

RESCUE: Evaluation of a
Fragmented Secret Share

System in Distributed-
Cloud Architecture

Elochukwu Anthony Ukwandu

Matriculation Number:

A thesis submitted in partial fulfilment of the requirements of

Edinburgh Napier University, for the award of Doctor of Philosophy.

Edinburgh Napier University

School of Computing

May, 2019

 II

Acknowledgement

It is with deep sense of gratitude that I say thanks to my Director of Studies, Prof.

William J. Buchanan and Supervisor, Dr. Gordon Russell for their love, kindness and

transformational influence during this research. I also want to thank the entire staff

and researchers at Edinburgh Napier University, especially Drs. Lu Fan and Owen Lo,

Prof. Ahmed Al-Dubai for their supports that enabled the completion of this work.

I need to say a warmth thank you to my angelic wife, children and extended family for

their supports, love, and peace that sustained me although this work.

 III

Dedication

To Him through whom all things consist, to my angelic wife and lovely children, and

more to the fellow saints on Calvary journey.

I cannot but also dedicate this thesis in memory of Prof. David Benyon, who initially

was my Panel Chair but could not see the end of it.

 IV

Declaration

I declare that no portion of this work has been submitted for any degree or

professional qualification in any university or institution of learning elsewhere.

 V

Table of Contents

Abstract...XI

Acronyms..XIII

1 Introduction..1

1.1 Background ...1

1.1.1 Cloud systems .. 2

1.1.2 Secret shares ... 2

1.2 Disaster Recovery and Fail-Over System ...3

1.3 Secret Sharing Scheme..5

1.4 Research Questions ..7

1.5 Aim and Objectives ...7

1.6 Contributions ..9

1.7 Thesis Structure .. 11

1.8 Publications .. 12

2 Background ..14

2.1 Introduction .. 14

2.2 Fundamentals of Computer Security .. 14

2.3 Data Striping: Uses and Applications .. 15

2.4 Mathematical Background.. 15

2.4.1 Information Theory .. 15

2.4.2 Definition and History .. 16

2.4.3 Perfect Secret Sharing Scheme ... 17

2.4.4 The Social Concept in Secret Sharing .. 19

2.4.5 Non-Perfect Secret Sharing Scheme ... 20

2.5 Conclusions ... 22

3 Literature Review ...23

3.1 Introduction .. 23

3.2 Secret Sharing Scheme.. 23

3.2.1 Shamir Secret Sharing Scheme (SSS) ... 24

 VI

3.2.2 Information Dispersal Algorithm (IDA) .. 25

3.2.3 Krawczyk’s Computational Secret Sharing... 26

3.2.4 Social Secret Sharing Scheme (SSSS) ... 27

3.2.5 Secret Sharing and Multi-Cloud Architecture .. 29

3.2.6 Security Limitations of Secret Sharing Schemes .. 30

3.3 Secret Sharing/Data Striping: Applications ... 31

3.4 Performance Evaluation of Secret Sharing Schemes ... 33

3.4.1 Scalability... 33

3.4.2 Resilience ... 34

3.4.3 Key management ... 34

3.5 Sharing a big data ... 34

3.6 Cloud-based data storage ... 35

3.6.1 Cloud-based Key Management System ... 37

3.6.2 Cloud-based Disaster Recovery (DR) System ... 38

3.6.3 Benefits, Challenges and Solutions ... 39

3.6.4 Fine-Grained Cloud-based DR solutions .. 40

3.7 Weaknesses and research challenge of present methods................................... 42

3.8 Conclusions ... 43

4 Experimental Design ..45

4.1 Introduction .. 45

4.2 Design Architecture .. 45

4.3 Design Principles ... 46

4.3.1 System components ... 46

4.4 System Design Methodology .. 47

4.4.1 Experimental setup .. 47

4.4.2 Evaluation frameworks... 51

4.5 System Specifications ... 59

4.5.1 Virtual Machine Specifications ... 59

4.6 Conclusions ... 59

5 Data Fragmentation Evaluation ...61

5.1 Introduction .. 61

5.2 Data fragmentation schemes .. 61

 VII

5.2.1 Application Scenarios ... 62

5.3 FSSS Evaluations ... 63

5.3.1 Method of Data Fragmentation .. 63

5.3.2 Method of Key Sharing and Recovering .. 64

5.4 Tests Results and Evaluations ... 66

5.5 Overall Evaluation of Data Fragmentation Methods .. 70

5.6 Conclusions ... 72

6 Key Management Evaluation ...73

6.1 Introduction .. 73

6.2 Cloud-based Key Management ... 73

6.3 FSSS Key Management ... 74

6.3.1 Tests Results and Evaluations ... 74

6.4 Overall Evaluation .. 79

6.5 Conclusions ... 81

7 Disaster Management Methods Evaluation ...83

7.1 Introduction .. 83

7.2 Cloud-based Disaster Recovery (DR) System .. 83

7.3 FSSS Resilience Method .. 84

7.3.1 Test Results and Evaluations .. 85

7.4 Overall Evaluations ... 89

7.5 Conclusions ... 90

8 Conclusions and Future Work ...92

8.1 Thesis Summary .. 92

8.2 Main Findings ... 93

8.3 Limitations .. 94

8.4 Future Work ... 94

8.4.1 The Social Concept in Secret Sharing .. 94

8.4.2 Cloud Behavioural Computation ... 95

8.4.3 Capacity Measures of clouds .. 95

8.4.4 Proposed Architectural Design of the Self-Organising System 95

 VIII

8.1.1 Agent ... 97

9 References ..98

10 Appendix A ... 106

10.1 Performance Evaluation of a Fragmented Secret System 106

10.2 Overview of RESCUE ... 106

10.3 Architecture .. 107

10.3.1 File share ... 107

10.3.2 Key share... 107

10.4 Recovery: Key ... 109

10.5 Results and Evaluations .. 111

10.6 Conclusions ... 113

10.7 Tables and Figures .. 113

11 Appendix B ... 120

11.1 Basic Data Striping and RAID Systems .. 120

12 Appendix C ... 123

12.1 Detailed Experimental Results .. 123

12.2 Variant One .. 123

12.2.1 Fragments ... 123

12.2.2 Key Share Creation and Recovering .. 139

12.3 Variant Two .. 154

12.3.1 Fragments ... 154

12.3.2 Key Share creation and Recovering .. 158

12.4 Variant Three .. 162

12.4.1 Fragments ... 162

12.4.2 Key Share Creation and Recovery... 164

13 Appendix D ... 165

13.1 Details of the experimental procedures used ... 165

 IX

List of Figures

Figure 1: Data Backup Model [8] ..4

Figure 2: Data Recovery Model [8] ...5

Figure 3: Diagram of a Secret Sharing System ..6

Figure 4: Diagram of a Secret Recovering System ..7

Figure 5: Data Fragmentation and File Reconstruction .. 16

Figure 6: Cloud Storage Access Method [96] .. 36

Figure 7: Cloud Storage Reference Model [97] ... 37

Figure 8: Disaster Recovery Trade-Offs in Cloud DR [7] .. 40

Figure 9: Overall FSSS Design Architecture ... 46

Figure 10: File Fragmentation and Encryption .. 55

Figure 11: Key Share and Storage ... 56

Figure 12: Key recoveries and file reconstruction ... 57

Figure 13: FSSS Encrypted Fragments Mappings to Cloudlets 65

Figure 14: Key Shares Mappings to Cloudlets... 66

Figure 15: Measuring scalability using varied fragment sizes, share policies and file

sizes.. 68

Figure 16: Plot of varied file sizes, share policies and equal number of fragments. 68

Figure 17: Plot of CSPs against Download Time in seconds...................................... 77

Figure 18: Measuring the Throughputs of different CSPs .. 77

Figure 19: Upload & Download Bandwidths of different CSPs 78

Figure 20: Plot of Overhead Cost of File combination, equal number of fragments

with varied share policies. ... 86

Figure 21: Share Mapping, Distribution and System Initialisation 96

Figure 22: Performance Measurements and System Adjustments. 96

Figure 23: Disenrollment and Self-Reconfiguration System. 97

Figure 24: Key/File share creation .. 109

Figure 25: File Recovery .. 110

Figure 26: Key recovery and File decryption .. 111

Figure 27: Time taken to Create share against Policy .. 114

Figure 28: Share Writing to folders against Policy .. 115

Figure 29: Share Recovery from folders against Policy ... 115

Figure 30: File Recreation against Policy .. 116

 X

Figure 31: Process and Recover of file using 10KB fragment size on 2 from 5 Policy.

 ... 116

Figure 32: Process and Recover of file using 10KB fragment size on 3 from 5 Policy.

 ... 117

Figure 33: Process and Recover of file using 10KB fragment size on 4 from 5 Policy.

 ... 117

Figure 34: Process and Recover of file using 100MB fragment size on 2 from 5

Policy. .. 118

Figure 35: Process and Recover of a file using 100MB fragment size on 3 from 5

Policy. .. 118

Figure 36: Process and Recover of a file using 100MB fragment size on 4 from 5

Policy. .. 119

Figure 37: A 4-disk Array in RAID5 format ... 122

Figure 38: Varied file sizes using 1KB fragment size in 2 from 5 share policy 123

Figure 39: Varied file sizes using 10KB fragment size in 2 from 5 share policy 124

Figure 40: Varied file sizes using 100KB fragment size in 2 from 5 share policy 125

Figure 41: Varied file sizes using 1MB fragment size in 2 from 5 share policy 126

Figure 42: Varied file sizes using 10MB fragment size in 2 from 5 share policy 127

Figure 43: Varied file sizes using 100MB fragment size in 2 from 5 share policy.... 128

Figure 44: Varied file sizes using 1GB fragment size in 2 from 5 share policy 129

Figure 45: Varied file sizes using 1KB fragment size in 3 from 5 share policy 130

Figure 46: Varied file sizes using 10KB fragment size in 3 from 5 share policy 131

Figure 47: Varied file sizes using 100KB fragment size in 3 from 5 share policy 132

Figure 48: Varied file sizes using 1MB fragment size in 3 from 5 share policy 132

Figure 49: Varied file sizes using 10MB fragment size in 3 from 5 share policy 133

Figure 50: Varied file sizes using 100MB fragment size in 3 from 5 share policy.... 133

Figure 51: Varied file sizes using 1GB fragment size in 3 from 5 share policy 134

Figure 52: Varied file sizes using 1KB fragment size in 4 from 5 share policy 135

Figure 53: Varied file sizes using 10KB fragment size in 4 from 5 share policy 135

Figure 54: Varied file sizes using 100KB fragment size in 4 from 5 share policy 136

Figure 55: Varied file sizes using 1MB fragment size in 4 from 5 share policy 137

Figure 56: Varied file sizes using 10MB fragment size in 4 from 5 share policy 137

Figure 57: Varied file sizes using 100MB fragment size in share policy 138

Figure 58: Varied file sizes using 1GB fragment size in 4 from 5 share policy 139

 XI

Figure 59: Key Share Creation and Recovering using 1KB fragment in 2 from 5 share

policy ... 140

Figure 60: Key Share Creation and Recovering using 10KB fragment in 2 from 5

share policy .. 140

Figure 61: Key Share Creation and Recovering using 100KB fragment in 2 from 5

share policy .. 141

Figure 62: Key Share Creation and Recovering using 1MB fragment in 2 from 5 share

policy ... 142

Figure 63: Key Share Creation and Recovering using 10MB fragment in 2 from 5

share policy .. 142

Figure 64: Key Share Creation and Recovering using 100MB fragment in 2 from 5

share policy .. 143

Figure 65: Key Share Creation and Recovering using 1GB fragment in 2 from 5 share

policy ... 144

Figure 66: Key Share Creation and Recovering using 1KB fragment in 3 from 5 share

policy ... 145

Figure 67: Key Share Creation and Recovering using 10KB fragment in 3 from 5

share policy .. 145

Figure 68: Key Share Creation and Recovering using 100KB fragment in 3 from 5

share policy .. 146

Figure 69: Key Share Creation and Recovering using 1MB fragment in 3 from 5 share

policy ... 147

Figure 70: Key Share Creation and Recovering using 10MB fragment in 3 from 5

share policy .. 147

Figure 71: Key Share and Recovering using 100MB fragment in 3 from 5 share policy

 ... 148

Figure 72: Key Share Creation and Recovering using 1GB fragment in 3 from 5 share

policy ... 149

Figure 73: Key Share Creation and Recovering using 1KB fragment in 4 from 5 share

policy ... 149

Figure 74: Key Share Creation and Recovering using 10KB fragment in 4 from 5

share policy .. 150

Figure 75: Key Share Creation and Recovering using 100KB fragment in 4 from 5

share policy .. 151

 XII

Figure 76: Key Share Creation and Recovering using 1MB fragment in 4 from 5 share

policy ... 151

Figure 77: Key Share Creation and Recovering using 10MB fragment in 4 from 5

share policy .. 152

Figure 78: Key Share Creation and Recovering using 100MB fragment in 4 from 5

share policy .. 153

Figure 79: Key Share Creation and Recovering using 1GB fragment in 4 from 5 share

policy ... 153

Figure 80: Varied file sizes using equal number of fragments in 2 from 5 share policy

 ... 154

Figure 81: Varied file sizes using equal number of fragments in 3 from 5 share policy

 ... 155

Figure 82: Varied file sizes using equal number of fragments in 4 from 5 share policy

 ... 156

Figure 83: Varied file sizes using equal number of fragments in 4 from 10 share policy

 ... 156

Figure 84: Varied file sizes using equal number of fragments in 6 from 10 share policy

 ... 157

Figure 85: Varied file sizes using equal number of fragments in 8 from 10 share policy

 ... 158

Figure 86: Varied file sizes using equal number of fragments in 2 from 5 share policy

 ... 159

Figure 87: Varied file sizes using equal number of fragments in 3 from 5 share policy

 ... 159

Figure 88: Varied file sizes using equal number of fragments in 4 from 5 share policy

 ... 160

Figure 89: Varied file sizes using equal number of fragments in 4 from 10 share policy

 ... 161

Figure 90: Varied file sizes using equal number of fragments in 6 from 10 share policy

 ... 161

Figure 91: Varied file sizes using equal number of fragments in 8 from 10 share policy

 ... 162

Figure 92: Comparing file processing overheads during normal situations and cloud

outages ... 163

 XIII

Figure 93: Comparing cloud outages at varied share policies against normal situations

 ... 164

Figure 94: File Fragmentation and Encryption .. 166

Figure 95: Key Share and Storage ... 167

Figure 96: Key recoveries and file reconstruction ... 169

List of Tables

Table 1: User Management Data Store .. 54

Table 2: Evaluation Metrics .. 58

Table 3: Overall Performance Evaluation Metrics ... 58

Table 4: Cloud Storage Locations ... 59

Table 5 : Measuring scalability using varied fragments sizes, share policies and file

sizes.. 69

Table 6: Measuring scalability with varied file sizes, share policies and equal number

of fragments. .. 69

Table 7: Measuring the effects of policies, number of fragments generated on key

recovery. ... 69

Table 8: Overhead Cost of File Combination using equal number of fragments with

varied share policies ... 70

Table 9: Evaluation table for FSSS and other similar methods to measure scalability 72

Table 10: Cloud capacities measure using different CSPs ... 75

Table 11: Cloud Outages and Normal Situations ... 78

Table 12: Overhead Cost of File Combination using equal number of fragments with

varied share policies ... 85

Table 13: File Processing Linear Regression table .. 87

Table 14: Share creation against policy ... 113

Table 15: Share Writing to folders against Policy ... 114

Table 16:: Share Recovery against Policy ... 115

Table 17:: File Recreation against Policy .. 116

Table 18: Varied file sizes using 1KB fragment size in 2 from 5 share policy 123

Table 19: Varied file sizes using 10KB fragment size in 2 from 5 share policy 124

Table 20: Varied file sizes using 100KB fragment size in 2 from 5 share policy 124

 XIV

Table 21: Varied file sizes using 1MB fragment size in 2 from 5 share policy 125

Table 22: Varied file sizes using 10MB fragment size in 2 from 5 share policy 126

Table 23: Varied file sizes using 100MB fragment size in 2 from 5 share policy 127

Table 24: Varied file sizes using 1GB fragment size in 2 from 5 share policy 128

Table 25: Varied file sizes using 1 KB fragment size in 3 from 5 share policy 129

Table 26: Varied file sizes using 10KB fragment size in 3 from 5 share policy 130

Table 27: Varied file sizes using 100KB fragment size in 3 from 5 share policy 131

Table 28: Varied file sizes using 1MB fragment size in 3 from 5 share policy 132

Table 29: Varied file sizes using 10MB fragment size in 3 from 5 share policy 132

Table 30: Varied file sizes using 100MB fragment size in 3 from 5 share policy 133

Table 31: Varied file sizes using 1GB fragment size in 3 from 5 share policy 134

Table 32: Varied file sizes using 1KB fragment size in 4 from 5 share policy 134

Table 33: Varied file sizes using 10KB fragment size in 4 from 5 share policy 135

Table 34: Varied file sizes using 100KB fragment size in 4 from 5 share policy 136

Table 35: Varied file sizes using 1MB fragment size in 4 from 5 share policy 136

Table 36: Varied file sizes using 10MB fragment size in 4 from 5 share policy 137

Table 37: Varied file sizes using 100MB fragment size in 4 from 5 share policy 138

Table 38: Varied file sizes using 1GB fragment size in 4 from 5 share policy 138

Table 39: Key Share Creation and Recovering using 1KB fragment in 2 from 5 share

policy ... 139

Table 40: Key Share Creation and Recovering using 10KB fragment in 2 from 5 share

policy ... 140

Table 41: Key Share Creation and Recovering using 100KB fragment in 2 from 5

share policy .. 141

Table 42: Key Share Creation and Recovering using 1MB fragment in 2 from 5 share

policy ... 141

Table 43: Key Share Creation and Recovering using 10MB fragment in 2 from 5 share

policy ... 142

Table 44: Key Share Creation and Recovering using 100MB fragment in 2 from 5

share policy .. 143

Table 45: Key Share Creation and Recovering using 1GB fragment in 2 from 5 share

policy ... 143

Table 46: Key Share Creation and Recovering using 1KB fragment in 3 from 5 share

policy ... 144

 XV

Table 47: Key Share Creation and Recovering using 10KB fragment in 3 from 5 share

policy ... 145

Table 48: Key Share Creation and Recovering using 100KB fragment in 3 from 5

share policy .. 146

Table 49: Key Share Creation and Recovering using 1MB fragment in 3 from 5 share

policy ... 146

Table 50: Key Share Creation and Recovering using 10MB fragment in 3 from 5 share

policy ... 147

Table 51: Key Share Creation and Recovering using 100MB fragment in 3 from 5

share policy .. 148

Table 52: Key Share Creation and Recovering using 1GB fragment in 3 from 5 share

policy ... 148

Table 53: Key Share Creation and Recovering using 1KB fragment in 4 from 5 share

policy ... 149

Table 54: Key Share Creation and Recovering using 10KB fragment in 4 from 5 share

policy ... 150

Table 55: Key Share Creation and Recovering using 100KB fragment in 4 from 5

share policy .. 150

Table 56: Key Share Creation and Recovering using 1MB fragment in 4 from 5 share

policy ... 151

Table 57: Key Share Creation and Recovering using 10MB fragment in 4 from 5 share

policy ... 152

Table 58: Key Share Creation and Recovering using 100MB fragment in 4 from 5

share policy .. 152

Table 59: Key Share Creation and Recovering using 1GB fragment in 4 from 5 share

policy ... 153

Table 60: Varied file sizes using equal number of fragments in 2 from 5 share policy

 ... 154

Table 61: Varied file sizes using equal number of fragments in 3 from 5 share policy

 ... 155

Table 62: Varied file sizes using equal number of fragments in 4 from 5 share policy

 ... 155

Table 63: Varied file sizes using equal number of fragments in 4 from 10 share policy

 ... 156

 XVI

Table 64: Varied file sizes using equal number of fragments in 6 from 10 share policy

 ... 157

Table 65: Varied file sizes using equal number of fragments in 8 from 10 share policy

 ... 157

Table 66: Varied file sizes using equal number of fragments in 2 from 5 share policy

 ... 158

Table 67: Varied file sizes using equal number of fragments in 3 from 5 share policy

 ... 159

Table 68: Varied file sizes using equal number of fragments in 4 from 5 share policy

 ... 160

Table 69: Varied file sizes using equal number of fragments in 4 from 10 share policy

 ... 160

Table 70: Varied file sizes using equal number of fragments in 6 from 10 share policy

 ... 161

Table 71: Varied file sizes using equal number of fragments in 8 from 10 share policy

 ... 162

Table 72: Cloud outages at varied file sizes and share policies 163

Table 73: Varied file sizes and share policies .. 163

Table 74: Cloud outages at varied file sizes and share policies 164

Table 75: Varied file sizes and share policies .. 164

Table 76: User Management Data Store .. 165

Table 77: Evaluation Metrics .. 170

Table 78: Overall Performance Evaluation Metrics ... 170

 XVII

Abstract

Scaling big data infrastructure using multi-cloud environment has led to the demand

for highly secure, resilient and reliable data sharing method. Several variants of secret

sharing scheme have been proposed but there remains a gap in knowledge on the

evaluation of these methods in relation to scalability, resilience and key management

as volume of files generated increase and cloud outages persist. In line with these, this

thesis presents an evaluation of a method that combines data fragmentation with

Shamir’s secret sharing scheme known as Fragmented Secret Share System (FSSS). It

applies data fragmentation using a calculated optimum fragment size and encrypts

each fragment using a 256-bit AES key length before dispersal to cloudlets, the

encryption key is managed using secret sharing methods as used in cryptography.

Four experiments were performed to measure the scalability, resilience and reliability

in key management. The first and second experiments evaluated scalability using

defined fragment blocks and an optimum fragment size. These fragment types were

used to break file of varied sizes into fragments, and then encrypted and dispersed to

the cloud, and recovered when required. Both were used in combination of different

secret sharing policies for key management. The third experiment tested file recovery

during cloud failures, while the fourth experiment focused on efficient key

management.

The contributions of this thesis are of two ways: development of evaluation

frameworks to measure scalability and resilience of data sharing methods; and the

provision of information on relationships between file sizes and share policies

combinations. While the first aimed at providing platform to measure scalability from

the point of continuous production as file size and volume increase, and resilience as

the potential to continue operation despite cloud outages; the second provides

experimental frameworks on the effects of file sizes and share policies on overall

system performance.

The results of evaluation of FSSS with similar methods showed that the fragmentation

method has less overhead costs irrespective of file sizes and the share policy

combination. That the inherent challenges in secret sharing scheme can only be solved

through alternative means such as combining secret sharing with other data

fragmentation method. In all, the system is less of any erasure coding technique,

making it difficult to detect corrupt or lost fragment during file recovery.

 XVIII

Acronyms

3DES Triple Data Encryption Standard

AES Advance Encryption Standard

AONT-RS All-Or-Nothing-Transform Reed-Solomon

API Application Programme Interface

AWS Amazon Web Services

Cloudlets Cloud Storage Resources

CP Cloud Provider

CSA Cloud Security Alliance

CSP Cloud Service Provider

CSS Computation Secret Sharing

DDR Double Data Rate

DES Data Encryption Standard

DR Disaster Recovery

DSA Digital Signature Algorithm

FADE File Assured Deletion

FileID File Unique Identifier

FSSS Fragmented Secret Sharing Scheme

GB Gigabyte

HAIL High Availability

HDD Hard Disk Drive

IBM International Business Machine

IDA Information Dispersal Algorithm

IT Information Technology

KB Kilobyte

MB Megabyte

MD4 Message Digest 4

 XIX

MD5 Message Digest 5

NIST National Institute of Standards and Technology

NTFS New Technology File System

PDP Proof of Data Protection

POR Proof of Readability

PSS Perfect Secret Sharing

PSSS Proactive Secret Sharing Scheme

RAID Redundant Array of Independent Disks

RAM Random Access Memory

RESCUE Fragmented Secret Share Project name

RSA Rivest-Shamir-Adleman cryptosystem

RTO Recovery Time Objective

SHA Secure Hash Algorithm

SSMS Secret Sharing Made Short

SSS Shamir Secret Sharing

SSSS Social Secret Sharing Scheme

US United States of America

UUID Universal Unique Identifier

VM Virtual Machine

WTSSS Weighted Threshold Secret Sharing Scheme

 1

1 Introduction

1.1 Background

Information Technology (IT) resources available in the cloud have made the adoption

attractive in service sectors [1] as a result of growth in knowledge economy placing an

emphasis on the provision of consistent data availability for quick decision making.

However, with the growth of data regarding types and sizes, concerns have been

raised on how best to transmit data securely as well as share and make them readily

available uninterruptedly irrespective of the size and type.

Adi Shamir [2] and George Blakely [3] did classic publications in 1979 on how to

share data securely without using encryption key known as keyless encryption by

defining a method that breaks data (secret) into a number of shares and a certain

number of these that can come together to recover the secret of which any number less

than these cannot, later to be known as Secret Sharing Scheme. The number of shares

created is equivalent to the number of participants, and the number that is required to

recover the secret is known as the threshold, this is known as share policy. This

scheme uses two main protocols (algorithms) of secret share creation and recovery.

The application has proved to be secure, resilient, reliable and efficient in sharing and

recovering data in a distributed system. The use of secret sharing scheme has some

inherent limitations, of which are the inability to provide data operations at large-scale

data size and the effects of changing share policies on system overheads.

Keyless encryption implies breaking data into shares in such a manner that each share

of the data exists in a meaningless manner and only a certain defined number known

as threshold or more can come together to recover the original data.

A share policy implies a defined threshold (m) and maximum number of shares (n) to

be made from a data. Where data recovery is only possible when the threshold shares

(m) or number of shares equal to the total number of shares (n) are put together using

an algorithm.

The word cloudlets, Cloud Service Providers (CSPs) and clouds are used

interchangeably in this thesis.

 2

1.1.1 Cloud systems

In the face of these current realities, we present an evaluation of a method for sharing

large-scale data infrastructure in multi-clouds using a combination of data

fragmentation and secret share scheme. A system that can provide consistent data

availability, high-level scalability and security, as well as maintaining data integrity

within cloud-based architecture know as Fragmented Secret Share System (FSSS). It

creates fragments from a file, encrypts each fragment and applies secret sharing

methods as used in cryptography to create robust and secure keyless key management

system in a multi-clouds data distribution system.

The process involves the user providing the file(s) as well as choosing desired share

policy for each operation, while the system provides appropriate optimum fragment

size and number of cloudlets that will participate in the operation. It goes forward by

breaking the file into chunks using the chosen fragment size, encrypting each chunk

with different AES-256-bit key generated by a random key generator and then creates

shares out of the encryption key based on user’s chosen share policy. The shares, as

well as the encrypted fragments are stored with selected CSPs, and when the file is

required, the key shares are recovered using the same key share policy in relations to

the defined threshold and as well as the encrypted fragments. Each recovered key is

therefore used to decrypt corresponding encrypted fragment, and with the fragments

decrypted serially, the original file is recombined and file checksum performed using

SHA512 to ensure file integrity before delivery to the file owner.

1.1.2 Secret shares

Shor et al. [4] suggests that the optimal way of sharing big data in multi-cloud

environments is in the combination of data encryption and use of efficient secret

sharing scheme in managing encryption key in the light of this, four experiments were

performed to measure scalability, resilience and key management of FSSS and

evaluate same with the evaluation frameworks developed by this thesis on the areas of

scalability and resilience. The first experiments used defined fragment blocks to break

file of varied block sizes - 1KB, 10KB, 100KB, 1MB, 10MB, 100MB and 1GB into

fragments. The second experiments used an optimum fragment size defined as 15% of

file size (this was derived from the observation of result trends in our previous work

[5]) and used in breaking the above file sizes into fragments. Both were used in a

combination of different secret sharing policies and our results showed that defining

an optimum fragment size of 15% of file size produced less overhead than the first

 3

experiment. The second experiment also provided high-level scalability at different

secret sharing policies than the first. In the third experiments, file recovery during

cloud failures were tested and showed that recovery were faster in as much as the

outage does not exceed the defined threshold of the secret sharing policy in use. While

the fourth experiment showed that improving on the concept of socialisation in secret

sharing scheme as earlier proposed by Nojoumian et al. in 2010 could provide good

key management system in multi-cloud architecture that can mitigate losses

occasioned by cloud outages.

The results of evaluation of FSSS with respect to similar methods using the

frameworks designed by this thesis suggest that the method of using calculated

optimum fragments size in breaking data into fragments and managing encryption

keys with an efficient secret sharing scheme provides much more optimal means of

sharing large-scale data infrastructure than suggested by Shor et al. [4]. In addition, it

also provided a 4-in-1 level of security to data through fragmentation, encryption,

redundancies and robust key management through secret share system. With the

resilient nature of the system even in the face of 60% cloud failures as well as the

robust key management system, the method showed promises in redefining cloud-

based disaster management from that of system recovery to mitigation of losses

occasioned by cloud-based disasters. In all, the system is weak in the area of detecting

malicious, corrupt or lost fragment during file recovery and does not implement a

threshold scheme nor applied an erasure coding technique in data storage

management.

1.2 Disaster Recovery and Fail-Over System

An estimate that one in every four businesses will not be able to survive a disaster

according to US government makes information technology disaster recovery plan an

invaluable investment for business owners [6]. Disaster, as an unexpected event in a

system lifetime, can be natural or man-made and its recovery could be traditional or

cloud-based [7]. In all, the essence of disaster recovery system is for business

continuity, and this needs to be pursued within the least possible cost to business

owners during failover or failback phase.

OnlineTech [8], in their disaster recovery white paper listed in order of priorities,

increased reliance on technology, increased business complexity, increasing frequency

and intensity of natural disasters, increased reliance on third-parties and others as

 4

reasons why business owners should consider disaster recovery plan as a way of

ensuring business continuity. In all, this thesis tends to change the status quo from

disaster recovery to disaster mitigation through robustness and resilience using data

fragmentation technology, secret sharing scheme as well as multi-cloud architecture.

Figures 1 and 2 show an example of an existing model as designed by Gu et al. in [9].

In Figure 2, Cloud Provider 1 (CP1) is the major data disaster recovery provider to

customers of different levels, while in Figure 1, CP2, CP3 to CPM are collaborative

cloud service providers that provide other cloud resources to support CP1 in Figure 2.

CP1

Cloud Interface
CP2 Cloud Interface

CPM

Cloud Interface
CP3 ...

Cloud Interface

Request Buffer

Replica Scheduler Resource Manager

Metadata

Figure 1: Data Backup Model [9]

 5

Cloud Interface
CPY Cloud Interface

CPZ

Cloud Interface
CPX ...

Recovery Proxy

Cloud Interface

Recovery Manager

Metadata

Replica 1 Replica 2 Replica 3...

CP1

Figure 2: Data Recovery Model [9]

1.3 Secret Sharing Scheme

The deviation from key-based to keyless encryption was introduced by Adi Shamir

and George Blakely in 1979 [2, 3] in two different seminal papers, each presented to

the world a different means of securing cryptographic keys. Their works focused on

splitting the key into meaningless shares in such a way that it will take only a certain

number of the broken keys (shares) known as a threshold to come together and

reconstruct the key and any number less than the threshold cannot. This concept was

later known to be Secret Sharing Scheme.

This scheme focuses on the techniques used in striping and distribution of data among

many participants in such a way that a certain number of the participants, known as

the threshold, can come together and recover the original data while a certain number

less than the threshold cannot [10]. The Shamir Secret sharing scheme is an ideal

scheme and known as a perfect scheme [2], while many provide computational

security such as [11]. Krawczyk [11] is of the opinion that an (𝑛, 𝑚) −secret sharing

scheme is a randomised protocol that stripes a secret S and disseminate same as shares

to an n participants in such a way that only an m participants shares are capable of

 6

recovering the original secret for m, 1 ≤ 𝑚 ≤ 𝑛, while 𝑚 − 1 shares cannot give any

information on the secret as presented by [2, 3].

Using real-life scenario with diagrammatic representations in figures 3 and 4, we take

for instance a beverage company, the owner wants to make their recipe a top secret.

Their intention is to prevent their managers from learning the recipe and in so doing

decided to use an algorithm to break their recipe into shares (Si) in such a way that a

certain number of the shares (M) will be enough to recover the recipe out of the total

number distributed to managers (N). After breaking the recipe into shares, the shares

were distributed to say four of their top managers knowing that at least two from the

four are needed to get the recipe back. This total number of shares made of the recipe

is equivalent to the number of players (Managers) and the minimum number required

to get the recipe back is known as a threshold.

Recipe

Chairman

Sharing Algorithm

Manager 1 Manager 2

Manager 3 Manager 4

Shares

431 2

Figure 3: Diagram of a Secret Sharing System

 7

Recipe

Beverage

Manager 1 Manager 2

Manager 3 Manager 4

Shares

32

Recovery Algorithm

Figure 4: Diagram of a Secret Recovering System

1.4 Research Questions

The core research questions which this thesis aims to address are:

• Several methods of data fragmentation in conjunction with secret sharing scheme

have been proposed as fit for use in multi-cloud architecture, but with the advent

of big data infrastructure, which of these methods can continue operation at

different changes of file size and share policy making it suitable for use in large-

scale data infrastructure?

• The use of multi-cloud architecture is to improve on redundancy technique and

make data readily available. As cloud failures persist, is there a storage method

that can ensure consistent data availability irrespective of cloud failures, and how

does one understand different rates of cloud failure based on chosen share policy?

• Data fragmentation technique that combines secret sharing scheme for key

management has been adjudged better in performance in multi-cloud environment.

How does this method tend to overcome the complexity of key retrievals during

adverse situations as key retrievals are impossible when outage exceeds defined

threshold?

1.5 Aim and Objectives

This thesis is focused on the evaluation of fragmented secret share system, a method

for sharing large-scale data infrastructure in multi-clouds using a combination of data

fragmentation and secret share system with respect to scalability, resilience and key

 8

management in relation to current available practices. To be able to meet the above

stated aim, these objectives are therefore defined:

Objective 1: To build an evaluation framework that defines scalability using the

metric of continuous operation at different changes of file size and share policy.

Different methods of data fragmentation exist in data sharing and retrieval in multi-

cloud environment but there is a gap in knowledge on what constitutes scalability of

these methods and how to evaluate them. The interest of this thesis is on such methods

that incorporate secret sharing scheme in its data fragmentation technique. In view of

this, an evaluation framework that defines scalability in such a manner that when file

size and share policy change, there is no significant effect on data sharing and

retrieval is developed. This thesis also uses same to evaluate different data

fragmentation methods in multi-cloud systems in order to assess their suitability for

use in large-scale data infrastructure.

Objective 2: To further develop an evaluation framework that defines resilience

of a method as the ability to avoid downtime and data losses during acceptable

level of cloud failures.

Use of secret sharing scheme in data sharing in multi-cloud architecture are of two

options, data sharing and key management. These explore the resilient nature of secret

sharing scheme in their implementations, measuring this resilient nature using an

evaluation framework has therefore become very important. This thesis using the

existing knowledge in literature that the acceptable level of cloud outage in these

methods lies only when the number of shares to recover original secret is greater than

or equal to the threshold (𝑛 ≥ 𝑚). In view of the above, this thesis therefore evaluates

different methods’ ability to validate this fact, the relevant information about the

behaviours of CSPs at each rate of cloud outage and what is being done to mitigate the

above bottleneck.

Objective 3: To evaluate how different methods used in data sharing in multi-

cloud architecture handle the perceived complexity in key management.

It is believed that this complexity is more on retrieval process as the more complex the

retrieval interface is, the greater the challenge of deploying key retrieval in

applications such as decrypting encrypted file. The evaluation of how different

methods of key management fits into the above definition of resilience in Objective 2,

and the implication of its application in order to provide a hitch-free key retrieval

 9

process at different rates of cloud outage in addition to information on what is being

done through this thesis to propose a mitigating factor using self-organisation forms

part of our objective. Furthermore, providing information on the potential of

fragmented secret sharing scheme in mitigating losses occasioned by cloud-based

disaster rather than minimising the recovery time objective of cloud-based disaster

remains one of this focus.

1.6 Contributions

• Cloud storage resources provide quick access to data as computing is usually

on the go. Using multi-cloud architecture for storage therefore increases access

level as the system can rely on more than one cloud storage resources [9], [12],

[13], [14], [15], and [16]. Secret sharing scheme as a method of data sharing in

multi-cloud has remain a focus of research in this direction as many variants

exist but the argument of its suitability for sharing large-scale data

infrastructure persists. Alsolami and Boult in [17] are of the opinion that the

use of Secret Sharing is an ideal solution and this position is supported by the

works of Ermakova and Fabian [13] and Fabian et al. [12] but in all failed to

scale data size above 500MB. FSSS by using a defined optimum fragment size

(within the scope of this thesis experiments) and secret sharing in key

management was able to continue production as file size increased

exponentially making it suitable for use in large-scale data infrastructre.

