: New York 

INTERNATIONAL ENERGY AGENCY. 2001. Key World Energy Statistics. (s.l.) 

(s.n.) 

INTERNATIONAL ENERGY AGENCY. 2006. Key World Energy Statistics. (s.l.) 

(s.n.) 

ISEC. Proceedings of the 11th International Stirling Engine Conference. (2003) 

189 



References 

ISEC. Proceedings of the 1ih International Stirling Engine Conference. (2005) 

ISEC. Proceedings of the 9th International Stirling Engine Conference. (1999) 

KAYS, W. and LONDON, A. 1998. Compact Heat Exchangers. Third Edition 

Reprinted with Corrections. Krieger Publishing: Florida 

KIRKLEY, D.W. 1962 Determination for the Optimum Configuration for a Stirling 

Engine. Journal of Mechanical Engineering Science, Volume 4 Number 3 pp 204 

-212. 

KNOLES, T.R. 1997. Composite Matrix Regenerator for Stirling Engines. National 

Aeronautics and Space Agency: NAS3-26294. 

KOLIN, I. et al. 2000. Geothermal Electricity Production by Means of the Low 

Temperature Difference Stirling Engine. Proceedings of the World Geothermal 

Congress 2000, Kyushu-Tohoku, Japan. May 28th 
- June 10th 2000. 

KOLI N, I. Recent developments of the flat plate Stirling engine, Proceedings of the 

21st Intersociety Energy Conversion Engineering Conference, Paper 869113, San 

Diego, California, 25 - 29 August (1986). 

LANNEY, G. 2000. Update on the NASA GRC Stirling Technology Development 

Project. National Aeronautics and Space Administration. NASAlTM 2000-210592. 

LANNEY, G. et al. 2002. Stirling Technology Development at NASA GRC. 

National Aeronautics and Space Agency. NASAlTM 200 1-211315/REV 1 . 

MARTINI, W.R., Stirling Engine Design Manual. 2004 reprint of 1983 edition, 

University Press of the Pacific: Honolulu 

National Maritime Research Institute, Japan. 1995 to present. 

www.nmrLgo.jp/index_e.html 

190 



References 

MENDOZA. Pet al. 2003. Stirling Engines in Peru: An opportunity for Regional 

Development. Proceedings of the 11th International Stirling Engine Conference, 

Rome. 19th - 21st November 2003 pp280 -284 

METCALF, M. and REID, J. 2003. Fortran 90/95 Explained. Second Edition. 

Oxford University Press: Oxford 

MICROGEN ENERGY LTD. 2003. Smart power: smart design: smart living. 

Brochure Microgen Energy Ltd. Reading. www.microgen.com 

MIDDLEMAN, S. 1997. An Introduction to Mass and Heat Transfer: Principles of 

Analysis and Design. John Wiley and Sons: New York 

MIDDLEMAN, S. 1998. An Introduction to Fluid Dynamics: Principles of Analysis 

and Design. John Wiley and Sons: New York 

MUNEER, T. KUBIE, J and GRASSIE, T. 2003. Heat Transfer: A Problem Solving 

Approach. Taylor and Francis: London 

NORTON, R. 1999. Design of Machinery: An Introduction to the Synthesis and 

Analysis of Mechanisms and Machines. Second Edition. McGraw-Hili: New York 

ORGAN, A.J. 1992. Thermodynamics and gas Dynamics of the Stirling Cycle 

Machine. Cambridge university press: Cambridge 

ORGAN, A.J. 1997. The Regenerator and the Stirling Engine. Mechanical 

Engineering Publications Ltd.: London 

ORGAN, A.J. 2000a. Two Centuries of the Thermal Regenerator. Proceedings of 

the Institution of Mechanical Engineers, vol.214 part C, pp 269 - 288. 

191 



References 

ORGAN, A.J. 2000b. Stirling's Air Engine - A Thermodynamic Appreciation. 

Proceedings of the Institution of Mechanical Engineers, vol.214 part C, pp 511 -

536. 

ORGAN, A.J. 2000c. Regenerator Thermal Design in a Nutshell. Proceedings of 

the Institution of Mechanical Engineers, vol.214 Part C. 

OSTROWSKY, O. 2003. Engineering Drawing With CAD Applications. 

Butterworth-Heinemann: Amsterdam 

RAO, S.S. 1995. Mechanical Vibrations. Third Edition. Addison Wesley: Reading 

MA. 

READER, G.T and HOOPER, C. 1983. Stirling Engines. E & F. N. Spon: 

Cambridge 

REDLICH, R.W. and BERCHOWITZ, D.M. 1985. Linear Dynamics of Free-Piston 

Stirling Engines. Procedures of the Institution of Mechanical Engineers. Volume1 

Number A3 

RINGBOM, O. US Patent Number 856 (1907). 

RIZZO, G. 1999. The Stirling Engine Manual Volume 2. Camden Miniature Steam 

Services: Bath 

RIZZO, G. 2000. The Stirling Engine Manual Volume1. Third edition. Camden 

Miniature Steam Services: Bath 

ROGDAKIS, E.D., BORMPILAS, N.A. and KONIAKOS, I.K. 2003. A 

Thermodynamic Study for the Optimisation of Stable Operation of Free Piston 

Stirling Engines. Energy Conversion and management. Article in press. 

ROGERS, G. and MAYHEW, Y. 1995. Thermodynamic and Transport Properties 

of fluids: in SI Units. Fifth Edition. Blackwell Publishing: Oxford 

192 



References 

ROMAN, S. 2002. Writing Excel Macros with VBA. Second Edition. O'Reilly and 

Associates: (s.l.) 

SCHMIDT, G. Theory of Lehmanns Heat Engine, 1871. Journal of the German 

Engineers Union. Vol. XV, No.1 pp.1-12; No.2, pp 98-112. 

SENFT, J. R. A mathematical model for Ringbom engine operation, Trans ASME­

J. Eng Gas Turbines and Power 107,590-595 (1985). 

SENFT, J.R. 1993. Ringbom Stirling Engines. Oxford University Press: New York 

SENFT, J.R. 2000a. An Introduction to Stirling Engines. Moriya Press: New York 

SENFT, J.R. 2000b. Miniature Ringbom Engines. Fifth Reprint. Moriya Press: New 

York 

SENFT, J.R. 2000c. Low Temperature Differential Stirling Engines. Fourth Reprint. 

Moriya Press: New York 

SHERWIN, K. and HORSLEY, M. 1996. Thermofluids. Chapman and Hall: (s.l.) 

SIER, R. 1999. Hot air Caloric and Stirling Engines. L.A. Mair: Chelmsford 

SIMMONS, C. and MAGUIRE, D. 2004. Manual of Engineering Drawing: to British 

and International Standards. Second Edition. Elsevier Newnes: Amsterdam 

STIRLING, R. UK Patent Number 4081 (1816). 

STROUD, K. 1993. Engineering Mathematics. Third Edition. Macmillan Press: 

(s.1. ) 

THE INTERNATIONAL ENERGY AGENCY. 2001. Key World Energy Statistics. 

2001. STEDI Media: France 

193 



References 

THE INTERNATIONAL ENERGY AGENCY. 2006. Key World Energy Statistics. 

2006. STEDI Media: France 

THE MONEY PROGRAMME. TV, BBC 2. 2003 Wednesday 26th March 19:30hrs 

THIEME, L.G. and SCHREIBER, J.G. 2000. Update on the NASA GRC Stirling 

Technology Development Project. NASAlTM-2000-21 0592, December, 2000. 

THIEME, L.G., and SCHREIBER, J.G., and MASON, L.S. 2002. Stirling 

Technology Development at NASA GRC. NASAlTM-2001-211315/REV1, January, 

2002. 

THOMAS, B. and WYNDORPS, A. Experimental Examination of Micro-CHP's: 

Stirling vs. IC Engines. Proceedings of the 1ih International Stirling Engine 

Conference, Durham. 1h - 9th September 2005. pp123-131 

URIELI, I. and BERCHOWITZ, D.M. 1984. Stirling Cycle Engine Analysis. Adam 

Hilger: (s.l.) 

WALKER, G. 1962. An Optimisation of the Principal Design Parameters of Stirling 

Cycle Machines. Journal of Mechanical Engineering Science, vol.4 No.3, pp 226 -

240. 

WALKER, G. 1980. Stirling Engines. Oxford University Press: Oxford 

WALKER, G. et al. 1994. The Stirling Alternative Power Systems, Refrigerants and 

Heat Pumps. Gordon and Breach Science Publishers: Yverdon 

WALKER, G. SENFT, J. 1984. Free Piston Stirling Engine. Springer Verlag: Berlin 

WELTY, J. et al. 2000. Fundamentals of Momentum, Heat and Mass Transfer. 

Forth Edition. (s.I.): John Wiley and Sons, New York. 

194 



References 

WHITE, F. 1994. Fluid Mechanics. Third Edition. (s.I.): McGraw-HilI. USA. 

Papers Published 

Robson, A. and Grassie, T. Development of a computer model to simulate a low 

temperature differential Ringbom Stirling engine, Proceedings of the 1ih 

International Stirling Engine Conference, Durham, UK, 7 - 9 September (2005). 

Robson, A. Grassie, T. and Kubie, J. Modelling of a Low Temperature Differential 

Stirling Engine. Proceedings of the Institution of Mechanical Engineers, Part C, 

Journal of Mechanical Engineering Science. In Print 01-05-2007 

195 



'l> 

6 I .~ I 4 ~ , I 7 I 1 
Parts Ust 

lTEf'1 QTY PART NUMBER 
1 1 LTDRSE base 
2 2 LTDRSE bearing 

D 3 1 LTDRSE chamber D 

~~, 
1 I ( 4 1 L TDRSE cylinder 

• 5 1 L TDRSE displacel- rodl • .I' 6 1 L TDRSE dliner 1 
7 1 L TDRSE pistonl 
8 1 L TDRSE plinerl - ~ ~ 

~ 
,... .-

9 1 LTDRSE Top end - ~ I- 9 - 10 1 Ibearhouse 
i"" I-i ..... ...., 11 1 LTDRSE crank arm 

~ fI 
'" 'I 

12 1 LTDRSE ci-ank nut 
t'" ... 13 1 LTDRSE drive shaft 

C · I ~Jlu/ 
14 3 L TDRSE piviot C · I 15 1 L TDRSE Piston bolt 

· 16 1 L TDRSE conr-od 

• I . 17 1 Flywheel 
<> • I . 18 1 LTDRSi: crank disk2 

IIII II II IIII II II II II II 1111 II II 1111 
19 1 woodruff 

~ 20 20 engine bolt ~ 21 1 L TDRSE displacer 
<> 22 1 LTDRSE displacer bolt 

23 4 L TDRSE regenerator 
24 2 Spring2 

B 8 

» 
"C 
"C 
CD 
:::l 
Q. _. 
>< 
» 
m 
:::l 

CC -:::l 
CD .., _. 
:::l » 

CC 
"0 
"0 

C 
CD 
:::J .., c.. 

