
NetHost-Sensor: Enhancing Intrusion Detection via An Active Target Host
Abiola Abimbola, Jose Munoz and William Buchanan
School of Computing, Napier University, EH10 5DT, Scotland, UK

ABSTRACT

Over the past decade, there have been increases in network attacks. These attacks are typically at-
tempts to compromise the integrity, confidentiality or availability of networked resources. In other
to reduce these attacks, Intrusion Detection Systems (IDS) were introduced. These systems monitor
and analyse network traffic, and try to detect network attacks, and, in response, execute counter-
measures, which overcome current security weaknesses. In this paper we present a quick review of
IDS and their vulnerabilities, discuss, in detail, the performance unreliability of IDS’s against end-
to-end encrypted attacks, network fragmented attacks and denial of service exploitation of pro-
gramming flaws. These vulnerabilies are illustrated in order to verify and validate the discussion.
The experiments measure the performance of Snort, which is a network IDS which detecting the
stated network attacks. Our experimental findings show that Snort could only detect 50% denial of
service exploitation of programming flaws and 0% end-to-end encrypted attacks. In addition, we de-
scribe the NetHost-Sensor which is a methodology in thwarting these attacks.

Keywords: network attacks, integrity, confidentiality, intrusion detection system, countermeasure,
performance, unreliability, validation, verification, and computer-based diagrams

1. Introduction

Computer intrusion can be defined as an action which
attempts to compromise the integrity, confidentiality
or availability of a resource [1]. The rapid acceptance
of computer networks and the Internet have also
brought about new security threats and challenges. In
response, the security community have tried to over-
come these threats with preventative techniques, such
as access control and cryptography.
 Access control attempts to associate a system user,
identified by a request or login session, with a known
profile. The privileges associated with this profile can
then be retrieved and compared with current actions.
Many technologies have been applied to this such as
reusable passwords, cryptographic tokens (comprising
time-based and challenge-response scheme), and
biometrics (where a user is identified via some physi-
cal attribute such as the user’s fingerprint). Unfortu-
nately, the most prominent technique, reusable pass-
word, is fundamentally flawed, as most passwords that
are sufficiently complex and short–lived to be safe
from brute-force attacks, are also impossible to re-
member. Alternative techniques all suffer from techni-
cal or social problems. For example reliable biometrics
are expensive and have not gained universal accep-
tance, while a token-based scheme requires the user to
have the token available, when authenticating. In all
cases, the management of users profiles can be com-
plex and error prone.
 A more fundamental problem with the use of access
control is that most applications authenticate during
the initialisation of a session or transaction. Thus, hi-
jacking or corruption on existing session allows an at-
tacker to impersonate the victim [2, 3]. Authenticating

every part of a session is otherwise impractical. In ad-
dition, access control does not prevent insider attack
[4, 5]. Other research efforts include:

• Cryptography. This is a series of mathematical-

based techniques for preventing unauthorisation
observation or modification of a communication
stream, but does not guarantee that the original
network packet’s payload was initially innocuous.

• Firewall. This filters network traffic which allows
the network to allow, block or modify connections
according to security policies. These, though, are
vulnerable to application level attacks, such as the
HTTP –based exploit used in Nimda and Code-red
[6], and more fully defined by Nacht [7].

Current computer security architecture offer no viable
solution to some network, host and application level
attacks. Bridging these gaps currently relies on other
security techniques like Intrusion Detection Systems
(IDS).
 In this paper we initially define the concept an IDS,
and identify key vulnerabilities of these. These vulne-
sabilities are then overcome using the NetHost-Sensor
[8] system. The attacks identified are end-to-end en-
crypted attacks, network fragmented attacks and de-
nial of service exploitation of programming flaw at-
tacks. For this we compare and contrast the method-
ology with current IDS features, investigate experi-
mentally the feasibility of executing these attacks on a
network IDS and finally the results show a detection
rate of 50% denial of service exploitation of program-
ming flaws and 0% end-to-end encrypted attacks.