• Shor et al. [4] by their results suggests that the optimal way of sharing big data

in multi-cloud environments is in the combination of data encryption and use

of efficient secret sharing scheme in managing encryption key. But in the

contrary, FSSS found out that using its defined optimum fragment size in

breaking the data into fragments before encryption and managing encryption

keys using efficient secret sharing scheme provide an optimal and highly

scalable scheme that is best fit for use in large-scale data infrastructure.

• This thesis evaluation shows two main methods for data sharing in cloud-

based systems. While one method combines data fragmentation with secret

sharing scheme for key management of encryption keys such as Kapusta et al.

[18], Abdallah and Salleh [19], Koikara et al. [20], and Pal et al. [21]. Another

method relies only on secret sharing scheme for data fragmentation, like the

 10

works of Alsolami and Boult [17], Ermakova and Fabian [13] and Fabian et al.

[12] but none provided information on the relationship between file sizes and

share policies at different applications scenario and this FSSS provides using

extensive experimental frameworks.

• There are many methods of data sharing in multi-cloud architecture, but the

interest of this thesis is limited to data sharing methods that utilises secret

sharing scheme in its design methodology. In order to provide a secure content

sharing of data in public cloud, Xiong et al. [22] through CloudSeal provided a

system of data sharing that integrates multi-cryptographic system such as

symmetric encryption, proxy-based re-encryption, and threshold, m-out-of-n

secret sharing scheme in conjunction with broadcast revocation mechanisms

and by so doing provide an end-to-end security and privacy of distributed data

in pubic cloud. Fabian et al. [12] in other hand developed a method of

collaboratively and inter-organisational sharing of big data in healthcare sector

using attributed-based encryption for access control and secret sharing scheme

for data sharing in multi-clouds. DEPSKY [23], a system that improves the

availability, integrity and confidentiality of information stored in the cloud

through the encryption, encoding and replication of the data on diverse clouds

that form a cloud-of-clouds is a good example of real life application of Secret

Sharing scheme in multi-cloud-based storage system. Other works like

CloudStash [24] utilises secret-sharing, low cost cloud storages and multi-

threading to improve confidentiality, availability, performance and fault

tolerance. Works like ARCHISTAR [25] by Loruenser et al., Li et al. in

CDStore [26], and so on are some of the examples of data sharing methods

that utilise secret sharing in multi-cloud architecture. From the above, there is

no known work that contributed on the evaluation of these methods of data

sharing with the view of finding their strengths and weaknesses to establish

their suitability of applications in sharing large-scale data infrastructure using

multi-cloud storage facilities. Providing this critical information forms part of

the contribution of this thesis.

• Some of the works above extensively utilised secret sharing scheme in data

sharing, thereby providing keyless encryption in securing data such as that of

Fabian et al. [12], Loruenser et al. [25] in ARCHISTAR, Ermakova and

 11

Fabian [13] in defining a method that used secret sharing for health data in

multi-provider clouds and Alsolami and Boult [24] in CloudStash: Using

Secret-Sharing Scheme to Secure Data, Not Keys, in Multi-Clouds. In all,

none of these works established relationships between file size and share

policy combinations at both normal and adverse application scenarios such as

cloud outages.

• Use of secret sharing scheme has some inherent limitations, of which are the

inability to provide data operations at large-scale data size and the effects of

changing share policies on system overheads. The works of Abdallah and

Salleh in [19] and [27] provided extensive information on all these without any

known solutions and these are what FSSS provided using fragmented secret

share system through defined optimum fragment size. By developing two

evaluation frameworks on scalability and resilience, this thesis defined

scalability as the ability to continue production even when file size increases

exponentially and resilience of secret sharing as the ability to continue

production in multi-cloud environments during adverse cloud failures. These

FSSS’s results and future works suggest are the better approach than existing

methods.

1.7 Thesis Structure

This thesis is structured as:

• Chapter 1. Introduction – Introduces some basic concepts of the work that will

help capture the essence and knowledge gap being investigated as well as the

proposed solutions. It has in details the research question, aim and objectives,

comprehensive research overview and expected results from the research.

• Chapter 2. Background – This chapter introduces the fundamentals of computer

security alongside the uses and application of data striping technique, which forms

the background technology for data dispersal in this report and FSSS architecture.

• Chapter 3. Literature Reviews – Secret Sharing Schemes and their basic

classification are discussed alongside its security limitations as there is no perfect

security in cryptography. Because cloud storage forms major components of this

work, a thorough and concise review of relevant literature relating to security of

 12

the stored data in the cloud is also presented alongside that of disaster recovery as

well.

• Chapter 4. Experimental Design – This chapter is concerned with the steps used

in the experimental setup through coding, execution of codes, result collections

and computations to determine cloud behaviours during process executions.

• Chapter 5. Data Fragmentation Evaluation in a Multi-Cloud Environment –

This thesis used this chapter to evaluate a method of fragmentation known as

Fragmented Secret Share System (FSSS) alongside similar schemes that are built

on Secret Sharing scheme so as to measure their levels of scalability in a multi-

cloud environment.

• Chapter 6. Key Management Evaluation in a Multi-Cloud Environment – In

this chapter, FSSS key management is presented with a view of evaluating same

with similar methods that use secret sharing scheme in key management in the

cloud as FSSS combines data fragmentation with encryption and manages the keys

using Shamir’s secret sharing scheme.

• Chapter 7. Disaster Management Evaluation in a Multi-Cloud Environment –

This chapter aims to present some features of FSSS in comparison with similar

methods that make it reliable, readily available and resilient, and how it tends to

use these qualities to redefine disaster management using cloud-based resources

from that of recovery from losses to mitigation against losses.

• Chapter 8. Conclusion and Future Works – This chapter presents the thesis

summary, major findings, limitations and Future Works.

1.8 Publications

The publications that are core to this thesis are:

• Buchanan, W. J., Lanc, D., Ukwandu, E., Fan, L., Russell, G., & Lo, O. (2015).

The future internet: A world of secret shares. Future Internet, 7(4), 445-464.

• Ukwandu, E., Buchanan, W. J., Fan, L., Russell, G., & Lo, O. (2015, August).

RESCUE: Resilient Secret Sharing Cloud-Based Architecture. In

Trustcom/BigDataSE/ISPA, 2015 IEEE (Vol. 1, pp. 872-879). IEEE.

• Ukwandu, E., Buchanan, W. J., & Russell, G. (2017, June). Performance

evaluation of a fragmented secret share system. In Cyber Situational Awareness,

 13

Data Analytics And Assessment (Cyber SA), 2017 International Conference On

(pp. 1-6). IEEE.

• Buchanan, W. J., Ukwandu, E., van Deursen, N., Fan, L., Russell, G., Lo, O. &

Thuemmler, C. (2016). Secret shares to protect health records in cloud-based

Infrastructures. In 2015 17th International Conference on E-health Networking,

Application & Services (HealthCom). Doi:10.1109/HealthCom.2015.7454589.

ISBN 978-1-4673-8325-7.

 14

2 Background

2.1 Introduction

This chapter provides the fundamental mathematical backgrounds and theory that the

thesis will be based on. Two major concepts that feature prominently in this study –

Data sharing and Cloud-based storage, as well as the supporting information theory

has been brought to fore. Moreso, providing insight into some inter-disciplinary units

that make up our research has become necessary here to a foster better understanding

of this thesis.

2.2 Fundamentals of Computer Security

The human information need and the quest to meet with the demand has brought with

it a new stage of the revolution known as a knowledge economy. In the face of these

realities lie the fear of how secured the information being transmitted from one

computer to another; the authenticity of the message signature and the assurance that

the information being transmitted still retains its original contents. In dealing with the

above subject matters, computer scientists through the years have been working on the

science of disguising a message in such a way to hide its substance. This entails

disguising a message (plaintext) into scrambled text (ciphertext), in a process called

encryption. The process of turning the ciphertext back to its original format is called

decryption.

The art and science of keeping message secure is known as cryptography [24].

Encryption and decryption involve the use of keys to be able to encrypt and decrypt

messages without fail, and these keys are usually exchanged between the parties

involved in the process. This can be private key (Symmetric), private and public key

(Asymmetric) or one-way hash method (Hash function). In transmitting these keys

from one computer to another computer scientist use different mathematical

algorithms. In symmetric key algorithms, we have DES, 3DES, AES, RC4, Twofish

and so on, while Asymmetric Key we also have RSA, DSA, ElGamal and so on. In

one-way hashing, we have examples like MD4, MD5, SHA-1, SHA-256, and SHA-

512.

 15

2.3 Data Striping: Uses and Applications

In a bid to bring solution to key management problems associated with key-based

encryption as discussed above, a keyless encryption system was introduced with great

impact in storage technology and one method to achieve this is data striping. This

method is successfully applied in a distributed storage system. In storage technology,

data striping is used to break data into chunks and subsequently dispersed to multiple

storage disks. Striping technique as applied to several disks comes to bear when a data

processing device requests data more frequently than a single storage device can

handle. Its application is spread across the accessing of concurrent multiple devices as

it increases total data throughput.

One of its usefulness factors is in balancing input/output load across an array of disks

such as in Redundant Array of Independent Disks (RAID). In FSSS as shown in

Figure 5, we used data fragmentation, encryption and secret sharing scheme. The three

as above are used in securing and dispersing data to different cloudlets as well as the

encryption keys. A Splitter first breaks a file into fragments using a predefined

optimum fragment size, calculated basically in relation to a percentage of the file for

which most often lies from 15% of file size as derived from observations and

measurements from previous results in [5]. The fragments each are encrypted with an

AES-256 encryption key randomly generated by a key generator. Each of these keys is

stored using Shamir’s secret sharing scheme, where shares generated are dispersed to

multiple cloudlets for which a predefined threshold is used to recover the key when

needed. To recreate the file, the shares are recovered from the cloudlets for each key

using recovery algorithm and uses so to decrypt each fragment and thereafter recreate

the file by bringing the decrypted fragments together using a Combiner.

2.4 Mathematical Background

2.4.1 Information Theory

This work centres on data distribution and its security within a cloud infrastructure

and therefore will look into the mathematical background of information security and

hence Information Theory. Claude Shannon and Warren Weaver [29] published in

1948 a classic seminal paper that introduced the modern and meaningful way of

thinking about communication of information. Information theory studies the

transmission, processing, utilisation, and extraction of information. It defines the

amount of information contained in a message as the minimum number of bits needed

 16

to encode all possible meanings of the message, in as much as they are equally likely.

In simple terms, information can be thought of as the resolution of uncertainty.

Key Generator

File Container
for plaintext

Plaintext
File Container for

encrypted fragments
Splitter

Encryption
Algorithm

Combiner

Decryption
Algorithm

File Container for
encrypted fragments

Fragments

File Container
for plaintext

Plaintext

Symmetric key

Key Recovery
Algorithm

Key Sharing
AlgorithmEncrypted

Fragments
Fragments

Symmetric key

Sy
m

m
e

tr
ic

 K
e

y

Key shares
container

Key shares
container

Encrypted
Fragments

Key shares

Figure 5: Data Fragmentation and File Reconstruction

2.4.2 Definition and History

Schneier [30] defines entropy measures as the amount of information or uncertainty

contained in a message M given as H(M). Shannon defined the actual rate of a

language mathematically as [30]:

 𝑟 =
𝐻(𝑀)

𝑁
 Equation 1

Where H(M) is the entropy, N is the length of the message and r is the rate of the

language. The absolute rate, which is the maximum bits size that can be coded in a

character, assuming all characters are equally probable, is given as [30]:

 17

 𝑅 = 𝑙𝑜𝑔2 𝐿 Equation 2

L is the number of characters in a language; the equation defines the maximum

entropy of the individual characters. The redundancy of a language D is therefore

given as [30]:

 𝐷 = 𝑅 − 𝑟 Equation 3

The information content of a symbol or event is defined by its probability. In relating

this work to the security of a cryptosystem, Shannon theorised that there is nothing

like perfect secrecy as ciphertext to the barest minimum reveals information about the

plaintext, this it does by not being able to have a key as long as the plaintext

(message) without possibly reusing any symbol, or character so as to be able to

achieve perfect secrecy. Perfect secrecy is only possible in a One-Time-Pad. The

entropy of a cryptosystem is therefore a measure of the key size K, given as [30]:

 𝐻(𝐾) = 𝑙𝑜𝑔2 𝐾 Equation 4

It is therefore worthy to note that the larger the entropy of a cryptosystem, the more

difficult it is to crack. As information refers to the degree of uncertainty contained in a

situation, it therefore correlates that the larger the uncertainty removed by a message,

the stronger the correlation between the input and output of a communication channel.

2.4.3 Perfect Secret Sharing Scheme

Shamir (1979) work provides a good example of perfect secrecy. The scheme, which

is a keyless scheme is known as perfect secret sharing [2]. It involves two protocols,

secret sharing and recovering. Shamir’s Perfect Secret Sharing (PSS) relies on the idea

that on the principle that you can define a straight line with two points, three points for

a quadratic equation, and so on, to give t points to define a polynomial of degree t−1.

Hence, a method for t-out-of-n secret sharing can thus use a polynomial with a t−1

degree using a secret for the first coefficient, and then random values for the

remaining coefficients. Next, find n points on the curve and give one to each of the

players. As a result, when at least t out of the n players reveal their points, there is

sufficient information to fit a (t−1)th degree polynomial to them, in which the first

coefficient is the secret. There are two conditions required for it to be perfect: if, and

only if, t−1 shares provide absolutely no information regarding the hidden secret, and

when the ratio of the length of the secret to the length of each of the shares (known as

the information rate) is equivalent to unity.

 18

To illustrate this construction technique, consider a concrete example. Assume that a

secret value is split into five parts, three of which are needed to reconstruct the

original data (i.e., n = 5, t = 3). The first step is to create a second-order polynomial

[31]:

y = a0 × x0 + a1 × x1 + a2 × x2 Equation 5

The second step is to assign the secret value to the first coefficient (i.e., a0) and choose

random values for the remaining coefficients (i.e., a1 and a2). Suppose that the secret

value is: 42, a1 = 1 and a2 = 2, then the polynomial becomes [31]:

y = 42 + x + 2 × x2 Equation 6

The third step is to calculate any five (x, y) pairs, for instance:

x ______y

1 42 + 1 + 2 × 1 45

2 42 + 2 + 2 × 4 52

3 42 + 3 + 2 × 9 63

4 42 + 4 + 2 × 16 78

5 42 + 5 + 2 × 25 97

Finally, distribute one pair to each player, e.g., Player1 receives (1, 45), Player2

receives (2, 52), and so on. No player can thus tell anything about the original secret,

unless at least three players exchange their information and yield equations like:

45 = a0 + a1 × 1 + a2 × 12

52 = a0 + a1 × 2 + a2 × 22

63 = a0 + a1 × 3 + a2 × 32

Hence, the three players together can work out that the secret value a0 is 42. This

method works fine, but from a security point of view, a player can still obtain more

information about the secret with every pair on the polynomial that they find. For

example, player Eve finds two pairs (2, 52) and (4, 78). Although these are not enough

to reveal the secret value, Eve could combine them together and get:

76 = a0 + a1 × 4 + a2 × 42

52 = a0 + a1 × 2 + a2 × 22

Therefore, Eve can work out that:

 19

a0 = 26 + 8 × a2

So, Eve starts to replace a2 with 0, 1, 2, 3… to find all the possible values of a0. This

problem can be fixed by using finite field arithmetic in a field of size r where:

r > ai, r > N, r = pk, p ∈ P where P is the set of primes and k is a positive integer.

Then, calculate the pairs as [31]:

y = f(x) (mod p) Equation 7

Where f(x) = a0 × x0 + a1 × x1 + a2 × x2, as in equation 5 above. For example, consider

the example of p = 61:

x p y

1 61 (42 + 1 + 2 × 1) % 61 45

2 61 (42 + 2 + 2 × 4) % 61 52

3 61 (42 + 3 + 2 × 9) % 61 2

4 61 (42 + 4 + 2 × 16) % 61 17

5 61 (42 + 5 + 2 × 25) % 61 36

Shamir’s PSS is a promising approach to secret sharing for cloud storage, and

provides many advantages, including:

1. Secure—Anyone with fewer than t shares has no extra information about the

secret than someone with zero shares.

2. Extensible—When n is fixed; new shares can be dynamically added or deleted

without affecting the existing shares.

3. Dynamic—With this it is possible to modify the polynomial and construct new

shares without changing the secret.

4. Flexible—In organisations where hierarchy is important, it is possible to supply

each of the participants a different number of shares according to their

importance.

2.4.4 The Social Concept in Secret Sharing

The social concept in secret sharing as proposed by Nojoumian et al. [4, 5, 6] suggests

that the resilient nature of secret sharing scheme can be strengthened by using it to

 20

develop a self-organising system as it concerns the use of cloud storage resources. The

concept mimics human social interactions where participants during social tuning

phase are allocated more shares or disenrolled based on their reputation using

calculated trust function that is based on response time and rate of availability during

sharing and recovering phases. This implies that more cooperative players get more

shares without exceeding the established threshold, while the non-cooperative ones

get disenrolled from subsequent operations.

This concept can be likened to a situation such as in Kit Kat Beverage Company

where the Chief Executive Officer wants to make the recipe for their products secured

in such a way that none of the top management staff can have it. In doing so, he/she

decided to break the recipe into shares. Let us assume the Company has five top

management staff named Alice, Bob, Charlie, David, and Grace. He will break the

recipe into five shares in such a way that it will take only three out of the five staff to

collaborate their shares to have the recipe and any number less than that cannot. Let us

represent this mathematically (Recipe = S, participants (n) = Alice, Bob, Charlie, David,

and Grace, Weight of each participants (W)):

 𝑆 = ∑ 𝑊𝑗𝑋𝑖
𝑛−1
𝑖=0,i≠j Equation 8

Where i is the index number of participants, 0 ≤ 𝑖 ≤ 𝑛 − 1, 0 ≤ 𝑗 ≤ 𝑚 − 1, m is the

threshold. At first, the weight (W) of all participants are initialised to 1.

For a recovery process, each participant’s weight is determined by the Throughput and

Availability Rate. To recover the secret, only the participants with better reputation

(faster Throughput and Availability) but not more than the required threshold will be

selected:

 𝑆 = ∑ 𝑊𝑗𝑋𝑖
𝑚−1
𝑖=0,i≠j Equation 9

2.4.5 Non-Perfect Secret Sharing Scheme

In a situation where partial information about the secret has been gained by the 𝑡 − 1

subsets of participants that cannot recover the secret value, a scheme known as non-

perfect secret sharing scheme has been established [35]. In this scheme, the size of

shares (Si) most often is less than that of the secret (K) and therefore produces an

information rate less than 1, as mathematically expressed in [35].

f(0) = K Equation 10

and:

 21

 Information rate =
𝑙𝑜𝑔2 𝐾

𝑙𝑜𝑔2 𝑆𝑖
≠ 1 Equation 11

Where f(0) implies that the secret (K) lies at the position where X=0, which is the

intercept, log2K is the size of the secret and log2Si is that of share, and 0≤ 𝑖 ≤ 𝑛 − 1.

In Asmuth et al. [36] a method to safeguard key was proposed in which the shares are

congruent classes of a number associated with the original key. It is an (m, n)-

threshold secret sharing scheme that applies the use of Chinese remainder theorem as

well as prime numbers. As an example, in an (𝑚, 𝑛) −threshold scheme, consider a

large prime, p, greater than M. Then choose n numbers less than 𝑝, 𝑑1, 𝑑2, . . . , 𝑑n,

such that:

1. The d values are in increasing order; 𝑑𝑖 < 𝑑𝑖+1

2. Each di is relatively prime to every other di

3. 𝑑1 × 𝑑2 × … × 𝑑𝑚 > 𝑝 × 𝑑𝑛−𝑚+2 × 𝑑𝑛−𝑚+3 × … × 𝑑𝑛

The strengths of this scheme is on its efficiency in the sharing and recovery of secret;

its sensitivity to random errors; and the relation between the threshold (m), the m-1

that cannot recover the secret (s), and the total number of participants (n).

Brickell [37] worked on an ideal situation but for more general access structures,

dealing with assigning each participant a level, which is a positive integer thereby

forming a multilevel access structure consisting of the subsets.

Implying that, at a level of 2, 1 or 2 participants are empowered to determine the

secret, whereas, in a level of 3, 2 or 3 participants can. Simmons [38], proposed a

compartmented access structure differing from that of a threshold access structure

with a more general view. The access structure is arranged in different compartments,

which are a disjoint set of participants, say C1..,Cu, containing positive integers tl, …tu,

and t. This consists of all subsets containing at least ti participants from 𝐶𝑖 𝑓𝑜𝑟 1 ≤

𝑖 ≤ 𝑢, and a total of at least t participants.

Some non-perfect secret sharing schemes like Information Dispersal Algorithm is

discussed in detail in Section 3.22 as their contributions are necessary in

understanding the scheme under review.

 22

2.5 Conclusions

Information theory as propounded by Shannon and Weaver [29] play an important

role in understanding the concept of this thesis as it is centred on data at every stage –

rest, motion and in use. So, the understanding of its core principle, background and

practical application is important for clarity and better comprehension of this work.

Knowing this will foster a better understanding of the mathematics involved in Secret

Sharing Scheme as done by Shamir [2] and Blakely [3] in 1979.

 23

3 Literature Review

3.1 Introduction

This chapter presents an examination carried out to provide insights into the areas

FSSS is premised. Relevant literatures are reviewed around the Secret Sharing

scheme, such as that of Shamir, Rabin IDA, Krawczyk and Social Secret sharing

scheme. The essence is to understand their potentials, weaknesses and applications in

data security with reference to cloud data storage security. This thesis pays much

attention to the limitations that make such scheme more suitable in key management

than data sharing and dispersal in a multi-cloud architecture.

The work of Shor et al. [4] is reviewed so as to elicit the reason behind our claim that

using optimum fragment size in fragmenting data before encrypting and dispersal

rather than encrypting the whole data is more optimal, scalable and suitable for use in

large-scale data infrastructure. A review on cloud-based data storage system will help

provide knowledge on the characteristics that encourage adoption, some major

concerns and steps through research to address these challenges. One major area is the

migration from single to multi-cloud storage as a measure to improve on availability

and resilience of cloud data storages through redundancy technique. Furthermore, this

thesis explored more works that ensure data availability autonomously or otherwise

regardless of hardware failures, corrupted physical disks or downtime as well as their

several key management methods.

3.2 Secret Sharing Scheme

In storage technology, data sharing is used to break data into shares and subsequently

dispersed to multiple storage locations and original data is recovered when needed

sometimes with fewer numbers of dispersed data known as a threshold. There are

many types of data sharing techniques, the foremost being the works of Adi Shamir

[2] and George Blakeley [3] later to be known as a Secret Sharing Scheme. While the

scheme provides the method of securing data without encryption keys in a dispersed

storage, it has proved to be insufficient for use with big data as they are not very

scalable according to Buchanan [39], hence the use in securing encryption keys

mainly as it will be too processor intense to use in securing data [39]. Shamir and

 24

Blakely’s works came to be known as a perfect secret sharing scheme. Other variants

of data sharing of interest to us are Information Dispersal Algorithm by Michael

Rabin [40], which tends to reduce the storage complexity experienced in Adi Shamir’s

Perfect secret sharing scheme. Our interest is in its broader application for data

dispersals since it has high-performance throughput when used to disperse data

whether in-memory or in the cloud as it does not encourage redundancy with a trade-

off on the perfect security of data. On a last note on secret sharing scheme is Social

Secret sharing scheme (SSSS), which combines the features of Weighted Threshold

Secret Sharing Scheme (WTSSS) [2], [41], [42], [43], [44] and that of Proactive

Secret Sharing Scheme (PSSS) [45] in its design and concepts. We will be exploring

its design principle of Sharing-Tuning-Recovery method in our future works while

leveraging on this design to provide a self-organising system as proposed with a high

level of data scalability in a multi-cloud architecture.

3.2.1 Shamir Secret Sharing Scheme (SSS)

Adi Shamir’s classic paper of “How to Share a Secret” is an example of a perfect

secret sharing scheme. Thus implying that its information ratio is always unity for

every process of secret sharing, as the size of the file is equivalent to each of the share

created out of it. This implies providing perfect secrecy as shares less than the

threshold cannot recover or learn of the secret, but a trade-off with performance. The

larger the file size, the larger each share is and an increase in the number of

participants in the sharing algorithm leads to higher storage overhead of the shares.

With this, Shamir’s scheme is unsuitable for sharing large-scale data infrastructure

according to [39], [31], [46], [5], [19], [13], [12], [18], [47] and [17].

SSS has been classified as a threshold scheme known as (t, n) scheme and it requires

two conditions to be perfect: if, and only if, t−1 shares provide absolutely no

information regarding the hidden secret. Also when the ratio of the length of the secret

to the length of each of the shares (known as the information rate) is equivalent to 1,

these views are shared collectively by [48] and [31]. Shamir’s PSS relies on the idea

that on the principle that you can define a straight line with two points, three points for

a quadratic equation, and so on, to give t points to define a polynomial of degree t−1.

Hence, a method for t-out-of-n secret sharing can thus use a polynomial with a t−1

degree using a secret for the first coefficient, and then random values for the

remaining coefficients. Next, find n points on the curve and give one to each of the

players. As a result, when at least t out of the n players reveal their points, there is

 25

sufficient information to fit a (t−1)th degree polynomial to them, in which the first

coefficient is the secret.

The work of Shamir [2] and that of Blakely [3] which as ideal schemes are the

foundation of Secret Sharing Schemes. Shamir’s PSS is the foundation to a social

secret sharing scheme as proposed by Nojoumian et al. [32] has applications and

expansions in [34], [33] and [49]. This thesis tends to adapt its core principle of its 3-

in-1 scheme of Share, Social Tuning and Recovery known as Sha, Tun and Rec with

some modification in the Social Tuning protocol so as to be able to fit into our futurre

research design in providing a redefined self-organisation different from their earlier

proposal in [34] having found that their idea of social function has no place in disaster

mitigation as some factors of disaster are not human rather than natural.

3.2.2 Information Dispersal Algorithm (IDA)

Rabin’s [40] work is an example of non-perfect secret sharing scheme focused on

dividing a secret S into n pieces in such a way that anybody possessing shares less

than the threshold k can obtain the secret. Here, each secret Si, i ≤ n, is of size |S|/k,

where |S| is the size of the secret. The total sizes of all the secrets are [31]:

 (
𝑛

𝑘
) × |𝑆| Equation 12

Thus, with the Rabin’s Information Dispersal Algorithm, the storage complexity of a

secret sharing system can be significantly reduced in comparison to Shamir’s [2]

perfect secret sharing scheme. But the security flaw in this method is that, if the data

exhibits some pattern frequently, and that the attacker gets hold of m < k slices, then

there are great possibilities for him to get the secret S.

Both the split and combine algorithms operate by performing matrix multiplication

over the input. In the case of the split operation, the transform matrix has n rows

(n=number of shares) and k columns (k=quorum), while in the case of a combine

operation, the transform matrix has k rows and n columns. Either operation is

described simply as the matrix multiplication [31]:

 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑀𝑎𝑡𝑟𝑖𝑥 × 𝐼𝑛𝑝𝑢𝑡 𝑀𝑎𝑡𝑟𝑖𝑥 = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 Equation 13

The transform matrix must have the property that any subset of n rows represents

linearly independent basis vectors. If this is not the case then the transform cannot be

reversed. However, understanding the requirement of linear independence is important

in case a user-supplied matrix is provided and also for understanding the key

 26

parameter to the split/combine routines. A key is defined as a list of field elements

(i.e., 8-bit, 16-bit or 32-bit values) [31]:

𝑥1,𝑥2, … , 𝑥𝑛,𝑦1,𝑦2, … , 𝑦𝑘 Equation 14

whose values must all be distinct. If a key is supplied to the split routine, these values

are used to create a Cauchy-form transform matrix [31]:

𝑘 𝑐𝑜𝑙𝑢𝑚𝑛

|

|

1

𝑥1+𝑦1

1

𝑥1+𝑦2 …
1

𝑥1+𝑦𝑘

1

𝑥2+𝑦1

1

𝑥2+𝑦2 …
1

𝑥2+𝑦𝑘

⋮
1

𝑥𝑛+𝑦1

⋮ ⋮
1

𝑥𝑛+𝑦2 ⋯

⋮
1

𝑥𝑛+𝑦𝑘

|

|
𝑛 𝑟𝑜𝑤𝑠 Equation 15

Rabin’s IDA has shown so far as having high-performance throughput when used to

disperse data whether in-memory or in the cloud as it does not encourage redundancy

with a trade-off on the perfect security of data.

Lin and Chung [50] developed a variant of Information Dispersal Algorithm in order

to correct their perceived security flaw in IDA in the design of a coding system. In

order to correct this needed flaw, they designed a system called An Efficient

Information Dispersal Algorithm using Fermat Number Transforms. In a bid to

improve the computational performance, security and integrity of IDA, Lahkar & R

[51] modified the scheme by combining the All-Or-Nothing Transform [52] with

optimised Cauchy Reed-Solomon code, this they did by using a modified AONT as a

pre-processing operation over the data.

An application of IDA in mobile networks aside, other application areas include in

object storage in cloud [53] as provided in [54]. An evaluation of the effectiveness of

this system called Reliable and Efficient Forwarding (REEF) using the Information

Dispersal Algorithm (REEF-IDA) as against Reliable and Efficient Forwarding

(REEF) [55] showed that the system REEF-IDA performed better than REEF by

increasing the network throughput while decreasing both end-to-end delays and packet

loss ratio.

3.2.3 Krawczyk’s Computational Secret Sharing

Hugo Krawczyk [11] proposed the Computational Secret Sharing (CSS) technique

(a.k.a. secret sharing made short), which combines Rabin’s IDA [40] with Shamir’s

PSS [2]. Data is first encrypted with a randomly generated key, using a symmetric

 27

encryption algorithm. Next, this data is split into n fragments using Rabin’s IDA with

a threshold t configured. In this case, the scheme is t times more efficient than

Shamir’s PSS. The final step is to use Shamir’s PSS to produce shares of the randomly

generated symmetric key (which is typically of the order of 64 to 256 bits) and then

give one share and one fragment to each shareholder.

A related approach, known as AONT-RS [52] as supported by [18], applies an All-Or-

Nothing Transform (AONT) to the data as a pre-processing step to the IDA. AONT

guarantees that any number of shares less than the threshold is insufficient to decrypt

the data. It combines AONT with Reed Solomon (RS) in order to achieve high

security in a reduced computational and storage overheads. AONT-RS is the backbone

used in Cleversafe, which has since been bought over by IBM in October 2015.

3.2.4 Social Secret Sharing Scheme (SSSS)

Social Secret Sharing Scheme as proposed by Nojoumian et al. [33], [32], [34]

involves three-fold constructions denoted by (Sha, Tun, Rec) implying Secret

Sharing, Social Tuning and Secret Recovery. Its major difference to other threshold

schemes is the social tuning, in which the weight of each participant is either

increased or decreased with reference to participant’s reputation.

There are three basic assumptions in SSSS, which states that to recover the secret, the

total weight of authorised participants must be equal to or greater than the threshold,

∑ 𝑤𝑖 ≥ 𝑡𝑝𝑖∈∆ , ∆ is the set of participants and wi is the weights of the participants and t

the threshold; secondly, the weights of the unreliable participants must be less than the

threshold, ∑ 𝑤𝑖 < 𝑡,𝑃𝑖∈∇ and finally, the weight of each participant is bounded by a

parameter much less than the threshold, 𝑤𝑖 ≤ 𝑚 ≪ 𝑡 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛.

3.2.4.1 Share distribution

In SSSS each participant receives a constant number of shares; the adjustments are

made in accordance to each participant’s behaviours during each process and therefore

it follows that the dealer generates a polynomial 𝑓(𝑥) ∈ ℤ𝑞[𝑥] of degree 𝑡 − 1, where

𝑓(0) = 𝑘, the secret, which is the constant term as stated earlier following [2]

construction. Each participant Pi thereafter receives a share; 1 ≤ 𝑖 ≤ 𝑛 with respect to

his weight wi before the dealer leaves the scene [33], [32], [34].

𝜑𝑖𝑗 = 𝑓(𝜗𝑖𝑗) for 1 ≤ 𝑗 ≤ 𝑤𝑖 Equation 16

 28

Where 𝜗𝑖𝑗 = 𝑖𝑚 − 𝑚 + 𝑗 and m is the maximum weight of any participant, which is

zero for all at the initial stage.

3.2.4.2 Social Tuning

Social tuning is the protocol used in SSSS to adjust the weights of participants as the

process goes on as ab initio all participants receive an equal number of shares. The

adjustments are made based on the participant’s activities during each process of share

creation and recreation measured in terms of active collaboration and response time

during share request for reconstruction. Simply, put it involves three stages namely:

adjustment, enrolment and disenrollment stages assuming that the weights are

increased or decreased one by one. In adjustment stage, participant’s availability and

response time during the processes determine his reputation and thus result in the

adjustment of their weight progressively or retrogressively. This is done using the

following formulae [33], [32], [34]:

 𝑃𝑖(𝐷): 𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑜𝑛 ⇒ 𝑤𝑖(𝑝) = ⌊𝑤𝑖(𝑝 − 1). (1 −
𝜏

2
)⌋ Equation 17

Where 𝜏 = 𝑇𝑖(𝑝 − 1) − 𝑇𝑖(𝑝) ≥ 0 is the coefficient of weight reduction for non-

collaborative participants and whenever the weight of any participant is 𝑤𝑖(𝑝) = 0,

the participant Pi is removed from the scheme. In the same vein, enrolment stage is

activated whenever the weight of any active participant is to be increased by any

value, at this point all the participants collaborate to generate a new share on the initial

secret sharing polynomial for the participant, [33] has an elaborate details on

enrolment protocol. Lastly, at the disenrollment stage, inactive participants are

dropped when all the active participants gather to update their shares without the

participation of the inactive ones. When this is done all shares are updated to be on a

new secret sharing polynomial 𝑓(𝑥) but because the inactive ones do not participate,

their shares remain on the old secret sharing polynomial 𝑓(𝑥) making them invalid

and therefore can no longer participate in the secret reconstruction. The active or

inactive status or reputation of each participant is known by using the trust calculation

method proposed by [49] to calculate the average of the trust values in order to

compute a participant’s reputation after each secret sharing process [33], [32], [34].

𝑇𝑖(𝑝) =
1

𝑛−1
∑ 𝑇𝑖

𝑗
𝑗≠1 (𝑝) Equation 18

where −1 ≤ 𝑇𝑖(𝑝) ≤ +1 𝑎𝑛𝑑 𝑇𝑖(0) = 0. A new Trust Function has also been

proposed for Social Secret Sharing in Cloud Computing by [34].

 29

3.2.4.3 Secret Recovery

Just as in Shamir [2] authorised participants following earlier stated rules are able to

recover the secret using Lagrangian interpolation once the condition ∑ 𝑤𝑖 ≥ 𝑡𝑝𝑖∈∆ as

stated earlier is met. The participants 𝑃𝑖 ∈ ∆ contribute their shares 𝜗𝑖𝑗𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑤𝑖

to recover the secret 𝑓(0) = 𝑘.

Eslami et al. [56] in their work, proposed a variant of social secret sharing scheme that

proved to be more efficient in terms of share size, communication and computational

complexities by using Birkhoff interpolation scheme as opposed to Lagrangian

Interpolation used in Social Secret sharing scheme but admits that social secret

sharing scheme is better in terms of social tuning and recovering of secret compared to

theirs. While Traverso et al. in [57] provided a framework called Adaptive Social

Secret sharing (AS3). The framework is a variant of social secret sharing that uses a

dynamic approach in secret sharing and recovering. One major difference is in the

dynamism of allocation of shares thus provides an efficient and optimal storage

system than Social secret sharing scheme. The scheme also demonstrated through a

proof of concept a different way of computing trust value as well as initialising such

for newcomers.

Social secret sharing scheme as proposed has its social tuning function based on the

calculation of trust function as well as used perfect secret sharing in breaking data into

shares and recovering it. Using such scheme for large-scale data infrastructure is

unsuitable and determining cloud ‘behaviour’ based on results of two capacities such

as response time and rate of availability will be relying on incomplete information in

making a critical decision such as adjustment, enrolment and disenrolment of a

participant. This is because cloud ‘behaviours’ can be affected by its multi-tenancy

nature and hence the reason throughput fluctuates. So, it will be better to rely on more

than two capacities such as throughput, reliability, transaction speed and Integrity.

Moreso, using current statistics without looking at future ones may not be a correct

approach as behaviours that are subjective can change.

3.2.5 Secret Sharing and Multi-Cloud Architecture

National Institute of Standards and Technology (NIST) define Cloud computing as a

model for enabling convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal management

 30

effort or service provider interaction [58], others in contrast define cloud as an elastic

execution environment of resources involving multiple stakeholders and providing a

metered service and multiple granularities for specified level of quality [59], [60], and

[61].