Q) X-

:e » 
~ @ 0 

- 19l.i~ 0 -

l©\~~l 

:::l m 
CC :::J 

t/) 
ec 
S-
CD 
CD 
~ S-
ec 
0 
~ 

'l> 
A @ 0 [:~~~ lId b IC!ro(.Q:r "Jf l' lil.1loJ.dUt r. >ltA I I ~' I A 

@ An~rew ~cl:!cI1 23/0U2.0:q 

L TORSE Assembly 

Q) 

:E 
S' 

ec 
Napier university I ,,; " , I 1 '/"7 LTDRSE DI-awings 

....Jo. C/) 

6 I !> I 'I t j I I 1 



D 

-

c 

~ 

8 

-

~ A 

N 

~ ~ 5 ~ 4 JL 
-"-I'-"I' ...... --.....L...J...------L-, I I I I-n'--J--'-'.L<-II II II 1j11---'-I1--'-

I I I Iii II 200 ILt==:JI-~ f'.14xO.7-6H 

I II I II 11-'- 11 II-
I I I III 1111 II I I I I 
I I I III III1 II I I I I 
I I I III IIII II I I I I ..c:1:::! II I I I I 

, '-'L ___ .c:.I:::!,,-_-,_~,-

42,50 

(/01), 

75,00 

7Z,\,8 
Q 

10.) 
"""'- 5N: 

~O 

1\0\"( 

~====~====l~~====~~*~ 
~ 15,00 A 

116,00 

124,00 
138,00 

146,00 

150,00 

6 I 5 I 4 

o 
o. 
o 
.-< 

1 r 
[ -------r 
-------~ 

~[-------l 
-------~ 

J I 
I 
I 
I 

1 I 
[ -------r 

J -------r 
I 

h---~-,~± 
W---~--=i 

I 
, I [=======[ 
J I 

I 
I 
I 

, I 
[-------r­
, -------r 
[-------~ -------~ 

J I 

'15,00 

~ 

3 i 

lC:II.~:k;\1t.>. r:<I~~rr ll l'l'( 

Andre'll RO:OO1 

:2 

HOLE 
A1 
61 
B2 
83 

C1 

Dl 

D2 

03 

D4 

05 

D6 

07 

08 

09 

010 

~ 
Hole Table 

XDIM I YDIM I DESCRIPTION 
0,00 I 0,00 I ¢2,00 THRU 

-75,00 I 0,00 I ¢2,00 -22,50 DEEP 
-42,50 I 0,00 I ¢2,00 -22,50 DEEP ID 
-to,oo I 0,00 I ¢2,00 -22,50 DEEP 
30,00 I 0,00 I ¢4,00 -12,00 DEEP 

-10,001-65,50 

-48,501-52,99 

28,50 1-52,99 

-72,291-20,24 

52,29 1·20,24 

¢'1,50THRU 

LJ ¢12,00 T 4,00 
¢4,50THRU 

LJ ¢12,00 W 4,00 
¢'1,50THRU 

LJ ¢12,00 T 4,00 
¢4,50THRU 

LJ ¢12,00 W 4,00 
¢4,50THRU 

LJ ¢12,00 W 4,00 

r 

C 

¢'150THRU 
1-72,29120,241' ~ 

LJ ¢12,00 T 4,00 
¢4,SOTHRU 

52,29 I 20,24 

.... 8,50 I 52,99 

28,50 I 52,99 

-to,OO 165,50 

LJ ¢12,00 W 4,00 
¢4,SOTHRU 

LJ ¢12,00 T 4,00 18 
¢4,50THRU 

LJ ¢12,00 T 4,00 
¢4,SOTHRU 

LJ ¢12,00 W 4,00 
f-

Engine Base (Cold End) 

l~~T.\\Y1~Y 

I
\"'=t~ 

_ 23/01,,'2\''''7 I "'1 A 

L TORSE Assembly 
Napier university I 't,,» I 2",,'7 LTDRSE Drawings 

3 I I 1 

» 
"'C 
"'C 
CD 
::l 
0. 
X· 
» 
m 
::l 

<0 
::l 
CD 
CD 
~ 

5' 
<0 

o 
ru 
~. 
::l 

<0 
C/) 



DI 

c 

B 

'!> A 

CN 

0 
tv15xO.8 - 6g 50,00 0 

~ 

It j ~ I @ 0 

~ 
LI'l 
0" 

!l,OO 5 Woodruff 
Bearing 4,00 Displacer Bolt 

1,00 

B . H . 3,00 eanng ouslng o-i 1-0 

8.1 M4xD.7 - 6g 

~~ 1=1 ::::' ======1 

. I. 55,00 

Connecting Rod 

'" a 

6.00 

0 
--j:: 

== 

20.00 -... , ...... 
M4x0.7 - 6g 

I-

o 

~+= 
~ - 1,25 

1-.- Crank Arm 

o 
__ 0 .. 

til 

6,06 

CJ 
CJ ..,.- ~· I 

01 0 
o 0 
....,' ~' 
,..., N 

3,00 

==+ 

~
l'DO 50,00 

Rl,OO if j 
!~I 

M4xO.7 - 6g 

~
A/~V 

. .> 
' 6..y 

[H 
Crank Nut 

80,00 

Drive Shaft 

Engine Bolt 

Spring 

r.<!.I:lrr:1 IYI 1 r.'XkMI:~' lol.f.f.(::.ffl ·"l 

Andrew Rot'50-

L TDRSE Assembly 
Napier university 

ID 

c 

B 

A 

;:fI/ ."'! 

3/7 

» 
"'C 
"'C 
CD 
::J 
c.. 
X· 
» 
m 
::J 
ec 
::J 
CD 
CD ..... 
5 ' 
ec 
o 
m 
~. 
::J 
ec 
C/l 



VI I 0 0 0 0 

I ~. 0 0 0 I .,f 0' ""' I I N N M M 

f---'-

~. 

D 

cl 1/ [repl I HOLE IXDlr.1 IYDI~11 DESeRIPTIO~ \ \1"'\\''\\ ~j 

81 II I I I'\.'\. ......... ~~ -""""" ./("'f'Y //11 I II 

116,00 

.11 124,00 

138,00 

146,00 

;t> 
AI 

150,00 

~ Displacer Chamber 

o 
o 
o 
"" o 

0 , 
\0 ... 

4,00 

Crank Disk 6,00 .~I I~. 

i~ n~ 

o~ 
orr 

0 
Displacer 

r. ... .c.I !jrfli Jt( 

Andre\'! Ro,:.sQ ""'I 

Napier university 

~I 

3,00 
6,00 

D 

; '. 

Ie 

» 
"'C 
"'C 

CD 
:::J 

0 0 0-
0 0 x' ",-

.., 
N ... » ... 8 

m 
:::J 

(C 

:::J 
CD 
CD ..... s· 

(C 

0 
03 

A ~. 
:::J 

(C 
(f) 

~ l l'tt 

4/7 



'l> 
UI 

--r---....,r'="'-""'~~rr-=-~rf-----~1-~"'--rfr----1~~~lF.-'j M4xO.7· 6H 

DI q I r F =H I I : i I : i: -c-=~:-
@ 

c 

6 

A 

N II I II II : II II 
-,----*I:~J~j I II I I I II c-.l l o 

0'1 0 o 0 

'" 0-1 0 
Lf> a 

~18_ 
o 
N 

o 
o 
g 

I .1 I II II I II -fl 
II I II II I II II 
14 I II II I II c=.:hl 
II I II II I II II 
Y I II I I I II c=:hl 
II I II II I II II 

116,00 

124,00 

138,00 

146,00 

o 
~
-1~ 

~qd' 
.~ 

o 
=='1 
---' 

64,00 

70,00 

64,00 

4,00 

r 
I 
~ 
"i 
I 
L_ 

20,00 

F== 
'",, --

t;!m;.,~ 1::: 1(-.0:: 1:01: :Sf 1'~~fl"'eC :Ii 

A".:1' ~.\· ~b~vrl 

Napier univerSity 

0 0 
q ~, <0 
N "" 

0 0 
0 0 ..; rj 
"" 

~- I 

O[ 0 q 0 
(Q , 
..... <I" ..... 

.h': '!1 

J / UU 

Pisto n Nut 

Piston 

Piston 
Liner 

Displacer 
Rod 

Displacer 
Liner 

L TDRSE Assembly 
---Etr ::t 

5/7 

D 

c 

,6 

A 

» 
"'0 
"'0 
CD 
::J 
Cl.. 
X· 
» 
m 
::J 

CO 
::J 
CD 
CD 
::J . 
::J 

CO 

o 
@ 
§. 
::J 

CO 
en 



D 

c 

B 

'!> A 

0') 

0 
0 

dl 
~nr ~n~ L.rr~1 I ~n~ 'tn~ 

I I I I I I I I II I 
I II I LI I Illq 
I I I I I +�----~1---41+1+1~1~---------------+ 
I I I I I I I (I I 

I I I I II I I I I I I rTI----~I--~I~I+I:=j~--------------~ 

I I I I I I I I I 
8 1 

o ..... 
I I I I I I I II I 
I I I I I I I II I 
I I I I I I I II I I 
L - -11---- -i-[i-!ii - - - t i -T ..l.11 ll-il----'"t""I----------------+-

Engine Head 

o 
o 
o ... 

