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Abstract 

In certain applications, AND/XOR (Reed-Muller), and ORlXNOR (Dual 
form of Reed-Muller) logic have shown some attractive advantages over the 
standard Sum of Products (SOP) and Product of Sums (POS). Bidirectional 
conversion algorithms between SOP and AND/XOR also between POS and 
ORlXNOR based on Sparse and partitioning techniques are presented for multiple 
output Boolean functions. The developed programs are tested for some 
benchmarks with up to 20 inputs and 40 outputs. 

A new direct method is presented to calculate the coefficients of the Fixed 
Polarity Dual Reed-Muller (FPDRM) from the truth vector of the POS. Any 
Boolean function can be expressed by FPDRM forms. There are 211 polarities for 
an n-variable function and the number of sum terms depends on these polarities. 
Finding the best polarity is costly interims of CPU time, in order to search for the 
best polarity which will lead to the minimum number of sums for a particular 
function. Therefore, an algorithm is developed to compute all the coefficients of 
the Fixed Polarity Dual Reed-Muller (FPDRM) with polarity p from any polarity q. 
This technique is used to find the best polarity of FPDRM among the 211 fixed 
polarities. The algorithm is based on the Dual- polarity property and the Gray code 
strategy. Therefore, there is no need to start from POS form to find FPDRM 
coefficients for all the polarities. The proposed methods are efficient in terms of 
memory size and CPU time. A fast algorithm is developed and implemented in C 
language which can convert between POSs and FPDRMs. The program was tested 
for up to 23 variables. A modified version of the same program was used to find 
the best polarity. For up to 13 variables the CPU time was less than 42 seconds. 

To search for the optimal polarity for large number of variables and to 
reduce the se arch time 0 ffinding the 0 ptimal polarity 0 fthe function, two new 
algorithms are developed and presented in this thesis. The first one is used to 
convert between P OS and Positive Polarity Dual Reed-Muller (PPDRM) forms. 
The second algorithm will find the optimal fixed polarity for the FPDRM among 
the 211 different polarities for large n-variable functions. The most popular 
minimization criterion of the FPDRM form is obtained by the exhaustive search of 
the entire polarity vector. A non-exhaustive method for FPDRM expansions is 
presented. The new algorithms are based on separation of the truth vector (T) of 
POSs around each variable Xi into two groups. Instead of generating all of the 
polarity sets and searching for the best polarity, this algorithm will find the optimal 
polarity using the separation and sparse techniques, which will lead to optimal 
polarity. Time efficiency and computing speed are thus achieved in this technique. 
The algorithms don't require a large size of memory and don't require a long CPU 
time. The two algorithms are implemented in C language and tested for some 
benchmark. The proposed methods are fast and efficient as shown in the 
experimental results and can be used for large number of variables. 
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Chapter 1 

Introduction 

Logic synthesis is the process of converting a high-level description of design into 

an optimized gate-level representation. Logic synthesis uses standard cell library 

which has simple cells, such as OR, AND, EXOR, XNOR, NOR, flip-flops, 

registers. Libraries generally include more complex functions such as multiplexers, 

adders, decoders, shift registers, and memory (ROM, RAM). 

1.1 Logic Synthesis 

The increasing complexity of chip designs and the continuous development of 

smaller size fabrication processes present new challenges to the existing tools. 

Future synthesis tools are required to handle millions of gates in a realistic time. 

Computer-Aided Design (CAD) tools became critical for design and verification 

of Very Large Scale Integrated (VLSI) digital circuits [1]. There was a need for a 

new standard language to describe digital circuits. Thus, Hardware Description 
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Language (HDL) came into existence, which is used to develop documents, 

simulate, and synthesize the design of electronics systems. Hardware Description 

Languages such as VHDL [2, 3] which stands for VHSIC (Very High Speed 

Integrated Circuits) Hardware Description Language and Verilog were accepted by 

academia and industry to describe hardware from the abstract behavioral to the 

gate level. Computer-aided techniques [4] have provided the enabling 

methodology to design efficiently and successfully VLSI for a wide range of 

applications such as processors, telecommunication, etc. A typical VLSI design 

flow is illustrated in Figure 1.1. The key steps are high level synthesis, logic 

synthesis and optimization, and physical level [5]. 

System specifications 

Abstract high-level model 

Physical 
synthesis 

Manufacturing 

Figure 1.1: General overview of a circuit representation 
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The main objective of high level synthesis is to transform circuit specification 

details into a high-level description of the circuit structure, to define major 

functions to be implemented within the circuit and to realize each function with 

smaller circuit blocks. For a given abstract behavioral representation of a digital 

system, output of the high level synthesis phase is a register-transfer level (RTL) 

structure realizing specified behavior. At this step, circuit consists 0 f functional 

blocks which are defined in terms of interconnected registers, multiplexers and 

control elements. Input to the logic synthesis phase is the RTL description of the 

circuit a nd a 1 ibrary ofl ogic primitives. Logic primitives, flip-flops a nd control 

functions are determined by the selected implementation style and the target 

technology. Each functional block described in RTL description is transferred into 

the structure of interconnected logic primitives to minimize either the size or the 

perfonnance in terms of critical delay or combination of both. The solution of the 

optimization problem can be measured in terms of cost (or obj ective) function. The 

most common quality measures used in a circuit design optimization are the area, 

and increasingly, power consumption. During the placement phase, the logic gates 

are assigned to the physical location in the environment selected as a target 

technology. 

Up to now, most of the research has focused on developing algorithms for 

AND/OR or NANDINOR circuits [6-9]. Alternatively, any Boolean function can 

be represented canonically based on AND/EXOR operations, which are called 

Reed-Muller expansions. This research was first published by Zhegalkin in 1927 

[10] in Russia. In 1954, Reed [ 11] and Muller [ 12] published their work in the 

U.S.A. In the last decade synthesis based on AND/EXOR, OR! XNOR realisations 

[13, 14] have gained more interest, because these techniques are more compact for 

certain types of circuits, such as error correcting circuits, and arithmetic circuits. 

For these reasons implementations based on exclusive-OR gates can be more 

economical, require 1 ess gates [ 15-17], and have excellent testability [ 18-21]. A 

major characteristic of the EXOR logic is the numerous possible canonical 
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representations of switching functions it provides [22-24]. Also recent progress in 

circuit technology makes the use of AND/EXOR and ORlXNOR gates feasible 

[25-28]. 

Figure 1.2 shows a typical ASIC synthesis design flow based on logic synthesis. 

The key steps in the ASIC design are: behavioral synthesis which allows the 

design at higher levels of abstraction by automating the translation and 

optimization of a behavioral description, or high-level model, into an RTL 

implementation. Behavioral synthesis tools have been developed which translate 

the behavioural model to an RTL model [29,30] The register-transfer level (RTL) 

is often entered textually in a HDL such as VHDL. 

Logic synthesis can be divided into there major steps: 

1. To convert the description from RTL to logic level, which consist of 

gates, flip-flops and latches. 

2. The logic optimization task IS to optimize the description through 

various procedures in terms of area, speed and testability. 

3. Produce a gate level net-list. 

Finally, at the physical level, the network is built on a slice of silicon using a 

complex mapping scheme that translate transistors and wires into fine-line patterns 

of metals and other substances. 

The main objective of this thesis is to concentrate on logical synthesis part. By 

developing a new optimization techniques and algorithms, which can be used to 

convert between two-level logic implementations (the product-of-sums form, 

ORlAND) into two-level Dual Reed-Muller forms (ORlXNOR) and find the 

optimal form with the minimum number of terms hence, less gates and less area. 

The Dual Reed-Muller forms (ORlXNOR) can be implemented by using a 

programmable logic array (PLA) for a two level logic as shown in figure 1.3. 
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Logic 
Svnthesis 

Library 

Behavioral Specification 

Behavioral Synthesis 

Behavioral Description 

RTL Description 

Translation Tools 

Technology Mapping 

Optimized Logic Description 

Physical Design Tools 

Figure 1.2: General overview of an ASIC design flow 
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Inputs 

Programmable Array of 
OR gates 

~ 
Programmable Array of 

XNORgates 

Outputs 

17 

Figure 1.3: Two-Level programmable logic array structure for (ORIXNOR) gates 

The work which is developed in this thesis does not replace previous work but 

complements and enhances it. It gives the designer a larger search space and hence 

a better chance of finding the ideal solution. 
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1.2 Background 

This section presents the background theory and defines some basic notations that 

are used throughout this thesis. 

There are two standard canonical forms to represent a Boolean function: 

1.2.1 Sum of Products 

Boolean functions can be expressed by the Sum of Products (SOP) form as given 

in equation (1.1) [31, 32]. 

211-1 

I(XIl-1XIl-2···XO) = IaJn j (1.1) 
j~O 

Where the subscript i can be expressed in a binary form as i = (in-lin-2 .. .i0) 2, '2:' is 

the OR operator, [aO,al, ... ,a2n_l] is the truth vector of the function I, a j E {0,1}. 

aO = 1(0,0, ... ,0) 

a1 = 1(0,0, ... ,1) 

a n = 1(1,1, ... ,1) 
2 -1 

The minterm m i can be represented as mj = x
l1

_1XI1
_2 ••• xo 

Where 
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Xj' i = 0 i~{ .I 

.I i = 1 x, 
.I J 

(1.2) 

Where j is from 0 to n-1. 

Example 1.1 

A three variable function,j(x2,xl,XO) can be expanded by the SOP form as follows: 

!(X2 ,Xl' XO) = aOOOx2xIXO + aOOlx2xIXO + aOlOx2xlxO + aOllx2xIXO + alOOx2xlxO 

+ alOlx2xIXO +allOx2xlxO + alllx2xIXO 

1.2.2 Product of Sums 

The same Boolean functions can also be expressed by the Product of Sums (POS) 

form as given in equation (1.3). 

2"-1 

!(Xn_pXn_2'···Xo) = I1(di +Mi) (1.3) 
i=O 

Where 'IT' represents logical products (AND), the '+' is OR operation and i is a 

binary n-tuple i = (in-l in-2 ... iO)2, [do,d1, .. . ,d2
n

_1] is the truth vector of the function 

f, di. E {o, I} . If d i equals to zero then Mi will be retained in the POS, since '0' is 

the Boolean additive identity such that 0 + Mi = Mi [33], and Mi is a sum term 

(maxterm) 
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Where 

o • ik • ill _1 • i,,_2 • i 0 

M i = ~ X k = X n-I + X n-2 + ... + x 0 

k=n-J 

. {x k 
x" = _ 

x" 

i" = 0 

ik = 1 

Where k is from 0 to n-l. 

Example 1.2 

20 

(1.4) 

(1.5) 

A two variable function,j(xl,xo) can be expanded by the POS form as follows: 

We will refer to the coefficients of SOP form and the coefficients of POS form as 

a and d respectively. 

1.3 Reed-Muller forms based on AND/EXOR operations 

Definition 1.1 An n-variable Boolean function can be expressed canonically by a 

Fixed Polarity Reed-Muller (FPRM) which is also known as Generlized Reed

Muller (GRM) form where each variable can be complemented or un

complemented, but not both, with polarity p expressed in a binary n-tuple, p = (Pn-I 

pn-2 ... Po)z, as follows [34, 35] 
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2n -I 

!(xn_Ixn_2···xO) = Ell Dkhk 
k=O 

Where' E9 2: 'is the XOR operator, Q k = xn_1xn_2 ••• xo, 

.. {I, k j = 0 
x.= 

, X, k=l , , 

x.= , {

X, p=l J , 

Xj' p,=O 

21 

(1.6) 

(1.7) 

k= (kn-1 kn-2 .•• ko), and} is from 0 to n-1. Where bk E{O,l}indicates the presents or 

absence of the product terms. This is a Positive Polarity Reed-Muller (PPRM) 

expression [36]. 

Sasao [37] shows that there are 7 classes of AND-EXOR expressions, this thesis 

focus on three major forms of Reed-Muller expansions: 

A. The Positive Polarity Reed-Muller (PPRM) form is an EXOR sum of 

products where each variable is in un-complemented form. This is also called a 

zero polarity form: 
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A number of algorithms have been proposed to obtain this form from the sum of 

products [34, 35, 38-42]. 

B. The Fixed Polarity Reed-Muller (FPRM) form (GRM) where each variable 

can be complemented or un-complemented, but not both: 

Where X E {X, x} . 

This form can be obtained from the zero polarity form using the identity x = 1 EB x . 

This give rise to 2/7 fixed polarities, many algorithms are available to derive these 

polarities [31, 37]. To calculate the polarity for any GRM function, each variable 

is replaced by a 1 or 0 which depends on whether variable Xj is in complemented or 

true form respectively. 

For example, a three-variable function!(x2xjxo): 

!(X2Xj Xo) has polarity 0 

!(x2x j XO) haspolarity1 

!(XZxjxo) haspolarity4 

The advantage of the GRM is that some minimisation is possible by finding a 

polarity, which minimise the number of terms. There are some algorithms to find 

the minimal fixed polarity expansion [43-47]. 
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C. The mixed polarity Reed-Muller form, where each variable can be 

complemented or un-complemented. For an n variable function, there can be up to 

')/1-1 

211
- different expansions or polarities [48]. 

1.4 Definitions and identities of EXOR gate 

The EXOR operation is defined as follows: 

AEBB = AB+AB 

For any Boolean variable x, the following identities are used for EXOR operations: 

Where 

xEBl=x 

xEBx=O 

xEBO=x 

xEBx=l 

true form 

complemented form 

For any EXOR expression the following properties hold: 
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x2 EB(X1 EBxO)=(X2 EBx1) EBxO =x2 EBx1 EBxo (associative) 

x2 (X1 EB xo) = X2X1 EB x2XO (distributive) 

x1 EB Xo = Xo EB x1 (commutative) 

The Kronecker product oftwo matrices (AmA x nA, BmB x nB) is defined as follows: 

AQ<JB= Q<JB= 

24 

Each aijB is a block of size mB x nB., and A Q<J B is of the size mA x nA x mB x 

nB [49,50]. 

The realisation of Reed-Muller circuits led to computational difficulties for 

functions of even moderate size, due to the large memory requirements. To 

overcome these difficulties Reed-Muller functions can be represented using a 

binary decision diagram, thus reducing the storage requirements. In addition, the 

computational requirements are also reduced since an efficient method for 

computing the spectral coefficients is employed. 

