
ONLINE ASSESSMENT AND CHECKING OF SQL: DETECTING AND
PREVENTING PLAGIARISM

Gordon Russell
Napier University
10 Colinton Road

Edinburgh
 g.russell@napier.ac.uk

 http://grussell.org

Andrew Cumming
Napier University
10 Colinton Road

Edinburgh
 a.cumming@napier.ac.uk

 http://www.dcs.napier.ac.uk/~andrew

ABSTRACT
The automatic checking of online assessments and
tutorials offers a significant advantage to students.
Such students can work out-of-hours, from home or
work, managing their own time allocation. This
allows formal practical sessions to concentrate on
learning, and not on assessments. However, there
is a danger that students will abuse such systems,
invalidating the assessment process. This paper
investigates the plagiarism detected in a learning
environment for SQL, and the effectiveness of the
different techniques that it has used to eliminate
plagiarism.

Keywords
Plagiarism, SQL, Databases, Automatic marking,
Automatic checking.

1. INTRODUCTION
The students learning SQL at Napier University
make use of a home-grown integrated learning
environment [4], called ActiveSQL. This provides
SQL tutorials, and also supports online incremental
assessments. The tutorials and assessments are
all marked automatically and immediately by the
system, giving a perception of immediate feedback
to the students.
One problem with the use of automatic checking,
especially when combined with online assessments,
is that it is hard to validate that the work has not
been plagiarised. Such systems may actually
encourage plagiarism, as students may feel they
are not cheating the Lecturer but are simply
cheating a computer. The detachment of human
involvement in the marking process may also give

rise to a belief that such actions would be hard to
detect, and even if detected would be hard to act
on.
Common plagiarism tools often rely on having
significant student material to apply statistical
analysis algorithms to detect changes in style, or
having student material that by its nature has many
variations (much of which dictated by the
personality of the student in question). In
programming exercises for instance, aspects of the
code such as variable names, function names, or
even the approach to loop constructs (while, do, for,
foreach, etc) can vary significantly between two
students attempting to solve the same problem.
In SQL exercises targeted at solving particular data
querying problems, some student solutions will
appear to be similar to that of other students. One
could increase solution variations by asking “bigger”
questions, with design, implementation, and testing
components. This approach however is harder to
assess automatically, and more importantly is
difficult to offer as an incremental assessment
without increasing lecturer workload. In addition,
the author’s investigations have shown that there
are significant benefits to having small, incremental
style assessments when learning SQL [3].
This paper gives a brief overview of the automatic
grading process used in ActiveSQL. It then
proposes and analyses an approach to plagiarism
detection for SQL. The results of applying this
algorithm is visualised, and plagiarism behavior
data spanning the last three years is discussed.
Finally conclusions are drawn for those interested in
assessing SQL online specifically and on online
assessments in general.

2. AUTOMATIC CHECKING
The checking algorithm [3] used by ActiveSQL is in
two parts. The main check is on Accuracy, and
compares the result of executing the student’s SQL
against that achieved when executing the sample
solution. This gives a percentage accuracy mark
which corresponds to how closely the two results
match up. This accuracy measure includes a

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission.
Teaching, Learning and Assessment in Databases, University of
Sunderland
© 2005 HE Academy for Information and Computing Sciences

method for detecting “hard coded” solutions that fail
to work correctly if the dataset changes.
The second check is based on a number of hand-
coded heuristics, which attempt to measure the
quality of the actual SQL submitted (and ignoring
how well the SQL actually performs). This
measures things including query length, use of
distinct, and whether LIKE was used where “=”
should be. Breaking these rules result in penalty
marks. This second check also produces textual
feedback to the students (e.g. “Your query is too
complicated”) and gives the illusion of intelligence.
In turn, written student feedback for this system
shows that student acceptance of automatic
marking was greatly enhanced as a result of using
these “human-like” feedback responses.