81 
~ 

[;~ ~'.IlId t::y It"l':ll:(,e( 7, V'PI1IU.td bot 

116,00 An~lrew Rcl!scn 

150,00 Napier university 

A:'~ 
0 
0 
\D-

6,00 f.J:' 

Pivot ~il 

LTDRSE Assembly 
~hd 

6/7 

ID 

c 

B 

A 

» 
"C 
"C 
(I) 
:::l 
a. x· 
» 
m 
:::l ec 
:::l 
(I) 
(I) -. 
S· 
ec 
o 
@ 
§. 
:::l ec 
(f) 

/'1: 
< 



Appendix A Engineering Drawings 

0 U III 

~" .::--
"" 

2: ·s 
I' ..0 

'1 

~ E 
5: 

~ ~ 
Ul 
~ 

LU 
Vl 

'" "" 0 0'1 

~ 
C 
'j; 
~ 

'. 0 

" W 
Vl 
or 
0 
~ 

] 
~~ 

C 
.~ 

OJ 
11 .:e, 

~ 
C 
::l 

iii 
'5. 
'" 2: 

is 

o u III 

A. 7 



D 

c 

8 

A 

;l> 
co 

4 

r-rnr-l 
L- ______ -l.._@!+.J-______ J -- --I 

<::l<::l 
,\<::l' 

~'" 
<::l<::l 

<»\.1>1'0' 

<p~oIlC 

ctfl.O,OO 

t ... 
0> 
M', , 

lD 
0 
iii 
<I" 

~I 
N 

" 

7,74 

1,50 
a 
o 
00' 

A-A ( 1 : 1 ) 

12,00 m 
;:;;~ 1174 

12,00 

D 

c 

~I 
I 

0 

"" ,,'I 0 
0 
ro 8 
M 

0 
0 
iii 
N 

I"'"'''''''' 1°.,.:'.-,", 1-''''''''' ,,' '=1 10
<1' IA 

A1)jre,...~on 

Flywheel 
Napier University 

~I ~. 

1/1 

» 
"0 
"0 
CD 
:::::l 
0-
X· 
» 
m 
:::::l 

CO 
:::::l 
CD 
CD ..., 
S· 

CO 

o 
~ 
~. 
:::::l 

CO 
en 



I 

I 
IibtU I ~r fI rrr In'n: ~ =[1 I II III 
I .IIL HI h-_IL.JII 
I 

~" III~I !l ~tj 
*I~ nil I II-tl 
.~ p...J~' I ~ 
~ ~ 

1-- -, '- I-~ 

n If 
Li 

Parts List 
ITEM QTY PART NUMBER DESCRIPTION 

1 1 LTDRSE base 
2. 2 LTDRSE bearing 
3 1 L TDRSE chamber 
4 1 L TDRSE cvlinder 
5 1 L TDRSE displacer rod 1 
6 1 L TDRSE dliner 1 
7 1 LTORSE pistonl 
8 1 LTORSE plinerl 
9 1 L TORSE Top end 
10 1 Ibeamouse 
11 1 LTDRSE crank arm 
12 1 L TDRSE crank nut 
13 1 L TDRSE drive shaft 
14 3 L TDRSE piviot 
15 1 L TDRSE Piston bolt 
16 1 L TDRSE conrad 
17 1 Flywheel 
18 1 L TDRSE crank disk2 
19 1 woodruff 
20 20 engine bolt 

'l> 21 1 L TDRSE displacer 
22 1 L TDRSE displacer bolt 

CD 23 4 L TDRSE reaenerator 

8 11 12 6 13 

@ 
14 

~ I I I a 7 

.... 
15 

"'V 

~~ .-:; . 
'--.c::>-

f.t, 10 _ - ---0 

/. ~gGe~0 
~-v III ~ 

2 19 23 ~ 
C:::2:1"1edt:-,' IC'oe:»ed ttl 1:';t:I'(J,'ed tf ~r.·1 rr.· I ArIl1r~!.' Rc;h~i:)l'1 Q21051 2Ol); 

Engine 2 
Napier University I r,,;;/O I tri RingassyS 

» 
"C 
"C 
CD 
::J 
Q. 

x· 
» 
m 
::J 
ec 
::J 
CD 
CD ..., 
5· 
ec 
o 
@ 
~. 
::J 
ec 
CIJ 



ri. r1'2l 

L_-----~10 

IT IT 
Parts List 

TEM QTY PART NUMBER I DESCRIPTION 
1 1 Ihot plate 
2 1 Ichamber 
3 1 Icoldend 
4 1 Idisp guide 
5 1 Ipcylinder 
6 1 Icylinder Base 
7 1 Ibearhouse 
a 1 Ibearplate » 9 1 Icon rod '"0 
10 1 Icrank disk '"0 
11 2 Icrankbear CD 

:::l 
12 1 Icrank Pin Q. 

13 1 Icrankshaft x· 
14 1 Iflywheel » 
15 1 Iflywheel hub 
16 1 Ipistn Yoke m 

:::l 
17 1 Ipiston ec 
18 1 Idisp rod :::l 

19 1 Idisplacer CD 
CD 

20 5 Iregenerator """I 

21 11 ISO 7092 4.50 Washer ISO 7092 - 4 
S· 
ec 

22 10 ISO 4762 fY14x30 Bolt M4x30 ISO 4752 ·...,."..!l[!~·Il:~· J.n~h"'" 1_,' D~1 0 
,.lnd",,,I\,,ix;"<1 @ 

'!> Engine 1 Exploded Assembly §. Napier University 
$'«' :::l 

~ LTDRSE 1/1 ec 
0 CJ) 



Appendix B Engine Simulation Program 

Appendix B Engine Simulation Program 
~************************************************************************** 

PROGRAM: Twocell V9 

1************************************************************************** 

program Twocell_ V9 

! Version 9.0 

! Author Andrew Robson 

! Napier University, Edinburgh 

! Date 31 january 2007 

! A program to simulate a Low Temperature Differential Ringbom Stirling Engine 

! With the following simplifying assumptions: 

! 1 Engine alignment vertical 

! 2 Only working fluid loss via piston and displacer rod gaps 

! 3 Temperatures and pressures are uniform in each space 

! 4 All windage and friction losses can be accounted for by one term 

! 5 Flow to/from compression and expansion spaces is through the regenerator 

! 6 Heat transfer path is via the hot and cold plates, adiabatic otherwise 

! 7 Mass of working fluid in the regenerator is constant 

! 8 Heat transfer within the regenerator is purely between the fluid and matrix 

! 9 There is no axial or radial conduction within the matrix 

! 10 Regenerator wire section is square 

! 11 Rotating parts are balanced 

! 12 Heat transfer and conduction for regenerator wire is axi-symetric 

! 13 All bearing / sliding surfaces are frictionless 

! 14 All regenerator cells enclose identical volumes 

! 15 Working fluid adheres to the ideal gas law 

! In naming variables the quantity (primary {Length, Mass, Time} or secondary) 

! prefixes the variable name 
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, Disable FORTRAN's implicit function 

IMPLICIT none 

, Assign names to variables 

, Geometry 

, Lengths (Base Dimension length) 

REAL, PARAMETER :: hc = 0.070 

REAL, PARAMETER:: hd = 0.0100 

REAL, PARAMETER :: hdc = 0.029 

REAL, PARAMETER :: hh = 0.046 

REAL, PARAMETER :: hp = 0.020 

REAL, PARAMETER :: hse = 0.005 

REAL, PARAMETER :: hsk = 0.005 

REAL, PARAMETER :: I = 0.065 

REAL, PARAMETER :: Ir = 0.020 

REAL, PARAMETER :: r = 0.011 

REAL, PARAMETER :: offset = 0.0 '0.0345 

REAL(8) :: cell 

REAL(8) :: tnh 

REAL,PARAMETER :: halfp = 0.010 

REAL,PARAMETER :: halfd = 0.005 

REAL(8) :: hadp 

REAL(8) :: Igap 

REAL(8) :: xds 

REAL(8) :: xd 

(t=O) 

REAL(8) :: xd 1 

(t=1 ) 

REAL(8) :: xd2 

(t=2) 

REAL(8) :: xps 

REAL(8) :: xp 

REAL(8) :: xp1 

REAL(8) :: xp2 

REAL(8) :: xt 
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, Height of cold plate 

, Height of displacer 

, Height of displacer chamber 

, Height of hot plate 

, Height of piston 

, Natural length of expansion space spring 

, Natural length of compression space spring 

, Length of connecting rod 

, Length of regenerator side if square 

, Length of crank arm 

, Height of centre of piston above chamber at bdc 

, Length of regenerator cell, wire dia plus gap 

, Total number of holes 

, Half piston height 

, Half displacer height 

, Height of piston face above datum at bdc 

, Length of gap in mesh 

, Height of mid point of displacer static (t=-1) 

, Height of mid point of displacer above datum 

, Height of mid point of displacer above datum 

, Height of mid point of displacer above datum 

, Height of mid point of piston static (t=-1) 

, Height of mid point of piston above datum (t=O) 

, Height of mid point of piston above datum (t=1) 

, Height of mid paint of piston above datum (t=2) 

, Total length of crank arm and connecting rod 
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! Diameters 

REAL, PARAMETER :: dc = 0.152 

REAL, PARAMETER:: dd = 0.115 

REAL, PARAMETER:: ddc 

REAL, PARAMETER :: ddr 

REAL, PARAMETER :: dh 

REAL, PARAMETER :: dp 

REAL, PARAMETER :: dr 

REAL, PARAMETER :: drw 

REAL(8) :: Irx = 0.0220 

REAL(8) :: Iry = 0.0220 

REAL(8) :: aperture 

REAL(8) :: epsilon2 

REAL(8) :: mrw 

REAL(8) :: vrt 

REAL(8) :: mdis = 0.020 

REAL(8) :: mair 

REAL(8) :: mair2 

REAL(8) :: mms 

= 0.116 

= 0.0140 

= 0.152 

= 0.0340 

= 0.025 

= 0.00010 

REAL, PARAMETER :: rohair = 1.2 

REAL(8) :: TairO 

REAL(8) :: Tair1 

REAL(8) :: Tair2 

REAL(8) :: TmsO 

REAL(8) :: Tms1 

REAL(8) :: Tms2 
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! Diameter of cold plate 

! Diameter of displacer 

! Diameter of displacer chamber 

! Diameter of displacer rod 

! Diameter of hot plate 

! Diameter of piston 

! Diameter of regenerator void (if circular) 

! Diameter of regenerator wire 

! Areas (Sase Dimension length squared) 

REAL(8) :: aa 

wall) 

REAL(8) :: ac 

REAL(8) :: ad 

REAL(8) :: adc 

REAL(8) :: ade 

REAL(8) :: adr 

! Area of annular gap (displacer and chamber 

! Area of cold plate 

! Area of displacer 

! Area of displacer chamber 

! Area of displacer effective 

! Area of displacer rod (CSA) 
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REAL(8) ':: afr 

(holes) 

REAL(8) :: ah 

REAL(8) :: ap 

REAL(8) :: ar 

combined) 

REAL(8) :: are 

REAL(8) :: agap 
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! Area of free flow front surface of regenerator 

! Area of hot plate 

! Area of piston 

! Area of regenerator (solid plus holes, ie 

! Effective frontal area of regenerator 

! Area of one cell flow face 

! Volumes (Base Dimension length cubed) 