Binary Decision Diagrams (BDDs) are used as a data structure for Boolean 

functions. It was introduced by Lee in 1959 [51] and later by Akers [52]. In 1986 

Bryant introduced the concept of Ordered Binary Decision Diagrams (OBDD) 

which, allow canonical representation and efficient manipulation of Boolean 

functions [53]. 

BDD method has been widely used for synthesis, analysis and optimisation of both 

combinational and sequential logic [54-55]. In addition, BDDs have been used for 

design verification [56]. Although the technique provides a useful model for large 

applications, it suffers from the drawback that there is a difficulty in determining 
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an optimum ordering of the function input variables to achieve the simplest 

network [57-59]. 

Definition 1.2 A BDD is a directed acyclic graph representing a Boolean function 

as shown in Figure 1.1. It can be uniquely defined as a tuple, BDD= (<D, V, E, 

{O,l}), Where <D is the function node (root) [60], V is the set of internal nodes 

representing the input variables, E is the set of edges, and {O, I} are the terminal 

nodes. A completely specified function! can be specified by two sets of cubes, an 

on-set X(on) and an off-set X(off), wherej(X(on)) = 1,j(X(off)) = 0. 

Examples 1.3 

A Boolean functionj(x2,xl,XO) = I {3, 5, 7} can be expressed by a BDD as shown 

in Figure 1.4. 

Figure 1.4: BDD for example 1.3 

The following reduction rules are used to reduce BDD to RBDD: 
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1. Remove duplicate internal nodes: If two nodes VI and V2 have var(vI) = var(v2), 

low(vI) = low(v2), and high(vI) = high (V2), then eliminate one of the two nodes 

and redirect all incoming edges to the other internal node. 

2. Remove redundant internal node: If an internal node V has low(v) = high(v), 

then delete node v and redirect all incoming edges to high(v). 

3. Remove duplicate terminal: Delete all but one identical terminal and redirect 

all edges into that terminal [61, 62]. 

Examples 1.4 

Reduce the following Boolean functionfi:x2,xl,xo) = I {3, 5, 7} by applying the 

reduction rules. 

1. Merge duplicate nodes, this will lead to: 

o 1 

Figure 1.5: Duplicate nodes for example 1.4 
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o 

o 

Figure 1.6: Redundant nodes for example 1.4 

2. Eliminate redundant nodes, this will lead to: 

o 1 

o o 
1 

o 1 

Jex2 ,Xp XO) = (x]XO +X2X O) 

Figure 1.7: ROBDD for example 1.4 

27 
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1.5 BDD using XOR operators 

There are three types of expansions using XOR gates as follows: 

1 = 10 EB x n- 1 .f2 

1 = Xn_1.f2 EB J; 

28 

(1.8) 

(1.9) 

(1.10) 

Where the cofactors to = (0, Xn-2, ... , xo), fi = (1, Xn-2, ... , xo), and h = to EB fi are 

independent of the expansion variable Xn-l and can be expanded further with 

respect to the other variables. Equation (1.10) is the Shannon expansion, where the 

, EB' is the XOR operator. Equation (1.8) is the positive Davio (PD), it is also 

known as Positive Polarity Reed-Muller (PPRM) expansion, and each variable 

appear in the true (un-complemented) form 0 nly. Equation ( 1.9) is t he negative 

Davio (nD) expansion, were the variables appear in the complemented form only 

[37]. Equation (1.8) can be obtained by replacing xn _1 with 1 EB X n- 1 in equation 

(1.10) as follows: 

Similarly equation (1.9) can be obtained by replacing Xn-l with 1 EBx
ll

_1 in equation 

(1.10) as follows: 

Example 1.4 

Convert the following arbitrary three variables function into PPRM canonical 

form. 
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!(X2XIXO) = aOOOx2xlxO + aOOlx2xlxO + aOIOx2xlxO + aOllx2xlxO + aIOOx2xlxO 

+ aIOlx2xlxO + allOx2xlxO + a lII x 2x l x O 

29 

Because the minterms are mutually exclusive [63], the OR can be replaced by the 

XOR, and by replacing xn_1 with 1 EB xn_1 the following equation is obtained. 

!(X2XIXO) = a ooo (1 EBx2)(1 EBxl )(1 EBxo) EBaool (1 EBx2)(1 EBxl)xo 

Where 

Hence 

EBaoIO(1 EBx2)xl (1 EBxo) EBaoll(1 EBx2)xIXO EBaIOox2(1 EBxl)(1 EBxo) 

EBalOlx2 (1 EBxI )xo EBallOx2xI (1 EBxo) EBalllx2xlxO 

!(X2XIXO) = a ooo (1 EBxo EBxI EBxlxo EBX2 EBX2XO EBx2x I EBx2xIXO) 

EB a ool (xo EBxlxo EBX2XO EBx2xIXO) EBaOIO (XI EBxlxo EBx2xI EBx2xIXO) 

EBa oll (XIXO EBx2xIXO) EBa100(x2 EBx2XO EBx2xI EBx2x IXO) 

EBa lol (X2 XO EBx2xIXO) EBa l 10 (X2XI EBx2x I x o) EBa l I IX2XI XO 

By rearranging the terms the following is obtained 

!(X2,xpxO)=aooo(1) EBxo(aooo EBaool ) EBxI(aooo EBa olo ) EBx2(a OOO EBaloo) EB 

xlxo(aooo EBa ool EBa olo EBa oll ) EBx2xO(aOOo EBa ool EBa loo EBa lol ) 

EB X2XI (aooo EBa olo EBaloo EBallo ) 

EBx2xlxO(aooo EBa ool EBa olo EBa oll EBa loo EBa lol EBallo EBa lll ) 

Figure 1.8 shows the Positive Davio tree for a 3-variable function or the PPRM 

Form. 
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Xo 

/ 
@] 

\ 
@J ~ 

Figure 1.8: Positive Davio tree or (PPRM) 

1.6 Reed-Muller representation based on ORlXNOR operations 

There exists an alternative algebraic expansion for logical functions, namely the 

Dual Reed-Muller expansion, which involves the operations oflogical equivalence 

(LEQ) and inclusive-OR to provide a POS form [64-67]. 

Definition 1.3 Any n-variable function can be expressed by the Dual Reed-Muller 

(DRM) expression as: 

2 11_1 

j(Xn-l,xn-2, ... ,xO) = 0) IT (c i + S i) (1.11) 
i=O 
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Where' 0)' is XNOR operator, [C2
17

_1,C2
17

_2, ... ,Co] IS the truth vector of the 

function j, c i E{O,l} and Si represents a Sum term as 

Where 

o ...... ik -ill _l -in_2 -io 

S i = ~ X k = X /1-1 + X 11-2 + ... + x 0, 

k=/1-1 

i = ° k 

(1.12) 

(1.13) 

Much research has been devoted and focused on AND/EXOR Reed-Muller forms 

[68, 69]. This thesis focuses on a special class of ORlXNOR circuits, called Dual 

Reed-Muller (DRM) forms [64- 67]. Dual Reed-Muller forms can be classified 

according to its polarity. If each variable in the DRM form appears in un

complemented or true form, this form is called Positive Polarity Dual Reed-Muller 

(PPDRM). The second form is called Fixed Polarity Dual Reed-Muller (FPDRM) 

forms were each variable appears in un-complemented or complemented form but 

not both. In recent years there is a growing interest in design of logical functions 

with XNOR gates [26,27]. Functions realized with such ORlXNOR circuits can 

have less gates, less connections, occupy less Silicon area, dissipate less power, 

easily testable, and hence cheaper. 
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1.7 Aim of the thesis 

The aim of this research is to develop a variety 0 f algorithms for synthesis and 

optimization for the Dual Reed-Muller expressions. The first part of this research 

will focus on developing efficient and fast algorithms to convert between Product 

of Sums and Dual Reed-Muller forms. Due to the lack of efficient algorithms to 

convert between Product of Sums and the Dual Reed-Muller forms and to find the 

optimal polarity, new transformation algorithms are introduced in this thesis. 

Several algorithms are introduced in this thesis to convert between POS and 

FPDRM forms for single and multi output functions. The second and the third part 

of this research are focused on optimization and finding efficient solutions, to find 

the best polarity. There are 2/l polarities for each function using FPDRM forms. 

Therefore, it is required to find the optimal polarity among all the FPDRM forms, 

to lead to a function with the minimum number of sums. The solutions have to be 

systematic and efficient so they can be implemented on a computer and can handle 

large number of variables for larger circuits. 

Applications of Dual Reed-Muller implementations have not become popular 

despite the advantages of using XNOR gates. 

1.8 Thesis Overview 

Any Boolean function can be expressed by two concepts, they are based on 

ORJ AND and ORJXNOR operations respectively. Figure 1.9 shows the mam 

sections in this thesis, where each section or chapter is described as follows: 

Chapter 2 presents a computational technique method for converting Boolean 

functions in SOP form into Fixed Polarity Reed-Muller (FPRM) expressions, and 

vice versa. It also converts multi 0 utput S OP expressions tom ulti 0 utput Fixed 

Polarity Reed-Muller expressions. The Reed-Muller Transform matrix is presented 

in the form of matrix decomposition, as layered vertical and horizontal Kronecker 
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matrices. Sparse technique is used to store the non-zero elements instead of storing 

the whole matrix. The conversion technique can be used for single output or multi

output functions. 

Chapter 3 defines the basic theory and notations that will be used in the following 

chapters. It proposes the Dual Reed-Muller expansions (DRM) , which are based 

on ORlXNOR gates. This chapter introduces the transformation techniques to 

convert a POS, single or multi output, into Dual Reed-Muller in single or multi 

output functions. 

Chapter 4 A Bi-directional converSIOn algorithm is first proposed to convert 

between a single output function and Product of Sums (POS) and Positive Polarity 

Dual Reed-Muller (PPDRM) forms, without using any of the transformation 

matrices. This algorithm can be used for any polarity. 

Chapter 5 presents an algorithm to compute all the coefficients of the Fixed 

Polarity Dual Reed-Muller (FPDRM) with polarity p from any polarity q. This 

technique is used to find the best polarity of FPDRM among the 2/1 fixed polarities. 

The algorithm is based on the dual property and the Gray code strategy. Therefore, 

there is no need to start from POS form to find FPDRM coefficients for all the 

polarities. The proposed methods are efficient in terms of memory size and CPU 

time. 

Chapter 6 presents two algorithms, which can be used to convert from POS form 

to FPDRM form and find the optimal polarity for large number of variables. The 

first algorithm is used to compute the coefficients 0 f t he Positive Polarity Dual 

Reed-Muller (PPDRM) or FPDRM directly from the truth table of POS, without 

the use of mapping techniques [65] and without the use of matrix operation [64]. 

This algorithm is also used to compute the coefficients of POS from PPDRM or 
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FPDRM. The second algorithm will find the optimal polarity among the 217 

different polarities for large n-variable functions, without generating all of the 

polarity sets. This algorithm is based on separating the truth vector ofPOS and the 

use of sparse techniques, which will lead to optimal polarity. Time efficiency and 

computing speed are thus achieved in this technique. 

Chapter 7 conclusions and future work. 
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Figure 1.9: Structure of the thesis 



Chapter 2 

Efficient Polarity Conversion 

2.1 Introduction 

This chapter presents a computational method for converting Boolean functions in 

SOP form into Fixed Polarity Reed-Muller (FPRM) expressions, and vice versa 

[34, 35]. It also converts multi output SOP expressions to multi output FPRM 

expressions. The Reed-Muller Transform matrix is presented in the form of matrix 

decomposition, as layered vertical and horizontal Kronecker matrices. Sparse 

technique is used to store the non-zero elements instead of storing the whole 

matrix. The conversion technique can be used for single output or multi-output 

functions. The developed program is tested on personal computers and the results 

for some benchmark functions of up to 20 inputs and 40 outputs are tested. 

A Boolean function can be expressed canonically based on the Reed-Muller 

(AND/EXOR) expansion. Therefore, conversion methods are needed to convert 

between SOP and Reed-Muller forms. There are several techniques to convert 
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between SOP and Reed-Muller [70-73], most of the available techniques are not 

suitable for multioutput and for large functions. The algorithm in [74] requires less 

computer memory since it computes from only the on-set coefficients, but it takes 

much more time when n is greater than 14. 

In this chapter a Computer-Algorithm is introduced using the sparse matrix and 

partitioning technique to convert between SOP and FPRM. When a large matrix is 

sparse [75], with a high proportion of its entries zero or some other fixes value, it 

is convenient to store only the non-zero entries of the matrix. The representation of 

such a sparse matrix is a circular linked list structure [76]. In this representation, 

each non-zero element belongs to two lists: a list of the non-zero elements of its 

column and of its row. Each list is ordered according to the appearance of the 

elements in the left to right or top to bottom travel of the row or, column 

respectively. Linked lists efficiently represent structures that vary in size [77]. The 

idea of dividing a large matrix into sub-matrices or blocks arises naturally. The 

blocks can be treated as if they were the elements of the matrix and the partitioned 

matrix becomes a matrix of matrices. Partitioning plays an important role in sparse 

matrix technology because many algorithms designed primarily for matrices of 

numbers can be generalized to operate on matrices of matrices. The greater 

flexibility of the concept of partitioning then brings useful computational 

advantages. Alternatively, partitioning can be considered simply as a data 

management tool, which helps to organize the transfer of information between 

main memory and auxiliary devices. Storing a partitioned matrix implies storing a 

set of sub-matrices. By Partitioning the sparse matrix to many levels to store only 

one level, and then implement a certain procedure to calculate the reset of the 

elements without the need to store the whole Reed-Muller transform matrix, which 

can get very large for large values of input variables n. Since most of the elements 

in the transformation matrix of Reed-Muller of order N = 211 are zero. Therefore 

sparse and partitioning methods would be a good option in this case to save space 

and time by only storing non-zero elements. 
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2.2 Polarity conversion for a single output Boolean Functions 

Boolean functions can be expressed by the SOP form as given in equation (2.1). 

2" -1 

!(Xn_IXn_2···Xo) = Laimi 
i=O 

(2.1) 

Alternatively, any n-variable Boolean function can be represented based on Reed

Muller expansion which is based on ANDIXOR operators [78]. 