3. DETECTION
Manual detection of plagiarism in the author’s
database module involves going through over 300
different student’s submissions, each of which may
involve 10 different SQL statements. This is both
time consuming and error prone. An automatic
scheme is attractive, if at least to filter out clearly
non-matching submissions.
Initially a number of algorithms were written to
compare two SQL statements, and the results of
each algorithm was weighted, summed, and then if
the number was over a particular threshold the
match was considered positive. This approach
proved to be unworkable. Not only were the
weights arbitrary, but as the number of algorithms
used increased, the complexity in handling and
justifying the weights grew excessively.
The second approach undertaken was to separate
the comparison process from the identification of
plagiarists. This allowed us to generate data to
show plagiarism “suspicions”, which could be
analyzed in a second phase and either dismissed or
approved. The comparison algorithm stores the
comparison results in an XML document. This
document could then be viewed manually, or
processed automatically, as part of our
investigations. The XML for each question copied
can have the following information.
<equality quality='n' />
<shuffle flips='m' />
<histogram>
 <word word='v'
 left='f1' right='f2' />
 <signature op='w' comma='x'
 trail='y' />
</histogram>

3.1 Equality Matches
Here the quality of the match is a number from 4 to
10. This algorithm is based on simple string
equality. The idea here is to quickly and efficiently
detect students who have “cut and pasted” SQL

electronically, and then made only minor cosmetic
changes. The quality n corresponds to a range
from 10 (a perfect string match) to 4 (a string match
ignoring case, non-essential white space, and
brackets).
This algorithm turns out to catch most students.
Normal disguise attempts of the students include
changing “select” to “SELECT”, or inserting returns
into the middle of a statement.

3.2 Shuffle Flips
This is based on the idea of Heckles [2] essay
plagiarism algorithm applied to SQL. This algorithm
is used a number of programming language
plagiarism detection systems [1] [6]. The detection
issue is picking up on lines moved around. This
problem is significant in SQL, as some parts of the
text which makes up a query can be reorganized
without affecting the performance of the query (e.g.
AND lines in a WHERE clause can be reordered).
The attribute flips gives a measure of how many
lines had to be moved around.
In Shuffle, the concept of a line is not the same as
text with a return character at the end. Instead
Shuffle reformats the user’s SQL into a regular
structure. For instance, operators like “AND” and
“WHERE” start the lines off. In addition Shuffle can
be coded to ignore brackets, aliases, case changes,
and equal flips. Equal flips make the comparison
tolerant to changes where the operands on each
side of a comparison are switched over, such as
changing from “WHERE a = b” to “WHERE b = a”.
Shuffle was written analyze attempts to disguise
SQL plagiarism, reporting a “distance” between one
SQL query and another. Currently Equality is
usually sufficient to detect plagiarism in our current
data sets. However, it is assumed that as the
students become more aware of the plagiarism
detection system, they may begin disguising the
plagiarism. Equality is much faster than Shuffle, so
is executed first, and Shuffle is used only if Equality
fails to find a match.

3.3 Histogram
In the Histogram tag, data is given to provide
evidence that can be presented to the students
involved to help counter claims that the plagiarism
could have happened by coincidence. It is after all
possible for two students to work independently and
still produce identical SQL statements.
Histogram parses all the SQL ever submitted and
hunts out highly unusual words. Everyone uses
“SELECT” but perhaps only two students use
“myview1” as a view name… Two students with
identical SQL and who are the only ones to use
“myview1” would therefore have no “just a co-
incidence” argument. Where the two SQL
statements have an unusual word, this is shown

with the word tag, with attributes showing the word
in question, and how many times it appears in SQL
statement 1 and how many times it appears in SQL
statement 2.
The word tag also reports on inconsistent usage of
words within each SQL, and how these are used
consistently between the two statements being
compared. Thus if both suspect queries used
“AND” and “And” exactly once each, this would be
flagged. This has proved to be particularly useful in
plagiarism procedures.
Finally, signature looks for unusual patterns of the
space character in the SQL statements. op looks
for how spaces are used on each side of an
operator (e.g. < and !=), comma does a similar thing
for spaces around a comma, and trail looks for any
spaces which appear right at the end of a line.
Analysis shows that trail is often the crucial factor in
confirming that an SQL statement has been
electronically distributed; trailing spaces are
completely invisible to the user, can happen by
accident, and are easily copied between users.