REAL(8) :: vc 

REAL(8) :: vd 

REAL(8) :: vdc 

REAL(8) :: vh 

REAL(8) :: vpc 

REAL(8) :: ve 

REAL(8) :: yes 

REAL(8) :: vks 

REAL(8) :: vpd 

REAL(8) :: vps 

REAL(8) :: vr 

REAL(8) :: vcell 

REAL(8) :: vdwc 

REAL(8) :: vmms 

REAL(8) :: vspace 

REAL(8) :: Yair 

REAL(8) :: vair2 

! Masses 

REAL(8) :: me 

REAL(8) :: me1 

REAL(8) :: me2 

REAL(8) :: mk 

REAL(8) :: mk1 

REAL(8) :: mk2 

REAL(8) :: mm 

REAL(8) :: mmc 

REAL(8) :: mr 

! Volume of cold plate 

! Volume of displacer 

! Volume of displacer chamber 

! Volume of hot plate 

! Volume of piston cylinder 

! Volume of expansion space (instantaneous) 

! Expansion space volume 

! Compression space volume 

! Piston dead volume 

! Piston swept volume on startup 

! Free flow volume for displacer 

! Volume of one regenerator cell 

! Volume of matrix material bounding one cell 

! Volume occupied by total mass of matrix screens 

! Volume of space occupied by air (total) 

! Volume of air in regenerator (total) 

! Volume of air in regenerator (total) second calc 

! Mass of working fluid in expansion space (to) 

! Mass of working fluid in expansion space (t1) 

! Mass of working fluid in expansion space (t2) 

! Mass of working fluid in compression space (to) 

! Mass of working fluid in compression space (t1) 

! Mass of working fluid in compression space (t2) 

! Mass of matrix 

! Mass of regenerator material'in cell 

! Mass of working fluid in regenerator 
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REAL(8) :: mrt 

REAL(8) :: mrc 

REAL(8) :: mddot 

REAL(8) :: mpdot 

REAL(8) :: mrdot 

REAL(8) :: mrcell 

REAL(8) :: modmrdot 

REAL(8) :: mpd 

REAL, PARAMETER:: mc = 3.129 

REAL, PARAMETER:: mh = 2.170 

REAL, PARAMETER :: mp = 0.0358 

REAL, PARAMETER :: mda = 0.03356 

! Temperatures 

REAL, PARAMETER :: Ta = 280 

REAL(8) :: Tc 

REAL(8) :: Th 

REAL(8) :: Tea 

REAL(8) :: Te1 

REAL(8) :: Te2 

REAL(8) :: TkO 

REAL(8) :: Tk1 

REAL(8) :: Tk2 

REAL(8) :: TfluidOc1 = Ta 

REAL(8) :: Tfluid1c1 = Ta 

REAL(8) :: Tfluid2c1 = Ta 

REAL(8) :: TfluidOc2 = Ta 

REAL(8) :: Tfluid1c2 = Ta 

REAL(8) :: Tfluid2c2 = Ta 

REAL(8) :: TmatOc1 = Ta 

REAL(8) :: Tmat1 c1 = Ta 

REAL(8) :: Tmat2c1 = Ta 

REAL(8) :: TmatOc2 = Ta 

REAL(8) :: Tmat1c2 = Ta 

REAL(8) :: Tmat2c2 = Ta 

REAL(8) :: Ti 

REAL(8) :: Tinc1 

REAL(8) :: Tinc2 
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! Mass of working fluid in regenerator (total) 

! Mass of working fluid in regenerator cell 

! Mass flow via displacer rod/guide 

! Mass flow via piston wall 

! Mass flow through the regenerator 

! Mass flow one cell 

! Modified mass flow 

! Mass of working fluid in cylinder dead space 

! Mass of cold plate (kg) 

! Mass of hot plate (kg) 

! Mass of piston (kg) 

! Mass of displacer assembly (kg) 

! Ambient temperature in kelvin 

! Cold plate temperature 

! Hot plate temperature 

! Expansion space temperature (to) 

! Expansion space temperature (t1 ) 

! Expansion space temperature (t2) 

! Compression space temperature (to) 

! Compression space temperature (t1) 

! Compression space temperature (t2) 

! Fluid temp, time 0, cell1 

! Fluid temp, time dt, cell1 

! Fluid temp, time t+dt, cell1 

! Fluid temp, time 0, cell2 

! Fluid temp, time dt, cell2 

! Fluid temp, time t+dt, cell2 

! Matrix temp, time 0, cell1 

! Matrix temp, time dt, cell1 

! Matrix temp, time t+dt, cell1 

! Matrix temp, time 0, cell2 

! Matrix temp, time dt, cell2 

! Matrix temp, time t+dt, cell2 

!Inlet temperature for simple regenerator 
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REAL(8) :: Trk 

REAL(8) :: Tre 

REAL(8) :: carnot 

! Properties declared as parameters 

! Acceleration due to gravity 

! Gas constant for air (J/kg K) 

! SHC cold plate aluminium (J/kg K) 

! SHC hot plate aluminium (J/kg K) 

! SHC matrix iron (J/kg K) 

REAL, PARAMETER:: g = 9.80665 

REAL, PARAMETER:: ra = 287 

REAL, PARAMETER :: cc = 900 

REAL, PARAMETER :: ch = 900 

REAL, PARAMETER :: em = 448 

REAL, PARAMETER:: cp = 1005 

REAL, PARAMETER:: cv = 718 

REAL, PARAMETER :: ifw = 6.86E-4 

! SHC, constant pressure for air @ 300K (J/kg K) 

! SHC, constant volume for air @ 300K (J/kg K) 

! Moment of inertia (kg mA2) 

REAL, PARAMETER :: rohrw = 7850 !kg/mA3 density for stainless steel 

REAL, PARAMETER:: pi = 3.14159265358979324 ! Numerical constant 

REAL, PARAMETER :: pix2 = pi * 2 ! Pi multiplied by 2 

! Miscellaneous 

REAL(8) :: epsilon 

INTEGER:: nr = 4 

INTEGER, PARAMETER:: ns = 2 

REAL(8) :: mn = 40 

REAL(8) :: f1 

REAL(8) :: wn 

regenerator 

! Regenerator surface porosity 

! Number of regenerators 

! Number of screens 

! Mesh number for regenerator screen 

! Displacer spring force inequality operator 

! Number of wires which would stack into 

! Initialise regenerator arrays, length equal to number of screens (ns) 

REAL, dimension(ns) :: TmO, Tm1, Tm2, TrO, Tr1, Tr2 

! Construct regenerator array, initialise all values to ambient temperature 

DATA TmO / ns*ta / 

DATA Tm1 / ns*ta / 

DATA Tm2 / ns*ta / 

DATA TrO / ns*ta / 

DATA Tr1 / ns*ta / 
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DATA Tr2 / ns*ta / 

! Declare operator for mass flow temperature 

REAL(8) :: T1 

REAL(8) :: T2 

REAL(8) :: T3 

REAL(8) :: T4 

! Pressures 

REAL, PARAMETER:: pa = 101325 

REAL(8) :: pe 

REAL(8) :: pe1 

REAL(8) :: pe2 

REAL(8) :: pk 

REAL(8) :: pk1 

REAL(8) :: pk2 

REAL(8) :: pdiff = 0 

! Angles 

REAL(8) :: alpha 

REAL(8) :: alpha1 

REAL(8) :: gamma 

REAL(8) :: gamma1 

REAL(8) :: theta 

REAL(8) :: theta1 

REAL(8) :: theta2 

REAL(8) :: thetas 

! Intermediate 

! Atmospheric pressure (Pa) 

! Expansion space pressure (to) 

! Expansion space pressure (t1) 

! Expansion space pressure (t2) 

! Compression space pressure (to) 

! Compression space pressure (t1) 

! Compression space pressure (t2) 

! Pe - Pk 

!Displacer location intermediate calculations 

REAL(8) :: dv1 

REAL(8) :: dv2 

! halfd 

! hse+halfd 
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REAL(8) :: dv3 

REAL(8) :: dv4 

! hdc-hsk-halfd 

! hdc-halfd 

! Flywheel angle intermediate calculations 

REAL(8) :: pl1 

REAL(8) :: pl2 

! Piston location 

! Piston location 

! Expansion space temperature intermediate calculations 

REAL(8) :: est1 

REAL(8) :: est2 

REAL(8) :: est3 

REAL(8) :: est4 

REAL(8) :: est5 

! Equation 1 for expansion space 

! Equation 2 for expansion space 

! Equation 3 for expansion space 

! Equation 4 for expansion space 

! Equation 5 for expansion space 

! Compression space temperature intermediate calculations 

REAL(8) :: cst1 

REAL(8) :: cst2 

REAL(8) :: cst3 

REAL(8) :: cst4 

REAL(8) :: cst5 

REAL(8) :: cst6 

REAL(8) :: cst? 

REAL(8) :: cst8 

! Equation 1 for compression space 

! Equation 2 for compression space 

! Equation 3 for compression space 

! Equation 4 for compression space 

! Equation 5 for compression space 

! Equation 6 for compression space 

! Equation? for compression space 

! Equation 8 for compression space 

! Flywheel angle theta intermediate calculations 

REAL(8) :: efw1 

REAL(8) :: efw2 

REAL(8) :: efw3 

REAL(8) :: efw4 

! Regenerator intermediate calculations 

REAL(8) :: regen1 

REAL(8) :: regen2 

REAL(8) :: regen3 

! Equation 1 for flywheel 

! Equation 2 for flywheel 

! Equation 3 for flywheel 

! Equation 4 for flywheel 

! regenerator flow constant 

! regenerator flow constant 

! regenerator flow constant 
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! Counters 

REAL(8) :: count1 = 0.000000000 

INTEGER(8) :: count2 = 0.000000000 

INTEGER(8) :: count3 = 0.000000000 

INTEGER(8) :: count4 = 0.000000000 

INTEGER(8) :: count5 = 0.000000000 

INTEGER(8) :: count6 = 0.000000000 

INTEGER(8) :: countS = 0.000000000 

INTEGER(8) :: writeat 

INTEGER tvi 

REAL tvr 

! Efficiency 

REAL(8) :: thclock = 7.0000000 

REAL(8) :: thspace = 1.0000000 

REAL(8) :: thstart = 0 

REAL(S) :: thstop = 100 

LOGICAL :: startsum = .false. 

LOGICAL :: stopsum = .false. 