The major concerns of moving towards cloud-based storage have been security and

availability of data when accessed. Several researchers defined that a multi-cloud

storage platform might improve security and resilience [62], [63], and [64]. Based on

these and to ensure effective data splitting and security of stored data, a secret sharing

algorithm such as Shamir secret sharing has been proposed as an efficient scheme for

multi-cloud storage [4], [65], [65], [66], [67], [68], [69] and [70]. Several other

methods use Backup and Restore while some other ones replicate data at different

storage areas using encryption to safeguard them. This type of methodology can be

costly (in terms of network bandwidth and storage facilities), and not safe in the case

of poor key management.

3.2.6 Security Limitations of Secret Sharing Schemes

Recent developments in information and communication technologies infrastructure

stipulate a rapid growth of electronic data exchange. All the same, it is common for

the public and private institutions as well as the industries to outsource massive

electronic databases to storage centres. The cloud computing technology allows the

users to work with such centres without even knowing their internal structure.

However, storing all the data in one centre creates a single point of failure and raises

privacy and availability concerns, especially in the sense of disaster preparedness and

recovery. Secret sharing is a cryptographic technology, which allows us to address

both privacy and availability issues simultaneously [71].

However, in Dautrich & Ravishankar’s work [72], titled: Security Limitations of

Using Secret Sharing for Data Outsourcing demonstrated that the claims made by

three different works, [73], [74], [75] that when k shares that are required to recover a

secret or more collude, adequate security of the scheme remains intact as long as a

prime p and a vector X used by the secret sharing algorithm are kept private by

describing and implementing an attack that reconstructs all secret data when only k +2

secrets are known initially. With this experiment, they were able to recover a hidden

256-bit prime for k ≤ 13 servers, or an 8192-bit prime for k ≤ 8 in less than 500

seconds.

 31

Moreso, Tompa & Woll [76] in their work: How to Share a Secret with Cheaters

identified a flaw in Shamir threshold scheme that makes it susceptible to attack by

Cheaters by assessing the impact of an active adversary who takes the form of a

participant but maliciously submits a false share during a reconstruction phase. Take

for example; some participant Pi submits a false share λi instead of a correct share f(xi).

This without mincing words will result to the prevention of an honest participant from

learning the correct secret thus failing to alert the other participants that they have not

reconstructed the correct secret and this, in turn, allows the adversary to learn the

correct secret (by exploiting knowledge of f(xi)−λi) [38].

3.3 Secret Sharing/Data Striping:
Applications

In storage technology, data striping is used to break data into slices and subsequently

dispersed to multiple storage disks. Striping technique as applied to several disks

comes to bear when a data processing device requests data more frequently than a

single storage device can handle. Its application is spread across the accessing of

multiple concurrent devices as it increases total data throughput. One of its usefulness

is in balancing Input/Output load across an array of disks such as in Redundant Array

of Independent Disks (RAID).

Beyond this, secret sharing as a method of creating shares of data, disperse to multiple

storage devices and recover when needed has been found better in security and

availability of data. It has two major areas of application – data sharing and key

management as has been applied successfully in the collaborative and secure sharing

of healthcare data in multi-clouds in [12] where secret sharing scheme is used

alongside attribute-based encryption in providing selective access authorisation in

order to disperse data across multiple clouds. In [13], Tatiana and Benjamin

demonstrated how they combined Shamir secret sharing scheme [2] and Rabin’s

Information Dispersal Algorithm (IDA) [40] for use in distributing health data to

multiple cloud providers as fragments, which also have the ability to provide higher

redundancy, security and privacy needed for safekeeping of the data in cloud system,

while Shor et al. [4] used same in managing encryption key successfully.

Loruenser et al. [25] presented an architecture for secure cloud-based data sharing

known as ARCHISTAR based on secret sharing scheme. The focus of the system is

on providing adequate confidentiality to data; make it available against any active

 32

attacks as well as robust even in the face of failures. There are other research solutions

based on different variants of secret sharing schemes and multi-cloud architecture that

give credence to its resilience in the face of failures, data security in a keyless manner,

such as:

Ukwandu et al. [46] worked on a research article titled - RESCUE: Resilient Secret

Sharing Cloud-based Architecture, which presents an architecture of a system that is

capable of implementing: a keyless encryption method with in-built failover

protection. It aims to overcome many of the current problems within Cloud-based

infrastructures, such as the loss of private keys, and inherent failover protection.

While RESCUE provides an architecture for a resilient cloud-based storage with

keyless data security capabilities using a secret sharing scheme for data splitting,

storage and recovery; Alsolani & Boult in CloudStash [17] also relied on the above

strengths to prove security of data using secret sharing schemes in a multi-cloud

environment; Fabian et al. [12] provided empirical evidence of resilience and

robustness in data sharing using secret sharing scheme in a multi-cloud environment

and Buchanan et al. [31] predicted that future internet will be a world of secret shares.

In all these, secret sharing was seen as limited in scope and therefore is unfit for use in

sharing large data infrastructure, supporting the initial evidence provided by Buchanan

[39] on limitations of secret sharing scheme applications.

Lastly, of major interest to us is the use of data striping by International Business

Machine (IBM) for Cloud Object Storage [53]. The system uses data striping as an

innovative approach for storing a large volume of data while ensuring security,

availability and reliability. It uses a modified Rabin’s IDA by introducing symmetric

Reed Solomon to stripe data and distribute same across multiple data centres securely.

No single node contains a complete copy of the data and only a subset of nodes needs

to be available in order to fully retrieve the data on the network. This work previously

known as Cleversafe before being bought over by IBM in October 2015 provides

better alternative to the idea of data replication and remain a pioneering work in our

area of interest in combining data striping with multi-cloud architecture in achieving

reliance, availability, security, resilience and scalability for big data but failed to

interpret robustness in the area of self-organisation, rather use canary for corruption

checks and encode data with encryption key while dispersing and this according to

Schneier [30] is more tedious than encryption itself.

 33

3.4 Performance Evaluation of Secret
Sharing Schemes

Secret sharing scheme has two main application areas: data sharing and recovery and

key management. While proponents of use for data sharing are of the view that using

such is scalable; secure, resilient, improves data confidentiality, integrity and

availability. In the other hands, the other proponents argue that secret sharing scheme

has inherent bottlenecks that make it unsuitable for use in sharing and recovering

large-scale data infrastructure as it was originally proposed for use in managing

encryption keys. The performance evaluation of these positions will be reviewed here

to ascertain the necessary bottlenecks, knowledge gaps and suitability of both

positions for use in sharing large-scale data infrastructure in multi-cloud architecture.

3.4.1 Scalability

This thesis defines scalability of data sharing methods as the ability of a method to

continue production even when file size increases exponentially, this will form the

basis of our review on the concept of scalability of secret sharing scheme in data

sharing and recovery. The essence is to ascertain the available knowledge gaps in this

area of application of secret sharing scheme.

Alsolami and Boult in [17] built a system called CloudStash, which posits that secret

sharing is more suitable in securing data not encryption keys and by performing some

experiments, showed that CloudStash is faster when used in small sized file. But with

large file sizes such as 10MB, admitted that the overheads grew exponentially and

suggests that the perfect secrecy of using secret sharing should be a good trade-off in

this regards. In all CloudStash did not show enough evidence of scalability and fit for

use in large-scale data infrastructure, as results proved otherwise even when

performed in a multi-threaded system.

Ermakova and Fabian [13] and Fabian et al. [12] in their work used combination of

secret sharing scheme with other cryptographic primitives in securing healthcare data

through shares creation, dispersal and recovery in multi-clouds. In all, Abdallah and

Salleh [19] and [27] showed that secret sharing has inherent bottlenecks that make it

not suitable for use in big data as increase in the number of participants increases data

sharing overheads, while increasing the threshold increase data recovery overheads

and hence not scalable.

 34

3.4.2 Resilience

The works of Abdallah and Salleh [19] and [27] provided information supporting the

evidence that when the number of shares available for recovery is less than the defined

threshold, implying that 𝑛 < 𝑚, for n as the number of participants and m as the

defined threshold, secret recovery is impossible and hence a proof that the use of

secret sharing has limited level of resilience. In view of this, a review of the concept

of resilience in secret sharing needs to be considered as an ability to continue

production at different rates of cloud outages within a reasonable extent.

3.4.3 Key management

Works of Shor et al. [4], and [18], [17], [25], [78] used secret sharing scheme in their

key management and attest that using secret sharing scheme in key management is

robust, resilient, and secure. It has shown as the ideal method for use in multi-cloud

environments but did not extend their research on the impacts of cloud outages on key

management. This has been notified as a knowledge gap they failed to address.

3.5 Sharing a big data

Shor et al. [4] believe that the only way to secure sensitive data before storing it in the

cloud is to encrypt before storage. With an evaluation of the inherent trade-offs of

securing data in remote storage as well as an end-to-end analysis of the current

methods of securing data using secret sharing scheme, encryption-based schemes on a

local cluster storage device and multi-cloud environments. Their results suggest that

the bottlenecks in securing data has moved from that of computational overheads of

encoding and random data generation to network, storage and availability as a result

of hardware accelerated encryption methods and hence concluded that data encryption

and management of keys with an efficient secret sharing scheme is optimal for multi-

cloud environments. These claims run contrary to the works of Resch and Plank,

known as AONT-RS [52] as supported by [18], it applies an All-Or-Nothing

Transform (AONT) to the data as a pre-processing step to the IDA. AONT guarantees

that any number of shares less than the threshold is insufficient to decrypt the data. It

combines AONT with Reed Solomon (RS) in order to achieve high security in a

reduced computational and storage overheads.

While Ermakova and Fabian [13] and Fabian et al. [12] used combination of secret

sharing scheme with other cryptographic primitives in securing healthcare data

 35

through shares creation, dispersal and recovery in multi-clouds, Alsolami and Boult

in [17] built a system called CloudStash, which posits that secret sharing is more

suitable in securing data not keys. Through experimental results showed that

CloudStash is faster when used in small file significantly but in large file sizes such as

10MB, admitted that the overheads grew exponentially but suggests that the perfect

secrecy of using secret sharing should be a good trade-off in this regards. Shor et al.

[4] concerned themselves with the protection of big data and of encryption key using

multi-cloud environments forgetting that using a single point storage for data is

susceptible to single point of failure. It is only an available data that can be decrypted,

therefore using data fragmentation seems more promising in safeguarding sensitive

data as well as sharing big secret than their approach in cloud-based system.

3.6 Cloud-based data storage

Cloud data storage system is not new in computing as it is one of the widely deployed

Infrastructure as a Service (IaaS) in cloud computing. The evolving technology has

been the use of multi-cloud rather than single cloud for cloud storage in order to

improve on data availability, confidentiality and integrity [9], [12], [13], [25], [17] and

[46]. A lot of characteristics of the cloud storage make it attractive from being

scalable for a big data infrastructure, to cheaper service of the pay-as-you-use model,

availability, flexibility [79], and disaster management [80], [81], [82], [9], and [25].

But there are some concerns in areas of data security, privacy and confidentiality due

to multi-tenancy storage approach used in the cloud. Khoshkholghi et al. [79]

classified cloud data storage into four layers: physical storage, infrastructure

management, application interface and access layer. Some practical solution proffered

to some issues with cloud storages raised earlier show that progress have been made to

ensure data protection as well as redundancy in cloud storage.

As threats to data integrity consist of malicious third party occurrences and hosting

infrastructure weaknesses, issues like Proof-of-Readability (POR) and Proof-of-Data

Protection (PDP) protocols are well studied in the literature by [83], [84]. There is also

a compact improved version by [85] and for high-availability (HAIL) by [85]. Wang,

et al. [86] and [87], [88] worked on auditing the security of cloud storage, which

suggests that an interface layer can help user assess risks. Tang, et al., [89], and [90]

worried that users’ data when deleted can still be restored through a backup version by

 36

CSPs and therefore presents a work called FADE, which is a Secure Overlay with

File; Access Control and Assured Deletion.

To ensure data availability, [91] applauded the combination of strong consistency,

global partitioned namespace and disaster recovery approach of Windows Azure

Storage in ensuring availability of multi-tenancy environment. Figure 6 shows how data

stored in the cloud are accessed commonly through the web service APIs and that remains a

point of dissimilarities between traditional and cloud storages, while Figure 7 shows the cloud

storage reference model as designed in [92].

Figure 6: Cloud Storage Access Method [93]

 37

Figure 7: Cloud Storage Reference Model [92]

3.6.1 Cloud-based Key Management System

The security of stored data in cloud is crucial in cloud computing as Wang et al. [94]

posit that such necessitates the need for the design of a key management scheme that

is reliable for safe computing in the cloud. Rao [95] agrees that key management is

not standardised optimally in the cloud. Rao and Selvamani [96] are of the view that

having only authorised users to have access to the decryption key is the best

management. While Zissis and Lekkas [97] suggest that having a trusted third party is

the way to go. In order to achieve this objective as opined, two major methods suffice

– keyless and In-house-key-storage management system. In keyless system [4], [18],

[17], [25] and [78] used secret sharing scheme, but Resch and Plank [52] dispersed

encryption key with the encrypted data in cloudlets, while [87], [98] proposed key

aggregate key management system in managing In-house-key-storage. In all, it shows

how important key management is in cloud-based data storage. From the methods

presented, the keyless type provides a system that prevents key loss, theft and

leakages and as such is resilient, reliable and as well provide confidentiality and

availability needed in a key management system for a robust cloud-based storage.

 38

3.6.2 Cloud-based Disaster Recovery (DR) System

The cloud disaster recovery system is entirely different in approach to traditional

disaster recovery system. A cloud-based system takes an integrated approach in which

the virtual server gets bundled with the operating system, applications, software

patches and data. Furthermore, the backing up and copying of the entire server to an

off-site data centres through virtualisation take as little as minutes [6].

The virtual server does not depend on a particular hardware, which makes it easier to

transfer safely and accurately from one data centre to another, the operating system,

applications, patches and data without reloading each component of the server. The

advantages of Cloud-based DR over the traditional type range from reduced recovery

time and complete data accuracy during data restoration and recovery. These are made

possible because of its ability to implement full network replication, the

synchronisation or mirroring of Virtual Machines (VM) at a remote site to ensure

failover in the event of failure of the original site.

Cloud-based DR as in all cloud-based systems provides low-cost DR solutions

because of the “pay-as-you-use” model. Cloud-based DR provides its subscribers both

shared and dedicated DR services. Based on customers’ choice, the benefits can

accrue but in all, cloud-based DR offers low-cost services compared to traditional

systems. It is this “resource-on-demand” and a high degree of automation that made

cloud-based DR very attractive. Despite attractive economics, Wood et al. [99] argue

that increased latency is a major barrier in using cloud data centres for DR, as other

servers could have a large geographical separation from the primary site, which in no

small measure could affect communication between them adversely. The limitation of

data owners from having control over their data placement worsens this scenario, they

argued.

In the same vein, Ji et al. [100] and [79] opined that the use of synchronous replication

by Cloud-based DR does not in any way help every data write as the wide-area

latency has negative impacts on its performance, forcing system administrators to

consider asynchronous replication. This often trades-off loss of data for performance

by replicating a consistent “snapshot” to the backup site. Asynchronous replication

positively impacts performance as the primary site can come up even before the

replication completes. However, this can lead to loss of disk writes at the primary site

subsequent to the last replicated snapshot in case of a disaster.

 39

3.6.3 Benefits, Challenges and Solutions

As DR is aimed at business continuity, its benefits are: assets and inventory

management, network management, task redundancy, cost saving and ability to test

your plan in various scenarios ahead of time. But with the introduction of cloud-based

DR, the dimension of its benefits could take a different turn as cloud systems

deliveries are much faster and can provide multi-site availability at a fraction of the

cost of traditional disaster recovery.

Figure 8 provides insight into the graphical explanation of the benefits of cloud DR

systems. The red arrow represents cloud-based DR systems, it shows the cost-

effectiveness of cloud DR with significantly faster recovery times [8]. Cloud resources

have made disaster recovery cost-effective and attractive as it provides quick data

recovery by providing rapid failover and failback capabilities to the primary site in the

face of a disaster [8].

Despite these benefits, there are some common challenges accustomed with cloud-

based DR mechanisms, ranging from dependency according to [79] and [101]. This

arises as customers depend on cloud service providers for DR services for lack of

direct control over their data thereby creating a serious challenge of selecting a trusted

service provider. Cost, though cheaper in cloud-based DR but appears in three phases

as initial cost, ongoing cost and cost of the potential disaster. Others are failure

detection, data security in the face of disaster, replication latency; centralised data

storage and lack of redundancy during failover as the primary site remains down until

brought back during failback phase.

But these are not without some proposed fine-grained solutions based on Redundancy

and Backup strategies as proposed by [101] on using Local Backup; [102] and [103]

on the application of Geographical Redundancy and Backup; [104], proposed the use

of Inter-Private Cloud Storage; [105], opted for Resource Management (use of

enhanced technology) for data recovery in storage clouds, while [106] talked of

Secure-Distributed Data Backup as measure to protect data in the event of disaster.

Pipelined Replication has been proposed by [107] as a way to team up the

performance of asynchronous replication with the consistency of synchronous

replication in the face of disaster. Nakajima et al. [108] discussed the use of Scale

Up/Down technique while Aghdaie et al [109], proposed Dual-Role Operation.

 40

Figure 8: Disaster Recovery Trade-Offs in Cloud DR [8]

3.6.4 Fine-Grained Cloud-based DR solutions

The evaluation of fragmented secret share system will also look at its potential

application area – cloud-based disaster management and hence a review of some fine-

grained current solutions in this area. The essence is to elicit knowledge on their

strengths and weaknesses that provide the need for FSSS.

3.6.4.1 DR-Cloud

Gu et al. [9] relied on data backup and restore technology to build a system proposed

to provide high data reliability, low backup cost and short recovery time by utilising

co-operative resources of various cloud service providers with various parameters

using multiple optimisation scheduling as strategies in balancing the objectives of

disaster recovery. The system is built of multi-cloud architecture using Cumulus [110]

as cloud storage resources. Thus, providing the need for further studies on the

elimination of system downtime during a disaster, as well as provide consistent data

availability as there is no provision for such in this work, rather concentrated on data

reliability, low backup cost and short recovery time.

3.6.4.2 Cloud Standby

The use of fully operational standby sites and having the systems periodically updated

is an approach Lenk et al. [111] opined here as a way of being at alert against

disasters. Thus, by describing the architecture for a novel approach in establishing

 41

standby sites, known as warm sites in disaster recovery that replicates a distributed

system in the cloud to another cloud, they argued is a missing link in current literature.

Hence in their architecture - they argued that it provides a better warm standby

approach for setting up and updating a standby system in the cloud. In order to reduce

the recovery time, they developed a deployment method that allows providers an

independent and automated distribution system in [112] known as A Model-Driven

Deployment Method for Disaster Recovery in the cloud.

No doubt, their system is intended to provide a backup system in case of disaster.

Even with their deployment method, the certainties of downtime cannot be

overemphasised and hence flawed in providing a resilient system that can mitigate

disaster rather than recovery after the hazards must have taken place.

3.6.4.3 Adaptive Remus

Cully et al. [67] described a system that provides software resilience in the face of

hardware failure (VMs for Virtual Machines) in such a manner that an active system

at such a time can continue execution on an alternative physical host while preserving

the host configurations by using speculative execution in replicating either processor-

intensive applications or communication-intensive applications at a fixed time

interval. The strength lies in the preservation of system’s software independently

during hardware failure but lags in the area of performing Replication by adding fault

tolerance into the VM at fixed intervals. This creates confusion between processing-

intensive applications and network-intensive applications maximisation as longer

intervals benefits the former, while shorter intervals the latter thus creating a

dynamically adaptive time interval for optimal utilisation of both resources becomes a

knowledge gap Silva et al. [113] proposed to achieved by designing Adaptive Remus,

which dynamically adjusts the replication frequency according to the characteristics of

running applications.

It is obvious with Adaptive Remus that speculative execution is still involved as time

delays and other factors can lead to miscalculation of resource replication time and

hence downtime is inevitable but may be minimised.

3.6.4.4 MCES

Dong et al. [114] described an architecture known as Multi-cloud-based Evacuation

Services for Emergency Management (MCES) that is based on instantiating multiple

instances at different states as a way of mitigating the cloud-based disaster. Their

 42

work is similar to that of Chu and Wu [115], Chu and Wu [116] and Chen et al. [117].

Chu and Wu provided a hybrid system that combines cloud resources with mobile

phones. The cloud serves for routine task computing while sensor information that

provide best evacuation routes for data are collected using mobile phones and these

are done irrespective of an emergency situation or not. Chen et al. concentrated on

mobile cloud computing using smart-phones. Using their proposed system mobile

phones are used to collect sensor information for which evacuation route are found

based on sensor information and user location information.

Dong’s have instances status cycle scheduling framework organised in three layers

respectively with their different status: service, sleeping, and snapshot. The multi-

cloud-based evacuation services (MCES) architecture maintains basic monitoring and

maintenance services during times of normal activity but quickly scales up service

capacity during an emergency; these were achieved using different sets of algorithms.

It is obvious that MCES interest lies solely on maintaining system infrastructure by

instantiating a new VM when one goes off and of course, the instantiation takes time

depending on the software systems (OS and Applications) to be reinstalled. Thus,

proving a point that MCES is designed for disaster recovery with its attendant

downtimes depending on the time it takes to re-instantiate a new VM after the cloud

disaster.

3.7 Weaknesses and research challenge of
present methods

Several variants of data sharing techniques that incorporates secret sharing scheme

designed for use in multi-cloud environment lay claim to scalability and resilience.

While two research directions exist in the use of secret sharing scheme in data sharing,

one is of the opinion that its implementation is primarily for protection of encryption

key, while the other believes it is capable of being used to protect data in a keyless

manner.

According to Abdallah and Salleh [19] and [27] secret sharing has inherent

bottlenecks that make it not suitable for use in big data as increase in the number of

participants increases data sharing overheads, while increasing the threshold increase

data recovery overheads and hence not scalable. Also, their works in [19] and [27]

provided information supporting the evidence that when the number of shares

available for recovery is less than the defined threshold, implying that 𝑛 < 𝑚, for n as

 43

the number of participants and m as the defined threshold, secret recovery is

impossible and hence a proof that the use of secret sharing resilience is limited in

scope.

In all, there is a gap in knowledge on what constitutes scalability and resilience of

these methods of data sharing in multi-cloud environment. Establishing a standard

through which these capacities can be evaluated remains a research challenge needed

to be addressed.

3.8 Conclusions

This chapter reviewed current literature around areas FSSS is premised. By reviewing

literatures in Data Sharing and Recovery schemes such as that of Shamir [2], Rabin

IDA [40], Krawczyk [11], AONT-RS [52] and Social Secret sharing scheme [32]–

[34], [49] knowledge on their potentials, weaknesses and applications in data security

with reference to cloud data storage security has been provided. The essence is to

bring attention and focus on why these limitations made them more suitable in key

management than data sharing and dispersal in a multi-cloud architecture especially

Shamir’s Perfect Secret Sharing scheme. The knowledge gaps found in the work of

Shor et al. [4] and the performance evaluations of secret sharing scheme with respect

their scalabilities, resilience and key management together laid the foundation on

which FSSS will be built. Reviews on Cloud-based Data Storage system have

provided knowledge on the evolving technologies in the use of this cloud resources

from single cloud to multi-clouds storage to improve on data availability,

confidentiality and integrity [9], [12], [13], [25], [17] and [46] and some concerns

bothering on key management, privacy, security and confidentiality due to multi-

tenancy storage approach used in the cloud.

With further exploration on works that ensure data availability autonomously or

otherwise regardless of hardware failures, corrupted physical disks or downtime as

well as their several key management methods this thesis has been able to provide

insight why cloud outages persist, the most attractive key management method in

cloud-based storage and establish the need for a robust system that redefines disaster

management. The literature has shown that secret sharing is unsuitable in dispersing

large-scale data infrastructure rather better used in key management with reference to

Shamir’s scheme. The use of multi-cloud in conjunction with secret sharing scheme

have proved to be resilient, reliable, improves confidentiality and security. It is

 44

therefore necessary to design a method that combines high data scalability in multi-

clouds with secret sharing scheme for key management with the aim of redefining

robustness in cloud-based disaster management.

The next chapter presents the design of FSSS, whose method aims at providing a

scalable way of sharing any amount of data within cloud-based architecture and hopes

to redefine robustness and resilience using the concept of self-organisation in future

works. It combines data fragmentation and secret share system known as a fragmented

secret share system.

 45

4 Experimental Design

4.1 Introduction

This thesis is focused on the evaluation of fragmented secret share system against

similar methods in relation to scalability, key management and resilience. This chapter

is therefore aimed at bringing to fore the overall system architecture, design

principles, and methodology. The methodology comprises of the experimental setup

and evaluation frameworks. The nature of FSSS design is on software and hardware

systems and fully cloud-based. This thesis therefore uses this chapter to lay out the

detailed overall architectural design, core design principles and steps used in the

experimental setups, the aims of the experiments, justification and metrics used in

each experiment. RESCUE developed two major evaluation frameworks in equations

19 and 20 that will guide the overall evaluations based on scalability and resilience

with reference to similar methods. These two, especially resilience form the

background on the evaluation of the key management, while both are the core that

informs the potential application areas of mitigating cloud-based disaster.

4.2 Design Architecture

Figure 9 shows a high-level architectural design of FSSS. It is built as a method that

accepts user’s input and uses same to determine appropriate fragment size for which

the file is broken into fragments. With the user’s choice of share policy, the number

of cloud providers (cloudlets) that will participate in the operation is determined. The

fragments automatically created are each encrypted and shares created out of it based

on share policy. The storage of these shares, as well as the encrypted fragments

(chunks), is done in the cloudlets in such a manner that when the file is required, the

key shares are recovered and each recovered key used to decrypt corresponding

encrypted chunk and finally recombined the original file, after which file checksum is

performed before despatching it to the file owner. Major components are input and

output terminals, FSSS engine is made up of file-splitter, key generator, share and

fragments creation, storage, recovery and file-combiner alongside checksum and

metadata, which serves as the database for storing share, fragments and file

information.

 46

User

Computer

User

Computer

User s File

Share
Policy

Metadata

Encryption
Algorithm

Key
Generator

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Encrypted
Fragments

Decryption
Algorithm

File checksum

File Storage for
user s file

User

User

B4

PolicyContainer

File
Size

Group
Generic object

Fragment
Size

Players

Fragments

Splitter

Encrypted
FragmentsSymmetric Key

Symmetric Key

Key Sharing
Algorithm

B3

B2

B1

...
Symmetric Key

Key shares

Key Recovery
Algorithm

...Key shares

Cloud Storage
Buckets C1-C10

Encrypted
Fragments

Encrypted
Fragments

Encrypted
Fragments

Encrypted
Fragments

Figure 9: Overall FSSS Design Architecture

4.3 Design Principles

FSSS is designed to meet these objectives: First, to provide a method that is fit for

sharing large data infrastructure and yet resilient, robust, readily available and reliable.

Previous literature in [19], [5], [39] and [17] showed the strength and limitations of

secret sharing scheme in data sharing and recovery. Thus, showing the need to

incorporate data fragmentation with secret sharing scheme in order to provide high

level scalability for file of all sizes and types. Secondly, provide information on best

practices that will ensure quick, efficient, secure and scalable operations through

combination of fragments, file sizes, share policies, and cloudlets. Finally, use the

above qualities in redefining cloud-based disaster management away from current

practices of recovery after cloud outages as seen in [25], [113], [112], [107], [81] to

disaster mitigation to forestall losses.

4.3.1 System components

The system is made up of four main components:

1. User Management: Login details, file size options, share policy options, metadata

creation.

 47

2. File Fragmentation: fragments creation, key generation, encryption, share

creation, share dispersion, storage and then followed by numbers 4 and 5 below.

3. File Recreation: Login details, metadata retrievals, encrypted fragments recovery,

key share recovery, key recreation, fragments decryption, file recreation,

checksum and storage, followed by numbers 4 and 5 below.

4. Cloud Behavioural Computations.

5. Agent – Analyses and future behavioural predictions, clean-ups, self-organisation

if needed (future works).

4.4 System Design Methodology

FSSS methodology entails steps and procedures taken in conducting experimental

tests, metrics used, and the evaluations in order to ascertain the significance, and

weaknesses with respect to other similar methods in areas such as scalability,

resilience, which affects key management system. Four main experimental tests will

be outlined, the metrics, alongside procedures taken and the relevant evaluations done.

4.4.1 Experimental setup

Scalability

Experiments A: Break file of sizes 10KB, 100KB, 1MB, 10MB, 100MB, 1GB into

fragments.

Steps taken with graphical details in Figure 10:

(a) Use 10KB as defined block fragment size to break the above file sizes each.

Repeat same with 100KB, 1MB, 10MB, 100MB and 1GB sizes.

(b) Encrypt each fragment with AES 256-bit key length as generated by the key

generator for each fragment.

(c) Using n from chosen share policy generate the equivalent number of cloud

service providers (CSPs) and initialise for storage of key shares as shown in

Figure 11.

(d) Initialise three CSPs for encrypted fragments storage.

(e) Disperse encrypted fragments to 3 default CSPs initialised for it.

(f) Disperse key shares to the specified CSPs in accordance to n.

(g) Return all IDs (fragments and key shares to metadata table) as in Table 1.

(h) Generate user’s ID and file details.

 48

(i) Input user’s ID, use same to retrieve the encrypted fragments, decrypt and

recover the original file as shown in Figure 12.

(j) Calculate cloud behaviours using metrics in Tables 2 and 3.

Aim: To measure the time taken to break each file into block fragments, disperse and

recover the original file in relation to share policy.

Metrics: file size over time taken to process in relation to share policy.

Justifications: This thesis chose minimum and maximum file sizes, alongside ranges

of share policies to be able to have a controlled experiment within a specific time

frame. The incremental nature is to help find appropriate results that fit into the

metrics being evaluated. The block sized fragments are chosen to enable this thesis

evaluates the scalability of block and chosen optimum fragment sizes at different

share policies. All files are byte streams to provide a neutral ground for all file types.

Encryption method is AES 256-bit key length with Electronic Code Book (ECB), the

basic method as byte streams broken into fragments were being encrypted and hence

did not consider using Salt and Initialisation Vector (IV).

Tests conducted

Test One: Tests of Share Policies, File Sizes and Fragments

Test 1a: Fixed share policies, varied file sizes, varied number of fragments and

system overhead

Test 1b: Varied thresholds, varied file sizes, same fragment size and system overhead

Test Two: Tests File Sizes, Fragments, and Share Policies

Test 2a: Varied file sizes, fixed share policy, varied number of fragments and system

overhead.

Test 2b: Varied file size, varied share policy, varied fragment sizes and system

overhead.

Experiments B: Break file of sizes 10KB, 100KB, 1MB, 10MB, 100MB, 1GB into

fragments.

Steps taken with graphical details in Figure 10:

(a) Using file size of 10KB, calculate 15% of file size and use as fragment size

and break the above file sizes each. Repeat same with 100KB, 1MB, 10MB,

100MB and 1GB sizes.

(b) Encrypt each fragment with AES 256-bit key length as generated by the key

generator for each fragment.

 49

(c) Using n from chosen share policy generate the equivalent number of cloud

service providers (CSPs) and initialise for storage of key shares as shown in

Figure 11.

(d) Initialise 3 CSPs for encrypted fragments storage.

(e) Disperse encrypted fragments to 3 default CSPs initialised for it.

(f) Disperse key shares to the specified CSPs in accordance to n.

(g) Return all IDs (fragments and key shares to metadata table).

(h) Generate user’s ID and file details.

(i) Input user’s ID, use same to retrieve the encrypted fragments, decrypt and

recover the original file as shown in Figure 12.

(j) Calculate cloud behaviours using metrics in Tables 2 and 3.

Aim: To measure the time taken to break each file into optimum fragments fragments,

disperse and recover the original file in relation to share policy.

Metrics: file size over time taken to process in relation to share policy.

Justifications: Previous research generate the number of fragments from each file

based on the number of cloud subscriptions irrespective of file size. This does not

consider the effect of fragment size on the overall system overheads. This thesis,

therefore, chose minimum and maximum file sizes, alongside ranges of share policies

to be able to have a controlled experiment within a specific time frame. The

incremental nature is to help find appropriate results that fit into the metrics being

evaluated – optimum fragment size. Thus, we chose optimum fragment size from

these results to enable this thesis to evaluate the scalability of our method in relation

to similar methods. Using block and optimum fragment sizes at different share

policies are to justify the reason for our choice at the end of the day. All files are byte

streams to provide a neutral ground for all file types. Encryption method is AES 256-

bit key length with Electronic Code Book (ECB), the basic method as byte streams

broken into fragments were being encrypted and hence did not consider using Salt and

Initialisation Vector (IV).

Tests conducted

Test One: Tests of share policies, file sizes and fragments

Test 1a: Varied share policies, varied file sizes, equal number of fragments and

system overhead

Test 1b: Varied thresholds, varied file sizes, equal number of fragments and system

overhead

 50

Test Two: Tests file sizes, fragments, and share policies

Test 2a: Varied file sizes, fixed share policy, equal number of fragment and system

overhead.

Test 2b: Varied file sizes, share policies, fixed number of fragments and system

overhead.

Resilience

Experiment C: Recover original file in the midst of varying rates of cloud outages

Steps taken:

(a) Use results of experiment B as benchmarks for normal situations in file

recovery.

(b) Repeat the experiment using share policy 3 from 5 and keep file size constant.

(c) Disconnect one CSP and run the experiment as in (b) above again.

(d) Disconnect two CSPs and run the experiment as in (b) above again.

(e) Repeat the experiment using share policy 6 from 10 and keep file size

constant.

(f) Disconnect three CSPs and run the experiment as in (e) above again.

(g) Disconnect four CSPs and run the experiment as in (e) above again.

Aim: To measure the effects of cloud outages in file recovery.

Metrics: File size over time taken to recover in relation to share policy.

Justifications: Different file sizes and varying policies will be able to give the

required information on the behaviours of FSSS at different rate of cloud failures.

Tests conducted

Test a: File combination at various cloud outages against normal situations.

Test b: Key recovery at various cloud outages against normal situations.

The social concept in secret sharing

Experiment D: Plot the average results of the metrics collected to determine the

major determinant of CSP’s level of cooperation during each operation.

Steps taken:

(a) Use metrics and standards as detailed in Tables 2 and 3.

(b) Collect each of these metrics results in a file after every operation.

 51

(c) Plot the graphs.

(d) Observe the nature of curves and consider different behaviours of the graphs

with respect to others.

(e) Categorise them as influencing and non-influencing metrics using the pattern

of their curves.

Aim: To measure the sufficiency of using rate of availability and response time in

determining every CSP’s level of cooperation during each operation.

Metrics: As detailed in Tables 2 and 3.

Justifications: Taking into considerations, the results of different metrics of cloudlets

during each operation will be able to give the appropriate information on the major

determinants of cloud behaviours.

Tests conducted

Test a: The sufficiency of using rate of availability and response time to determine

cloud level of cooperation.

Test b: The fairness of using capacities above to disenroll participant.

Period of experiments: These experiments were conducted usually from early hours

in the morning through midnight each day of the experiment, sometimes earlier and

later than midnight depending on the time taken to conclude each round of code

executions. The reason is to ascertain behaviours of the cloud at peak and less peak

hours.

4.4.2 Evaluation frameworks

Scalability

Jogalekar and Woodside [118] define scalability metric as the measure of the

productivity level of a system. This thesis, therefore, defines scalability metric as the

ability of a method to continue with data sharing and recovery at different file sizes

and share policies. Hence, the scalability measure of FSSS will be evaluated on the

ability to overcome three scalability bottlenecks experienced with the use of secret

sharing scheme in data sharing and recovering in multi-cloud architectures. These are

the inability of use when file size increases, the effects of share policy, which are

increase in number of participants (n) and that of the threshold (m) in file creation and

recovery [19], they will be considered with respect to computing resources made

 52

available such as the processing power, which includes the number of processors,

RAM size, single or multithreaded and network bandwidths. All the evaluations will

be on cloud-based systems.

Taking file size as 𝐾𝑠, time taken as 𝑡𝑠, Scalability is expressed as:

 𝑺𝒄𝒂𝒍𝒂𝒃𝒊𝒍𝒊𝒕𝒚 =
𝑲𝒔+𝑺𝒑

𝒕𝒔
+ 𝑪𝒑 Equation 19

Share Policy Sp of each method will be measured as:

𝑆𝑝 =
𝑛

𝑚
, and where 𝑆𝑝 ≫ 1, it shows that n has been increased, where m remains

unchanged, 𝑆𝑝 ≥ 1, m increased, where n remains unchanged.

