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Abstract. The research presented here makes a contribution to the understanding 
of the recognition of biological motion by comparing human recognition of a set 
of everyday gestures and motions with machine interpretation of the same dataset. 
Our reasoning is that analysis of any differences and/or correlations between the 
two could reveal insights into how humans themselves perceive motion and hint 
at the most important cues that artificial classifiers should be using to perform 
such a task. We captured biological motion data from human participants engaged 
in a number of everyday activities, such as walking, running and waving, and then 
built two artificial classifiers (a Finite State Machine and a multi-layer perceptron 
artificial neural network, ANN) which were capable of discriminating between 
activities. We then compared the accuracy of these classifiers with the abilities of 
a group of human observers to interpret the same activities when they were 
presented as moving light displays (MLDs). Our results suggest that machine 
recognition with ANNs is not only comparable to human levels of recognition but 
can exceed it in some instances. 

Keywords: Neural network, finite state machine, moving light display, human 
biological motion. 

1   Introduction 

Gunnar Johansson [1] first illustrated how humans are skilled at visually analysing 
and recognising human motion from very sparse and impoverished datasets – or 
moving light-displays (MLDs). Since Johansson’s pioneering work a great deal of 
literature has appeared on the subject of so-called biological motion – though an exact 
understanding of how humans understand MLDs has yet to be reached. In parallel 
with such work, the computer vision community has produced a wealth of approaches 
to segmentation of the spatio-temporal information held in video images as well as the 
classification of the feature sets determined therein (for reviews of such work see, for 
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instance, Gavrila [2] and Essa [3]). In general, the range of approaches adopted has 
varied enormously depending on the application domain and its constraints. Many 
different pattern recognition methods have been applied to the problem including 
artificial neural networks (ANNs), statistical classifiers and rule based systems. 
Recently some studies have appeared which attempt to exploit what is known about 
human recognition of biological motion to inspire the development of autonomous 
machine recognition of the same phenomena (e.g. [4]). However, even here there is 
debate over whether a model based approach to the problem, which uses prior 
knowledge, such as a model of physical make-up of a human body, to assist 
classification should be favoured over classification of ‘raw’ spatio-temporal data.  

The research presented here makes a contribution to the understanding of the 
recognition of biological motion by comparing human recognition of a set of 
everyday gestures and motions, presented as MLDs, with machine interpretation of 
the same dataset. Our reasoning is that careful analysis of any differences and/or 
correlations between the two could reveal insights into how humans themselves 
perceive motion and hint at the most important cues we use for this. For instance if a 
machine classifier can accurately recognise an action as well as a human, without any 
programmed knowledge of a human model or any other background or information 
(or context), then we could assume that we only need the information within the MLD 
to interpret the action. The motivation for our work is to try and understand how we 
might build interactive computer systems that can simulate a natural understanding of 
biological motion. In particular, and in the longer term, we are interested in seeking 
an understanding of how computer systems might be used to detect subtle changes in 
biological motion which indicate changes, for instance, in a human’s health or 
emotional state. 

The following section briefly describes some of the artificial classifier techniques 
used to classify human biological motion and problems arising from popular 
techniques. This is followed by an account of human biological motion in the form of 
MLDs. We then present our experimental work, results and conclusions. 

2   Classification Techniques 

Artificial neural networks are a popular means of classifier, they are well suited for 
appearance based representations and applications that benefit from fast response 
times [5]. ANNs are trained from data samples without the requirement for explicit 
data modelling using a weighting algorithm [6], and do not require large memory 
storage. The most commonly used neural network is the multiplayer perceptron [7] 
though other networks such as SOM (Self Organising Maps), or Kohonen map, are 
favoured for visual recognition systems [8].  

Rule based classifiers such as finite state machines are a means of tracking 
transitions through sequences known as states. Each state indicates a possible path of 
execution reflecting input changes within the system with a transition in state 
occurring once a condition has been fulfilled [9]. The finite state machine (FSM) 
segments events into key stages that represent events within the system. It is useful 
for systems that have a definable flow and change according to triggered events. The 
diverse ways and lack of uniformity in human movement, coupled with possible 
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signal noise, is enough to prevent a state being activated. These findings were an issue 
for [10] who use an FSM to track hand and head gestures, though the FSM approach 
does fair well with movements that are less complex and have little diversity [11]. 

