
Combinational Logic Synthesis Based on the
Dual Form of Reed-Muller Representation

By

Khalid Faraj

B.Se, M.Se

© Copyright by Khalid Faraj 2005

A thesis presented in partial fulfilment
ofthe requirements for the degree of

Doctor of Philosophy

Napier University

School of Engineering

2005

CONTAINS DISKETTE

UNABLE TO COpy

CONTACT UNIVERSITY

IF YOU WISH TO SEE

THIS MATERIAL

Declaration

I declare that no portion of the work referred in this thesis has been submitted in
support of an application of another degree, qualification or other academic awards
ofthis or any other university or institution ofleaming.

Edinburgh, March 2005

Khalid Faraj

1

Acknowledgements

All praise is due to ALLAH who has been bestowing me with his great bounties
and enabled me to complete my thesis.

I am grateful to my research supervisor, Professor A. E. A. Almaini, School of
Engineering, Napier University. This thesis would not have been possible without
the mentoring encouragement, friendship, constant guidance and weekly meetings.

I would like to thank my second supervisor, Mr. M. MacCallum, for his
encouragement of this research.
I would like to thank Professor M. Tariq for his support and encouragement.
Thanks are due to other members of the digital group, Dr. X. Yinshui and Dr. B.
Ali.

I would like to thank my parents Mohammad and Zahoa for their unending support.
Finally, I would like to thank my wife, Suheir and my lovely children, Mohammad,
Omar and Fatima, for their patience and support throughout my research work.

2

Contents

Declaration. 1

Acknowledgments.... 2

List of Abbreviations.. 6

List of Figures................................ 9

List of Tables. 10

Abstract ... 11

1 Introduction.. 12

1.1 Logic synthesis.. ... 12

1.2 Background. 18

1.2.1 Sum of Products 18

1.2.2 Product of Sums.... 19

1.3 Reed-Muller forms based on AND/EXOR operations.............. ... 20

1.4 Definitions and identities of EXOR gate....... 23

1.5 BDD using XOR operators......................... 28

1.6 Reed-Muller representation based on ORlXNOR operations......... 30

1.7 Aim of the thesis................... .. 32

1.8 Thesis overview.. 32

3

2 Efficient polarity conversion.. ... 36

2.l Introduction " " 36

2.2 Polarity conversion for a single output Boolean Functions........ 38

2.3 Basic theory and algorithms.... 43

2.4 Conversion for multi-output Functions '" 51

2.5 Experimental results... 53

2.6 Summary... 55

3 Dual Reed-Muller form 56

3.1 Introduction 56

3.2 DRM expansion oflogical functions..................................... 57

3.3 Generalization for large functions .. 65

3.4 Conversion for multi-output functions................................ 69

3.5 Experimental Results... 69

3.6 Summary. 71

4 Fast transformation between POS &DRM functions...... 72

4.1 Introduction '" 72

4.2 Definitions and representations ofDRM expressions. 73

4.3 Conversion from POS to PPDRM 76

4.4 Conversion between d and c with any fixed polarity.... 79

4.5 Results '" 86

4.6 Summary " " 88

5 Exact minimization of Dual Reed-Muller expressions....... 89

5.1 Introduction. 89

5.2 Exact minimization of the Fixed Polarity DRM forms........... 90

5.3 Conversion from polarity p to polarity q 92

5.4 Results.. 99

4

5.5 Summary... 102

6 Optimal polarity for Dual Reed-Muller expressions............... 103

6.1 Introduction.. 103

6.2 Conversion Algorithms.......................... 104

6.2.1 Conversion from POS to FPDRM .. 104

6.2.2 Conversion from FPDRM to POS .. 112

6.3 Optimization of the Fixed Polarity DRM forms.................... 116

6.4 Experimental Results... 123

6.5 Summary... 127

7 Conclusions and future work .. 128

7.1 Conclusions .. 128

7.2 Future work. 131

Publications... ... 132

Appendix A..... 133

References and Bibliography................. 136

Disk containing the programs.. 148

5

List of symbols and abbreviations

a

AND

b

BDD

c

CAD

CPU

d

DRM

ESOP

EX OR

FPDRM

FPGAs

FPRM

GF(2)

GHz

GRM

HDL

K-M

KRO

LEQ

m

M

MCNC

11

Coefficients of the Sum of Products

AND gate

Reed-Muller coefficients

Binary Decision Diagram

Coefficients of the Dual Reed-Muller expressions

Computer-Aided Design

Central Processing Unit

Coefficients of the Product of Sums

Dual Reed-Muller

Exclusive Sum of Products

EXORgate

Fixed Polarity Dual Reed-Muller

Field-Programmable Gate Arrays

Fixed Polarity Reed-Muller

Galios field

Gigahertz

Generalize Reed-Muller

Hardware Description Language

KamaughMap

Kronecker

Logical Equivalence

minterm

Maxterm

Microelectronics Center North Carolina

Number of variables

6

NAND

nD

NOR

OBDD

OR

p

pD

PLA

PNR

PPRM

PPDRM

PTR

R(n)

RAM

RM

ROBDD

ROM

RTL

S

Si

SOP

T

VHDL

VHSIC

VLSI

•
EB

EBI
0)

NANd gate

negative Davio

NOR gate

Ordered Binary Decision Diagram

OR gate

polarity number

positive Davio

Programmable Logic Array

percentage of non-zero elements

Positive Polarity Reed-Muller

Positive Polarity Dual Reed-Muller

Pointer

Reed-Muller transform matrix

Random-Access Memory

Reed-Muller

Reduced Ordered Binary Decision Diagram

Read -Only Memory

Register Transfer Language

Shannon

Sum terms for the Dual Reed-Muller expressions

Sum of Products

Truth vector for the Dual Reed-Muller expressions

Very High-Speed Integrated Circuit Hardware Description

Language

Very High-Speed Integrated Circuit

Very Large-Scale Integration

AND gate

EXOR

Sum of EXORs

XNOR

7

TI

++

Q9

*

o

Products

Continuous sum operation

Kronecker product

Multiplication

Matrix multiplication based on LEQ and OR

8

List of Figures

1.1 General overview of a circuit representation. 13

1.2 General overview of an ASIC design flow 16

1.3 Two-Level programmable array structure for (ORJXNOR) gates. 17

1.4 BDD for example 1.3 .. 25

1.5 Duplicate nodes for example 1.4 ... 26

1.6 Redundant nodes for example 1.4 27

1.7 ROBDD for example 1.4 ... 27

1.8 Positive Davio tree or (PPRM) 30

1.9 Structure of the thesis... ... 35

2.1 Minimal form under polarity 0 ... 42

2.2 Node structure for sparse matrix... 48

2.3 Vector Matrix Structure. 50

2.4 Key matrix Structure... 50

2.5 Basic Matrix Structure....... 51

2.6 Vector matrix for multi outputs. 52

9

List of Tables

2.1 Number of variables (n) versus Percentage of ones.................. ... 47

2.2 Conversion results of some benchmark functions. 54

3.1 Truth table for XNOR 58

3.2 Conversion results of some functions from MCNC Benchmark.. 70

4.1 Map of the standard function \If j.................... 80

4.2 Conversion results from POS to PPDRM form. 87

5.1 Derivation ofDRM for Polarity 1 94

5.2 Derivation ofDRM for Polarity 3 95

5.3 Derivation ofDRM for Polarity 2 .. 95

5.4 Derivation ofDRM for Polarity 6 96

5.5 Derivation ofDRM for Polarity 7 97

5.6 Derivation ofDRM for Polarity 5 98

5.7 Derivation ofDRM for Polarity 4 98

5.8 Optimization results based on algorithm 2 101

6.1 Conversion table from POS to PPDRM 124

6.2 Conversion table from PPDRM to POS 125

6.3 Optimal Polarity for DRM forms.. 126

10

Abstract

In certain applications, AND/XOR (Reed-Muller), and ORlXNOR (Dual
form of Reed-Muller) logic have shown some attractive advantages over the
standard Sum of Products (SOP) and Product of Sums (POS). Bidirectional
conversion algorithms between SOP and AND/XOR also between POS and
ORlXNOR based on Sparse and partitioning techniques are presented for multiple
output Boolean functions. The developed programs are tested for some
benchmarks with up to 20 inputs and 40 outputs.

A new direct method is presented to calculate the coefficients of the Fixed
Polarity Dual Reed-Muller (FPDRM) from the truth vector of the POS. Any
Boolean function can be expressed by FPDRM forms. There are 211 polarities for
an n-variable function and the number of sum terms depends on these polarities.
Finding the best polarity is costly interims of CPU time, in order to search for the
best polarity which will lead to the minimum number of sums for a particular
function. Therefore, an algorithm is developed to compute all the coefficients of
the Fixed Polarity Dual Reed-Muller (FPDRM) with polarity p from any polarity q.
This technique is used to find the best polarity of FPDRM among the 211 fixed
polarities. The algorithm is based on the Dual- polarity property and the Gray code
strategy. Therefore, there is no need to start from POS form to find FPDRM
coefficients for all the polarities. The proposed methods are efficient in terms of
memory size and CPU time. A fast algorithm is developed and implemented in C
language which can convert between POSs and FPDRMs. The program was tested
for up to 23 variables. A modified version of the same program was used to find
the best polarity. For up to 13 variables the CPU time was less than 42 seconds.

To search for the optimal polarity for large number of variables and to
reduce the se arch time 0 ffinding the 0 ptimal polarity 0 fthe function, two new
algorithms are developed and presented in this thesis. The first one is used to
convert between P OS and Positive Polarity Dual Reed-Muller (PPDRM) forms.
The second algorithm will find the optimal fixed polarity for the FPDRM among
the 211 different polarities for large n-variable functions. The most popular
minimization criterion of the FPDRM form is obtained by the exhaustive search of
the entire polarity vector. A non-exhaustive method for FPDRM expansions is
presented. The new algorithms are based on separation of the truth vector (T) of
POSs around each variable Xi into two groups. Instead of generating all of the
polarity sets and searching for the best polarity, this algorithm will find the optimal
polarity using the separation and sparse techniques, which will lead to optimal
polarity. Time efficiency and computing speed are thus achieved in this technique.
The algorithms don't require a large size of memory and don't require a long CPU
time. The two algorithms are implemented in C language and tested for some
benchmark. The proposed methods are fast and efficient as shown in the
experimental results and can be used for large number of variables.

11

Chapter 1

Introduction

Logic synthesis is the process of converting a high-level description of design into

an optimized gate-level representation. Logic synthesis uses standard cell library

which has simple cells, such as OR, AND, EXOR, XNOR, NOR, flip-flops,

registers. Libraries generally include more complex functions such as multiplexers,

adders, decoders, shift registers, and memory (ROM, RAM).

1.1 Logic Synthesis

The increasing complexity of chip designs and the continuous development of

smaller size fabrication processes present new challenges to the existing tools.

Future synthesis tools are required to handle millions of gates in a realistic time.

Computer-Aided Design (CAD) tools became critical for design and verification

of Very Large Scale Integrated (VLSI) digital circuits [1]. There was a need for a

new standard language to describe digital circuits. Thus, Hardware Description

K. Faraj. Chapter 1 13

Language (HDL) came into existence, which is used to develop documents,

simulate, and synthesize the design of electronics systems. Hardware Description

Languages such as VHDL [2, 3] which stands for VHSIC (Very High Speed

Integrated Circuits) Hardware Description Language and Verilog were accepted by

academia and industry to describe hardware from the abstract behavioral to the

gate level. Computer-aided techniques [4] have provided the enabling

methodology to design efficiently and successfully VLSI for a wide range of

applications such as processors, telecommunication, etc. A typical VLSI design

flow is illustrated in Figure 1.1. The key steps are high level synthesis, logic

synthesis and optimization, and physical level [5].

System specifications

Abstract high-level model

Physical
synthesis

Manufacturing

Figure 1.1: General overview of a circuit representation

K. Faraj, Chapter 1 14

The main objective of high level synthesis is to transform circuit specification

details into a high-level description of the circuit structure, to define major

functions to be implemented within the circuit and to realize each function with

smaller circuit blocks. For a given abstract behavioral representation of a digital

system, output of the high level synthesis phase is a register-transfer level (RTL)

structure realizing specified behavior. At this step, circuit consists 0 f functional

blocks which are defined in terms of interconnected registers, multiplexers and

control elements. Input to the logic synthesis phase is the RTL description of the

circuit a nd a 1 ibrary ofl ogic primitives. Logic primitives, flip-flops a nd control

functions are determined by the selected implementation style and the target

technology. Each functional block described in RTL description is transferred into

the structure of interconnected logic primitives to minimize either the size or the

perfonnance in terms of critical delay or combination of both. The solution of the

optimization problem can be measured in terms of cost (or obj ective) function. The

most common quality measures used in a circuit design optimization are the area,

and increasingly, power consumption. During the placement phase, the logic gates

are assigned to the physical location in the environment selected as a target

technology.

Up to now, most of the research has focused on developing algorithms for

AND/OR or NANDINOR circuits [6-9]. Alternatively, any Boolean function can

be represented canonically based on AND/EXOR operations, which are called

Reed-Muller expansions. This research was first published by Zhegalkin in 1927

[10] in Russia. In 1954, Reed [11] and Muller [12] published their work in the

U.S.A. In the last decade synthesis based on AND/EXOR, OR! XNOR realisations

[13, 14] have gained more interest, because these techniques are more compact for

certain types of circuits, such as error correcting circuits, and arithmetic circuits.

For these reasons implementations based on exclusive-OR gates can be more

economical, require 1 ess gates [15-17], and have excellent testability [18-21]. A

major characteristic of the EXOR logic is the numerous possible canonical

K. Faraj, Chapter 1 15

representations of switching functions it provides [22-24]. Also recent progress in

circuit technology makes the use of AND/EXOR and ORlXNOR gates feasible

[25-28].

Figure 1.2 shows a typical ASIC synthesis design flow based on logic synthesis.

The key steps in the ASIC design are: behavioral synthesis which allows the

design at higher levels of abstraction by automating the translation and

optimization of a behavioral description, or high-level model, into an RTL

implementation. Behavioral synthesis tools have been developed which translate

the behavioural model to an RTL model [29,30] The register-transfer level (RTL)

is often entered textually in a HDL such as VHDL.

Logic synthesis can be divided into there major steps:

1. To convert the description from RTL to logic level, which consist of

gates, flip-flops and latches.

2. The logic optimization task IS to optimize the description through

various procedures in terms of area, speed and testability.

3. Produce a gate level net-list.

Finally, at the physical level, the network is built on a slice of silicon using a

complex mapping scheme that translate transistors and wires into fine-line patterns

of metals and other substances.

The main objective of this thesis is to concentrate on logical synthesis part. By

developing a new optimization techniques and algorithms, which can be used to

convert between two-level logic implementations (the product-of-sums form,

ORlAND) into two-level Dual Reed-Muller forms (ORlXNOR) and find the

optimal form with the minimum number of terms hence, less gates and less area.

The Dual Reed-Muller forms (ORlXNOR) can be implemented by using a

programmable logic array (PLA) for a two level logic as shown in figure 1.3.

K. Faraj. Chapter 1

Logic
Svnthesis

Library

Behavioral Specification

Behavioral Synthesis

Behavioral Description

RTL Description

Translation Tools

Technology Mapping

Optimized Logic Description

Physical Design Tools

Figure 1.2: General overview of an ASIC design flow

16

K. Faraj, Chapter 1

Inputs

Programmable Array of
OR gates

~
Programmable Array of

XNORgates

Outputs

17

Figure 1.3: Two-Level programmable logic array structure for (ORIXNOR) gates

The work which is developed in this thesis does not replace previous work but

complements and enhances it. It gives the designer a larger search space and hence

a better chance of finding the ideal solution.

K. Faraj, Chapter 1 18

1.2 Background

This section presents the background theory and defines some basic notations that

are used throughout this thesis.

There are two standard canonical forms to represent a Boolean function:

1.2.1 Sum of Products

Boolean functions can be expressed by the Sum of Products (SOP) form as given

in equation (1.1) [31, 32].

211-1

I(XIl-1XIl-2···XO) = IaJn j (1.1)
j~O

Where the subscript i can be expressed in a binary form as i = (in-lin-2 .. .i0) 2, '2:' is

the OR operator, [aO,al, ... ,a2n_l] is the truth vector of the function I, a j E {0,1}.

aO = 1(0,0, ... ,0)

a1 = 1(0,0, ... ,1)

a n = 1(1,1, ... ,1)
2 -1

The minterm m i can be represented as mj = x
l1

_1XI1
_2 ••• xo

Where

K. Faraj, Chapter 1 19

Xj' i = 0 i~{ .I

.I i = 1 x,
.I J

(1.2)

Where j is from 0 to n-1.

Example 1.1

A three variable function,j(x2,xl,XO) can be expanded by the SOP form as follows:

!(X2 ,Xl' XO) = aOOOx2xIXO + aOOlx2xIXO + aOlOx2xlxO + aOllx2xIXO + alOOx2xlxO

+ alOlx2xIXO +allOx2xlxO + alllx2xIXO

1.2.2 Product of Sums

The same Boolean functions can also be expressed by the Product of Sums (POS)

form as given in equation (1.3).

2"-1

!(Xn_pXn_2'···Xo) = I1(di +Mi) (1.3)
i=O

Where 'IT' represents logical products (AND), the '+' is OR operation and i is a

binary n-tuple i = (in-l in-2 ... iO)2, [do,d1, .. . ,d2
n

_1] is the truth vector of the function

f, di. E {o, I} . If d i equals to zero then Mi will be retained in the POS, since '0' is

the Boolean additive identity such that 0 + Mi = Mi [33], and Mi is a sum term

(maxterm)

K. Faraj, Chapter 1

Where

o • ik • ill _1 • i,,_2 • i 0

M i = ~ X k = X n-I + X n-2 + ... + x 0

k=n-J

. {x k
x" = _

x"

i" = 0

ik = 1

Where k is from 0 to n-l.

Example 1.2

20

(1.4)

(1.5)

A two variable function,j(xl,xo) can be expanded by the POS form as follows:

We will refer to the coefficients of SOP form and the coefficients of POS form as

a and d respectively.

1.3 Reed-Muller forms based on AND/EXOR operations

Definition 1.1 An n-variable Boolean function can be expressed canonically by a

Fixed Polarity Reed-Muller (FPRM) which is also known as Generlized Reed

Muller (GRM) form where each variable can be complemented or un

complemented, but not both, with polarity p expressed in a binary n-tuple, p = (Pn-I

pn-2 ... Po)z, as follows [34, 35]

K. Faraj, Chapter 1

2n -I

!(xn_Ixn_2···xO) = Ell Dkhk
k=O

Where' E9 2: 'is the XOR operator, Q k = xn_1xn_2 ••• xo,

.. {I, k j = 0
x.=

, X, k=l , ,

x.= , {

X, p=l J ,

Xj' p,=O

21

(1.6)

(1.7)

k= (kn-1 kn-2 .•• ko), and} is from 0 to n-1. Where bk E{O,l}indicates the presents or

absence of the product terms. This is a Positive Polarity Reed-Muller (PPRM)

expression [36].

Sasao [37] shows that there are 7 classes of AND-EXOR expressions, this thesis

focus on three major forms of Reed-Muller expansions:

A. The Positive Polarity Reed-Muller (PPRM) form is an EXOR sum of

products where each variable is in un-complemented form. This is also called a

zero polarity form:

K. Faraj, Chapter 1 22

A number of algorithms have been proposed to obtain this form from the sum of

products [34, 35, 38-42].

B. The Fixed Polarity Reed-Muller (FPRM) form (GRM) where each variable

can be complemented or un-complemented, but not both:

Where X E {X, x} .