1

2. Background

The introduction of IDS, in other to monitor/analyse
and detect network packets that compromise the con-
fidentiality, integrity and reduce the quality of service,
has helped secure most enterprise networks. In other
to secure an enterprise network most IDS utilise
anomaly or signature detection techniques. Anomaly
detection relies on identifying behaviour that is ab-
normal for an entity. Whereas, signature detection
technique identifies behaviour that is close to some
previously defined pattern signature of a known intru-
sion. The problem with the anomaly detection tech-
nique is that it does not necessarily detect undesirable
behaviour, and that the false alarm rates can be high.
With signature detection there is a reliance on a well
defined security policy that may be absent and its in-
ability to detect intrusions that have not yet been
made known to the IDS [9].
 It is apparent that they consist of more than just a
means of detecting intrusions [10, 11]. A closer study
revels the following dichotomies in other system char-
acteristics:

• Time of detection. Two main groups can be
identified as those that attempt to detect intru-
sions in real-time or near real-time, and those
that process audit data with some delay, post-
poning detection (non-real-time), which in turn
delays the time of detection.

• Granularity of data-processing. This is a cate-
gory s contrasts systems that process data
continuously with those that process data in
batches at a regular interval.

• Source of audit data. The two major sources of
audit in the surveyed systems are network data
(typically data read directly off a multicast net-
work, such as in Ethernet) and host-based secu-
rity logs. The host-based logs can include operat-
ing system kernel logs and application program
logs.

• Response to detected intrusion. There are either
passive or active. Passive systems respond by no-
tifying the proper authority and they do not try to
mitigate the damage done or seek to harm or
hamper the attacker. Active systems attempt to
exercise control over the attacked system in or-
der to mitigate the effect of the attack or seek out
the attacking system to prevent addition attacks.

• Locus of data-processing. The audit data can ei-
ther be processed in a central location, irrespon-
sible of whether the data originates from one-
possible source, or collected and collated from
many different sources in a distributed fashion.

• Security. This is the ability to withstand hostile
attack against the IDS itself. A basic classification
would use a high-low scale. Most systems, with
the exception of [10], all fall into the low scale.

In fairness it should be said that not all of these cate-
gories are dichotomies in the true sense. However, the
authors believe that many of the surveyed systems dis-
play sufficient differences for it to be meaningful.

3. Motivation

Despite the fact that research in IDS has existed for
more than two decades, there are currently vulner-
abilities in its methodology that have motivate us to
proposed this research work. These include;

• End-to-end (ETE) encryption. With security im-

provement in communication protocols, the abil-
ity to encrypt traffic on an ETE basis is increasing.
Besides thwarting an eavesdropper, encrypted
content does not allow an IDS to monitoring and
analysing network packet’s payload for intrusion.
If the IDS cannot analyse a packet’s payload, this is
likely to result in high false positive rates [11].

• Vulnerability to direct attacks. Most IDS really on
a hierarchical structure for their elements, as a re-
sult, they are susceptible to attacks. For example
an attack can cut off a central element by using
DoS exploitation programming flaw attack [12] to
cripple the element. Even worse, decapitate an in-
ternal or central node by taking out the root or
command elements can cause serious problems.

• Network-speed and infrastructure. Fast network
communication directly hinders an IDS from
monitoring and analysing network packets, which
results in many dropped network packets. In addi-
tion, the trend towards switched communication
also increases the difficulty for a network IDS to
monitor multiple communication streams. Finally,
owing to multiple routing paths to a target host, a
knowledgeable attacker can avoid the IDS moni-
toring and still attack a target host.