3.4 Example
Consider Figure 1, where LEFT student has been
detected plagiarizing with student RIGHT. The
difference between LEFT and RIGHT is that RIGHT
has a blank line in the middle, and the range on the
last line is “>=” rather than “>”. This cannot be
detected using the Equality test. Shuffle does
detect the copies, and gives it a similarity of 89%.
To strengthen the case, consider the histogram
output. Here “labour_cost” is used twice in each
query, and “LABOUR_COST” used once in each
query. In addition invisible trailing spaces appear
on the end of two of the lines in LEFT, and also

appear in identical places in RIGHT. Certainly this
is an electronic copy that has been disguised
slightly by the students.

3.5 Validation
As part of the investigation, it was decided to
attempt to validate the comparison process using a
number of techniques. Firstly, cross-cohort
plagiarism was identified (e.g. plagiarists who
seemed to copy of each other yet studied in
different groups or different years). Secondly,
cases of plagiarism in the current cohort where a
student appeared to copy more than a single SQL
statement were taken through Napier’s plagiarism
procedures. All students who were taken through
these formal plagiarism procedures were confirmed
through that process to have plagiarized.

3.5.1 Cross-Cohort Plagiarism
Out of over 1000 student checked, only three
groups of 2 students per group came back as
breaching a cohort boundary. Two of these groups
were traced to incorrect registration details (i.e. they
actually were in the same cohort) and the last group
was confirmed as two students who knew and
helped each other.

4. EVOLUTION OF THE SYSTEM
The ActiveSQL site and its underlying systems have
evolved over a number of years. Some of these
changes were specifically implemented in an
attempt to remove the need for students to
plagiarise. Previously simple student-to-student
plagiarism analysis code was used, and this
appeared to show a decrease in plagiarism.
However, this year it was considered that perhaps

<shuffle score='0.888889' restarts="0" />
<signature op='0' comma='1' trail='1' />
<histogram mode='all'>
 <word str='labour_cost' left='2' right='2' />
 <word str='TRAIL:1' left='2' right='2' />
 <word str='LABOUR_COST' left='1' right='1' />
 </histogram>

This Student (Left) Another Student (Right)
select a.description, b.fabric, _
b.colour, b.pattern
from garment a, material b,
quantities c,order_line d
where a.style_no = c.style_q
and c.style_q = d.ol_style
and d.ol_material = b.material_no
and (a.labour_cost+c.quantity*b.cost)
> (select g.labour_cost from
garment g where g.LABOUR_COST > 80);

select a.description, b.fabric, _
b.colour, b.pattern
from garment a, material b,
quantities c,order_line d
where a.style_no = c.style_q

and c.style_q = d.ol_style
and d.ol_material = b.material_no
and (a.labour_cost+c.quantity*b.cost)
> (select g.labour_cost from
garment g where g.LABOUR_COST >= 80);

Figure 1: An example of reported plagiarism

rather than reduce plagiarism, it had simply
changed in nature, and was now in a form which
was difficult to detect.
In this paper three cohorts are analysed in depth.
These cohorts relate to year 2 students undertaking
a degree in computing, with the module starting in
2002, 2003, and 2004. The following lists the
assessment approach in each year:
� 2002: Students work on a minimum of 5

questions from a list of 15. They are awarded
the highest 5 of the marks. Questions 1-5 were
worth 12, 6-10 were worth 15, and 11-15 were
worth 20 marks each.
A significant degree of plagiarism was detected
at the end of the module. In an attempt to
discourage plagiarism the decision was made to
switch to question banks. An incremental
approach to assessments was also adopted in
an attempt to improve student motivation.

• 2003: Assessment split into 4 stages. At each
stage the student was presented with 2
questions randomly selected from a bank of 5
related questions. Each stage was worth 25%.
The stages grow progressively harder.
Plagiarism has decreased. However student
feedback indicated that the jump between
stages 2 and 3 was too great. The majority of
students only completed stages 1 and 2. In an
attempt to encourage progression into stage 3
the decision was made to give a mix of difficulty
level questions in each stage.

• 2004: The stages were refined so that each
stage consisted of 1 question from that stage’s
bank and 1 question from the previous bank.

5. PLAGIARISM GROUP ANALYSIS
The initial step in this analysis was to visualise how
students copied from each other. A visualizer was
written, based of code available from [5]. By
introducing question banks in 2002 it was assumed
that students would find it difficult to identify friends
with the same question as themselves.