REAL(8) :: worksum = 0 

REAL(8) :: heatsum = 0 

REAL(8) :: thermeff = 0 

REAL(8) :: thsign = 1 

REAL, PARAMETER:: omega = 25 

!Time 

REAL, PARAMETER:: delta = 1d-7 

REAL, PARAMETER :: rtime = 30 

REAL(8) :: eclock = 0.000000000 

REAL(8) :: progr 

REAL(8) :: time1, time2 

REAL(8) :: date1 

INTEGER(8) :: tim emf = 0 

INTEGER(8) :: timemfc = 0 

! Constants 
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! First counter 

! Second counter 

! Third counter 

! Fourth counter 

! Fifth counter 

! sixth counter 

! eighth counter 

! Write interval for output 

! Test variable integer 

! Test variable real 

! Flywheel angular velocity 

! Time step in seconds 

! Run time in seconds 

! Engine clock 

! Number of repetitions for calculations 
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REAL, PARAMETER:: kdf = 1 E-4 

REAL, PARAMETER :: khc = 0.3 

WILL RUN AFTER 20 SECS 

REAL, PARAMETER :: khh = 0.3 

REAL, PARAMETER :: khrm = 1.5 

1/ns) 
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! Combined flywheel-piston losses, assumption 

! Convective heat transfer for cold plate 0.309 

! Convective heat transfer for hot plate 0.309 

! Heat transfer constant for matrix (ns = 2)(equiv 

REAL, PARAMETER :: kmr = 2.05646E-5 ! Constant for mass flow through regenerator 

! Constant for mass flow past piston 

! Constant for mass flow past displacer rod 

REAL, PARAMETER:: kmp = 4.02465E-10 

REAL, PARAMETER:: kmd = 1.12029E-10 

REAL, PARAMETER:: kse = 1000 ! Spring rate constant for expansion space spring 

(1000) 

REAL, PARAMETER:: ksk = 1000 

spring (1000) 

! Spring rate constant for compression space 

! Date and time stamp 

CHARACTER (len=12) date, time 

call cpu_time(time1) 

progr = rtime/delta 

writeat = 99999 

! Open file storage 

!open file for data storage Fujitsu laptop 

! date and time from cpu 

open (1, file = "C:\documents and settings\andy\my documents\my data 

sources\20070112\kdf1 emin4 _ 3dns _khcO.3D") 

!open file storage for variable checking Fujitsu laptop 

open (3, file = "C:\documents and settings\andy\my documents\my data 

sources\20070 112\kdf1 emin4 _ 3divns _ khcO .3V") 

!open file storage for efficiency Fujitsu laptop 

open (5, file = "C:\documents and settings\andy\my documents\my data 

sources\20070 112\kdf1 em in4 _ 3divns _khcO .3E") 

!open file storage for regenerator Fujitsu laptop 
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open (7, file = "C:\documents and settings\andy\my documents\my data 

sources\20070112\kdf1 emin4_3divns_khcO.3P") 

!open file storage for regenerator Fujitsu laptop 

open (9, file = "C:\documents and settings\andy\my documents\my data 

sources\20070 112\kdf1 emin4 _ 3divns _ khcO .3M") 

! Assign initial values to temperatures ( in Kelvin) 

Tc = 280 

Th = 355 

TeO = Ta 

TkO = Ta 

T1 =Ta 

T2 =Ta 

T3 =Ta 

T4 =Ta 

Te1 = Ta 

Tk1 = Ta 

Te2 = Ta 

Tk2 = Ta 

Ti=Ta 

Trk = Ta 

Tre = Ta 

TairO = Tc 

TmsO =Tc 

Tair1 = Tc 

Tms1 = Tc 

Tair2 = Tc 

Tms2 = Tc 

! Assign initial pressures ( in Pascal) 

pe = pa 

pk = pa 

pe1 = pa 

pk1 = pa 

pe2 = pa 

pk2 = pa 

! Cold plate temperature 

! Hot plate temperature 

! Expansion space temperature (to) 

! Compression space temperature (to) 

! Expansion space pressure (to) 

! Compression space pressure (to) 

! Expansion space pressure (t1) 

! Compression space pressure (t1) 

! Expansion space pressure (t2) 

! Compression space pressure (t2) 
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! Calculations for engine geometry 

xt=l+r 

Igap = (25.4E-3 / mn) - drw 

cell = 25.4E-3 / mn 

wn = «hd)/(drw» 

!print*, 'cell = " cell 

!print*, 'Igap = " Igap 

!print*, 'wn = " wn 

!epsilon = (lgap**2)/(lgap + drw)**2 

!print*, 'epsilon =', epsilon 

epsilon = 0.95 

aa = pi* 0.25*(ddc**2 - dd**2) 

ac = pi*ddc**2*0.25 

ad = pi*dd**2*0.25 

ar = pi*dr**2*0.25 

adr = pi*ddr**2*0.25 

ah = pi*ddc**2*0.25 

ap = pi*dp**2*0.25 

adc = pi*ddc**2*0.25 

agap= Igap**2 

are = ar * (1-epsilon) 

ade = ad - (nr*are) -aa 

!print*, ac, ad, adc, adr, ah, ap 

!vc = ac*hc 

!vd = (ad - (nr*ar»*hd 

vdc = adc * hdc 

!vh = ah*hh 

!vpc = ap * 0.0325 
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! Total length of crank arm and connecting rod 

! Length og gap 

! Length of cell 

! Number of wires in regenerator 

! Ratio of areas or porosity 

! Area of displacer/chamber wall annulus 

! Area of cold plate 

! Area of displacer 

! Frontal area of one regenerator 

! Area of displacer rod face (CSA) 

! Area of hot plate 

! Area of piston face (CSA) 

! Area of the displacer chamber 

! Area of flow face for one cell, 

! Area of regenerator effective 

! Area of displacer effective 

! Volume of cold plate 

! Volume of displacer 

! Volume of displacer chamber 

! Volume of hot plate 

! Volume of piston cylinder dead space 

!vdwc = pi * drw**2 *0.25 * (cell + Igap) 

!vcell=(lgap**3)+«(lgap**2)-(pi*drw**2*0.25»*(lgap+cell)) 

!mrc = (pa*vcell)/(ra*ta) 

!mmc = rohrw * vdwc 

aperture = (0.0254/mn)-drw 

! Mass of fluid in one cell 

! Mass of matrix material in one cell 
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epsilon2 = aperture**2/(aperture+drw)**2 

mrw = rohrw*pi*drw**2*0.25*(Irx*(lry/(aperture+drw»+lry*(lrx/(aperture+drw»)*nr*wn 

!print*, 'epsilon2 = " epsilon2 

!print*, 'mrw = " mrw 

!Regnerator Calculations 

mms = 0.00753 

mmc = 0.003765 

vmms = mms/rohrw 

vspace = vmms I (1-epsilon) 

vair = vspace*epsilon 

vair2 = (nr*ar*epsilon*hd) 

mrt = vair*rohair 

mair = vair*rohair/ns 

mair2 = vair2*rohair/ns 

mmc = mms/ns 

mrc = mrt/ns 

!print*, 'Vmms = " vmms, 'Vspace = " vspace 

!print*, 'Yair = " vair 

!print*, 'Vair2 = " vair2 

!print*, 'mair = " mair 

!print*, 'mair2 = " mair2 

!print*, 'mms = " mms, 'mmc = " mmc 

!print*, 'mrc = " mrc 

carnot = (th-tc)/th 

timemf = 1/delta 

timemfc = timemf 

write (5,*) 'Carnot efficiency = " carnot*100 

! Check matrix is within limits 

if (drw >= cell) then 

print*, 'solid matrix, reduce wire dia', cell 

else if (Igap >= cell) then 

print*, 'wire non existant, increase dia' 
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end if 

dv1 = halfd 

dv2 = hse+halfd 

dv3 = hdc-hsk-halfd 

dv4 = hdc-halfd 

! Find the mass of working fluid at start 

!The engine volume is made up from the sum of the following volumes 

!The expansion space is the volume below the displacer expansion space face at rest upon the 

stub spring, 

! = (hse - (mda * g I kse))*adc 

!The regenerator free volume for n regenerators 

! =(nr * (ar *epsilon)*hd) 

!The com presion space inclusive of the cylinder dead volume. Volume at rest is dependent upon 

flywheel angle. 

!WRITE CODE LATER TO ACCOUNT FOR FLYWHEEL ANGLE .... FOR NOW TAKE BDC = 

32.5mm FOR FACE OF PISTON ABOVE CHAMBER 

! = (hc-(hd+(hse - (mda * g I kse))))*(adc-adr) 

! For mass use ideal gas law m=pv/RT 

ves = (hse - (mda * g I kse))*adc 

vr = (nr * (ar *epsilon)*hd) 

vks = (hdc - hd - (hse - (mda * g I kse)))*(adc-adr) 

! time = 0 

thetas = pil5 

theta = thetas 

!Flywheel angles 

alpha = asin( (r/l) * sin(theta)) 

gamma = acos(sin(theta + alpha)) 

! Initial flywhel angle (in radians) 

xp = (xt - ((1**2 - (r * sin(theta))**2)**O.5) - (r * cos(theta))) + offset !location of piston above datum 

including offset 
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! Displacer location 

xd = hse + halfD - (mda * g /kse) 

!tests for displacer location 

if (xd < dv1) then 

Print*, 'displacer on hot plate' 

stop 

else if (xd > dv1 .and. xd < dv2) then 

spring 

f1 = kse * (hse + half 0 - xd) 

else if (xd > dv2 .and. xd < dv3) then 

f1 = 0 

else if (xd > dv3 .and. xd <= dv4) then 

spring 

f1 = ksk * (hdc - hsk - halfD - xd) 

else if (xd > dv4 ) then 

Print*, 'displacer on cold plate' 

stop 

end if 

hadp = xp + halfp 

me = (pe*ves)/(ra*TeO) 

mr = (pe*vr)/(ra*TeO) 

Appendix B Engine Simulation Program 

!Initial position of the displacer 

!displacer fouling hot plate 

!displacer under influence of expansion space 

!displacer unconstrained 

!displacer under influence of compression space 

!displacer fouling cold plate 

! Piston face above datum for any theta 

! Mass of fluid in expansion space 

Engine at ambient hence temperature of 

regenerator is in equilibrium with expansion space 

!mpd = pk * (hadp * pi * dp**2 * 0.25) / (ra * TkO) 

mpd = pk * (xp * pi * dp**2 * 0.25) / (ra * TkO) 

mk = (pk*vks)/(ra*TkO) + mpd ! Mass of fluid in compression space 

ve = (xd-halfD)*adc 

vpc = ap * xp 
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!write (1,100) 

!write (*,100) 

write (1,600) 

write (*,600) 

write (7,300) 