Statistical models such as the HMM (Hidden Markov Model) have some 
limitations in representing non-gesture patterns [12], but are useful for modelling 
spatio-temporal variability where the data is temporally well aligned. Similar to the 
finite state machine, HMMs use state transition but with probabilistic algorithms. 
Another way of distinguishing behaviour from movement is using a database of 
possible movements for each action [13]. This type of system is reliant on predefined 
constraints that would require the creation of extensive profile sets for each 
participant. Probabilistic networks have been used with some success with 
recognising small movements such as those performed with the head [14] but have 
had improved accuracy recognising human activity when used in conjunction with a 
hidden markov model [15].  

The problems with recognising gesture are numerous: pattern spotting [16] – 
locating meaningful patterns from an input data stream. Segmentation ambiguity [17] 
- where does the gesture begin and where does the gesture end? Spatio-temporal 
variability [18] – gestures vary dynamically in shape and duration, be it a large 
number of people or just one person making the gestures. Vision based systems suffer 
from their poor ability to continuously track the object of focus, mainly the hands and 
face. When the focus is lost, perhaps through tracking error or occlusion, the system 
must be recalibrated requiring the object of focus (the person) to stand in a default 
pose for the system to once again acquire tracking [19]. A vision based approach also 
suffers from location limitation – it can only track within its field of vision. It does 
however, allow for unencumbered freedom for those that are being tracked. A sensor 
based approach, on the other hand, does not suffer from occlusion, lighting conditions 
and other visual constraints; it can track a person’s movement continuously. However, 
sensors are invasive and can be cumbersome.  

3   Human Biological Motion and Moving Light Displays 

Humans can quickly detect other humans within view and, in most cases, can 
determine biological aspects such as their sex, approximate age, posture, gait, weight, 
height and build. We recognise social significances that lead us to approximate health, 
strength, physical ability, and from a persons bearing can make assumptions about 
intent: aggressive, placid, gentle, untrustworthy, trusting etc. Human motion contains 
a wealth of information: actions, traits, emotions, and intentions. Our ability to extract 
complex visual information from the perceived world has been widely documented 
[20] and theorems for understanding environmental and contextual cues. Gunnar 
Johansson demonstrated the ability of humans to visually analyse and recognise 
human motion from very sparse and impoverished datasets. Information of the human 
form, as represented by an MLD, is considerably reduced (Fig 1). When an MLD is 
stationary the information presented is near meaningless, but when the MLD is in 
motion an observer is able to perceive the definition of a human form [1]. 



 Comparison of Human and Machine Recognition of Everyday Human Actions 123 

 

Fig. 1. An MLD representing a person walking 

Experiments using MLDs have shown that humans are able to, within some degree, 
recognise not only the movement but also whether the form is male or female [21] 
and even to recognise themselves and people familiar to them [22]. Runeson and 
Frykholm [23] attempted to disguise the gender of the person in the point light display 
by asking actors to perform as though they were of the opposite sex; observers 
guessed the correct gender of the actor over 85% of the time. Runeson and Frykholm 
also showed actors throwing sandbags out to varying distances, the actor was fitted 
with the lights but the sandbags were not. Observers were good at judging how far the 
bags would have been thrown. 

It is not only humans that can recognise biological motion in MLDs. In their 
experiment with newly hatched chicks Vallortigara et al [24], showed animated 
images of ‘point light hens’ to chicks which would be the first visual stimuli they 
would encounter after hatching. The chicks followed the motion of the point light 
hens showing that they perceived the motion. They then performed further tests to 
answer whether the chicks’ response was innate or a learned experience. This time 
they used artificially induced motion patterns but the chicks were still drawn to the 
biological motion of not just hens, but also that of cats. Other types of models were 
used which used rigid  structures to define body shape or models which represented a 
hen-like object, but again the chicks were attracted to the biological motion of the 
point light hen. As a control, they showed the chicks point light models of both hens 
and cats, for which the chicks were just as likely to approach the cats as they were the 
hens. They suggest that from these results chicks have evolved a predisposition to 
notice objects that move like vertebrates, which may maximise the probability of 
imprinting on the object most likely to provide food and protection after birth. They 
refer also to similar findings in four month old human babies and conclude that the 
results suggest that this preference is hard wired in the vertebrate brain.  