This form can be obtained from the zero polarity form using the identity x = 1 EB x .

This give rise to 2/7 fixed polarities, many algorithms are available to derive these

polarities [31, 37]. To calculate the polarity for any GRM function, each variable

is replaced by a 1 or 0 which depends on whether variable Xj is in complemented or

true form respectively.

For example, a three-variable function!(x2xjxo):

!(X2Xj Xo) has polarity 0

!(x2x j XO) haspolarity1

!(XZxjxo) haspolarity4

The advantage of the GRM is that some minimisation is possible by finding a

polarity, which minimise the number of terms. There are some algorithms to find

the minimal fixed polarity expansion [43-47].

K. Faraj, Chapter 1 23

C. The mixed polarity Reed-Muller form, where each variable can be

complemented or un-complemented. For an n variable function, there can be up to

')/1-1

211
- different expansions or polarities [48].

1.4 Definitions and identities of EXOR gate

The EXOR operation is defined as follows:

AEBB = AB+AB

For any Boolean variable x, the following identities are used for EXOR operations:

Where

xEBl=x

xEBx=O

xEBO=x

xEBx=l

true form

complemented form

For any EXOR expression the following properties hold:

K. Faraj, Chapter 1

x2 EB(X1 EBxO)=(X2 EBx1) EBxO =x2 EBx1 EBxo (associative)

x2 (X1 EB xo) = X2X1 EB x2XO (distributive)

x1 EB Xo = Xo EB x1 (commutative)

The Kronecker product oftwo matrices (AmA x nA, BmB x nB) is defined as follows:

AQ<JB= Q<JB=

24

Each aijB is a block of size mB x nB., and A Q<J B is of the size mA x nA x mB x

nB [49,50].

The realisation of Reed-Muller circuits led to computational difficulties for

functions of even moderate size, due to the large memory requirements. To

overcome these difficulties Reed-Muller functions can be represented using a

binary decision diagram, thus reducing the storage requirements. In addition, the

computational requirements are also reduced since an efficient method for

computing the spectral coefficients is employed.

Binary Decision Diagrams (BDDs) are used as a data structure for Boolean

functions. It was introduced by Lee in 1959 [51] and later by Akers [52]. In 1986

Bryant introduced the concept of Ordered Binary Decision Diagrams (OBDD)

which, allow canonical representation and efficient manipulation of Boolean

functions [53].

BDD method has been widely used for synthesis, analysis and optimisation of both

combinational and sequential logic [54-55]. In addition, BDDs have been used for

design verification [56]. Although the technique provides a useful model for large

applications, it suffers from the drawback that there is a difficulty in determining

K. Faraj, Chapter 1 25

an optimum ordering of the function input variables to achieve the simplest

network [57-59].

Definition 1.2 A BDD is a directed acyclic graph representing a Boolean function

as shown in Figure 1.1. It can be uniquely defined as a tuple, BDD= (<D, V, E,

{O,l}), Where <D is the function node (root) [60], V is the set of internal nodes

representing the input variables, E is the set of edges, and {O, I} are the terminal

nodes. A completely specified function! can be specified by two sets of cubes, an

on-set X(on) and an off-set X(off), wherej(X(on)) = 1,j(X(off)) = 0.

Examples 1.3

A Boolean functionj(x2,xl,XO) = I {3, 5, 7} can be expressed by a BDD as shown

in Figure 1.4.

Figure 1.4: BDD for example 1.3

The following reduction rules are used to reduce BDD to RBDD:

K. FaraL Chapter 1 26

1. Remove duplicate internal nodes: If two nodes VI and V2 have var(vI) = var(v2),

low(vI) = low(v2), and high(vI) = high (V2), then eliminate one of the two nodes

and redirect all incoming edges to the other internal node.

2. Remove redundant internal node: If an internal node V has low(v) = high(v),

then delete node v and redirect all incoming edges to high(v).

3. Remove duplicate terminal: Delete all but one identical terminal and redirect

all edges into that terminal [61, 62].

Examples 1.4

Reduce the following Boolean functionfi:x2,xl,xo) = I {3, 5, 7} by applying the

reduction rules.

1. Merge duplicate nodes, this will lead to:

o 1

Figure 1.5: Duplicate nodes for example 1.4

K. F araj, Chapter 1

o

o

Figure 1.6: Redundant nodes for example 1.4

2. Eliminate redundant nodes, this will lead to:

o 1

o o
1

o 1

Jex2 ,Xp XO) = (x]XO +X2X O)

Figure 1.7: ROBDD for example 1.4

27

K. Faraj, Chapter 1

1.5 BDD using XOR operators

There are three types of expansions using XOR gates as follows:

1 = 10 EB x n- 1 .f2

1 = Xn_1.f2 EB J;

28

(1.8)

(1.9)

(1.10)

Where the cofactors to = (0, Xn-2, ... , xo), fi = (1, Xn-2, ... , xo), and h = to EB fi are

independent of the expansion variable Xn-l and can be expanded further with

respect to the other variables. Equation (1.10) is the Shannon expansion, where the

, EB' is the XOR operator. Equation (1.8) is the positive Davio (PD), it is also

known as Positive Polarity Reed-Muller (PPRM) expansion, and each variable

appear in the true (un-complemented) form 0 nly. Equation (1.9) is t he negative

Davio (nD) expansion, were the variables appear in the complemented form only

[37]. Equation (1.8) can be obtained by replacing xn _1 with 1 EB X n- 1 in equation

(1.10) as follows:

Similarly equation (1.9) can be obtained by replacing Xn-l with 1 EBx
ll

_1 in equation

(1.10) as follows:

Example 1.4

Convert the following arbitrary three variables function into PPRM canonical

form.

K. Faraj, Chapter 1

!(X2XIXO) = aOOOx2xlxO + aOOlx2xlxO + aOIOx2xlxO + aOllx2xlxO + aIOOx2xlxO

+ aIOlx2xlxO + allOx2xlxO + a lII x 2x l x O

29

Because the minterms are mutually exclusive [63], the OR can be replaced by the

XOR, and by replacing xn_1 with 1 EB xn_1 the following equation is obtained.

!(X2XIXO) = a ooo (1 EBx2)(1 EBxl)(1 EBxo) EBaool (1 EBx2)(1 EBxl)xo

Where

Hence

EBaoIO(1 EBx2)xl (1 EBxo) EBaoll(1 EBx2)xIXO EBaIOox2(1 EBxl)(1 EBxo)

EBalOlx2 (1 EBxI)xo EBallOx2xI (1 EBxo) EBalllx2xlxO

!(X2XIXO) = a ooo (1 EBxo EBxI EBxlxo EBX2 EBX2XO EBx2x I EBx2xIXO)

EB a ool (xo EBxlxo EBX2XO EBx2xIXO) EBaOIO (XI EBxlxo EBx2xI EBx2xIXO)

EBa oll (XIXO EBx2xIXO) EBa100(x2 EBx2XO EBx2xI EBx2x IXO)

EBa lol (X2 XO EBx2xIXO) EBa l 10 (X2XI EBx2x I x o) EBa l I IX2XI XO

By rearranging the terms the following is obtained

!(X2,xpxO)=aooo(1) EBxo(aooo EBaool) EBxI(aooo EBa olo) EBx2(a OOO EBaloo) EB

xlxo(aooo EBa ool EBa olo EBa oll) EBx2xO(aOOo EBa ool EBa loo EBa lol)

EB X2XI (aooo EBa olo EBaloo EBallo)

EBx2xlxO(aooo EBa ool EBa olo EBa oll EBa loo EBa lol EBallo EBa lll)

Figure 1.8 shows the Positive Davio tree for a 3-variable function or the PPRM

Form.

K. F araj, Chapter 1 30

Xo

/
@]

\
@J ~

Figure 1.8: Positive Davio tree or (PPRM)

1.6 Reed-Muller representation based on ORlXNOR operations

There exists an alternative algebraic expansion for logical functions, namely the

Dual Reed-Muller expansion, which involves the operations oflogical equivalence

(LEQ) and inclusive-OR to provide a POS form [64-67].

Definition 1.3 Any n-variable function can be expressed by the Dual Reed-Muller

(DRM) expression as:

2 11_1

j(Xn-l,xn-2, ... ,xO) = 0) IT (c i + S i) (1.11)
i=O

K. Faraj, Chapter 1 31

Where' 0)' is XNOR operator, [C2
17

_1,C2
17

_2, ... ,Co] IS the truth vector of the

function j, c i E{O,l} and Si represents a Sum term as

Where

o ik -ill _l -in_2 -io

S i = ~ X k = X /1-1 + X 11-2 + ... + x 0,

k=/1-1

i = ° k

(1.12)

(1.13)

Much research has been devoted and focused on AND/EXOR Reed-Muller forms

[68, 69]. This thesis focuses on a special class of ORlXNOR circuits, called Dual

Reed-Muller (DRM) forms [64- 67]. Dual Reed-Muller forms can be classified

according to its polarity. If each variable in the DRM form appears in un

complemented or true form, this form is called Positive Polarity Dual Reed-Muller

(PPDRM). The second form is called Fixed Polarity Dual Reed-Muller (FPDRM)

forms were each variable appears in un-complemented or complemented form but

not both. In recent years there is a growing interest in design of logical functions

with XNOR gates [26,27]. Functions realized with such ORlXNOR circuits can

have less gates, less connections, occupy less Silicon area, dissipate less power,

easily testable, and hence cheaper.

K. Faraj, Chapter 1 32

1.7 Aim of the thesis

The aim of this research is to develop a variety 0 f algorithms for synthesis and

optimization for the Dual Reed-Muller expressions. The first part of this research

will focus on developing efficient and fast algorithms to convert between Product

of Sums and Dual Reed-Muller forms. Due to the lack of efficient algorithms to

convert between Product of Sums and the Dual Reed-Muller forms and to find the

optimal polarity, new transformation algorithms are introduced in this thesis.

Several algorithms are introduced in this thesis to convert between POS and

FPDRM forms for single and multi output functions. The second and the third part

of this research are focused on optimization and finding efficient solutions, to find

the best polarity. There are 2/l polarities for each function using FPDRM forms.

Therefore, it is required to find the optimal polarity among all the FPDRM forms,

to lead to a function with the minimum number of sums. The solutions have to be

systematic and efficient so they can be implemented on a computer and can handle

large number of variables for larger circuits.

Applications of Dual Reed-Muller implementations have not become popular

despite the advantages of using XNOR gates.

1.8 Thesis Overview

Any Boolean function can be expressed by two concepts, they are based on

ORJ AND and ORJXNOR operations respectively. Figure 1.9 shows the mam

sections in this thesis, where each section or chapter is described as follows:

Chapter 2 presents a computational technique method for converting Boolean

functions in SOP form into Fixed Polarity Reed-Muller (FPRM) expressions, and

vice versa. It also converts multi 0 utput S OP expressions tom ulti 0 utput Fixed

Polarity Reed-Muller expressions. The Reed-Muller Transform matrix is presented

in the form of matrix decomposition, as layered vertical and horizontal Kronecker

K. Faraj, Chapter 1 33

matrices. Sparse technique is used to store the non-zero elements instead of storing

the whole matrix. The conversion technique can be used for single output or multi

output functions.

Chapter 3 defines the basic theory and notations that will be used in the following

chapters. It proposes the Dual Reed-Muller expansions (DRM) , which are based

on ORlXNOR gates. This chapter introduces the transformation techniques to

convert a POS, single or multi output, into Dual Reed-Muller in single or multi

output functions.

Chapter 4 A Bi-directional converSIOn algorithm is first proposed to convert

between a single output function and Product of Sums (POS) and Positive Polarity

Dual Reed-Muller (PPDRM) forms, without using any of the transformation

matrices. This algorithm can be used for any polarity.

Chapter 5 presents an algorithm to compute all the coefficients of the Fixed

Polarity Dual Reed-Muller (FPDRM) with polarity p from any polarity q. This

technique is used to find the best polarity of FPDRM among the 2/1 fixed polarities.

The algorithm is based on the dual property and the Gray code strategy. Therefore,

there is no need to start from POS form to find FPDRM coefficients for all the

polarities. The proposed methods are efficient in terms of memory size and CPU

time.

Chapter 6 presents two algorithms, which can be used to convert from POS form

to FPDRM form and find the optimal polarity for large number of variables. The

first algorithm is used to compute the coefficients 0 f t he Positive Polarity Dual

Reed-Muller (PPDRM) or FPDRM directly from the truth table of POS, without

the use of mapping techniques [65] and without the use of matrix operation [64].

This algorithm is also used to compute the coefficients of POS from PPDRM or

K. Faraj, Chapter 1 34

FPDRM. The second algorithm will find the optimal polarity among the 217

different polarities for large n-variable functions, without generating all of the

polarity sets. This algorithm is based on separating the truth vector ofPOS and the

use of sparse techniques, which will lead to optimal polarity. Time efficiency and

computing speed are thus achieved in this technique.

Chapter 7 conclusions and future work.

K. F araj. Chapter 1

Standard Boolean
Logic

AND/OR ORlAND
Operations

Chapter 1
Introduction

Dual Reed-Muller
Logic

ORlXNOR
Operations

35

Reed-Muller
Logic

ORIXOR
Operations

Chapter 3
Multiple Outputs

Functions

Chapter 4
Fast Conversion

between POS and
Dual Reed-Muller

Chapter 2
Converting between

SOP and Reed-

ChapterS
Exact Minimization

for
FPDRMs

Chapter 5
Optimal Polarity for

FPDRMs

Conclusions and
Future Work

Figure 1.9: Structure of the thesis

Chapter 2

Efficient Polarity Conversion

2.1 Introduction

This chapter presents a computational method for converting Boolean functions in

SOP form into Fixed Polarity Reed-Muller (FPRM) expressions, and vice versa

[34, 35]. It also converts multi output SOP expressions to multi output FPRM

expressions. The Reed-Muller Transform matrix is presented in the form of matrix

decomposition, as layered vertical and horizontal Kronecker matrices. Sparse

technique is used to store the non-zero elements instead of storing the whole

matrix. The conversion technique can be used for single output or multi-output

functions. The developed program is tested on personal computers and the results

for some benchmark functions of up to 20 inputs and 40 outputs are tested.

A Boolean function can be expressed canonically based on the Reed-Muller

(AND/EXOR) expansion. Therefore, conversion methods are needed to convert

between SOP and Reed-Muller forms. There are several techniques to convert

K. Faraj, Chapter 2 37

between SOP and Reed-Muller [70-73], most of the available techniques are not

suitable for multioutput and for large functions. The algorithm in [74] requires less

computer memory since it computes from only the on-set coefficients, but it takes

much more time when n is greater than 14.

In this chapter a Computer-Algorithm is introduced using the sparse matrix and

partitioning technique to convert between SOP and FPRM. When a large matrix is

sparse [75], with a high proportion of its entries zero or some other fixes value, it

is convenient to store only the non-zero entries of the matrix. The representation of

such a sparse matrix is a circular linked list structure [76]. In this representation,

each non-zero element belongs to two lists: a list of the non-zero elements of its

column and of its row. Each list is ordered according to the appearance of the

elements in the left to right or top to bottom travel of the row or, column

respectively. Linked lists efficiently represent structures that vary in size [77]. The

idea of dividing a large matrix into sub-matrices or blocks arises naturally. The

blocks can be treated as if they were the elements of the matrix and the partitioned

matrix becomes a matrix of matrices. Partitioning plays an important role in sparse

matrix technology because many algorithms designed primarily for matrices of

numbers can be generalized to operate on matrices of matrices. The greater

flexibility of the concept of partitioning then brings useful computational

advantages. Alternatively, partitioning can be considered simply as a data

management tool, which helps to organize the transfer of information between

main memory and auxiliary devices. Storing a partitioned matrix implies storing a

set of sub-matrices. By Partitioning the sparse matrix to many levels to store only

one level, and then implement a certain procedure to calculate the reset of the

elements without the need to store the whole Reed-Muller transform matrix, which

can get very large for large values of input variables n. Since most of the elements

in the transformation matrix of Reed-Muller of order N = 211 are zero. Therefore

sparse and partitioning methods would be a good option in this case to save space

and time by only storing non-zero elements.

K. Faraj, Chapter 2 38

2.2 Polarity conversion for a single output Boolean Functions

Boolean functions can be expressed by the SOP form as given in equation (2.1).

2" -1

!(Xn_IXn_2···Xo) = Laimi
i=O

(2.1)

Alternatively, any n-variable Boolean function can be represented based on Reed

Muller expansion which is based on ANDIXOR operators [78].

Definition 2.1 An n-variable Boolean function can be expressed canonically by a

Fixed Polarity Reed-Muller (FPRM) form with polarity p expressed in a binary n

tuple, p = (P11-1 PI1-2··· PO)2 [79], as follows

2" -I

!(xn_Ixn_2···xO) = E9 DkQk
k=O

.. {I, k j = 0
Xj =. _

x, k -1
.I .I

{

X, Pj=l
x·=

.I X, P = 0
.I .I

Where ap = [an, aI, ... , a211
_1]! and bp= [bo, b l , ... , b2

11
_1(

(2.2)

(2.3)

(2.4)

The conversion between SOP and a Fixed Polarity Reed-Muller reqUIres

constructing the transformation matrix R(n) and substitute in the following

equations [37].

K. F araj, Chapter 2 39

f = XjRCn)a (2.5)

Where the basis vector is defined as follows:

X - .
{

[1 x)], P j = 1

) - [1 x j]' p) = 0

Therefore, minterms for zero polarity can be identified by expanding a Kronecker

product ofXj as follows:

/1-1

X = (8)[1 Xi]
i=O

The basic Reed-Muller matrix for n = 1 is defined as follows:

RC 1) = [~ ~l P j = 0

R(1)=

R(I) = [~ :J Pj = I

For n-variable function the Reed-Muller transformation matrix is calculated as

follows:

n-J

RCn) = Q5)R(l) (2.6)
i=O

Where the ' ® 'denotes Kronecker product. The Kronecker product performed as a

symbolic computation in X generates the product terms appearing in the FPRMs.

K. Faraj, Chapter 2 40

The elements ofR(1) and R(n) are 0 and 1, and the calculations are done over

GF(2).

Therefore, Reed-Muller expansion for a given truth vector can be deduced by

deriving b from a and substituting in the following equation.

The Reed-Muller transform matrix R(n) is a self-inverse matrix over GF (2),

therefore (R(n)) -1 = R(n) [73]. Thus, conversion from FPRM to SOP can be

accomplished by using the following equation.

a = R(n)b (2.8)

Example 2.1

Compute Reed-Muller coefficients with zero polarity for a three-variable function

!(x2,xI'XO) = 17(1,2,4,7) .