!write (1,200) eclock, theta, (xp-0.0345)*1000, xd*1 000, TeO, TkO, pe, pk, & 

!(pe-pk), me*1000000, mk*1000000, TairO, TmsO 

!write (*,200) eclock, theta, (xp-0.0345)*1000, xd*1000, TeO, TkO, pe, pk, & 

!(pe-pk), me*1000000, mk*1000000, TairO, TmsO 

!write (1,700) eclock, TeO, TkO, (pe-pk), TairO, TmsO 

!write (*,700) eclock, TeO, TkO, (pe-pk), TairO, TmsO 

write (1,700) eclock, TeO, TfluidOc1, TfluidOc2, TkO, TmatOc1, TmatOc2, xp*1000, xd*1000, theta, 

(pe-pk), (me+mk)*1000000 

write (*,700) eclock, TeO, TfluidOc1, TfluidOc2, TkO, TmatOc1, TmatOc2, xp*1000, xd*1000, theta, 

(pe-pk), (me+mk)*1000000 

write (7,400) eclock, vpc*1000000, pk 

!write (1,700) eclock, TeO, TairO, TkO, TmsO, xp*1000, xd*1000, theta, (pe-pk), (me+mk)*1000000, 

vpc*1000000 

!write (1,700) eclock, TeO, TkO, (pe-pk), TairO, TmsO 

!write (*,700) eclock, TeO, TkO, (pe-pk), TairO, TmsO 

!write (3,*) 'mesh number = " mn 

!write (3,*) 'No of screens = " ns 

!write (3,*) 'Omega = " omega 

!write (3,*) 'Flywheel start angle = " thetas 

!write (3,*) 
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!write (3,*) 'kdf = " kdf 

!write (3,*) 'khc = " khc 

!write (3,*) 'khh = " khh 

!write (3,*) 'khrm = " khrm 

!write (3,*) 'kmr = " kmr 

!write (3,*) 'kmp = " kmp 

!write (3,*) 'kmd = " kmd 

!write (3,*) 'kse = " kse 

!write (3,*) 'ksk = " ksk 

!!write (3,*) 'Ta = " Ta 

!write (3,*) 'Tc = " Tc 

!write (3,*) 'Th = " Th 

!write (3,*) 'Stamp " date, time1, time2 

Appendix B Engine Simulation Program 

! Combined flywheel-piston losses, assumption 

! Convective heat transfer for cold plate 

! Convective heat transfer for hot plate 

! Heat transfer constant for matrix 

! Constant for mass flow through regenerator 

! Constant for mass flow past piston 

! Constant for mass flow past displacer rod 

! Spring rate constant for expansion space spring 

! Spring rate constant for compressio 

I!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!I!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!First step,t = delta 

!use values from t = 0 to calculate values for t = delta 

!engine run time 

eclock = eclock + delta 

count8 = count8 + 1 

! Flywheel angle theta 

theta1 = theta + (omega * delta) 

!print*,omega*delta 

! Flywheeel sub angles 

alpha1 = asin( (r/l) * sin(theta1» 

gamma1 = acos(sin(theta1 + alpha1» 
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! Piston location 

xp1 = xt - ((1**2 - (r * sin(theta1 ))**2)**0.5) - (r * cos(theta1)) + offset 

! Displacer location 

xd1 = xd 

! Expansion space pressure 

pe1 = (me * ra * TeO) / (adc * (xd1 - halfd)) 

! Compression space pressure 

pk1 = (mk * ra * TkO) / (((adc - adr) * (hdc - halfd - xd1)) + (ap * (xp1 - halfp))) 

! Mass flow rates 

mrdot = kmr * (pe1 - pk1) ! Mass flow through the regenerator 

mddot = kmd * (pa - pk1) ! Mass flow past the displacer rod 

mpdot = kmp * (pa - pk1) ! Mass flow past the piston 

mrcell = mrdotltnh 

! Masses 

me1 = me - (delta * mrdot) 

mk1 = mk + (delta * (mrdot + mddot + mpdot)) 

! Rregenerator intermediate variables 

!regen1 = ((cv+ra)*mrdot*delta)/(cv*mair/ns) 

!regen2 = ((khrm*delta)/(cv*mair/ns)) 

!regen3 = ((khrm*delta)/(cm*mms/ns)) 

regen1 = ((cv+ra)*mrdot*delta)/(cv*mair) 
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regen2 = ((khrm*delta)/(cv*mair» 

regen3 = ((khrm*delta)/(cm*mms)) 

!print*, regen1, regen2, regen3 

! Simple Regenerator 

if (pe2>=pk2) then 

Tinc1 = TeO - TfluidOc1 

Tinc2 = TfluidOc1-TfluidOc2 

else if (pe2<pk2) then 

Tinc1 = TfluidOc2 - TkO 

Tinc2 = TfluidOc1 - TfluidOc2 

end if 

Tfluid1 c1 = TfluidOc1 + Tinc1 *regen 1 + TmatOc1 *regen2-TfluidOc1 *regen2 

Tfluid1 c2 = TfluidOc2+ Tinc2*regen 1 + TmatOc2*regen2-TfluidOc2*regen2 

Tmat1 c1 = TmatOc1 + TfluidOc1 *regen3-TmatOc1 *regen3 

Tmat1 c2 = TmatOc2+ TfluidOc2*regen3-TmatOc2*regen3 

!if (pe1 >=pk1) then 

!Ti = TeO-TairO 

!else if (pe<pk1) then 

!Ti = TairO-TkO 

lend if 

!Tair1 = TairO+ Ti*regen1 + TmsO*regen2-TairO*regen2 

!Tms1 = TmsO+ TairO*regen3-TmsO*regen3 

! Expansion space temperature (use values from previous step) 

if (pe1 >= pk1) then 

T1 = TeO 

else if (pe1 < pk1) then 
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T1 = Tfluid1c1 

end if 

est1 = TeO 

est2 = (Th - TeO)*(khh * delta / (cv * me1» 

est3 = (xd1 - xd)*(pe1 * ad / (cv * me1» 

est4 = (TeO - T1 )*(mrdot*delta/me1) 

est5 = T1 * (ra*mrdot*delta)/(cv*me1) 

Te1 = est1 + est2 - est3 + est4 - est5 

! Compression space temperature 

if (pe1 >= pk1) then 

T2 = Tfluid1c2 

else if (pe1 < pk1) then 

T2 = TkO 

end if 

if (pa >= pk1) then 

T3 =Ta 

else if (pa < pk1) then 

T3 = TkO 

end if 

cst1 = TkO 

cst2 = (TkO - Tc)*(khc*delta/(cv*mk1» 

cst3 = (xd1 - xd)*(pk1 *(ad-adr)/(cv*mk1» 

cst4 = (theta1 - theta)*((pk1 *ap )/(cv*mk1 »*(((r**2 * sin(theta1) * cos(theta1» / (1**2 - (r * 

sin(theta1 »**2)**0.5) + & 

(r * sin(theta1))) 

cst5 = (T2 - TkO)*(mrdot*delta/mk1) 

cst6 = T2*(ra*mrdot*delta/(cv*mk1» 

cst? = (T3 - TkO)*((mpdot+mddot)*delta/mk1) 

cst8 = T3*(ra*(mpdot+mddot)*delta/(cv*mk1» 

Tk1 = cst1 - cst2 + cst3 - cst4 + cst5 + cst6 + cst? + cst8 

!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! 
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! Second step, time = 2 x delta 

! Engine run time 

eclock = eclock + delta 

count8 = count8 + 1 

! Flywheel angle theta for second timestep 

!calculations of THET A2 

EFW1 =(R**3)*MP*cos(GAMMA1 )*sin(THETA1 )*cos(THETA1 )/«L **2-(R*sin(THETA1 »**2)**0.5)+& 

(R**2)*MP*cos(GAMMA 1 )*sin(THETA 1 )+1 FW*cos(ALPHA 1) 

EFW2=-R*MP*G*cos(GAMMA 1 )+R*(PK2-PA)* AP*cos(GAMMA 1 ) 

EFW3=-KDF*cos(ALPHA 1) 

EFW4=-R*MP*cos(GAMMA 1 )*««(R**2)*sin(THETA 1 )*cos(THETA 1 »**2)/«L**2-

(R*sin(THET A 1 »**2)**1.5»+& 

(R**2)*«cos(THETA 1 »**2-(sin(THETA 1 »**2)/«(L**2)-(R*sin(THETA 1 »**2)**0.5)+R*cos(THETA 1» 

THETA2=2*THETA1-THETA+(DEL TA**2)*EFW2/EFW1 +DEL TA*(THETA1-

THET A)*EFW3/EFW1 +& 

«THETA 1-THETA)**2)*EFW4/EFW1 

! Flywheeel sub angles 

alpha1 = asin( (r/I) * sin(theta2» 

gamma1 = acos(sin(theta2 + alpha1» 

! Piston location 

xp2 = xt - {{I**2 - (r * sin(theta2»**2)**0.5) - (r * cos(theta2» + offset 

! Displacer location 

! Find value for additional force 

if (xd < dv1) then 

Print*, 'displacer on hot plate' 

stop 

!displacer fouling hot plate 
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else if (xd > dv1 .and. xd < dv2) then 

space spring 

f1 = kse * (hse + halfD - xd) 

else if (xd > dv2 .and. xd < dv3) then 

f1 = 0 

else if (xd > dv3 .and. xd < dv4) then 

space spring 

f1 = ksk * (hdc - hsk - halfD - xd) 

else if (xd >= dv4 ) then 

Print*, 'displacer on cold plate' 

stop 

end if 

Appendix B Engine Simulation Program 

!displacer under influence of expansion 

!displacer unconstrained 

!displacer under influence of compression 

!displacer fouling cold plate 

xd2 = (2*xd1) - xd + (delta**2/mda)*«ad * (pe1 - pk1 »+(adr * (pk1 - pa»-(mda * g)+f1) 

! Expansion space pressure 

pe2 = (me1 * ra * Te1) I (adc * (xd2 - halfd» 

! Compression space pressure 

pk2 = (mk1 * ra * Tk1) I (((adc - adr) * (hdc - halfd - xd2» + (ap * (xp2 - halfp))) 

! Mass flow rates 

mrdot = kmr*(pe2 - pk2) 

mddot = kmd * (pa - pk2) 

mpdot = kmp * (pa - pk2) 

mrcell = mrdoUtnh 

! Masses 

me2 = me1 - (delta * mrdot) 

mk2 = mk1 + (delta * (mrdot + mddot + mpdot» 
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! Rregenerator 

regen1 = «cv+ra)*mrdot*delta)/(cv*mair) 

regen2 = ((khrm*delta)/(cv*mair)) 

regen3 = ((khrm*delta)/(cm*mms)) 