4   Experimental Procedure 

In this work our intention was to compare machine interpretation of biological motion 
with human interpretation of the same data. We captured biological motion data from 
human participants engaged in a number of everyday activities, such as walking, 
running and waving, and then built two artificial classifiers (a Finite State Machine 
and a multi-layer perceptron artificial neural network, ANN) which were capable of 
discriminating between activities. The intention was then to compare the accuracy of  
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these classifiers with the abilities of a group of human observers to interpret the same 
activities. A sensor based approach was chosen over a visual recognition system to 
capture human motion, which took place in a small gymnasium. To capture walking 
and jogging actions the participants were required to walk and jog on a commercial 
running machine. Punching was performed by hitting a punchbag and throwing was 
performed by throwing tennis ball sized balls. Data from typical everyday full-bodied 
human behaviours were collected using a commercial sensor system (Polhemus 
Liberty) usually used for motion-capture animation work [25]. We used just five 
sensors – forty human participants were recruited and sensors placed on: each hand, 
each foot and the forehead. Participants were asked to perform the following motions: 
walking, jogging, shaking-hands, waving, punching, kicking, throwing a ball, looking 
left/right, looking up/down. During each motion, spatial (x,y,z) data was recorded for 
each participant. Our resultant dataset was therefore very rich in terms of the breadth 
of examples we recorded – however we deliberately kept the content of each recorded 
instance of motion very sparse and impoverished – with only 5 points recorded. Two 
commonly used autonomous classifiers were then trained and configured to classify 
the data, a Finite State Machine (FSM) and an Artificial Neural Network (ANN). The 
data is then converted into MLDs for classification by forty human participants. 

 

Fig. 2. FSM Optimal state ranges (OSR) for a punch and a handshake 

4.1   Finite State Machine 

Firstly, an FSM was configured to classify actions; this method hence combined both 
human and autonomous data perception (since human knowledge of the raw sensor 
data was incorporated into the design of the FSM). The FSM was designed to 
calibrate for each participant e.g. measure the length of the participants arm and 
setting the distance value for the states. For example, if the states were calibrated for a 
person with long arms the state activation area would be too far to away to be 
activated by a person with shorter arms. The FSM has four states: a start state, a 
predictive state, a hit state and a null state. The first three states comprise of an OSR 
(optimal state range): a spatial three dimensional sphere-shape in space which moves 
with the participant illustrated in Fig 2. 
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4.2   Artificial Neural Network 

Secondly, a multi-layer-perceptron ANN was trained to classify the raw sensor data - 
i.e. no model of a human, or any other prior real world knowledge, was integrated into 
the training phase. The capture data, for all gestures, was re-sampled using linear 
duplication to make it temporally aligned and then converted for suitability with 
Trajan, a commercial ANN application (Trajan, date). The data was pre-process using 
PCS (Principal Component Analyses). PCA is a linear dimensionality reduction 
technique, which is able to identify orthogonal directions of maximum variance and 
project the data into a lower-dimensionality space formed of a sub-set of the highest-
variance components [26]. The data was sampled using evenly distributed subsets for 
test, training and verification.  

4.3   Human Classification 

Additionally, our motion capture data was converted into MLDs by importing it into a 
3D animation package and creating short video clips showing five 3D spheres which 
move in accordance with the captured data on a plain background. We then recruited 
a further forty human participants who viewed the simulated MLDs, watching each 
gesture in turn and stating the full-body gesture that they thought was being exhibited. 
The classification capabilities of the autonomous systems were then compared to 
those of the human participants. Motion capture data was converted into MLDs by 
importing the data into a 3D animation package and mapping spheres to the Cartesian 
coordinates, a representative sample of which is presented in Fig 3. Forty people from 
varying disciplines and backgrounds participated in the experiment, male and female 
ranging from ages eighteen to fifty eight. 