The transformation matrix for p = 0 is calculated using equation (2.6) as follows:

R(3) = R(I) ® R(I) ® R(1)

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0
R(3) =

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

K. Faraj, Chapter 2

The coefficients of the PPRM are calculated using the following equation

b = R (3) a

1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 1 1

1 0 1 0 0 0 0 0 1 1

1 1 1 1 0 0 0 0 0 0
b= =

1 0 0 0 1 0 0 0 1 1

1 1 0 0 1 1 0 0 0 0

1 0 1 0 1 0 1 0 0 0

1 1 1 1 1 1 1 1 1 0

Where the coefficients for the vector b are calculated as follows:

bo = (Ie 0) EEl (0 el) EEl (0 el) EEl (0 eO) EEl (0 el) EEl (0 e 0) EEl (0 eO) EEl (0 el) = 0

b
l
= (Ie 0) EEl (leI) EEl (0 el) EEl (0 e 0) EEl (0 el) EEl (0 e 0) EEl (0 e 0) EEl (0 el) = 1

b
2

= (Ie 0) EEl (0 el) EEl (leI) EEl (0 e 0) EEl (0 el) EEl (0 e 0) EEl (0 e 0) EEl (0 el) = 1

b
3

= (Ie 0) EEl (leI) EEl (leI) EEl (1e 0) EEl (0 e1) EEl (0 e 0) EEl (0 e 0) EEl (0 e1) = 0

b
4

= (Ie 0) EEl (0 e1) EEl (0 e1) EEl (0 eO) EEl (leI) EEl (0 e 0) EEl (0 e 0) EEl (0 el) = 1

bs = (1e 0) EEl (leI) EEl (0 el) EEl (0 e 0) EEl (leI) EEl (Ie 0) EEl (0 e 0) EEl (0 e1) = 0

b
6

= (Ie 0) EEl (0 e1) EEl (leI) EEl (0 e 0) EEl (leI) EEl (0 e 0) EEl (1e 0) EEl (0 e1) = 0

b
7

= (Ie 0) EEl (leI) EEl (leI) EEl (Ie 0) EEl (leI) EEl (1e 0) EEl (1e 0) EEl (leI) = 0

41

The product terms for PPRM expression are calculated using the Kronecker

product in X as follows:

Therefore,

K. Faraj, Chapter 2

0

1

1

x 2 xlXo]
0

1

0

0

0

= (1- 0) EB (xo -I) EB (Xl -I) EB (XlXO - 0) EB (X2 -I) EB (X2XO - 0) EB

(X2X l - 0) EB (X2X l X O - 0) = Xo EB Xl EB X 2

The final circuit for polarity zero is given as follows.

XOR2

Figure 2.1: Minimal form under polarity 0

42

Lemma: An n-variable completely specified Boolean function can be uniquely

expressed by a 211 dimensional vector with polarity p, either ap = [<10, aI, ... , a2
11

_I]1

in SOP format or bp= [bo, bI, ... , b2
11

_I]1 in Reed-Muller format, then these two

vectors can be converted mutually by equation (2.9).

a -Rb orb -Ra
p 11 P P 11 P

(2.9)

K. Faraj, Chapter 2 43

2.3 Basic theory and algorithms

Converting between SOP and PPRM reqmres using the transfonnation matrix

(R(n)). For an n-variable Boolean function, the size ofR(n) matrix is 217 by 217.

Therefore, it requires a huge size of memory to store this matrix. To avoid storing

the entire elements in the Reed-Muller matrix, a partitioning technique is

developed in this chapter, which will partition the R(n) matrix into sub-matrices.

The sub-matrices are smaller in size and require much less memory space than the

original transfonnation matrix. The basic idea for the partitioning technique is to

employ two smaller matrices (Key and Basic), which can be multiplied together

using Kronecker product to give the original Reed-Muller matrix as follows:

[
Basic ® Key Basic ® Key]

R(n) =
Basic ® Key Basic ® Key

(2.10)

The matrix in Eq (2.11) is partitioned with the bold arrows into four matrices. By

examining those matrices, three of them are identical and the last one consists of

zeros. If the same matrix is partitioned into sixteen matrices instead of four as

shown in Eq (2.12), nine of these matrices are the same and the reset of the

matrices are zeros. Notice that the elements above the main diagonal are always

zero.

R(n) matrix can be partitioned into many sections, the number of the sub matrices

is detennined by using the factor i, where i = 1. ... n-1, and n is the number of

variables.

Step 1: R(n) matrix is partitioned into sub matrices, the size of each sub matrix is

ibyi.

Step 2: Each of the identical sub matrices in R(n) matrix is denoted the Key

matrix.

K. Faraj. Chapter 2 44

Step 3: A new matrix (Basic) is constructed from the Key matrix. The Key matrix

is partitioned into sub matrices (Basic), where the size of the Basic matrix is given

as:

Example 2.3

Let the number of variables n equal to 3.

The size of R(3) = 23 by 23 = 8 by 8, if we let i = 2, then the size of Key matrix is

i by 2i = 22 * 22 as shown in equation (2.13), and the size of the Basic matrix is

calculated as follows 8/(22) by 8/(22), which is 2 by 2 as shown in equation (2.14).

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

RM(2 3
) =

1 1 1 1 0 0 0 0

1 0 0 0 1 0 0 0
(2.11)

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

K. Faraj, Chapter 2

1 0 0

1 1 0

1 0 1

1 1 1

1 0 0

1 1 0

1 0 1

1 1 1

Key =

Algorithm 1

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 1 1 0

0 1 0 1

1 1 1 1

1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1

45

0

0

0

0

0
(2.12)

0

0

1

(2.13)

(2.14)

To generate the original Reed-Muller matrix R(2n) using the Key and the Basic

matrices, the following steps are followed:

Step 1: The key and the Basic matrices are generated by using equation (2.6).

Step 2: For each element in the Basic matrix generate one Key matrix. (a) If the

first element in the Basic matrix is one, then generate one Key matrix. (b) If the

element in the Basic matrix is zero, generate another Key matrix, but with all

elements equal to zero.

K. F araj, Chapter 2 46

Step 3: Start with the Basic matrix; read the first element of the Basic matrix. If the

first element is one construct the first row of the Key matrix. If the first element is

zero construct a row where all the elements are zero.

Step 4: Shift the number of columns for this row by the size of the Key matrix i.
Read the second element in the first row of the Basic matrix, and repeat step 2.

Step 5: Repeat the same procedure as in step 2 and step 3, till the first row ofRM

is constructed.

Step 6: Repeat the same procedure for the rest of the rows for the Key matrix.

Step 7: Shift the number of row for the new R again by the size of the Key matrix

i, and start all over again, but this time for the second row of the Basic matrix.

Step 8: Repeat as above till the whole Reed-Muller matrix is constructed.

Algorithm 2

The other technique is using sparse matrix, which will store only the ones elements

below the main diagonal in the Key and the Basic matrices, to save memory and

computing time. The following equation is derived to find the number of non-zero

elements in the transformation matrix.

i=11

NR(l) = (2" * 2") * [1- 2:3U-1) * (1I(2i * 2im (2.15)
i=l

Where n is the number of variables.

According to equation (2.15) the percentage of non-zero elements for R(n) is given

as follows:

K. Faraj, Chapter 2 47

PNR(l) = NR(1) *100%
2

n * 2 n
(2.16)

For example ifn = 10, the percentage of non-zero elements

(59049/1048576) * 100 % = 5.631 %

The following table shows the percentage of non-zero elements for different

numbers of n.

Table 2.1: Number of variables (n) versus Percentage of ones

Size ofn Number of Percentage of
n

matrix ones one elements

1 4 3 75

2 16 9 56.25

3 64 27 42.18

4 256 81 31.64

5 1024 243 23.73

6 4096 729 17.8

7 16384 2187 13.3

8 65536 6561 10

9 262144 19683 7.5

10 1.04858e 6 59049 5.63

Therefore, a sparse technique would be a good method to store Reed-Muller

matrix. A linked list is used to represent the sparse matrix. This will be an efficient

K. Faraj, Chapter 2 48

way to represent structures that vary in size. In our data representation, each

column of a sparse matrix is represented as a circularly linked list with a head node

[79, 80]. A similar representation is used for each row of a sparse matrix. Each

head node has three additional fields: down, right, and next as shown in Figure 2.2.

The down field is used to link into a column list and the right field is used to link

into a row list. The next field links the head nodes together.

Down head right Dowr entry row col right

value
next

(a) Head node (b) Entry node

Figure 2.2: Node structure for sparse matrix

Each element node has five fields: row, column, down, right, value. The right field

is used to link to the next zero elements in the same row, and the down field to link

to the next zero element in the same column.

Another matrix is stored and designated the Vector matrix by using sparse and

linked list technique. This matrix should contain the truth vector (a).

The final results are obtained by, building each row of the RM matrix from the

Basic and the Key matrices, as was described in algorithm 2.

To determine the coefficients for the RM (b;) if it is 0 or 1, the following steps are

used:

(a) Set a counter D = o.
(b) If there is an element in the first row of the RM matrix at (column x) and there

is an element in Vector matrix (row x); then increment both pointer for RM and

Vector matrix to the next location.

K. Faraj, Chapter 2 49

(c) If column x > row x; then while row x is less than column x and row x is not

equal to NULL, increment the counter D by one.

(d) Else if row x is greater than column x ; then while column x is less than row x

and column x is not equal to NULL, increment the counter D by one.

(e) If RM's pointer is equal to NULL, while Vector's pointer is not equal to

NULL, increment the counter D by one and then go to step (g).

(f) If Vector's pointer is equal to NULL, while RM's pointer is not equal to

NULL, increment the counter D by one and then go to step (g).

(g) Test if the counter is even or odd. If the counter is odd then d i equals 1;

otherwise d i is 0 according to the following identity:

d
i

= { I EB 1 EB ... EB 1/1 EB 0 EB 0 EB EB 0 m = 1,

1 EB 1 EB ... EB 1/1 EB 0 EB 0 EB EB 0 m = 0,

if nand m are odd

if nand m are even

(d) Repeat steps (a to g) for every row ofRM matrix, with the same Vector matrix

till the end of the RM matrix.

Example 2.4

Compute the Reed-Muller form of the following 4-variable function

R(4) = R(l) ® R(1) ® R(I) ® R(1)

Step 1; store this function in the Vector matrix, using a linked list, as shown in

figure 2.3.

K. F araj, Chapter 2 50

I Head 11-{il}-+[IJJ~ 3 I I--{ill-{~]l
L:{fu-. 10

Figure 2.3: Vector Matrix Structure

Step 2; store the Key matrix, using the same technique, as shown in Figure 2.4.

Figure 2.4: Key matrix Structure

Step 3; store the Basic matrix, as shown in Figure 2.5.

K. Faraj, Chapter 2 51

12 21 I 1 I I
~ 1-r. ----.. - I---

I I II ~ I J
,..

1-r. 1

Lrl
Ir

I 12 I I ~1211211_
1--.1 1

I

Figure 2.5: Basic Matrix Structure

2.4 Conversion for Multi-Output Functions

Conversion algorithms for multi-outputs SOP into multi-outputs Reed-Muller,

and multi-output Reed-Muller into SOP were accomplished by adding a pointer

to each node in the Vector matrix, which points to array. This array will store the

output functions for that particular input.

Example 2.5

Take a three-variable function and the number of output functions is 4,

Xl Xl Xo h h h 1;
0 0 0 1 0 0 1

1 1 0 0 1 0 1

1 1 1 1 1 0 0

The new Vector matrix is as shown in figure 2.6.

K. Faraj, Chapter 2 52

Head f--- I ~ I ~ I
PTR PTR PTR

1 1 1
14 13 14
~ 1; 13

Figure 2.6: Vector matrix for multi output

The rest of the procedure should be the same as in the previous sections, but with

some extra steps performed for each extra output function.

Any Boolean function may be represented by a fixed polarity modulo-2 expansion

For any n-variable Boolean function there are 211 distinct FPRMs.

To convert any SOP expansion from polarity q to polarity p, every subscript

i,O:::; i < 211
-

1 should be converted using equation (2.17), where" EB" and "<=" are

bitwise XOR an assignment operators respectively [63].

i <= i EB p (2.17)

Where p is the polarity number.

Hence, conversion from SOP to any FPRM forms can be done as follows:

1. Convert the on-set minterms for an n-variable function to the on-set minterms

with polarity p using Eq (2.17).

2. Use algorithm 1 and 2 to find the corresponding RM coefficients.

K. Faraj, Chapter 2 53

2.5 Experimental Results

In this chapter a computer algorithm has been presented for fast bidirectional

conversion between sum-of-products and RM for large number of inputs. This

method is generalised to large multiple output Boolean functions. This method is

developed based on using partitions and the sparse technique. The algorithms

were implemented in C language and the program is compiled by using Borland

c++ compiler. Then it was tested on a personal computer with Pentium 3, 1 GHz

CPU and 256M RAM under Window operating system. Experimental results are

presented in Table 2.2 where '~O' means that the CPU time is almost zero. The

computation time depends on the number of variables (n). For incompletely

specified Boolean functions, don't cares are set to off-sets (0) for the outputs (0).

This algorithm calculates the Reed-Muller coefficients form the minterms of the

SOPs. Although the number of the Reed-Muller coefficients for some circuits is

higher than the minterms of the SOPs, this is occurred because we calculated the

Reed-Muller coefficients for all the multiple output circuits. Our techniques

reported combatable results compared to other techniques, in terms of the variable

numbers (n) and output numbers (0). The programme was un-efficient for variable

numbers greater than 19, because it requires more memory and we could not run,

therefore, it would require some modifications to make the programme handle

variables greater than 19.

K. Faraj, Chapter 2 54

Table 2.2:

Conversion results of some benchmark functions

Time
Circuit n 0 #(SOP) #(RM)

(S)

Table5 17 15 158 122129 36.75

B12 15 9 431 31488 4.67

Sao9 10 4 58 883 ~O

Misex3c 14 14 305 15739 1.76

Sao2 10 4 58 883 0.06

Apex4 9 19 440 479 ~O

T481 16 1 481 50353 11.37

bw 5 28 87 32 ~O

pdc 16 40 2810 57860 23.23

Apex4 9 19 440 479 0.06

Random 19 1 8 116737 43.61

K. Faraj, Chapter 2 55

2.6 Summary

This chapter has introduced a partition and Sparse methods which can be used in

converting between SOP form and RM forms. This method depends on

partitioning the transformation Reed-Muller matrix into sub-matrices, w here the

sub-matrices repeat a special order. The original Reed-Muller matrix can be

generated by storing two of the sub matrices and perform algorithm 1. Therefore,

storing the whole matrix is not efficient in terms of memory and time. to

manipulate the data for calculating the coefficients of Reed-Muller.

The second method that is used for converting between POS and RM forms is the

sparse method. This method is based on storing none zero elements in the matrix.

Since most of the elements in RM matrix are zeros, therefore, sparse method is

very efficient in terms of memory and CPU speed, because it does not require

processing every element in the matrix.

Chapter 3

Dual Reed-Muller form

3.1 Introduction

Logic synthesis based on Reed-Muller techniques has shown several advantages over

the use of the standard Boolean functions such as SOP. Some of these advantages are

high testability, low cost for arithmetic and parity checker. Several conversion

algorithms to convert between SOP and Fixed polarity Reed-Muller exist [38, 45,

63,81-86]. AltemativelyReed-Muller form can be presented using the Dual Reed

Muller (DRM) form which was introduced by Green [64-67]. This form is based on

the use of ORJXNOR gates. The XNOR gate plays a major role in various circuits

especially circuits used in arithmetic process such as full adders, comparators [87-

89]. Another feature for XNOR is to have a small number of transistors to implement

[25-28,90]. Any n-variable Boolean function in the POS form can be expressed by 2n

K. F araj, Chapter 3 57

Fixed Polarity Dual Reed-Muller form (FPDRM). Extensive research has been done

on developing techniques and algorithms to convert between SOP and Reed-Muller

and very little has been done on converting from Product of Sums and the Dual

Reed-Muller form or even to find the best or the optimal polarity which will lead to

the minimal function with the least number of Sums.

This chapter covers the basic theory and notations which will be used in the Dual

Reed-Muller form. It also introduces new operations which can be used to describe

the Dual Reed-Muller form and convert the POS to DRM for single output function,

and multi output functions. When designing complex circuits for mass production, it

is worth it to try many possible solutions such as RM, DRM, etc to find a good

solution to reduce components and cost.

3.2 DRM expansion of logical functions

Definition 2.1 Any n-variable function can be expressed by the Dual Reed-Muller

(DRM) expression as:

211 -1

j{Xn-l,Xn-2, ... ,Xo) = 8 IT (C i + Si) (3.1)
i=O

Where '8' is XNOR operator, [C2
11

_1,C2
11

_2, ... ,Co] is the truth vector of the function t,
c i E{O,I} and Si represents a Sum term as

Where

o ik ,.... i
ll

1 il/ 2 -i 0

S i = 2:: x k = X 11-1 + X /1-2 + ... + x 0,

k=I1-1

i k = °
ik = 1

(3.2)

(3.3)

K. F araj, Chapter 3

Table (3.1) illustrate the basic the XNOR operations.

Table 3.1:

Truth table for XNOR

AB AEB B A8B

00 0 1

o 1 1 0

1 0 1 0

1 1 0 1

The following XNOR operations and identities are defined

The XNOR '8' operation is defined as follows:

A8B=AB+AB

58

(3.4)

For any Boolean variable x, the following identities are used for XNOR operations:

x 81 =x

x 80= x

x 8x= 1

x 81 = x

x80=x

x 8x=0

For any XNOR expression the following properties hold:

X2 8 (xJ8 xo) = (X2 8 Xl) 8 Xo =X2 8 xl8xo

X2 + (Xl 8xo) = (X2 + Xl) 8 (X2 + xo)

(associative)

(distributive)

(3.5)

(3.6)

(3.7)

K. F araj, Chapter 3

Xl Oxo =XOOXI

Xl- Xo = Xl Oxo O(XI + Xo)

(commutative)

59

(3.8)

(3.9)

An arbitrary 2-variable function can be presented by the canonical POS as follows:

The ANDs (e) operators are replaced by 0 operators, since if all the Maxterms are

ANDed together the answer is zero and if all the Maxterms are XNORed together the

answer is zero too.

I(Xpxo) = (/(0,0) + Xl + xa) 0 (/(0,1) + Xl + xa) 0 (/(1,0) + Xl + xa)

0(/(1,1) + Xl + xa)

By applying the following identity to replace X 0 ° = X , this will give the following

result:

I(XI,XO) = (f{0,0) + Xl + xo) 0 (f{0,1) + Xl + (0 0 xo)) 0 (f{1,0) + (0 0 Xl) + Xl))

o (f{1,1) + (0 0 Xl) + (0 0 xo))

Using the distributive law, the above expression is modified to

I(XI,XO) = (f{0,0) + XI + xo) 0 (f{0,1) + XI) 0 (f{0,1) + Xl + xo) 0 (f{1,0) + XI)

o (f{1,0) + XI + Xo)) 0 fl1,1) 0 (f{1,1) + XI) 0 (f{1,1) + xo)

o (f{1,1) + Xl + xo)

By rearranging and grouping the common terms the following expression is obtained

K. Faraj, Chapter 3

!(Xl,XO) = j{1,l) 0 (xo + (1(1,0) OJ{l,l))) 0 (Xl + (1(0,1) 0 j{1,1)))

o (Xl +Xo + (1(0,0) OJ{O,l) OJ{l,O) OJ{l,l)))

60

(3.10)

For simplicity, Cj coefficients are introduced to express the coefficients of the DRM

expansion, where j corresponds to the decimal equivalent of the binary subscript of

./kIm, and equation (3.10) can be written as:

!(Xl,XO) = C3 0 (xo + C2) 0 (Xl + Cl)

o (Xl + Xo + co) (3.11)

This is the Dual Reed-Muller expansion based on ORJXNOR operation [64-66].

Taking a 3-variable function as an example:

We can also obtain the DRM expansion of an n-variable function as follows:

!(X Il _ 1 ~ xo) = C 2"_1 0 (xo + c2"_) 0 (XI + c2"_) 0 ... 0

(x
ll

_ 1 +···+x1 +CI) 0 (x
ll

- 1 +···+xo +co)

Let us now introduce two new operations to simplify the DRM expansion of n

variable function. Their definitions are as follows:

Continuous sum operation [65]

(3.12)

The Continues Sum (++) of two matrices (AmAxnA , BmB xnB) is defined as follows:

A++B= ++B= (3.13)

amAnA amAnA +B

K. Faraj, Chapter 3 61

Each aijB is a block of size mB x nB. The size of the new matrix (A ++ B) is equal to

the size of (rnA x nA X mB x nB).