Definition 2.1 An n-variable Boolean function can be expressed canonically by a 

Fixed Polarity Reed-Muller (FPRM) form with polarity p expressed in a binary n

tuple, p = (P11-1 PI1-2··· PO)2 [79], as follows 

2" -I 

!(xn_Ixn_2···xO) = E9 DkQk 
k=O 

.. {I, k j = 0 
Xj =. _ 

x, k -1 
.I .I 

{

X, Pj=l 
x·= 

.I X, P = 0 
.I .I 

Where ap = [an, aI, ... , a211
_1]! and bp= [bo, b l , ... , b2

11
_1( 

(2.2) 

(2.3) 

(2.4) 

The conversion between SOP and a Fixed Polarity Reed-Muller reqUIres 

constructing the transformation matrix R(n) and substitute in the following 

equations [37]. 
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f = XjRCn)a (2.5) 

Where the basis vector is defined as follows: 

X - . 
{

[1 x)], P j = 1 

) - [1 x j]' p) = 0 

Therefore, minterms for zero polarity can be identified by expanding a Kronecker 

product ofXj as follows: 

/1-1 

X = (8)[1 Xi] 
i=O 

The basic Reed-Muller matrix for n = 1 is defined as follows: 

RC 1) = [~ ~l P j = 0 

R(1)= 

R(I) = [~ :J Pj = I 

For n-variable function the Reed-Muller transformation matrix is calculated as 

follows: 

n-J 

RCn) = Q5)R(l) (2.6) 
i=O 

Where the ' ® 'denotes Kronecker product. The Kronecker product performed as a 

symbolic computation in X generates the product terms appearing in the FPRMs. 
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The elements ofR(1) and R(n) are 0 and 1, and the calculations are done over 

GF(2). 

Therefore, Reed-Muller expansion for a given truth vector can be deduced by 

deriving b from a and substituting in the following equation. 

The Reed-Muller transform matrix R(n) is a self-inverse matrix over GF (2), 

therefore (R(n)) -1 = R(n) [73]. Thus, conversion from FPRM to SOP can be 

accomplished by using the following equation. 

a = R(n)b (2.8) 

Example 2.1 

Compute Reed-Muller coefficients with zero polarity for a three-variable function 

!(x2,xI'XO) = 17(1,2,4,7) . 

The transformation matrix for p = 0 is calculated using equation (2.6) as follows: 

R(3) = R(I) ® R(I) ® R(1) 

1 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 

1 0 1 0 0 0 0 0 

1 1 1 1 0 0 0 0 
R(3) = 

1 0 0 0 1 0 0 0 

1 1 0 0 1 1 0 0 

1 0 1 0 1 0 1 0 

1 1 1 1 1 1 1 1 
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The coefficients of the PPRM are calculated using the following equation 

b = R (3) a 

1 0 0 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 1 1 

1 0 1 0 0 0 0 0 1 1 

1 1 1 1 0 0 0 0 0 0 
b= = 

1 0 0 0 1 0 0 0 1 1 

1 1 0 0 1 1 0 0 0 0 

1 0 1 0 1 0 1 0 0 0 

1 1 1 1 1 1 1 1 1 0 

Where the coefficients for the vector b are calculated as follows: 

bo = (Ie 0) EEl (0 el) EEl (0 el) EEl (0 eO) EEl (0 el) EEl (0 e 0) EEl (0 eO) EEl (0 el) = 0 

b
l 
= (Ie 0) EEl (leI) EEl (0 el) EEl (0 e 0) EEl (0 el) EEl (0 e 0) EEl (0 e 0) EEl (0 el) = 1 

b
2 

= (Ie 0) EEl (0 el) EEl (leI) EEl (0 e 0) EEl (0 el) EEl (0 e 0) EEl (0 e 0) EEl (0 el) = 1 

b
3 

= (Ie 0) EEl (leI) EEl (leI) EEl (1e 0) EEl (0 e1) EEl (0 e 0) EEl (0 e 0) EEl (0 e1) = 0 

b
4 

= (Ie 0) EEl (0 e1) EEl (0 e1) EEl (0 eO) EEl (leI) EEl (0 e 0) EEl (0 e 0) EEl (0 el) = 1 

bs = (1e 0) EEl (leI) EEl (0 el) EEl (0 e 0) EEl (leI) EEl (Ie 0) EEl (0 e 0) EEl (0 e1) = 0 

b
6 

= (Ie 0) EEl (0 e1) EEl (leI) EEl (0 e 0) EEl (leI) EEl (0 e 0) EEl (1e 0) EEl (0 e1) = 0 

b
7 

= (Ie 0) EEl (leI) EEl (leI) EEl (Ie 0) EEl (leI) EEl (1e 0) EEl (1e 0) EEl (leI) = 0 

41 

The product terms for PPRM expression are calculated using the Kronecker 

product in X as follows: 

Therefore, 
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0 

1 

1 

x 2 xlXo ] 
0 

1 

0 

0 

0 

= (1- 0) EB (xo -I) EB (Xl -I) EB (XlXO - 0) EB (X2 -I) EB (X2XO - 0) EB 

(X2X l - 0) EB (X2X l X O - 0) = Xo EB Xl EB X 2 

The final circuit for polarity zero is given as follows. 

XOR2 

Figure 2.1: Minimal form under polarity 0 
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Lemma: An n-variable completely specified Boolean function can be uniquely 

expressed by a 211 dimensional vector with polarity p, either ap = [<10, aI, ... , a2
11

_I]1 

in SOP format or bp= [bo, bI, ... , b2
11

_I]1 in Reed-Muller format, then these two 

vectors can be converted mutually by equation (2.9). 

a -Rb orb -Ra 
p 11 P P 11 P 

(2.9) 
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2.3 Basic theory and algorithms 

Converting between SOP and PPRM reqmres using the transfonnation matrix 

(R(n)). For an n-variable Boolean function, the size ofR(n) matrix is 217 by 217. 

Therefore, it requires a huge size of memory to store this matrix. To avoid storing 

the entire elements in the Reed-Muller matrix, a partitioning technique is 

developed in this chapter, which will partition the R(n) matrix into sub-matrices. 

The sub-matrices are smaller in size and require much less memory space than the 

original transfonnation matrix. The basic idea for the partitioning technique is to 

employ two smaller matrices (Key and Basic), which can be multiplied together 

using Kronecker product to give the original Reed-Muller matrix as follows: 

[
Basic ® Key Basic ® Key] 

R(n) = 
Basic ® Key Basic ® Key 

(2.10) 

The matrix in Eq (2.11) is partitioned with the bold arrows into four matrices. By 

examining those matrices, three of them are identical and the last one consists of 

zeros. If the same matrix is partitioned into sixteen matrices instead of four as 

shown in Eq (2.12), nine of these matrices are the same and the reset of the 

matrices are zeros. Notice that the elements above the main diagonal are always 

zero. 

R(n) matrix can be partitioned into many sections, the number of the sub matrices 

is detennined by using the factor i, where i = 1. ... n-1, and n is the number of 

variables. 

Step 1: R(n) matrix is partitioned into sub matrices, the size of each sub matrix is 

ibyi. 

Step 2: Each of the identical sub matrices in R(n) matrix is denoted the Key 

matrix. 
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Step 3: A new matrix (Basic) is constructed from the Key matrix. The Key matrix 

is partitioned into sub matrices (Basic), where the size of the Basic matrix is given 

as: 

Example 2.3 

Let the number of variables n equal to 3. 

The size of R(3) = 23 by 23 = 8 by 8, if we let i = 2, then the size of Key matrix is 

i by 2i = 22 * 22 as shown in equation (2.13), and the size of the Basic matrix is 

calculated as follows 8/(22) by 8/(22), which is 2 by 2 as shown in equation (2.14). 

1 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 

1 0 1 0 0 0 0 0 

RM(2 3
) = 

1 1 1 1 0 0 0 0 

1 0 0 0 1 0 0 0 
(2.11 ) 

1 1 0 0 1 1 0 0 

1 0 1 0 1 0 1 0 

1 1 1 1 1 1 1 1 
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1 0 0 

1 1 0 

1 0 1 

1 1 1 

1 0 0 

1 1 0 

1 0 1 

1 1 1 

Key = 

Algorithm 1 

0 0 0 0 

0 0 0 0 

0 0 0 0 

1 0 0 0 

0 1 0 0 

0 1 1 0 

0 1 0 1 

1 1 1 1 

1 0 0 0 

1 1 0 0 

1 0 1 0 

1 1 1 1 

45 

0 

0 

0 

0 

0 
(2.12) 

0 

0 

1 

(2.13) 

(2.14) 

To generate the original Reed-Muller matrix R(2n) using the Key and the Basic 

matrices, the following steps are followed: 

Step 1: The key and the Basic matrices are generated by using equation (2.6). 

Step 2: For each element in the Basic matrix generate one Key matrix. (a) If the 

first element in the Basic matrix is one, then generate one Key matrix. (b) If the 

element in the Basic matrix is zero, generate another Key matrix, but with all 

elements equal to zero. 
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Step 3: Start with the Basic matrix; read the first element of the Basic matrix. If the 

first element is one construct the first row of the Key matrix. If the first element is 

zero construct a row where all the elements are zero. 

Step 4: Shift the number of columns for this row by the size of the Key matrix i. 
Read the second element in the first row of the Basic matrix, and repeat step 2. 

Step 5: Repeat the same procedure as in step 2 and step 3, till the first row ofRM 

is constructed. 

Step 6: Repeat the same procedure for the rest of the rows for the Key matrix. 

Step 7: Shift the number of row for the new R again by the size of the Key matrix 

i, and start all over again, but this time for the second row of the Basic matrix. 

Step 8: Repeat as above till the whole Reed-Muller matrix is constructed. 

Algorithm 2 

The other technique is using sparse matrix, which will store only the ones elements 

below the main diagonal in the Key and the Basic matrices, to save memory and 

computing time. The following equation is derived to find the number of non-zero 

elements in the transformation matrix. 

i=11 

NR(l) = (2" * 2") * [1- 2:3U-1) * (1I(2i * 2im (2.15) 
i=l 

Where n is the number of variables. 

According to equation (2.15) the percentage of non-zero elements for R(n) is given 

as follows: 
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PNR(l) = NR(1) *100% 
2

n * 2 n 
(2.16) 

For example ifn = 10, the percentage of non-zero elements 

(59049/1048576) * 100 % = 5.631 % 

The following table shows the percentage of non-zero elements for different 

numbers of n. 

Table 2.1: Number of variables (n) versus Percentage of ones 

Size ofn Number of Percentage of 
n 

matrix ones one elements 

1 4 3 75 

2 16 9 56.25 

3 64 27 42.18 

4 256 81 31.64 

5 1024 243 23.73 

6 4096 729 17.8 

7 16384 2187 13.3 

8 65536 6561 10 

9 262144 19683 7.5 

10 1.04858e 6 59049 5.63 

Therefore, a sparse technique would be a good method to store Reed-Muller 

matrix. A linked list is used to represent the sparse matrix. This will be an efficient 
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way to represent structures that vary in size. In our data representation, each 

column of a sparse matrix is represented as a circularly linked list with a head node 

[79, 80]. A similar representation is used for each row of a sparse matrix. Each 

head node has three additional fields: down, right, and next as shown in Figure 2.2. 

The down field is used to link into a column list and the right field is used to link 

into a row list. The next field links the head nodes together. 

Down head right Dowr entry row col right 

value 
next 

(a) Head node (b) Entry node 

Figure 2.2: Node structure for sparse matrix 

Each element node has five fields: row, column, down, right, value. The right field 

is used to link to the next zero elements in the same row, and the down field to link 

to the next zero element in the same column. 

Another matrix is stored and designated the Vector matrix by using sparse and 

linked list technique. This matrix should contain the truth vector (a). 

The final results are obtained by, building each row of the RM matrix from the 

Basic and the Key matrices, as was described in algorithm 2. 

To determine the coefficients for the RM (b;) if it is 0 or 1, the following steps are 

used: 

(a) Set a counter D = o. 
(b) If there is an element in the first row of the RM matrix at (column x) and there 

is an element in Vector matrix (row x); then increment both pointer for RM and 

Vector matrix to the next location. 
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(c) If column x > row x; then while row x is less than column x and row x is not 

equal to NULL, increment the counter D by one. 

(d) Else if row x is greater than column x ; then while column x is less than row x 

and column x is not equal to NULL, increment the counter D by one. 

( e) If RM's pointer is equal to NULL, while Vector's pointer is not equal to 

NULL, increment the counter D by one and then go to step (g). 

(f) If Vector's pointer is equal to NULL, while RM's pointer is not equal to 

NULL, increment the counter D by one and then go to step (g). 

(g) Test if the counter is even or odd. If the counter is odd then d i equals 1; 

otherwise d i is 0 according to the following identity: 

d
i 

= { I EB 1 EB ... EB 1/1 EB 0 EB 0 EB .... EB 0 m = 1, 

1 EB 1 EB ... EB 1/1 EB 0 EB 0 EB .... EB 0 m = 0, 

if nand m are odd 

if nand m are even 

(d) Repeat steps (a to g) for every row ofRM matrix, with the same Vector matrix 

till the end of the RM matrix. 

Example 2.4 

Compute the Reed-Muller form of the following 4-variable function 

R(4) = R(l) ® R(1) ® R(I) ® R(1) 

Step 1; store this function in the Vector matrix, using a linked list, as shown in 

figure 2.3. 
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I Head 11-{il}-+[IJJ~ 3 I I--{ill-{~]l 
L:{fu-. 10 

Figure 2.3: Vector Matrix Structure 

Step 2; store the Key matrix, using the same technique, as shown in Figure 2.4. 

Figure 2.4: Key matrix Structure 

Step 3; store the Basic matrix, as shown in Figure 2.5. 
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12 21 I 1 I I 
~ 1-r. ----.. - I---

I I II ~ I J 
,.. 

1-r. 1 

Lrl 
Ir 

I 12 I I ~1211211_ 
1--.1 1 

I 

Figure 2.5: Basic Matrix Structure 

2.4 Conversion for Multi-Output Functions 

Conversion algorithms for multi-outputs SOP into multi-outputs Reed-Muller, 

and multi-output Reed-Muller into SOP were accomplished by adding a pointer 

to each node in the Vector matrix, which points to array. This array will store the 

output functions for that particular input. 