Where Sp is the share policy, which is a factor of participants (n) and that of threshold

(m) and Cp is the computing power. Whereas 𝐾𝑠 (𝑏𝑦𝑡𝑒), 𝑡𝑠 (𝑠𝑒𝑐𝑜𝑛𝑑). Sp may be

varied, Cp is meant to be an unchanging computing resources in use. Total time taken

(𝑡𝑠) is the sum of time taken in data sharing, dispersal, shares retrieval and secret

recovery.

Resilience

The ability of a system to provide an acceptable level of service despite challenges

like failures has been defined as resilience according to Sterbenz et al. [119]. This

thesis sees resilience as the ability of a method to continue to provide data availability

irrespective failure rate of participants to throw in their shares for secret recovery. It is

a measure of the ability of a method to avoid downtime and data loss during

acceptable level of participants failures. Following these definitions, FSSS level of

resilience will be evaluated on the ability to avoid downtime and data loss during

cloud failures. In secret sharing scheme, Abdallah and Salleh [19] provides

information that data recovery is only possible when 𝑛 ≥ 𝑚. But fails to provide

further information on the accrued system overheads during each rate of failure.

Taking file size as Kr, time taken to recover a file during cloud failures as tr, we

express Resilience as:

 𝑹𝒆𝒔𝒊𝒍𝒊𝒆𝒏𝒄𝒆 = (
𝑲𝒓+𝛁𝑺𝒑

𝒕𝒔
) + 𝑪𝒑 Equation 20

Recall that in equation 19 that 𝑆𝑝 =
𝑛

𝑚
 and here in equation 20, this thesis is dealing

with only a measurement that concentrates on a depleting n values due to outages at

 53

an unchanged m value and hence ∇𝑆𝑝 =
∇𝑛

𝑚
,

where ∇ represents decrease in value of 𝑛. When 𝑆𝑝 ≥ 1, the system shows that is

nearing breaking point, whereas 𝑆𝑝 = 1, the breaking point has been reached and

𝑆𝑝 < 1, data recovery is impossible. Cp is available computing power, assuming that

all methods being evaluated have same amidst changing file size and rate of cloud

failure. Kr is in (byte), tr is in (second).

For effective use of equations 19 and 20, this thesis assumes that the methods

under evaluation have same computing resources as well as share policies and

file sizes.

Measuring Scalability and Resilience

Scalability

Available literature shows that the larger the n in data sharing, the faster the data

dispersal to participants as data shares are in smaller pieces but data sharing method

has four major phases – data sharing, dispersal, retrieval and recovery. This implies

that the scalability of a method cannot be judged based only on the dispersal

overheads but in overall overheads of its processes. From available literature,

Abdallah and Salleh [19] and [27] showed that secret sharing has inherent bottlenecks

as increase in the number of participants increases data sharing overheads, while

increasing the threshold increase data recovery overheads.

In order to provide a balance between these and give information on a possible

combination that has less overhead, this thesis evaluation framework as shown above

therefore becomes imperative. It provides a way of measuring the impact of file size,

against time taken to process it given a share policy in addition to the effect of the

computing resource available. To be able to evaluate different methods, it assumes

that both file size, share policy and computing resources available are same.

Therefore, evaluation of Scalability is the measure of accrued overheads with respect

to time taken to share, disperse, retrieve and recovery secret given same file size,

share policy and computing resources.

Resilience

Resilience measures the ability of a method to recover secret during outages. The

works of Abdallah and Salleh [19] and [27] provided information supporting the

 54

evidence that when the number of shares available for recovery is less than the defined

threshold, implying that 𝑛 < 𝑚, for n as the number of participants and m as the

defined threshold, secret recovery is impossible and hence a proof that the use of

secret sharing has limited level of resilience. Based on this, the evaluation of

resilience of different data sharing method is on the mesure of its ability to recover

secret at different rate of outages in relation to the accrued overheads. While

Scalability is a measure of accrued overheads in both data sharing, dispersal, shares

retrieval and secret recovery, Resilience is concentrated on the ability to recover secret

in relation to overheads accrued during shares retrieval and secret recovery during

outages. So, this thesis evaluation is a measure of ability to recover secret at different

rates of outages assuming that the files size, share policy, and computing resources in

use remain same althrough the operations. This ability is also viewed in relation to

time taken to do so.

General results collection procedures: In collecting results from code executions,

several procedures are taken to evaluate the results to make sure all tests are coherent

with none skewed in favour or against others. After each execution, cloud behavioural

analyses results collected through a file are calculated automatically and displayed

graphically so as to ascertain the behaviour of different metrics such as speed,

throughput, download and upload bandwidths and so on (see tables 2 and 3 for details)

and when they are inconsistent for more than three runs, the results are discarded and

are validated otherwise with average taken.

Table 1: User Management Data Store

Datetime ID UUID FileName FileSize FileRef Cloudlet0 Cloudlet1 ... Cloudletn

Datetime1 ID1 UUID1 Filename1 Filesize1 FileRef1 FileID0 FileID1 ... FileIDn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Datetimen IDn UUIDn Filenamen Filesizen FileRefn FileIDn0 FileIDn1 ... FileIDn

Legends:

DateTime = specifies Date and Time user details were stored.

ID = contains hashed value of all user personal details

 55

UUID = Universally Unique Identifier automatically created for each user. It

 differentiates users and used to name file fragments when created in order of

 creation (UUID.1, UUID.2,..,UUID.n).

FileName = specified name of file from which fragments were created

FileSize = provides size of user’s file

FileRef = Reference number of user’s file, serves as a Primary key.

Cloudlet0-Cloudletn = provides FileID that reveals share storage details (cloud API, token,

 name of share and location in storage bucket of the cloud).

File Container for
encrypted fragments

Key Generator

File Container for
plaintext

Plaintext

Splitter

Encryption
Algorithm

Encryption Key

Key Sharing Algorithm

Fragments

...

Frag_Name = UUID +
Serial No.

Saves File Name to Store

Saves File Size to Store

Retrieves
UUID

Datetime

UserID

FileName

FileSize

FileRef

Encrypted
Fragments

...

Encryption Key

Figure 10: File Fragmentation and Encryption

 56

Append Hash

Generate Shares

ECC Encoding

Add Unique Identifier

Append Metadata

Metadata ID ECC Share
Hash
Value

Processes of share
creation

Share Storage Format

Share A1
Share B1

...
Share N1

Share A2
Share B2

...
Share N2

Share A3
Share B3

...
Share N3

Share A...
Share B...

...
Share N...

Share An
Share Bn

...
Share Nn

Key Generator
Encryption Key

Creates Shares from Key using
Secret Sharing Algorithm

Figure 11: Key Share Storage

 57

CombinerDecryption
Algorithm

File Checksum

File Container for
Reconstructed Files

Reconstructed
File

Decryption Key

File Container for
encrypted fragments

Datetime

FileIDs

UUID

FileName

FileRef

..
.

Encrypted
Fragments

Decrypted
Fragments

...

Key Recovery
Algorithm

Strip Metadata

ECC decoding

Reconstruct Secret

Verify Hash

Strip Unique ID

Share A1
Share B1

...
Share N1

Share A2
Share B2

...
Share N2

Share A3
Share B3

...
Share N3

Share A...
Share B...

...
Share N...

Share An
Share Bn

...
Share Nn

Recovery
Details

FileIDs for share
retrievals

Sh
a

re
s

retrie
ve

d

Recovered Key

Retrieve UUID

Matched FIleRef

User provides
FileRef, system
produces UUID

Figure 12: Key recoveries and file reconstruction

I. Capacity Measures of clouds

Table 2 shows the Capacities, Evaluation Metrics, Formulae, Units and Tools for

measurement.

Justifications

In order to measure cloud capacities, we relied on the first attempt to benchmark this

type of study as was conducted by Li et al. [120]. This thesis relied on this as it a

comprehensive catalogue of metrics for evaluating commercial cloud services and this

follows similar works in Bardsiri and S. M. Hashemi [121] on – “Qos metrics for

cloud computing services evaluation”.

 58

Table 2: Evaluation Metrics

Capacity Metrics Formulae Unit Tool

Availability Packet Loss

Frequency

Packet Loss Per Unit

Time

Bits per second

(bps)

Pingparser

Latency IP Transfer Delays Propagation Delay +

Serialisation delay

Milliseconds (ms) SpeedNet

Transaction

Speed

Max. No. of

Transfer Session

Length of File Over

Time

Meters per

Second (mps)

SpeedNet

Throughput Volume of

processed data

File Size Over Time Ops/Sec (bps) SpeedNet

II. Overall Performance Measures

Overall performance extends some measures by including more metrics that shows

comparatively cloudlets performance at a glance by considering their different

capacities such as: Elapsed Time (s), Packet Loss, Average Round Trip Time (ms),

Speed (s), Download and Upload Bandwidths (bps), Latency (bps) and Throughput

(bps).

Table 3: Overall Performance Evaluation Metrics

Capacity Metrics Formulae Unit Tool

Elapsed Time Time Taken for action End Time - Start Time seconds Clock Time

Packet Loss Packet differentials Received – Transmitted

packets

bps SpeedNet

Average Round

Trip Time

Mean Round Trip Time Total RTT/Number of Round

Trips

ms Pingparser

Speed Max. No. of Transfer

Session

Length/Time taken mps Pingparser

Download

Bandwidth

Total download traffic

carrying capacity

Volume of data transmitted

between two points per second

bps SpeedNet

Upload

Bandwidth

Total upload traffic

carrying capacity

Volume of data transmitted

between two points per second

bps SpeedNet

Latency IP Transfer Delays Propagation Delay +

Serialisation delay

ms SpeedNet

Throughput Volume of Processed

Data

File Size Over Time bps SpeedNet

 59

4.5 System Specifications

System specification deals with the specifics on cloud infrastructure used. It takes into

accounts the hardware and software components.

4.5.1 Virtual Machine Specifications

Standard Intel N1, 1 vCPU 2.30GHz Intel Zeon (R), 3.840GB memory, 50.00GB

NTFS HDD (Boot disk), Windows Server 2012 R2 DataCenter edition, Stand-alone,

Terminal Server, Ethernet, Red Hat VirtIO Ethernet Adapter on Google Cloud

Console running on Network Internet Egress from Americas to Americas.

Beside the VM, several cloud storage facilities were used to stored data such as

Google Cloud, Amazon Web Services Simple Storage Service (AWS S3), Dropbox

and Microsoft OneDrive. AWS S3 has the highest number of storage subscriptions

differentiated by their different regions such as shown in Table 4.

Table 4: Cloud Storage Locations

S/No. Bucket Name Region/Location

1 awsbucketuseast US East (Ohio)

2 awsbucketuswest US West (N. California)

3 awsbucketasia Asia Pacific (Mumbai)

4 awsbucketcanada Canada (Central)

5 awsbucketlondon EU (London)

6 awsbucketsaopaulo South America (Sao Paulo)

7 awsbucketfrankfurt EU (Frankfurt)

8 awsbuckettokyo Asia Pacific (Tokyo)

9 Dropbox I & II US West of Northern California)

10 Microsoft OneDrive Unknown

4.6 Conclusions

This thesis has been able to present using this chapter the nature of FSSS’s design by

providing details on the components that make up the system. It includes steps used in

designing the system through coding, execution of codes, result collections and

computations to determine cloud behaviours during process executions. With the

design principles explored, information has been laid in a nutshell what this thesis

tends to achieve and how it goes about it. Furthermore, the System design and

 60

components presented all the subsystems that make up the system such as - user

management, file fragmentation, recreation, cloud behavioural computations and

agent which forms our future works. While the user management deals with user

information collection, storage and retrievals, file fragmentation concentrates on how

fragments are created, key generation, encryption of fragments and share creation.

Finally, the methodology laid out two important issues bothering on experimental

setup and evaluation framework that will guide the evaluation works in Chapters 5, 6

and 7, which provide details on how the objectives of the thesis were achieved and all

questions answered. It ended with system specifications.

 61

5 Data Fragmentation
Evaluation

5.1 Introduction

Several methods exist in data fragmentation and have become popular with the advent

of multi-cloud architecture in data storage as a way of improving data availability

through redundancy technique. Popular among them is secret sharing scheme and of

utmost importance of this method, aside from data availability, is the keyless

encryption technique that comes with it, which gives data adequate protection as data

exist in meaningless format. Nevertheless, of all these advantages, the issue of

scalability remains a challenge facing its applications in large-scale data infrastructure

making room for more research inputs in this direction. This thesis therefore uses this

chapter to evaluate a method of fragmentation in Fragmented Secret Share System

(FSSS) alongside similar schemes that are built on secret sharing scheme to measure

their levels of scalability in a multi-cloud environment.

FSSS within the limit of data sizes in use in these experiments takes 15% of file size

as an optimum fragment size and uses same to break file into fragments, encrypts each

fragment with AES 256-bit key length, and using secret sharing scheme provide key

management for each of the encryption keys. The evaluation of this method against

some existing ones that apply secret sharing scheme in data sharing and recovering

will not only concentrate on their scalability, but on fitness for use in large-scale data

infrastructure with regards to their accrued storage overheads and these will be done

using the defined evaluation framework on scalability in Section 4.4.2.

5.2 Data fragmentation schemes

In storage technology, data sharing is used to break data into shares and subsequently

dispersed to multiple storage locations and original data is recovered when needed

sometimes with a fewer number of dispersed data known as a threshold. There are

many types of data sharing techniques, the foremost being the works of Adi Shamir

[2] and George Blakeley [3] later to be known as Secret sharing scheme, while the

scheme provides the method of securing data without encryption keys in a dispersed

 62

storage, it has proved to be insufficient for use with large-scale data infrastructure as

they are not very scalable according to Buchanan [39], hence the use in securing

encryption keys mainly as it will be too processor intense to use in securing data

[122], [39]. Shamir and Blakely’s works came to be known as perfect secret sharing

scheme as they provide perfect secrecy to data because the size of each share is

equivalent to that of the secret implying that their entropy is 1. Other variants of data

fragmentation of interest to us are Information Dispersal Algorithm (IDA) by Michael

Rabin [40], which tends to reduce the storage complexity experienced in Adi Shamir’s

Perfect secret sharing scheme (PSS). Our interest is in its wider application for data

dispersals since it has high-performance throughput when used to disperse data

whether in-memory or in the cloud, as it does not encourage redundancy with a trade-

off on the perfect security of data.

Hugo Krawczyk [11] proposed the Computational Secret Sharing (CSS) technique

(a.k.a. secret sharing made short), which combines Rabin’s IDA with Shamir’s PSS.

Data is first encrypted with a randomly generated key, using a symmetric encryption

algorithm. Next, this data is split into n fragments using Rabin’s IDA with a threshold

t configured. In this case, the scheme is t times more efficient than Shamir’s PSS. The

final step is to use Shamir’s PSS to produce shares of the randomly generated

symmetric key (which is typically of the order of 64 to 256 bits) and then give one

share and one fragment to each shareholder.

A related approach, known as AONT-RS [52] as supported by [18], applies an All-Or-

Nothing Transform (AONT) to the data as a pre-processing step to the IDA. AONT

guarantees that any number of shares less than the threshold is insufficient to decrypt

the data. It combines AONT with Reed Solomon (RS) in order to achieve high

security in a reduced computational and storage overheads. Kapusta et al. [18], and

Kapusta & Memmi [123], developed a method that situates between Hugo

Krawczyk’s CSS and Rabin’s IDA methods in developing a scheme that they claimed

provides a lightweight data fragmentation scheme with good space efficiency and

computational level of data confidentiality for data protection with application in

multi-cloud environment.

5.2.1 Application Scenarios

Some fine-grained research projects implement the use of data fragmentation in their

design include, but not limited to, Loruenser et al. [25] presented an architecture for

secure cloud-based data sharing known as ARCHISTAR based on secret sharing

 63

scheme. The focus of the system is on providing adequate confidentiality to data;

make it available against any active attacks as well as robust even in the face of

failures.

Ermakova and Fabian [13] defined a secret sharing for health data in multi-provider

clouds. Their work was based on the need to provide a scheme that will make data

readily available, provide confidentiality and integrity to medical records stored in

clouds. They used a secret sharing scheme to distribute data as fragments to several

clouds in order to provide the needs as stated above.

There are other research solutions based on secret sharing schemes in multi-cloud

environment such as, Ukwandu et al. [46], presented RESCUE: Resilient Secret

Sharing Cloud-based Architecture that defined an architecture that applied the resilient

nature of secret sharing scheme in building a robust data sharing in multi-cloud

environment. Alsolami and Boult [17], worked on CloudStash: Using Secret-Sharing

Scheme to Secure Data, Not Keys, in Multi-Clouds. The works used secret sharing for

data sharing in multi-cloud environment and Fabian et al. [12] on collaborative and

secure sharing of healthcare data in multi-clouds that applied the use of secret sharing

in sharing and recovery of the file in conjunction with cryptographic primitives.

5.3 FSSS Evaluations

The method presented in this thesis is known as fragmented secret share system. It

creates fragments from a file, encrypts each fragment with different encryption key

and applies secret sharing methods as used in cryptography to create robust and secure

cloud-based keyless key management system using multi-clouds architecture for

storage management.

5.3.1 Method of Data Fragmentation

The experiments focused on providing information on choices that will ensure quick,

efficient, and scalable operations through a proper combination of fragments, file

sizes, and share policies. It provides information on a relationship between file and

fragment size and the appropriate policy combinations at different users’ choice of file

size and share policy.

Experiments performed are of two variants, A and B as presented earlier in Section

4.4.1. All files are byte streams generated and stored as that provides an opportunity

of testing in a neutral environment suitable for all file types. In all, experimental

 64

evaluations will be based on results obtained from file fragmentations and key shares.

The plots will be on varied file sizes in kilobytes (KB) against time taken in

milliseconds (sec) using varied key sharing and recovering policies.

The total overhead cost of each file processed is calculated by summing all times

taken to break the file into fragments; encrypt all accrued fragments; decrypt all

fragments and combination of the file.

5.3.1.1 Fragments Storage

FSSS data mappings techniques as shown in Figure 13 has to do with how encrypted

fragments of file are mapped into storage buckets in the cloudlets with the fileIDs (file

and fragments identification details) containing all the details of the fragments,

including the cloud API tokens, fragments locations, names and serial numbers

returned to a metadata server from where each is retrieved and used to reconstruct the

original file when needed.

The mappings are used for both fragments in three separate storage buckets made up

of premised and external storages in Google Cloud (premised), AWS S3 (external

public cloud) and Dropbox (external private cloud). The value n represents the last

fragment. The mixture of public and private clouds premised and external were

intended to provide the needed resilience and ease of access hence improve

performance by reducing overhead costs to file reconstruction. The Google cloud

storage (premised) is the cloud in use daily, while access to others are mainly when

there is an outage in Google cloud or an evidence of a corrupt fragment(s) during file

reconstruction. This method uses redundancy technique to improve data availability

but fails to implement a threshold scheme thereby making it impossible to recover the

original file if one of the fragments is lost, corrupted or fails during retrieval from

different storage buckets. This drawback results to a retrieval of fragments using an

alternative storage bucket and hence increases the recovery overheads at this point.

5.3.2 Method of Key Sharing and Recovering

The base algorithms – Sharing and Recovering are the concept as presented originally

by Adi Shamir [2] and hence a perfect secret sharing scheme. In experiment A, the

overhead cost is the sum of time taken to create key shares; write key shares to storage

devices; recover key shares from storage devices based on defined threshold for key

recovery. The time taken are quite infinitesimal but a reference to them are necessary

for comparison with that of experiment B, which was done using different cloud

 65

service providers presenting a real-life situation to share creation; share writing; share

recovery based on a prevailing threshold and key recovery. In experiment B the

overhead cost for key sharing and recovery are based on time taken in key sharing,

share writing to cloudlets which is made up of upload and download times, share

recovering from downloads and secret key recovering.

Dropbox

Google

Cloud
AWS S3

AWS S3

Google Cloud
Dropbox

Data store

Fragments
Mapping

Table

Figure 13: FSSS Encrypted Fragments Mappings to Cloudlets

5.3.2.1 Key Shares Mapping

FSSS key shares mapping as shown in Figure 14 below has to do with how key shares

of encryption key used in safeguarding fragments of file are mapped into storage

buckets in the cloudlets with the shareIDs (share identification details) containing all

the details of the shares, including the cloud API tokens, share locations, names and

serial numbers returned to a metadata server from where each is retrieved and used to

reconstruct the decryption keys when needed. The mappings are done using a

maximum of ten different Cloud storages mainly AWS S3 in conjunction with

Dropbox and Microsoft OneDrive. The mixture of public and private clouds was

intended to provide the needed resilience and ease of access hence improve

performance by reducing overhead costs to key recovery. Just like every other Shamir

PSS method implementation, this method suffers from storage complexity as each

share size is equivalent to secret key size and hence the larger the key size, the more

complex the storage and system overheads. But suffice it to say that the choice of

 66

threshold (m) in relation to the total number of participating clouds (n) impacts on the

overall system overheads, this thesis therefore sees the choice of m within the context

and limit of computer resources, file sizes and share policies used in the experiments

as best around 60% of n for an optimum performance. This may vary depending on

the computing resource in use.

Data store

Share Mapping
Table

AWS CA

AWS OH

AWS SAO

AWS MUM

AWS CDN

AWS FRA

AWS LDN

AWS TYO

Dropbox OneDrive

AWS SAO

AWS OH

AWS CA

AWS FRA
AWS CDN

AWS MUM

Dropbox

AWS TYO

AWS LDN
OneDrive

Figure 14: Key Shares Mappings to Cloudlets

5.4 Tests Results and Evaluations

5.4.1.1 Test One

In the first evaluation (see Table 5), the best combination of the system that provides a

high level of data scalability is evaluated. This assumes that data fragmentation

irrespective of fragment size and share policy is scalable.

This test showed that file fragmentation using varied fragment size is scalable but has

higher overhead when fragment size is smaller in relation to file size as seen in Table

5 and graphically in Figure 15. The evidence here is such that the smaller the fragment

size in relation to file size, the higher the number of fragments generated thus an

increase in overhead as seen in 1KB, 2 from 5 below, where the system failed to

combine a file of 1GB size using 1KB fragment size due to large system overheads. In

1KB, 3 from 5 and 1KB, 4 from 5 provided evidence that increasing the threshold

with smaller fragment size, will lead to high system overhead, implying the effects of

 67

threshold and fragment size on system performance, thus dismissing the above

assumption.

5.4.1.2 Test Two

In the second test, we evaluated the best combination of the system that provides data

scalability with less overhead. This assumes that data fragmentation using an equal

number of fragments irrespective of share policy is highly scalable.

The above assumption is supported by the evidence from Table 6 and Figure 16 in

comparison with Table 5, thus providing a proof that file fragmentation is highly

scalable when fragment size is defined as 15% percentage of file size. Though

cautions should be applied in giving all file sizes same percentage of fragment size as

evidence showed that the larger the file size, the more fragment percentage will be.

5.4.1.3 Test Three

This test assumes that share policy has no effect in file sharing and recovery. Using

Table 7, this thesis validates the earlier claim by Abdallah and Salleh [19] that

increasing the threshold and that of participants increases system overhead during

share creation and secret recovery. But Table 8 states otherwise and proves that FSSS

as a method improves on these bottlenecks by combining data fragmentation with

secret sharing using optimum fragment size.

5.4.1.4 Test Four

This test assumes that FSSS will be adversely affected and fails to produce results

when file size increases as well as change in share policy while keeping the computing

resources constant.

Table 8 above shows that FSSS continued producing results as share policy changed.

Both the increase in threshold and that of number of participants did not show

significant effects indicating that it will not fail to provide result at different

application scenarios. It also did not show any significant effects as file sizes

increased exponentially.

Units of measurements

Units of measurements are (B) for bytes used in measuring file sizes, and (S), for

seconds used in measuring time taken to perform a task using a certain share policy.

 68

Figure 15: Measuring scalability using varied fragment sizes, share policies and file sizes.

Figure 16: Plot of varied file sizes, share policies and equal number of fragments.

 69

Table 5 : Measuring scalability using varied fragments sizes, share policies and file sizes

S/N FileSize

(B)

1KB, 2

from 5 (S)

1GB, 2

from 5 (S)

1KB, 3

from 5 (S)

1GB, 3

from 5 (S)

1KB, 4

from 5 (S)

1GB, 4

from 5 (S)

1 1KB 0.06 0.06 0.05 0.06 0.13 0.20

2 10KB 0.79 0.02 0.29 0.08 0.40 0.08

3 100KB 1.41 0.0.6 1.38 0.07 2.36 0.16

4 1MB 13.06 0.09 10.58 0.10 NC 0.23

5 10MB 403.75 0.59 143.50 0.48 NC 0.51

6 100MB 5716.87 8.11 NC 9.26 NC 10.41

7 1GB NC 572.66 NC 2168.81 NC 2316.12

Table 6: Measuring scalability with varied file sizes, share policies and equal number of

fragments

S/N

FileSize

(B)

15%, 2 from 5

(S)

15%, 4 from 5

(S)

15%, 4 from 10

(S)

15%, 8 from 10

(S)

1 1KB 0.02 0.02 0.07 0.05

2 10KB 0.08 0.02 0.04 0.12

3 100KB 0.05 0.02 0.06 0.04

4 1MB 0.04 0.03 0.06 0.10

5 10MB 0.18 0.17 0.21 0.26

6 100MB 1.87 1.74 1.76 1.78

7 1GB 78.10 78.01 88.33 96.10

Table 7: Measuring the effects of policies, number of fragments generated on key recovery.

S/N FileSize

(B)

1KB, 2from5

(S)

1KB, 3from5

(S)

1KB, 4from5

(S)

15%, 2from5

(S)

15%, 4from5

(S)

15%, 4frm10

(S)

15%, 8frm10

(S)

1 1KB 0.017 0.0184 0.039 7.094 8.160 18.675 1536.350

2 10KB 0.122 0.130 0.379 7.254 7.397 16.971 1629.540

3 100KB 1.050 1.566 99.376 7.385 6.918 17.866 1484.630

4 1MB 12.606 53.050 NC 7.670 6.793 18.672 1444.335

5 10MB 331.684 4221.852 NC 8.456 8.236 16.395 1515.853

6 100MB 3839.531 NC NC 7.290 6.655 15.920 1472.754

7 1GB NC NC NC 6.768 7.518 16.156 1599.017

 70

Table 8: Overhead Cost of File Combination using equal number of fragments with varied

share policies

S/N

FileSize

(B)

15%, 2 from

5 (S)

15%, 3 from 5

(S)

15%, 4 from 5

(S)

15%, 4 from 10

(S)

15%, 6 from 10

(S)

15%, 8 from 10

(S)

1 1KB 0.02 0.03 0.02 0.07 0.02 0.05

2 10KB 0.08 0.03 0.02 0.04 0.02 0.12

3 100KB 0.05 0.03 0.02 0.06 0.03 0.04

4 1MB 0.04 0.04 0.03 0.06 0.04 0.11

5 10MB 0.18 0.19 0.17 0.21 0.17 0.26

6 100MB 1.87 1.59 1.74 1.76 1.50 1.78

7 1GB 78.10 81.38 78.01 88.34 79.98 96.10

Legend:

NC = Not Computable within the limit of computing resources used in these

experiments.

5.5 Overall Evaluation of Data Fragmentation
Methods

Secret sharing scheme has been identified as primarily for secure key management as

posited by Narani in [122] and this position is supported by Buchanan [39], Buchanan

et al. [31], Kapusta et al [18], Abdallah and Salleh [19], Koikara et al [20], and Pal et

al. [21]. But Alsolami and Boult in [17] opposed this by saying that Secret Sharing is

for Data Security, not Keys. Works of Ermakova and Fabian [13] and Fabian et al

[12] are in conformity with theirs as they used combination of secret sharing scheme

with other cryptographic primitives in securing healthcare data through shares

creation, dispersal and recovery in multi-clouds.

This thesis evaluation at this point will focus on FSSS in comparison with that of

Fabian et al. and Alsolami & Boult using the developed evaluation framework on

scalability in Section 4.4.2. The reason for our choice is that these two experiments

were conducted using cloud resources and showed some levels of scalability as

against others that were conducted using internal hard disk storage for share storage

and retrievals. In the same vein, the work of Shor et al. [4], will not be evaluated here

as its use of data fragmentation technique is in key management, which is secret share

system that already being discussed.

FSSS was conducted on Standard Intel N1 1 vCPU 2.30GHz Intel Zeon (R), 3.840GB

memory, 50.00GB NTFS HDD (Boot disk), Windows Server 2012 R2 DataCenter

 71

edition, Stand-alone, Terminal Server, Ethernet, Red Hat VirtIO Ethernet Adapter on

Google Cloud Console running on Network Internet Egress from Americas to

Americas with 13 different cloud storage buckets, 3 for data while 10 for keys

storages, majorly AWS S3 storage buckets in conjunction with Microsoft OneDrive,

Google Cloud and Dropbox, while that of Fabian et al conducted theirs using

Windows 7 Professional 64-bit machine within Oracle JRE 1.6.0_39 and Java

HotSpot 64-bit Server VM. Intel Core i5 2500 K, on 4x4841 MHz, 8 GBytes DDR3

RAM, Dual Channel on 686,9 MHz with AWS S3 as storage buckets and all

operations were executed using multithreading, while Alsolami & Boult used

machines that run on Intel core i5 CPU 2.40 GHz, 4GB RAM and 64 bit Linux

Operating System with AWS S3 as storage buckets.

The scalability of these methods will be evaluated based on the ability to continue

production as file size increases. It will also take a look at the effects of share policy

on system overheads. Table 8 shows that FSSS was not affected significantly by an

exponential increase in file sizes, an indication that it will not fail to share and recover

file at any change of file size and share policy. These are indications that FSSS is

scalable. Table 9 is an overall summary of the behaviours of the works of Fabian et al

and CloudStash at different file sizes and share policies.

In Table 9, file increase implies the method is affected by file size increase, while

policy change implying that increasing the number of participants and that of

threshold significantly affect share creation and file recovery. As earlier stated this

thesis sees scalability from the perspective of continuous production as file size

increases. It also based on the ability of a method to overcome the effect of increase in

the number of participants and that of threshold in share creation and secret recovery.

In all FSSS showed evidence of improving the process of data fragmentation in

conjunction with secret sharing scheme by reducing the adverse effects of file size

increase and that of share policy change in file recovery as shown in Table 8. Table 8

also shows that it can continue production as file size increases and share policy

changes. These therefore, prove that FSSS is more scalable than the two methods as

evaluated as shown in Table 9.

 72

Table 9: Evaluation table for FSSS and other similar methods to measure scalability

S/N Project

Name

Method

Used

Storage

Device

Maximum

File Size

File

Increase

Policy

Change

Processor Scalability

1 CloudStash SSS Cloud 10MB Yes Yes Single

Thread

Poor

2 Fabian et al SSS Cloud 500MB Yes Yes Multi-

Thread

Average

3 FSSS FSSS Cloud 1GB No No Single

Thread

Good

5.6 Conclusions

In current data sharing and recovery scenarios, several methods exist and many of the

methods applied the use of Secret sharing scheme alongside other cryptographic

primitives such as symmetric encryption like AES with the opinion that secret sharing

scheme is only good for securing cryptographic keys [123], [18], [19] and others,

while [124], [17], [12] and [13] are of the opinion that secret sharing scheme should

be directly applied in data sharing and recovering as it is resilience and self-preserving

in application. FSSS was borne after our previous works in [31] and [46] and as was

initially evaluated in [5]. It shares the view of the former and hence limited itself in

evaluating the method against those that shared the second view so as to add its voice

on the need for high level scalability in current data sharing and recovery mechanisms

that are fit for use in large-scale data infrastructure while maintaining the resilient,

secure and self-preserving nature of data fragmentation schemes. The method is not

devoid of the secured nature of data fragmentation schemes, it rather improved on it

by providing a four-layered protection to data using data fragmentation, symmetric

encryption, secret sharing scheme and redundancies. Above all it is scalable and fits

into use for sharing and recovering of large-scale data irrespective of size and types

despite the shortcomings as identified in the above evaluations. Finally, this chapter

concludes application scenarios of data fragmentation in a multi-cloud environment to

show how previous methods have been applied in multi-cloud environment.

 73

6 Key Management
Evaluation

6.1 Introduction

The previous chapter was used to provide FSSS’s data fragmentation scheme as well

as evaluate same with current practise that believes that secret sharing scheme is

scalable. In this chapter, FSSS key management is presented with a view of evaluating

same with similar methods that uses secret sharing scheme in key management in the

cloud as FSSS combines data fragmentation with encryption and manages the keys

using secret sharing scheme. Three things are obvious in this chapter, one is that FSSS

disagrees with Nojoumian et al. that the use of rate of availability and response time is

enough to judge participant’s (cloud) level of cooperation during each operation, two

is that it validates the facts that data recovery is possible in as much as cloud failure

(n), is greater than or equal to the defined threshold (m) and finally is to provide

information on the effects of different rates of cloud failure (n) on file recovery.

6.2 Cloud-based Key Management

Security of stored data in cloud has been opined to be very crucial in cloud computing,

Wang et al. [94] posits that such necessitates the need for the design of a key

management scheme that is reliable for safe computing in the cloud. Rao [95] agrees

that key management is not standardised optimally in the cloud. Rao and Selvamani

[96] are of the view that having only authorised users to have access to decryption key

is the best management. While Zissis and Lekkas [97] suggest that having a trusted

third party is the way to go. In order to achieve this objective as posited, two major

methods suffice – keyless and In-house key storage management system. In keyless

system [18], [123], [25], [125] and [78] used secret sharing scheme, but Resch and

Plank [52] dispersed encryption key with the encrypted data in cloudlets, while [87],

[98] proposed key aggregate key management system in managing In-house key

storage. Shor et al. [4] gave credence that use of an efficient secret sharing scheme to

secure encryption key in multi-cloud environments is an optimal method of

safeguarding encrypted data. In all it shows how important key management is in

cloud-based data storage. From the methods presented, keyless system seems to

 74

provide a system that prevents key loss, theft and leakages and as such is resilient,

reliable and as well provide confidentiality and availability needed in key

management system for a robust cloud-based storage.

6.3 FSSS Key Management

FSSS key management is a distributed multi-cloud keyless system that is patterned

after the works of Nojoumian et al. [32], [33] and [34] known as Social secret sharing

scheme with a redefinition of what constitutes good ‘behaviour’ amongst participating

cloudlets. While Nojoumian et al defines a three-fold construction denoted by (Sha,

Tun, Rec) implying secret sharing, social tuning and secret recovery, where social

tuning is carried out based on a value derived through a calculated trust function using

participants’ response time and rate of availability over a cumulative period. This

thesis believes that such value derived is insufficient to judge participants’ ‘behaviour’

by proving that cloud behaviours such as response time is subjective as multi-tenant

nature of cloud resources make it fluctuate and hence alter values based on the amount

of threads available to be processed within each period. Thus argues the sufficiency of

using availability rate and response time to determine cloud level of cooperation as

against literature like [120], [121], [126], [127], [128], [129], and [130] and the

fairness of using capacities that show current behaviours to disenroll participants as

well as adjust shares of ‘cooperative’ clouds without taking a look at future predictive

behaviours that will help generate large volume of data thereby take cautious

measures before such actions are carried out.

6.3.1 Tests Results and Evaluations

6.3.1.1 Test One

These tests the sufficiency of using availability rate and response time to determine

cloud level of cooperation. It assumes that using cloud capacities like availability rate

and response time are sufficient to measure cloud participant’s level of cooperation or

behaviour during data sharing and recovery operations.