For example:

a1 +b1 a1 +b2 a2 +b1 a2 +b2

[a, a,] [b, ::]~ a1 +b3 a1 +b4 a2 +b3 a2 +b4 - ++
a3 a4 b3 a3 +b1 a3 +b2 a4 +b1 a4 +b2

a3 +b3 a3 +b4 a4 +b3 a4 +b4

The continuous sum operation meets the associative law

[A] ++ {[B] ++ [c]} = {[A] ++ [B]} ++ [C] = [A] ++ [B] ++ [C],

But it does not meet the commutative law

[A] ++ [B] # [B]++[A]

Added coincidence operation or Matrix multiplication based on logical equivalence

(LEQ) [64-65] is defined as follows:

C1 a11 a14 b1

c2 b2 (3.14) = 0

c3 b3

c4 a31 a44 b4

Where '0' represents matrix multiplication based on ORJXNOR. Thus

K. Faraj, Chapter 3

CI = (all + bI) 8 (al2 + b2) 8 (a]3 + b3) 8 (aI4 + b4)

C2 = (a2I + bI) 8 (a22 + b2) 8 (a23 + b3) 8 (a24 + b4)

C3 = (a3I + bI) 8 (a32 + b2) 8 (a33 + b3) 8 (a34 + b4)

C4 = (a4I + bI) 8 (a42 + b2) 8 (a43 + b3) 8 (a44 + b4)

62

We can obtain the following relationship between the fj coefficients and Cj

coefficients for n-variable functions.

(3.15)

(3.16)

Where

(3.17)

with

and

[
11]t

C = Co CI· ... C2 -1

For a 3-variable function, equations (3.15) and (3.16) can be written as

K. F araj. Chapter 3

Co = fo 0 f1 0 ... 0 f7

c]= f] Of30fSOf7

C2= f20f3 Of60f7

C3= f30 f7

C4= f40fsOf60f7

Cs= fsOf7

C6= f60 f7

c7=f7

fo= coOc) 0 OC7

f)= c] Oc30CSOC7

f2= C20C30C60C7

f3= C30 C7

f4= C40 CSO C60C7

fs= CSOC7

f6= C60 C7

f7= C7

Example: Apply the above method to get DRM expansion of a 4-variable function

f (x3 , X 2 ' XI' xo) = IT(1,2,4,7 ,8,11,13,14) .

63

(3.18)

(3.19)

K. Faraj, Chapter 3

Co 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

c i 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0

c2 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0

c, 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1

c4 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

c5 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0

c6 1 1 1 1 0 0 1 0 0 1 1

c7 1 1 1 1 1 0 1 1 0 0 0
0

Cs 1 1 1 0 0 0 0 0 0 0 0 0

c9 1 1 1 1 0 1 0 1 0 1 0

clO 0 0 1 0 0 1

CII 1 0 1 1 0 0

e12 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

c13 1 1 1 1 1 1 1 1 1 0 1 0 0 0

CI4 1 1 1 1 1 1 1 1 1 1 0 0 0 0

CIS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Co = (0+ 1)0(0+0)0(0+0)0(0+ 1)0(0+0)0(0+ 1)0(0+ 1)0(0+0)0(0+0)

0(0+ 1)0(0+ 1)0(0+0)0(0+ 1)0(0+0)0(0+0)0(0+ 1) = 1

CI = (1 +0)0(0+0)0(1 +0)0(0+ 1)0(1 +0)0(0+ 1)0(1 + 1)0(0+0)0(1 +0)

0(0+ 1)0(1 + 1)0(0+0)0(1 + 1)0(0+0)0(1 +0)0(0+ 1) = 1

C2 = (1 + 1)0(1 +0)0(0+0)0(0+ 1)0(1 +0)0(1 + 1)0(0+ 1)0(0+0)0(1 +0)

0(1 + 1)0(0+ 1)0(0+0)0(1 + 1)0(1 +0)0(0+0)0(0+ 1) = 1

C3 = (1 + 1)0(1 +0)0(1 +0)0(0+ 1)0(1 +0)0(1 + 1)0(1 + 1)0(0+0)0(1 +0)

0(1 + 1)0(1 + 1)0(0+0)0(1 + 1)0(1 +0)0(1 +0)0(0+ 1) = 1

C4 = (1 + 1)0(1 +0)0(1 +0)0(1 + 1)0(0+0)0(0+ 1)0(0+ 1)0(0+0)0(1 +0)

0(1 + 1)0(1 + 1)0(1 +0)0(0+ 1)0(0+0)0(0+0)0(0+ 1) = 1

Similarly for CS-CIS

CIS = (l + 1)0(1 +0)0(1 +0)0(1 + 1)0(1 +0)0(1 +0)0(1 + 1)0(1 +0)0(1 +0)

0(1 + 1)0(1 + 1)0(1 +0)0(1 + 1)0(1 +0)0(1 +0)0(0+ 1) = 1

64

K. Faraj, Chapter 3 65

To generate the sum terms the following basis vectors are used for n = 4 [61, 62].

= [0 Xo Xl (Xl + Xo) X2 (X2 + Xo) (X2 + Xl) (X2 + Xl + Xo) X3 (X3 + XO)

(X3 + Xl) (X3 + Xl + Xo) (X3 + X2) (X3 + X2 + Xo) (X3 + X2 + Xl)

(X3 + X2 + Xl + XO)]

Finally the dual Reed-Muller form is generated as follows:

3.3 Generalization for large functions

An algorithm has been developed based on equations (3.15) and (3.16) to convert

between Product of Sums and Dual Reed-Muller. Algorithms one and two from

Chapter two were adopted in this Chapter. The adopted algorithms were based on

Sparse and partition techniques [66, 80]. In order to use the algorithms for

converting between Product of Sums and Dual Reed-Muller, the following changes

have been used.

To construct the Dual Reed-Muller transform matrix (Tn) from the Reed-Muller

transform matrix (RMn), which is defined by equation (3.13), the following steps are

performed. Recall that the Reed-Muller transform is applied over GF (2) [92].

Step 1: Construct the transformation matrix (RMn) using Kronecker product' Q9 ' [92,

93] as follows:

(3.20)

K. Faraj, Chapter 3 66

where

M' =[: ~l (3.21)

Step 2: Transpose the transfonnation matrix (RMn) by replacing the rows by the

columns, complement the elements of (RMn) matrix by changing the zeros to ones,

and the ones to zeros.

Example

For a three-variable function construct the Dual Reed-Muller matrix (Tn) by using

the Reed-Muller matrix (RM).

RM matrix is constructed using equation (3.20), which gives the following result.

(3.22)

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0 (3.23)
RM=

1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0

1 0 0 0 1 0

1 1 1 1 1 1 1 1

The Dual Reed-Muller matrix (Tn) is generated from equation (3.23) by taking the

transpose of equation (3.23) and changing each zero and one elements to one and

zero respectively. Therefore, (Tn) is

K. F araj, Chapter 3 67

0 0 0 0 0 0 0 0

0 1 0 0 1 0

1 0 0 0 0

0 0 (3.24)
T=

0 0 0 0

0 1 0

0 0

0

Sparse and partitioning techniques are similar to the methods used in Chapter two,

except that the zero elements are used here instead of the one elements. Hence the T

matrix from equation (3.24) is partitioned as follows:

0 0 0 0 0 0 0 0

0 0 0 1 0

0 0 0 0

1 0 1 1 0 (3.25)
T

0 0 0 0

0 0

0 0

0

Examining equation (3.25), three of sub matrices are identical while the last one

consists of zeros, and the elements below the main diagonal are just ones. Therefore,

the two matrices that are needed to generate the matrix in equation (3.25) are:

K. Faraj, Chapter 3

and

Key =

o 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

Basic = [~ ~l

68

The only elements that are needed from the Key and Basic matrices in order to

generate equation (3.25) are the zero elements.

The following equation is derived to find the total number of zero elements in the

transfonnation matrix (Til) that are needed to convert between Product of Sums and

the Dual Reed-Muller fonn.

i=n

NR(O) =(211 *211)_(211 *2 11)*[L3(i-l) * (1/(2i *2 i
))] (3.26)

i=l

Therefore, a big saving in tenns of memory size is achieved by using the Sparse and

partitioning techniques.

K. F araj, Chapter 3 69

3.4 Conversion for Multi-Output Functions

Conversion algorithms for multi output POS into multi output DRM, and multi

output DRM into POS are accomplished by adding a pointer to each node in the

Vector matrix. This pointer will point to array. Each element in the array will

include the i 1h output function for that particular sum. A unique counter will be

associated with each output function. Each counter will be incremented by one for

that particular sum.

The rest of the procedure should be the same as in the previous sections.

3.5 Experimental Results

Algorithms are implemented usmg C language; the program is compiled usmg

Borland C++ compiler. Then it is tested on a personal computer with Pentium 3,

1 GHz CPU and 256M RAM under Window operating system. The experimental

results are shown in Table 2 where '~O' means that the CPU time is almost zero.

Factors on which the computation time depends are the number of variables (n),

number of Sums, and the number of outputs (0). For incompletely specified Boolean

functions, don't cares are set to on-sets (1) for the outputs.

To our knowledge there are no experimental results published m this topic to

compare with. Green [64] has introduced theoretical approach to convert between

POSs and Dual Reed-Muller coefficients. This technique is suitable for small number

of variables, because it requires building and storing the transformation matrix. The

size of the transformation matrix is 21l by 21l, therefore, it requires a huge size of

memory to store. Hence, [64] technique is not efficient it terms of memory.

This algorithm calculates the Reed-Muller coefficients form the minterms of the

SOPs. Although the number of the Reed-Muller coefficients for some circuits is

higher than the m interms 0 f t he SOPs, this is 0 ccurred because we calculated the

Reed-Muller coefficients for all the multiple output circuits. Our techniques reported

K. Faraj, Chapter 3 70

combatable results compared to other techniques, in terms of the variable numbers

(n) and output numbers (0). The programme was un-efficient for variable numbers

greater than 20, because it requires more memory and we could not run, therefore, it

would require some modifications to make the programme handle variables greater

than 19.

Table 3.2:

Conversion results of some functions from MCNC Benchmark

Initterms Time
n 0 DRM.terms

forPOS (S)

Misex3c 14 14 305 4605 1.59

Clip 9 5 167 111 0.06

B12 15 9 431 41 3.3

Clip1 4 4 4 5 ~O

Alu4 14 8 1030 1850 2.19

Pdc 16 1 2810 881 16.86

Apex4 9 19 440 506 ~O

Spla 16 1 2310 482 15.49

Misex1 8 7 32 15 ~O

Table5 17 1 158 2240 28.4

Ex1010 10 10 1023 1023 0.11

ConI 7 2 10 12 ~O

Rd84 8 4 257 253 ~O

Inc 7 9 34 57 ~O

Random 20 1 8 4379 5.44

K. Faraj, Chapter 3 71

3.6 Summary

In this chapter we have introduced and explained the mathematical operations, such

as continuous sum, that are needed for converting POS to Dual Reed-Muller

expressions. This is needed to calculate the Dual Reed-Muller matrix. This matrix is

required to calculate the coefficients of the Dual Reed-Muller form.

Sparse and partition algorithms have been introduced also in this chapter as in

chapter two, but with some modifications to deal with the Dual Reed-Muller

expressions. Sparse and partition algorithms have been programmed using C

language to convert for a single and multi ouput functions.

Chapter 4

Fast transformation between POS and

DRM functions

4.1 Introduction

To derive Fixed Polarity Dual Reed-Muller (FPDRM) coefficients from POS

coefficients using the transformation matrix would be very costly in terms of

memory and CPU time. The transformation matrix requires the construction and

storing 0 f t he matrix TMn which h as a size 0 f 2 n by 2 n for n -variables. This is

overcome by introducing a fast transformation equations for computing all the

coefficients of the Dual Reed-Muller forms from the coefficients of the product of

sums. The coefficients of Dual Reed-Muller terms are derived without the need to

generate or store the transformation matrix of the Dual Reed-Muller terms.

K. Faraj, Chapter 4

4.2 Definitions and representations of DRM expressions

Definition 4.1 An n-variable Boolean function can be expressed as:

Where

!(xn-l'xl1 - 2 , ••• ,xo) = IT (d i + MJ
i=O

o • ik • i
ll

_1 • in_2 • i 0

Mi = L xk = X 11-1 + X 11-2 + ... + X 0

k=n-I

i" = 0

i k = 1

73

(4.1)

(4.2)

(4.3)

Definition 4.2 Alternatively, any n-variable function can be expressed by the fixed

polarity Dual Reed-Muller expression as:

Where

j(Xn-l,xn-2, ... ,xo) = 8 IT (c i + Si)
i=O

o -ik - [II_I

Si = L x k =
"=n-1

X n-l + X n-2 + ... + x 0,

i" = 0

ik = 1

(4.4)

(4.5)

(4.6)

K. Faraj, Chapter 4 74

Definition 4.3 Polarity vector (Pn-l,Pn-2, .. . ,Po) for a FPDRM of an n-variable

Boolean function is a binary vector with n elements, where Pi = 0 indicates the

variable Xi in an un-complemented form (xD, while Pi = 1 indicates the variable Xi

in the complemented form (Xi).

Maxtenns can be identified by applying a Continues Sum (++) ofn basis vector of

the form [0 Xi] for a '0' polarity and [0 Xi] for a '1' polarity.

The coefficient vector can be derived from the truth vector d using the transform

matrix as given in equation (4.9). The transform matrices for a '0' and a '1'

polarity are given in equations (4.7) and (4.8) respectively.

(4.7)

(4.8)

c=™n 0 d (4.9)

Where d is the truth vector of the POS, and c is the truth vector of the Dual Reed

Muller form.

In general the transformation matrix (TMn) for a PPDRM is given as follows:

TMn = TMo ++ TMo ++ ... ++ TMo n times. (4.10)

Where' ++' is the Continuous S urn. Furthermore TM~l = TMn is a self-inverse

matrix in GF (2) [93].

The FPDRM can be deduced by substituting the coefficient vector c in equation

(4.11) for a zero polarity [64-67].

K. Faraj, Chapter 4 75

j{Xn-l,xn-2, ... ,xo) = {[O Xn-l] ++ [0 Xn-2] ++ ... ++ [0 XO]} 0 C (4.11)

Example 4.1

Given the two-variable function in POS form, find the fixed Dual Reed-Muller

form with polarity number equals 0, using the matrix operations.

The transformation matrix for p = 0 is calculated using equation (4.8) as follows:

o 1 1 1

TM(2)~[~ ~]++[~ ~]~ ~ ~ ~ :
o 0 0 0

Using equation (4.9) the truth vector c is obtained as follows:

C3 0 1 1 1 d3

c2 0 0 1 1 0 d2 =
c] 0 1 0 1 d]
c 0 0 0 0 0 do

Provided the order of the elements in d and c vectores are reversed [64, 66].

Using the following identities for XNOR

Hence

080= 1

081=0

180=0

1 8 1 = 1

K. Faraj, Chapter 4

C2 = (0+d3) 8 (0+ d2) 8 (1+ dl) 8 (1 + do) = d3 8 d2 8 1 8 1= d3 8 d2 8 1

CI = (0+d3) 8 (1 + d2) 8 (0+ dl) 8 (1 + do) = d3 8 1 8 dl 8 1= d3 8 dl 8 1

Co = (0+d3) 8 (0+ d2) 8 (0+ dl) 8 (0+ do) = d3 8 d2 8 dl 8 do

Finally the FPDRM function is calculated using equation (4.11) as follow:

J(XpXo) = {[O xl]++[O xo]} 0 c

={[o Xo Xl Xl + Xo]} 0 C

=(C3 +0) 8 (c2 +xo) 8 (c l +Xl) 8 (co +Xl +xo)

4.3 Conversion from POS to PPDRM

Equation (4.1) can be rewriting as follows

2. /1_1

76

j(Xn-I,Xn-2, ... ,xo) = 8 IT (d j + M J (4.12)
i=O

Where the AND gate is replaced by XNOR gate.

Example 4.2

When 11 is equal to '2', j(XI,XO) can be expanded using equation (4.1) as the

following.

This is can be rewritten using equation (4.12) as the following

K. Faraj, Chapter 4 77

The following theory is introduced in order to convert Product of Sums to Positive

Polarity Dual Reed-Muller form. Each complemented variable (Xi) in equation

(4.l2) is replaced by the following identity X = ° 8 x [66]. For any Dual Reed-

Muller coefficient Ci, where i = (i n-l i n-2 .. .i 0)' if h is 0, then there is a constant '0'

in S i according to equation (4.6). Since Xk c an be obtained by both Xk and x" in

M i' therefore, h can be both '0' and' l' in d according to equation (4.3). If h is

'1', then there is x kin S i according toe quation (4.6). Because' 0' can only b e

created by x" in M i' ik can only be '1' in d according to equation (4.3). This can

be formulated as equation (4.13).

(4.13)

Where 1 = (111-1 111 -2 ... 10),

(4.14)

Where 'y' is the notation for both 1 and 0, k E {0,1, ... , n -I} .

Example 4.3

Let n equals two then according to equations (4.13) and (4.14) the truth vector c

can be calculated as follows.

K. Faraj, Chapter 4

C3 = CII = 8 IT dll = dl1= d3
k

C2 = CIO = 8 IT dly = dlO 8 dll = d28 d3
k

CI = COl = 8 IT dYI = dOl 8 dll= dl8 d3
k

CO=COO= 8IT dyy = dll 8 dlO8 dOl 8 doo=d38 d2 8 dl 8 do
k

78

Similarly this method can be used to convert from c to d with zero polarity using

the identity 0 = x 8 x in each term in equation (4.4). Hence the following equation

is derived:

(4.15)

. {Y 19 = 1
i. = 0
J

i. = 1
J

(4.16)

Observation:

If the number of off-set coefficients d i in equation (4.13) for the corresponding S i

coefficient is odd (odd number of zeros), then coefficient C i should be included for

that DRM expansion. Otherwise it should not be included, because 0 8 ° = 1.

Therefore, the zero coefficients should be included for DRM expansion only.

Example 4.4

Calculate the truth vector c for the following three-variable

function!(x2 ,xp xo) = ITM(O,4,6,7).

The DRM coefficients are calculated using equations (4.13, 4.14).

K. Faraj, Chapter 4

C7 =C III =8TIdI1l =d7 =0
k

C 6 = ClIO = 8 TIdilY = dlll 8 d llO = 080 =1
k

C 5 = C 101 = 8 II dlYI = dlll 8 d 101 = 0 8 1 = 0
k

C4 =C IOO = 8IIdlyy =dlll 8 d llo 8dlOI 8dloo =0808180=0
k

C3 =C OII = 8IIdYII =dlll 8 dOll =081 =0
k

C2 =C OIO = 8IIdyIy =d111 8 d llO 8 dOll 8 dOlO =0 808181 = 1
k

CI =C OOI = 8IIdYYI = dIll 8 d lol 8 dOlI 8 dool=O 818181 =0
k

79

Co =C OOO =8IIdyyy=dI1l8dIIO 8dlOI 8d lO0 8 dOll 8 dOlo 8dool 8dooo
k

=080818081818180=1

Since the following coefficients are equal to zero (7, 5,4,3, 1) therefore, the DRM

IS

4.4 Conversion between d and c with any fixed polarity

To facilitate the use of equations (4.14, 4.16) for large Boolean functions the

bitwise relationship between the sUbscripts of d and c is represented by using truth

Table (4.1). The following equation is obtained using Kamaugh map of POS for

the standard function \jfj = (\jf 11-1 \jf 11-2 ••. \jf 0). A loop of O-cells in a Kamaugh map

generates a sum term.