Example 2.5 

Take a three-variable function and the number of output functions is 4, 

Xl Xl Xo h h h 1; 
0 0 0 1 0 0 1 

1 1 0 0 1 0 1 

1 1 1 1 1 0 0 

The new Vector matrix is as shown in figure 2.6. 
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Head f--- I ~ I ~ I 
PTR PTR PTR 

1 1 1 
14 13 14 
~ 1; 13 

Figure 2.6: Vector matrix for multi output 

The rest of the procedure should be the same as in the previous sections, but with 

some extra steps performed for each extra output function. 

Any Boolean function may be represented by a fixed polarity modulo-2 expansion 

For any n-variable Boolean function there are 211 distinct FPRMs. 

To convert any SOP expansion from polarity q to polarity p, every subscript 

i,O:::; i < 211
-

1 should be converted using equation (2.17), where" EB" and "<=" are 

bitwise XOR an assignment operators respectively [63]. 

i <= i EB p (2.17) 

Where p is the polarity number. 

Hence, conversion from SOP to any FPRM forms can be done as follows: 

1. Convert the on-set minterms for an n-variable function to the on-set minterms 

with polarity p using Eq (2.17). 

2. Use algorithm 1 and 2 to find the corresponding RM coefficients. 
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2.5 Experimental Results 

In this chapter a computer algorithm has been presented for fast bidirectional 

conversion between sum-of-products and RM for large number of inputs. This 

method is generalised to large multiple output Boolean functions. This method is 

developed based on using partitions and the sparse technique. The algorithms 

were implemented in C language and the program is compiled by using Borland 

c++ compiler. Then it was tested on a personal computer with Pentium 3, 1 GHz 

CPU and 256M RAM under Window operating system. Experimental results are 

presented in Table 2.2 where '~O' means that the CPU time is almost zero. The 

computation time depends on the number of variables (n). For incompletely 

specified Boolean functions, don't cares are set to off-sets (0) for the outputs (0). 

This algorithm calculates the Reed-Muller coefficients form the minterms of the 

SOPs. Although the number of the Reed-Muller coefficients for some circuits is 

higher than the minterms of the SOPs, this is occurred because we calculated the 

Reed-Muller coefficients for all the multiple output circuits. Our techniques 

reported combatable results compared to other techniques, in terms of the variable 

numbers (n) and output numbers (0). The programme was un-efficient for variable 

numbers greater than 19, because it requires more memory and we could not run, 

therefore, it would require some modifications to make the programme handle 

variables greater than 19. 
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Table 2.2: 

Conversion results of some benchmark functions 

Time 
Circuit n 0 #(SOP) #(RM) 

(S) 

Table5 17 15 158 122129 36.75 

B12 15 9 431 31488 4.67 

Sao9 10 4 58 883 ~O 

Misex3c 14 14 305 15739 1.76 

Sao2 10 4 58 883 0.06 

Apex4 9 19 440 479 ~O 

T481 16 1 481 50353 11.37 

bw 5 28 87 32 ~O 

pdc 16 40 2810 57860 23.23 

Apex4 9 19 440 479 0.06 

Random 19 1 8 116737 43.61 
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2.6 Summary 

This chapter has introduced a partition and Sparse methods which can be used in 

converting between SOP form and RM forms. This method depends on 

partitioning the transformation Reed-Muller matrix into sub-matrices, w here the 

sub-matrices repeat a special order. The original Reed-Muller matrix can be 

generated by storing two of the sub matrices and perform algorithm 1. Therefore, 

storing the whole matrix is not efficient in terms of memory and time. to 

manipulate the data for calculating the coefficients of Reed-Muller. 

The second method that is used for converting between POS and RM forms is the 

sparse method. This method is based on storing none zero elements in the matrix. 

Since most of the elements in RM matrix are zeros, therefore, sparse method is 

very efficient in terms of memory and CPU speed, because it does not require 

processing every element in the matrix. 



Chapter 3 

Dual Reed-Muller form 

3.1 Introduction 

Logic synthesis based on Reed-Muller techniques has shown several advantages over 

the use of the standard Boolean functions such as SOP. Some of these advantages are 

high testability, low cost for arithmetic and parity checker. Several conversion 

algorithms to convert between SOP and Fixed polarity Reed-Muller exist [38, 45, 

63,81-86]. AltemativelyReed-Muller form can be presented using the Dual Reed

Muller (DRM) form which was introduced by Green [64-67]. This form is based on 

the use of ORJXNOR gates. The XNOR gate plays a major role in various circuits 

especially circuits used in arithmetic process such as full adders, comparators [87-

89]. Another feature for XNOR is to have a small number of transistors to implement 

[25-28,90]. Any n-variable Boolean function in the POS form can be expressed by 2n 
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Fixed Polarity Dual Reed-Muller form (FPDRM). Extensive research has been done 

on developing techniques and algorithms to convert between SOP and Reed-Muller 

and very little has been done on converting from Product of Sums and the Dual 

Reed-Muller form or even to find the best or the optimal polarity which will lead to 

the minimal function with the least number of Sums. 

This chapter covers the basic theory and notations which will be used in the Dual 

Reed-Muller form. It also introduces new operations which can be used to describe 

the Dual Reed-Muller form and convert the POS to DRM for single output function, 

and multi output functions. When designing complex circuits for mass production, it 

is worth it to try many possible solutions such as RM, DRM, etc to find a good 

solution to reduce components and cost. 

3.2 DRM expansion of logical functions 

Definition 2.1 Any n-variable function can be expressed by the Dual Reed-Muller 

(DRM) expression as: 

211 -1 

j{Xn-l,Xn-2, ... ,Xo) = 8 IT (C i + Si) (3.1) 
i=O 

Where '8' is XNOR operator, [C2
11

_1,C2
11

_2, ... ,Co] is the truth vector of the function t, 
c i E{O,I} and Si represents a Sum term as 

Where 

o ...... ik ,.... i
ll

_1 ...... il/_ 2 -i 0 

S i = 2:: x k = X 11-1 + X /1-2 + ... + x 0, 

k=I1-1 

i k = ° 
ik = 1 

(3.2) 

(3.3) 
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Table (3.1) illustrate the basic the XNOR operations. 

Table 3.1: 

Truth table for XNOR 

AB AEB B A8B 

00 0 1 

o 1 1 0 

1 0 1 0 

1 1 0 1 

The following XNOR operations and identities are defined 

The XNOR '8' operation is defined as follows: 

A8B=AB+AB 
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(3.4) 

For any Boolean variable x, the following identities are used for XNOR operations: 

x 81 =x 

x 80= x 

x 8x= 1 

x 81 = x 

x80=x 

x 8x=0 

For any XNOR expression the following properties hold: 

X2 8 (xJ8 xo) = (X2 8 Xl) 8 Xo =X2 8 xl8xo 

X2 + (Xl 8xo) = (X2 + Xl) 8 (X2 + xo) 

(associative) 

(distributive) 

(3.5) 

(3.6) 

(3.7) 



K. F araj, Chapter 3 

Xl Oxo =XOOXI 

Xl- Xo = Xl Oxo O(XI + Xo) 

(commutative) 
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(3.8) 

(3.9) 

An arbitrary 2-variable function can be presented by the canonical POS as follows: 

The ANDs (e) operators are replaced by 0 operators, since if all the Maxterms are 

ANDed together the answer is zero and if all the Maxterms are XNORed together the 

answer is zero too. 

I(Xpxo) = (/(0,0) + Xl + xa) 0 (/(0,1) + Xl + xa) 0 (/(1,0) + Xl + xa) 

0(/(1,1) + Xl + xa) 

By applying the following identity to replace X 0 ° = X , this will give the following 

result: 

I(XI,XO) = (f{0,0) + Xl + xo) 0 (f{0,1) + Xl + (0 0 xo)) 0 (f{1,0) + (0 0 Xl) + Xl)) 

o (f{1,1) + (0 0 Xl) + (0 0 xo)) 

Using the distributive law, the above expression is modified to 

I(XI,XO) = (f{0,0) + XI + xo) 0 (f{0,1) + XI) 0 (f{0,1) + Xl + xo) 0 (f{1,0) + XI) 

o (f{1,0) + XI + Xo)) 0 fl1,1) 0 (f{1,1) + XI) 0 (f{1,1) + xo) 

o (f{1,1) + Xl + xo) 

By rearranging and grouping the common terms the following expression is obtained 
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!(Xl,XO) = j{1,l) 0 (xo + (1(1,0) OJ{l,l))) 0 (Xl + (1(0,1) 0 j{1,1))) 

o (Xl +Xo + (1(0,0) OJ{O,l) OJ{l,O) OJ{l,l))) 
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(3.10) 

For simplicity, Cj coefficients are introduced to express the coefficients of the DRM 

expansion, where j corresponds to the decimal equivalent of the binary subscript of 

./kIm, and equation (3.10) can be written as: 

!(Xl,XO) = C3 0 (xo + C2) 0 (Xl + Cl) 

o (Xl + Xo + co) (3.11) 

This is the Dual Reed-Muller expansion based on ORJXNOR operation [64-66]. 

Taking a 3-variable function as an example: 

We can also obtain the DRM expansion of an n-variable function as follows: 

!(X Il _ 1 ~ xo) = C 2"_1 0 (xo + c2"_) 0 (XI + c2"_) 0 ... 0 

(x
ll

_ 1 +···+x1 +CI) 0 (x
ll

- 1 +···+xo +co) 

Let us now introduce two new operations to simplify the DRM expansion of n

variable function. Their definitions are as follows: 

Continuous sum operation [65] 

(3.12) 

The Continues Sum (++) of two matrices (AmAxnA , BmB xnB) is defined as follows: 

A++B= ++B= (3.13) 

amAnA amAnA +B 
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Each aijB is a block of size mB x nB. The size of the new matrix (A ++ B) is equal to 

the size of (rnA x nA X mB x nB). 

For example: 

a1 +b1 a1 +b2 a2 +b1 a2 +b2 

[a, a, ] [b, ::]~ a1 +b3 a1 +b4 a2 +b3 a2 +b4 - ++ 
a3 a4 b3 a3 +b1 a3 +b2 a4 +b1 a4 +b2 

a3 +b3 a3 +b4 a4 +b3 a4 +b4 

The continuous sum operation meets the associative law 

[A] ++ {[B] ++ [c]} = {[A] ++ [B]} ++ [C] = [A] ++ [B] ++ [C], 

But it does not meet the commutative law 

[A] ++ [B] # [B]++[A] 

Added coincidence operation or Matrix multiplication based on logical equivalence 

(LEQ) [64-65] is defined as follows: 

C1 a11 a14 b1 

c2 b2 (3.14) = 0 

c3 b3 

c4 a31 a44 b4 

Where '0' represents matrix multiplication based on ORJXNOR. Thus 
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CI = (all + bI ) 8 (al2 + b2) 8 (a]3 + b3) 8 (aI4 + b4) 

C2 = (a2I + bI ) 8 (a22 + b2) 8 (a23 + b3) 8 (a24 + b4) 

C3 = (a3I + bI) 8 (a32 + b2) 8 (a33 + b3) 8 (a34 + b4) 

C4 = (a4I + bI ) 8 (a42 + b2) 8 (a43 + b3) 8 (a44 + b4) 
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We can obtain the following relationship between the fj coefficients and Cj 

coefficients for n-variable functions. 

(3.15) 

(3.16) 

Where 

(3.17) 

with 

and 

[ 
11 ]t 

C = Co CI· ... C2 -1 

For a 3-variable function, equations (3.15) and (3.16) can be written as 
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Co = fo 0 f1 0 ... 0 f7 

c]= f] Of30fSOf7 

C2= f20f3 Of60f7 

C3= f30 f7 

C4= f40fsOf60f7 

Cs= fsOf7 

C6= f60 f7 

c7=f7 

fo= coOc) 0 ...... OC7 

f)= c] Oc30CSOC7 

f2= C20C30C60C7 

f3= C30 C7 

f4= C40 CSO C60C7 

fs= CSOC7 

f6= C60 C7 

f7= C7 

Example: Apply the above method to get DRM expansion of a 4-variable function 

f (x3 , X 2 ' XI' xo) = IT(1,2,4,7 ,8,11,13,14) . 
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(3.18) 

(3.19) 
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Co 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

c i 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 

c2 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 

c, 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 

c4 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 

c5 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 

c6 1 1 1 1 0 0 1 0 0 1 1 

c7 1 1 1 1 1 0 1 1 0 0 0 
0 

Cs 1 1 1 0 0 0 0 0 0 0 0 0 

c9 1 1 1 1 0 1 0 1 0 1 0 

clO 0 0 1 0 0 1 

CII 1 0 1 1 0 0 

e12 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 

c13 1 1 1 1 1 1 1 1 1 0 1 0 0 0 

CI4 1 1 1 1 1 1 1 1 1 1 0 0 0 0 

CIS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

Co = (0+ 1)0(0+0)0(0+0)0(0+ 1)0(0+0)0(0+ 1)0(0+ 1)0(0+0)0(0+0) 

0(0+ 1)0(0+ 1)0(0+0)0(0+ 1)0(0+0)0(0+0)0(0+ 1) = 1 

CI = (1 +0)0(0+0)0(1 +0)0(0+ 1)0(1 +0)0(0+ 1)0(1 + 1)0(0+0)0(1 +0) 

0(0+ 1)0(1 + 1)0(0+0)0(1 + 1)0(0+0)0(1 +0)0(0+ 1) = 1 

C2 = (1 + 1)0(1 +0)0(0+0)0(0+ 1)0(1 +0)0(1 + 1)0(0+ 1)0(0+0)0(1 +0) 

0(1 + 1)0(0+ 1)0(0+0)0(1 + 1)0(1 +0)0(0+0)0(0+ 1) = 1 

C3 = (1 + 1)0(1 +0)0(1 +0)0(0+ 1)0(1 +0)0(1 + 1)0(1 + 1)0(0+0)0(1 +0) 

0(1 + 1)0(1 + 1)0(0+0)0(1 + 1)0(1 +0)0(1 +0)0(0+ 1) = 1 

C4 = (1 + 1)0(1 +0)0(1 +0)0(1 + 1)0(0+0)0(0+ 1)0(0+ 1)0(0+0)0(1 +0) 

0(1 + 1)0(1 + 1)0(1 +0)0(0+ 1)0(0+0)0(0+0)0(0+ 1) = 1 

Similarly for CS-CIS 

CIS = (l + 1)0(1 +0)0(1 +0)0(1 + 1)0(1 +0)0(1 +0)0(1 + 1)0(1 +0)0(1 +0) 

0(1 + 1)0(1 + 1)0(1 +0)0(1 + 1)0(1 +0)0(1 +0)0(0+ 1) = 1 
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To generate the sum terms the following basis vectors are used for n = 4 [61, 62]. 

