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Abstract: Security in computer networks is typically passive, static, and reactive. This is typically due to most 

networking devices being rule-based, and when updates are necessary, they are normally done manually. 
Ultimately, the social and hierarchical structure of an organisation should be visible within the configuration of 
networks. Hence, it is desirable for a distributed system to be capable of reconfiguring itself in a timely-manner 
to reflect changes in policy, in practices, and in the social hierarchy, such as the promotion of a member of 
staff, or in the face of a security threat, such as in malware propagation. 
 
This paper builds on the concept of an automated mitigation and reconfiguration system for networked 
devices, and evaluates key firewall system performance tests. These could be important in defining the criteria 
for the success of this type of security implementation. It thus defines a range of experiments, which evaluate 
firewall parameters, such as number of rules, and their position in relation to performance metrics, such as 
CPU utilisation, bandwidth consumption, and network latency. The paper also includes tests with up to 65,000 
rules, and presents results on the positions of the rules, such as on the incoming and outgoing ports, and the 
effect of different network throughputs. 
 
It concludes that networks can be made more resilient, under heavy network loads and large rule sets, if rule 
sets are applied on the outgoing ports. It also shows evidence that configuration interfaces are the 
performance bottleneck for multi-agent systems that may use these to reconfigure network equipments 
dynamically. 
 
Keywords: firewall management, computer network defence, dynamic reconfiguration, mitigation, firewall 

performance metrics. 

1. Introduction 

This paper defines, and presents results for, a range of experiments designed to identify the 
limitations, in terms of performance, of network firewalls. It also critically evaluates the performance 
of software agents that could be interfaced with the equipment to address the lack of dynamic 
enforcement of such equipment, and their limited abilities to evolve. In conclusion, it advocates a 
scientific, and repeatable, approach to network security evaluation. 
 
Most networked systems are rule-based, static, and, therefore, are often difficult to evolve. In 
addition, such systems are often vulnerable from internal intruders, or anyone capable of exploring 
the network infrastructure, because flaws, or lapses, remain unfixed for long periods. Some 
researchers, such as Glenn (2003, p12), argue that modification tasks which are typically required 
in these situations, are much more costly in terms of human resources, planning and so on, than 
the fresh deployment of new systems. Alternatively, flexible and dynamically configurable 
equipment, such as Active Network (AN), exists. However, they do not offer the same level of 
performance as traditional equipment, and hence are seldom deployed in corporate networks 
(Campbell et al. 1999, p7). These issues are particularly relevant when organisations use an 
integrated security framework that aims to ensure the implementation of security requirements, as 
well as enabling networked system with the ability to thwart threats in real-time, without hindering 
the organisation’s objectives (Saliou et al 2005, p306). 
 



 

2. Related research work 

This paper defines that a hybrid architecture, based on multi-agents system (Santana Torrellas et 
al. 2003, p369), could be used to meet: security requirements; performance; and, in addition, 
provide dynamic reconfiguration capabilities. A critical factor in the success of such architecture is 
the ability of the multi-agent system (MAS) to assess the current situation, as well as to anticipate 
the outcome of possible changes. More importantly, to effectively combat threats, and thus take 
appropriate action, the MAS needs to be aware of the time required between a decision being 
made, and its actual effective deployment on a device. 
 
One common argument against the adoption of security requirements is that it is costly in terms of 
performance. In practice, the possible effects on the network include: 
 

 Increased delays to access services. 

 Undesirable stress level on intermediate equipment, thus possible limited tolerance to traffic 
load. 

 Reduced available throughput. 
 
Although most firewall models describe the traffic filtering operations, they do not indicate the 
potential performance bottlenecks (Kamara et al 2003, p215). As for an evaluation carried out on 
live devices, this is often incomplete. In Al-Tawil et al. (1999), for instance, tests are designed with 
ease-of-distribution in mind and are based on a combination of software tools that search for 
known vulnerabilities, and human observations as opposed to performance issues. Furthermore, 
the emphasis of Al-Tawil et al. (1999) is not on the performance offered by the system, but rather 
the focus on how well firewall devices participate in the protection of individual network hosts. 
Consequently, the drawback of such an approach is that the results lack key parameters, such as 
load sensitivity, and other attributes that might be considered essential for the organisation to fulfil 
its objectives (Saliou et al. 2005). 
 