 
a) Handshake b) Waving 

  

Fig. 3. a) Static image of person b) Snapshot of a person waving 

The experiment comprised of three stages: Part 1: a participant viewed a static 
image of the spheres representing a person (upright and with their arms by their 
sides). They were asked to give their first impressions of what came to mind when 
they saw the image. Part 2: The participant was shown an animated MLD for all of 
the gestures, and for each, was asked to state what they thought they were seeing. Part 
3: the participants are informed the spheres represent human motion and are asked to 
view the MLDs once again. Part 4: All of the MLDs were compiled, in a different 
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order, into one animation medley. Random movement of the spheres was placed 
between actions signifying other types of movement or ambiguous action. The 
participants are informed of which animations represent which action and are then 
shown an animation medley compiled from were asked to say aloud the gesture they 
recognised. 

5   Results 

The FSM was able to recognise gestures with less variability of motion than those 
which can be performed with greater exertion (Fig 4). Due to the rigid OSR structure 
the FSM will only recognise movement that keeps within a spatial boundary relative 
to a fixed point. Gestures which have the potential for greater exertion e.g. punching 
and throwing were often performed beyond the OSR limits. Recognition for walking 
and jogging was considerably lower than other results mainly as a result of 
fluctuations in the sensor output signal registering outside the OSR. This has potential 
for improvement through redefining the experimental design. 
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FSM Behaviour Recognition (OSR2)
Full Behaviour
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Fig. 4. Results for OSR1 and OSR2 Recognition 

MLP Behaviour Recognition Results
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Fig. 5. Results for MLP 
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The MLP classification performance suffered most of all with actions such as 
walking, jogging, punching and throwing; for the arm actions there is more variability 
in these movements than the actions the MLP had less trouble classifying (Fig 5). The 
walking and jogging may also have posed some difficulty as there was a considerable 
amount of variance in the data. This variance is due to the participants’ feet impacting 
on the running machine with each stride; the sensor effectively sustains excess motion 
from vibration. The difference in individual style of performing certain gestures may 
also be one possible reason for low recognition. 

When human participants were shown the static MLD their recognition of the 
spheres representing a static human was low, 45% in comparison to when the 
animations were in motion 82%. Johansson makes this observation noting observers 
rarely recognise the human form in static displays [1]. The results for part three  
(Fig 6a) would suggest that the increase in some of the recognition results from part 
two is primarily due to the introduction of partial-context (knowledge the MLD 
represents human form), and also that of training effect. Recognition is poor for 
punching and throwing hard, these gestures are quite erratic when performed with 
pronounced physical amplitude having an adverse affect on the spatial pattern 
structure. The recognition for handshake was consistently poor; there are a greater 
number of actions performed in front of the body e.g. shaking hands, turning key in 
lock, manipulation of objects etc. than those performed at the sides or high up in 
relation to the torso e.g. waving. The viewing angle of the MLD may have contributed 
to low recognition of some gestures such as the kick which may need a more 
prominent perspective. Overall, across all actions, the results of our three 
classification approaches were: FSM 60.08 %, MLP 64.45 %, human 62.5 % (Fig 6b). 
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Fig. 6. (a) Results for parts 2, 3 and animation medley (b) Results for Classifiers 

6   Summary of Conclusions 

Our results suggest that, at our level of abstraction, machine recognition with ANNs is 
not only comparable to human levels of recognition but can exceed it in some 
instances (for instance, in our results, the ANN and FSM showed superior 
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classification of waving and hand shaking). However, we also found that humans 
were good at interpreting head and some hand gestures but particularly gestures 
involving the feet. It is suggested that absence of contextual cues is the main reason 
for the lower performance in human recognition. Additionally, our work allowed the 
MLP to utilise the full 3D nature of our data whilst humans were only able to view 2D 
projections of this data as a MLD. However overall, we believe that the finding that 
autonomous classifiers which make no use of prior real world information (such as a 
human model) can potentially perform recognition of biological motion as well as a 
human is a significant finding which warrants further investigation. 
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