= [0 Xo Xl (Xl + Xo) X2 (X2 + Xo) (X2 + Xl) (X2 + Xl + Xo) X3 (X3 + XO) 

(X3 + Xl) (X3 + Xl + Xo) (X3 + X2) (X3 + X2 + Xo) (X3 + X2 + Xl) 

(X3 + X2 + Xl + XO)] 

Finally the dual Reed-Muller form is generated as follows: 

3.3 Generalization for large functions 

An algorithm has been developed based on equations (3.15) and (3.16) to convert 

between Product of Sums and Dual Reed-Muller. Algorithms one and two from 

Chapter two were adopted in this Chapter. The adopted algorithms were based on 

Sparse and partition techniques [66, 80]. In order to use the algorithms for 

converting between Product of Sums and Dual Reed-Muller, the following changes 

have been used. 

To construct the Dual Reed-Muller transform matrix (Tn) from the Reed-Muller 

transform matrix (RMn), which is defined by equation (3.13), the following steps are 

performed. Recall that the Reed-Muller transform is applied over GF (2) [92]. 

Step 1: Construct the transformation matrix (RMn) using Kronecker product' Q9 ' [92, 

93] as follows: 

(3.20) 



K. Faraj, Chapter 3 66 

where 

M' =[: ~l (3.21) 

Step 2: Transpose the transfonnation matrix (RMn) by replacing the rows by the 

columns, complement the elements of (RMn) matrix by changing the zeros to ones, 

and the ones to zeros. 

Example 

For a three-variable function construct the Dual Reed-Muller matrix (Tn) by using 

the Reed-Muller matrix (RM). 

RM matrix is constructed using equation (3.20), which gives the following result. 

(3.22) 

1 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 

1 0 1 0 0 0 0 0 

1 1 1 1 0 0 0 0 (3.23) 
RM= 

1 0 0 0 1 0 0 0 

1 1 0 0 1 1 0 0 

1 0 0 0 1 0 

1 1 1 1 1 1 1 1 

The Dual Reed-Muller matrix (Tn) is generated from equation (3.23) by taking the 

transpose of equation (3.23) and changing each zero and one elements to one and 

zero respectively. Therefore, (Tn) is 
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0 0 0 0 0 0 0 0 

0 1 0 0 1 0 

1 0 0 0 0 

0 0 (3.24) 
T= 

0 0 0 0 

0 1 0 

0 0 

0 

Sparse and partitioning techniques are similar to the methods used in Chapter two, 

except that the zero elements are used here instead of the one elements. Hence the T 

matrix from equation (3.24) is partitioned as follows: 

0 0 0 0 0 0 0 0 

0 0 0 1 0 

0 0 0 0 

1 0 1 1 0 (3.25) 
T 

0 0 0 0 

0 0 

0 0 

0 

Examining equation (3.25), three of sub matrices are identical while the last one 

consists of zeros, and the elements below the main diagonal are just ones. Therefore, 

the two matrices that are needed to generate the matrix in equation (3.25) are: 
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and 

Key = 

o 0 0 0 

1 0 1 0 

1 1 0 0 

1 1 1 0 

Basic = [~ ~l 
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The only elements that are needed from the Key and Basic matrices in order to 

generate equation (3.25) are the zero elements. 

The following equation is derived to find the total number of zero elements in the 

transfonnation matrix (Til) that are needed to convert between Product of Sums and 

the Dual Reed-Muller fonn. 

i=n 

NR(O) =(211 *211)_(211 *2 11 )*[L3(i-l) * (1/(2i *2 i
))] (3.26) 

i=l 

Therefore, a big saving in tenns of memory size is achieved by using the Sparse and 

partitioning techniques. 
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3.4 Conversion for Multi-Output Functions 

Conversion algorithms for multi output POS into multi output DRM, and multi 

output DRM into POS are accomplished by adding a pointer to each node in the 

Vector matrix. This pointer will point to array. Each element in the array will 

include the i 1h output function for that particular sum. A unique counter will be 

associated with each output function. Each counter will be incremented by one for 

that particular sum. 

The rest of the procedure should be the same as in the previous sections. 

3.5 Experimental Results 

Algorithms are implemented usmg C language; the program is compiled usmg 

Borland C++ compiler. Then it is tested on a personal computer with Pentium 3, 

1 GHz CPU and 256M RAM under Window operating system. The experimental 

results are shown in Table 2 where '~O' means that the CPU time is almost zero. 

Factors on which the computation time depends are the number of variables (n), 

number of Sums, and the number of outputs (0). For incompletely specified Boolean 

functions, don't cares are set to on-sets (1) for the outputs. 

To our knowledge there are no experimental results published m this topic to 

compare with. Green [64] has introduced theoretical approach to convert between 

POSs and Dual Reed-Muller coefficients. This technique is suitable for small number 

of variables, because it requires building and storing the transformation matrix. The 

size of the transformation matrix is 21l by 21l, therefore, it requires a huge size of 

memory to store. Hence, [64] technique is not efficient it terms of memory. 

This algorithm calculates the Reed-Muller coefficients form the minterms of the 

SOPs. Although the number of the Reed-Muller coefficients for some circuits is 

higher than the m interms 0 f t he SOPs, this is 0 ccurred because we calculated the 

Reed-Muller coefficients for all the multiple output circuits. Our techniques reported 
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combatable results compared to other techniques, in terms of the variable numbers 

(n) and output numbers (0). The programme was un-efficient for variable numbers 

greater than 20, because it requires more memory and we could not run, therefore, it 

would require some modifications to make the programme handle variables greater 

than 19. 

Table 3.2: 

Conversion results of some functions from MCNC Benchmark 

Initterms Time 
n 0 DRM.terms 

forPOS (S) 

Misex3c 14 14 305 4605 1.59 

Clip 9 5 167 111 0.06 

B12 15 9 431 41 3.3 

Clip1 4 4 4 5 ~O 

Alu4 14 8 1030 1850 2.19 

Pdc 16 1 2810 881 16.86 

Apex4 9 19 440 506 ~O 

Spla 16 1 2310 482 15.49 

Misex1 8 7 32 15 ~O 

Table5 17 1 158 2240 28.4 

Ex1010 10 10 1023 1023 0.11 

ConI 7 2 10 12 ~O 

Rd84 8 4 257 253 ~O 

Inc 7 9 34 57 ~O 

Random 20 1 8 4379 5.44 
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3.6 Summary 

In this chapter we have introduced and explained the mathematical operations, such 

as continuous sum, that are needed for converting POS to Dual Reed-Muller 

expressions. This is needed to calculate the Dual Reed-Muller matrix. This matrix is 

required to calculate the coefficients of the Dual Reed-Muller form. 

Sparse and partition algorithms have been introduced also in this chapter as in 

chapter two, but with some modifications to deal with the Dual Reed-Muller 

expressions. Sparse and partition algorithms have been programmed using C 

language to convert for a single and multi ouput functions. 



Chapter 4 

Fast transformation between POS and 

DRM functions 

4.1 Introduction 

To derive Fixed Polarity Dual Reed-Muller (FPDRM) coefficients from POS 

coefficients using the transformation matrix would be very costly in terms of 

memory and CPU time. The transformation matrix requires the construction and 

storing 0 f t he matrix TMn which h as a size 0 f 2 n by 2 n for n -variables. This is 

overcome by introducing a fast transformation equations for computing all the 

coefficients of the Dual Reed-Muller forms from the coefficients of the product of 

sums. The coefficients of Dual Reed-Muller terms are derived without the need to 

generate or store the transformation matrix of the Dual Reed-Muller terms. 
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4.2 Definitions and representations of DRM expressions 

Definition 4.1 An n-variable Boolean function can be expressed as: 

Where 

!(xn-l'xl1 - 2 , ••• ,xo) = IT (d i + MJ 
i=O 

o • ik • i
ll

_1 • in_2 • i 0 

Mi = L xk = X 11-1 + X 11-2 + ... + X 0 

k=n-I 

i" = 0 

i k = 1 
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(4.1) 

(4.2) 

(4.3) 

Definition 4.2 Alternatively, any n-variable function can be expressed by the fixed 

polarity Dual Reed-Muller expression as: 

Where 

j(Xn-l,xn-2, ... ,xo) = 8 IT (c i + Si) 
i=O 

o -ik - [II_I 

Si = L x k = 
"=n-1 

X n-l + X n-2 + ... + x 0, 

i" = 0 

ik = 1 

(4.4) 

(4.5) 

(4.6) 
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Definition 4.3 Polarity vector (Pn-l,Pn-2, .. . ,Po) for a FPDRM of an n-variable 

Boolean function is a binary vector with n elements, where Pi = 0 indicates the 

variable Xi in an un-complemented form (xD, while Pi = 1 indicates the variable Xi 

in the complemented form (Xi). 

Maxtenns can be identified by applying a Continues Sum (++) ofn basis vector of 

the form [0 Xi] for a '0' polarity and [0 Xi] for a '1' polarity. 

The coefficient vector can be derived from the truth vector d using the transform 

matrix as given in equation (4.9). The transform matrices for a '0' and a '1' 

polarity are given in equations (4.7) and (4.8) respectively. 

(4.7) 

(4.8) 

c=™n 0 d (4.9) 

Where d is the truth vector of the POS, and c is the truth vector of the Dual Reed

Muller form. 

In general the transformation matrix (TMn) for a PPDRM is given as follows: 

TMn = TMo ++ TMo ++ ... ++ TMo n times. (4.10) 

Where' ++' is the Continuous S urn. Furthermore TM~l = TMn is a self-inverse 

matrix in GF (2) [93]. 

The FPDRM can be deduced by substituting the coefficient vector c in equation 

(4.11) for a zero polarity [64-67]. 
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j{Xn-l,xn-2, ... ,xo) = {[O Xn-l] ++ [0 Xn-2] ++ ... ++ [0 XO]} 0 C (4.11) 

Example 4.1 

Given the two-variable function in POS form, find the fixed Dual Reed-Muller 

form with polarity number equals 0, using the matrix operations. 

The transformation matrix for p = 0 is calculated using equation (4.8) as follows: 

o 1 1 1 

TM(2)~[~ ~]++[~ ~]~ ~ ~ ~ : 
o 0 0 0 

Using equation (4.9) the truth vector c is obtained as follows: 

C3 0 1 1 1 d3 

c2 0 0 1 1 0 d2 = 
c] 0 1 0 1 d] 
c 0 0 0 0 0 do 

Provided the order of the elements in d and c vectores are reversed [64, 66]. 

Using the following identities for XNOR 

Hence 

080= 1 

081=0 

180=0 

1 8 1 = 1 
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C2 = (0+d3) 8 (0+ d2) 8 (1+ dl ) 8 (1 + do) = d3 8 d2 8 1 8 1= d3 8 d2 8 1 

CI = (0+d3) 8 (1 + d2) 8 (0+ dl ) 8 (1 + do) = d3 8 1 8 dl 8 1= d3 8 dl 8 1 

Co = (0+d3) 8 (0+ d2) 8 (0+ dl ) 8 (0+ do) = d3 8 d2 8 dl 8 do 

Finally the FPDRM function is calculated using equation (4.11) as follow: 

J(XpXo) = {[O xl]++[O xo]} 0 c 

={[o Xo Xl Xl + Xo]} 0 C 

=(C3 +0) 8 (c2 +xo) 8 (c l +Xl ) 8 (co +Xl +xo) 

4.3 Conversion from POS to PPDRM 

Equation (4.1) can be rewriting as follows 

2. /1_1 

76 

j(Xn-I,Xn-2, ... ,xo) = 8 IT (d j + M J (4.12) 
i=O 

Where the AND gate is replaced by XNOR gate. 

Example 4.2 

When 11 is equal to '2', j(XI,XO) can be expanded using equation (4.1) as the 

following. 

This is can be rewritten using equation (4.12) as the following 
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The following theory is introduced in order to convert Product of Sums to Positive 

Polarity Dual Reed-Muller form. Each complemented variable (Xi) in equation 

(4.l2) is replaced by the following identity X = ° 8 x [66]. For any Dual Reed-

Muller coefficient Ci, where i = (i n-l i n-2 .. .i 0)' if h is 0, then there is a constant '0' 

in S i according to equation (4.6). Since Xk c an be obtained by both Xk and x" in 

M i' therefore, h can be both '0' and' l' in d according to equation (4.3). If h is 

'1', then there is x kin S i according toe quation ( 4.6). Because' 0' can only b e 

created by x" in M i' ik can only be '1' in d according to equation (4.3). This can 

be formulated as equation (4.13). 

(4.13) 

Where 1 = (111-1 111 -2 ... 10), 

(4.14) 

Where 'y' is the notation for both 1 and 0, k E {0,1, ... , n -I} . 

Example 4.3 

Let n equals two then according to equations (4.13) and (4.14) the truth vector c 

can be calculated as follows. 
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C3 = CII = 8 IT dll = dl1= d3 
k 

C2 = CIO = 8 IT dly = dlO 8 dll = d28 d3 
k 

CI = COl = 8 IT dYI = dOl 8 dll= dl8 d3 
k 

CO=COO= 8IT dyy = dll 8 dlO8 dOl 8 doo=d38 d2 8 dl 8 do 
k 
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Similarly this method can be used to convert from c to d with zero polarity using 

the identity 0 = x 8 x in each term in equation (4.4). Hence the following equation 

is derived: 

(4.15) 

. {Y 19 = 1 
i. = 0 
J 

i. = 1 
J 

(4.16) 

Observation: 

If the number of off-set coefficients d i in equation (4.13) for the corresponding S i 

coefficient is odd (odd number of zeros), then coefficient C i should be included for 

that DRM expansion. Otherwise it should not be included, because 0 8 ° = 1. 

Therefore, the zero coefficients should be included for DRM expansion only. 

Example 4.4 

Calculate the truth vector c for the following three-variable 

function!(x2 ,xp xo) = ITM(O,4,6,7). 