K. Faraj, Chapter 4 80

-
!Pi = ij.l J (4.l7)

-
Where '.' is the normal AND operator and l represents the complement of the off-

sets.

When \lfj is equal to '0', that is all of its binary bits are '0', then equations (4.l4)

and (4.16) are satisfied. Using equation (4.17), it is possible to decide if a

particular coefficient should be included for the conversion or not. Besides, only

the off-set coefficients need to be calculated since x = 1 8 x.

Table 4.1:

Map of the standard function \If j

~)
1

I J

0 1

1 0

Example 4.5

Calculate the truth vector c for the Dual Reed-Muller with zero polarity for the

following three-variable function!(x 2 ,xp xo) = TIM(0,4,6,7).

The following coefficients for the truth vector c are calculated using equations

(4.13) and (4.17).
- - - -

Co = Cooo = o· 0 8 O' 4 8 O' 6 8 O' 7 = 0 8 0 8 0 8 0 =1
- - - -

c] = COO] = 1·0 81·4 81·6 81·7 = 1·7 81,381,181,0=1818180=0

K. F araj, Chapter 4 81

- - - -
C2=C010=2·0 82-4 82·6 82·7 =2·782·382·182·0=2828080= 1

- - - -
C3=COll =3· 0 83·4 83·6 83·7 =3·783·383·1 83·0=3838180=0

- - - -

C4=ClOO=4·0 84-4 84·6 84·7 =4·784·384·1 84·0=4808080=0
- - - -

CS=ClOl =5·0 85·4 85·6 85·7 =5·785·385·1 85·0=5818180=0
- - - -

C6=CllO=6·0 86-4 86·6 86·7 =6·786·386·186·0=6828080= 1
- - - -

C7=Clll =7·0 87-4 87·6 87·7 =7·787·387·1 87·0=7838180=0

Where the decimal numbers are the value of the c's coefficients and the

complemented decimal numbers are the complement ofPOS coefficients.

The results in example (4.5) and example (4.4) are equal. Therefore equation

(4.17) can be used directly to find all the coefficients for zero polarity Dual Reed

Muller form.

Observation If the numbers of the included zeros are odd for a certain coefficients

then Ci should be included and the value for this coefficient is zero; otherwise Ci is

1 and it should not be included.

Theorem 4.1 Given an off-set Dual Reed-Muller coefficient set Rp for an n

variable function with polarity p. A coefficient set with any other polarity q can be

established through the process on Rp itself, using the following equation [63].

i ~ i 8 p 8p'

Or (4.18)

Where' 8' is bitwise XNOR operator, 'EB ' is the bitwise XOR operator and '~'

is the assignment operator and p' = o.

K. Faraj, Chapter 4 82

Equation (4.18) can also be used to convert from DRM to POS to find the d; s

from the Ci'S coefficients.

Algorithm 4.1

The following steps can lead to the PPDRM expression from POS form.

Step 1: Store the complement of each term in the off-set.

Step 2: Use AND operation to AND each term from step' l' with the decimal

value of each coefficient Ci.

Step 3: Count the number of zeros of each term for each coefficient Ci from step

'2', if the total number is odd then that coefficient Ci should be included, otherwise

it shouldn't be included.

Step 4: Repeat steps 2 and 3 for the rest of the coefficients.

Example 4.6

Convert a 3-variable function f (X2,xI,xO) = IT M(0,4,6,7) from POS form to the

fixed polarity DRM with polarity p = 1 = (001) in binary form.

Step 1, this function is converted to the POS expansion with polarity 1. The

following new coefficients are obtained using equation (4.18).

Hence the new coefficients are:

0<=OEB1=1

4<=4EB1=5

6<=6EB1=7

7<=7EB1=6

K_ Faraj, Chapter 4 83

!(X2,XI,X 0) = II M(1,5,7,6)

Step 2, II M(1,5,7,6) is converted to DRM using equation (4.17)_
- - - -

co=cooo=O-l 80-5 80-7 80-6=0808080=1
- - - -

CI = COOl = I-I 81-5 81-7 81-6=1-681-281-081-1 =18 1 8 1 80=0
- - - -

C2 = COlO = 2-1 82- 5 82- 7 82-6=2-682-2 82-082-1 = 2 82 8 0 8 0 = 1
- - - -

c3=coII=3-183-5 83-783- 6=3-683-283-083-1=2828081=0
- - - -

C4 = CIOO = 4- 1 84- 5 84- 7 84- 6 =4-6 84-2 84-0 84-1 = 4 8 0 8 0 8 0 = 0
- - - -

Cs = CIOI = 5-1 85- 5 85- 7 85- 6 =5-6 85-2 85-0 85-1 = 4808 0 8 1 = 1
- - - -

C6=CIIO=6-1 86-5 86-7 86-6=6-686-286-086-1 =6 8 28 0 8 0= 1
- - - -

C7=CIII =7-1 87-5 87-7 87-6=7-687-287-087-1 =6 828 081 =0

!(X2,XI,X 0) = 8II (7,4,3,1)

The sum terms in this canonical form can be generated using equation (3 _I 0) as

follows_

Finally, the Fixed Polarity Dual Reed-Muller form with polarity (p = 1) is obtained

by using equation (4_11) as follows:

- -
!(X2,xI,XO)=0 8xI+xo 8x2 8 x2+ XI

Example 4.7

For a three-variable Boolean function! (X2,XI,XO)

expression ofPPDRM p = 0_

II M(0,4,6,7) find the

K. Faraj, Chapter 4 84

Applying Algorithm 1

Step 1: Store the complement of each term in the off-set; this gives the following

results.

0,4,6,7 = 7,3,1,0

Step 2: The first coefficient of PPDRM (co) is calculated using equations (4.17) as

follows:

- - - -
co=O-O 80-4 80-6 80-7=0-780-380-1 80-0=0808080

Step 3: Count the number of zeros in the last expression, which is four. Since the

number of zeros is even then this coefficient (co) should not be included for

PPDRM. Hence

Co = 1

Similarly, the rest of the coefficients are obtained as follows:

- - - -
c] = 1-0 81-4 81-6 81-7= 1-781-381-1 81-0=18 1 8 1 80=0

- - - -
c2=2-0 82-4 82-6 82-7=2-782-382-182-0=2828080=1

- - - -
C3= 3-0 83·4 83· 6 83-7 = 3-783-3 83-1 83-0 = 3 838 1 80 = 0

- - - -
c4=4-0 84-4 84-6 84-7=4-784-384-184-0=4808080=0

- - - -
cs=5-0 85-4 85-6 85-7=5-785-385-185-0=5818180=0

- - - -
C6 = 6-0 86-4 86-6 86-7= 6-786-3 86-1 86-0 = 6828080 = 1

- - - -
C7 = 7-0 87-4 87-6 87-7= 7-787-3 87-1 87-0 = 7838 1 80 = 0

The truth vector c for zero polarity is given as follows:

c = [7, 5,4,3, 1]

K. Faraj, Chapter 4 85

The sum terms in this canonical form can be generated using equation (4.11) as

follows:

Using equation (4.11) to get the PPDRM form will lead to

Example 4.8

Compute Reed-Muller coefficients with zero polarity for a four-variable Boolean

function f (X3,X2,Xl,xO) = IT M(0,3,4,5,6,8,10,11,13,14,15) and find the PPDRM

expreSSIOn.

Co can be calculated by using equation (4.17), for the first off-set coefficient '1',

we have
-

If/=O.O

If/ = 0000.1111 = 0000

Because all of \}fj are 0, this coefficient should be included. Then move to the

second off-set coefficient which is 2, we have

-
If/=0.3

If/ = 0000.1100 = 0000

Repeat the same procedure for the rest of off-set coefficients. After finishing all

the 11 off-set coefficients, count the number of zero for each operation. This gives

11, since this odd number therefore, Co is included because it is equals to O. Repeat

the same procedure for the reset of the coefficients. The final Dual Reed-Muller

form is:

K. Faraj, Chapter 4 86

This same example was run using the programmed develop in this chapter, the

following results were obtained.

!(X3 ,X2 ,Xp x O) = 8 I1(15,12,9,7,6,5,3,1,O)

This result agrees with the previous results.

4.5 Results

In this section, experimental results are presented usmg algorithm 4.1. The

proposed algorithm is implemented in C language and the programs compiled

using Borland C++ compiler. The program was tested on a personal computer with

Pentium 4 processor of 2.4 GHz CPU and 512 MB of RAM under Window

operating system. The algorithm was applied to several MCNC benchmarks and

some random functions. Table 4.2 shows the results obtained from converting POS

coefficients into DRM coefficients. Where name denotes the name of circuit, n

denotes the number of variables, Init terms denote the number of terms in POS

form, DRM terms denote the number of terms in DRM form, the execution time

(CPU Time (s)) is time required to calculate the coefficients of the Fixed Polarity

Dual Reed-Muller form the coefficients of the Product of Sums and it is given in

seconds. For most of the circuits with n less than 16 the CPU time is less than 1

seconds. The CPU time depends on the variable number n and the initial number

of terms (number of off-set coefficients). For large Boolean functions, there are

many coefficients and they should be accessed once. This algorithm can be

improved by ordering the off-set coefficients in advance. This is can be achieved

by introducing a multiple segment technique, then the execution time will be

improved and it could handle large number of variables.

K. Faraj, Chapter 4 87

For incompletely specified Boolean functions,' don't care' are set to '1'. The

experimental results obtained in Table 4.2 reflect the efficiency of the algorithm.

Table 4.2:

Conversion results from POS to PPDRM form

lni t. terms in DRM
Name n CPU Time (s)

POS Terms

ConI 7 88 9 0.000

Rd84 8 136 37 0.050

Apex4 9 534 181 0.000

Clip 9 480 92 0.000

Ex1010 10 142 480 0.010

F12t 12 1984 365 0.02

F13t 13 4152 127 0.100

F14t 14 16172 625 0.711

F15t 15 5792 3100 0.540

spla 16 5348 517 0.931

Table5 17 28552 3359 9.845

K. Faraj, Chapter 4 88

4.6 Summary

This chapter has introduced the basics matrices that are needed to convert between

Product of Sums and Positive and Fixed polarity Dual Reed-Muller forms. Such

matrices are needed to construct the transformation matrix for the Dual Reed

Muller expressions. This chapter has introduced also new formulas to calculate the

coefficients of the Dual Reed-Muller directly from the off-set of the Product of

Sums. Therefore, this technique is fast and does not need to store the

transfoDnation matrix.

Chapter 5

Exact minimization of Dual Reed-

Muller expressions

5.1 Introduction

In the optimization of FPDRM expansions, functions with different polarities are

usually calculated directly from POS expressions [64, 65]. A new algorithm is

presented in this chapter to generate all the polarity sets from any polarity set q for a

single output Boolean function. This technique is used to find the best polarity of

FPDRM among the 211 fixed polarities. The algorithm is based on the dual property

and the Gray c ode strategy. Time efficiency and computing speed are a chieved in

this technique because the information in finding FPDRM expansion of one polarity

is utilized by others. Two-fixed polarities can be derived from each other without the

need to go back to the original Boolean function in the POS form, if the two

polarities are dual.

Definition 5.1 Polarity vector (Pll-l,Pn-2, .. . ,Po) for a FPDRM of an n-variable Boolean

function is a binary vector with n elements, where Pi = 0 indicates the variable Xi in

K. Faraj, Chapter S 90

an un-complemented form (Xi), while Pi

complemented form (Xi).

1 indicates the variable Xi III the

Definition 5.2 Two polarities are defined to be dual polarities if they reveal the

following property: the n-bit binary strings of these two polarities have n-1 bits in

common and only one bit is different [9S, 96].

5.2 Exact minimization of the Fixed Polarity DRM forms

A new algorithm is presented in this chapter to generate all of the polarity sets from

any polarity set q, without using the direct method in converting from POS to

FPDRM forms [64, 6S]. Time efficiency is achieved in this technique because the

information utilized in finding DRM expansion of one polarity is utilized by others.

Two-fixed polarities can be derived from each other without the need to go back to

the original Boolean function, if the two polarities are dual [9S, 96].

Corollary 5.1 The DRM with a fixed polarity qj can be derived from DRM with a

fixed polarity pj, where Pj, Cjj are dual polarities and} is the permuting bit.

Proof

From equation (S.l) with polarity p = Pj, DRM is given as:

2" -1

j{Xn-I,Xn-2, ... ,xo) = 8 IT (c i + S i)
i=O

(S.l)

(S.2)
i=Q

Where

=Xn-l +X I1-2+ ••• +XO (S.3)
k=n-l

K. Faraj, Chapter 5 91

Pj, is any given polarity = (0, ... , 211_1), Si(Pj) are the sum terms for the particular

polarity Pj.

In order to change polarity from Pj to qj, equation (5.3) can be expressed as

j+l • • o. S:1 = 2:(Xk)ik + (x j /j + L (Xk)ik

k=n-1 k=)-1
(5.4)

Each variable Xk in equation (5.4) will remain as it is, except variable Xj is replaced by

the following identity (x j)'i = 0 8 (x j)ij
• Therefore, equation (5.4) becomes the

following equation for S:j

)+1 • • o.

sti = L (Xd ik + (0 8 (Xj)ij) + L (Xd ik (5.5)
k=n-1 k=)-1

By using the following property:

A+ (08 B) +C = (A+C) + (0 8 B) = (A+C+O) 8 (A+C+ B)

Hence

j+l. o. j+1. • o.

S,qi = (L (Xk)ik + L (Xk)ik) 8 (L (Xk)ik + (x j)ii + L (Xk)ik) (5.6)
k=n-1 k=j-1 k=n-1 k=)-1

By substituting (5.6) in (5.2), we obtain the following FPDRM expansion for ~with

p=~.

K. Faraj, Chapter 5 92

211-1 j+i. o. j+l. :- o.

() rr(c~j +[(L (XkY' + L (xki') () (L (XkY' + (XiY; + L (XkY')])
i~O k~I1-1 k~j-I k~n-I k~ j-I

To convert polarity Pj to polarity qj, each sum in the FPDRM with polarity Pj is

converted into a binary string. A zero is placed in the binary string if the variable is

present and a one if the variable is absent. The new term is generated, by copying all

the binary string except for bitj. Ifbitj is zero change it to one. Duplicate terms are

deleted according to the rule B () B = 1. Based on this, the following algorithm is

developed.

5.3 Conversion from polarity p to polarity q

Algorithm 5.1

This algorithm converts between the polarities and identifies the polarity number

with the least number of Sum terms in the FPDRM functions. The following steps

shall be used to derive the coefficient set 1'q from the dual set <1>p. The steps are

repeated for the rest of the polarities till the best polarity is obtained.

Step 1: Use Algorithm 4.1 to calculate the coefficients for PPDRM function. Set <1>min

= the number of off-set coefficients for polarity Pj.

Step 2: Determine the next polarity qj in Gray code order, where polarities Pj and qj

are dual and differ in bitj only.

Step 3: Converts the sum terms for polarity pj into a binary string. By replacing each

variable by '0' if the variable is present in the sum term or by' l' ifit is absent.

Step 4: For each term in polarity Pj, generate a new term ifbitj of the binary string is

'0'. Replace bitj with' l' and copy all others bits to generate the new term.

K. Faraj, Chapter 5 93

Step 5: Delete common pairs between original strings and newly generated strings

because B 8 B = 1.

Step 6: The unaffected strings are the product terms of the new polarity qj.

Step 7: Count the total number of zero coefficients 'I'min for polarity qj.

If'I'min < <Dmin then <Dmin: = 'I'min.

Step 8: Stop if all polarities have been checked. Otherwise go to step 2.

Example 5.1

Find the best polarity for a three-variable function!(xz,xj,xo) = IT M(0,4,6,7).

Step 1, the following results are obtained for PPDRM using algorithm 4.1.

!(Xz,Xj,Xo) = 8IT (7,5,4,3,1) (5.7)

In order to find all polarities for DRM expansion, a Gray code sequence is generated

for n = 3, then Algorithm 5.1 is applied to find the best polarity with the least number

of Sum terms.

The following Gray code is generated for n = 3:

000 - 001 - 011 010 - 11 0 - 111 - 101 - 100

Count the number of coefficients from step 1, and set <Dp = 5 since this the first step

in the procedure set also <Dmin to <Dp.

Step 2, since polarity '0' = (000) and polarity '1' = (001) are dual polarities. Hence

DRM in polarity' l' can be derived directly from equation (5.7) using Algorithm 5.1

as shown in Table 5.1 where the altered bit is at} equals o.

K. Faraj, Chapter 5 94

Table 5.1:

Derivation ofDRM for Polarity 1

Polarity 0
New tenus

Polarity 1

X2X j XO X2Xj XO

111 111

----l-W--- 100

100 -tBt- 011

011 001

001

Therefore, the coefficients for the FPDRM with p = 1 are the following:

Where the number of tenus is \.f'min = 4, since \.f'min < <l>min then record the

corresponding polarity as P min = q; = 1 and <l>min = 4.

Repeat step 2 to convert from polarity '1 '= (00l) to '3' = (011), with the altered bitj

= 1 as shown in Table 5.2.

K. F araj, Chapter 5 95

Table 5.2:

Derivation ofDRM for Polarity 3

Polarity 1 Polarity 3
New terms - -

X2Xj XO X2Xj XO

111 111

100 110 110

-m-t- 100

001 -Btt- 001

Therefore, the coefficients for the FPDRM with p = 3 are the following:

Where the number of terms is '¥ min = 4, since '¥ min = <l>min then go to the next

polarity.

Repeat step 2 to convert from polarity '3'= (011) to '2' = (010), with the altered bit}

= 0 as shown in Table 5.3.

Table 5.3:

Derivation ofDRM for Polarity 2

Polarity 3 Polarity 2
New terms - -

X2X 1XO X2X 1XO

itt 110

110 tti 101

100 101 100

001 001

Therefore, the coefficients for the FPDRM with p = 2 are the following

K. Faraj, Chapter 5 96

'i'1l1in = 4, since 'i'1l1in = cDmin then go to the next polarity.

Repeat step 2 to convert from polarity '2'= (010) to '6' = (110), with the altered bit}

= 2 as shown in Table 5.4.

Table 5.4:

Derivation ofDRM for Polarity 6

Polarity 2 Polarity 6
New terms

- -
X2Xj XO X2Xj XO

110 110

181 100

100 001

001 181

Therefore, the coefficients for the FPDRM with p = 6 are the following

'i'1l1in = 3, since 'i'1l1in < cDmin then record the corresponding polarity as Pmin = <]j = 6

and change cDmin to 3.

Repeat step 2 to convert from polarity '6'= (110) to '7' = (111), with the altered bit}

= 0 as shown in Table 5.5.

K. Faraj, Chapter 5 97

Table 5.5:

Derivation ofDRM for Polarity 7

Polarity 6 Polarity 7
New terms

- - - --
X2Xj XO X2Xj XO

110 111 111

100 101 110

001 101

100

001

Therefore, the coefficients for the FPDRM with p = 7 are the following

\}lmin = 5, since \}lmin > <l>min then go to the next polarity.

Repeat step 2 to convert from polarity '7'= (111) to '5' = (101), with the altered bit}

= 1 as shown in Table 5.6.

K. FaraL Chapter 5 98

Table 5.6:

Derivation ofDRM for Polarity 5

Polarity 7 Polarity 5
New terms

- --
X2Xj XO X2Xj XO

III 101

He 100

101 itl 011

100 lie 001

001 011

Therefore, the coefficients for the FPDRM with p = 5 are the following

Repeat step 2 to convert from polarity '5'= (101) to '4' = (100), with the altered bitj

= 0 as shown in Table 5.7.