Figure 2: CO22001 Cohort 2002

Figure 2 shows a visualization for cohort 2002. The
nodes are students who have some degree of

plagiarism with another student, and the lines
between nodes indicate who was involved in the
plagiarism. The length of each line indicates the
degree of plagiarism involved (shorter is more).
This seems to indicate some significant groups of
students who heavily copy from each other.

Figure 3: CO22001 Cohort 2003

Figure 3 shows the change to random question
banks. Now large groups have been eliminated, but
there are still some groups who copy heavily from
each other. The plagiarism groups are tightly
packed, indicated heavy copying has occurred. It is
desirable to break these tightly packed groups.

Figure 4: CO22001 Cohort 2004

In Figure 4, which has an adjusted difficulty
distribution in the question bank selection
mechanism, tight clustering is significantly reduced.
Groups still exist, but nodes do not appear so tightly
packed (the degree of copying was smaller). The
number of groups has also decreased. It is possible
that the now stretched-out big groups indicate that
the number of questions in each bank is simply too
small, and that slightly increasing the possible
questions per bank will stretch these links to
breaking point. However, adding to a question bank
is non-trivial, as difficulty levels have to be
maintained in each bank.

6. ANALYSIS
The visualization has highlighted a number of
issues worthy of further investigation. Long thin

associations suggest that the links are weaker than
high-density groups. Perhaps these can be broken
by better student education, more tutorials, or
slightly more questions per bank. This will be
looked at for 2005. It is also of interest to confirm
the visual impression that random question banks
have reduced plagiarism 2002-3, and that in 2004
more questions attempted did not lead to
significantly more plagiarized questions.
Figure 5 shows statistics that confirm our initial
visual assessment. Most importantly the degree of
plagiarism has decreased with the use of question
banks, and that peer pressure to attempt more
questions did not lead to more plagiarism. Note that
the Average Score in 2002 was originally calculated
using a different marking scheme, but has been
remarked here with the scheme used in the 2003
and 2004 cohorts.

7. CONCLUSIONS
Random question banks can be part of the solution
to plagiarism. However the economics of having
large banks of moderated questions of equivalent
difficulty means that the bank size will likely be too
small to eliminate plagiarism on their own. Large
plagiarism groups can always defeat large question
banks.
Visualization tools can assist system designers in
identifying how plagiarism has changed, and in
suggesting possible ways to improve their
plagiarism detection algorithms. By studying such
visualizations, it may also be possible to obtain a
deeper understanding of plagiarism behavior. This
will hopefully identify avenues to make plagiarism
less attractive to students who are under pressure
to meet their perceived targets.

Procedures to punish plagiarists should only be
seen as a last resort. Even draconian punishments
are not effective deterrents unless detection rates
are high. The administrative costs of an academic
conduct hearing are high, and they can be draining
and dispiriting for all concerned.

8. REFERENCES
[1] Clough, Paul (2000), Plagiarism in natural and

programming languages: an overview of current
tools and technologies, Research Memoranda:
CS-00-05, Department of Computer Science,
University of Sheffield, UK.

[2] Heckel, Paul (1978). A Technique for Isolating
Differences Between Files. Commun. ACM
21(4): 264-268.

[3] Russell, Gordon and Cumming, Andrew (2004).
Improving the Student Learning Experience for
SQL using Automatic Marking. In Demetrios
Kinshuk and Pedro Isaias (Eds.), Cognition and
Expolaratory Learning in Digital Age (CELDA
2004) pp 281-288. Lisbon: IADIS Press. ISBN
972-98947-7-9.

[4] Russell, Gordon and Cumming, Andrew.
ActiveSQL: http://db.grussell.org .

[5] Shapiro, Alexander: Touchgraph visualiser
project. http://touchgraph.sourceforge.net .

[6] M. J. Wise. YAP3 (1996). Improved detection
of similarities in computer programs and other
texts. In Twenty-Seventh SIGCSE Technical
Symposium, pages 130--134, Philadelphia,
USA.

Cohort
2002 2003 2004

Total Number of students 312 301 263
Average number of questions attempted 5.7 4.6 5.8
Average Score 60% 51% 64%
Plagiarised questions 208 120 138
Percentage of dishonest answers submitted 12% 9% 9%

Figure 5: Statistics Gathered