The DRM coefficients are calculated using equations (4.13, 4.14). 
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C7 =C III =8TIdI1l =d7 =0 
k 

C 6 = ClIO = 8 TIdilY = dlll 8 d llO = 080 =1 
k 

C 5 = C 101 = 8 II dlYI = dlll 8 d 101 = 0 8 1 = 0 
k 

C4 =C IOO = 8IIdlyy =dlll 8 d llo 8dlOI 8dloo =0808180=0 
k 

C3 =C OII = 8IIdYII =dlll 8 dOll =081 =0 
k 

C2 =C OIO = 8IIdyIy =d111 8 d llO 8 dOll 8 dOlO =0 808181 = 1 
k 

CI =C OOI = 8IIdYYI = dIll 8 d lol 8 dOlI 8 dool=O 818181 =0 
k 
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Co =C OOO =8IIdyyy=dI1l8dIIO 8dlOI 8d lO0 8 dOll 8 dOlo 8dool 8dooo 
k 

=080818081818180=1 

Since the following coefficients are equal to zero (7, 5,4,3, 1) therefore, the DRM 

IS 

4.4 Conversion between d and c with any fixed polarity 

To facilitate the use of equations (4.14, 4.16) for large Boolean functions the 

bitwise relationship between the sUbscripts of d and c is represented by using truth 

Table (4.1). The following equation is obtained using Kamaugh map of POS for 

the standard function \jfj = (\jf 11-1 \jf 11-2 ••. \jf 0). A loop of O-cells in a Kamaugh map 

generates a sum term. 
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-
!Pi = ij.l J ( 4.l7) 

-
Where '.' is the normal AND operator and l represents the complement of the off-

sets. 

When \lfj is equal to '0', that is all of its binary bits are '0', then equations (4.l4) 

and (4.16) are satisfied. Using equation (4.17), it is possible to decide if a 

particular coefficient should be included for the conversion or not. Besides, only 

the off-set coefficients need to be calculated since x = 1 8 x. 

Table 4.1: 

Map of the standard function \If j 

~) 
1 

I J 

0 1 

1 0 

Example 4.5 

Calculate the truth vector c for the Dual Reed-Muller with zero polarity for the 

following three-variable function!(x 2 ,xp xo) = TIM(0,4,6,7). 

The following coefficients for the truth vector c are calculated using equations 

(4.13) and (4.17). 
- - - -

Co = Cooo = o· 0 8 O' 4 8 O' 6 8 O' 7 = 0 8 0 8 0 8 0 =1 
- - - -

c] = COO] = 1·0 81·4 81·6 81·7 = 1·7 81,381,181,0=1818180=0 
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- - - -
C2=C010=2·0 82-4 82·6 82·7 =2·782·382·182·0=2828080= 1 

- - - -
C3=COll =3· 0 83·4 83·6 83·7 =3·783·383·1 83·0=3838180=0 

- - - -

C4=ClOO=4·0 84-4 84·6 84·7 =4·784·384·1 84·0=4808080=0 
- - - -

CS=ClOl =5·0 85·4 85·6 85·7 =5·785·385·1 85·0=5818180=0 
- - - -

C6=CllO=6·0 86-4 86·6 86·7 =6·786·386·186·0=6828080= 1 
- - - -

C7=Clll =7·0 87-4 87·6 87·7 =7·787·387·1 87·0=7838180=0 

Where the decimal numbers are the value of the c's coefficients and the 

complemented decimal numbers are the complement ofPOS coefficients. 

The results in example (4.5) and example (4.4) are equal. Therefore equation 

(4.17) can be used directly to find all the coefficients for zero polarity Dual Reed

Muller form. 

Observation If the numbers of the included zeros are odd for a certain coefficients 

then Ci should be included and the value for this coefficient is zero; otherwise Ci is 

1 and it should not be included. 

Theorem 4.1 Given an off-set Dual Reed-Muller coefficient set Rp for an n

variable function with polarity p. A coefficient set with any other polarity q can be 

established through the process on Rp itself, using the following equation [63]. 

i ~ i 8 p 8p' 

Or (4.18) 

Where' 8' is bitwise XNOR operator, 'EB ' is the bitwise XOR operator and '~' 

is the assignment operator and p' = o. 
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Equation (4.18) can also be used to convert from DRM to POS to find the d; s 

from the Ci'S coefficients. 

Algorithm 4.1 

The following steps can lead to the PPDRM expression from POS form. 

Step 1: Store the complement of each term in the off-set. 

Step 2: Use AND operation to AND each term from step' l' with the decimal 

value of each coefficient Ci. 

Step 3: Count the number of zeros of each term for each coefficient Ci from step 

'2', if the total number is odd then that coefficient Ci should be included, otherwise 

it shouldn't be included. 

Step 4: Repeat steps 2 and 3 for the rest of the coefficients. 

Example 4.6 

Convert a 3-variable function f (X2,xI,xO) = IT M(0,4,6,7) from POS form to the 

fixed polarity DRM with polarity p = 1 = (001) in binary form. 

Step 1, this function is converted to the POS expansion with polarity 1. The 

following new coefficients are obtained using equation (4.18). 

Hence the new coefficients are: 

0<=OEB1=1 

4<=4EB1=5 

6<=6EB1=7 

7<=7EB1=6 
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!(X2,XI,X 0) = II M(1,5,7,6) 

Step 2, II M(1,5,7,6) is converted to DRM using equation (4.17)_ 
- - - -

co=cooo=O-l 80-5 80-7 80-6=0808080=1 
- - - -

CI = COOl = I-I 81-5 81-7 81-6=1-681-281-081-1 =18 1 8 1 80=0 
- - - -

C2 = COlO = 2-1 82- 5 82- 7 82-6=2-682-2 82-082-1 = 2 82 8 0 8 0 = 1 
- - - -

c3=coII=3-183-5 83-783- 6=3-683-283-083-1=2828081=0 
- - - -

C4 = CIOO = 4- 1 84- 5 84- 7 84- 6 =4-6 84-2 84-0 84-1 = 4 8 0 8 0 8 0 = 0 
- - - -

Cs = CIOI = 5-1 85- 5 85- 7 85- 6 =5-6 85-2 85-0 85-1 = 4808 0 8 1 = 1 
- - - -

C6=CIIO=6-1 86-5 86-7 86-6=6-686-286-086-1 =6 8 28 0 8 0= 1 
- - - -

C7=CIII =7-1 87-5 87-7 87-6=7-687-287-087-1 =6 828 081 =0 

!(X2,XI,X 0) = 8II (7,4,3,1) 

The sum terms in this canonical form can be generated using equation (3 _I 0) as 

follows_ 

Finally, the Fixed Polarity Dual Reed-Muller form with polarity (p = 1) is obtained 

by using equation (4_11) as follows: 

- -
!(X2,xI,XO)=0 8xI+xo 8x2 8 x2+ XI 

Example 4.7 

For a three-variable Boolean function! (X2,XI,XO) 

expression ofPPDRM p = 0_ 

II M(0,4,6,7) find the 
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Applying Algorithm 1 

Step 1: Store the complement of each term in the off-set; this gives the following 

results. 

0,4,6,7 = 7,3,1,0 

Step 2: The first coefficient of PPDRM (co) is calculated using equations (4.17) as 

follows: 

- - - -
co=O-O 80-4 80-6 80-7=0-780-380-1 80-0=0808080 

Step 3: Count the number of zeros in the last expression, which is four. Since the 

number of zeros is even then this coefficient (co) should not be included for 

PPDRM. Hence 

Co = 1 

Similarly, the rest of the coefficients are obtained as follows: 

- - - -
c] = 1-0 81-4 81-6 81-7= 1-781-381-1 81-0=18 1 8 1 80=0 

- - - -
c2=2-0 82-4 82-6 82-7=2-782-382-182-0=2828080=1 

- - - -
C3= 3-0 83·4 83· 6 83-7 = 3-783-3 83-1 83-0 = 3 838 1 80 = 0 

- - - -
c4=4-0 84-4 84-6 84-7=4-784-384-184-0=4808080=0 

- - - -
cs=5-0 85-4 85-6 85-7=5-785-385-185-0=5818180=0 

- - - -
C6 = 6-0 86-4 86-6 86-7= 6-786-3 86-1 86-0 = 6828080 = 1 

- - - -
C7 = 7-0 87-4 87-6 87-7= 7-787-3 87-1 87-0 = 7838 1 80 = 0 

The truth vector c for zero polarity is given as follows: 

c = [7, 5,4,3, 1] 
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The sum terms in this canonical form can be generated using equation (4.11) as 

follows: 

Using equation (4.11) to get the PPDRM form will lead to 

Example 4.8 

Compute Reed-Muller coefficients with zero polarity for a four-variable Boolean 

function f (X3,X2,Xl,xO) = IT M(0,3,4,5,6,8,10,11,13,14,15) and find the PPDRM 

expreSSIOn. 

Co can be calculated by using equation (4.17), for the first off-set coefficient '1', 

we have 
-

If/=O.O 

If/ = 0000.1111 = 0000 

Because all of \}fj are 0, this coefficient should be included. Then move to the 

second off-set coefficient which is 2, we have 

-
If/=0.3 

If/ = 0000.1100 = 0000 

Repeat the same procedure for the rest of off-set coefficients. After finishing all 

the 11 off-set coefficients, count the number of zero for each operation. This gives 

11, since this odd number therefore, Co is included because it is equals to O. Repeat 

the same procedure for the reset of the coefficients. The final Dual Reed-Muller 

form is: 
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This same example was run using the programmed develop in this chapter, the 

following results were obtained. 

!(X3 ,X2 ,Xp x O) = 8 I1(15,12,9,7,6,5,3,1,O) 

This result agrees with the previous results. 

4.5 Results 

In this section, experimental results are presented usmg algorithm 4.1. The 

proposed algorithm is implemented in C language and the programs compiled 

using Borland C++ compiler. The program was tested on a personal computer with 

Pentium 4 processor of 2.4 GHz CPU and 512 MB of RAM under Window 

operating system. The algorithm was applied to several MCNC benchmarks and 

some random functions. Table 4.2 shows the results obtained from converting POS 

coefficients into DRM coefficients. Where name denotes the name of circuit, n 

denotes the number of variables, Init terms denote the number of terms in POS 

form, DRM terms denote the number of terms in DRM form, the execution time 

(CPU Time (s)) is time required to calculate the coefficients of the Fixed Polarity 

Dual Reed-Muller form the coefficients of the Product of Sums and it is given in 

seconds. For most of the circuits with n less than 16 the CPU time is less than 1 

seconds. The CPU time depends on the variable number n and the initial number 

of terms (number of off-set coefficients). For large Boolean functions, there are 

many coefficients and they should be accessed once. This algorithm can be 

improved by ordering the off-set coefficients in advance. This is can be achieved 

by introducing a multiple segment technique, then the execution time will be 

improved and it could handle large number of variables. 
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For incompletely specified Boolean functions,' don't care' are set to '1'. The 

experimental results obtained in Table 4.2 reflect the efficiency of the algorithm. 

Table 4.2: 

Conversion results from POS to PPDRM form 

lni t. terms in DRM 
Name n CPU Time (s) 

POS Terms 

ConI 7 88 9 0.000 

Rd84 8 136 37 0.050 

Apex4 9 534 181 0.000 

Clip 9 480 92 0.000 

Ex1010 10 142 480 0.010 

F12t 12 1984 365 0.02 

F13t 13 4152 127 0.100 

F14t 14 16172 625 0.711 

F15t 15 5792 3100 0.540 

spla 16 5348 517 0.931 

Table5 17 28552 3359 9.845 
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4.6 Summary 

This chapter has introduced the basics matrices that are needed to convert between 

Product of Sums and Positive and Fixed polarity Dual Reed-Muller forms. Such 

matrices are needed to construct the transformation matrix for the Dual Reed

Muller expressions. This chapter has introduced also new formulas to calculate the 

coefficients of the Dual Reed-Muller directly from the off-set of the Product of 

Sums. Therefore, this technique is fast and does not need to store the 

transfoDnation matrix. 



Chapter 5 

Exact minimization of Dual Reed-

Muller expressions 

5.1 Introduction 

In the optimization of FPDRM expansions, functions with different polarities are 

usually calculated directly from POS expressions [64, 65]. A new algorithm is 

presented in this chapter to generate all the polarity sets from any polarity set q for a 

single output Boolean function. This technique is used to find the best polarity of 

FPDRM among the 211 fixed polarities. The algorithm is based on the dual property 

and the Gray c ode strategy. Time efficiency and computing speed are a chieved in 

this technique because the information in finding FPDRM expansion of one polarity 

is utilized by others. Two-fixed polarities can be derived from each other without the 

need to go back to the original Boolean function in the POS form, if the two 

polarities are dual. 

Definition 5.1 Polarity vector (Pll-l,Pn-2, .. . ,Po) for a FPDRM of an n-variable Boolean 

function is a binary vector with n elements, where Pi = 0 indicates the variable Xi in 
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an un-complemented form (Xi), while Pi 

complemented form (Xi). 

1 indicates the variable Xi III the 

Definition 5.2 Two polarities are defined to be dual polarities if they reveal the 

following property: the n-bit binary strings of these two polarities have n-1 bits in 

common and only one bit is different [9S, 96]. 

5.2 Exact minimization of the Fixed Polarity DRM forms 

A new algorithm is presented in this chapter to generate all of the polarity sets from 

any polarity set q, without using the direct method in converting from POS to 

FPDRM forms [64, 6S]. Time efficiency is achieved in this technique because the 

information utilized in finding DRM expansion of one polarity is utilized by others. 

Two-fixed polarities can be derived from each other without the need to go back to 

the original Boolean function, if the two polarities are dual [9S, 96]. 

Corollary 5.1 The DRM with a fixed polarity qj can be derived from DRM with a 

fixed polarity pj, where Pj, Cjj are dual polarities and} is the permuting bit. 

Proof 

From equation (S.l) with polarity p = Pj, DRM is given as: 

2" -1 

j{Xn-I,Xn-2, ... ,xo) = 8 IT (c i + S i) 
i=O 

(S.l) 

(S.2) 
i=Q 

Where 

=Xn-l +X I1-2+ ••• +XO (S.3) 
k=n-l 
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Pj, is any given polarity = (0, ... , 211_1), Si(Pj) are the sum terms for the particular 

polarity Pj. 