 75

Table 10: Cloud capacities measure using different CSPs (Shares Download from 4 from 10 share policy)

AWS California AWS Canada Dropbox AWS Frankfurt AWS London AWS Mumbai OneDrive AWS Ohio AWS Sao Paulo AWS Tokyo

Download Time (s) 0.41 0.37 0.72 0.78 0.80 1.54 0.90 0.70 0.10 1.24

Latency (ms) 49.04 48.97 49.18 49.29 49.08 49.03 49.13 49.04 49.29 49.15

Throughput (bps) 3981.17 4369.51 2301.20 2101.72 2101.67 1070.80 1952.58 3191.37 1646.11 1318.31

Speed (mps) 1673169.79 2208192.69 1563442.77 2406985.33 1967461.57 2023129.47 13909024.69 2012561.41 1778988.55 1872583.77

RTT_Avg (ms) 27 27 10 27 27 28 10 27 27 27.5

Availability (bps) 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Upload Bandwidth (mbps) 124.19 132.60 130.06 124.78 108.15 120.16 129.09 112.29 127.81 133.87

Download Bandwidth (mbps) 174.40 81.39 91.46 274.11 59.13 198.02 171.84 316.41 212.08 121.80

File Size (B) 1GB 1GB 1GB 1GB 1GB 1GB 1GB 1GB 1GB 1GB

Share Size (B) 1638B 1638B 1638B 1638B 1638B 1638B 1638B 1638B 1638B 1638B

Period of experiment 19:14:18 –

19:46:05

19:15:15 -

19:47:01

19:12:23 –

19:44:12

19:16:37 –

19:48:28

19:15:43 –

19:47:28

19:14:48 –

19:46:33

19:12:50 –

19:44:40

19:13:50 –

19:45:35

19:16:11 –

19:47:59

19:13:24 –

19:47:07

 76

Table 10 provides some measures taken when recovering a 1GB file. First step is to

retrieve all encrypted fragments made from the file, decrypt and then recombined to

recover the original file. To do this, as each encrypted fragment is retrieved,

appropriate key shares are retrieved from 10 participating CSPs but uses the defined

threshold to recover the original symmetric key. This recoverd key is used to decrypt

the encrypted fragment. This process is carried out for each encrypted fragment. All

decrypted fragments are combined to recover the original file. The share size is 1638

bytes on a 4 from 10 share policy. While this process is going on, measurement tools

such as Pingparser are used to collect values, which are plugged into the formula to

determine the capacity of each participating CSP, through this, such metrics as volume

of processed data, IP transfer delays, packet loss frequency and so on are derived and

these are regarded as CSPs behaviour. There are other metrics used in determining the

behaviours of different CSPs in a larger table, but selected these as they relate more to

the test under review. The DL Time is time taken to download a share of 1638 bytes

from each CSP. It includes time taken for each CSP to receive an API call,

authentication of user, access, through to the time taken for the algorithm to receive

the share for symmetric key recovery.

This time varies for all the CSPs with AWS Canada being the fastest and AWS

Mumbai taking longer time than others. A closer look provides the understanding that

some metrics affect the arrival time such as the Throughput, Download bandwidth and

Speed as latency are virtually same across bar with minor difference between them

while Availability is 99.9% as none of them failed during the operations. The

explanation to this differences is in the period of the experiment from 19:12hours

through to 19:48 hours. Due to different time zones of the CSPs, the time varied from

peak to off-peak periods depending on the time zone. Thus underscoring the

importance of using more metrics to calculate cloud’s level of cooperation as such are

subjective to other metrics.

6.3.1.2 Test Two

This experiment tests the fairness of using the two capacities mentioned in test one to

disenroll participant. It tends to provide evidence that supports an argument that using

the two variables above to judge cloud behaviour is fair. Implying that using such

without looking for future likely results are sufficient to determine level of

cooperation of each CSP.

 77

Figure 17: Plot of CSPs against Download Time in seconds.

Figure 18: Measuring the Throughputs of different CSPs

 78

Figure 19: Upload & Download Bandwidths of different CSPs

The results in Figures 17, 18, and 19 show the fluctuating nature of download time

(arrival time) alongside that of throughput. This is as a result of different time zones

and the multi-tenant nature of CSPs and hence portends that values are unstable and

the need for cumulative results both present and future in determining cloud

behaviours. Take for instance, in Figure 18, Throughput of Canada is higher than that

of London, which is closer to Edinburgh – the location of the experiment because of

different time zones with regards to the period of the experiment. Therefore,

concludes that using such attributes without looking into future results is not fair in

application.

6.3.1.3 Test Three

This test also assumes that cloud outage will increase key recovery overheads and an

increase in cloud outage leads to higher overheads.

Table 11: Cloud Outages and Normal Situations

FragSizKeyShaPol Key Recovery (S) % Difference (S)

15B, 3 from 5 7.80 16.41% Faster

20% failure 15B, 3 from 5, 1 down 6.52

1.5KB, 3 from 5 7.76 51.80% Faster

40% failure 1.5KB, 3 from 5, 2 down 3.74

15B, 6 from 10 25.67 37.90% Faster

30% failure 15B, 6 from 10, 3 down 15.94

1.5KB, 6 from 10 25.33 42.99% Faster

40% failure 1.5KB, 6 from 10, 4 down 14.44

0

50

100

150

200

250

300

350

B
an

d
w

id
th

s
(m

b
p

s)

Cloud Service Providers

Upload Bandwidth (mbps)

Download Bandwidth
(mbps)

 79

The results in Table 11 above show that cloud outage has no negative effect on key

recovery, rather reduces the overhead in comparison with normal situations. It shows

the relationship between cloud outage and normal operational conditions. From

available results at twenty percent (20%) failure rate using 3 from 5 share policy, the

system becomes faster by sixteen percent (16.41%), but at forty percent (40%) failure

rate using same share policy, the download speed is faster by close to fifty two percent

(51.80%). Looking at a higher share policy of 6 from 10, at thirty percent (30%)

failure rate, the system download speed is higher by a little above thirty-seven percent

(37.90%), while at forty percent (40%) failure rate, the system performed better by

about forty-three percent (42.99%). The implications therefore are that in as much as

failure rate is not equivalent or above the threshold, system performance improves as

there was no result obtained when the cloud outage exceeds the defined threshold.

These therefore do not support the assumption as above that cloud outage has negative

effect in key recovery. There is no significant evidence to show that the size of the

share has effect on the key recovery during cloud outages because at forty percent

(40%) failure rate using share of 10KB in 3 from 5 shows performance rate of above

fifty-one percent while in 6 from 10 share policy approximately forty-three (42.99%)

percent performance rate.

6.4 Overall Evaluation

Managing encryption keys is a very complex system [28], [131], and this complexity

comes from the methods of generation, exchange, storage, retrieval, and replacement

of cryptographic keys [131]. Hu et al. [132] believes that such complexity is more on

retrieval process as the more complex the retrieval interface is, the greater the

challenge of deploying key retrieval in applications such as decrypting encrypted file.

FSSS key management is a keyless system built on secret sharing scheme using multi-

cloud architecture. There have been other similar methods such as that of that of Shor

et al. [4], Kapusta et al. [18], [123], Li et al. [125], Hu et al. [78] and Loruenser et al.

[25]. This evaluation will be based on developed evaluation framework on Section

4.4.2 and on how these methods validate or disagree with the works of Abdallah and

Salleh [8, 134] on key share retrieval when 𝑛 < 𝑚, their available information on the

application on this concept in cloud-based key management. Finally, on how each of

these methods, proposed to handle the adverse effects of cloud failures on key share

retrievals so as to ensure consistent key retrieval.

 80

Hu et al. [78] used secret sharing scheme in key management but performed multiple

heterogeneous-storage system. Their use of secret sharing is only based on share

policy of 2-from-3, and the 3 shares were stored in local hard disk drive, cloud storage

bucket and a trusted third party. Of the 3 shares normally dispersed, that of the trusted

third party is hardly used, and they believed that loss of share in secret sharing scheme

is a rare scenario. This view perhaps limited their scope of experiments and hence

never conducted experiments to understand the behaviour of share retrieval during

adverse situation such as storage loss or outage.

Shor et al. [4] believes that the only way to secure sensitive data before storing it in

the cloud is to encrypt before storage. With an evaluation of the inherent trade-offs of

securing data in remote storage as well as an end-to-end analysis of the current

methods of securing data using secret sharing scheme and encryption-based schemes

on a local cluster storage device and multi-cloud environments. Their results suggest

that the bottlenecks in securing data has moved from that of computational overheads

of encoding and random data generation to network, storage and availability as a

result of hardware accelerated encryption methods and hence concluded that data

encryption and management of keys with an efficient secret sharing scheme is optimal

for multi-cloud environments. In all, their concentration is on efficiency, using

throughput and not on the resilience nature of such methods. This, therefore, limited

their scope of research and hence not on adverse effects of using secret sharing

scheme during excessive cloud outages.

Loruenser et al. [25] developed a system known as ARCHISTAR that applies multiple

secret sharing schemes on data before dispersal. By using computational secret

sharing scheme as proposed by Krawczyk [11], it applies symmetric encryption on

data to be shared, then shares encryption key using Shamir’s PSS [2] and with Rabin’s

IDA [40] disperses data to multiple storages. Unlike Hu et al. in [78], the performance

of Shamir’s PSS when used to share ChaCha20-Poly1305 encryption key using 3-

from-4 and 3-from-7 share policies were shown but failed to further explore

experimentally the behaviours during adverse condition such as when cloud failures

exceeds the defined threshold.

Li et al. [125] uses Ramp Secret Sharing Scheme (RSSS) to manage convergent keys

known as Dekey, the work of Loruenser et al. [25] is a bit similar to that of Kapusta et

al [18], [123] in using secret sharing to secure non-convergent encryption keys. While

Li et al. [125] posit that Dekey uses RSSS to provide a tunable key management to

 81

balance issues of confidentiality, reliability, storage overhead and performance,

Kapusta et al. deployed a system that situates between Rabin’s IDA [40] and

Krawczyk CSSS [11]. Curiously there is no known information on the resilient nature

of the key shares retrieval and the accrued overhead for each sharing policy

combinations during different rates of cloud failure. Secondly, there is also no known

proposal on how to improve the resilience nature of secret sharing when failure rate of

n exceeds that of threshold m. These knowledge gaps are what FSSS key management

provide. Through extensive experiments, it validated the works of Abdallah and

Salleh in [8, 134]. The experiments also provided needed information on the

behaviours of CSPs during each rate of cloud failure and with the future work based

on an Agent proposes the feasible way of preventing adverse cloud failures from

inhibiting key shares recovery using self-organisation protocol.

All the same, FSSS key management looks impracticable in managing large-scale data

infrastructure as key shares are stored on different cloudlets scattered all over the

world as this has the potential of adding more overheads to overall system

performance as seen in the available results. These were only intended to help inform

on possible overheads in doing so. In the same vein, from available results the use of

same CSPs at different geographical locations can also add to performance overheads

as distance can be a factor of performance lag on network bandwidth. So, a balance

should be implemented in choosing CSPs for an optimum performance in key storage

management.

6.5 Conclusions

Evaluations of FSSS key management system with other similar methods such as that

of Kapusta et al. [18], [123], Li et al. [125], Hu et al. [78] and Loruenser et al. [25]

showed that though they used secret sharing in key management at different levels,

there is no other known information on performance overheads of using any secret

sharing policy beside the work of Loruenser et al. [25], which showed the

performance of Shamir’s PSS when used to share ChaCha20-Poly1305 encryption key

using 3-from-4 and 3-from-7 share policies. But it failed to explore further

experimentally the behaviours during adverse condition such as when cloud failure

exceeds the defined threshold, and these are insufficient to guide users in choosing

best file size-share policy combination. Above that, no one proved the resilient nature

of their key retrieval system and how they intend to improve on the inherent problem

 82

of impossible key retrieval with secret sharing schemes when defined threshold is

exceeded by cloud outages. The above knowledge gaps were what FSSS key

management system provided using this chapter.

 83

7 Disaster Management
Methods Evaluation

7.1 Introduction

There are many risks in moving data into public cloud environments along with an

increasing threat around large-scale data and key leakages during cloud outages as

encryption keys are stored alongside data in many cloud storage resources. This

chapter aims to present some features of FSSS in comparison with similar methods

that make it reliable, readily available and resilient, and how it tends to use these

qualities to redefine disaster management using cloud-based resources from that of

recovery from losses to mitigation against losses. The previous chapter has been used

to prove how FSSS key management is resilient against cloud outages, this thesis will

through this chapter show how this resilience improves on the system overall resilient

nature and what we are doing to maintain consistent data availability as future works

as well as possible application scenario of FSSS design methodology.

7.2 Cloud-based Disaster Recovery (DR)
System

The cloud disaster recovery system is entirely different in approach to traditional

disaster recovery system according to Klein [6]. Cloud-based system takes an

integrated approach in which the virtual server gets bundled with the operating

system, applications, software patches and data. Furthermore, the backing up and

copying of the entire server to an off-site data centres through virtualisation take as

little as minutes.

The virtual server does not depend on a particular hardware, which makes it easier to

transfer safely and accurately from one data centre to another the operating system,

applications, patches and data without reloading each component of the server. The

advantages of Cloud-based DR over the traditional type range from reduced recovery

time and complete data accuracy during data restoration and recovery. These are made

possible because of its ability to implement full network replication, the

 84

synchronisation or mirroring of Virtual Machines (VM) at a remote site to ensure

failover in the event of failure of the original site.

Cloud-based DR as in all cloud-based systems provides low-cost DR solutions

because of the pay-as-you-use model. Cloud-based DR provides its subscribers both

shared and dedicated DR services. Based on customers’ choice, the benefits can

accrue but in all, cloud-based DR offers low-cost services compared to traditional

systems. It is this “resource-on-demand” and high degree of automation that made

cloud-based DR very attractive. Despite these attractive economics, Wood et al, [99]

argue that increased latency is a major barrier in using cloud data centres for DR, as

other servers could have a large geographical separation from the primary site, which

in no small measure could affect communication between them adversely. The

limitation of data owners from having control over their data placement worsens this

scenario, they argued.

In the same vein, Ji et al. [100] and [79] opined that the use of synchronous replication

by Cloud-based DR does not in any way help every data write as the wide-area

latency has negative impacts on its performance, forcing system administrators to

consider asynchronous replication. This often trades-off loss of data for performance

by replicating a consistent “snapshot” to the backup site. Asynchronous replication

positively impacts performance as the primary site can come up even before the

replication completes. However, this can lead to loss of disk writes at the primary site

subsequent to the last replicated snapshot in case of a disaster. Current designs and

implementations of cloud-based disaster management systems are focused on

recovery after outages leading to some losses, leakages and shut downs depending on

the level and length of outages. Hence, the concentration is on reducing the Recovery

Time Objectives (RTO) of cloud-based disasters, which is the time it takes to recover

from disaster after it has happened, ranging from microseconds, seconds, minutes,

hours and sometimes days and weeks.

7.3 FSSS Resilience Method

FSSS is a method of multi-cloud storage system; the resilience nature will be

evaluated based on data fragmentations, storage, retrieval and key management

methods as well as the reliability. Available literature from these works, Loruenser et

al. [25], Gu et al. [9], Joshi et al. [133], Bessani et al. [23] and Bowers et al. [85] all

give credence that the use of redundancy technique improves reliability, availability

 85

and resilience of cloud-based storage. In the other hands, the use of secret sharing

improves resilience of cloud-based storage in as much as the defined threshold is not

exceeded by cloud outages, there are proves from these works, Abdallah and Salleh

[19], [27], Ukwandu et al. [46], Buchanan et al. [31], Fabian et al. [12], Ermakova

and Fabian [13] to buttress these points. FSSS combines both methods in data sharing

and key management. In data sharing using Figures 9 and 13 showed how 3 different

cloud storages (premised and external) store encrypted fragments, and as well used

Figures 9 and 14 to show its key share storages, for which the number of cloud

storages deployed are dependent on key sharing policy in use. This thesis will

therefore use the following experiments to prove further the level or reliability,

availability and resilience that FSSS provides.

7.3.1 Test Results and Evaluations

7.3.1.1 Test One

This test is carried out using varied share policies, varied file sizes, with equal number

of fragments. This is to test the implications of varied share policies on system

overhead. It assumes that increase in threshold and change in policy has negative

effect on file combination.

There is no significant evidence to show that increasing number of participants in a

share policy impacts negatively on file combination. Taking a look at the Table 12 and

Figure 20, it is obvious that though they all had equal number of fragments, system

overheads increased slightly though not consistent and significant with increasing

number of participants from 5 to 10 participants across board and 1KB through 1GB

file sizes.

Table 12: Overhead Cost of File Combination using equal number of fragments with varied share policies

S/N

FileSize

(B)

15%, 2 from 5

(S)

15%, 3 from 5

(S)

15%, 4 from 5

(S)

15%, 4 from 10

(S)

15%, 6 from 10

(S)

15%, 8 from 10

(S)

1 1KB 0.02 0.03 0.02 0.07 0.02 0.05

2 10KB 0.08 0.03 0.02 0.04 0.02 0.12

3 100KB 0.05 0.03 0.02 0.06 0.03 0.04

4 1MB 0.04 0.04 0.03 0.06 0.04 0.11

5 10MB 0.18 0.19 0.17 0.21 0.17 0.26

6 100MB 1.87 1.59 1.74 1.76 1.50 1.78

7 1GB 78.10 81.38 78.01 88.34 79.98 96.10

 86

Figure 20: Plot of Overhead Cost of File combination, equal number of fragments with varied share policies.

In the same vein, an investigation to test the impact of varied thresholds, varied file

sizes, equal number of fragments by seeking to know the relationship between

thresholds and number of fragments generated keeping file sizes the same alongside

number of participants. It is assumed here that the number of fragments generated has

the capacity to cause large overheads in file combination. But a look at the above

Table 12 and Figure 20 show that there is no significant evidence to show that

increase in thresholds, increases the system overheads in an equal number of

fragments using same file sizes and number of participants.

In order to make FSSS model more reliable and predictable, an equation was

generated to help in this regard as shown below. This statistical model is designed to

help users understand the time needed to process a given file in conjunction with the

share policy. The essence of the model is to guide users in making an informed

decision regarding the implication of choosing a share policy for a given file size.

7.3.1.2 FSSS Model Equation

FSSS has two main inputs – file and share policy, while the system produces two

categories of results that has to do with cost, that is the time in seconds it takes to

process the file, which includes file split time using the File-splitter, fragment

encryption time with AES 256-bit key length, fragment decryption time and file

combination time using the File-combiner. The second category is the results in

relation to key management using secret sharing policy, which accounts for key shares

creation time using the sharing algorithm, key shares writing time, shares retrieval

time, and secret recovery time using the share recovery algorithm.

0

20

40

60

80

100

120

Ti
m

e
 T

ak
e

n
 (

Se
cs

)

File Sizes (KB)

15%, 2 from 5 policy

15%, 3 from 5 policy

15%, 4 from 5 policy

15%, 4 from 10 policy

15%, 6 from 10 policy

15%, 8 from 10 policy

 87

Since the above experiments were performed using a finite blocks of file sizes (1KB,

10KB, 100KB, 1MB, 10MB, 100MB and 1GB), it is therefore necessary that a model

that will help users understand the cost in seconds of what it will take to process their

file given the file size as provided in Table 13. It is also worthy to note that the model

is only limited to the share policies used in the experiments – 2 from 5, 3 from 5, 4

from 5, 4 from 10, 6 from 10 and 8 from 10.

Table 13: File Processing Linear Regression table

Coefficientsa

Model Unstandardized

Coefficients (S)

Standardized

Coefficients (S)

t (S) Sig. (S) Collinearity

Statistics (S)

B Std. Error Beta Tolerance VIF

1 (Constant) -1.859 1.347 -1.381 .176

File Size 7.843E-8 .000 .993 53.801 .000 1.000 1.000

P2 (3 from 5) .420 1.872 .005 .224 .824 .600 1.667

P3 (4 from 5) -.046 1.872 -.001 -.025 .980 .600 1.667

P4 (4 from 10) 1.455 1.872 .019 .777 .442 .600 1.667

P5 (6 from 10) .203 1.872 .003 .109 .914 .600 1.667

P6 (8 from 10) 2.587 1.872 .033 1.382 .176 .600 1.667

a. Dependent Variable: OverHeadCost

Equation modelling gives:

OverHeadCost = -1.859 + 0.00000007843 × FS + 0.420 × P2 - 0.046 × P3 + 1.455 ×

 P4 + 0.203 × P5 + 2.587 × P6

FS is file size, P1 (reference variable) is share policy 2 from5, P2 is share policy 3

from 5, P3 is share policy 4 from 5, P4 is share policy 4 from 10, P5 is share policy 6

from 10, while P6 is share policy 8 from 10.

This equation model is derived from Table 13. The intrepretion is that P1 is the

reference variable here, so it has been excluded from the equation. The interpretation

has to be done in relation to P1.

For instance, given a file size, using share policy 3 from 5 in sharing and recovering a

file within the limit of the system specification used in this experiment will take 0.42

seconds higher that when used P1 to share such a file, in the same vein, using share

policy 4 from 5 to process same file size will be 0.046 seconds faster than when done

with P1, while that of share policy 4 from 10 will take about 1.455 seconds higher

 88

than that of P1, 6 from 10 share policy will take about 0.203 seconds higher than that

of P1 and 8 from 10 will take 2.587 seconds higher than that of P1. This implies in

relation to our experimental frameworks (hardware and software specifications) that

share policy 4 from 5 is more effective using any file of size and 15% of file size as

fragment size, followed by 2 from 5, then 3 from 5, 6 from 10 and least effective is 8

from 10. When the overhead cost - that is the total time taken to process a file given a

share policy is predicted, the other components such as file split time, fragment

encryption time, fragment decryption time and file combination time predictions that

made up the overhead cost will be generated as well. The linear regression models

from which these are derived including that of share creation and secret recovery are

added to this thesis as Appendixes.

7.3.1.3 Test Two

This test assumes that an increase in the number of participants (cloudlets) increases

file combination overhead and hence decreases the level of file availability. Table 12

shows these range of values: 1GB file size using share policy 2 from 5 took a total of

78.10 seconds to process, 3 from 5 took 81.38 seconds, while 4 from 5 took 78.01

seconds. A file of 1GB file size using share policy of 4 from 10 was processed at

88.34 seconds, 6 from 10 at 79.98 seconds while that of 8 from 10 took 96.10 seconds

to process. This indicates that such assumption is false rather an increase in threshold

increases system overhead. This implies that FSSS method has good level of

availability as CSPs in use are scattered all over the world and are expected to have

some impacts on share retrievals than when they are closely located.

7.3.1.4 Test Three

This test the implication of cloud outages on file combination and hence assumes that

cloud failure inhibits file combination and as such impossible to recombine file during

cloud outage.

Table 11 in Test Three, Section 6.3.1.3 proved resilience of keys and in effect the data

as also shown in Table 12. Evidence from Test Two, section 7.3.1 show that in as

much as the threshold does not exceed 60% of total number of cloud storages in use,

file reconstruction is always feasible, while evidence from Figure 11 gave credence to

the use of redundancy approach, which improves data availability. Hence, it is

pertinent to assert that the use of both methods in cloud storages of both encrypted

fragments and key shares ensure consistent data availability, reliability and resilience.

 89

7.4 Overall Evaluations

The evaluation on this chapter will be based on the potential application area of cloud-

based disaster management. This thesis therefore will take a look at what is currently

being done and evaluate them with the characteristics of FSSS.

Current cloud-based disaster management are based on recovery after cloud outages.

Current works and proposal in cloud-based disaster management are based on

minimising the time it takes to recover from disaster known as Recovery Time

Objective (RTO), but the point of recovery known as Recovery Point Objective (RPO)

has remained a management decision issue [79]. Issues of concern for evaluation are

limited to, what are being done to automate the RPO decision point, mitigate losses

rather than recovering after losses occasioned by disaster.

Gu et al. [9] relied on data backup and restore technology to build a system proposed

to provide high data reliability, low backup cost and short recovery time by utilising

co-operative resources of various cloud service providers with various parameters

using multiple optimisation scheduling as strategies in balancing the objectives of

disaster recovery. Lenk et al. [111] states that there is a way of being at alert against

disasters by describing the architecture for a novel approach in establishing standby

sites, known as warm sites in disaster recovery that replicates a distributed system in

the cloud to another cloud they argued is a missing link in current literature. No

doubt, their system is intended to provide a backup system in case of disaster.

Even with their deployment method, the certainties of downtime cannot be

overemphasised. Cully et al. [67] described a system that provides software resilience

in the face of hardware failure (VMs for Virtual Machines) in such a manner that an

active system at such a time can continue execution on an alternative physical host

while preserving the host configurations by using speculative execution in replicating

either processor-intensive applications or communication-intensive applications at a

fixed time interval. The strength lies on the preservation of system’s software

independently during hardware failure but lags in the area of performing Replication

by adding fault tolerance into the VM at fixed intervals.

Dong et al. [114] described an architecture known as Multi-cloud-based Evacuation

Services for Emergency Management (MCES) that is based on instantiating multiple

instances at different states as a way of mitigating the cloud-based disaster. Their

work is similar to that of Chu and Wu [115], Chu and Wu [116] and Chen et al. [117].

 90

Chu and Wu provided a hybrid system that combines cloud resources with mobile

phones. The cloud serves for routine task computing while sensor information that

provides the best evacuation routes for data are collected using mobile phones and

these are done irrespective of an emergency situation or not. Chen et al. concentrated

on mobile cloud computing using smart-phones. Thus, proving a point that MCES is

designed for disaster recovery with its attendant downtimes depending on the time it

takes to re-instantiate a new VM after the disaster.

By using the evaluation frameworks on resilience, it becomes obvious that when 𝑆𝑝 =

1, the system breaking point has been reached and hence the needed information to

begin recovery thereby achieving an automated RPO if self-organisation is not

incorporated. In the same vein, using the proposed solution on how best to implement

the concept of self-organisation as contained in future work, FSSS wishes to use same

to bridge the gap on the RTO thereby achieving no downtime and as well prevent

losses occasioned by outages. This, to the best of our knowledge is the first known

attempt to shift the focus from disaster recovery to disaster mitigation. First, FSSS

argues the sufficiency of using rate of availability and response time to determine

cloud level of cooperation, as metrics like throughput, download bandwidth and speed

affect the arrival time.

While availability is virtually 99.9% in modern cloud storage designs, the need to

anticipate otherwise may not be needed as it has been covered in Service Level

Agrement(SLAs) thus underscoring the importance of using more metrics to calculate

cloud behaviours as such are subjective to other metrics. Secondly, its test on fairness

of using the two capacities mentioned earlier to disenroll participant through Trust

calculations. Using section 6.3.1 showed the fluctuating nature of download time

(Arrival time) alongside that of throughput as a result of the multi-tenancy nature of

CSPs and hence portends that values are unstable and the need for cumulative results

both present and future in determining cloud behaviours. Therefore, concludes that

using such attributes without looking into future results is not fair in application.

7.5 Conclusions

This chapter provides information on the tests conducted to present some features of

FSSS in comparison with similar current methods like that of Gu et al. [9], Lenk et al.

[111], Cully et al. [67], and Dong et al. [114]. While these methods aimed at reducing

the impact of cloud outage by minimising the RTO and leaving RPO as management

 91

decision issue, FSSS we conclude is the first attempt known to us that provided a

framework that has the capacity of automating RPO, it also focuses on redefining

disaster management by introducing the concept of mitigation of losses rather than

recovery from losses after outage. It proves to do these through qualities like high end

reliability, availability, and proposed redefined resilience through self-organisation

using an agent as contained in future work section.

 92

8 Conclusions and
Future Work

8.1 Thesis Summary

This thesis is an evaluation of a fragmented secret share architecture known as FSSS,

which aims to provide an alternative that is capable of closing knowledge gap inherent

in secret sharing schemes, such as the inability to continue production as file size

increases. Fabian and Fabian [12], Ermakova and Fabian [13] and Alsolami and Boult

in [17] all posit that secret sharing scheme is suitable for use in data sharing but failed

to show that it is capable of continuing production when file sizes increased

exponentially thus limiting its use in large-scale data infrastructure. By using this

thesis’ evaluation framework on scalability as defined above, the overall evaluation

with other similar methods showed that FSSS was able to provide a more scalable

alternative by combining data fragmentation using optimum fragment size with secret

sharing scheme in key management.

Managing encryption keys is a very complex system [28], [131], and this complexity

comes from the methods of generation, exchange, storage, retrieval, and replacement

of cryptographic keys [131]. Hu et al. [132] believes that such complexity is more on

retrieval process as the more complex the retrieval interface is, the greater the

challenge of deploying key retrieval in applications such as decrypting encrypted file.

But by using secret sharing scheme in key management, high level resilience is

feasible and has the capacity of providing non-complex key management system.

FSSS defined resilience in using secret sharing scheme in key management as the

ability to overcome the facts that when 𝑛 < 𝑚, key recovery become impossible. It

developed an evaluation framework based on this and used same to evaluate the

potentials of different methods in compliance with this and found out that though

there have been other similar methods such as that of Kapusta et al. [18], [123], Li et

al. [125], Hu et al. [78] and Loruenser et al. [25] only FSSS validated this

experimentally in accordance with the works of Abdallah and Salleh in [8, 134] on

key share retrieval when 𝑛 < 𝑚. It also went further to show behaviours of system at

different rates of cloud outages and proposes possible solution to this mentioned

challenge using self-organising protocol as proposed by Nojoumian et al. in [34].

 93

With these above features, FSSS when compared with the works of Gu et al. [9], Lenk

et al. [111], Cully et al [67], and Dong et al. [114] showed that while these methods

aimed at reducing the impact of cloud outage by minimising the recovery time

objective (RTO) in cloud-based disaster management, FSSS has shown potential in

redefining disaster management by introducing the concept of mitigation of losses

rather than recovery from losses after outage. It proves to do these through its qualities

like high end reliability, availability, and proposed redefined resilience through self-

organisation using an Agent.

8.2 Main Findings

This thesis has the following as the primary findings:

• The inherent challenge in secret sharing scheme by its inability to continue

production when file size increases exponentially can only be solved through

alternative means such as combining secret sharing with other data fragmentation

method.

• Using an optimum fragment size in data fragmentation gives an almost even

overhead cost irrespective of the share policy in use as difference between each of

the overheads at different file sizes are less than three seconds but with an

understanding that using an optimum fragment size for all file sizes may increase

overhead as file sizes increase hence the need for some reviews and future

experiments in that direction.

• Redefining the concept of resilience in secret sharing scheme using self-organising

protocol has the ability to provide service irrespective of a number of cloud

outages, thus closing the knowledge gap that secret sharing cannot be used to

provide services when cloud outages exceed defined threshold in cloud-based

storage.

• Disaster management using cloud resources has been focused on recovery after

cloud outages, and so resilience has been defined not on mitigating against the

occasioned losses but on a quick recovery. This has been a source of worry for

cloud users as such outages could lead to losses, leakages and sometimes complete

closure of businesses, FSSS fills in that gap as it provides consistent data

availability in the face of outages while maintaining high-level security,

confidentiality, and integrity of stored data.

 94

8.3 Limitations

FSSS is deficient in the area of fragments management as it does not implement a

threshold scheme in encrypted fragments recovery nor does it have an inbuilt privacy

protection and error correction mechanisms. This makes it difficult to detect as well as

provide information on unauthorised access, correct corrupt encrypted fragment(s),

provide details of stolen fragment(s), or lost one in transit. So, when there is a

malicious intent on encrypted fragment(s) by way of corruption or stealing, fragment

correction becomes impossible and file recombination fails integrity test using SHA-

512 file checksum. The only possible way out is a rerun of the process using different

fragment store. This impacts the system negatively by impeding the speed of the

process.

Using secret sharing scheme has an inherent deficiency in such a manner that when

𝑛 < 𝑚, secret recovery is impossible. This thesis could not implement the desired

self-organisation protocol as proposed by Nojoumian et al. in [34] in key management

that we believed is capable of ensuring that cloud failure rate does not exceed defined

threshold.

FSSS models only predict expected time to process file given a policy and these

policies are not dynamically chosen like files rather users have to choose from a select

Share Policies, which makes users options in terms of Share Policies limited.

8.4 Future Work

Two main issues form this thesis future works: one is to apply erasure coding

technique on encrypted file using optimum fragment size, which this thesis found

more scalable than using block fragment size in use in erasure coding and two is to

implement self-organising protocol on key management so as to provide consistent

key retrieval that will ensure steady data availability. Below is current work done to

help define the future work in the area of self-organisation as mechanism for applying

erasure coding technique are already defined in several literature.

8.4.1 The Social Concept in Secret Sharing

The social concept in secret sharing as proposed by Nojoumian et al. [4, 5, 6] suggests

that the resilient nature of secret sharing scheme can be strengthened by using it to

develop a self-organising system as it concerns the use of cloud storage resources. Our

proposed future woks will be presented here, which we intend to use to redefine the

 95

concept of socialisation in secret sharing as presented in Section 2.4.4. It is built

around using an agent that computes cloud behaviours after every phase of secret

sharing and recovery operations. Uses same to predict future behaviours of cloudlets

and hence invoke the social tuning functions of taking away shares from non-

cooperative to cooperative cloudlets.

8.4.2 Cloud Behavioural Computation

After every operation, the user is presented with two different computational options –

capacity measures of each participating cloudlet or overall cloudlets performance

during each operation. The essence is to give the user options of perusing behaviours

of each cloudlet during the operation such as its Latency (ms), Speed (bps),

Throughput (bps) and Availability. While in the other hand, the overall performance

of all cloudlets in the areas of Elapsed Time (sec), Packet Loss, Average Round Trip

Time (ms), Speed (bps), Download Bandwidth (bps), Upload Bandwidth (bps),

Latency (ms), and Throughput (bps) for comparative analysis. We will therefore treat

this section by looking at these measures in details as designed.

8.4.3 Capacity Measures of clouds

At every operation of FSSS, measures are taken to ascertain several behaviours of

participating cloudlets so as to help set up benchmarks of capacities of participating

cloudlets for every file size against share policy in relation to accrued performance

overheads such as latency, rate of packet loss, transaction speed and throughput as

optimum fragment size has been established through previous publication and

unpublished experiments. With this one can say using a certain file size in conjunction

with a fragment size and share policy, the system is capable of having certain

overheads accrued. With these prediction of future behaviours as well as potential

dangers can be done. With the proposed future works, self-organisation can be

activated to avert any impending danger so as to keep the system consistently

available. These behaviours are calculated through capacity measures as provided in

Tables 2 and 3.

8.4.4 Proposed Architectural Design of the Self-Organising

System

In Figure 21, shares are mapped into cloudlets and details of ShareIDs returned to

metadata store. Hence, the system is configured and initialised. Figure 22 shows cloud

 96

performance measurements, analysis and possible system adjustments, while Figure

23 shows actions taken when results are interpreted to avert danger thereby creating a

resilient and self-organising system capable of mitigating disaster.

AWS
OH

AWS
CA

AWS
MUM AWS

CAN

AWS
LON

AWS
SAO AWS

FRK

AWS
TOK

Dropb
ox

OneDri
ve

Share Distribution &
System Initialisation

AWS Share
= 8

Dropbox
Share = 1

OneDrive
Share = 1

Figure 21: Share Mapping, Distribution and System Initialisation

OneDrive
Share = 1

AWS
OH

AWS
CA

AWS
MUM AWS

CAN

AWS
LON

AWS
SAO AWS

FRK

AWS
TOK

Dropbox

OneDrive

Performance Measurement &
System Adjustments

AWS Share
= 8

Dropbox
Share = 1

Figure 22: Performance Measurements and System Adjustments.

 97

Dropbox

AWS
CA

AWS
MUM AWS

CAN

AWS
SAO AWS

FRK

AWS
TOK

Dropbox

OneDrive

Disenrollment &
Self-Configuration System

AWS Share
= 6

Dropbox
Share = 2

OneDrive
Share = 2

OneDrive

Figure 23: Disenrollment and Self-Reconfiguration System.

8.1.1 Agent

The activities of the proposed Agent is to receive data from the calculated cloudlets

capacities from several storage files and use same based on the metrics to (1)

Calculate cloud performance from measurements taken during each operations,

analyse and possible issue pre-system adjustments notifications as shown in Figures

21 and 22. As shown in Figure 23, use values gathered to predict possible behaviours

of cloudlets and where necessary actions are taken when results are interpreted as

showing adverse behaviours by cloudlet. The actions are not limited to removing

shares from such poorly behaved cloudlet and transferring same to better behaved

cloudlet but not exceedingly pre-defined threshold. These adjustments thereby provide

self-organisation that helps to prevent system failure due to adverse outages.

 98

9 References

[1] H. Hassan, ‘Organisational factors affecting cloud computing adoption in small

and medium enterprises (SMEs) in service sector’, Procedia Comput. Sci., vol.

121, pp. 976–981, Jan. 2017.

[2] A. Shamir, ‘How to share a secret’, Commun. ACM, vol. 22, no. 11, pp. 612–613,

1979.

[3] G. R. Blakely, ‘Safeguarding cryptographic keys’, in Proc. AFIPS, 1979, vol. 48,

pp. 313–317.

[4] R. Shor, G. Yadgar, W. Huang, E. Yaakobi, and J. Bruck, ‘How to Best Share a

Big Secret’, in Proceedings of the 11th ACM International Systems and Storage

Conference, 2018, pp. 76–88.

[5] E. Ukwandu, W. J. Buchanan, and G. Russell, ‘Performance evaluation of a

fragmented secret share system’, in Cyber Situational Awareness, Data Analytics

And Assessment (Cyber SA), 2017 International Conference On, 2017, pp. 1–6.

[6] M. Klein, ‘How the Cloud Changes Disaster Recovery, Industry Perspective’, Jul.

2011.

[7] H. Kashiwazaki, ‘Practical uses of cloud computing services in a Japanese

university of the arts against aftermath of the 2011 Tohoku earthquake’, in

Proceedings of the 40th annual ACM SIGUCCS conference on User services,

2012, pp. 49–52.

[8] OnlineTech, ‘Disaster Recovery White Paper.’, 2013.