Lyu et al. (2000, p116) argue that the intuitive belief about the trade-off between security and 
performance does not hold, and propose to evaluate the usefulness of different security policy 
levels, and their impact on the overall network performance. Their proof, unfortunately, only 
includes latency and task-completion metrics at slow network speeds. In addition, their focus 
appears to be mostly the evaluation of software security tools. 
 
An enhanced view is that fine-grained security requirements could require large firewall rule sets. 
Consequently, the hypothesis is that the more rules there are, the lower the performance, and in 
Lyu et al. (2000, p117) the number of rules used is low for modern day application. Furthermore, 
with respect to models, such as proposed by Kamara et al. (2003, p215), there are no indications 
of the effects of rule-set position. For instance, findings on these and their modelling, could be used 
to refine the security requirements of an organisation that uses an integrated security framework 
(Saliou et al 2005, p307). 

3. Firewall basics and configuration 

Network firewalls are one of the most widely deployed devices used to filter network traffic. The 
detail of the communication that is allowed, or not, is defined by rule sets which are collections of 
individual statements. Ideally, these rule sets should reflect the policies adopted by the 
organisation (Al-Saer et al. 2004, p3). Generally, each statement makes decisions on the 
communication’s attributes, such as: 
 

 Source address: the host, or the network, the packet is from. 

 Destination address: the host, or the network, the packet is intended to reach. 

 Protocol in use, such as TCP or UDP. 

 Service requested, such as Web (HTTP), e-mail (SMTP), and so on. 
 
In practice, firewalls have multiple ports, and Kamara et al. (2003, p215) summarise firewall’s 
operations as: the reception of network packet on the incoming port; integrity verification; 
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evaluations against rule sets; and evaluation against the available network routes. After which the 
data packet is transferred to the outgoing port, where it could be once more subject to checks 
against the enabled rule sets, before being released onto the destination network. 
 
On Cisco devices, such as the one used in these experiments, rule statements are typically 
implemented using Access Control Lists (ACL). Figure 1 is a simple example of a rule set, which 
set is designed to allow Web (HTTP) traffic on the local network, and prevent all other type of 
traffic. The ACL number defines the rule set to which each statement belongs. 
 

Access-list 101 permit tcp 172.16.0.0 0.0.255.255 any eq 80
Access-list 101 deny ip any any

 
Figure 1: ACL rule set snippet 
 
Cisco devices support multiple rule sets, which can be applied to packets which are either inbound, 
outbound, or both. Figure 2 shows the information that would be given when the rule set in Figure 1 
is applied on an interface for inbound packets. 
 

interface FastEthernet0/0
172.16.0.1 255.255.0.0
ip access-group 101 in
no shutdown

 
Figure 2: Rule set applied to inbound traffic 

3.1 Typical configuration interfaces 

Network devices can typically be configured using protocols, such as HTTP, Telnet, TFTP, Secure 
Shell (SSH), and others. As this paper presents deployment agents that use the HTTP and Telnet 
protocols to establish communication with Cisco devices, this section outlines details of these 
methods of interaction. 

3.1.1 HTTP Service 

When a device supports the HTTP reconfiguration service, its configuration can be altered using a 
HTTP client. Typically, commands are applied by constructing each command bit-by-bit before 
committing it to the device. It is not compulsory to apply command in this manner; indeed, any 
command is accepted as long as the proper HTTP request is sent. Figure 3 shows an example 
HTTP request that adds the first statement of rule set presented in Figure 2, to the device. 
 

Get /level/15 / configure/-/access-list/101/ permit/tcp/172.16.0.0/0.0.255.225/any/eq/80/CR HTTP/1.1\r\n

Current Security 

level in use

Current Position within 

the Operating System

Rule set number

statement  
Figure 3: Snippet of adding statement with HTTP 

3.1.2 Telnet Service 

This service allows for the modification of the configuration in a computer terminal-type 
environment. With this service the correct position within the hierarchy of the operating system 
must be assumed, otherwise the command might be invalid within its scope. Thus, compared to the 
usage of HTTP, a Telnet-based agent must incorporate additional commands to access the correct 
level, before issuing directives. Unfortunately, the Telnet service can only handle one character at a 
time, thus, commands are normally separated by a series of individual characters, and sent in 
sequence, followed by a carriage return/line feed character sequence. 