In order to change polarity from Pj to qj, equation (5.3) can be expressed as 

j+l • • o. S:1 = 2:(Xk )ik + (x j /j + L (Xk )ik 

k=n-1 k=)-1 
(5.4) 

Each variable Xk in equation (5.4) will remain as it is, except variable Xj is replaced by 

the following identity (x j )'i = 0 8 (x j )ij 
• Therefore, equation (5.4) becomes the 

following equation for S:j 

)+1 • • o. 

sti = L (Xd ik + (0 8 (Xj )ij) + L (Xd ik (5.5) 
k=n-1 k=)-1 

By using the following property: 

A+ (08 B) +C = (A+C) + (0 8 B) = (A+C+O) 8 (A+C+ B) 

Hence 

j+l. o. j+1. • o. 

S,qi = ( L (Xk )ik + L (Xk )ik) 8 ( L (Xk )ik + (x j )ii + L (Xk )ik) (5.6) 
k=n-1 k=j-1 k=n-1 k=)-1 

By substituting (5.6) in (5.2), we obtain the following FPDRM expansion for ~with 

p=~. 
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211-1 j+i. o. j+l. :- o. 

() rr(c~j +[(L (XkY' + L (xki') () (L (XkY' + (XiY; + L (XkY')]) 
i~O k~I1-1 k~j-I k~n-I k~ j-I 

To convert polarity Pj to polarity qj, each sum in the FPDRM with polarity Pj is 

converted into a binary string. A zero is placed in the binary string if the variable is 

present and a one if the variable is absent. The new term is generated, by copying all 

the binary string except for bitj. Ifbitj is zero change it to one. Duplicate terms are 

deleted according to the rule B () B = 1. Based on this, the following algorithm is 

developed. 

5.3 Conversion from polarity p to polarity q 

Algorithm 5.1 

This algorithm converts between the polarities and identifies the polarity number 

with the least number of Sum terms in the FPDRM functions. The following steps 

shall be used to derive the coefficient set 1'q from the dual set <1>p. The steps are 

repeated for the rest of the polarities till the best polarity is obtained. 

Step 1: Use Algorithm 4.1 to calculate the coefficients for PPDRM function. Set <1>min 

= the number of off-set coefficients for polarity Pj. 

Step 2: Determine the next polarity qj in Gray code order, where polarities Pj and qj 

are dual and differ in bitj only. 

Step 3: Converts the sum terms for polarity pj into a binary string. By replacing each 

variable by '0' if the variable is present in the sum term or by' l' ifit is absent. 

Step 4: For each term in polarity Pj, generate a new term ifbitj of the binary string is 

'0'. Replace bitj with' l' and copy all others bits to generate the new term. 
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Step 5: Delete common pairs between original strings and newly generated strings 

because B 8 B = 1. 

Step 6: The unaffected strings are the product terms of the new polarity qj. 

Step 7: Count the total number of zero coefficients 'I'min for polarity qj. 

If'I'min < <Dmin then <Dmin: = 'I'min. 

Step 8: Stop if all polarities have been checked. Otherwise go to step 2. 

Example 5.1 

Find the best polarity for a three-variable function!(xz,xj,xo) = IT M(0,4,6,7). 

Step 1, the following results are obtained for PPDRM using algorithm 4.1. 

!(Xz,Xj,Xo) = 8IT (7,5,4,3,1) (5.7) 

In order to find all polarities for DRM expansion, a Gray code sequence is generated 

for n = 3, then Algorithm 5.1 is applied to find the best polarity with the least number 

of Sum terms. 

The following Gray code is generated for n = 3: 

000 - 001 - 011 010 - 11 0 - 111 - 101 - 100 

Count the number of coefficients from step 1, and set <Dp = 5 since this the first step 

in the procedure set also <Dmin to <Dp. 

Step 2, since polarity '0' = (000) and polarity '1' = (001) are dual polarities. Hence 

DRM in polarity' l' can be derived directly from equation (5.7) using Algorithm 5.1 

as shown in Table 5.1 where the altered bit is at} equals o. 
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Table 5.1: 

Derivation ofDRM for Polarity 1 

Polarity 0 
New tenus 

Polarity 1 

X2X j XO X2Xj XO 

111 111 

----l-W--- 100 

100 -tBt- 011 

011 001 

001 

Therefore, the coefficients for the FPDRM with p = 1 are the following: 

Where the number of tenus is \.f'min = 4, since \.f'min < <l>min then record the 

corresponding polarity as P min = q; = 1 and <l>min = 4. 

Repeat step 2 to convert from polarity '1 '= (00l) to '3' = (011), with the altered bitj 

= 1 as shown in Table 5.2. 
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Table 5.2: 

Derivation ofDRM for Polarity 3 

Polarity 1 Polarity 3 
New terms - -

X2Xj XO X2Xj XO 

111 111 

100 110 110 

-m-t- 100 

001 -Btt- 001 

Therefore, the coefficients for the FPDRM with p = 3 are the following: 

Where the number of terms is '¥ min = 4, since '¥ min = <l>min then go to the next 

polarity. 

Repeat step 2 to convert from polarity '3'= (011) to '2' = (010), with the altered bit} 

= 0 as shown in Table 5.3. 

Table 5.3: 

Derivation ofDRM for Polarity 2 

Polarity 3 Polarity 2 
New terms - -

X2X 1XO X2X 1XO 

itt 110 

110 tti 101 

100 101 100 

001 001 

Therefore, the coefficients for the FPDRM with p = 2 are the following 
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'i'1l1in = 4, since 'i'1l1in = cDmin then go to the next polarity. 

Repeat step 2 to convert from polarity '2'= (010) to '6' = (110), with the altered bit} 

= 2 as shown in Table 5.4. 

Table 5.4: 

Derivation ofDRM for Polarity 6 

Polarity 2 Polarity 6 
New terms 

- -
X2Xj XO X2Xj XO 

110 110 

181 100 

100 001 

001 181 

Therefore, the coefficients for the FPDRM with p = 6 are the following 

'i'1l1in = 3, since 'i'1l1in < cDmin then record the corresponding polarity as Pmin = <]j = 6 

and change cDmin to 3. 

Repeat step 2 to convert from polarity '6'= (110) to '7' = (111), with the altered bit} 

= 0 as shown in Table 5.5. 
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Table 5.5: 

Derivation ofDRM for Polarity 7 

Polarity 6 Polarity 7 
New terms 

- - - --
X2Xj XO X2Xj XO 

110 111 111 

100 101 110 

001 101 

100 

001 

Therefore, the coefficients for the FPDRM with p = 7 are the following 

\}lmin = 5, since \}lmin > <l>min then go to the next polarity. 

Repeat step 2 to convert from polarity '7'= (111) to '5' = (101), with the altered bit} 

= 1 as shown in Table 5.6. 
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Table 5.6: 

Derivation ofDRM for Polarity 5 

Polarity 7 Polarity 5 
New terms 

- --
X2Xj XO X2Xj XO 

III 101 

He 100 

101 itl 011 

100 lie 001 

001 011 

Therefore, the coefficients for the FPDRM with p = 5 are the following 

Repeat step 2 to convert from polarity '5'= (101) to '4' = (100), with the altered bitj 

= 0 as shown in Table 5.7. 

Table 5.7: 

Derivation of DRM for Polarity 4 

Polarity 5 Polarity 4 
New terms 

X2Xj XO X2Xj XO 

181 100 

100 HH 011 

011 001 

001 



K. Faraj, Chapter 5 99 

The process is terminated at this point, because 'l'min > <:Pmin (4 > 3), ttherefore the 

best polarity for this function is p = 6 = (110) with 3 terms. 

The sum terms for this canonical form can be generated as follows: 

Using equation (4.11) the following equation is obtained for FPDRM form with 

polarity number is equal to 6. 

Where the truth vector c = [1 0 1 0 1 1 0 1] 

Hence, 

5.4 Results 

In this section, experimental results are presented using algorithms (4.1) and (5.1). 

The proposed algorithms are implemented in C language and the programs compiled 

using Borland C++ compiler. The programs were tested on a personal computer with 

Pentium 4 processor of2.4 GHz CPU and 512 MB of RAM under Window operating 

system. The algorithms were applied to several Random functions as well as MCNC 

benchmarks. Table 5.8 shows the results obtained from converting PPDRM (p = 0) 
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coefficients into FPDRM coefficients. Where name denotes the name of circuit, 

Input No denotes the number of variables, Init terms denote the number of terms in 

PPDRM form, Terms denotes the minimum number 0 fterms required for a fixed 

polarity Dual Reed-Muller forms (FPDRM) terms, the execution time (CPU Time 

(s)) is time required to find the best polarity starting from the zero polarity and 

Improv (%) represents the average saving in terms between polarity zero and the best 

polarity which is based on the following formula: 

I T Initi. Terms - DRM. Terms 100°/ mprov. erms = x /0 

Initi. Terms 

The execution time (CPU Time (s)) depends on the variable number n as well as the 

initial number of terms. For incompletely specified Boolean functions,' don't care' 

are set to '1'. The experimental results obtained in Table 5.S reflect the efficiency of 

the algorithm. The average saving in terms of number of terms is about 30 percent. 

We are able to minimize functions with up to 14 variables. Memory requirements 

make it impossible to minimize functions with more than 14 variables. To our 

knowledge there are no publications on this topic to compare with. 
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Table 5.8: 

Optimization results based on algorithm 2 

Input Terms under FPDRM Irnprov. CPU 
Name 

No. polarity 0 Best polarity Terms (%) Time (s) 

ConI 7 9 7 8 11 0.000 

Rd84 8 37 1 29 21 0.000 

Apex4 9 181 2 170 6 0.100 

Clip 9 92 496 63 32 0.031 

Ex1010 10 480 944 413 14 1.061 

F12t 12 365 804 127 65 3.455 

F13t 13 127 704 65 48 4.16 

F14t 14 625 5587 66 89 260.07 

tRandomly generated Boolean functions. 
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5.5 Summary 

Boolean functions in Product of Sums forms can be represented by Fixed Polarity 

Dual Reed-Muller forms. Each FPDRM form can be identified with a distinct 

polarity, were each variable appears in the complemented or un- complemented form 

but not both. Therefore, an algorithm is required to find the best polarity of the 

FPDRM forms among the 2 n fixed polarities, without converting directly between 

POS and FPDRM forms for each polarity. Hence a new algorithm is presented in this 

chapter. The algorithm is used to generate all the polarity sets from any polarity set q 

for a single output Boolean function. This algorithm is based on the dual property 

and the Gray code strategy. Two polarities are dual if they have n-1 bits in common 

and only one bit is different. 

Hence, all of the fixed polarities can be derived from each other without starting 

from the original Boolean function in the POS form. Therefore, time efficiency and 

computing speed are achieved in this technique. 



Chapter 6 

Optimal Polarity for Dual Reed-Muller 
Expressions 

6.1 Introduction 

In this chapter we present two algorithms, which can be used to convert from POS to 

FPDRM and find the optimal polarity for large number of variables. The first 

algorithm is used to compute the coefficients of PPDRM or FPDRM directly from 

the truth table of POS, without the use of mapping techniques [65] and without the 

use of matrix operation [64]. This algorithm is also used to compute the coefficients 

of POS from PPDRM or FPDRM. The second algorithm will find the optimal 

polarity among the 211 different polarities for large n-variable functions, without 

generating all of the polarity sets. This algorithm is based on separating the truth 

vector of POS and the use of sparse techniques, which will lead to the optimal 

polarity. Time efficiency and computing speed are thus achieved in this technique. 

Definition 6.1 Polarity vector (Pn-I,PI1-2, .. . ,Po) for a FPDRM of an n-variable Boolean 

function is a binary vector with n elements, where Pi = 0 indicates the variable Xi in 
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an un-complemented form (xD, while Pi 

complemented form Xi. 

104 

1 indicates the variable Xi III the 

Property 6.1 For an n-variable Boolean function, there are 211 FPDRM expansions 

corresponding to 2n different polarity numbers. Each of such expansions IS a 

canonical representation of a completely specified Boolean function. 

6.2 Conversion Algorithms 

6.2.1 Conversion from POS to FPDRM 

To compute the coefficients for FPDRM expansion (c) from the coefficients of the 

POS expansion (d), the following principles and derivation are developed. An n

variable Boolean function can be expressed as: 

211-1 

(6.1) 
i=O 

Equation (6.1) can be represented as 

j(Xn-1,Xn-2, ... ,xo) = (do + Xn-1+ X n-2 + ... X 0)' (d1 + X I1-1+ X 17-2 + ... ;: 0)' (d2 + Xn-1+ X 11-2 + 

(6.2) 

In equation (6.1) if all Maxterms are ANDed for each different combination of the 

inputs the result will be '0' and if all Maxterms are XNORed for each different 

combination 0 f t he inputs variables the result will b e a Iso a '0', because for each 

combination of the inputs one of the Maxtrems will be '0' and the rest will be '1'. 

Hence equation (6.1) can be written as in Equation (6.3) by replacing each AND gate 

by XNOR gate. 
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211 -1 

j(Xn-l,Xn-Z, ... ,xo) = 8 IT (d i + M i) (6.3) 
i=O 

(6.4) 

Equation (6.4) can be described in terms of a coefficient truth vector. The coefficient 

vector for an n-variable Boolean function can be represented as: 

(6.5) 

The elements of the truth vector (T) are placed in the order of decimal equivalent 

binary coding of the sum terms. 

Examining the general form in equation (6.4), half of the sum terms in the truth 

vector T include variable Xi in true fonn and the second half include variable Xi in 

complemented form. Therefore, the truth vector (T) for any Boolean function in POS 

fonn can be separated into two rows for each variable Xi and the result is stored in the 

separation matrix T(xJ The first row of the separation matrix T(Xi) contains 

Maxterms with variable Xi in un-complemented form, while the second row of T(xD 

contains Maxterms with variable Xi in complemented [97]. The elements in the truth 

vector and the separation matrix T(xD are arranged into groups of four bits for 

convenient. The following example illustrates the separation process. 
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Example 6.1 

Construct the truth vector T for a 4-variable function }\X3,X2,xI,xO) = IT 

M(0,4,6,7,11,15) and use the truth vector T to generate the separation matrix for each 

variable Xi. 