• Network packet fragmentation. The problems
with network packets fragmentation in relation to
network IDS [13] are:

o The target host and network IDS may reas-

semble out-of-order IP datagram fragments
differently, as a result an attacker can inten-
tionally scramble their IP datagram frag-
ments to elude the network IDS.

o A network IDS can be attacked by flooding
the network with partially fragmented IP
datagram that will never be completed. A
naïve network IDS will run out of memory as
it attempts to cache each fragments for reas-
sembly.

o Fragmentation overlap may occur when
fragments of different sizes arrive out-of-
order and in overlapping positions in the
target host’s network layer. An attacker that
understands the specific inconsistencies be-

2

tween a target and a network IDS can ob-
scure the network IDS by couching mali-
cious data inside overlapping fragments
streams.

Other IDS vulnerabilities that exist include evasion
and insertion attacks [13], and breath of attacks [14].
 Figure 1 outlines the motivation of our novel pro-
posed research work. Any ETE encrypted communica-
tion like IPSec [15] or Cisco Encryption Technology
between participating peers (Host 1&2) will elude the
scrutiny of the network IDS, since the network
packet’s payload will be encrypted. In addition, since
the network IDS is between both hosts, it is suscepti-
ble to network fragmented, evasion and insertion at-
tacks. How proposed research work overcomes these
vulnerabilities by being hosted by the target host and
using data from the network and transport layer of the
target host as it audit sources for detecting intrusion.
The NetHost-Sensor uses heuristic technique to de-
termine/detect/prevent system calls of DoS exploita-
tion programming flaw attacks that could shutdown a
target host’s application server. And finally, we include
in the NetHost-Sensor a novel detection technique
coined protocol analysis that has pre-stored knowl-
edge of the communication protocol in use and analy-
ses for intrusion using these pre-stored knowledge
instead of using a rigid signature pattern-matching
detection technique.
 In Figure 1, there are two hosts participating in IPSec
communication, using end-to-end encryption and
authentication. The intermediate devices such as a
networked IDS between this communication part will
not be able to analyse network traffic for malicious
payload or identify participating host. In addition, a
network IDS will be susceptible to evasion, insertion
and network fragmented attacks. The NetHost-Sensor
overcomes these vulnerabilities in NBIDS by analysing
audit data from the network and transport layer of
participating host.

Application
layer

Application
layer

Transport
layer (TCP)
Transport
layer (TCP)

NetHost sensorNetHost sensor

Network
layer (IP)
Network
layer (IP)

Data link
layer

Data link
layer

Physical
layer

Physical
layer

Application
layer

Application
layer

Transport
layer (TCP)
Transport
layer (TCP)

NetHost sensorNetHost sensor

Network
layer (IP)
Network
layer (IP)

Data link
layer

Data link
layer

Physical
layer

Physical
layer

Host 1
(IPSec participate peer)

Host 2
(IPSec participate peer)

IDS

Figure 1: Two hosts participating in IPSec communi-
cation

4. Related Work

In this section we justify the novelty of the proposed
research work by comparing it with relevant existing
network IDS. Research work by Daniels and Spafford
[16] tries to detect low-level network attacks by audit-
ing the kernel of a Linux target host. This is done be
collecting data from several points in the protocol
stack of the target host. It would prevent ETE encryp-
tion and evasion attacks, if it addressed a filtering pro-
tocol against intrusion; as the researchers left the de-
sign of the protocol to users. The NetHost-Sensor with
its protocol analysis technique will thwart ETE encryp-
tion and evasion attacks, and ensure the survivability
of a target host’s application server by preventing DoS
exploitation programming flaw attacks.
 Research work on a DoS resistant intrusion detection
done by Mell et al [17] describes an architecture that
makes IDS components invisible to attackers and al-
lows IDS components to relocate from an attacked
host to a more secure host through mobile agent tech-
nology. This is achieved by:

• Separate communication channels for IDS com-

ponent and the rest of the network.
• A decentralised, non-hierarchical IDS system,

without any interdependency.
• Mobile recoverable IDS components that move

around the network and are able to be taken over
by other mobile agents, if destroyed.