 

4. Experimental Setup 

A single network architecture is used to evaluate both the reconfiguration agents and the 
performance of the firewall devices. Similarly to Al-Tawil et al. (1999) and Lyu et al. (2000), the test 
environment uses the Device Under Test (DUT) as the entry point of all traffic crossing the network. 
The details of the elements, both in terms of software and hardware, used in these experiments is 
available in Appendix A. 

4.1 Agent benchmarking 

The objectives of the agent benchmark is to: 
 

 Measure the time to deploy a new rule set, which is achieved by tasking the agents to deploy 
the same rule set of 1000 rules. 

 Determine the best condition for deployment agents to operate, which is achieved by repeating 
the experiment at different network speeds, without any background traffic. 

 Assess which application level protocol, such as HTTP or Telnet, is best suited for the task. 
This is achieved by monitoring the CPU usage of the DUT, and measuring the amount of data 
exchanged between the agents, and the DUT. 

4.2 Firewall device evaluation 

The test environment is composed of two distinct networks interconnected by the DUT, where one 
is setup to initiate, the main traffic flow, and is illustrated on the left-hand side of Figure 4, whereas 
the second network acts as a sink for the traffic. The environment has a traffic generator (Turner, 
2005) and, which creates realistic network conditions. In order to ensure the repeatability of this 
series of experiments, the traces used are publicly available from the Lincoln laboratories, and 
were collected during the first week of 1998 DARPA evaluation project (Lippmann 2000, p583). 
Furthermore, the traffic generator allows for replaying the traffic at different rates. In these 
experiments, this rate is typically a percentage of the network bandwidth available to the host 
running the traffic generator. Henceforth, the network-load level refers to the bandwidth used by 
the traffic generator. 

 

CPU Monitoring Agent
Background

Traffic Source

Background 

Traffic Sink

Latency Measurement

011000101

Throughput Measurement

Deployment Agent

Source Sink

Source Sink

Outgoing 

Port

Incoming 

Port

DUT

 

Figure 4: Test environment logical layout 
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A node using HPing (Sanfilippo, 2005), then measures the network latency by contacting the 
remote host across the firewall device. This utility measures the network latency more accurately 
than a standard Ping utility. Furthermore, it can also measure the time required to reach services, 
as opposed to the node, only. In this experiment, HPing is configured to measure the Round-Trip-
Time (RTT) required to reach a service on the remote host, and throughput measurements are 
achieved with the Netperf utility (Hewlett-Packard, 2005) between two nodes placed on either side 
of the DUT. 
 
It is likely that firewall manufacturers enable their devices with algorithms that are able to 
summarise, or optimise, rule sets once loaded in memory. In order to promote a scientific approach 
in these experiments, it is essential to make the method repeatable, and mitigate the effects of 
such algorithms, as much as possible. Otherwise, comparisons with other equipment, or devices 
from other manufacturers, and so on, would be difficult. Consequently, the DUT has to evaluate 
each packet against every single statement of the rule set. This is achieved by having rules which 
test IP addresses that will never appear in the network traffic, and permits the measurement of the 
full impact that the rule set has on the device’s performance. Appendix B provides a sample of the 
rules used in this experiment implemented using Cisco ACLs. 
 
The tests are repeated for:  
 

 Network speeds and modes supported by the device: 10Mbps; 100Mbps (for half and full 
duplex modes). 

 Network loads: traces played at recorded rate: 10%; 25%; 50%; and 75%; of the available 
network bandwidth. 

 No rules present on the device, which is referred to as the baseline. 

 Rule set of 65,000 statements enabled on the incoming port. 

 Rule set of 65,000 statements enabled on the outgoing port. 

5. Experiments Results 

This section presents a selection of the results obtained during the experiments. 