Table 5.7:

Derivation of DRM for Polarity 4

Polarity 5 Polarity 4
New terms

X2Xj XO X2Xj XO

181 100

100 HH 011

011 001

001

K. Faraj, Chapter 5 99

The process is terminated at this point, because 'l'min > <:Pmin (4 > 3), ttherefore the

best polarity for this function is p = 6 = (110) with 3 terms.

The sum terms for this canonical form can be generated as follows:

Using equation (4.11) the following equation is obtained for FPDRM form with

polarity number is equal to 6.

Where the truth vector c = [1 0 1 0 1 1 0 1]

Hence,

5.4 Results

In this section, experimental results are presented using algorithms (4.1) and (5.1).

The proposed algorithms are implemented in C language and the programs compiled

using Borland C++ compiler. The programs were tested on a personal computer with

Pentium 4 processor of2.4 GHz CPU and 512 MB of RAM under Window operating

system. The algorithms were applied to several Random functions as well as MCNC

benchmarks. Table 5.8 shows the results obtained from converting PPDRM (p = 0)

K. Faraj, Chapter 5 100

coefficients into FPDRM coefficients. Where name denotes the name of circuit,

Input No denotes the number of variables, Init terms denote the number of terms in

PPDRM form, Terms denotes the minimum number 0 fterms required for a fixed

polarity Dual Reed-Muller forms (FPDRM) terms, the execution time (CPU Time

(s)) is time required to find the best polarity starting from the zero polarity and

Improv (%) represents the average saving in terms between polarity zero and the best

polarity which is based on the following formula:

I T Initi. Terms - DRM. Terms 100°/ mprov. erms = x /0

Initi. Terms

The execution time (CPU Time (s)) depends on the variable number n as well as the

initial number of terms. For incompletely specified Boolean functions,' don't care'

are set to '1'. The experimental results obtained in Table 5.S reflect the efficiency of

the algorithm. The average saving in terms of number of terms is about 30 percent.

We are able to minimize functions with up to 14 variables. Memory requirements

make it impossible to minimize functions with more than 14 variables. To our

knowledge there are no publications on this topic to compare with.

K. Faraj, Chapter 5 101

Table 5.8:

Optimization results based on algorithm 2

Input Terms under FPDRM Irnprov. CPU
Name

No. polarity 0 Best polarity Terms (%) Time (s)

ConI 7 9 7 8 11 0.000

Rd84 8 37 1 29 21 0.000

Apex4 9 181 2 170 6 0.100

Clip 9 92 496 63 32 0.031

Ex1010 10 480 944 413 14 1.061

F12t 12 365 804 127 65 3.455

F13t 13 127 704 65 48 4.16

F14t 14 625 5587 66 89 260.07

tRandomly generated Boolean functions.

K. F araj, Chapter 5 102

5.5 Summary

Boolean functions in Product of Sums forms can be represented by Fixed Polarity

Dual Reed-Muller forms. Each FPDRM form can be identified with a distinct

polarity, were each variable appears in the complemented or un- complemented form

but not both. Therefore, an algorithm is required to find the best polarity of the

FPDRM forms among the 2 n fixed polarities, without converting directly between

POS and FPDRM forms for each polarity. Hence a new algorithm is presented in this

chapter. The algorithm is used to generate all the polarity sets from any polarity set q

for a single output Boolean function. This algorithm is based on the dual property

and the Gray code strategy. Two polarities are dual if they have n-1 bits in common

and only one bit is different.

Hence, all of the fixed polarities can be derived from each other without starting

from the original Boolean function in the POS form. Therefore, time efficiency and

computing speed are achieved in this technique.

Chapter 6

Optimal Polarity for Dual Reed-Muller
Expressions

6.1 Introduction

In this chapter we present two algorithms, which can be used to convert from POS to

FPDRM and find the optimal polarity for large number of variables. The first

algorithm is used to compute the coefficients of PPDRM or FPDRM directly from

the truth table of POS, without the use of mapping techniques [65] and without the

use of matrix operation [64]. This algorithm is also used to compute the coefficients

of POS from PPDRM or FPDRM. The second algorithm will find the optimal

polarity among the 211 different polarities for large n-variable functions, without

generating all of the polarity sets. This algorithm is based on separating the truth

vector of POS and the use of sparse techniques, which will lead to the optimal

polarity. Time efficiency and computing speed are thus achieved in this technique.

Definition 6.1 Polarity vector (Pn-I,PI1-2, .. . ,Po) for a FPDRM of an n-variable Boolean

function is a binary vector with n elements, where Pi = 0 indicates the variable Xi in

K. F araj, Chapter 6

an un-complemented form (xD, while Pi

complemented form Xi.

104

1 indicates the variable Xi III the

Property 6.1 For an n-variable Boolean function, there are 211 FPDRM expansions

corresponding to 2n different polarity numbers. Each of such expansions IS a

canonical representation of a completely specified Boolean function.

6.2 Conversion Algorithms

6.2.1 Conversion from POS to FPDRM

To compute the coefficients for FPDRM expansion (c) from the coefficients of the

POS expansion (d), the following principles and derivation are developed. An n

variable Boolean function can be expressed as:

211-1

(6.1)
i=O

Equation (6.1) can be represented as

j(Xn-1,Xn-2, ... ,xo) = (do + Xn-1+ X n-2 + ... X 0)' (d1 + X I1-1+ X 17-2 + ... ;: 0)' (d2 + Xn-1+ X 11-2 +

(6.2)

In equation (6.1) if all Maxterms are ANDed for each different combination of the

inputs the result will be '0' and if all Maxterms are XNORed for each different

combination 0 f t he inputs variables the result will b e a Iso a '0', because for each

combination of the inputs one of the Maxtrems will be '0' and the rest will be '1'.

Hence equation (6.1) can be written as in Equation (6.3) by replacing each AND gate

by XNOR gate.

K. Faraj, Chapter 6 105

211 -1

j(Xn-l,Xn-Z, ... ,xo) = 8 IT (d i + M i) (6.3)
i=O

(6.4)

Equation (6.4) can be described in terms of a coefficient truth vector. The coefficient

vector for an n-variable Boolean function can be represented as:

(6.5)

The elements of the truth vector (T) are placed in the order of decimal equivalent

binary coding of the sum terms.

Examining the general form in equation (6.4), half of the sum terms in the truth

vector T include variable Xi in true fonn and the second half include variable Xi in

complemented form. Therefore, the truth vector (T) for any Boolean function in POS

fonn can be separated into two rows for each variable Xi and the result is stored in the

separation matrix T(xJ The first row of the separation matrix T(Xi) contains

Maxterms with variable Xi in un-complemented form, while the second row of T(xD

contains Maxterms with variable Xi in complemented [97]. The elements in the truth

vector and the separation matrix T(xD are arranged into groups of four bits for

convenient. The following example illustrates the separation process.

K. Faraj, Chapter 6 106

Example 6.1

Construct the truth vector T for a 4-variable function }\X3,X2,xI,xO) = IT

M(0,4,6,7,11,15) and use the truth vector T to generate the separation matrix for each

variable Xi.

The truth vector T has 2n elements. Each Maxterm correspond to 'O's in the truth

vector T. Hence T is presented as follows:

T = [0111 0100 1110 1110]

To generate the first matrix T(x3), the truth vector T is separated around variable X3

int two equal parts. The first part corresponds to un-complemented part, while the

second part to the complemented part. This is can be done according to the following

formula:

b f ··· 2
n

Num er 0 DIVISIOns = --.
2 n- 1

Where 11 is the number of variables and i is the number for variable Xi.

Therefore, 11 = 4 and i = 3.

Hence,

The un- complemented for X3 is:

[0111 0100]

And for the complemented is:

[1110 1110]

Therefore,

K. Faraj, Chapter 6

For X2 the truth vector is divided as follows:

Number of Divisions = 24/22
= 4

Therefore, the truth vector is divided into four equal parts.

The un- complemented for X2 is:

[1110] and [1110]

This gives:

[1110 1110]

While for the complemented part is:

Therefore,

[0100] and [1110]

[
0111 1110] Xo

T(x2)= 0100 1110 x:

Similarly the separation matrices for Xl and Xo are as follows:

107

K. Faraj, Chapter 6

[
0100 1111] Xo

T(xo)= 1110 1010 Xo

108

To replace any complemented variable Xi by un-complemented variable Xi in

equation (6.4) the following identity Xi = (0 8x Dis used. The following result is

obtained

(a + Xi) 8 (b + xD = [a + (0 8xD] 8 (b + xD

=[(a+O) 8 (a+xD] 8 (b+x;)

= a 8 [(a + x;) 8 (b + Xi)]

However

[(a + xD 8 (b + xD] = [(a 8 b) + x;]

This can be verified as follows

[(a + x;) 8 (b + xD] = a X i (fj b Xi

Where' EB ' is XOR operator.

Complementing the last expression, the following is obtained

Xi (a (fj b) = [(a 8 b) + Xi]

K. Faraj, Chapter 6 109

Therefore,

[(a + Xi) 0) (b + xD] = [(a 0) b) + xJ

Hence

(a + xJ 0)(b + xD = a 0) [(a 0) b) + xJ (6.6)

Examining equation (6.6), the coefficients of the un-complemented part of variable Xi

take a new fonn. The new coefficient is (a XNOR b), while the coefficient for the

complemented part will remain the same. Similarly, to convert un-complemented

fonn to complemented fonn the following principal is applied.

Each un-complemented variable Xi is replaced by 0 0) Xi.

(a+ X;) 0)(b+xD=(a+x;) 0) [(b+(O 0)xJ]

= (a + xJ 0) [(b + 0) 0) (b + x;)]

= [(a + x;) 0) (b + xJ] 0) b

By taking the complement of the following expression

[(a + x;) 0)(b + x;)] = ax; EEl Ex;

= Xi (a EEl b)

Taking the complement for the last expression will give the following result

Hence

K. F araj, Chapter 6 110

[(a+xJ 8(b +xJ] = Xi + (a 8 b)

Therefore,

(6.7)

Inspecting equation (6.7), the coefficient of the true fonn stays as it is while the

coefficient of the complemented fonn is replaced by (a XNOR b).

K. Faraj, Chapter 6 111

Algorithm 6.1

A computer algorithm has been developed based on the previous theory as shown in

the following steps.

Converting from POS to FPDRM

Algorithm 6.1.a

The following steps are used to from POS to FPDRM forms:

Step 1: Store the coefficients of the POS in the truth vector (T).

Step 2: Construct T(xD matrix from T vector for each variable Xi. The first row of

T(xa matrix contains the coefficients of the Maxterms for variable Xi in un

complemented form. While the second row of T(xD contains the coefficients of the

Maxtenns with variable Xi in the complemented form.

Step 3: The elements in the first and second rows of T(Xi) matrix are group together

using XNOR operation and the result is stored in vector (N).

Step 4: If the required polarity for Xi variable is '0' then replace the contents of each

true variable Xi in the truth vector T by the contents of vector N.

Step 5: If the required polarity for Xi variable is '1' then replace the contents of each

complemented part of the xi variable in the truth vector T by the contents of the un

complemented part of the Xi variable and store the result N in place of un

complemented part of Xi variable in T.

Step 6: Repeat the previous steps for the rest of the variables by using the new truth

vector from step '5' or '6' depending on the polarity.

K. Faraj, Chapter 6 112

Step 7: The zero elements stored in the last T vector are the coefficients for that

particular polarity of the FPDRM.

6.2.2 Conversion from FPDRM to POS

Algorithm 6.1.b

To find the POS's coefficients from the FPDRM's coefficients, step '5' in Algorithm

6.1.a is changed to the following step:

If the required polarity for Xi variable is '1' then replace the contents of each un

complemented part of the Xi variable in the truth vector T by the contents of the

complemented part of the Xi variable and store the result N in place of complemented

part of Xi variable in T.

The following examples will illustrate Algorithm 6.1.a and Algorithm 6.1.b.

Example 6.2

Convert a 4-variable function f (X3,X2,Xj ,xo) = II M(0,4, 7,11,15) from POS form to

polarity 7 DRM.

Store the coefficients of Maxterms in the truth vector T.

T = [0111 0110 1110 1110]

Separate T vector around variable X3 to obtain T(x3) matrix and XNOR each element

in the first row with the elements in the second row.

[
0111 0110]X3

T(x3) = 11101110 X3

N =[01100111]

Since the polarity is '0' for variable X3, replace the un-complemented part of X3

variable in T by the N vector results. Therefore, the new T vector is

T = [0110 0111 1110 1110]

K. Faraj, Chapter 6

Separate the new vector T around variable X2 to obtain T(X2) matrix as follows:

[
0110 1110]X2

T(x?) = (x_? XNOR x2)
- 0111 1110-x 2 =--------=
N = [1110 1111]

Since the polarity is '1' for variable X2 apply step' 5', the new truth vector is

T=[1110 0110 11111110].

Similarly for variable Xl and Xo

The final T vector is

[
11 01 1111] XI T(x]) = (x] XNOR x])
1010 1110 -x]
=------=

N = [1000 1110]

T = [1011 0001 1111 1011]

[
1100 1111]XO

T(xo) = (xo XNOR xo)
0101 1101

-
Xo

=--------=
N=[OllO 1101]

T = [0111 1000 1111 0111]={0,5,6,7,12}

The sum terms in this canonical can be generated by using the basis vector

113

K. Faraj, Chapter 6 114

[0 x3]++[OX2]++[0 xl]++[O xo]= [0 Xo Xl (Xl+Xo) X2 (x2+xJ

(X2 + Xl) (X2 + Xl + xJ (X3 + Xo) (X3 + Xl)

(X3 +Xj + Xo) (X3 +X2) (X3 +X2 +Xo)

(X3 +X2+Xl) (X3 +X2 +Xj +Xo)]

The FPDRM can be generated using by substituting the coefficient vector c in the

following general equation.

j(XIl-l,XIl-2, ... ,xo) = {[O XIl-l] ++ [0 X n-2] ++ ... ++ [0 xo]} 0 C (6.8)

Hence

Example 6.3

Convert a 4-variable function!(x3,x2,xl,xo) = 8rr (0,5,6,7,12) from FPDRM form to

POS form by using polarity p = 7 = (0111).

Store the truth vector in T matrix.

T = [0111 1000 1111 0111]

Separate T vector around variable X3 to obtain T(x3) matrix.

[
0111 1000] X3

T(x3) = (X3 XNOR x3)

1111 0111 -
X3

=------=

N = [0111 0000]

Since polarity is '0' for variable X3, replace the un-complemented part of variable X3

in T by the N vector results. The new truth vector is

K. Faraj, Chapter 6

T = [0111 0000 1111 0111].

Separate the new vector T around variable X2 to obtain T(X2) matrix as follows

[
0111 1111:X7

T(x 2
) = 0000 0111 x:

N = [1000 0111]

Since polarity is '1' for variable X2 apply Algorithm 1.b, the new truth vector is

T= [0000 1000 0111 0111]

Similarly for variable Xl and Xo

[
0010 0101]X1

T(x1) = 0000 1111 x
1

N = [1101 0101]

T= [0011 0001 1101 1101]

[
0100 101O]XO

T(xo)= 0101 1111 xo

N=[1110 1010]

T= [0111 0110 1110 1110]

Therefore, the POS's coefficients are (0,4,7,11,15).

!(X3.X2,Xl,xO) = IT M(0,4,7,11,15).

115

K. Faraj, Chapter 6 116

6.3 Optimization of the Fixed Polarity DRM forms

In the optimization of the FPDRM functions with different polarities are usually

calculated directly from POS expressions [64, 65]. A new algorithm is presented in

this chapter to find the optimal polarity directly from the truth vector of the zero

polarity. This technique is aimed at large number of variables, where time is very

crucial. It usually requires a long time to convert from POS to DRM for each polarity

and then search for the best polarity among the 211 polarities. The new algorithm

introduced in this section will achieve maximum efficiency in respect of time for

large number of variables and does not require a large memory. The time required to

find a 'good' polarity, is almost equal to the time required for converting a single

polarity as giving in algorithm 6.1.b. This algorithm doesn't search each polarity to

convert from POS to FPDRM and it doesn't use matrix technique to convert from

POS to DRM for each polarity. Thus the algorithm is fast with respect to time and

efficient in terms of memory storage.

Algorithm 6.2

Step 1: Algorithm 6.1.a is used to obtain zero polarity, the coefficients are stored in

vector T. Let Pmin equals the polarity number zero for the zero polarity which

is zero. Step 2: Count the number of zero terms in vector T and denote it by

(TNZ).

Step 3: Construct T(xD matrix from vector T for each variable Xi. The first row of

T(xD matrix contains the coefficients of the Maxterms for variable Xi in un

complemented form. The second row of T(xD contains the coefficients of the

Maxterms with variable Xi in the complemented form.

Step 4: The elements in the first and second rows of matrix T(xD are grouped

together using XNOR operation and the result is stored in vector N.

K. Faraj, Chapter 6 117

Step 5: Count the number of zeros of the un-complemented part from T(xD and N .

Add the two numbers together and denote it by NZ(Xi).

Step 6: Repeat steps 4 and 5 for all the variables that have not been converted to

polarity 1.

Step 7: To determine the variable (Xi) that has to be converted from '0' polarity to

'1' polarity. Select the variable with the least number of zeros NZ(xD from

step 6. This should be less than or equal to the total number of zeros from

step 2, TNZ.

Step 8: Replace the contents of complemented part of T(Xi) by the contents of vector

N. This will generate a new T vector. Pmill is set to the new polarity number.

Step 9: Use the new T vector from step 8 and repeat the same procedure from step 2

for the variables that have not been converted.

Step 10: If the total number of zeros NZ(Xi) for each variable Xi from step 6 is greater

than TNZ from step 2, then stop and there will be no more variables to

convert from '0' polarity to '1' polarity.

Step 11: The zero elements stored in the last T vector are the coefficients for that

particular polarity of the FPDRM.

Example 6.4

Find an optimal polarity for a 5-variable function

!(X4,X3,X2,Xj,XO) = IT (1,3,4,5,7,10,11,12).

Step 1: use Algorithm (6.1.a) to convert from POS to zero polarity DRM and set

Pmill=O.

The result is as follows:

K. Faraj, Chapter 6 118

T=[1010 1100 0010 0110 1111 1111 1111 1111]

Hence the coefficients for PPDRM with polarity p = 0 are:

c = {I, 3, 6, 7, 8, 9, 11, 12, IS}

Step 2: Count the number of zero terms in T vector and set TNZ = 9.

Step 3: Separate T vector around variable X4 into un-complemented and

complemented parts, and store the result into vector N as follows:

T x = x XNORx
[
1010 1100 0010 0110] x 4

(4) 1111 1111 1111 1111 x
4

(4 4)

N=[1010 1100 0010 0110]

Step 4: Count the number of zeros of the un-complemented part from T(X4) and N

vector and add the two numbers together.

By repeating steps 3 to 6, the following results are obtained for the following

variables X3, x 2, X 1 and x 0

T x = x XNORx
[
1010 1100 1111 1111] X3

(3) 0010 0110 1111 1111 X3 (3 3)

N=[0111 0101 1111 1111]

K. Faraj, Chapter 6 119

[
1010 0010 1111 1111] x, _

T(x 2) = 1100 - (x, XNOR x 2)
0110 1111 1111 x2 -

~-----------------=

N=[1001 1011 1111 1111]

NZ (X 2) = 8

[
1011 0001 1111 1111] Xl

T(xl) = 1000 - (Xl XNORxl)
1010 1111 1111 Xl

=---------------~

N = [11 00 01 00 1111 1111]

T X = X XNORx [
1110 0101 1111 1111]XO

(0) 0010 0010 1111 1111 Xo (0 0)

N=[OOl1 1000 1111 1111]

NZ (X 0) = 8

Since NZ (X3) has the m1111mum number of zeros, replace the contents of

complemented part of T matrix by the result of XNOR operation hence the new T

vector is

T = [1010 1100 0111 0101 1111 1111 1111 1111].