A vulnerability to this design is the number of avail-
able backups if an attacker should flood the entire sys-
tem, using a DoS attack. However, NetHost-Sensor will
not only be able detect threats through system calls,
but also determine the direct parent process causing
these threats and terminate all connections.
 Paxson [18] has contributed to the attempted thwart-
ing of evasion attacks, more so than any other re-
searcher. These contributions include the following
techniques in preventing evasion attacks:

• Bifurcation analyses. In which the monitor han-

dles ambiguous network traffic stream by instanti-
ating separate analyses for each possible interpre-
tation of the ambiguous network traffic.

• Traffic normalization. In which a network for-
warding element that attempts to eliminate am-
biguous network traffic and reducing the amount
of connection state that the IDS’s monitor must
analyse.

• Active mapping. Which efficiently builds profiles
of the network and TCP/IP policies of host on the
network. An IDS may then use the host profiles to
disambiguate the interpretation of the network
traffic on a per-host basis.

3

These techniques are limited in scope as the bifurcat-
ing analyses can be subject to a DoS attack by over-
loading it with infinite threads, where as the traffic
normalizer and active mapping only allow known net-
work traffic (thus limiting their usage), and they both
have to be updated regularly with new network knowl-
edge. However, the NetHost-Sensor uses the target
host’s network and transport layer as its audit sources,
where any network ambiguities will have been elimi-
nated.
 Research proposed by University of Idaho’s Com-
puter Science Department [19] uses a firewall mobile
agent to handle a virtual private network through a
firewall mobile custom agent (FMCA) and static
agents. If Client B wants to communicate securely with
a Host A, who sits behind a firewall, the firewall will
send FMCA to Client B to inspect every network pack-
ets, and encrypt the legitimate ones, sign them and
send them to Host A’s firewall. Static agents in Host
A’s firewall verifies the signature and allow passage if
the are valid. The research proposed assumes the
agents to be black boxes and un-tampered, where all
internal states and data are hidden from the users. If
the proposed research is implemented in the wild
without any mobile agent security [20], this assump-
tion will serve as a vulnerability encouraging attacks.
 Chari and Cheng [21] describes their experience in
building BlueBox, which is a host-based IDS. Their
approach can be viewed as creating an infrastructure
for defining and enforcing very fine-grained process
capabilities in the kernel. These capabilities are speci-
fied as a set of rules (policies) for regulating access to
system resources on a per-execution basis. The ex-
pressed rules are intuitive and sufficiently expressive
to effectively capture security boundaries. The Blue-
Box implements a sandbox around the kernel of its
host, and as a result would probably detect DoS ex-
ploitation programming flaw attacks. The main prob-
lem with BlueBox is that it uses system call analysis as
the only means of detecting intrusions, hence low-
level attacks at the network layer may elude the Blue-
Box. In addition, any variation in monitored applica-
tion will require a new set of rules (system calls). Fi-
nally, memory attacks will elude the BlueBox IDS,
since checks on process behaviour are made only
when the process makes a system call. However, the
NetHost-Sensor makes use of system call analysis for
thwarting DoS exploitation programming flaw attacks
and network protocol analysis for detecting malicious
data in the network and transport layer of the target
host. As a result of the varied detection technique of
the NetHost-Sensor, a higher false positive rate is ex-
pected.
 Snort [22], the chosen network IDS used in our ex-
periment described in the next section. It is a recent
open-source, public-domain effort to build a light-
weight efficient IDS tool that can be deployed on a
wide variety of platforms. Snort features rule-based

logging and can perform content searching/matching
and can be used to detect a verity of attacks and
probes, such as buffer overflow, stealth port scans,
common gateway interface (CGI) attacks. Snort is cur-
rently undergoing rapid development and addition
security features will soon by introduced. The creators
of Snort do not attempt to tackle ETE encryption, DoS
exploitation programming flaw attacks as our novel
proposed research work, but made the following ef-
forts in thwarting evasion and network fragmented
attacks:

• Rule Optimiser. This is a major component of

Snort detection engine. It optimisers the active
Snort rules by sorting them into smaller, unique
rule sets. This allows Snort to quickly inspect a
packet against any applicable rule set, while pro-
viding Snort with the opportunity of using faster
and more efficient set inspection technologies.