[9] Y. Gu, D. Wang, and C. Liu, ‘DR-Cloud: Multi-cloud based disaster recovery

service’, Tsinghua Sci. Technol., vol. 19, no. 1, pp. 13–23, Feb. 2014.

[10]M. Russ, ‘Secret Sharing Schemes PowerPoint PPT Presentation’. 2012.

[11] H. Krawczyk, ‘Secret sharing made short’, in Advances in Cryptology—

CRYPTO’93, 1993, pp. 136–146.

[12] B. Fabian, T. Ermakova, and P. Junghanns, ‘Collaborative and secure sharing of

healthcare data in multi-clouds’, Inf. Syst., vol. 48, pp. 132–150, 2015.

[13] T. Ermakova and B. Fabian, ‘Secret sharing for health data in multi-provider

clouds’, in Business Informatics (CBI), 2013 IEEE 15th Conference on, 2013, pp.

93–100.

[14] Q. Zhang, S. Li, Z. Li, Y. Xing, Z. Yang, and Y. Dai, ‘CHARM: A Cost-Efficient

Multi-Cloud Data Hosting Scheme with High Availability’, IEEE Trans. Cloud

Comput., vol. 3, no. 3, pp. 372–386, Jul. 2015.

[15] M. Thangapandiyan and P. M. R. Anand, ‘Robust CHARM: an efficient data

hosting scheme for cloud data storage system’, Autom. Control Comput. Sci., vol.

51, no. 4, pp. 240–247, Jul. 2017.

[16] T. Loruenser, A. Happe, and D. Slamanig, ‘ARCHISTAR: towards secure and

robust cloud based data sharing’, in Cloud Computing Technology and Science

(CloudCom), 2015 IEEE 7th International Conference on, 2015, pp. 371–378.

[17] F. Alsolami and T. E. Boult, ‘CloudStash: using secret-sharing scheme to secure

data, not keys, in multi-clouds’, in Information Technology: New Generations

(ITNG), 2014 11th International Conference on, 2014, pp. 315–320.

[18] K. Kapusta, G. Memmi, and H. Noura, ‘An Efficient Keyless Fragmentation

Algorithm for Data Protection’, ArXiv170509872 Cs, May 2017.

[19] A. Abdallah and M. Salleh, ‘Secret sharing scheme security and performance

analysis’, in Computing, Control, Networking, Electronics and Embedded

 99

Systems Engineering (ICCNEEE), 2015 International Conference on, 2015, pp.

173–180.

[20] R. Koikara, D.-S. Kim, E.-J. Yoon, A. Paul, and K.-Y. Yoo, ‘Towards Security in

Multi-clouds Using Secret Sharing’, 한국통신학회 학술대회논문집, pp. 1557–

1558, 2017.

[21] D. Pal, P. Khethavath, J. P. Thomas, and T. Chen, ‘Multilevel threshold secret

sharing in distributed cloud’, in International Symposium on Security in

Computing and Communication, 2015, pp. 13–23.

[22] H. Xiong, X. Zhang, D. Yao, X. Wu, and Y. Wen, ‘Towards End-to-end Secure

Content Storage and Delivery with Public Cloud’, in Proceedings of the Second

ACM Conference on Data and Application Security and Privacy, New York, NY,

USA, 2012, pp. 257–266.

[23] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, ‘DepSky:

dependable and secure storage in a cloud-of-clouds’, ACM Trans. Storage TOS,

vol. 9, no. 4, p. 12, 2013.

[24] F. Alsolami and T. E. Boult, ‘CloudStash: using secret-sharing scheme to secure

data, not keys, in multi-clouds’, in Information Technology: New Generations

(ITNG), 2014 11th International Conference on, 2014, pp. 315–320.

[25] T. Loruenser, A. Happe, and D. Slamanig, ‘ARCHISTAR: towards secure and

robust cloud-based data sharing’, in Cloud Computing Technology and Science

(CloudCom), 2015 IEEE 7th International Conference on, 2015, pp. 371–378.

[26] M. Li, C. Qin, J. Li, and P. P. C. Lee, ‘CDStore: Toward Reliable, Secure, and

Cost-Efficient Cloud Storage via Convergent Dispersal’, Internet Comput. IEEE,

vol. 20, no. 3, pp. 45–53, 2016.

[27] A. Abdallah and M. Salleh, ‘Analysis and comparison the security and

performance of secret sharing schemes’, Asian J. Inf. Technol., vol. 14, no. 2, pp.

74–83, 2015.

[28] B. Schneier, Applied Cryptography: Protocols, algorithms, and source code in C.

John Wiley & Sons, 1996.

[29] C. E. Shannon and W. Weaver, ‘The mathematical theory of communication.

1949’, Urbana Univ Ill. Press, 1963.

[30] B. Schneier, Applied cryptography: protocols, algorithms, and source code in C.

John Wiley & sons, 2007.

[31] W. J. Buchanan, D. Lanc, L. Fan, G. Russell, and others, ‘The Future Internet: A

World of Secret Shares’, Future Internet, vol. 7, no. 4, pp. 445–464, 2015.

[32] M. Nojoumian and D. R. Stinson, ‘Brief announcement: secret sharing based on

the social behaviors of players’, in Proceedings of the 29th ACM SIGACT-

SIGOPS symposium on principles of distributed computing, 2010, pp. 239–240.

[33] M. Nojoumian, D. R. Stinson, and M. Grainger, ‘Unconditionally secure social

secret sharing scheme’, Inf. Secur. IET, vol. 4, no. 4, pp. 202–211, 2010.

[34] M. Nojoumian and D. R. Stinson, ‘Social secret sharing in cloud computing using

a new trust function’, in Privacy, Security and Trust (PST), 2012 Tenth Annual

International Conference on, 2012, pp. 161–167.

[35] O. Farràs, T. Hansen, T. Kaced, and C. Padró, ‘On the Information Ratio of Non-

Perfect Secret Sharing Schemes’, Cryptology ePrint Archive, Report 2014/124,

2014. https://eprint. iacr. org/2014/124. pdf, 2015.

[36] C. Asmuth and J. Bloom, ‘A modular approach to key safeguarding’, IEEE Trans.

Inf. Theory, vol. 30, no. 2, pp. 208–210, 1983.

[37] E. F. Brickell, ‘Some ideal secret sharing schemes’, in Advances in Cryptology—

EUROCRYPT’89, 1989, pp. 468–475.

[38] G. J. Simmons, ‘How to (really) share a secret’, in Proceedings on Advances in

cryptology, 1990, pp. 390–448.

 100

[39]B. Buchanan, Cryptography. River Publishers, 2017.

[40] M. O. Rabin, ‘Efficient dispersal of information for security, load balancing, and

fault tolerance’, J. ACM JACM, vol. 36, no. 2, pp. 335–348, 1989.

[41] J. Benaloh and J. Leichter, ‘Generalized secret sharing and monotone functions’,

in Proceedings on Advances in cryptology, 1990, pp. 27–35.

[42] P. Morillo, C. Padró, G. Sáez, and J. L. Villar, ‘Weighted threshold secret sharing

schemes’, Inf. Process. Lett., vol. 70, no. 5, pp. 211–216, 1999.

[43] A. Beimel, T. Tassa, and E. Weinreb, ‘Characterizing ideal weighted threshold

secret sharing’, in Theory of Cryptography, Springer, 2005, pp. 600–619.

[44] S. Yoo, P. Park, J. Shin, and J. Ryou, ‘Key sharing scheme based on one

weighted threshold secret sharing’, in Advanced Communication Technology

(ICACT), 2013 15th International Conference on, 2013, pp. 317–320.

[45] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, ‘Proactive secret sharing or:

How to cope with perpetual leakage’, in Advances in Cryptology—CRYPT0’95,

Springer, 1995, pp. 339–352.

[46] E. Ukwandu, W. J. Buchanan, L. Fan, G. Russell, and O. Lo, ‘RESCUE: Resilient

Secret Sharing Cloud-Based Architecture’, in Trustcom/BigDataSE/ISPA, 2015

IEEE, 2015, vol. 1, pp. 872–879.

[47] S. Takahashi and K. Iwamura, ‘Secret sharing scheme suitable for cloud

computing’, in Advanced Information Networking and Applications (AINA), 2013

IEEE 27th International Conference on, 2013, pp. 530–537.

[48] N. Al Ebri, J. Baek, and C. Y. Yeun, ‘Study on Secret Sharing Schemes (SSS)

and their applications’, in Internet Technology and Secured Transactions

(ICITST), 2011 International Conference for, 2011, pp. 40–45.

[49] M. Nojoumian and T. C. Lethbridge, ‘A new approach for the trust calculation in

social networks’, in E-Business and Telecommunication Networks, Springer,

2006, pp. 64–77.

[50] Sian-Jheng Lin and Wei-Ho Chung, ‘An Efficient (n, k) Information Dispersal

Algorithm for High Code Rate System over Fermat Fields’, Commun. Lett. IEEE,

vol. 16, no. 12, pp. 2036–2039, 2012.

[51] H. Lahkar and M. R, ‘Towards High Security and Fault Tolerant Dispersed

Storage System with Optimized Information Dispersal Algorithm’, Int. J. Adv.

Res. Comput. Sci., vol. 5, no. 6, Jul. 2014.

[52] J. . Resch and J. . Plank, ‘AONT-RS: Blending security and performance in

dispersed storage systems’, Proc USENIX FAST ‘11, 2011.

[53] K. Noyes, ‘IBM zeroes in on unstructured data with Cleversafe buy’, CIO, 05-

Oct-2015. [Online]. Available: https://www.cio.com/article/2989292/ibm-zeroes-

in-on-unstructured-data-with-cleversafe-buy.html. [Accessed: 12-Dec-2017].

[54] A. S. Eldin, A. Ghalwash, and H. Elshandidy, ‘Enhancing packet forwarding in

Mobile Ad hoc Networks by exploiting the Information Dispersal Algorithm’, in

Communications, Computers and Applications, 2008. MIC-CCA 2008.

Mosharaka International Conference on, 2008, pp. 20–25.

[55] M. Conti, E. Gregori, and G. Maselli, ‘Reliable and efficient forwarding in ad hoc

networks’, Ad Hoc Netw., vol. 4, no. 3, pp. 398–415, May 2006.

[56] Z. Eslami, N. Pakniat, and M. Nojoumian, ‘Ideal social secret sharing using

Birkhoff interpolation method’, Secur. Commun. Netw., vol. 9, no. 18, pp. 4973–

4982, Dec. 2016.

[57] G. Traverso, D. Demirel, S. M. Habib, and J. Buchmann, ‘AS 3: Adaptive social

secret sharing for distributed storage systems’, in Privacy, Security and Trust

(PST), 2016 14th Annual Conference on, 2016, pp. 528–535.

[58]P. Mell and T. Grance, ‘The NIST definition of cloud computing’, 2011.

[59] I. M. Abbadi, Cloud management and security. John Wiley & Sons, 2014.

 101

[60] G. Kaefer, ‘Cloud Computing Architecture’, Siemens Httpwww Scribd

Comdoc56483000Cloud-Comput.-Archit.-Gerald-Kaefer, 2010.

[61] M. Pranav, "Supporting naming of undiscovered application services is really a

useful addition Reply, ‘New VMware Cloud Management Application Visibility

Update’, VMware Cloud Management, 03-May-2012. [Online]. Available:

https://blogs.vmware.com/management/2012/05/new-vmware-cloud-

management-application-visibility-update.html. [Accessed: 17-Mar-2018].

[62] I. Morozan, ‘Multi-clouds database: A new model to provide security in cloud

computing’, Vrije Univ., 2015.

[63] M. A. AlZain, B. Soh, and E. Pardede, ‘MCDB: Using multi-clouds to ensure

security in cloud computing’, in Dependable, autonomic and secure computing

(DASC), 2011 IEEE Ninth International Conference on, 2011, pp. 784–791.

[64] A. Patel and K. Soni, ‘Three Major Security Issues in Single Cloud Environment’,

Int. J., vol. 4, no. 4, 2014.

[65] C. Padsala, R. Palav, P. Shah, and S. Sonawane, ‘Survey of Cloud Security

Techniques’, Int. J. Res. Appl. Sci. Eng. Technol., vol. 3, no. 3, pp. 47–50, 2015.

[66] D. Mounica and M. C. R. Rani, ‘Optimized Multi-Clouds using Shamir Shares’,

Int J Dev Comput Sci Technol, vol. 1, pp. 83–87, 2013.

[67] J. V. Bharambe and R. K. Makhijani, ‘Secured data storage and retrieval in

multiclouding using Shamir’s secret sharing algorithm’, 2013.

[68] A. Mallareddy, V. Bhargavi, and K. D. Rani, ‘A Single to Multi-Cloud Security

based on Secret Sharing Algorithm’, Int. J. Res., vol. 1, no. 7, pp. 910–915, 2014.

[69] M. Padmavathi, D. Sirisha, and R. A. Lakshman, ‘The Security of Cloud

Computing System Enabled by Shamir’s Secret Sharing Algorithm’, Int J Res

Stud Sci Eng Technol, vol. 1, pp. 103–109, 2014.

[70] T. Makkena and T. Rao, ‘A Shamir Secret Based Secure Data sharing between

Data owners’, 2014.

[71] T. Takagi and K. Morozov, ‘MEXT Secret Sharing and Cloud Computing

Workshop Overview’, 2011.

[72] J. L. Dautrich and C. V. Ravishankar, ‘Security limitations of using secret sharing

for data outsourcing’, in Data and Applications Security and Privacy XXVI,

Springer, 2012, pp. 145–160.

[73] M. A. Hadavi and R. Jalili, ‘Secure data outsourcing based on threshold secret

sharing; towards a more practical solution’, in VLDB 2010 PhD Workshop,

Singapore, 2010, pp. 54–59.

[74] D. Agrawal, A. El Abbadi, F. Emekci, A. Metwally, and S. Wang, ‘Secure data

management service on cloud computing infrastructures’, in New Frontiers in

Information and Software as Services, Springer, 2011, pp. 57–80.

[75] X. Tian, C. Sha, X. Wang, and A. Zhou, ‘Privacy preserving query processing on

secret share-based data storage’, in Database Systems for Advanced Applications,

2011, pp. 108–122.

[76] M. Tompa and H. Woll, ‘How to share a secret with cheaters’, J. Cryptol., vol. 1,

no. 3, pp. 133–138, 1989.

[77] K. M. Martin, ‘Challenging the adversary model in secret sharing schemes’,

Coding Cryptogr. II Proc. R. Flem. Acad. Belg. Sci. Arts, pp. 45–63, 2008.

[78] L. Hu, Y. Huang, D. Yang, Y. Zhang, and H. Liu, ‘SSeCloud: Using secret

sharing scheme to secure keys’, in IOP Conference Series: Earth and

Environmental Science, 2017, vol. 81, p. 012207.

[79] M. A. Khoshkholghi, A. Abdullah, R. Latip, S. Subramaniam, and M. Othman,

‘Disaster recovery in cloud computing: A survey’, Comput. Inf. Sci., vol. 7, no. 4,

p. 39, 2014.

 102

[80] S. Rajagopalan, B. Cully, R. O’Connor, and A. Warfield, ‘SecondSite: disaster

tolerance as a service’, in ACM SIGPLAN Notices, 2012, vol. 47, pp. 97–108.

[81] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield,

‘Remus: High availability via asynchronous virtual machine replication’, in

Proceedings of the 5th USENIX Symposium on Networked Systems Design and

Implementation, 2008, pp. 161–174.

[82] M. C. Caraman, S. A. Moraru, S. Dan, and D. M. Kristaly, ‘Romulus: disaster

tolerant system based on Kernel Virtual Machines’, Ann. DAAAM Proc., pp.

1671–1673, 2009.

[83] A. Juels and B. S. Kaliski Jr, ‘PORs: Proofs of retrievability for large files’, in

Proceedings of the 14th ACM conference on Computer and communications

security, 2007, pp. 584–597.

[84] G. Ateniese et al., ‘Provable data possession at untrusted stores’, in Proceedings

of the 14th ACM conference on Computer and communications security, 2007, pp.

598–609.

[85] K. D. Bowers, A. Juels, and A. Oprea, ‘HAIL: a high-availability and integrity

layer for cloud storage’, in Proceedings of the 16th ACM conference on Computer

and communications security, 2009, pp. 187–198.

[86] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, ‘Enabling public auditability and

data dynamics for storage security in cloud computing’, Parallel Distrib. Syst.

IEEE Trans. On, vol. 22, no. 5, pp. 847–859, 2011.

[87] L. Wei et al., ‘Security and privacy for storage and computation in cloud

computing’, Inf. Sci., vol. 258, pp. 371–386, 2014.

[88] Y. Tang, P. P. Lee, J. C. Lui, and R. Perlman, ‘FADE: Secure overlay cloud

storage with file assured deletion’, in Security and Privacy in Communication

Networks, Springer, 2010, pp. 380–397.

[89] Y. Tang, P. P. Lee, J. Lui, and R. Perlman, ‘Secure overlay cloud storage with

access control and assured deletion’, Dependable Secure Comput. IEEE Trans.

On, vol. 9, no. 6, pp. 903–916, 2012.

[90] B. Calder et al., ‘Windows Azure Storage: a highly available cloud storage

service with strong consistency’, in Proceedings of the Twenty-Third ACM

Symposium on Operating Systems Principles, 2011, pp. 143–157.

[91] S. Guilloteau and M. Venkatesen, Privacy in Cloud Computing-ITU-T

Technology Watch Report March 2012. 2013.

[92] G. Kulkarni, R. Waghmare, R. Palwe, V. Waykule, H. Bankar, and K. Koli,

‘Cloud storage architecture’, in Telecommunication Systems, Services, and

Applications (TSSA), 2012 7th International Conference on, 2012, pp. 76–81.

[93] S. Subashini and V. Kavitha, ‘A survey on security issues in service delivery

models of cloud computing’, J. Netw. Comput. Appl., vol. 34, no. 1, pp. 1–11,

2011.

[94] Y. Wang, Z. Li, and Y. Sun, ‘Cloud computing key management mechanism for

cloud storage’, 2015.

[95] B. T. Rao, ‘A study on data storage security issues in cloud computing’, Procedia

Comput. Sci., vol. 92, pp. 128–135, 2016.

[96] R. V. Rao and K. Selvamani, ‘Data Security Challenges and Its Solutions in

Cloud Computing’, Procedia Comput. Sci., vol. 48, pp. 204–209, Jan. 2015.

[97] D. Zissis and D. Lekkas, ‘Addressing cloud computing security issues’, Future

Gener. Comput. Syst., vol. 28, no. 3, pp. 583–592, 2012.

[98] P. Gharjale and P. Mohod, ‘Efficient public key cryptosystem for scalable data

sharing in Cloud storage’, in Computation of Power, Energy Information and

Commuincation (ICCPEIC), 2015 International Conference on, 2015, pp. 0325–

0329.

 103

[99] T. Wood, E. Cecchet, K. K. Ramakrishnan, P. J. Shenoy, J. E. van der Merwe,

and A. Venkataramani, ‘Disaster Recovery as a Cloud Service: Economic Benefits

& Deployment Challenges.’, HotCloud, vol. 10, pp. 8–15, 2010.

[100] M. Ji, A. C. Veitch, and J. Wilkes, ‘Seneca: remote mirroring done write.’, in

USENIX Annual Technical Conference, General Track, 2003, pp. 253–268.

[101] V. Javaraiah, ‘Backup for cloud and disaster recovery for consumers and

SMBs’, in Advanced Networks and Telecommunication Systems (ANTS), 2011

IEEE 5th International Conference on, 2011, pp. 1–3.

[102] M. Pokharel, S. Lee, and J. S. Park, ‘Disaster recovery for system architecture

using cloud computing’, in Applications and the Internet (SAINT), 2010 10th

IEEE/IPSJ International Symposium on, 2010, pp. 304–307.

[103] J. I. Khan and O. Y. Tahboub, ‘Peer-to-Peer Enterprise Data Backup over a Ren

Cloud’, in Information Technology: New Generations (ITNG), 2011 Eighth

International Conference on, 2011, pp. 959–964.

[104] Z. Jian-Hua and Z. Nan, ‘Cloud computing-based data storage and disaster

recovery’, in Future Computer Science and Education (ICFCSE), 2011

International Conference on, 2011, pp. 629–632.

[105] S. R. Patil, R. M. Shiraguppi, B. P. Jain, and S. Eda, ‘Methodology for Usage of

Emerging Disk to Ameliorate Hybrid Storage Clouds’, in IEEE International

Conference on Cloud Computing in Emerging Markets (CCEM), 2012, pp. 1–5.

[106] Y. Ueno, N. Miyaho, S. Suzuki, and K. Ichihara, ‘Performance Evaluation of a

Disaster Recovery System and Practical Network System Applications’, in

Systems and Networks Communications (ICSNC), 2010 Fifth International

Conference on, 2010, pp. 195–200.

[107] T. Wood, H. A. Lagar-Cavilla, K. K. Ramakrishnan, P. Shenoy, and J. Van der

Merwe, ‘PipeCloud: using causality to overcome speed-of-light delays in cloud-

based disaster recovery’, in Proceedings of the 2nd ACM Symposium on Cloud

Computing, 2011, p. 17.

[108] Y. Nakajima et al., ‘Design and implementation of virtualized ICT resource

management system for carrier network services toward cloud computing era’, in

ITU Kaleidoscope: Building Sustainable Communities (K-2013), 2013

Proceedings of, 2013, pp. 1–8.

[109] N. Aghdaie and Y. Tamir, ‘Fast transparent failover for reliable web service’, in

Proceedings of the 15th IASTED international conference on parallel and

distributed computing and systems (PDCS), 2003, pp. 757–762.

[110] M. Vrable, S. Savage, and G. M. Voelker, ‘Cumulus: Filesystem backup to the

cloud’, ACM Trans. Storage TOS, vol. 5, no. 4, p. 14, 2009.

[111] A. Lenk and S. Tai, ‘Cloud standby: disaster recovery of distributed systems in

the cloud’, in European Conference on Service-Oriented and Cloud Computing,

2014, pp. 32–46.

[112] A. Lenk, ‘Cloud Standby Deployment: A Model-Driven Deployment Method

for Disaster Recovery in the Cloud’, in Cloud Computing (CLOUD), 2015 IEEE

8th International Conference on, 2015, pp. 933–940.

[113] M. P. da Silva, R. R. Obelheiro, and G. P. Koslovski, ‘Adaptive Remus:

adaptive checkpointing for Xen-based virtual machine replication’, Int. J. Parallel

Emergent Distrib. Syst., vol. 32, no. 4, pp. 348–367, Jul. 2017.

[114] M. Dong, H. Li, K. Ota, L. T. Yang, and H. Zhu, ‘Multicloud-Based Evacuation

Services for Emergency Management’, IEEE Cloud Comput., vol. 1, no. 4, pp.

50–59, Nov. 2014.

[115] L. Chu and S. J. Wu, ‘An Integrated Building Fire Evacuation System with

RFID and Cloud Computing’, in 2011 Seventh International Conference on

 104

Intelligent Information Hiding and Multimedia Signal Processing, 2011, pp. 17–

20.

[116] L. Chu and S.-J. Wu, ‘A real-time decision support with cloud computing based

fire evacuation system’, in The 16th North-East Asia Symposium on Nano,

Information Technology and Reliability, 2011, pp. 45–48.

[117] Y.-J. Chen, C.-Y. Lin, and L.-C. Wang, ‘A personal emergency communication

service for smartphones using FM transmitters’, in Personal Indoor and Mobile

Radio Communications (PIMRC), 2013 IEEE 24th International Symposium on,

2013, pp. 3450–3455.

[118] P. Jogalekar and M. Woodside, ‘Evaluating the scalability of distributed

systems’, IEEE Trans. Parallel Distrib. Syst., vol. 11, no. 6, pp. 589–603, 2000.

[119] J. P. Sterbenz et al., ‘Resilience and survivability in communication networks:

Strategies, principles, and survey of disciplines’, Comput. Netw., vol. 54, no. 8,

pp. 1245–1265, 2010.

[120] Z. Li, L. O’brien, H. Zhang, and R. Cai, ‘On a catalogue of metrics for

evaluating commercial cloud services’, in Grid Computing (GRID), 2012

ACM/IEEE 13th International Conference on, 2012, pp. 164–173.

[121] A. K. Bardsiri and S. M. Hashemi, ‘Qos metrics for cloud computing services

evaluation’, Int. J. Intell. Syst. Appl., vol. 6, no. 12, p. 27, 2014.

[122] S. Narani, ‘Social Secret Sharing for Resource Management in Cloud’, ArXiv

Prepr. ArXiv13021185, 2013.

[123] K. Kapusta and G. Memmi, ‘A Fast Fragmentation Algorithm For Data

Protection In a Multi-Cloud Environment’, ArXiv Prepr. ArXiv180401886, 2018.

[124] F. J. Alsolami, Toward secure sensitive data in the cloud. University of

Colorado at Colorado Springs, 2015.

[125] J. Li, X. Chen, M. Li, J. Li, P. P. C. Lee, and W. Lou, ‘Secure Deduplication

with Efficient and Reliable Convergent Key Management’, IEEE Trans. Parallel

Distrib. Syst., vol. 25, no. 6, pp. 1615–1625, Jun. 2014.

[126] R. Gracia-Tinedo, M. S. Artigas, A. Moreno-Martinez, C. Cotes, and P. G.

Lopez, ‘Actively measuring personal cloud storage’, in Cloud Computing

(CLOUD), 2013 IEEE Sixth International Conference on, 2013, pp. 301–308.

[127] E. Bocchi, I. Drago, and M. Mellia, ‘Personal cloud storage benchmarks and

comparison’, IEEE Trans. Cloud Comput., 2015.

[128] E. Bocchi, I. Drago, and M. Mellia, ‘Personal cloud storage: Usage,

performance and impact of terminals’, in Cloud Networking (CloudNet), 2015

IEEE 4th International Conference on, 2015, pp. 106–111.

[129] P. Casas and R. Schatz, ‘Quality of experience in cloud services: survey and

measurements’, Comput. Netw., vol. 68, pp. 149–165, 2014.

[130] H. Jeon, Y.-G. Min, and K.-K. Seo, ‘A performance measurement framework of

cloud storage services’, Indian J. Sci. Technol., vol. 8, no. S8, pp. 105–111, 2015.

[131] F. Ogîgau-Neamtiu, "Cryptographic key management in cloud computing’, Def.

Resour. Manag. 21st Century, 2015.

[132] X. Hu, J. An, N. Song, and S. Jingtao, ‘Key management scheme for bottleneck

steiner tree based cloud computing’, 2015.

[133] G. Joshi, E. Soljanin, and G. Wornell, ‘Efficient Redundancy Techniques for

Latency Reduction in Cloud Systems’, ArXiv150803599 Cs Math, Aug. 2015.

[134] A. Shamir, ‘How To Share a Secret’, Commun. ACM CACM, vol. 22, no. 1, pp.

612–613, 1979.

[135] W. Buchanan, D. Lanc, E. Ukwandu, L. Fan, and G. and, ‘The Future Internet:

A World of Secret Shares’, Future Internet, vol. 7, no. 4, pp. 445–464, 2015.

[136] E. Ukwandu, W. J. Buchanan, and G. Russell, ‘TCloud: Availability at Zero

Downtime’.

 105

[137] A. Hoenes, D. McGrew, and P. Patnala, ‘Threshold Secret Sharing’. [Online].

Available: https://tools.ietf.org/html/draft-mcgrew-tss-03. [Accessed: 27-Jul-

2018].

 106

10 Appendix A

10.1 Performance Evaluation of a Fragmented
Secret System

This work was done as an evaluation of the performance of RESCUE using desktop

computers with folders as storage resources for the purpose of storing and recovering

of shares. It serves as a way of testing the overall performance overhead so as to

ascertain the implications of using RESCUE in data sharing in multi-cloud

architecture. After these tests, RESCUE was scaled to full cloud implementation using

Google Cloud VM alongside other cloud storage resources.

10.2 Overview of RESCUE

RESCUE is a secured threshold Cloud-based storage infrastructure using the

Fragmented Secret Sharing System design philosophy, and is based on multi-cloud

architecture for data storage. Replication for backup and restore of data from a

primary site to other sites separated geographically shows little-known potential in

eliminating system downtime because of the:

• Effects of latency on performance: the effect of latency on performance is a

source of performance lag in using replication for backup and restore of data or

virtualised infrastructure from a primary site to backup sites. Using synchronized

replication in a multi-cloud storage system has an increasingly large overhead,

and, on the other hand, asynchronous replication reduces the integrity of the

replicated data.

• Data integrity on recovery: quality assurance of recovered data is an issue not

readily discussed in data storage and retrieval, but a very strong necessity. So,

checking the integrity of data after recovery is necessary to eliminate possible data

corruption.

• Consistent data availability: data availability is key to the knowledge economy

and therefore needful to mitigate factors that add large overheads to systems and

thus using a robust, and all-encompassing, system is a necessity.

 107

RESCUE is designed to handle: the latency effect on performance by defining the

usage of key share mechanism rather than data sharing, when the file size is large.

It also addresses the issue of data integrity on recovery, as it is highly minimal or non-

existent depending on the combination used in terms of file size, fragment size and

key share policy. With regards to key share method; files are broken into chunks and

the chunks in turn encrypted with AES and safely decrypted using recovered key

before decrypting the chunks and combining file. In terms of shared data, data is

treated as a sequence of bytes so data encoding does not matter and recovered file are

cross-checked with the original file using SHA-512 hash function for data checksum.

Additionally, using secret sharing scheme to split data and recover it assures data

security in a keyless manner devoid of corruption as appropriate measure is put in

place in the algorithm to detect wrong shares during data recovery.

10.3 Architecture

The architecture of RESCUE involves data/key splitting, storage, and retrievals. The

two different methods involve data splitting or key splitting with data encryption and

decryption using recovered key. The method implemented starts by defining the

policy, which is the number of shares to be generated from each file, (N) and the least

required number of shares (M) needed to come together to recover the file. The Policy

of M-out-of-N, here the policy is 2-out-of-5, 3-out-of-5 and 4-out-of-5 shares,

implying that for example 2 shares out-of-5 generated shares from a file are needed to

recreate the file. The unique identifier is similar a magic number, unique to each

session that is appended to the share when created.

10.3.1 File share

Files are scanned as in Figure 24 from a designated folder and encoded to byte

streams. Using a pre-defined share policy, the encoded data is broken into shares. The

shares generated are stored in separate containers and from where they are read-in and

files recovered during file recovery on request.

10.3.2 Key share

Files are scanned as in Figure 24 from a designated folder as above, then using a

predefined chunk size say 1024 Bytes, files are broken into the defined chunk size,

encrypted and the encryption key shared as above. When the files are required, the

shares generated from the key are brought together and the key recovered from where

 108

encrypted chunks are decrypted and the chunks brought together and the files are

recreated.

10.3.2.1 Share generation

Using the equation below we generate shares:

iM

i
XiASUMGFAXf][_),(

1

0
−

=
= Equation 21

To create N shares from a secret, with a threshold of M, we will take a look on how

each octet of the secret is generated. An array A of M octets is created at first in which

the array element A[0] contains a portion of the secret, while A[1], A[2],..., A[M-1]

are selected independently and uniformly at random. Each share is generated by

computing the value of f(X,A), where X is the share index and the resulting octet is

appended to the share. A, B, C,... are arrays of M octets and each zero element of the

array contains a portion of the share. A[0], B[0], C[0], are equal to first, second and

third octets of the secret and so on. The power of X is the coefficient and M-1 is the

threshold. GF_SUM is Galois field summation, which takes place over GF(256),

different from integer addition as each addition uses the exclusive-or operation.

10.3.2.2 Secret Recovery

Just as in Shamir [12] authorised participants following earlier stated rules are able to

recover the secret using Lagrangian interpolation once the conditions:

1. All zero elements of the array of M octets are retrieved.

2. Number of retrieved elements greater or equal to the threshold.

3. All contributed shares from participants are certified as genuine and satisfies 2

above.

 109

File
container

Scans & retrieves file
RESCUE
Engine

Retrieves file metadata
Date and Time
Owner s ID
UUID
File name
File size

 Key Gen

Encryption
Algorithm

Encrypted
File

container

Share Creation
Algorithm

Share
Store 1

Share
store 2

Share
store 3

Share
store 4

Share
store 5

File
Metadata
Database

File
container

Scans & retrieves file
RESCUE
Engine

Retrieves file metadata
Date and Time
Owner s ID
UUID
File name
File size

 Key Gen

Encryption
Algorithm

Encrypted
File

container

Share Creation
Algorithm

Share
Store 1

Share
store 2

Share
store 3

Share
store 4

Share
store 5

File
Metadata
Database

Figure 24: Key/File share creation

10.3.2.3 Recovery: Files

When files are to be recovered as in Figure 25, the user types in the destination folder

for recovered files; the program picks up each filename, the associated values that

identify the owner of the files – the UUID all in the metadata database and used the

values gathered to confirm ownership and thereafter scans and retrieves all shares

associated with the filename. With these, file recovery is made using the Recovery

algorithm.

10.4 Recovery: Key

Following the initial method use above in ownership identification, the system

retrieves the encrypted file, recover key and use the key so recovered to decrypt the

file. See Figure 26 for details.

The number of shares recovered can be less than N but equals or greater than M

(Threshold). The shares must be of equal length, else they are inconsistent. In file

recovering, the output string is initialised to zero and the initial octet (share indexes

are grouped in octets) of the share is stripped from each share and none of these octets

are same else error will be reported, which halts the process. For each of these shares

 110

an array V of M octets is created, in which an array element V[i] contains the octet

from ith share. These stripped octets are appended to the octets array U, formed by

setting U[i] equals to the first octet of the ith share. The value of I(U, V) is computed,

and appended to the output string, which is returned as the secret. This contains one

fewer octet than the shares.

Retrieves owner s ID
RESCUE
Engine

Retrieves file metadata
Date and Time
Owner s ID
UUID
File name
File size

File
Metadata
Database

Owner

Share
Store 1

Share
store 2

Share
store 3

Share
store 4

Share
store 5

Date & Time
Share marker
Share

Recovery
Algorithm

File Store

Retrieves owner s ID
RESCUE
Engine

Retrieves file metadata
Date and Time
Owner s ID
UUID
File name
File size

File
Metadata
Database

Owner

Share
Store 1

Share
store 2

Share
store 3

Share
store 4

Share
store 5

Date & Time
Share marker
Share

Recovery
Algorithm

File Store

Figure 25: File Recovery

 111

Share
Store 1

Share
Store 2

Share
Store 3

Share
Store 4

Share
Store 5

Date & Time
Share marker
Share

Recovery Algorithm
Key recovered

File StoreDecrypting
Algorithm

Date and Time
Owner s ID
UUID
File name
File size

Retrieves owner s ID
RESCUE
Engine

Retrieves file metadata File
Metadata
Database

Owner

 Key Gen

Share Creation
Algorithm

Encrypted
file

Encryption
Algorithm

Share
Store 1

Share
Store 2

Share
Store 3

Share
Store 4

Share
Store 5

Date & Time
Share marker
Share

Recovery Algorithm
Key recovered

File StoreDecrypting
Algorithm

Date and Time
Owner s ID
UUID
File name
File size

Retrieves owner s ID
RESCUE
Engine

Retrieves file metadata File
Metadata
Database

Owner

 Key Gen

Share Creation
Algorithm

Encrypted
file

Encryption
Algorithm

Figure 26: Key recovery and File decryption

10.5 Results and Evaluations

Two different sets of experiments were performed: file/data share; and key share

methods. In file share, files of different sizes are created into share and stored in

folders. When the files are needed, the several shares are recovered from the folders

and the file recreated. Each file involved in the process is created into shares using M-

out-of-N threshold secret sharing scheme and the shares stored in folders, while in key

share, files of different sizes are broken into chunks; each chunk is encrypted using

AES of 256-bits key length then stored in folder, the encryption key is thereafter

shared, stored in folders as well.

When the files are needed, the shares are recovered from the folders for each key

based on policy and the key recreated, using each key to decrypt a chunk as retrieved

from the folder and the file recombined. The secret sharing scheme used is modified

Social Secret sharing scheme. The issue of confidentiality and integrity in the use of

secret sharing scheme has been validated by many works in secret sharing schemes

 112

such as Abdallah and Salleh [27], Buchanan et al. [135]. Since RESCUE is

concentrated on Data Availability at Zero Downtime [136], the essence of the

experiment is to understand all performance overheads that will impact negatively on

the objective of the system so as to eliminate them or validating already known facts.

Evaluation of the results: Secret sharing schemes have been used successfully in

data splitting and reconstruction, thereby providing data security in a keyless manner.