5.1 Deployment results 

Table 1 shows the results rule set of 1000 statements, which has 40,092 characters. It shows that 
higher network speeds do not permit the agents time to deploy firewall rules rapidly. In terms of 
bandwidth efficiency, the Telnet-based deployment agent performs poorly, as it typically sends only 
one character per packet, and thus this communication places a heavy burden on the CPU. On the 
other hand, the HTTP-based deployment agent sends one complete statement per request, but it 
would seem that this request still has to be interpreted by the DUT’s operating system. This, 
however, does not seem to be the case for the Telnet agent. Hence, despite a lower footprint in 
terms of CPU usage and bandwidth utilisation, the HTTP-based deployment agent is much slower 
than its Telnet version for deploying rules. 
 

Table 1: Benchmark results 

Network 
Speed 
(Mbps) 

Agent Type 
(protocol) 

Bandwidth 
Usage – Agent 

only (byte) 

Total Bandwidth 
Consumption 

(byte) 

Average 
Packet size 

(byte) 

Elapsed 
Time 
(sec.) 

Firewall 
CPU 

usage (%) 

10 HTTP 213,245 1,792,591 213 212.51 53 

10 Telnet 1,247,644 3,833,479 62 56 89.4 

100 HTTP 213,245 1,792,903 213 212.5 53 

100 Telnet 1,225,991 3,833,329 62 56 89.4 

 



 

5.2 Firewall benchmark analysis 

5.2.1 Low network speed results 

Figure 5 shows how the latency across the DUT is affected by the varying amount traffic, that the 
device has to handle. Without any rules on it, the latency only presents a minor increase, but 
placing the rules on the incoming port of the DUT makes the latency increase after 25% of the 
maximum throughput. Interestingly, placing the rules on the outgoing port provokes an increase 
after 50% of the maximum throughput. Overall, the latency does not reach a point where the 
network is made unusable, thus the experiment shows that the device copes well at low network 
speeds. 
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Figure 5: Latency benchmark (10Mbps) 
 
Figure 6 shows the DUT CPU usage against the network-load level, and suggests that, in all three 
cases, the trends are almost similar and nearly linear. The effect of deploying rules is obvious, 
especially on the incoming port. It also suggests that the CPU usage is approximately related to the 
amount traffic that flows across the DUT. 
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Figure 6: CPU benchmark (10Mbps) 
 
Figure 7 shows the throughput performance, and its variation during the tests. In this case, the 
placement of the rules on the DUT has no noticeable effects, but the results allow the 
measurement of the footprint of the rule set as being the difference between the baseline reading, 
and those obtained with rules being deployed. These are almost always consistent throughout the 
benchmarking process. 
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Figure 7: Throughput benchmark (10Mbps) 

5.2.2 High network speed results 

For rules deployed on the incoming port, the latency increases dramatically after the 10% of the 
maximum network throughput. The difference between the results obtained with rules on the 
outgoing port, for instance, are so significant that the scale of the difference between the readings 
is not suitable for interpretation based on a graphic. Thus, the results on the latency are not 
presented in this section. It is, however, noteworthy to mention that latency problems caused many 
throughput tests to fail. 
 
Figure 8 shows the CPU usage of the DUT during the high network speed tests. In contrast to the 
same tests being conducted at slower speeds, this benchmark does not allow a measurement of 
the overhead incurred by the rules. In addition, in all situations, it would seem that the DUT has a 
limited tolerance to high network load. 
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Figure 8: CPU benchmark (100Mbps) 
 
The throughput measurements, shown in Figure 9, demonstrate that some level of performance 
can be ensured in high-speed networks with large firewall rule sets, provided that the correct port is 
chosen. Indeed, the degradation of performance when the rules are deployed on the incoming port 
is so significant that after the 25% of the maximum throughput, the network is completely unusable. 
In contrast, a rule set applied on the outgoing port makes the network more resilient. Arguably, the 
flat region of the graphic, 50% of the maximum network throughput, and beyond, is due to the 
software and hardware limits being reached. 
 