• Protocol flow analyser. This classifies network
application protocols into client and server data
flows, and allows it to make in-depth analysis for
intrusions.

Other IDS like Real Secure Network Sensor (RNS),
Internet Security System’s (ISS) Micro Agent, Network
Flight Recorder (NFR) and NetRanger are not capable
of thwarting ETE encryption attacks, DoS exploitation
programming flaw and network fragmented attacks
[8]. The NetHost-Sensor system is hosted by the target
host and uses the target host’s network and transport
layer data to analyse for network intrusions and also
forms a system call wrapper around an application
server of the target host, as a result mitigating these
attacks.

5. Experimental Details

This section describes the experiments carried out
with the following objectives:

• Investigating the feasibility of creating an ETE en-

cryption channel using IPSec,
• Investigating the severity of the attacks by measur-

ing the performance of Snort– a network-based
IDS in detecting encrypted network packet at-
tacks, network fragmented attacks and DoS exploi-
tation programming flaw attacks.

The experiment initially involved launching various
DoS exploitation programming flaw attacks from an
attack host to a target host. Snort then detected and
recorded intrusive attacks between both hosts, as illus-
trated in Figure 2. Then both the attack and target
hosts were configured to communicate using an IPSec
encryption channel. While using IPSec encryption
channel, intrusive attacks were launched from the at-
tack host to the target host. Snort analyses network

4

packets, for intrusive attacks in the encrypted channel.
Table 1 defines the configuration, where the network
topology is given in Figure 2. Each experiment used
Windows 2000, with 128MB of memory and 8GB of
disk space.

Attack
host

Target
host

Snort
IDS

Figure 2: Diagrammatic representation of the ex-

perimental set-up

The attacking tools1 used were many and varied (25
different tools in total) including DoS tools, network
fragmented attacks tools, and port vulnerability attack
tools.
 In configuring local IPSec policies for the target and
attack hosts, the following summarised procedure was
used. Each ran Microsoft Management Console
(MMC) on Windows 2000, following by the IP Security
policies to modify settings. Next PRE-SHAERD key was
created (such as 123456789) for both target and attack
hosts, and this was applied to all IP traffic before click-
ing on assign secure traffic.

Table 1: Configuration of target, network IDS and at-

tack hosts

Hosts IP Address Purpose
Target 169.254.118.102 Target Host
IDS 169.254.64.108 Installed Snort-a network

IDS and IRIS- a network
analyser2 ()

Attack
host

169.254.219.28 Installed various Windows
attacking tools

6. Experiments Results

To test the configuration of IPSec ETE encryption, at
the command prompt, the IP address of the target host
from the attack host we pinged before and after as-
signing secure traffic. In the case of non-secure traffic,
the packet payload was not encrypted, while for secure
traffic it was. Figure 3 shows the network payload cap-
ture of both cases.
 During the experiment, several attacks were
launched from the attack host to the target host. In the
attempt to determine Snort’s performance, a meas-

1 www.networder.bos.sk
2 www.eeye.com

urement of detecting these attacks is give in Table 2.

.$¦Qo..Z.Ž¿..<

.O..Є./£©Þvf..
7\....abcdefgh
ijk

.$¦Qo..Z.Ž¿..<

.O..Є./£©Þvf..
7\....abcdefgh
ijk

.$¦Qo..Z.Ž¿..`

.C..Є2/Z©Þ@1©þ
vfÈ»°V..Ê.

.$¦Qo..Z.Ž¿..`

.C..Є2/Z©Þ@1©þ
vfÈ»°V..Ê.