!print*, regen1, regen2, regen3 

! pe>pk 

! Time 2, Cell 1 

! Simple Regenerator 

! Rregenerator 

!regen1 = ((cv+ra)*mrdot*delta)/(cv*mair/ns) 

!regen2 = ((khrm*delta)/(cv*mair/ns)) 

!regen3 = ((khrm*delta)/(cm*mms/ns)) 

! pe>pk 

! Time 2, Cell 1 

! Simple Regenerator 

!if (pe2>=pk2) then 

!Ti = Te1-Tair1 

!else if (pe2<pk2) then 

!Ti = Tair1-Tk1 

!end if 

if (pe2>=pk2) then 

Tinc1 = Te1 - Tfluid1c1 

Tinc2 = Tfluid1c1-Tfluid1c2 

else if (pe2<pk2) then 

Tinc2 = Tfluid1c2 - Tk1 

Appendix B Engine Simulation Program 
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Tinc1 = Tfluid1c1 - Tfluid1c2 

end if 

Tfluid2c1 = Tfluid1 c1 + Tinc1 *regen1 + Tmat1 c1 *regen2-Tfluid1 c1 *regen2 

Tfluid2c2 = Tfluid1 c2+ Tinc2*regen 1 + Tmat1 c2*regen2-Tfluid1 c2*regen2 

Tmat2c1 = Tmat1 c1 + Tfluid 1 c1 *regen3-Tmat1 c1 *regen3 

Tmat2c2 = Tmat1 c2+ Tfluid 1 c2*regen3-Tmat1 c2*regen3 

lif (pe2>=pk2) then 

!Ti = Te1-Tair1 

!else if (pe2<pk2) then 

!Ti = Tair1-Tk1 

lend if 

!Tair2 = Tair1 + Ti*regen 1 + Tms 1 *regen2-Tair1 *regen2 

!Tms2 = Tms1+Tair1*regen3-Tms1*regen3 

! Expansion space temperature (use values from previous step) 

!if (pe2 >= pk2) then 

!T1 = Te1 

!else if (pe2 < pk2) then 

!T1 = Tair2 

lend if 

if (pe2 >= pk2) then 

T1 = Te1 

else if (pe2 < pk2) then 

T1 = Tfluid2c1 

end if 

est1 = Te1 

est2 = (Th - Te1 )*(khh * delta / (cv * me2)) 

est3 = (xd2 - xd1 )*(pe2 * ad / (cv * me2)) 

est4 = (Te1 - T1 )*(mrdot*delta/me2) 

est5 = T1 * (ra*mrdot*delta)/(cv*me2) 
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T e2 = est1 + est2 - est3 + est4 - est5 

! Compression space temperature 

!if (pe2 >= pk2) then 

!T2 = Tair2 

!else if (pe2 < pk2) then 

!T2 = Tk1 

lend if 

!if (pa >= pk2) then 

!T3 = Ta 

!else if (pa < pk2) then 

!T3 = Tk1 

lend if 

if (pe2 >= pk2) then 

T2 = Tfluid2c2 

else if (pe2 < pk2) then 

T2 = Tk1 

end if 

if (pa >= pk2) then 

T3 =Ta 

else if (pa < pk2) then 

T3 = Tk1 

end if 

cst1 = Tk1 

cst2 = (Tk1 - Tc)*(khc*delta/(cv*mk2)) 

cst3 = (xd2 - xd1 )*(pk2*(ad-adr))/(cv*mk2) 

cst4 = (theta2 - theta1 )*«pk2*ap )/( cv*mk2))*« (r**2 * sin(theta2) * cos(theta2)) / (1**2 - (r * 

sin(theta2))**2)**O.5) + & 

(r * sin(theta2))) 

cst5 = (T2 - Tk1 )*(mrdot*delta/mk2) 

cst6 = T2*(ra*mrdot*delta/(cv*mk2)) 

cst? = (T3 - Tk1 )*«mpdot+mddot)*delta/mk2) 

cst8 = T3*(ra*(mpdot+mddot)*delta/(cv*mk2)) 

B.25 



Appendix B Engine Simulation Program 

Tk2 = cst1 - cst2 + cst3 - cst4 + cst5 + cst6 + cst? + cstB 

!!!!!!!!!!!!! !!!!!!!!!!!!!!!!! 

!Third and remaining calculations 

count1 = 0 

!Setup loop 

do count3 = 1, progr 

! Engine clock 

eclock = eclock + delta 

!thclock = eclock 

count1 = count1 + delta 

countB = countB+1 

! Reassign values 

theta = theta1 

theta1 = theta2 

xd = xd1 

xd1 = xd2 

Te1 = Te2 

Tk1 = Tk2 

me1 = me2 

mk1 = mk2 

!Tair1 = Tair2 

!Tms1 = Tms2 

Tmat1 c1 = Tmat2c1 

!!!!!!!!!!!!!! 
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Tmat1 c2 = Tmat2c2 

Tfluid 1 c1 = Tfluid2c1 

Tfluid1c2 = Tfluid2c2 

do count2=1 ,ns 

TmO(count2)=Tm1 (count2) 

Tm 1 (count2)=Tm2( count2) 

!Tm2( count2)=0 

TrO(count2)=Tr1 (count2) 

Tr1 (count2)=Tr2(count2) 

!Tr2( count2)=0 

end do 

! Flywheel angle theta for subseqent timesteps 

!calculations of subsequent THET A2 

EFW1 =(R**3)*MP*cos(GAMMA 1 )*sin(THETA 1 )*cos(THETA 1 )/«L **2-(R*sin(THETA 1 »**2)**0.5)+& 

(R**2)*MP*cos(GAMMA 1 )*sin(THETA 1 )+1 FW*cos(ALPHA 1) 

EFW2=-R*MP*G*cos(GAMMA 1 )+R*(PK2-PA)*AP*cos(GAMMA 1) 

EFW3=-KDF*cos(ALPHA 1) 

EFW4=-R*MP*cos(GAMMA 1 )*««(R**2)*sin(THETA 1 )*cos(THETA 1 »**2)/«L **2-

(R*sin(THETA 1 »**2)**1.5»+& 

(R**2)*( (cos(THETA 1 »**2-(sin(THETA 1 »**2)/« (L **2)-(R*sin(THET A 1 »**2)**0.5)+R*cos(THET A 1 » 

THETA2=2*THETA1-THETA+(DEL TA**2)*EFW2/EFW1 +DELTA*(THETA1-

THETA)*EFW3/EFW1 +& 

«THETA1-THETA)**2)*EFW4/EFW1 

! Flywheeel sub angles 

alpha1 = asin( (r/I) * sin(theta2» 

gamma1 = acos(sin(theta2 + alpha1» 

! Piston location 

xp2 = xt - {{I**2 - (r * sin(theta2»**2)**0.5) - (r * cos(theta2» + offset 
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! Displacer location 

! Find value for additional force 

if (xd < dv1 ) then 

Print*, 'displacer on hot plate' 

stop 

else if (xd > dv1 .and. xd < dv2) then 

space spring 

f1 = kse * (hse + halfD - xd) 

else if (xd > dv2 .and. xd < dv3) then 

f1 = 0 

else if (xd > dv3 .and. xd < dv4) then 

space spring 

f1 = ksk * (hdc - hsk - halfD - xd) 

else if (xd >= dv4 ) then 

Print*, 'displacer on cold plate' 

stop 

end if 

Appendix B Engine Simulation Program 

!displacer fouling hot plate 

!displacer under influence of expansion 

!displacer unconstrained 

!displacer under influence of compression 

!displacer fouling cold plate 

xd2 = (2*xd1) - xd + (delta**2/mda)*«ad * (pe2 - pk2»+(adr * (pk2 - pa»-(mda * g)+f1) 

! Expansion space pressure 

pe2 = (me1 * ra * Te1) / (adc * (xd2 - halfd» 

! Compression space pressure 

pk2 = (mk1 * ra * Tk1) / (((adc - adr) * (hdc - halfd - xd2» + (ap * (xp2 - halfp))) 

! Mass flow rates 

mrdot = kmr*(pe2 - pk2) 

mddot = kmd * (pa - pk2) 

mpdot = kmp * (pa - pk2) 

mrcell = mrdotltnh 
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! Masses 

me2 = me1 - (delta * mrdot) 

mk2 = mk1 + (delta * (mrdot + mddot + mpdot)) 

ve = (xd2-halfD)*adc 

vpc = ap * xp2 

! Rregenerator 

!print*, cv+ra, mrdot 

!regen1 = ((cv+ra)*mrdot*delta)/(cv*mair/ns) 

!regen2 = ((khrm*delta)/(cv*mair/ns)) 

!regen3 = ((khrm*delta)/(cm*mms/ns)) 

regen1 = ((cv+ra)*mrdot*delta)/(cv*mair) 

regen2 = ((khrm*delta)/(cv*mair)) 

regen3 = ((khrm*delta)/(cm*mms)) 

!print*, regen 1 , regen2, regen3 

!print*,regen1,regen2,regen3 

! pe>pk 

! Time 2, Cell 1 

! Simple Regenerator 

!if (pe2>=pk2) then 

!Ti = Te1-Tair1 

!else if (pe2<pk2) then 

!Ti = Tair1-Tk1 

lend if 

if (pe2>=pk2) then 

Tinc1 =Te1-Tfluid1c1 

Tinc2 = Tfluid1c1-Tfluid1c2 

Appendix B Engine Simulation Program 
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else if (pe2<pk2) then 

Tinc2 = Tfluid1c2 - Tk1 

Tinc1 = Tfluid1 c1 - Tfluid1 c2 

end if 

Tfluid2c1 = Tfluid1 c1 + Tinc1 *regen1 + Tmat1 c1 *regen2-Tfluid1 c1 *regen2 

Tfluid2c2 = Tfluid1 c2+ Tinc2*regen1 + Tmat1 c2*regen2-Tfluid1 c2*regen2 

Tmat2c1 = Tmat1 c1 + Tfluid 1 c1 *regen3-Tmat1 c1 *regen3 

Tmat2c2 = Tmat1 c2+ Tfluid 1 c2*regen3-Tmat1 c2*regen3 

! Expansion space temperature (use values from previous step) 

if (pe2 >= pk2) then 

T1 = Te1 

else if (pe2 < pk2) then 

T1 = Tfluid2c1 

end if 

est1 = Te1 

est2 = (Th - Te1 )*(khh * delta / (cv * me2» 

est3 = (xd2 - xd1 )*(pe2 * ad / (cv * me2» 

est4 :::;: (Te1 - T1 )*(mrdot*delta/me2) 

est5 = T1 * (ra*mrdot*delta)/(cv*me2) 