The total number of zeros for the new vector TNZ = 7, and the polarity number for

this vector is Pmin = {01000}= 8.

Similarly as in the previous part, separate vector T around each variable but not X3

because it has been changed to X3.

K. Faraj, Chapter 6 120

[
1010 1100 0111 0101] x4

T(x4) = 1111 - (X4 XNOR x4)
1111 1111 1111 x4

~--------------~

N=[1010 1100 0111 0101]

[
1010 0111 1111 1111] X 7 _

T(x) - - (x? XNOR X 7)

2 - 1100 0101 1111 1111 x
2

- -

~--------------~

N = [1001 1101 1111 1111]

[
1011 0101 1111 1111] Xl

T(xl) = 1000 - (Xl XNOR Xl)
11 01 1111 1111 Xl

~--------------~

N = [11 00 0111 1111 1111]

[
1110 0100 1111 1111] Xo

T(xo) = 0010 - (xo XNORxo)
1111 1111 1111 Xo

=----------------=
N = [0011 0100 1111 1111]

NZ (X 0) = 9

Since the total number of zeros for variable X2 is less than TNZ from the last

operation, therefore X2 will be converted to X2. Hence the new T vector is

T = [1010 1001 0111 11 0 1 1111 1111 1111 1111].

The total number of zeros for the new vector TNZ = 6 and Pmin = {01100} = 12.

K. Faraj, Chapter 6 121

Repeat the same procedure for X4, Xl and Xo.

[
1010 1001 0111 1101] x 4

T(x4)= 1111 - (x4 XNORx4)
1111 1111 1111 x 4

~----------------=

N= [1010 1001 0111 1101]

[
1010 0111 1111 1111] Xl

T(x l)= 1001 - (xlXNORxl)
1101 1111 1111 Xl

~----------------=

N=[1100 0101 1111 1111]

[
1110 0110 1111 1111] Xo

T(xo) = 0001 - (xo XNOR xo)
1111 1111 1111 Xo

~--------------~

N = [0000 0110 1111 1111]

NZ (X 0) = 9

Since the total number of zeros from each operation is greater than TNZ from the last

operation, there are no more variables to convert to the complemented form and the

process is terminated at this point.

Therefore, the final c vector is given as follows:

c = [1010 1001 0111 11 0 1 1111 1111 1111 1111]

The FPDRM terms that are needed for this form are {1,3,5,6,8,14}, and the best

polarity is P = (01100) = 12.

K. Faraj, Chapter 6 122

A program has been developed based on the previous theory and sparse technique. A

matrix is called sparse if most of its elements are non-zero [75, 76]. Considerable

saving in memory and computation time can be a chieved by using sparse formats

that store only the zeros in this case. Since most of the elements in the truth vector T

are non-zeros where the normal size of T is 2'\ a sparse format will be a suitable

solution to store the zero elements to avoid wasting memory. The following example

illustrates this method.

Example 6.S

Let vector A = [0,4,7] and vector B = [2,4,6] then A XNOR B is given as follows:

A = [0 Y Y Y 4 y Y 7]

B = [y y 2 y 4 y 6 y]

N = [0 y 2 y y y 6 y]

Where 'y' repents a non-zero element' 1 ' in the truth vector.

K. Faraj, Chapter 6 123

6.4 Experimental Results

In this section, experimental results are presented for the proposed algorithms. The

proposed algorithms are implemented in C language and the programs are compiled

using Borland C++ compiler. It is tested on a personal computer with Pentium 4

processor of 2.4 GHz CPU and 512 MB of RAM under Window operating system.

The algorithms where applied to several MCNC benchmarks. Table (6.1) shows the

results obtained from converting POS coefficients into PPDRM coefficients. Where

name denotes the name of circuit, n denotes the number of variables, init terms

denotes the number of terms in POS form, P PDRM terms denotes the number of

terms in PPDRM form and the CPU time is in seconds. For most of the circuits with

n less 14 the CPU time is less than 0.6 seconds. The comparison time between the

results which was obtained from Chapter 4 and Chapter 6 is nearly the same. Table

(6.2) shows the results obtained from converting PPDRM coefficients into POSs

coefficients. Finally Table (6.3) shows the results obtained to find the optimal

polarity for some Boolean functions. The CPU time for most of the circuits is nearly

zero, which reflects the efficiency of the algorithms and Improv. (%) represents the

average saving in terms between polarity zero and the optimal polarity which is

based on the following formula:

I T Initi. Terms - DRM. Terms 100°/ mprov. erms = x /0

Initi. Terms

The CPU-time for chapter 6 is much less than the CPU-time for chapter 5, also for

functions with variable number n greater than 14, algorithms in chapter 5 had failed

to give results. Therefore, algorithms presented in this chapter is much more efficient

than algorithms for chapter 5 in terms of CPU-time and large number of variables.

K. Faraj, Chapter 6 124

Table 6.1:

Conversion table from POS to PPDRM

Chapter 4 Chapter 4

Init. terms PPDRM PPDRMTerms CPU-Time Chapter 6

Name n CPU-Time
inPOS Terms

ConI 7 88 9 9 0.00 0.000

Rd84 8 136 37 37 0.05 0.000

Clip 9 480 92 92 0.00 0.000

Ex1010 10 142 480 480 0.01 0.000

F12t 12 1984 365 365 0.02 0.01

F13t 13 4152 127 127 0.10 0.04

F14t 14 16172 65 127 0.711 0.521

F15t 15 5792 3100 3100 0.54 3.695

spla 16 5348 517 517 0.931 1.843

Table5 17 28552 3359 3359 9.845 162.85

K. Faraj, Chapter 6 125

Table 6.2:

Conversion table from PPDRM to POS

PPDRM POS
Name n Time (s)

Terms Terms

Clip 9 92 480 0.000

ConI 7 9 88 0.000

Ex1010 10 480 142 0.010

Rd84 8 37 136 0.000

Table3 14 2528 1859 1.29

Table5 17 3359 28552 4.927

K. Faraj, Chapter 6 126

Table 6.3:

Optimal Polarity for DRM forms

PPDRM CPU Time DRM
DRM-

Name Terms
Optimal Improv.

for
Terms

n Time Terms

polarity 0
Polarity (%)

Ch- 5 Ch-6 Ch-6
Ch- 5

ConI 7 9 23 11.1 0.000 0.000 8 8

Rd84 8 37 128 21.6 0.000 0.000 29 29

Clip 9 92 496 31.5 0.031 0.000 63 63

Ex1010 10 480 2 11.2 1.061 0.000 426 413

F12t 12 143 2868 9 3.455 0.D1 130 127

F13t 13 127 4800 48 4.16 0.01 65 65

F14t 14 625 5587 89 260.07 0.031 66 66

Misex3 14 913 12505 89 - 0.030 95 -

F15t 15 3100 29412 88 - 0.241 365 -

spla 16 517 3584 35.4 - 0.040 334 -

Table5 17 3359 21760 55.5 - 0.531 1494 -

tRandomly generated Boolean functions

K. Faraj, Chapter 6 127

6.5 Summary

To find the best polarity, it is required in general to search among 2n different

polarities,

for large number of variables, this would be impractical, and it would require a long

CPU time to search for the best polarity. Therefore, new algorithms have developed

in this chapter which could handle a large number of variables to find the optimal

polarity among the 2 n different polarities without searching for each polarity. The

algorithms can be used to convert from POSs to FPDRM and find the optimal

polarity for large number of variables. The algorithms are based on the truth vector

of the POS function. The truth vector is separated around each variable (xD into two

parts. The first part includes the coefficients of un-complemented Xi while the second

part includes the complemented part of variable Xi. Following the procedure which is

described in sections 6.2 and 6.3 respectively, the following can be obtained.

I. The coefficients of the PPDRM or the FPDRM forms can be computed

directly from the truth table ofPOS.

II. The optimal polarity with the minimum number of sum terms for any n

variable function can be obtained directly.

Thus, time efficiency and computing speed are thus achieved in this technique.

Chapter 7

Conclusions and future work

The aim of the research is to develop a variety of algorithms for the synthesis and

optimization for both types of Reed-Muller and Dual Reed-Muller logical

expressIOns.

7.1 Conclusions

The main contribution in this thesis can be outlined as follows.

~ In chapter 2, a novel, fast, computational technique for converting between

Boolean functions in SOP form and FPRM expressions has been presented.

This method is based on partitioning the Reed-Muller transformation matrix

into vertical and horizontal layers. Sparse technique is used also to store the

non-zero elements instead of storing the whole matrix. The algorithm is

extended to convert between multi output SOP expressions and multi output

FPRM expressions. The algorithm is implemented in C language. The

program is tested on personal computers and the results for some

benchmark functions of up to 20 inputs and 40 outputs are presented. The

experimental results reflect the efficiency of the algorithm in terms of CPU

K. Faraj, Chapter 7 129

time and using less memory space to store the transformation matrix. The

conversion time for functions with n equals 15 and outputs equals to 28 was

less than 4.7 seconds. The other main advantage of the algorithm is its

ability to handle large number of outputs, because the algorithm is not

required to do any more calculations, except incrementing a counter for

each new function.

~ Chapter 3 presents the Dual Reed-Muller expressions, which are based on

ORlXNOR operations. Any n-variable Boolean function in the Product of

Sums form can be expressed by 2/l Fixed Polarity Dual Reed-Muller forms.

Chapter three covers the basic theory and notations which are used in the

Dual Reed-Muller form. It also introduced new operations which can be

used to describe the Dual Reed-Muller form in 0 rder to convert between

Product of Sums and Dual Reed-Muller form for single and multi output

functions. An algorithm is developed based partitioning and Sparse

methods. Algorithms were implemented using C language. The

experimental results reflect the efficiency of the algorithms in terms of CPU

time and memory size.

~ In chapter 4, a new fast algorithm is introduced to convert between Product

of Sums and Dual Reed-Muller forms without generating or using the Dual

Reed-Muller transformation matrix. This facilitates efficient conversion

between Product of Sums and Fixed Polarity Dual Reed-Muller (FPDRM)

forms. New algorithm is presented for bidirectional conversion between the

two forms. The algorithm starts by storing the off-set of the truth vector of

the Product of Sums and uses two simple equations (4.15, 4.17) to calculate

each coefficient of the Dual Reed-Muller expression. The algorithm is

implemented in C language. Experimental results show that the algorithm is

K. F araj, Chapter 7 130

very efficient in terms of space and CPU time. For Boolean functions with

n equals 16, the CPU time was less than one second.

~ The optimization of Fixed Polarity Dual Reed-Muller (FPDRM)

expansions, require the search for the best function among the 21! fixed

polarities to find the FPDRM with the least number of Sums. The classical

exhaustive method for finding the best polarity requires the computation of

the 211 FPDRM expansions from a Product of Sums expression using one of

the conversion methods given previously. Then exhaustive search method is

applied to find the best FPDRM with the least number of sums or with the

least number of XNOR gates. In order to avoid all these disadvantages, a

new, efficient algorithm is presented in chapter 5 to generate all the polarity

sets from any polarity set q for a single output Boolean function. The

algorithm is based on the dual property and the Gray code strategy. Time

efficiency and computing speed were achieved in this technique because the

information in finding FPDRM expansion of one polarity is utilized by

others. Therefore, two-fixed polarities can be derived from each other

without the need to go back to the original Boolean function in the Product

of Sums form, if the two polarities are dual. The program is developed and

implemented in C language. Test results for benchmark and some random

examples of up to 13 inputs are given.

~ To reduce the search time for finding the optimal Fixed Polarity Dual Reed

Muller for large input variables, two new, efficient, algorithms are

presented in chapter 6. The first algorithm is used to convert between POSs

and FPDRM, while the second algorithm is used to find the optimal polarity

among the 21! different polarities for large n-variable functions directly

without involving exhaustive search. The algorithms are based on Boolean

matrix representation and maxterm separation techniques. The second

technique used in the algorithms is sparse technique, were only the zero

K. F araj, Chapter 7 131

coefficients are stored (saved) in order to reduce the memory size. The new

algorithms are implemented in C language. The programs are tested on

personal computers and the results for some benchmark functions of up to

17 variables are given. The CPU time for finding the optimal polarity for n

equals 17 is less than 0.55 seconds. Time efficiency and computing speed

are thus achieved in this technique.

7.2 Future Work

The above work can be further generalized and improved along the following lines.

~ The conversion algorithm for single output functions, presented in chapter

four, has been successfully tested for n equals to 17 variables. This

algorithm can be further improved and generalised for multiple output

Boolean functions based on the same strategy.

~ The exact polarity optimization method in chapter five can be utilized for

incompletely specified Boolean functions.

~ The conversion and the optimal polarity optimization algorithm for single

output functions, presented in chapter 6, can be further generalized to

incompletely specified Boolean functions. It can be extended also to

minimize multiple outputs fixed and mixed polarity Dual Reed-Muller

forms.

~ The algorithms can form part of Electronic Computer Aided Design

(ECAD) package for the synthesis and optimization of large logic

functions and used as a front end in commercial tools.

132

Publications

The following papers are published, and submitted while at Napier University.

1 Cheng, J, Chen, X, Faraj, K.M., and Almaini, AE.A, 'Expansion of

logical functions in the OR-coincidence system and the transform

between it and maxterm', IEE Proc.-Computers and Digital Techniques,

Vol. 150, No.6, November 2003, pp 397-402.

2 K. F araj, M. MacCallum, and A E. A Almaini, 'Polarity Conversion

Using Sparse and Partitioning Techniques,' Proceedings of the 29th

EUROMICRO Conference, Turley, 2003, pp.

3 K. Faraj, M. MacCallum, A.E.A Almaini, 'Fast computation of

Conjunctive Canonical Reed-Muller functions,' PREP Proceeding,

University of Hertford shire, 2004, pp. 144-145.

4 K. Faraj, M. Al-Asadi, AE.A Almaini, 'A New Technique for

Converting Sum of Products (SOP) into Fixed Polarity Reed-Muller

(FPRM) and Vice Versa,' PREP 2004 Proceeding, University of

Hertfordshire, pp. 178-179.

5 K. Faraj, and A.E.A Almaini, 'Near optimal Polarity for Conjunctive

Canonical Reed-Muller expansions,' submitted to International Journal of

Electronics, 1012004.

6 K. Faraj, Y. Xia, and AE.A Almaini, 'Exact minimization of the Dual

Reed-Muller expansions,' submitted to International Journal of

Electronics, 412005.

133

Appendix A
This section describes the input files that were used in the programmes and some

information on how to run the programmes.

The input file should be given in the following form:

Table A.1: File-1

.i4
.0 1

.ilb fb c d a h g
.ob ill f1

.p
00001
0001 0
00100
0011 1
01000
0101 1
01101
0111 0
10000
1001 1
1010 1
1011 0
1100 1
1101 0
11100
11111

.e

The minimum required set of keywords is .i ,.0 and.e (.end) for binary-valued

functions using PLA description.

Where

.i [d] specifies the number of input variables .

• 0 [d] specifies the number of output functions .

. e (.end) specifies the end of the PLA description.

Running the programmes

The following commands are necessary to run the programmes in this disk

InputFile

OutputFile

- name of the file with the input data,

- name of the output file to store the results of the programme.

134

For example: using the first programme from chapter 6 (separationl) to convert
from product of sums to positive polarity Dual Reed-Muller form using zero polarity
using table A.l.

The user needs to specify the input file name (File-I), polarity number (for example
zero) and the output file name (c:\testtxt).

The out put of this programme is given as follows:

Number of variables = 4
Number of Dual Reed-Muller coefficients = 4

7
11
13
14

Therefore, the Dual Reed-Muller coefficients are (7, 11, 13, 14) and Dual Reed
Muller function is:

135

Decimal-
f

Fast-Algm
Exact-Algm

Optimal-
value X3X2X j XO P=O Algm

0 0000 1
1 0001 0
2 0010 0
3 0011 1
4 0100 0
5 OlOl 1
6 0110 1
7 0111 0 7 7 7
8 lOOO 0
9 1001 1
10 10lO 1
11 1011 0 11 11 11
12 1100 1
13 1101 0 13 13 13
14 1110 0 14 14 14
15 1111 1

l36

References and Bibliography

[1] Giovanni, D. M., 'Synthesis and Optimization of Digital circuits,' McGraw-

Hill, Inc., NJ, 1994.

[2] Stefan Sjoholm and Lennart Lindh, 'VHDL for Designers,' Prentice Hall

Europe, 1997.

[3] Andrew Rushton, 'VHDL for Logic Synthesis,' Chichester, England: John

Wiley & Sons, 1998.

[4] Frederick J. Hill, Gerald R. Peterson, 'Computer Aided Logical Design with

Emphasis on VLSI,' John Wiley & Sons. Inc., New York, 1993.

[5] John P. Uyemura, 'Introduction to VLSI Circuits and Systems,' New York,

NY: Jolm Wiley & Sons, 2002.

[6] Hong, S. J, Cain, R. G. and Ostapko, D. L., 'MINI: Aheuristic approach for

logic minimization,' IBM J. of Res. And Dev., Vol. 18,443-458, 1974.

[7] Quine, W. V., 'The Problem of simplifying Truth Functions,' American

Mathematics Monthly, Vol.59, no.8, pp. 521-531,1952.

[8] McCluskey, E., 'Minimization of Boolean functions,' Bell System Technical

Journal, Vo1.35, No.5, pp. 1417-1444. 1956.

137

[9] Brayton, R. K., Hatchtel, G. D, McMullen, C. T. and Sangiovanni-Vincentelli,

A. L., 'Logic Minimization Algorithms for VLSI Synthesis,' Boston, Kluwer

Academic Publishers, 1984.

[10] Zhegalkin, 1. 1., 'The technique of calculation of statements m symbolic

logic,' (in Russian) Mathe. Sbomik, Vol. 34, pp. 9-23,1927.

[11] Reed, 1. S., 'Class of multiple error correcting codes and their decoding

scheme,' Institute of Radio Engineers Transaction on Information Theory,

PGIT-4: pp. 38- 49, 1954.

[12] Muller, D. E., 'Application of Boolean algebra to switching circuit design and

to error detection,' Institute of Radio Engineers Transaction on Electronic

Computers, EC-3: pp. 6-12, September 1954.

[13] Guan, Z., and Almaini, A. E. A., 'One-bit adder design based on reed-Muller

expansions,' INT. J. Electronics, Vol. 79, No.5, pp 519-529,1995.

[14] Xu, L, and Almaini, A. E. A., 'Full-custom design of Reed-Muller universal

logic modules,' INT. 1. Electronics, Vol. 74, No.4, pp 605-613,1993.

[15] Sasao, T and Besslich, Ph, 'On the complexity of mod-2 sum PLAs,' IEEE

Trans. On Comp., 39: pp. 262-266, 1990.

[16] Saul, 1., 'Logic synthesis for arithmetic circuits usmg the Reed-Muller

representation,' In European Conf. On Design Automation, pp. 109-113, 1992.

[17] McKenzie, L., Almaini, A. E. A., and Miller, J. F., 'Optimization of Reed

Muller logic functions' INT. 1. Electronics, Vol. 75, No.3, pp 451-466, 1993.