Normal packet’s
payload

Encrypted normal
packet’s payload

Figure 3: Normal and encrypted packet’s payload

Table 2: Experimental Results

 Type of attack
launched

Number of
attacks launched

Number of attacks
detected by Snort

DoS Attacks 20 10
Encrypted
Attacks

20 0

6. NetHost-Sensor

This section describes the methodology of the
NetHost-Sensor and its unique features in thwarting
ETE encryption attacks, DoS exploitation program-
ming flaw and network fragmented attacks. In order
for the NetHost-Sensor to thwart these attacks, we col-
lect only valid network data and implement our data
collection within the protocol stack of the target host.
We attempt to use as our audit source the network and
transport layers of the target host, since at these layers
all network packets will have been decrypted and all
fragmented network packets reassembled to enable
more efficient intrusion detection. Figure 4 illustrates
of NetHost–Sensor position on a protocol stack of a
target host.
 An obvious weakness of our approach is that it may
not be portable since it is embedded within the proto-
col stack of the target host. Our assertion is that for a
network IDS to avoid the pitfalls describes by Ptacek
and Newsham [13], it must be customised to the target
host, anyway. One approach would be to emulate the
protocol stack based on the low-level interface pro-
vided by the operating system. This is difficult as it
requires deep understand of the behaviour of a par-
ticular implementation. Our approach involves no
modification to the kernel and does not duplicate ef-
forts already done in the kernel, although an Applica-
tion Protocol Interface (API) can be designed for each
platform, making the NetHost-Sensor platform inde-
pendent.

5

Application
layer

Application
layer

Transport
layer (TCP)
Transport
layer (TCP)

NetHost sensorNetHost sensor

Network
layer (IP)
Network
layer (IP)

Data link
layer

Data link
layer

Physical
layer

Physical
layer

Figure 4: NetHost-Sensor in a protocol stack of a target

host

6.1 NetHost-Sensor’s Detection Technique

The basic technology to implement signatures is to
simply record a unique pattern of an attack and search
for it within network packet’s payload. There are a
number of problems with signature detection tech-
nique as it does not truly understand the nature of a
network packet. For example, the pattern “/cgi-
bin/phf” is flagged as an intrusion by Snort IDS may
appear in a packet’s payload for a reason not related to
an intrusion, thereby causing Snort to trigger a false
positive.
 Rather than processing just the surface of packets,
the NetHost-Sensor will dig deeper into network
packet’s payload, reconstructing the original meaning
of the data. This requires that a lot more code be writ-
ten. One way to understand this is using a full HTTP
request involving “/cgi-bin/phf” such as:

GET/index.htmlHTTP/1.0Host:www.bellepress.comRefere

rhttp://www.bellepress.com/cgi-bin/phfUser-
Agent:Mozilla/2.0

In this HTTP request, NetHost-Sensor’s protocol
analysis applies more intelligence, by pulling apart
each of the fields within the header and assigning
meaning to them. This will give:

Method=GET
URL=/index.html
Version=HTTP/1.0
Fieldname=Host
HTTP_HOST=www.bellepress.com
Fieldname=Referrer
HTTP_REFERRER=http://www.bellepress.com/cgi-bin/phf
Fieldname=User-Agent
HTTP8_USERAGENT=Mozilla/2.0

Another vulnerabilityof signature detection technique
is evasion attacks that can be described using Simple
Network Management Protocol (SNMP) network
packets. A raw Snort signature for detecting an exam-
ple of SNMP attack is:

 Alert udp!$HOME_NET any $HOME_NET 161 (msg:

“NETBIOS_SNMP-NT USERList”;content: “|2b 06
01 04 01 4d 01 02 19|”;)

However, SNMP allows padding within the data. With
extra padding, the data on the network packet’s pay-
load would actually be sent as: 2b 80 06 80 0180 04
80 0180 4d 80 01 80 02 80 19, as the original pat-
tern has been smudged, Snort IDS will no longer trig-
ger on this attack. In contrast, the NetHost-Sensor will
automatically unsmudge the data back into a canoni-
cal form and correctly trigger on the intrusion, no mat-
ter how much extra padding is added to the data. Most
protocols allow similar sorts of encoding or smudging
that will hide the true signature of the intrusion. The
NetHost-Sensor will automatically handle this through
its protocol analysis technique, but most IDS that im-
plement signature detection technique will fail to de-
tect the intrusion.