This section outlines an experiment involving two main methods of secret sharing

application – data sharing and key sharing. In Experiment One, figures 27 and 30

show normal curve with an increasing size of Threshold (M) and file size but Figure

28 and 29 showed otherwise, a varying curve indicating the effects of Share Writing

and Recovery from folders on systems performance. In Experiment Two, Figures 31,

32 and 33 showed the validation of [13, 14] on the effect of increasing Threshold and

file size on the system performance as in Figure 31, the threshold is 2, so the overhead

is with the Process not on Recovery as in figures 32 and 33. But a look at Figure 34,

35 and 36 indicate entirely different results from the previous ones thus giving an

understanding that there are resultant effects of file size, fragment size on share

policy. The fragment size was varied in all as well as share policy using file sizes from

1KB to 1GB. In all the results shown, it is evident that using fragmented secret share

system is the best option while dealing with big data infrastructure than using

threshold secret sharing scheme alone, which has proved impossible to be used to

scale large data infrastructure due to inherent characteristics of finite field arithmetic.

The evaluator, in this case, is the performance overhead at an increasing thresholds

and data sizes. The experiments showed that Share Writing and Recovery adds more

performance overhead in Experiments One, while in Experiment Two, the

performance overheads of File and Fragment Sizes on Share Policy were obvious.

These depict their strengths and weaknesses at different application scenarios.

The aim of the experiment is to discover all factors capable of adding performance

overhead thereby derailing total system performance both in File and Key Sharing

methods. Because we aim to apply the methods further in both network and cloud

scenarios, we will work in eliminating the discovered factors that add to performance

overhead to the system as this method has proved scalable with big data infrastructure.

The test machine is a Duo Core Intel Pentium N3530 2.16GHz, 2.16 GHz, 64bit x64-

based processor, Windows 8 operating system on 4GB of RAM.

 113

Two primary sets of results are presented which use the parameters of M=2, N=5;

M=3, N=5 and M=4, N=5. The variable N relates to the number of shares to create

while the variable M relates to the number of shares required for recreation of the

original arbitrary data (using each SSS algorithm). Results are presented in seconds

for Time, while in KB, MB and GBs for variables file sizes. From the figures and

tables presented, it can be clearly demonstrated that key share is the fastest method

regardless of file sizes as well the method capable of scaling over large volumes of

varying file sizes.

The key share experiment involves more stages than the previous and we therefore use

the terms, Process and Recover. Process time involves time taken to split the file into

chunks using a pre-defined chunk size, fragment encryption time, key share creation

and writing times while Recover time involves time taken to recover key shares from

folders, key recreation time, fragment decryption and file recombination times.

10.6 Conclusions

Experiments performed using secret sharing scheme has proved resilience in the face

of failures as not all hosts are required to reconstruct data after splitting, but a major

drawback remains the effect of latency on performance. This is worsened as data size

increase as well as the distance between each of the hosts thus giving rise to our work.

Lessons learnt are that using Key Share rather than Data Share method in combination

with an appropriate fragment and share policy is the only way to scale large data

infrastructure and with this lessons and validations we intend to eliminate all factors

revealed as capable of adding large overhead to the system. This will provide a

platform capable of achieving data availability at zero downtime.

10.7 Tables and Figures

Table 14: Share creation against policy

 Policy: 2 from 5 3 from 5 4 from 5

S/N

File Size

(KB)

Creation

Time (Sec)

Creation

Time (Sec)

Creation

Time (Sec)

1 1 0.106119 0.10933 0.143713

2 10 0.913352 1.075088 1.427096

3 100 1.833184 2.115918 2.461108

 114

Figure 27: Time taken to Create share against Policy

Table 15: Share Writing to folders against Policy

Policy: 2 from 5 3 from 5 4 from 5

S/N File Size (KB)

Writing Shares

(Sec)

Writing

Shares(Sec)

Writing

Shares(Sec)

1 1 0.020532 0.03125 0.164257

2 10 0.066987 0.100468 0.03355

3 100 0.090945 0.085788 0.068099

Ti
m

e
 (

Se
c)

Data Sizes (KB)

Time taken to Create shares of data against Share
Policy

2 from 5

3 from 5

4 from 5

 115

Figure 28: Share Writing to folders against Policy

Table 16:: Share Recovery against Policy

 Policy: 2 from 5 3 from 5 4 from 5

S/N File Size (KB)

Share Recovery

(Sec)

Share Recovery

(Sec)

Share Recovery

(Sec)

1 1 0.008113 0.004693 0.015012

2 10 0.083933 0.009362 0.005608

3 100 0.025136 0.010948 0.008912

Figure 29: Share Recovery from folders against Policy

Ti
m

e
 (

Se
c)

Data Sizes (KB)

Time taken to Write shares of data against Share Policy

2 from 5

3 from 5

4 from 5

Ti
m

e
(S

e
c)

Data Sizes (KB)

Time taken to Recover shares of data against Share Policy

2 from 5

3 from 5

4 from 5

 116

Table 17:: File Recreation against Policy

Policy: 2 from 5 3 from 5 4 from 5

S/N File Size (KB) File Recreation (sec) File Recreation (sec) File Recreation (sec)

1 1 0.03405 0.054628 0.10265

2 10 0.434176 0.558682 0.92636

3 100 0.674842 1.091936 1.704002

Figure 30: File Recreation against Policy

Figure 31: Process and Recover of file using 10KB fragment size on 2 from 5 Policy.

Ti
m

e
(S

e
c)

Data Sizes (KB)

Time taken to Recreate File against Share Policy

2 from 5

3 from 5

4 from 5

Ti
m

e
 (

Se
c)

File Sizes on 10KB fragment size

Time taken to process and recover file of different sizes on 2 from 5 key share
policy.

Process

Recovery

 117

Figure 32: Process and Recover of file using 10KB fragment size on 3 from 5 Policy.

Figure 33: Process and Recover of file using 10KB fragment size on 4 from 5 Policy.

Ti
m

e
 (

Se
c)

File Sizes on 10KB fragment size

Time taken to process and recover file of different sizes on 3 from 5 key share policy.

Process

Recovery

Ti
m

e
 (

Se
c)

File Sizes on 10KB fragment size

Time taken to process and recover file of different sizes on 4 from 5 key share policy

Process

Recovery

 118

Figure 34: Process and Recover of file using 100MB fragment size on 2 from 5 Policy.

Figure 35: Process and Recover of a file using 100MB fragment size on 3 from 5 Policy.

Ti
m

e
 (

Se
c)

File Sizes on 100MB fragment size

Time taken to process and recover file of different sizes on 2 from 5 key share policy.

Process

Recovery

Ti
m

e
 (

Se
c)

File Sizes on 100MB fragment size

Time taken to process and recover file of different sizes on 3 from 5 key share policy.

Process

Recovery

 119

Figure 36: Process and Recover of a file using 100MB fragment size on 4 from 5 Policy.

Ti
m

e
 (

Se
c)

File Sizes on 100MB fragment size

Time taken to process and recover file of different sizes on 4 from 5 key share policy.

Process

Recovery

 120

11 Appendix B

11.1 Basic Data Striping and RAID Systems

RAID stands for Redundant Array of Independent Disks. It is a well-known method of

combining several hard disk drives into one logical unit, so as to address the fault-

tolerance and performance limitations of an individual hard disk drive. The key

notions behind a RAID storage system are Data Striping and various levels of

Redundancy. The striping process takes large data blocks and splits them into blocks

of a defined size, such as 4 KB, which are then spread across each of the disks in the

array. This can increase the performance of a storage system as a n-disk array (i.e., n-

way striping) provides n times the read and write speed improvement of a single disk

(although in practice the actual performance achieved tends to be less than n times due

to control overheads). However, the trade-off is reliability, as the failure of any

individual disk would result in the failure of the entire array. Formally, assume that

each independent hard disk drive has an identical rate of failure r, then the overall

failure rate of an array of n disks is:

1 − (1 − r)n Equation 22

Basic data striping over an array of n-disks without redundancy is referred to as

RAID0, which is only suitable to situations where the highest I/O performance is

desired, whilst the resulting increased probability of data loss can be tolerated. In

other situations, reliability of data may outweigh system performance, and thus

instead of striping the data over n disks, the same data is duplicated (or mirrored) to n

disks. This strategy is referred to as RAID1, which is suitable to ensure the reliability

of critical data. In comparison to RAID0, the overall failure rate of a RAID1 array of n

disks becomes:

rn Equation 23

However, when the same set of data is duplicated over n disks, it would result in a

storage overhead of n − 1 disks.

RAID0 and RAID1 can be combined into a RAID01 or a RAID10 configuration. The

former means a mirrored configuration of multiple striped sets (i.e., mirror of stripes);

and the latter means a stripe across a number of mirrored sets (i.e., stripe of mirrors).

Both strategies are able to provide very good performance and reliability, whereas

 121

both are expensive solutions as considerable amount of hard disk storage is committed

to maintaining redundancy information.

Another RAID level, namely RAID5, attempts to mitigate the high costs of

RAID01/10. RAID5 utilizes striping and parity techniques to achieve simultaneously

a similar I/O performance to RAID0 with a significantly lower failure rate of:

1 − (1 − r)n − nr(1 − r)n−1 Equation 24

A parity bit (or check bit) is a bit added to the end of a string of binary code that

indicates whether the number of bits in the string with the value 1 is even or odd. In

computing and telecommunications, a parity bit is calculated via an XOR sum of all

the previous bits, yielding 0 for even parity and 1 for odd parity. Let A and B being

two binary sequences. If:

X = A XOR B

then the following will be true:

A = X XOR B

B = X XOR A

Using this property, we can say that the following expressions are also true (and this

can be repeated for an infinite amount of terms):

A XOR B XOR C XOR D = X

X XOR B XOR C XOR D = A

A XOR X XOR C XOR D = B

A XOR B XOR X XOR D = C

A XOR B XOR C XOR X = D

Put simply, if we calculate a XOR of a number sequence, we can substitute X for any

number in this sequence, recalculate the XOR, and recover the original number. This

is the principle for building a RAID5 array, of which an example is shown in Figure

37. Each of the four drives in Figure 37 are divided into four blocks, each belonging to

a stripe on the same level across each drive. Each drive and each stripe have a parity

block (stored in disk 4) which is the XOR of the other three blocks.

So, say Disk 2 failed, then the XOR of A1 with A2 and A4 would get the remaining

A3 for the A stripe; B1 with B2 and B3 to get the B4 parity block; etc. Generally

speaking, by introducing a single parity bit, RAID5 is able to survive the failure of

any single hard disk drive in any array which contains a minimum of three drives.

The RAID5 data striping mechanism can be applied to secret sharing of data in the

Cloud, where each cloud storage provider represents a disk storing one share of the

secret data, but the limitation of this lies in that it always requires n − 1 shares to

 122

reconstruct the original data, rather than a more desirable and flexible arbitrary k-out-

of-n shares.

A1

B1

C1

D1

A2

B2

C2

D2

A3

B3

C3

D3

A4

B4

C4

D4

Disk 1 Disk 2 Disk 3 Disk 4

Figure 37: A 4-disk Array in RAID5 format

 123

12 Appendix C

12.1 Detailed Experimental Results

12.2 Variant One

12.2.1 Fragments

File Sizes: 1KB, 10KB, 100KB, 1MB, 10MB, 100MB, 1GB

Fragment Sizes: 1KB, 10KB, 100KB, 1MB, 10MB, 100MB, 1GB

Secret Sharing Policy: 2 from 5

Plot: File Sizes in KB against Time Taken in Seconds to process and combine

file using a particular key share policy.

Table 18: Varied file sizes using 1KB fragment size in 2 from 5 share policy

S/
N

FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

1 1KB 0.007814 0.019532 0.015503 0.011718 0.05456668

2 10KB 0.046878 0.035514 0.467881 0.23438 0.78465236

3 100KB 0.2394 0.32927 0.634978 0.209857 1.41350527

4 1MB 2.128525 3.598536 5.165434 2.159326 13.0518216

5 10MB 83.9537 129.7083 131.0154 59.06891 403.746322

6 100MB 258.7115 3143.999 656.6972 1657.46 5716.86737

Figure 38: Varied file sizes using 1KB fragment size in 2 from 5 share policy

0

1000

2000

3000

4000

5000

6000

7000

1KB 10KB 100KB 1MB 10MB 100MB

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 2 from 5 share policy

1KB Fragment in 2 from 5

 124

Table 19: Varied file sizes using 10KB fragment size in 2 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

1 1KB 0.015459 0.062503 0.007737 0.00761 0.09331036

2 10KB 0.015662 0.027291 0 0.01556 0.05851249

3 100KB 0.054534 0.07285 0.093732 0.054647 0.27576305

4 1MB 0.383249 0.281557 0.564448 0.234383 1.46363745

5 10MB 2.140715 2.6705 3.520125 2.093841 10.4251813

6 100MB 22.28913 31.55624 38.52662 23.57686 115.948858

7 1GB 385.7138 2098.181 905.8744 422.0202 3811.78945

Figure 39: Varied file sizes using 10KB fragment size in 2 from 5 share policy

Table 20: Varied file sizes using 100KB fragment size in 2 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

1 1KB 0 0.031374 0.00774 0 0.039114

2 10KB 0.015586 0.046881 0 0 0.06246698

3 100KB 0.015625 0.011734 0.015587 0 0.04294586

4 1MB 0.077863 0.120823 0.062505 0.031251 0.29244148

5 10MB 0.468773 0.509873 0.695343 0.265636 1.93962426

6 100MB 2.306734 4.857761 5.507886 4.238577 16.9109581

7 1GB 65.50594 135.7359 136.9692 122.2016 460.412576

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 2 from 5 share policy

10KB Fragment in 2 from 5

 125

Figure 40: Varied file sizes using 100KB fragment size in 2 from 5 share policy

Table 21: Varied file sizes using 1MB fragment size in 2 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

1 1KB 0.01542 0.046879 0 0 0.06229949

2 10KB 0.015629 0.039606 0.015504 0.007814 0.0785534

3 100KB 0.007813 0.015626 0.015588 0 0.0390268

4 1MB 0.026114 0.023432 0.039002 0.015626 0.10417414

5 10MB 0.124867 0.364098 0.24216 0.054688 0.78581219

6 100MB 0.715984 2.259576 2.371971 0.466472 5.81400332

7 1GB 58.32339 100.316 133.5535 123.2983 415.491188

0

50

100

150

200

250

300

350

400

450

500

1KB 10KB 100KB 1MB 10MB 100MB 1GB

Ti
m

e
 T

ak
e

n
 (

S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 2 from 5 share policy

100KB Fragment in 2 from 5

 126

Figure 41: Varied file sizes using 1MB fragment size in 2 from 5 share policy

Table 22: Varied file sizes using 10MB fragment size in 2 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

1 1KB 0.023438 0.101659 0.109469 0.023346 0.2579124

2 10KB 0.015488 0.406416 0.031252 0.015626 0.46878195

3 100KB 0.01557 0.023438 0.015626 0.062598 0.11723244

4 1MB 0.015625 0.03125 0.031253 0.007811 0.08593885

5 10MB 0.804761 0.234951 1.023605 0.085927 2.14924483

6 100MB 0.461024 1.729554 2.14624 0.321052 4.65786879

7 1GB 43.87095 47.18494 64.00888 40.07847 195.143231

0

50

100

150

200

250

300

350

400

450

1KB 10KB 100KB 1MB 10MB 100MB 1GB

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 2 from 5 share policy

1MB Fragment in 2 from 5

 127

Figure 42: Varied file sizes using 10MB fragment size in 2 from 5 share policy

Table 23: Varied file sizes using 100MB fragment size in 2 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

1 1KB 0.007704 0.023322 0.031273 0 0.06229913

2 10KB 0 0.03125 0.007814 0 0.03906357

3 100KB 0.015669 0.031253 0.015565 0 0.06248677

4 1MB 0.031139 0.086004 0.031161 0.007814 0.15611708

5 10MB 0.046877 0.195385 0.195246 0.015627 0.45313442

6 100MB 1.337963 1.310698 2.81248 1.437562 6.89870221

7 1GB 55.83863 27.30553 34.04062 21.6859 138.870675

0

50

100

150

200

250

1KB 10KB 100KB 1MB 10MB 100MB 1GB

Ti
m

e
 T

ak
e

n
 (

S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 2 from 5 share policy

10MB Fragment in 2 from 5

 128

Figure 43: Varied file sizes using 100MB fragment size in 2 from 5 share policy

Table 24: Varied file sizes using 1GB fragment size in 2 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

1 1KB 0.007794 0.039104 0.015493 0 0.06239057

2 10KB 0 0 0.023367 0 0.02336657

3 100KB 0.009818 0.021634 0.023639 0.005499 0.06059051

4 1MB 0.00801 0.038056 0.036052 0.005508 0.08762646

5 10MB 0.102186 0.234294 0.218722 0.039147 0.59434903

6 100MB 1.18749 2.782697 2.881051 1.257869 8.10910678

7 1GB 39.4435 62.98048 434.7571 35.47601 572.657097

0

20

40

60

80

100

120

140

160

1KB 10KB 100KB 1MB 10MB 100MB 1GB

Ti
m

e
 T

ak
e

n
 (

S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 2 from 5 share policy

100MB Fragment in 2 from 5

 129

Figure 44: Varied file sizes using 1GB fragment size in 2 from 5 share policy

File Sizes: 1KB, 10KB, 100KB, 1MB, 10MB, 100MB, 1GB

Fragment Sizes: 1KB, 10KB, 100KB, 1MB, 10MB, 100MB, 1GB

Secret Sharing Policy: 3 from 5

Plot: File Sizes in KB against Time Taken in Seconds to process and combine

file using a particular key share policy.

Table 25: Varied file sizes using 1 KB fragment size in 3 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

1 1KB 0.007814 0.024441 0.015626 0 0.04788077

2 10KB 0.039009 0.028408 0.17977 0.038987 0.286173698

3 100KB 0.355546 0.290273 0.507835 0.226573 1.380226719

4 1MB 2.460981 2.749018 3.411468 1.961024 10.58249097

5 10MB 20.73167 31.34608 71.71715 19.70122 143.496118

0

100

200

300

400

500

600

700

1KB 10KB 100KB 1MB 10MB 100MB 1GB

Ti
m

e
 T

ak
e

n
 (

S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 2 from 5 share policy

1GB Fragment in 2 from 5

 130

Figure 45: Varied file sizes using 1KB fragment size in 3 from 5 share policy

Table 26: Varied file sizes using 10KB fragment size in 3 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

1 1KB 0.007815 0.054611 0.007871 0 0.070297003

2 10KB 0.015624 0.023468 0.031187 0.007814 0.078092813

3 100KB 0.070212 0.05682 0.062431 0.023438 0.21290154

4 1MB 0.523388 0.386838 0.507764 0.250011 1.668001673

5 10MB 3.164124 2.763088 7.033319 4.414262 17.37479342

6 100MB 96.407 93.02779 212.402 148.634 550.4707818

0

20

40

60

80

100

120

140

160

1KB 10KB 100KB 1MB 10MB

Ti
m

e
 T

ak
e

n
 (

S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 3 from 5 share policy

1KB Fragment in 3 from 5

 131

Figure 46: Varied file sizes using 10KB fragment size in 3 from 5 share policy

Table 27: Varied file sizes using 100KB fragment size in 3 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

1 1KB 0.032046 0.055771 0.008948 0.008453 0.10521841

2 10KB 0.035926 0.02375 0.030348 0.074121 0.164145291

3 100KB 0.085691 0.007237 0.096141 0.450164 0.639233004

4 1MB 0.386582 0.059073 0.739658 2.010074 3.195386351

5 10MB 5.276726 0.590746 7.817365 3.073143 16.75798046

6 100MB 51.49968 5.967706 211.5395 30.44199 299.448869

0

100

200

300

400

500

600

1KB 10KB 100KB 1MB 10MB 100MB

Ti
m

e
 T

ak
e

n
 (

S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 3 from 5 share policy

10KB Fragment in 3 from 5

0

50

100

150

200

250

300

350

1KB 10KB 100KB 1MB 10MB 100MB

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 3 from 5 share policy

100KB Fragment in 3 from 5

 132

Figure 47: Varied file sizes using 100KB fragment size in 3 from 5 share policy

Table 28: Varied file sizes using 1MB fragment size in 3 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

1 1KB 0.008512 0.065378 0.008515 0.035585 0.117990375

2 10KB 0.01302 0.02103 0.010015 0.014521 0.058585167

3 100KB 0.021531 0.023533 0.011017 0.025536 0.081617594

4 1MB 0.017026 0.065158 0.030042 0.031525 0.143750549

5 10MB 0.108657 0.236346 0.303846 0.056082 0.704930187

6 100MB 1.344405 3.045307 3.22482 0.691046 8.305577577

7 1GB 104.6643 49.06252 62.80052 37.64411 254.171503

Figure 48: Varied file sizes using 1MB fragment size in 3 from 5 share policy

Table 29: Varied file sizes using 10MB fragment size in 3 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

1 1KB 0.020112 0.023535 0.009015 0.007514 0.060176014

2 10KB 0.026537 0.036577 0.009023 0.007011 0.079147697

3 100KB 0.01502 0.033179 0.011017 0.022862 0.082077845

4 1MB 0.023534 0.034552 0.036846 0.025393 0.120325445

5 10MB 0.058586 0.191281 0.199291 0.030044 0.479201556

6 100MB 0.499753 1.877582 1.954264 0.262493 4.594092017

7 1GB 96.12252 43.16561 53.37338 37.46342 230.1249373

0

50

100

150

200

250

300

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Plot of File Sizes agsinst Time Taken in 3 from 5 share policy

1MB Fragment in 3 from 5

 133

Figure 49: Varied file sizes using 10MB fragment size in 3 from 5 share policy

Table 30: Varied file sizes using 100MB fragment size in 3 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

1 1KB 0.019525 0.034548 0.009015 0.032547 0.095635414

2 10KB 0.031044 0.047069 0.009012 0.007512 0.094637393

3 100KB 0.028545 0.046119 0.030143 0.007513 0.112320304

4 1MB 0.028566 0.061591 0.030044 0.009013 0.129214049

5 10MB 0.078111 0.204799 0.194784 0.051771 0.529465198

6 100MB 1.864599 7.377933 3.008147 1.185042 13.43572044

7 1GB 194.9306 39.19965 42.25581 28.53763 304.9236548

Figure 50: Varied file sizes using 100MB fragment size in 3 from 5 share policy

0

50

100

150

200

250

T
im

e
 T

a
ke

n
 (

S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 3 from 5 share policy

10MB Fragment in 3 from 5

0

50

100

150

200

250

300

350

Ti
m

e
 t

ak
en

 (
S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 3 from 5 share policy

100MB Fragment in 3 from 5

 134

Table 31: Varied file sizes using 1GB fragment size in 3 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

1 1KB 0.012519 0.02003 0.021626 0.007512 0.06168723

2 10KB 0.014022 0.025037 0.028429 0.008012 0.075499296

3 100KB 0.024529 0.026193 0.01197 0.00751 0.070202584

4 1MB 0.010514 0.042563 0.031548 0.010013 0.094639063

5 10MB 0.055076 0.187779 0.195324 0.038056 0.476234913

6 100MB 1.785259 2.842892 3.164258 1.471594 9.264002561

7 1GB 223.3865 572.8175 1050.397 322.2105 2168.811955

Figure 51: Varied file sizes using 1GB fragment size in 3 from 5 share policy

File Sizes: 1KB, 10KB, 100KB, 1MB, 10MB, 100MB, 1GB

Fragment Sizes: 1KB, 10KB, 100KB, 1MB, 10MB, 100MB, 1GB

Secret Sharing Policy: 4 from 5

Plot: File Sizes in KB against Time Taken in Seconds to process and combine

file using a particular key share policy.

Table 32: Varied file sizes using 1KB fragment size in 4 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

1 1KB 0.045069 0.017524 0.04006 0.022031 0.124684453

2 10KB 0.089797 0.063733 0.205464 0.040059 0.399052507

3 100KB 0.441522 0.552298 1.030704 0.331485 2.356008299

0

500

1000

1500

2000

2500

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 3 from 5 share policy

1GB Fragment in 3 from 5

 135

Figure 52: Varied file sizes using 1KB fragment size in 4 from 5 share policy

Table 33: Varied file sizes using 10KB fragment size in 4 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

1 1KB 0.054735 0.029455 0.010021 0.00801 0.102221012

2 10KB 0.052071 0.023409 0.018026 0.011017 0.104522109

3 100KB 0.06436 0.06374 0.124244 0.041061 0.293404951

4 1MB 0.497475 0.561048 0.923853 0.394741 2.377116688

Figure 53: Varied file sizes using 10KB fragment size in 4 from 5 share policy

0

0.5

1

1.5

2

2.5

1KB 10KB 100KB

Ti
m

e
 T

ak
e

n
 (

S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 4 from 5 share policy

1KB Fragment in 4 from 5

0

0.5

1

1.5

2

2.5

1KB 10KB 100KB 1MB

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 4 from 5 share policy

10KB Fragment in 4 from 5

 136

Table 34: Varied file sizes using 100KB fragment size in 4 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTim

e

OverHeadCost

1 1KB 0.011017 0.016023 0.010015 0.008013 0.045068264

2 10KB 0.016021 0.020027 0.011017 0.080083 0.12714839

3 100KB 0.033045 0.017527 0.019031 0.011016 0.0806185

4 1MB 0.076108 0.076481 0.151044 0.042059 0.345691375

5 10MB 0.489383 1.046031 0.995171 0.389736 2.920321628

Figure 54: Varied file sizes using 100KB fragment size in 4 from 5 share policy

Table 35: Varied file sizes using 1MB fragment size in 4 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

1 1KB 0.015165 0.019025 0.009014 0.007011 0.050215244

2 10KB 0.016024 0.019028 0.010012 0.00801 0.05307436

3 100KB 0.009013 0.01903 0.012019 0.008011 0.048072815

4 1MB 0.032046 0.070643 0.039058 0.036055 0.177802086

5 10MB 0.242368 0.28314 0.288423 0.082094 0.896025287

6 100MB 1.427057 3.188541 3.232013 0.870321 8.71793245

0

0.5

1

1.5

2

2.5

3

3.5

1KB 10KB 100KB 1MB 10MB

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 4 from 5 share policy

100KB Fragment in 4 from 5

 137

Figure 55: Varied file sizes using 1MB fragment size in 4 from 5 share policy

Table 36: Varied file sizes using 10MB fragment size in 4 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

1 1KB 0.021032 0.079934 0.011017 0.007009 0.118992329

2 10KB 0.027039 0.016024 0.009015 0.00701 0.059087992

3 100KB 0.033048 0.076109 0.012018 0.039436 0.160611153

4 1MB 0.03004 0.076736 0.032045 0.010015 0.148836136

5 10MB 0.098146 0.179262 0.279647 0.071104 0.628159046

6 100MB 0.818294 2.268259 2.388486 0.403592 5.878630726

7 1GB 87.14479 49.09185 49.53975 41.1374 226.9137902

Figure 56: Varied file sizes using 10MB fragment size in 4 from 5 share policy

0

1

2

3

4

5

6

7

8

9

10

1KB 10KB 100KB 1MB 10MB 100MB

Ti
m

e
 T

ak
e

n
 (

S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 4 from 5 share policy

1MB Fragment in 4 from 5

0

50

100

150

200

250

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 4 from 5 share policy

10MB Fragment in 4 from 5

 138

Table 37: Varied file sizes using 100MB fragment size in 4 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

1 1KB 0.054091 0.078141 0.010017 0.008011 0.150259972

2 10KB 0.024037 0.017024 0.008889 0.008013 0.057962894

3 100KB 0.022032 0.067101 0.032055 0.022034 0.143222332

4 1MB 0.044828 0.080118 0.031864 0.026553 0.183362961

5 10MB 0.088123 0.224328 0.231341 0.028037 0.571829319

6 100MB 1.746907 1.490762 3.070401 1.048018 7.356088161

7 1GB 73.1758 31.97497 37.34199 28.54653 171.0392945

Figure 57: Varied file sizes using 100MB fragment size in share policy

Table 38: Varied file sizes using 1GB fragment size in 4 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

1 1KB 0.021034 0.166063 0.010013 0.007008 0.204117775

2 10KB 0.021028 0.038056 0.011017 0.008012 0.078113079

3 100KB 0.045064 0.058084 0.047072 0.007009 0.157228947

4 1MB 0.052076 0.121175 0.051073 0.010013 0.23433733

5 10MB 0.081123 0.203299 0.194283 0.030045 0.508749962

6 100MB 1.876107 3.978742 3.320234 1.230602 10.40568471

7 1GB 87.97622 562.5093 1627.002 38.63254 2316.119604

0

20

40

60

80

100

120

140

160

180

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 4 from 5 share policy

100MB Fragment in 4 from 5

 139

Figure 58: Varied file sizes using 1GB fragment size in 4 from 5 share policy

12.2.2 Key Share Creation and Recovering

File Sizes: 1KB, 10KB, 100KB, 1MB, 10MB, 100MB, 1GB

Fragment Sizes: 1KB, 10KB, 100KB, 1MB, 10MB, 100MB, 1GB

Secret Sharing Policy: 2 from 5

Plot: File Sizes in KB against Time Taken in Seconds to process and recover

secret key using a particular key share policy.

Table 39: Key Share Creation and Recovering using 1KB fragment in 2 from 5 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0 0.007813275 0.001562595 0.007751107 0.017126977

2 10KB 0.04972036 0.05682285 0.01562595 0 0.12216916

3 100KB 0.3956114 0.6448381 0.008513689 0 1.048963189

4 1MB 4.817735 7.716554 0.067607008 0.004066491 12.6059625

5 10MB 106.03329 224.536643 0.748716545 0.365789056 331.6844386

6 100MB 1538.0304 2280.3814 17.59926614 3.519875407 3839.530942

0

500

1000

1500

2000

2500

Ti
m

e
 T

ak
e

n
 (

S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 4 from 5 share policy

1GB Fragment in 4 from 5

 140

Figure 59: Key Share Creation and Recovering using 1KB fragment in 2 from 5 share policy

Table 40: Key Share Creation and Recovering using 10KB fragment in 2 from 5 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.015624046 0.023435116 0.004688001 0.007812977 0.05156014

2 10KB 0.019611657 0.015583277 0.003124714 0.00781095 0.046130598

3 100KB 0.07102507 0.05682039 0.001562595 0 0.129408055

4 1MB 0.3954959 0.6173189 0.010937715 0.0078125 1.031565015

5 10MB 3.7395 5.776235 0.075003028 0.039065003 9.629803031

6 100MB 38.96319 67.60683 0.702415705 0.343688607 107.6161243

7 1GB 400.1159 779.7861 21.66762698 3.590544581 1205.160172

Figure 60: Key Share Creation and Recovering using 10KB fragment in 2 from 5 share policy

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Ti
m

e
 T

ak
e

n
 (

S)

File Sizes (KB)

Varied File Sizes using 1KB fragment in 2 from 5 share policy

1KB fragment in Variable file
sizes

0

200

400

600

800

1000

1200

1400

T
im

e
 T

a
ke

n
 (

S)

File Sizes (KB)

Varied file sizes using 10KB fragment in 2 from 5 share policy

10KB fragment in variable
file sizes

 141

Table 41: Key Share Creation and Recovering using 100KB fragment in 2 from 5 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.007838011 0.023381114 0.006269598 0 0.037488723

2 10KB 0.007813931 0.015626431 0 0 0.023440362

3 100KB 0.007812977 0.011719525 0.003098392 0.007735014 0.030365908

4 1MB 0.09242752 0.12073322 0.003100586 0 0.216261326

5 10MB 0.394453 0.6486295 0.006310487 0.015625954 1.065018941

6 100MB 4.339445 6.764127 0.071877098 0.031312108 11.20676121

7 1GB 42.49972 74.2406 0.722071505 0.453271508 117.915663

Figure 61: Key Share Creation and Recovering using 100KB fragment in 2 from 5 share

policy

Table 42: Key Share Creation and Recovering using 1MB fragment in 2 from 5 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.01562345 0.015625 0.001549006 0 0.032797456

2 10KB 0 0.02343452 0.001101365 0.001501918 0.026037803

3 100KB 0.011718452 0.050782264 0 0.003906727 0.066407443

4 1MB 0.003876984 0.019532502 0 0 0.023409486

5 10MB 0.08513852 0.09226236 0 0 0.17740088

6 100MB 0.3869049 0.6269624 0.007811785 0 1.021679085

7 1GB 4.906314 6.379165 0.084378815 0.078129053 11.44798687

0

20

40

60

80

100

120

140

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Varied file sizes using 100KB fragment in 2 from 5 share policy

100KB fragment in variable
file sizes

 142

Figure 62: Key Share Creation and Recovering using 1MB fragment in 2 from 5 share policy

Table 43: Key Share Creation and Recovering using 10MB fragment in 2 from 5 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.015615106 0.054621458 0.007812691 0 0.078049255

2 10KB 0.015594959 0.031126022 0 0 0.046720982

3 100KB 0.007812977 0.007812023 0.001579499 0 0.017204499

4 1MB 0.007812977 0.015625596 0.00469821 0 0.028136783

5 10MB 0 0.97619534 0.003150225 0 0.979345565

6 100MB 0.04982027 0.07785375 0.003112006 0.007812977 0.138599003

7 1GB 0.88994782 1.7235888 0.024221396 0.007811546 2.645569562

Figure 63: Key Share Creation and Recovering using 10MB fragment in 2 from 5 share policy

0

2

4

6

8

10

12

14

Ti
m

e
 T

ak
e

n
 (

S)

File Sizes (KB)

Varied file sizes using 1MB fragment size in 2 from 5 share policy

1MB fragment in variable
file sizes

0

0.5

1

1.5

2

2.5

3

Ti
m

e
 T

ak
en

 (
S)

File Sizes (KB)

Varied file sizes using 10MB fragment in 2 from 5 share policy

10MB frament in variabe file
sizes

 143

Table 44: Key Share Creation and Recovering using 100MB fragment in 2 from 5 share

policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.0079 0.007726431 0.00156281 0 0.017189241

2 10KB 0 0.0078125 0.001549411 0 0.009361911

3 100KB 0.007815003 0.007812977 0.00156419 0 0.01719217

4 1MB 0.015667081 0.015568376 0 0 0.031235457

5 10MB 0 0.007812977 0 0.007813096 0.015626073

6 100MB 0.003906787 0.015624762 0.001571512 0 0.021103061

7 1GB 0.19159794 0.16335043 0.00794549 0 0.36289386

Figure 64: Key Share Creation and Recovering using 100MB fragment in 2 from 5 share

policy

Table 45: Key Share Creation and Recovering using 1GB fragment in 2 from 5 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.007737517 0.055197954 0 0 0.062935471

2 10KB 0 0.015625 0.001582384 0 0.017207384

3 100KB 0.009815454 0.011816621 0.002163911 0.000500083 0.024296069

4 1MB 0.003503442 0.013517618 0.00800322 0.001502514 0.026526794

5 10MB 0.007814407 0.00781405 0.001578999 0 0.017207456

6 100MB 0.007820487 0.046877384 0.001562715 0.007751465 0.064012051

7 1GB 1.119861722 0.605621219 0.012093687 0.007828951 1.745405579

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Varied file sizes using 100MB fragment in 2 from 5 share policy

100MB fragment in variable
file sizes

 144

Figure 65: Key Share Creation and Recovering using 1GB fragment in 2 from 5 share policy

File Sizes: 1KB, 10KB, 100KB, 1MB, 10MB, 100MB, 1GB

Fragment Sizes: 1KB, 10KB, 100KB, 1MB, 10MB, 100MB, 1GB

Secret Sharing Policy: 3 from 5

Plot: File Sizes in KB against Time Taken in Seconds to process and recover secret

key using a particular key share policy.