138

[18] Sasao, T., 'Easily Testable Realizations for Generalized Reed-Muller

Expressions,' IEEE Transaction on computers, Vol. 46, No.6, June 1997.

[19] Reddy, S. M., 'Easily Testable realization for Logic functions,' Technical

Report no. 54, Univ. ofIowa, May 1972.

[20] Mitrajit, Chatterjee and Dhiraj, K. Pradhan, 'Logic Optimization with

testability-New Transformations for logic Synthesis,' IEEE Transactions on

Computer-Aided of integrated Circuits and systems, Vol. 17, No.5, May

1998.

[21] Takashi, R., Kazuyuki, N., Yasuaki, N. and kensuke, S., 'Double fixed

Polarity Reed-Muller Expressions: Anew C lass of AND-EXOR Expressions

for compact and testable Realization,' IPSJ Journal, Vol. 42, No.4, April.

2001.

[22] Wang, L., and Almaini. A.E.A., 'Optimisation of reed-Muller PLA

implementations,' IEE Proc.-Circuits Devices Syst., Vol. 149. No.2, April

2002.

[23] Younes, A., and Miller, J. F., 'Representation of Boolean circuits as Reed

Muller expansions,' INT. J. ELECTRONICS, Vol. 91, No.7, pp. 431-444,

July 2004.

[24] Aborhey, A., 'Reed-Muller tree-based minimisation 0 ffixed polarity Reed

Muller expansions,' IEE Proc.-Compu. Digit. Tech., Vol. 148. No.2, pp. 63-

70, March 2001.

139

[25] Bui, H. T., Al-Sheraidah, A. K., and Wang, Y., 'New 4-transistor XOR and

XNOR designs,' Proceeding of the Second IEEE Asia Pacific ASIC design,

pp. 25-28, 2000.

[26] Jeong, B. K., Sung, lH., and Jong, K., 'New circuit for XOR and XNOR

functions,' INT. J. ELECTRONICS, Vol. 82, No.2, pp. 131-143, 1997.

[27] Wang, lM., Fang, S. C., and Feng, W.S., 'New efficient design for XOR and

XNOR functions on the transistor level,' IEEE Journal of solid-state Circuits,

29,pp. 780-786, 1994.

[28] Bui, H. T., Wang, Y., and Jiang, Y., 'Design and analysis oflow-power 10-

transistor full adders using novel XOR-XNOR gates,', IEEE Transactions on

Circuits and Systems II: Analog and Digital Signal Processing, Vol. 49 Issue:

1 , Jan. 2002.

[29] Walker, R. A, and Thomas. D.E., 'Behavioral Transformation for

Algorithmic Level IC Design, " IEEE Transaction on Computer-Aided Design

ofIntegratred Circuits, 8(10), pp. 1115-1128, October 1989.

[30] http://www.hwswworld.com/downloads/f3/06A_3.PDF.

[31] Almaini, AE.A, 'Elecrtonic logic systems,' 3 rd ed. (Prentice Hall, 1994).

[32] Green, D.H, 'Modem logic design,' (Addison-Wesley, 1986).

[33] Ercegovac, M., Lang, T., and Moreno, 1 H., 'Introduction to Digital

Systems,' (John Wiley & Sons, INC, 1999).

140

[34] Faraj, K., MacCallum, M., and Almaini, A. E. A., 'Polarity Conversion Using

Sparse and Partitioning Techniques,' Proceedings 0 f t he 29th E UROMlCRO

Conference, Turky, 2003.

[35] Faraj, K., Al-Asadi, M., and Almaini, A. E. A., 'A New Technique for

Converting Sum of Products (SOP) into Fixed Polarity Reed-Muller (FPRM)

and Vice Versa,' PREP Proceeding, University of Hertfordshire, pp. 178-179,

2004.

[36] Wang, L., Almaini. A.E.A., 'Exact minimisation of large multiple output

FPRM functions', lEE Proc.-Comput. Digit. Tech., Vol. 149, No.5, pp. 203-

212, September 2002.

[37] Sasao, T., and Fujita, M., 'Representations of Discrete Functions,' Kluwer

Academic Publishers, 1996.

[38] Almaini, A. E. A., and McKenzie, L., 'Tabular techniques for generating

kronecker expansions,' Proceddings of the Institution of Electrical Engineers,

Computers and Digital Techniques, 143, pp. 205-212, 1996.

[39] Wang, L., Almaini, A. E. A., 'Fast Conversion Algorithm for Very Large

Boolean Functions,' Electronics Letters, Vol.36, No.16, pp. 1370-1371,2000.

[40] Wang, L., Almaini, A. E. A., and Bystrov, A., 'Efficient Polarity Conversion

for Large Boolean Functions,' IEE Proceedings Computers and Digital

Techniques, Vo1.146, No.4, pp. 197-204, 1999.

[41] Xu, L., Almaini, A. E. A., Miller, J. K, and McKenzie, L., 'Reed-Muller

universal logic module networks,' IEE Proceeding-E, Vol. 140, No.2,

pp.105108, March 1993.

141

[42] Aborthy, S., 'Reed-Muller tree-based minimisation of fixed polarity Reed

Muller expansions,' IEE Proceedings Computers and Digital Techniques,

Vo1.l48, No.2, pp. 63-70, March 2001.

[43] Bapiraju, V., and Bapeswara. R. V. V., 'Generation of all Reed-Muller

Expansions of a Switching Function,' IEEE Transactions on Computers, Vol.

43, No.1, January 1994.

[44] Saluja, K. K and Ong, E. H, 'Minimization of Reed-Muller canOnIC

expansIOn, 'IEEE Transactions on Computers, C-28(7): pp. 535-537, July

1979.

[45] Wu, X. , Chen, X., and Hurst, S. L., 'Mapping of Reed-Muller coefficients

and the minimisation of exclusive-OR switching functions,' IEE Proceedings

Part E, Computers and Digital Techniques, 129(1): pp. 15-20, Jan 1982.

[46] Zhang, Y. Z., and Rayner, P.1.W., 'Minimization of Reed-Muller polynomials

with fixed polarity,' IEE Proceedings Part E, Computers and Digital

Techniques, 131(5): pp. 177-186, Sept 1984.

[47] McKenzie, L., and Almaini, A. E. A., 'Generating Kronecker expansions

from reduced Boolean forms using tabular methods' INT. 1. Electronics, Vol.

82, No.4, pp 313-325,1997.

[48] Sasao, Tsutomu, 'Logic Synthesis and Optimization' Kluwer Academic

Publishers, 1993.

[49] Haomin, Wu., Perkowski, M. A., X iaoqiang, Z., and Nan, Z., 'Generalized

Partially-Mixed-Polarity Reed-Muller Expansion and its Fast Computation,'

IEEE Transactions on Computers, Vol. 45, No.9, September 1996.

142

[50] http://robotics.me.jhu.edu/~llw/courses/me530647/kron _1.pdf.

[51] Lee, C.Y., 'Representation of switching circuits by binary decision diagrams,'

Bell System Technical Jour., 38: pp. 985-999, 1959.

[52] Akers, S. B., 'Binary decision diagrams,' IEEE TRANS. ON Comp., 27: pp.

509-516, 1978.

[53] Bryant, R.E., 'Graph - based algorithms for Boolean function manipUlation,'

IEEE Tran. On Comp., 35(8): pp. 677-691, 1986.

[54] Almaini, A. E. A., Zhuang, N., and Bourst, F., 'Minimisation of multi output

Reed-Muller binary decision diagrams using hybrid genetic algorithm,'

Electronic Letters, Vol. 31, No. 20, pp. 1722-1723, September 1995.

[55] Aborhey, S., 'Binary decision graph reduction,' IEE Proc. Part-E, Vol. 136,

No.4, pp. 277-283, 1989.

[56] Brace, K.S., Rudell, R. L. and Bryant, R. E., 'Efficient Implemtation of a

BDD package,' 2ih ACM/IEEE Design Automation Conference, pp. 40-45,

1990.

[57] Ishiura, N., 'Synthesis of Multilevel Logic Circuits from Binary Decision

Diagrams,' IEICE Trans. Inf. And Syst., Vol. E-76D, No.9, pp. 1085-1092,

1993.

[58] Friedman, S. l, and Supowit, K., 'Finding the optimal variable Ordering for

binary Decision Diagrams,' IEEE Trans. Comput., Vol. C-39, no. 5, pp. 710-

713, 1990.

143

[59] Fujita, M., and Matsunaga, Y., 'Variable Ordering of Binary Decision

Diagrams for Multilevel Logic Minimization,' Fujitsu Scientific and Technical

journal, Vol. 29, pp. 137-145, 1993.

[60] Lind-Nielsen, J.B., 'Verification of Large State/Event Systems,' PhD Thesis

April 2000.

[61] Drechsler, R., Theobald, M., and Becker, B., 'Brief Contributions Fast

OFDD-Based Minimizations,' IEEE Trans. Comput., Vol. 45, No. 11, pp.

1294-1299,1996.

[62] Lindgren, Per., 'Applications of Decision Diagrams in Digital Circuit

Design,' PH. D. Thesis, Lulea University of Technology, December 1999.

[63] Wang, L, 'Automated Synthesis and optimization of Multilevel Logic

Circuits,' PH. D. Thesis, Napier University, U.K., 2000.

[64] Green, D.H., 'Dual forms of Reed-Muller expansions', IEE Proc.-Comput.

Digit. Tech., Vol. 141, No.3, pp.184-192, May 1994.

[65] Cheng, J., Chen, x., Faraj, K.M., and Almaini, AE.A, 'Expansion of logical

functions in the OR-coincidence system and the transform between it and

maxterm', IEE Proc.-comput. Digit. Tech., Vol. 150, No.6, pp. 397-402,

November 2003.

[66] Faraj, K., MacCallum, M., and Almaini, AE.A, 'Fast computation of

Conjunctive Canonical Reed-Muller functions,' PREP Proceeding, University

of Hertfordshire, pp. 144-145,2004.

144

[67] Cheng, Jie., 'The research on modem digital theory and method', PH. D.

Thesis, Zhejiang University, Hangzhou, 2001.

[68] Panda R., and Najm F. 'Technology decomposition for low-power synthesis,'

IEEE Custom Integrated Circuits Conference, Santa Clara, Ca, pp. 627-630,

May 1995.

[69] Almaini, A. E. A., and Thomson, P., and Hanson, D., 'Tabular techniques for

Reed-Muller logic,' INT. J. Electronics, 70, pp. 23-34, 1991.

[70] Tan, E. C., and Yang, H., 'Fast tabular technique for fixed -polarity Reed

Muller logic with inherent parallel processes,' INT. J. Electronics, Vol. 85,

No.4, pp. 511-520,1998.

[71] Habib, M. K., ' Boolean matrix representation for the conversion of min terms

to Reed-Muller coefficients and the minimization of exclusive-OR switching

functions,' INT. J. Electronics, Vol. 68, No.4, pp 493-506, 1990.

[72] Purwar, S., 'An efficient method of computing generalized Reed-Muller

expansions from binary decision diagram,' IEEE Trans. Compu., Vol. 40, No.

11, pp. 1298-1301, 1991.

[73] Lui, P. K., and Muzio, J. c., 'Boolean matrix transforms for the minimization

ofmodulo-2 canonical expansions,' IEEE Trans. Compu., Vol. 41, No.3, pp.

342-347, 1992.

[74] Khan, Md. M. h. A., and Alam, Md. S., 'Mapping of fixed polarity Reed

Muller coefficients from minterms and the minimisation of fixed polarity

Reed-Muller expressions,' lnt. J. Electron., Vol. 83, No.2, pp. 235-247, 1997.

145

[75] Toledo, S., 'Improving the memory-system performance of sparse-matrix

vector multiplication,' IBM J. RES. Develop, Vol. 41, No.6, pp. 711-725,

November 1997.

[76] Duff, I. S., Heroux, M. A, and Pozo, R., 'The Sparse BLAS, Technical

Report, CERFACS tr/pa/OlI24,' September 2001.

[77] http://stsdas.stsci.edulbps/linked _list.html.

[78] Almaini, A E. A, 'A semicustom IC for generating optimum generalized

Reed-Muller expansions,' Microelectronics Journal 28, pp. 129-142, 1997.

[79] Mozammel, H. K., and Shamsul, A, 'Mapping of on-set fixed polarity Reed

Muller coefficients from on-set canonical sum of products coefficients and the

minimization of pseudo Reed-Muller expressions,' INT. J. Electronics, Vol.

86, No.3, pp 255-268, 1999.

[80] Horowitz, E, Sahni, S., and Anderson-Freed. S., 'Fundamentals of Data

Structures in C,' Computer Science Press, pp.135-185, 1993.

[81] Stankovic, R. S., and Falkowski, B. J., 'Spectral interpretation of the fast

tabular technique for fixed-polarity reed-Muller expressions,' INT. J.

Electronics, Vol. 87, No.6, pp 641-648, 2000.

[82] Tran, A, 'Graphical method for the conversion of minterms to Reed-Muller

coefficients and the minimisation of EX -OR switching functions,' Proceeding

of the IEEE, Computers and Digital Techniques, 134, pp. 93-99, 1989.

146

[84] McKenzie, L, 'Logic synthesis and optimisation usmg Reed-Muller

expansions,' PH. D. Thesis, Napier University, u.K., 1995.

[8S] Khan, M. H. A., 'Development of algorithms for synthesis and minimization

of EXOR-based logic,' PH. D. Thesis, Bangladesh University of Engineering

and Technology, Bangladesh, 1998.

[86] Purwar, S., 'An efficient method of computing generalized Reed-Muller

expansion from the binary decision diagram,' IEEE Trans. Comput., Vol. 40,

pp. 1298-1301, 1991.

[87] Sulistyo, J. B., and Ha, D. S., 'HYPIPE: A new approach for high speed

circuit design,' International ASIC/SOC Conference, Rochester, New York,

pp. 203-207, September 2002.

[88] Fernandez, G. E., and Sridhar, R., 'Dual Rail static CMOS architecture for

way pipelining,' 9th International conference on VLSI Design: VLSI 1m

mobile communication, Bangalore, India, pp. 33S-336, January 1996.

[89] Sulistyo, J. B., and Ha, D. S., 'SGHZ pipelined multiplier and MAC in 0.18

uM complementary static CMOS,' International Symposium on Circuits and

Systems, Bangkok, Thailand, pp. 117-120, May 2003.

[90] Elgamel, M, Goel, S., and Bayoumi, M., ' Noise tolerant low voltage XOR

XNOR for fast arithmetic,' Proceedings of the 13th ACM Great Lakes

Symposium on VLSI 2003, Washington, DC, USA, pp. 12S-130, 2003.

[91] http://¥.tww.sigda.org/ Archives/ProceedingArchives/Glsvlsi/Glsvlsi2003/pape

rs/2003/g1svlsi03/pdffiles/p2 _1S.pdf.

[92] Sasao, T., Switching theory for logic synthesis, Kluwer Academic

Publications, Boston, 1999.

147

[93] Stankovic, R. S., and Sassao, T., ' A discussion on the history of research in

arithmetic and Reed-Muller expressions,' IEEE Transaction on computer

aided design of integrated Circuits and systems, Vol. 20, No.9, September

2001.

[94] Moraga, C, Sassao, T., and Stankovic, R., 'A unifying approach to edge

valued and arithmetic transform decision diagrams,' Automation and remote

control, Vol. 63, No.1, pp. 125-138,2002.

[95] Tan, E.C., and Yang, H., 'Optimization of fixed-polarity Reed-Muller circuits

using dual-polarity property,' Circuits System Signal Process, Vol. 19. No.6,

pp. 535-548, 2000.

[96] Jankovic, D., Stankovic, R. and Moraga, C., 'Dual polarity in optimization

of polynomial representation of switching functions,' International Workshop

on Modem Functional Analysis, Operator Theory, Summabilityand

Applications, Niska Banja, pp. 47-58, September 2003.

[97] Habib, M. K., A new approach to generate fixed-polarity Reed-Muller

expansions for completely specified functions. International Journal of

Electronics, 89, pp. 845-876, 2002.

148

Disk containing the programs

The following programs are developed in this thesis and written in C language.

1 Polarity conversion program (Chapter-2): This program reads the information

from a benchmark (PLA-file), by storing the coefficients of the SOP in a vector.

Then converts SOP coefficients to FPRM form. More details on this programme

can be found in chapter 2.

2 Polarity converSIOn between POS and FPDRM (Chapter-3). This program

converts between POS and FPDRM forms using sparse and partitioning techniques.

More details on this programme can be found in chapter 3.

3 Polarity converSIOn between POS and FPDRM (Chapter-4) usmg fast

transformation method. More details on can this programme be found in chapter 4.

4 Exact minimization of the FPDRM (Chapter-5) forms. This program finds the

best polarity for FPDRM forms, which leads to FPDRM expression with the

minimum number of sums. More details on this programme can be found in chapter 5.

5 Polarity conversion between POS and FPDRM (Chapter-6) forms. The program

converts and finds the optimal polarity among the 2/1 different polarities for large n

variable functions, without generating all of the polarity sets. More details on this

programme can be found in chapter 6.

	414367_0001
	414367_0001a
	414367_0002
	414367_0003
	414367_0004
	414367_0005
	414367_0006
	414367_0007
	414367_0008
	414367_0009
	414367_0010
	414367_0011
	414367_0012
	414367_0013
	414367_0014
	414367_0015
	414367_0016
	414367_0017
	414367_0018
	414367_0019
	414367_0020
	414367_0021
	414367_0022
	414367_0023
	414367_0024
	414367_0025
	414367_0026
	414367_0027
	414367_0028
	414367_0029
	414367_0030
	414367_0031
	414367_0032
	414367_0033
	414367_0034
	414367_0035
	414367_0036
	414367_0037
	414367_0038
	414367_0039
	414367_0040
	414367_0041
	414367_0042
	414367_0043
	414367_0044
	414367_0045
	414367_0046
	414367_0047
	414367_0048
	414367_0049
	414367_0050
	414367_0051
	414367_0052
	414367_0053
	414367_0054
	414367_0055
	414367_0056
	414367_0057
	414367_0058
	414367_0059
	414367_0060
	414367_0061
	414367_0062
	414367_0063
	414367_0064
	414367_0065
	414367_0066
	414367_0067
	414367_0068
	414367_0069
	414367_0070
	414367_0071
	414367_0072
	414367_0073
	414367_0074
	414367_0075
	414367_0076
	414367_0077
	414367_0078
	414367_0079
	414367_0080
	414367_0081
	414367_0082
	414367_0083
	414367_0084
	414367_0085
	414367_0086
	414367_0087
	414367_0088
	414367_0089
	414367_0090
	414367_0091
	414367_0092
	414367_0093
	414367_0094
	414367_0095
	414367_0096
	414367_0097
	414367_0098
	414367_0099
	414367_0100
	414367_0101
	414367_0102
	414367_0103
	414367_0104
	414367_0105
	414367_0106
	414367_0107
	414367_0108
	414367_0109
	414367_0110
	414367_0111
	414367_0112
	414367_0113
	414367_0114
	414367_0115
	414367_0116
	414367_0117
	414367_0118
	414367_0119
	414367_0120
	414367_0121
	414367_0122
	414367_0123
	414367_0124
	414367_0125
	414367_0126
	414367_0127
	414367_0128
	414367_0129
	414367_0130
	414367_0131
	414367_0132
	414367_0133
	414367_0134
	414367_0135
	414367_0136
	414367_0137
	414367_0138
	414367_0139
	414367_0140
	414367_0141
	414367_0142
	414367_0143
	414367_0144
	414367_0145
	414367_0146
	414367_0147
	414367_0148
	414367_0149