6.2 Thwarting DoS exploitation of programming
flaws

Using DoS exploitation of programming flaws as an
example of a threat to survivability of a system, which
we define as the capability of a system to fulfil its mis-
sion in a timely manner even in the presence of at-
tacks or failures. We develop a novel concept within
the NetHost-Sensor, using heuristic evaluation of sev-
eral DoS exploitations of programming flaw attacks to
determine the penultimate system call or a series of
system calls that leads to an application crash or halt.
Described more formally:

Let:

DoS exploitation of a program flaw be = EXEDoS(Appll)

Where:

EXEDoS = execution of Dos exploit
Appll = exploited application e.g telnet

Assuming that:

System calls pertaining to Appll = H
Since the execution of an application is a series of system
calls

Therefore:
 Execution of Appll= endHH0

Where:
 H0 is the initial system call
 Hend is the end of execution system call

We can then say:

crashDoScrashDoSbDoSaDoS HHHHH /....1/...../......./.......0ll)ExeDoS(App −=

below.ally mathematicshown as executing from
 of seriesany stopping and H ofsummation themonitoring

flaw program a ofon Exploitati DoS toresistance a that concludecan westatements above theFrom
napplicatio thecrashes that call system

napplicatio thecrashes that call system epenultimat
crashn apllicatio abnormal toleading calls systems

;

1/......./......../

/

1/

/..../......./

−

−

=
=

=

crashDoSbDoSaDoS

crashDoS

crashDoS

bDoSaDoSaDoS

HHH

H
H

HHH
Where

6

 withincall system any of tionidentifica processparent the determine we

 threat, onexploitati DoS the elimiante fully To

)(

1/..../

1/0

−

<<

∑
−

crashDoSaDoS

HHH

HH

AppllEXEDoS
aDos

from executing Appll. In knowing the Appll from any H
series, we can terminate the Appll and any further ex-
ploitation.
 By having the NetHost-Sensor stop DoS exploitation,
threats leading to crash attacks on monitored target
host’s applications, we have introduced a survivability
factor into our novel research proposal “the NetHost-
Sensor”.

7. Conclusion

Despite the research carried out by researchers over
the past two decades, existing IDS have not met the
expectation that motivated initial work. In this paper
we have described IDS’s and classified them using
various criteria. We then proceeded to the current vul-
nerabilities affecting IDS and single out a few of the
key motivations to our proposed research work, the
NetHost-Sensor. We justify our proposed research
work by comparing it with current IDS in thwarting
DoS exploitation of programming flaws, ETE encryp-
tion and network fragmented attacks. We investi-
gated, experimentally, the severity and feasibility of
Snort-a network IDS in detecting DoS exploitation of
programming flaws, ETE encryption and network
fragmented attacks and reported the findings. We have
finally proposed the design of a NetHost-Sensor, a
network IDS that thwarts DoS exploitation of pro-
gramming flaws, ETE encryption and network frag-
mented attacks. The NetHost-Sensor features two
novel concepts:

• It sits between the network and transport layers of

the target host and uses these layers has its audit
source in detecting intrusions.

• A wrapper round a target host application server
using system calls to determinate DoS exploitation
of programming flaws and finally employs a pro-
tocol analysis detection technique to thwart net-
work fragmentation attacks.

We are current experimenting on a network and
transport layer of a Windows NT machine to deter-
mine the adequate points in the network and trans-
port layer of the protocol stack to use as an audit
source and then progress to implement the protocol
analysis detection technique.