All network devices need to buffer packets before processing them. It is expensive, in computation 
terms, to move packets from the incoming buffer to the outgoing one. Traditional models, such as 
Kamara et al. (2003, p125), propose that it is preferable to apply rule sets on inbound 
communications. This is acceptable for low throughput, as shown in Figure 7, as the buffer is less 
likely to over flow, and cause rejected packets, as the firewalling process has a long enough time to 
service the buffer. At high throughput, firewall checking struggles to cope with incoming data 



 

throughput, and, thus, result in low throughput (high packets loss), as shown in Figure 9. An 
improved procedure is, thus, at high throughput, to allow packets to be buffered in the main 
memory, which is typically larger than either the in or out port buffers, and to apply the firewalling 
process on outbound communications. 
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Figure 9: Throughput Benchmark (100Mbps) 

6. Conclusions 

This paper has established that the application of rule sets and throughput has a direct impact on 
firewall performance, and that the intuitive belief that rule sets are best applied on the incoming 
port, does not always hold. This practice, unfortunately, could incur dramatic performance 
degradation leading to the network being unusable for high throughput. It has also been shown that 
this could be the case for as little as 25% of the maximum throughput. Hence, network resilience 
can be enhanced by placing a firewall rule set on the outgoing port of a firewall. In the situations 
where rule sets must be present on the inbound port, this paper recommends that the rules are 
optimised, by using methods such as presented in Al-Saer et al (2004). Furthermore, results on 
CPU usage and latency demonstrate that readings should always be compared against baseline 
records. The presence of rule sets seldom creates significant differences with the baseline, thus 
trends and values could be misleading. 
 
The results in the experiments correlate with some of the findings presented by Lyu et al. (2000, 
p121) and Briesemeister et al. (2003, p74), where it would appear that networks are more resilient 
even under heavy burden, both in terms of security and traffic, at low network throughput. 
Briesemeister et al. (2003, p67) argue that networks are built to fulfil objectives, which could 
include high network throughput and fine-grained security, and thus adequate network architecture 
must be selected ensure survivability. 
 
The paper also presented findings on the effects of using agents to deploy the firewall rule set in a 
dynamic manner. Experiments have shown that the HTTP and Telnet interfaces used to configure 
firewalls represent a significant performance bottleneck for an agent-based system that would be 
used to thwart security threats in real-time, or deploy new security requirements. Results also 
suggest that if a network is equipped with a multi-agent system to provide flexibility and dynamic 
enforcement, lower network throughputs constitute a more suitable environment for the agents to 
operate. 
 
Most models of firewall are focused on the logical attributes, hence methods to automate test 
procedures must be researched. This will allow a common framework for devices under test, and 
thus obtain data for the creation of models oriented on quality metrics of firewalls. 
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7. Appendix A: List of equipment used during the experiments 

Firewall device: 
- Cisco c2600MX series  
- Cisco IOS 12.3 (27), release software fc3. 

Network Switch: 
- Cisco Catalyst 3550 series 
- Cisco IOS 12.1(13) EA1a, release software fc1. 

Traffic Generation Nodes: 
- Pentium III 700MHz, 128MB of RAM, 3 Com 10/100Mbps compatible Ethernet card 
- FreeBSD 5.4 Operating System 
- TCPReplay version 2.2.0, 1 
- DARPA trace from the 1

st
 Monday of the 1

st
 week of the year 1998 without ARP preamble 

Latency Measurement Nodes: 
- Pentium III 700MHz, 128MB of RAM, 3Com 10/100Mbps compatible Ethernet card 
- FreeBSD 5.4 Operating System 
- Hping version 2.0.0r3, 1(Emitter only) 

Throughput Measurement Nodes: 
- Pentium III 700MHz, 128 of RAM, 3 Com 10/100Mbps compatible Ethernet card 
- FreedBSD 5.4 Operating System 
- Netperf version 4a 

Agent Node: 
- Pentium IV 2.8GHz, 512MB of RAM, 3 Com 10/100Mbps compatible Ethernet card 
- Microsoft Windows XP SP1 Operating System 
- Microsoft .NET Framework 1.1 
- Agents are written in C# 

8. Appendix B: Experiments’ rules sample 

access-list 65 deny host 177.129.1.56

access-list 65 deny host 118.226.112.42

access-list 65 deny host 124.84.62.221

access-list 65 deny host 189.119.171.195

access-list 65 deny host 33.83.183.49

...

...

...

access-list 65 deny host 65.84.52.14

access-list 65 permit any

1

2

3

4

5

.

.

.

64999

65000

Rule 

Number

 
Figure 10: Sample of rules used during the experiments 
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