Table 46: Key Share Creation and Recovering using 1KB fragment in 3 from 5 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.001999975 0.014819742 0.001568794 0 0.018388511

2 10KB 0.04971905 0.07812608 0.002437305 0 0.130282435

3 100KB 0.5164762 0.6092557 0.015612602 0.424601555 1.565946057

4 1MB 5.293963 6.223017 0.069243789 41.463992 53.05021579

5 10MB 47.87565 71.48502 0.693807769 4101.797584 4221.852062

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Ti
m

e
 T

ak
e

n
 (

S)

File Sizes (KB)

Varied file sizes using 1GB fragment in 2 from 5 share policy

1GB fragment in variable file
sizes

 145

Figure 66: Key Share Creation and Recovering using 1KB fragment in 3 from 5 share policy

Table 47: Key Share Creation and Recovering using 10KB fragment in 3 from 5 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

 1 1KB 0.007918477 0.001565707 0.034364295 0 0.043848479

 2 10KB 0.011720224 0.01171881 0.002063322 0 0.025502356

 3 100KB 0.07813096 0.0781237 0.001562691 0.0078125 0.165629851

 4 1MB 0.6922069 0.6770385 0.007134318 0.424463511 1.800843229

 5 10MB 5.820417 6.456415 0.1079391 41.2689935 53.6537646

 6 100MB 49.52936 280.75698 0.698485422 4101.788009 4432.772834

Figure 67: Key Share Creation and Recovering using 10KB fragment in 3 from 5 share policy

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1KB 10KB 100KB 1MB 10MB

Ti
m

e
 T

ak
e

n
 (

S)

File Sizes (KB)

Varied file sizes using 1KB fragment in 3 from 5 share policy

1KB fragment in variable file
sizes

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Varied file sizes using 10KB fragment in 3 from 5 share policy

10KB fragment in variable
file sizes

 146

Table 48: Key Share Creation and Recovering using 100KB fragment in 3 from 5 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.014020085 0.038558364 0.006610155 0.005006909 0.064195513

2 10KB 0.010513544 0.031795979 0.0038059 0.003003597 0.04911902

3 100KB 0.004733075 0.018936558 0.005607772 0.00801003 0.037287435

4 1MB 0.04486291 0.17686271 0.011015558 0.424120426 0.656861604

5 10MB 0.4684845 1.8965906 0.075609422 41.84533298 44.2860175

6 100MB 4.66078 19.933848 0.90046041 4531.828259 4557.323347

Figure 68: Key Share Creation and Recovering using 100KB fragment in 3 from 5 share

policy

Table 49: Key Share Creation and Recovering using 1MB fragment in 3 from 5 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.00750792 0.024041891 0.003505302 0.003004074 0.038059187

2 10KB 0.005506635 0.024134517 0.003405094 0.002502441 0.035548687

3 100KB 0.005005479 0.024034381 0.003807426 0.00250411 0.035351396

4 1MB 0.005508065 0.019026518 0.003905606 0.003003359 0.031443548

5 10MB 0.04505467 0.18677616 0.004206061 0.018526435 0.254563326

6 100MB 0.4826415 1.946952 0.011116862 0.432633519 2.873343881

7 1GB 4.989744 21.453339 0.187532067 41.61609554 68.24671061

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Varied file sizes using 100KB fragment in 3 from 5 share policy

100KB fragment in variable
file sizes

 147

Figure 69: Key Share Creation and Recovering using 1MB fragment in 3 from 5 share policy

Table 50: Key Share Creation and Recovering using 10MB fragment in 3 from 5 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.006509542 0.030044436 0.004006076 0.003504992 0.044065046

2 10KB 0.005507469 0.019529939 0.003304434 0.002000451 0.030342293

3 100KB 0.004006028 0.020030022 0.00320487 0.002504587 0.029745507

4 1MB 0.005007386 0.023534417 0.00390588 0.002505541 0.034953224

5 10MB 0.004507065 0.03955853 0.003304601 0.002004027 0.049374223

6 100MB 0.05157232 0.18577373 0.004005647 0.006009936 0.247361633

7 1GB 1.6381979 5.3205009 0.17423861 0.533988953 7.666926363

Figure 70: Key Share Creation and Recovering using 10MB fragment in 3 from 5 share policy

0

10

20

30

40

50

60

70

80

Ti
m

e
 T

ak
e

n
 (

S)

File Sizes (KB)

Varied file sizes using 1MB fragment in 3 from 5 share policy

1Mb fragment in
variable file sizes

0

1

2

3

4

5

6

7

8

9

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Varied file sizes using 10MB fragment in 3 from 5 share policy

10MB fragment in variable
file sizes

 148

Table 51: Key Share Creation and Recovering using 100MB fragment in 3 from 5 share

policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

 1 1KB 0.009513378 0.028017998 0.00420537 0.003503919 0.045240665

 2 10KB 0.013522625 0.046231985 0.00730865 0.00600493 0.07306819

 3 100KB 0.01452148 0.029041052 0.005407834 0.004507065 0.053477431

 4 1MB 0.005006552 0.018527627 0.00300386 0.002505064 0.029043103

 5 10MB 0.005009532 0.025157452 0.004906583 0.003504038 0.038577605

 6 100MB 0.019026995 0.035051942 0.003906035 0.002503037 0.060488009

 7 1GB 0.58460409 0.70191026 0.036320114 0.013153458 1.335987922

Figure 71: Key Share and Recovering using 100MB fragment in 3 from 5 share policy

Table 52: Key Share Creation and Recovering using 1GB fragment in 3 from 5 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.004504561 0.022533417 0.003804874 0.002502918 0.03334577

2 10KB 0.004504919 0.02116394 0.003404713 0.0028162 0.031889772

3 100KB 0.004005432 0.020029902 0.003505039 0.002503037 0.03004341

4 1MB 0.009513497 0.034051538 0.005709576 0.002499104 0.051773715

5 10MB 0.005006075 0.031042457 0.00410662 0.002002001 0.042157153

6 100MB 0.01941359 0.02503264 0.004306817 0.003006458 0.051759505

7 1GB 3.183449984 1.58512044 0.382245779 0.337004185 5.487820388

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Varied file sizes using 100MB fragment in 3 from 5 share policy

100MB fragment in variable
file sizes

 149

Figure 72: Key Share Creation and Recovering using 1GB fragment in 3 from 5 share policy

File Sizes: 1KB, 10KB, 100KB, 1MB, 10MB, 100MB, 1GB

Fragment Sizes: 1KB, 10KB, 100KB, 1MB, 10MB, 100MB, 1GB

Secret Sharing Policy: 4 from 5

Plot: File Sizes in KB against Time Taken in Seconds to process and recover

secret key using a particular key share policy.

Table 53: Key Share Creation and Recovering using 1KB fragment in 4 from 5 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.005007386 0.025519967 0.00380497 0.005005836 0.039338159

2 10KB 0.05279541 0.19847545 0.00460763 0.123180866 0.379059356

3 100KB 0.5393359 2.00651 0.011215639 96.81914401 99.37620555

Figure 73: Key Share Creation and Recovering using 1KB fragment in 4 from 5 share policy

0

1

2

3

4

5

6

Ti
m

e
 T

ak
e

n
 (

K
B

)

File Sizes (KB)

Varied file sizes using 1GB fragment in 3 from 5 share policy

1GB fragment in variable file
sizes

0

20

40

60

80

100

120

1KB 10KB 100KB

Ti
m

e
 T

ak
en

 (
S)

File Sizes (KB)

Varied file sizes using 1KB fragment in 4 from 5 share policy

1KB fragment in variable
file sizes

 150

Table 54: Key Share Creation and Recovering using 10KB fragment in 4 from 5 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.007010937 0.022032022 0.003404284 0.004004002 0.036451245

2 10KB 0.00500536 0.020031929 0.003805208 0.005007982 0.033850479

3 100KB 0.05189267 0.20212195 0.004207563 0.116168022 0.374390205

4 1MB 0.5541734 1.9436804 0.011416817 101.3007209 103.8099915

Figure 74: Key Share Creation and Recovering using 10KB fragment in 4 from 5 share policy

Table 55: Key Share Creation and Recovering using 100KB fragment in 4 from 5 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.00600791 0.028062105 0.003203535 0.004007101 0.041280651

2 10KB 0.005008936 0.025034904 0.004005957 0.004005909 0.038055706

3 100KB 0.006007075 0.020029426 0.003605556 0.005007029 0.034649086

4 1MB 0.05279888 0.2021174 0.004406166 0.115168095 0.374490541

5 10MB 0.5434386 2.2062003 0.011215019 102.727818 105.4886719

0

20

40

60

80

100

120

1KB 10KB 100KB 1MB

Ti
m

e
 T

ak
e

n
 (

S)

File Sizes (KB)

Varied file sizes using 10KB fragment in 4 from 5 share policy

10KB fragment in variable
file sizes

 151

Figure 75: Key Share Creation and Recovering using 100KB fragment in 4 from 5 share

policy

Table 56: Key Share Creation and Recovering using 1MB fragment in 4 from 5 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.005009174 0.019028902 0.003806543 0.004006147 0.031850767

2 10KB 0.005007982 0.023032904 0.004005384 0.004005909 0.036052179

3 100KB 0.006009102 0.039059877 0.004007149 0.003004074 0.052080202

4 1MB 0.020028472 0.041079044 0.012418222 0.009011984 0.082537722

5 10MB 0.06737124 0.21885027 0.004606152 0.116168976 0.406996638

6 100MB 0.6781625 2.3552517 0.011617374 97.11757994 100.1626115

Figure 76: Key Share Creation and Recovering using 1MB fragment in 4 from 5 share policy

0

20

40

60

80

100

120

1KB 10KB 100KB 1MB 10MB

Ti
m

e
 T

ak
e

n
 (

S)

File Sizes (KB)

Varied file sizes using 100KB fragment in 4 from 5 share policy

100KB fragment in variable
file sizes

0

20

40

60

80

100

120

1KB 10KB 100KB 1MB 10MB 100MB

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Varied file sizes using 1MB fragment in 4 from 5 share policy

1MB fragment in variable
file sizes

 152

Table 57: Key Share Creation and Recovering using 10MB fragment in 4 from 5 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.017022848 0.036051989 0.00580821 0.007007122 0.065890169

2 10KB 0.00600791 0.022032976 0.003603983 0.004000902 0.035645771

3 100KB 0.010014057 0.041062117 0.0038064 0.004008055 0.058890629

4 1MB 0.007007122 0.028040886 0.004407072 0.005008936 0.044464016

5 10MB 0.005006433 0.018527508 0.003606033 0.004004955 0.031144929

6 100MB 0.06571531 0.25674928 0.004205561 0.114168167 0.440838318

7 1GB 2.4023419 6.7281839 0.22472744 104.130311 113.4855643

Figure 77: Key Share Creation and Recovering using 10MB fragment in 4 from 5 share policy

Table 58: Key Share Creation and Recovering using 100MB fragment in 4 from 5 share

policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.029040098 0.052077055 0.015822411 0.010015965 0.106955529

2 10KB 0.005007029 0.022032976 0.003605461 0.004004955 0.034650421

3 100KB 0.016027927 0.034050941 0.006007957 0.007007122 0.063093948

4 1MB 0.011016846 0.034053087 0.00600996 0.007009983 0.058089876

5 10MB 0.006008148 0.021037102 0.003604174 0.004004002 0.034653426

6 100MB 0.010514975 0.028539062 0.015069962 0.02402997 0.078153969

7 1GB 0.35621665 0.50816536 0.023654175 0.209298849 1.097335034

0

20

40

60

80

100

120

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Varied file sizes using 10MB fragment in 4 from 5 share policy

10MB fragment in variable
file sizes

 153

Figure 78: Key Share Creation and Recovering using 100MB fragment in 4 from 5 share

policy

Table 59: Key Share Creation and Recovering using 1GB fragment in 4 from 5 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.026038885 0.095140934 0.013951063 0.08305788 0.218188763

2 10KB 0.010014057 0.030047894 0.005007219 0.006008863 0.051078033

3 100KB 0.021031857 0.063093185 0.006408787 0.00801301 0.098546839

4 1MB 0.011013985 0.033047199 0.006009436 0.007011175 0.057081795

5 10MB 0.005006075 0.020029068 0.003403807 0.003004074 0.031443024

6 100MB 0.027036905 0.036056995 0.003605795 0.004007101 0.070706797

7 1GB 1.863462448 1.334843516 0.088929844 0.956404209 4.243640017

Figure 79: Key Share Creation and Recovering using 1GB fragment in 4 from 5 share policy

0

0.2

0.4

0.6

0.8

1

1.2

Ti
m

e
 T

ak
e

n
 (

S)

File Sizes (KB)

Varied file sizes using 100MB fragment in 4 from 5 share policy

100MB fragment in variable
file sizes

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Varied file sizes using 1GB fragment in 4 from 5 share policy

1GB fragment in variable file
sizes

 154

12.3 Variant Two

12.3.1 Fragments

File Sizes: 1KB, 10KB, 100KB, 1MB, 10MB, 100MB, 1GB

Fragment Sizes: 15% of each file Size

Secret Sharing Policy: 2 from 5

Plot: File Sizes in KB against Time Taken in Seconds to process and recombine

file using varied key share policies.

Table 60: Varied file sizes using equal number of fragments in 2 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

 1 1KB 0.002925038 0.005387 0.013149977 0.001445055 0.02290707

 2 10KB 0.038562179 0.0073225 0.03125155 0.002905488 0.080041716

 3 100KB 0.003394961 0.0068255 0.035158157 0.002437949 0.047816568

 4 1MB 0.004876733 0.009764 0.020504594 0.002928138 0.038073464

 5 10MB 0.022940755 0.0542355 0.08544898 0.01366663 0.176291865

 6 100MB 0.263669968 0.7352945 0.684566617 0.190426588 1.873957673

 7 1GB 26.31982481 18.0551 19.57863176 14.14794874 78.10150532

Figure 80: Varied file sizes using equal number of fragments in 2 from 5 share policy

0

10

20

30

40

50

60

70

80

90

1KB 10KB 100KB 1MB 10MB 100MB 1GB

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 2 from 5 share policy

2 from 5 share policy

 155

Table 61: Varied file sizes using equal number of fragments in 3 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

 1 1KB 0.01074183 0.007808 0.0117203 0.001464128 0.031734258

 2 10KB 0.003417015 0.005401 0.014142394 0.001951933 0.024912342

 3 100KB 0.003919721 0.0097795 0.013170838 0.001954079 0.028824138

 4 1MB 0.006330132 0.0097585 0.016113043 0.003416777 0.035618452

 5 10MB 0.024902463 0.066904 0.079588175 0.016105175 0.187499813

 6 100MB 0.249003887 0.499052 0.668944597 0.171869397 1.588869882

 7 1GB 29.3764677 18.272035 19.59326553 14.14258373 81.38435197

Figure 81: Varied file sizes using equal number of fragments in 3 from 5 share policy

Table 62: Varied file sizes using equal number of fragments in 4 from 5 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

 1 1KB 0.002427101 0.0053805 0.00732398 0.00145793 0.016589511

 2 10KB 0.00292635 0.005372 0.008307219 0.001480222 0.01808579

 3 100KB 0.003412962 0.004893 0.012213349 0.001952171 0.022471483

 4 1MB 0.004395008 0.01222 0.014651418 0.002941012 0.034207438

 5 10MB 0.028311729 0.063499 0.06786871 0.013174653 0.172854092

 6 100MB 0.220714808 0.5121775 0.73241353 0.276359558 1.741665396

 7 1GB 26.46483827 18.09913 19.42675602 14.02051485 78.01123914

0

10

20

30

40

50

60

70

80

90

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 3 from 5 share policy

3 from 5 share policy

 156

Figure 82: Varied file sizes using equal number of fragments in 4 from 5 share policy

Table 63: Varied file sizes using equal number of fragments in 4 from 10 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

 1 1KB 0.026849508 0.00783 0.03028059 0.00194037 0.066900468

 2 10KB 0.004398942 0.0068895 0.024399281 0.002448678 0.038136401

 3 100KB 0.019526243 0.007301 0.030745983 0.001979351 0.059552577

 4 1MB 0.004876614 0.006857 0.041999578 0.003415108 0.0571483

 5 10MB 0.030759573 0.0800605 0.073757172 0.028308153 0.212885398

 6 100MB 0.262196779 0.581529 0.638176203 0.275382519 1.757284501

 7 1GB 35.07715082 18.72004 20.2573272 14.28020155 88.33471957

Figure 83: Varied file sizes using equal number of fragments in 4 from 10 share policy

0

10

20

30

40

50

60

70

80

90

Ti
m

e
 T

ak
e

n
 (

S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 4 from 5 share policy

4 from 5 share policy

0
10
20
30
40
50
60
70
80
90

100

Ti
m

e
 T

ak
en

 (
S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 4 from 10 share policy

4 from 10 share policy

 157

Table 64: Varied file sizes using equal number of fragments in 6 from 10 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

1 1KB 0.002924442 0.005363 0.014597535 0.001461148 0.024346126

2 10KB 0.002439857 0.003923 0.012702703 0.001458526 0.020524086

3 100KB 0.00341785 0.0092475 0.012699008 0.001951814 0.027316171

4 1MB 0.005369663 0.009251 0.01805234 0.008789301 0.041462304

5 10MB 0.028310537 0.0502505 0.080553055 0.013691425 0.172805517

6 100MB 0.231923342 0.479033 0.621574283 0.16698122 1.499511845

7 1GB 27.49071908 18.178235 20.24266446 14.06738889 79.97900743

Figure 84: Varied file sizes using equal number of fragments in 6 from 10 share policy

Table 65: Varied file sizes using equal number of fragments in 8 from 10 share policy

S/N FileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCost

1 1KB 0.019048691 0.0073495 0.024884462 0.001938701 0.053221354

2 10KB 0.003939748 0.0083285 0.102038383 0.002929687 0.117236319

3 100KB 0.002926469 0.005854 0.02783668 0.001965404 0.038582553

4 1MB 0.004895687 0.009758 0.044403076 0.045897126 0.104953889

5 10MB 0.035639167 0.0532065 0.154280305 0.018523335 0.261649307

6 100MB 0.216794372 0.4418855 0.792963624 0.328602195 1.78024569

7 1GB 37.22312522 19.845195 24.66403377 14.36472654 96.09708053

0

10

20

30

40

50

60

70

80

90

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 6 from 10 share policy

6 from 10 share policy

 158

Figure 85: Varied file sizes using equal number of fragments in 8 from 10 share policy

12.3.2 Key Share creation and Recovering

File Sizes: 1KB, 10KB, 100KB, 1MB, 10MB, 100MB, 1GB

Fragment Sizes: 15% of each file Size

Secret Sharing Policy: 2 from 5

Plot: File Sizes in KB against Time Taken in Seconds to process and recover

secret key using varied key share policies.

Table 66: Varied file sizes using equal number of fragments in 2 from 5 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

 1 1KB 0.0063395 7.08288 0.00391 0.001009345 7.094138845

 2 10KB 0.0063515 7.24591 0.0014255 0.000486374 7.254173374

 3 100KB 0.007299 7.3756 0.00196 0.000485539 7.385344539

 4 1MB 0.006354 7.66259 0.00098548 0.000488043 7.670417523

 5 10MB 0.007364 8.44544 0.001933122 0.00096786 8.455704982

 6 100MB 0.0073195 7.2813 0.00098455 0.00097096 7.290575009

 7 1GB 0.0083555 6.7577 0.001965 0 6.7680205

0

20

40

60

80

100

120

Ti
m

e
 T

ak
e

n
 (

S)

File Sizes (KB)

Plot of File Sizes against Time Taken in 8 from 10 share policy

8 from 10 share policy

 159

Figure 86: Varied file sizes using equal number of fragments in 2 from 5 share policy

Table 67: Varied file sizes using equal number of fragments in 3 from 5 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.0126305 7.78316 0.001954635 0.000973582 7.798718718

2 10KB 0.0083265 7.75075 0.002922924 0.000968575 7.762967999

3 100KB 0.0097285 7.73132 0.0009935 0.000983834 7.743025834

4 1MB 0.009259 7.92991 0.000970244 0.000974536 7.94111378

5 10MB 0.0130765 7.26687 0.001469758 0.001462817 7.282879075

6 100MB 0.031743 7.18971 0.001950973 0.000982046 7.224386019

7 1GB 0.008793 7.71865 0.0009675 0.000972033 7.729382533

Figure 87: Varied file sizes using equal number of fragments in 3 from 5 share policy

0

1

2

3

4

5

6

7

8

9

T
im

e
 T

a
ke

n
 (

S)

File Sizes (KB)

Varied file sizes using equal number of fragments in 2 from 5 share policy

Variable file sizes in 2 from 5
policy

6.8

7

7.2

7.4

7.6

7.8

8

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Varied file sizes using equal number of fragments in 3 from 5 share policy

Variable file sizes in 3 from 5
policy

 160

Table 68: Varied file sizes using equal number of fragments in 4 from 5 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.0097145 8.14136 0.002932 0.005845308 8.159851808

2 10KB 0.0097625 7.37872 0.0024415 0.006352425 7.397276425

3 100KB 0.0102365 6.89898 0.002934 0.006337404 6.918487904

4 1MB 0.01023 6.77493 0.00097394 0.007277608 6.793411548

5 10MB 0.0097235 8.21718 0.00244192 0.00633204 8.23567746

6 100MB 0.0117145 6.63638 0.000980616 0.005851626 6.654926742

7 1GB 0.010253 7.50053 0.000982 0.005854607 7.517619607

Figure 88: Varied file sizes using equal number of fragments in 4 from 5 share policy

Table 69: Varied file sizes using equal number of fragments in 4 from 10 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.018493 18.631 0.001472185 0.024397969 18.67536315

2 10KB 0.0233775 16.9215 0.002914 0.02342999 16.97122149

3 100KB 0.0214355 17.8164 0.005371 0.02293098 17.86613748

4 1MB 0.023038 18.6172 0.00243494 0.029303908 18.67197685

5 10MB 0.0180025 16.3501 0.0024365 0.024405718 16.39494472

6 100MB 0.020926 15.8723 0.0034195 0.023820877 15.92046638

7 1GB 0.0248405 16.101 0.004886 0.024891376 16.15561788

0

1

2

3

4

5

6

7

8

9

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Varied file sizes using equal number of fragments in 4 from 5 policy

Variable file sizes in 4 from 5
policy

 161

Figure 89: Varied file sizes using equal number of fragments in 4 from 10 share policy

Table 70: Varied file sizes using equal number of fragments in 6 from 10 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.0233445 16.2525 0.0024405 9.392581463 25.67086646

2 10KB 0.0238365 15.9982 0.001952566 9.305171847 25.32916091

3 100KB 0.0287805 15.26517272 0.0029445 9.76513195 25.06202967

4 1MB 0.0287635 15.6713 0.002930973 9.67675817 25.37975264

5 10MB 0.026309 16.1595 0.001954331 9.628413081 25.81617641

6 100MB 0.0287345 15.956 0.004394 9.275384188 25.26451269

7 1GB 0.026781 15.7265 0.0033945 9.627430558 25.38410606

Figure 90: Varied file sizes using equal number of fragments in 6 from 10 share policy

14.5

15

15.5

16

16.5

17

17.5

18

18.5

19

Ti
m

e
 T

ak
e

n
 (

S)

File Sizes (KB)

Varied file sizes using equal number of fragments in 4 from 10 share policy

Variable file sizes in 4 from
10 policy

24.6

24.8

25

25.2

25.4

25.6

25.8

26

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Varied file sizes using equal number of fragments in 6 from 10 share policy

Variable file sizes in 6 from
10 policy

 162

Table 71: Varied file sizes using equal number of fragments in 8 from 10 share policy

S/N FileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB 0.0555445 17.0244 0.0019635 1519.267616 1536.349524

2 10KB 0.035603 15.6087 0.002954 1613.893052 1629.540309

3 100KB 0.035248 16.7949 0.00243842 1467.797424 1484.63001

4 1MB 0.031649 15.9978 0.002927824 1428.302855 1444.335232

5 10MB 0.0355935 15.448 0.002912 1500.366265 1515.85277

6 100MB 0.0332835 16.9651 0.004884 1455.750583 1472.75385

7 1GB 0.031208 21.5647 0.013211 1577.407721 1599.01684

Figure 91: Varied file sizes using equal number of fragments in 8 from 10 share policy

12.4 Variant Three

12.4.1 Fragments

File Sizes: Varied

Fragment Sizes: Varied

Secret Sharing Policy: Varied

Cloud Outage: Varied

Plot: File Sizes in KB against Time Taken in Seconds to process and combine

file using varied key share policies with cloud outages.

1350

1400

1450

1500

1550

1600

1650

Ti
m

e
Ta

ke
n

 (
S)

File Sizes (KB)

Varied file sizes using equal number off fragments in 8 from 10 share policy

Variable file sizes in 8 from
10 policy

 163

Table 72: Cloud outages at varied file sizes and share policies

S/
N

KeyShaFileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCos
t

1 1KB, 3 from 5, 1down 0.003419161 0.019013 0.020502925 0.001953244 0.04488833

2 10KB, 3 from 5, 2
down

0.002927661 0.0063275 0.043943286 0.001934886 0.055133333

3 1KB, 6 from 10,
3down

0.003908277 0.006839 0.012194753 0.001466274 0.024408304

4 10KB, 6 from 10,
4down

0.003423333 0.0068415 0.015063882 0.002443552 0.027772267

Table 73: Varied file sizes and share policies

S/
N

KeyShaFileSize FileSplitTime FragEncTime FragDecTime FileComTime OverHeadCos
t

1 1KB, 3 from 5, 1
down

0.01074183 0.007808 0.0117203 0.001464128 0.031734258

2 10KB, 3 from 5,
2down

0.003417015 0.005401 0.014142394 0.001951933 0.024912342

3 1KB, 6 from 10,
3down

0.002924442 0.005363 0.014597535 0.001461148 0.024346126

4 10KB, 6 from 10,
4down

0.002439857 0.003923 0.012702703 0.001458526 0.020524086

Figure 92: Comparing file processing overheads during normal situations and cloud outages

0

0.01

0.02

0.03

0.04

0.05

0.06

1KB, 3
from 5

10KB, 3
from 5

1KB, 6
from 10

10KB, 6
from 10

Ti
m

e
 T

ak
e

n
 (

S)

File Sizes (KB)

Varied file sizes, share
policies and cloud outages

Varied file sizes and share
policies

 164

12.4.2 Key Share Creation and Recovery

File Sizes: Varied

Fragment Sizes: Varied

Secret Sharing Policy: Varied

Plot: File Sizes in KB against Time Taken in Seconds to process and combine

file using varied key share policies.

Table 74: Cloud outages at varied file sizes and share policies

S/N KeyShaFileSize KeyShaCreTime KeyShaWriTime ShaRecTime SecRecTime OverHeadCost

1 1KB, 3 from 5,
1down

0.0111955 6.5083 0.00098145 0.000971913 6.521448863

2 10KB, 3 from 5,
2down

0.0074035 3.7339 0.000978708 0.000979543 3.743261751

3 1KB, 6 from 10,
3 down

0.026288 13.8595 0.000978 2.049305081 15.93607108

4 10KB, 6 from 10,
4down

0.036072 13.3141 0.001961 1.091316342 14.44344934

Table 75: Varied file sizes and share policies

S/
N

KeyShaFileSize KeyShaCreTim
e

KeyShaWriTim
e

ShaRecTime SecRecTime OverHeadCos
t

1 1KB, 3 from 5 0.0126305 7.78316 0.00195463
5

0.00097358
2

7.798718718

2 10KB, 3 from 5 0.0083265 7.75075 0.00292292
4

0.00096857
5

7.762967999

3 1KB, 6 from 10 0.0233445 16.2525 0.0024405 9.39258146
3

25.67086646

4 10KB, 6 from 10 0.0238365 15.9982 0.00195256
6

9.30517184
7

25.32916091

Figure 93: Comparing cloud outages at varied share policies against normal situations

0

5

10

15

20

25

30

1KB, 3 from 5 10KB, 3 from 5 1KB, 6 from 10 10KB, 6 from 10

Ti
m

e
 T

ak
en

 (
S)

File Sizes (KB)

Cloud outages at variable file
sizes and share policies

Variable file sizes and share
policies

 165

13 Appendix D

13.1 Details of the experimental procedures
used

Table 76: User Management Data Store

Datetime ID UUID FileName FileSize FileRef Cloudlet0 Cloudlet1 ... Cloudletn

Datetime1 ID1 UUID1 Filename1 Filesize1 FileRef1 FileID0 FileID1 ... FileIDn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Datetimen IDn UUIDn Filenamen Filesizen FileRefn FileIDn0 FileIDn1 ... FileIDn

Legends:

DateTime = specifies Date and Time user details were stored.

ID = contains hashed value of all user personal details

UUID = Universally Unique Identifier automatically created for each user. It

 differentiates users and used to name file fragments when created in order of

 creation (UUID.1, UUID.2,..,UUID.n).

FileName = specified name of file from which fragments were created

FileSize = provides size of user’s file

FileRef = Reference number of user’s file, serves as a Primary key.

Cloudlet0-Cloudletn = provides FileID that reveals share storage details (cloud API, token,

 name of share and location in storage bucket of the cloud).

 166

Key Generator

File Container for
plaintext

Plaintext

Splitter Encryption
Algorithm

Encryption Key

Key Sharing Algorithm

Fragments

...

Encrypted
Fragments

...
Frag_Name = UUID +

Serial No.

Saves File Name to Store

Saves File Size to Store

Retrieves
UUID

Datetime

UUID

FileName

FileSize

FileRef

Figure 94: File Fragmentation and Encryption

A. Processes of Share Creation

To create shares out of a secret key, we define the Threshold, M and Share size N,

determine a unique Identifier, (an identifier that distinguishes each Share creation

session containing values (0-9, a-z)). The essence is to establish the number of

participating cloudlets and the minimum number of cloudlets that are required to

reconstruct the secret key in case of share corruption or failure of retrieval from one or

more cloudlets during the reconstruction phase. That is to say:

Define policy: M-out-of-N

Determine unique identifier: combination of alphanumeric characters

Key path = (‘path/to/keygen’)

Hash value: if the hash value chosen is 1, the secret will be hashed with SHA128, if 2,

SHA256.

B. Key extraction:

Keys are automatically generated by a random number generator using,

Secret = os.urandom (BS), where BS represents block size and Secret is the

encryption key.

 167

C. Share generation:

Using the chosen share policy’s threshold, the degree of the polynomial is determined,

which is the value of (M-1) and the number of values generated for (X, A) pair is based

on N, and hence the values are generated using this equation [137]:

𝑓(𝑋, 𝐴) = ∑ 𝐴[𝑖]. 𝑋𝑖𝑀−1
𝑖=0 Equation 25

X is the number of participants from 1 to N; A represents the values taken at random

for each participant (X). Using this, shares are generated for each participant and the

number of shares generated is based on the value of N as stated earlier. The secret is

set at an index, where X = 0, as the value of A where X = 0, known as the intercept

lies the secret. Hence the secret lies at A[0] = 0, choosing A[1], A[2],...A[M-1] at

random corresponding shares are computed and distributed to all participants.

RESCUE uses the diagram in Figure 95 to explain how each share is represented at

the storage locations after computation.

Append Hash

Generate Shares

ECC Encoding

Add Unique Identifier

Append Metadata

Metadata ID ECC Share
Hash
Value

Processes of share
creation

Share Storage Format

Share A1
Share B1

...
Share N1

Share A2
Share B2

...
Share N2

Share A3
Share B3

...
Share N3

Share A...
Share B...

...
Share N...

Share An
Share Bn

...
Share Nn

Key Generator
Encryption Key

Creates Shares from Key using
Secret Sharing Algorithm

Figure 95: Key Share and Storage

 168

D. File Recreation

File recreation in RESCUE as shown in Figure 96 are of several stages – the user

types in personal details as well as file reference number at login stage, RESCUE

produces their equivalent hash values and matches them with stored values in user’s

metadata store. When matched values are found, the user’s access is granted and a

Pointer is placed on the record. First, the UUID of the user is retrieved and this is used

call up all correspondent encrypted fragments in memory. Secondly, FileIDs of each

participating cloudlets are retrieved and used to locate shares created out of the key for

each encrypted fragment. Thirdly, each key is recovered from the participating

cloudlets using Secret Share Recovering Algorithm based on a pre-determined

threshold. Fourthly, each recovered key is used to decrypt correspondent encrypted

fragments in sequence until all encrypted fragments are decrypted. The decrypted

fragment each is written in sequence (serial numbered) until all fragments are written

on top of each order and hence original file is reconstructed. Finally, the original file

name with the corresponding file extension name are retrieved and used to name the

reconstructed file. The file so reconstructed is checked for integrity using SHA 512

checksum, and when valid, it is moved to a designated file container. We hereby

present the mathematical expression of the secret share recovery algorithm as follows:

Mathematically, M numbers of participants collaborate to recover the secret f(0) using

Lagrange interpolation such as [137]:

𝑓(0) = ∑ 𝑓(𝑥𝑖) ∏
𝑥𝑘

𝑥𝑘−𝑥𝑖

𝑀−1
𝑘=0,𝑘≠𝑖

𝑀−1
𝑖=0 Equation

26

Ith values are the minimum number of participants that can collaborate to recover the

secret, while kth values are the maximum number of participants and they are not the

same. Just as in Shamir [2] authorised participants following earlier stated rules are

able to recover the secret using Lagrangian interpolation once the conditions:

1. All zero elements of the array of M octets are retrieved.

2. Number of retrieved elements greater or equal to the threshold.

3. All contributed shares from participants are certified as genuine and satisfies 2

above.

 169

CombinerDecryption
Algorithm

File Checksum

File Container for
Reconstructed Files

Reconstructed
File

Decryption Key

File Container for
encrypted fragments

Datetime

FileIDs

UUID

FileName

FileRef

..
.

Encrypted
Fragments

Decrypted
Fragments

...

Key Recovery
Algorithm

Strip Metadata

ECC decoding

Reconstruct Secret

Verify Hash

Strip Unique ID

Share A1
Share B1

...
Share N1

Share A2
Share B2

...
Share N2

Share A3
Share B3

...
Share N3

Share A...
Share B...

...
Share N...

Share An
Share Bn

...
Share Nn

Recovery
Details

FileIDs for share
retrievals

Sh
a

re
s

retrie
ve

d

Recovered Key

Retrieve UUID

Matched FIleRef

User provides
FileRef, system
produces UUID

Figure 96: Key recoveries and file reconstruction

E. Cloud Behavioural Computation

After every operation, the user is presented with two different computational options –

Capacity Measures of each participating cloudlet or Overall Cloudlets Performance

during each operation. The essence is to give the user options of perusing behaviours

of each cloudlet during the operation such as its Latency (ms), Speed (bps),

Throughput (bps) and Availability. While in the other hand, the overall performance

of all cloudlets in the areas of Elapsed Time (sec), Packet Loss, Average Round Trip

Time (ms), Speed (bps), Download Bandwidth (bps), Upload Bandwidth (bps),

 170

Latency (ms), and Throughput (bps) for comparative analysis. We will therefore treat

this section by looking at these measures in details as designed.

III. Capacity Measures of clouds

Below is a table showing the Capacities, Evaluation Metrics, Formulae, Units and

Tools for measurement.

Table 77: Evaluation Metrics

Capacity Metrics Formulae Unit Tool

Availability Packet Loss

Frequency

Packet Loss Per Unit Time Bits per second

(bps)

Pingparser

Latency IP Transfer Delays Propagation Delay +

Serialisation delay
Milliseconds (ms) SpeedNet

Transaction

Speed

Max. No. of Transfer

Session

Length of File Over Time Meters per Second

(mps)

SpeedNet

Throughput Volume of processed

data

File Size Over Time Ops/Sec (bps) SpeedNet

IV. Overall Performance Measures

Overall performance extends some measures by including more metrics that shows

comparatively cloudlets performance at a glance by considering their different

capacities such as: Elapsed Time (s), Packet Loss, Average Round Trip Time (ms),

Speed (s), Download and Upload Bandwidths (bps), Latency (bps) and Throughput

(bps).

Table 78: Overall Performance Evaluation Metrics

Capacity Metrics Formulae Unit Tool

Elapsed Time Time Taken for action End Time - Start Time seconds Clock Time

Packet Loss Packet differentials Received – Transmitted

packets

bps SpeedNet

Average Round

Trip Time

Mean Round Trip Time Total RTT/Number of Round

Trips

ms Pingparser

Speed Max. No. of Transfer

Session

Length/Time taken mps Pingparser

Download

Bandwidth

Total download traffic

carrying capacity

Volume of data transmitted

between two points per second

bps SpeedNet

Upload

Bandwidth

Total upload traffic

carrying capacity

Volume of data transmitted

between two points per second

bps SpeedNet

Latency IP Transfer Delays Propagation Delay +

Serialisation delay

ms SpeedNet

Throughput Volume of Processed

Data

File Size Over Time bps SpeedNet

 171

At every operation of RESCUE, measures are taken to ascertain several behaviours of

participating cloudlets so as to help set up benchmarks of capacities of participating

cloudlets for every file size against share policy in relation to accrued performance

overheads such as latency, rate of packet loss, transaction speed and throughput. With

this one can say using a certain file size in conjunction with a fragment size and share

policy, the system is capable of having certain overheads accrued and hence

prediction of future behaviours, as well as potential dangers, can be made using

available results. With regards to this thesis’ proposed future works, self-organisation

can be activated to avert any impending danger so as to keep the system consistently

available. These behaviours are calculated through capacity measures as provided in

the above tables.

F. Agent

The activities to be performed by the proposed Agent using Linear Regression model

in Machine Learning as well as our Mathematical model to help predict the expected

outcome of each cloudlet’s behaviour given a certain condition and inputs from the

user are elaborated in section 8.4 of Chapter 8. The works of the Agent is to receive

data from the calculated cloudlets capacities from several Microsoft Excel files and

use same based on the metrics to 1. Establish a relationship between capacity’s

variables and 2. Use the same to predict future results. When such results so predicted

portends potential danger, the Agent retrieves shares posted to such cloudlet(s) and

send same to better behaved cloudlets without giving any cloudlet shares exceeding or

equals to the minimum thresholds used in such operation.