8. References

[1] R.Heady, G.Luger, A.Maccabe and M.Servilla, “The Ar-
chitecture of a Network Level Intrusion Detection Sys-
tem”, Technical Report CS90-20, University of New
Mexico, Department of Computer Science, August 1990

[2] S.Bellovin, “Security Problems in the TCP/IP Protocol

Suite”, Computer Communications Rev, 19 (2): 32-48,
1989

[3] D.Dean, M.Franklin and A.Stubblefield, “An Algebraic
Approach to IP Traceback". Information and System Se-
curity, 5(2), 119-137, 2002

[4] E.Schultz,“ A Framework for Understanding and Predict-
ing Insider Attacks”, Computer & Security, 21(6), 526-
531, October 2002

[5] CERT Coordination Center Advisory CA-1995-01, “IP
Spoofing Attacks and Hijacked Terminal Connections”,
Available online www.cert.org/ advisory/ CA-1995-01

[6] W.Madsen, “FBI At Centre Stage Of Code Red”, Net-
work Security, 2001(8), 14-15, 1 August 2001

[7] M.Nacht, “The Spectrum of Modern Firewalls”, Com-
puters & Security, 17(1), 54-56, 1998

[8] A.Abimbola, Q.Shi and M.Merabti, “NetHost-Sensor: A
Novel Concept In Intrusion Detection Systems”, Eight
IEEE International Symposiums on Computers and
Communications, 232-240, June 30-July 03

[9] T.Verwoerd and R.Hunt, “Intrusion Detection Tech-
niques and Approaches”, Computer Communications,
25(15) 1356-1365,15 September 2002

[10] V.Paxson, “Bro: A System for Detecting Network Intrud-
ers in Real-Time”, Computer Networks, 31 (23-24),
2435-2463, 14 December 1999

[11] S. Goregaoker, “A Method for Detecting Intrusion on
Encrypted Traffic”, Florida State University, Department
of Computer Science, Master of Science Degree.TR-
010703, 2001

[12] A.Abimbola, “Denial of Service Attack: What is Going on
?”, ISSA Journal, November Issue, 2003

[13] T.Ptacek and T.Newsham, “Insertion, Evasion, and
Denail of Service: Eluding Network Intrusion Detection,”
Secure Networks, www.aciri.org, November 9, 2003

[14] J.Koba, “Windows NT Attacks for the Evaluation of In-
trusion Detection Systems”, Master of Engineering in
Electrical Engineering and Computer Science Thesis,
Massachusetts Institute of Technology

[15] J.Seitz, “Demystifying the IPSec Puzzle:” Sheila Frankel,
273 pages, Boston, London: Artech House 2001, ISBN 1-
58053-079-6, Computer Standards & Interfaces, 24(1),
Page 87, March 2002

[16] T.Daniels, E.Spafford, “A Network Audit System for
Host-Based Intrusion Detection (NASHID) in Linux”,
Cerias Purdue University, 16th Annual Computer Security
Applications Conference (ACSAC 00)

[17] P.Mell, D.Marks, M.Mclarnon. “A Denial of Service Re-
sistance Intrusion Detection Architecture, Computer
Network, 34(4), 641-658, 2000

[18] U.Shankar and V. Paxson. “Active Mapping: Resisting
NIDS Evasion Without Altering Traffic”, Proc. IEEE
Symposium on Security and Privacy, May 2003

[19] University of Idaho, Department of Computer System,
Firewall Mobile Customs Agent Project,
www.cs.uidaho.edu, November, 2003

[20] W.Jansen, “Countermeasures for Mobile Agent Security”,
Computer Communications, 23(17), 1667-1676 1 No-
vember 2000

7

[21] S.Chari and P.Cheng, “BlueBox: A Policy-Driven, Host-
Based Intrusion Detection System”, ACM Transactions
on Information and System Security (TISSEC), 6(2),
173-200, 2003

[22] J.Foster, B.Caswell, and J.Beale (Editor) J.Faircloth,
“Snort 2.0 Intrusion Detection”, Publisher (Syngress),
ISBN-1931836744, 2002

8

	1. Introduction
	2. Background
	3. Motivation
	4. Related Work
	5. Experimental Details
	6. Experiments Results
	6. NetHost-Sensor
	6.1 NetHost-Sensor’s Detection Technique
	6.2 Thwarting DoS exploitation of programming flaws

	7. Conclusion
	8. References