Te2 = est1 + est2 - est3 + est4 - est5 

! Compression space temperature 

if (pe2 >= pk2) then 

T2 = Tfluid2c2 

else if (pe2 < pk2) then 

T2 = Tk1 

end if 

if (pa >= pk2) then 
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T3 =Ta 

else if (pa < pk2) then 

T3 = Tk1 

end if 

cst1 = Tk1 

cst2 = (Tk1 - Tc)*(khc*delta/(cv*mk2» 

cst3 = (xd2 - xd1 )*(pk2*(ad-adr»/(cv*mk2) 

cst4 = (theta2 - theta1)*«pk2*ap)/(cv*mk2»*«(r**2 * sin(theta2) * cos(theta2» / (1**2 - (r * 

sin(theta2»**2)**0.5) + & 

(r * sin(theta2») 

cst5 = (T2 - Tk1 )*(mrdot*delta/mk2) 

cst6 = T2*(ra*mrdot*delta/(cv*mk2» 

cst? = (T3 - Tk1 )*«mpdot+mddot)*delta/mk2) 

cst8 = T3*(ra*(mpdot+mddot)*delta/(cv*mk2» 

Tk2 = cst1 - cst2 + cst3 - cst4 + cst5 + cst6 + cst? + cst8 

if (thclock <= eclock) then 

startsum = .true. 

thstart = theta2 

!thstop = theta2 + pi/2 

thclock = thclock + thspace 

end if 

if (theta2 <= 0) then 

thstop = theta2 - pix2 

thsign =-1 

else if (theta2 > 0) then 

thstop = theta2 + pix2 

thsign = 1 

end if 

if (startsum == .true.) then 

worksum = worksum +«(theta2-theta1 )/delta)**2) 

heatsum = heatsum + (Th - Te2) 
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end if 

if (thstop*thsign <= sqrt(theta2**2» then 

thermeff = (kdf*worksum)/(khh*heatsum) 

worksum = 0 

heatsum = 0 

write (5,*) 'thermal efficiency = " thermeff*100 

startsum = .false. 

end if 

if (count4 >= write at) then 

write (1,700) eclock, Te2, Tfluid2c1, Tfluid2c2, Tk2, Tmat2c1, Tmat2c2, xp2*1000, xd2*1000, 

theta2, (pe2-pk2), (me2+mk2)*1000000 

write (*,700) eclock, Te2, Tfluid2c1, Tfluid2c2, Tk2, Tmat2c1, Tmat2c2, xp2*1 000, xd2*1 000, 

theta2, (pe2-pk2), (me2+mk2)*1000000 

write (7,400) eclock, vpc*1000000, pk2, pe2, pe2-pa 

!write (1,200) count1, theta2, (xp2-0.0345)*1000, xd2*1000, Te2, Tk2, pe2, pk2, & 

!(pe2-pk2), me2*1000000, mk2*1000000, Tair2, Tms2 

!write (*,200) count1, theta2, (xp2-0.0345)*1000, xd2*1000, Te2, Tk2, pe2, pk2, & 

!(pe2-pk2), me2*1000000, mk2*1000000, Tair2, Tms2 

count4 = 0 

else if (count4 < writeat) then 

count4 = count4 +1 

end if 

!if (count8 == timemf) then 

!write (1,700) eclock, Te2, Tk2, (pe2-pk2), Tair2, Tms2 

!write (*,700) eclock, Te2, Tk2, (pe2-pk2), Tair2, Tms2 

!elseif (count8 == timemf+1) then 
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Appendix B Engine Simulation Program 

!write (1,700) eclock, Te2, Tk2, (pe2-pk2), Tair2, Tms2 

!write (*,700) eclock, Te2, Tk2, (pe2-pk2), Tair2, Tms2 

!elseif (count8 == timemf+2) then 

!write (1,700) eclock, Te2, Tk2, (pe2-pk2), Tair2, Tms2 

!write (*,700) eclock, Te2, Tk2, (pe2-pk2), Tair2, Tms2 

!timemf = timemf+timemfc 

lend if 

end do 

call cpu_time(time2) 

write (3,*) 'Time taken = " (time2 - time1 )/60, , mins' 

write (3,*) 'No of calcs = " progr 

write (3,*) 'mesh number = " mn 

write (3,*) 'No of screens = " ns 

write (3,*) 'Omega = " omega 

write (3,*) 'Flywheel start angle = " thetas 

write (3,*) 'kdf = " kdf 

write (3,*) 'khc = " khc 

write (3,*) 'khh = " khh 

write (3,*) 'khrm = " khrm 

write (3,*) 'kmr = " kmr 

write (3,*) 'kmp = " kmp 

write (3,*) 'kmd = " kmd 

write (3,*) 'kse = " kse 

write (3,*) 'ksk = " ksk 

! Combined flywheel-piston losses, assumption 

! Convective heat transfer for cold plate 

write (3,*) 'Ta = " Ta 

write (3,*) 'Tc = " Tc 

write (3,*) 'Th = " Th 

write (3,*) 'dp = " dp 

write (3,*) 'ddr = " ddr 

write (3,*) 'Stamp " date, time1, time2 

!format statements 

! Convective heat transfer for hot plate 

! Heat transfer constant for matrix 

! Constant for mass flow through regenerator 

! Constant for mass flow past piston 

! Constant for mass flow past displacer rod 

! Spring rate constant for expansion space spring 

! Spring rate constant for compressio 
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100 format(' time', t12, 'theta', t23, 'xp', t33, 'xd', t42, 'Te', t53, 'Tk', t63, 'pe', t75, 'pk', & 

t90, 'pe-pk', t100, 'me', t110, 'mk', t123, 'Tair', t133, 'Tmat') 

200 format (f7.3, t8, f12.6, t22, f7.4, t32, f7.4, t42, f9.5, t52, f1 0.5, t64, f9.2, t76, f9.2, & 

t87, f9.4, t99, f9.5, t110, f9.5, t123, f7.3, t133,f7.3) 

300 format ( , Time', t14, 'Piston Vol', t28, 'Pk', t42, 'Pe', t56, 'Pe-Pa') 

400 format (6(f11.3,' ')) 

600 format (' eclock', t16, 'Te', t28, 'Tf,ceIl1', t40, 'Tf,ceIl2', t52 'Tk', t64, 'Tm,ceIl1', t76, 

'Tm,ceIl2', & 

t88, 'Piston', t100, 'Displacer', t112, 'theta', t124, '(pe-pk)', t136, 'Mass') 

!600 format ( , eclock', t16, 'Te', t28, 'Tair', t40, 'Tk', t52, 'Tms', t64, 'Piston', t76, & 

!'Displacer', t88, 'theta', t100, 'pe-pk', t112, 'Mass') 

!eclock, TeO, TfluidOc1, TfluidOc2, TkO, TmatOc1, TmatOc2, xp*1000, xd*1000, theta, (pe-pk), 

(me+mk)*1000000 

700 format (12(f11.5,' ')) 

end program Twocell_ V9 
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Appendix D Pressure Sensor Data 

Appendix D Pressure Sensor Data 

All ASDX ... D44D 

Characteristics Min. Typ. Max. Units 

Zero pressure offset 2.42 2.50 2.58 

Full scale span (FSS)2 4.00 
V 

Output at max. specified pressure 4.42 4.50 4.58 

at min. specified pressure 0.42 0.50 0.58 

Total accuracy (0 to 85CC); ±2.0 %FSS 

Sample rate 100 Hz 

Response de/at 2.73 14.11 ms 

Quantization step5 3 mV 

Current consumption 6 mA 
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Appendix D Pressure Sensor Data 

11 OL ... -PCB I 430L ... -PCB Series 
Signal conditioned precision pressure transducers 

PERFORMANCE CHARACTERISTICS 
1 ... 6 V output version (unless otherwise noted V s = 15 V. f\ > 100 kn. tamb = 25°C) 

Characteristics Min. Typ. Max. Proof Common mode 
Unit pressure2 pressure 

Operating differential 112LP02D-PCB 0 2 200 300 
pressure3 devices 112LP05D-PCB 0 5 200 300 

112LP10D-PCB 0 10 200 300 
112LP25D-PCB 0 25 300 600 
112LP50D-PCB 0 50 300 600 

pressurei 113LP01D-PCB -1 1 200 300 mbar 
vacuum 113LP02D-PCB -2 2 200 300 
devices" 113LP05D-PCB -5 5 200 300 

113LP10D-PCB -10 10 200 300 
113LP25D-PCB -25 25 300 600 
113LP50D-PCB -50 50 300 600 

differential 112LU01D-PCB 0 1 80 160 
devices 112LU02D-PCB 0 2 120 240 

112LU05D-PCB 0 5 120 240 
112LU10D-PCB 0 10 240 360 
112LU20D-PCB 0 20 240 360 
112LU30D-PCB 30 240 360 

"H,O 
pressure' 113LU01 D-PCB -1 1 80 160 
vacuum 113LU02D-PCB -2 2 120 240 
devices" 113LU05D-PCB -5 5 120 240 

113LU10D-PCB -10 10 240 360 
113LU20D-PCB -20 20 240 360 
113LU30D-PCB -30 30 240 360 

Zero pressure offset' 112L ... -PCB 0.95 1.0 1.05 
113L ... -PCB 3.4 3.5 3.6 

Full scale spans 112L...-PCB 4.9 5.0 5.1 
V 113L ... -PCB 2.4 2.5 2.6 

Full scale output 6.0 
Output at lowest specified pressure 113L. .. -PCB 1.0 

Therma I effects Offset 113LP01D-PCB ±0.08 ±0.20 
(0 to 50'C)' 11 ... LP02D-PCB ±0.04 ±0.10 

11 ... LU01D-PCB ±0.04 ±0.10 
all other devices ±0.02 ±O.OS 

%FSOrC 
Span 113LP01 D-PCB ±0.08 ±0.20 

11 ... LP02D-PCB ±0.04 ±0.10 
11 ... LU01D-PCB ±0.04 ±0.10 
all other devices ±0.02 ±0.04 

Non-linearity and hysteresis (BSL), ±0.1 ±0.2S 
%FSO 

Long term stability' ±O.S 

Response time (10 to 90 %) 1 ms 
Position sensitivity all 1 and 2 mbar devices 0.5 

%FSOig 
all other devices 0.1 

Current consumption 4.2 mA 
Power supply Offset 0.05 

%FSON 
rejection Span O.OS 
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