The truth vector T has 2n elements. Each Maxterm correspond to 'O's in the truth 

vector T. Hence T is presented as follows: 

T = [0111 0100 1110 1110] 

To generate the first matrix T(x3), the truth vector T is separated around variable X3 

int two equal parts. The first part corresponds to un-complemented part, while the 

second part to the complemented part. This is can be done according to the following 

formula: 

b f ··· 2
n 

Num er 0 DIVISIOns = --. 
2 n- 1 

Where 11 is the number of variables and i is the number for variable Xi. 

Therefore, 11 = 4 and i = 3. 

Hence, 

The un- complemented for X3 is: 

[0111 0100] 

And for the complemented is: 

[1110 1110] 

Therefore, 



K. Faraj, Chapter 6 

For X2 the truth vector is divided as follows: 

Number of Divisions = 24/22 
= 4 

Therefore, the truth vector is divided into four equal parts. 

The un- complemented for X2 is: 

[1110] and [1110] 

This gives: 

[1110 1110] 

While for the complemented part is: 

Therefore, 

[0100] and [1110] 

[
0111 1110] Xo 

T(x2 )= 0100 1110 x: 

Similarly the separation matrices for Xl and Xo are as follows: 

107 
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[
0100 1111] Xo 

T(xo)= 1110 1010 Xo 

108 

To replace any complemented variable Xi by un-complemented variable Xi in 

equation (6.4) the following identity Xi = (0 8x Dis used. The following result is 

obtained 

(a + Xi) 8 (b + xD = [a + (0 8xD] 8 (b + xD 

=[(a+O) 8 (a+xD] 8 (b+x;) 

= a 8 [(a + x;) 8 (b + Xi)] 

However 

[( a + xD 8 (b + xD] = [(a 8 b) + x;] 

This can be verified as follows 

[(a + x;) 8 (b + xD] = a X i (fj b Xi 

Where' EB ' is XOR operator. 

Complementing the last expression, the following is obtained 

Xi (a (fj b ) = [(a 8 b) + Xi] 



K. Faraj, Chapter 6 109 

Therefore, 

[( a + Xi) 0) (b + xD] = [(a 0) b) + xJ 

Hence 

(a + xJ 0)(b + xD = a 0) [(a 0) b) + xJ (6.6) 

Examining equation (6.6), the coefficients of the un-complemented part of variable Xi 

take a new fonn. The new coefficient is (a XNOR b), while the coefficient for the 

complemented part will remain the same. Similarly, to convert un-complemented 

fonn to complemented fonn the following principal is applied. 

Each un-complemented variable Xi is replaced by 0 0) Xi. 

(a+ X;) 0)(b+xD=(a+x;) 0) [(b+(O 0)xJ] 

= (a + xJ 0) [(b + 0) 0) (b + x;)] 

= [(a + x;) 0) (b + xJ] 0) b 

By taking the complement of the following expression 

[(a + x;) 0)(b + x;)] = ax; EEl Ex; 

= Xi (a EEl b) 

Taking the complement for the last expression will give the following result 

Hence 
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[(a+xJ 8(b +xJ] = Xi + (a 8 b) 

Therefore, 

(6.7) 

Inspecting equation (6.7), the coefficient of the true fonn stays as it is while the 

coefficient of the complemented fonn is replaced by (a XNOR b). 
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Algorithm 6.1 

A computer algorithm has been developed based on the previous theory as shown in 

the following steps. 

Converting from POS to FPDRM 

Algorithm 6.1.a 

The following steps are used to from POS to FPDRM forms: 

Step 1: Store the coefficients of the POS in the truth vector (T). 

Step 2: Construct T(xD matrix from T vector for each variable Xi. The first row of 

T(xa matrix contains the coefficients of the Maxterms for variable Xi in un

complemented form. While the second row of T(xD contains the coefficients of the 

Maxtenns with variable Xi in the complemented form. 

Step 3: The elements in the first and second rows of T(Xi) matrix are group together 

using XNOR operation and the result is stored in vector (N). 

Step 4: If the required polarity for Xi variable is '0' then replace the contents of each 

true variable Xi in the truth vector T by the contents of vector N. 

Step 5: If the required polarity for Xi variable is '1' then replace the contents of each 

complemented part of the xi variable in the truth vector T by the contents of the un

complemented part of the Xi variable and store the result N in place of un

complemented part of Xi variable in T. 

Step 6: Repeat the previous steps for the rest of the variables by using the new truth 

vector from step '5' or '6' depending on the polarity. 
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Step 7: The zero elements stored in the last T vector are the coefficients for that 

particular polarity of the FPDRM. 

6.2.2 Conversion from FPDRM to POS 

Algorithm 6.1.b 

To find the POS's coefficients from the FPDRM's coefficients, step '5' in Algorithm 

6.1.a is changed to the following step: 

If the required polarity for Xi variable is '1' then replace the contents of each un

complemented part of the Xi variable in the truth vector T by the contents of the 

complemented part of the Xi variable and store the result N in place of complemented 

part of Xi variable in T. 

The following examples will illustrate Algorithm 6.1.a and Algorithm 6.1.b. 

Example 6.2 

Convert a 4-variable function f (X3,X2,Xj ,xo) = II M(0,4, 7,11,15) from POS form to 

polarity 7 DRM. 

Store the coefficients of Maxterms in the truth vector T. 

T = [0111 0110 1110 1110] 

Separate T vector around variable X3 to obtain T(x3) matrix and XNOR each element 

in the first row with the elements in the second row. 

[
0111 0110 ]X3 

T(x3) = 11101110 X3 

N =[01100111] 

Since the polarity is '0' for variable X3, replace the un-complemented part of X3 

variable in T by the N vector results. Therefore, the new T vector is 

T = [0110 0111 1110 1110] 
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Separate the new vector T around variable X2 to obtain T(X2) matrix as follows: 

[
0110 1110]X2 

T(x?) = (x_? XNOR x2 ) 
- 0111 1110-x 2 =--------= 
N = [1110 1111] 

Since the polarity is '1' for variable X2 apply step' 5', the new truth vector is 

T=[1110 0110 11111110]. 

Similarly for variable Xl and Xo 

The final T vector is 

[
11 01 1111] XI T(x]) = (x] XNOR x]) 
1010 1110 -x] 
=------= 

N = [1000 1110] 

T = [1011 0001 1111 1011] 

[
1100 1111]XO 

T(xo) = (xo XNOR xo) 
0101 1101 

-
Xo 

=--------= 
N=[OllO 1101] 

T = [0111 1000 1111 0111]={0,5,6,7,12} 

The sum terms in this canonical can be generated by using the basis vector 

113 
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[0 x3 ]++[OX2]++[0 xl]++[O xo]= [0 Xo Xl (Xl+Xo ) X2 (x2+xJ 

(X2 + Xl) (X2 + Xl + xJ (X3 + Xo) (X3 + Xl) 

(X3 +Xj + Xo) (X3 +X2) (X3 +X2 +Xo) 

(X3 +X2+Xl ) (X3 +X2 +Xj +Xo)] 

The FPDRM can be generated using by substituting the coefficient vector c in the 

following general equation. 

j(XIl-l,XIl-2, ... ,xo) = {[O XIl-l] ++ [0 X n-2] ++ ... ++ [0 xo]} 0 C (6.8) 

Hence 

Example 6.3 

Convert a 4-variable function!(x3,x2,xl,xo) = 8rr (0,5,6,7,12) from FPDRM form to 

POS form by using polarity p = 7 = (0111). 

Store the truth vector in T matrix. 

T = [0111 1000 1111 0111] 

Separate T vector around variable X3 to obtain T(x3) matrix. 

[
0111 1000] X3 

T(x3) = (X3 XNOR x3 ) 

1111 0111 -
X3 

=------= 

N = [0111 0000 ] 

Since polarity is '0' for variable X3, replace the un-complemented part of variable X3 

in T by the N vector results. The new truth vector is 
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T = [0111 0000 1111 0111]. 

Separate the new vector T around variable X2 to obtain T(X2) matrix as follows 

[
0111 1111:X7 

T(x 2
) = 0000 0111 x: 

N = [1000 0111 ] 

Since polarity is '1' for variable X2 apply Algorithm 1.b, the new truth vector is 

T= [0000 1000 0111 0111] 

Similarly for variable Xl and Xo 

[
0010 0101]X1 

T(x1 ) = 0000 1111 x
1 

N = [1101 0101] 

T= [0011 0001 1101 1101] 

[
0100 101O]XO 

T(xo)= 0101 1111 xo 

N=[1110 1010] 

T= [0111 0110 1110 1110] 

Therefore, the POS's coefficients are (0,4,7,11,15). 

!(X3.X2,Xl,xO) = IT M(0,4,7,11,15). 

115 
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6.3 Optimization of the Fixed Polarity DRM forms 

In the optimization of the FPDRM functions with different polarities are usually 

calculated directly from POS expressions [64, 65]. A new algorithm is presented in 

this chapter to find the optimal polarity directly from the truth vector of the zero 

polarity. This technique is aimed at large number of variables, where time is very 

crucial. It usually requires a long time to convert from POS to DRM for each polarity 

and then search for the best polarity among the 211 polarities. The new algorithm 

introduced in this section will achieve maximum efficiency in respect of time for 

large number of variables and does not require a large memory. The time required to 

find a 'good' polarity, is almost equal to the time required for converting a single 

polarity as giving in algorithm 6.1.b. This algorithm doesn't search each polarity to 

convert from POS to FPDRM and it doesn't use matrix technique to convert from 

POS to DRM for each polarity. Thus the algorithm is fast with respect to time and 

efficient in terms of memory storage. 

Algorithm 6.2 

Step 1: Algorithm 6.1.a is used to obtain zero polarity, the coefficients are stored in 

vector T. Let Pmin equals the polarity number zero for the zero polarity which 

is zero. Step 2: Count the number of zero terms in vector T and denote it by 

(TNZ). 

Step 3: Construct T(xD matrix from vector T for each variable Xi. The first row of 

T(xD matrix contains the coefficients of the Maxterms for variable Xi in un

complemented form. The second row of T(xD contains the coefficients of the 

Maxterms with variable Xi in the complemented form. 

Step 4: The elements in the first and second rows of matrix T(xD are grouped 

together using XNOR operation and the result is stored in vector N. 
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Step 5: Count the number of zeros of the un-complemented part from T(xD and N . 

Add the two numbers together and denote it by NZ(Xi). 

Step 6: Repeat steps 4 and 5 for all the variables that have not been converted to 

polarity 1. 

Step 7: To determine the variable (Xi) that has to be converted from '0' polarity to 

'1' polarity. Select the variable with the least number of zeros NZ(xD from 

step 6. This should be less than or equal to the total number of zeros from 

step 2, TNZ. 

Step 8: Replace the contents of complemented part of T(Xi) by the contents of vector 

N. This will generate a new T vector. Pmill is set to the new polarity number. 

Step 9: Use the new T vector from step 8 and repeat the same procedure from step 2 

for the variables that have not been converted. 

Step 10: If the total number of zeros NZ(Xi) for each variable Xi from step 6 is greater 

than TNZ from step 2, then stop and there will be no more variables to 

convert from '0' polarity to '1' polarity. 

Step 11: The zero elements stored in the last T vector are the coefficients for that 

particular polarity of the FPDRM. 

Example 6.4 

Find an optimal polarity for a 5-variable function 

!(X4,X3,X2,Xj,XO) = IT (1,3,4,5,7,10,11,12). 

Step 1: use Algorithm (6.1.a) to convert from POS to zero polarity DRM and set 

Pmill=O. 

The result is as follows: 
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T=[1010 1100 0010 0110 1111 1111 1111 1111] 

Hence the coefficients for PPDRM with polarity p = 0 are: 

c = {I, 3, 6, 7, 8, 9, 11, 12, IS} 

Step 2: Count the number of zero terms in T vector and set TNZ = 9. 

Step 3: Separate T vector around variable X4 into un-complemented and 

complemented parts, and store the result into vector N as follows: 

T x = x XNORx 
[
1010 1100 0010 0110] x 4 

(4) 1111 1111 1111 1111 x
4 

( 4 4) 

N=[1010 1100 0010 0110] 

Step 4: Count the number of zeros of the un-complemented part from T(X4) and N 

vector and add the two numbers together. 

By repeating steps 3 to 6, the following results are obtained for the following 

variables X3, x 2, X 1 and x 0 

T x = x XNORx 
[
1010 1100 1111 1111] X3 

( 3) 0010 0110 1111 1111 X3 ( 3 3 ) 

N=[0111 0101 1111 1111] 
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[
1010 0010 1111 1111] x, _ 

T(x 2 ) = 1100 - (x, XNOR x 2 ) 
0110 1111 1111 x2 -

~-----------------= 

N=[1001 1011 1111 1111] 

NZ (X 2) = 8 

[
1011 0001 1111 1111] Xl 

T(xl ) = 1000 - (Xl XNORxl ) 
1010 1111 1111 Xl 

=---------------~ 

N = [11 00 01 00 1111 1111] 

T X = X XNORx [
1110 0101 1111 1111]XO 

(0) 0010 0010 1111 1111 Xo ( 0 0) 

N=[OOl1 1000 1111 1111] 

NZ (X 0) = 8 

Since NZ (X3) has the m1111mum number of zeros, replace the contents of 

complemented part of T matrix by the result of XNOR operation hence the new T 

vector is 

T = [1010 1100 0111 0101 1111 1111 1111 1111]. 

The total number of zeros for the new vector TNZ = 7, and the polarity number for 

this vector is Pmin = {01000}= 8. 

Similarly as in the previous part, separate vector T around each variable but not X3 

because it has been changed to X3. 
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[
1010 1100 0111 0101] x4 

T(x4 ) = 1111 - (X4 XNOR x4 ) 
1111 1111 1111 x4 

~--------------~ 

N=[1010 1100 0111 0101] 

[
1010 0111 1111 1111] X 7 _ 

T(x ) - - (x? XNOR X 7 ) 

2 - 1100 0101 1111 1111 x
2 

- -

~--------------~ 

N = [1001 1101 1111 1111] 

[
1011 0101 1111 1111] Xl 

T(xl ) = 1000 - (Xl XNOR Xl) 
11 01 1111 1111 Xl 

~--------------~ 

N = [11 00 0111 1111 1111] 

[
1110 0100 1111 1111] Xo 

T(xo) = 0010 - (xo XNORxo) 
1111 1111 1111 Xo 

=----------------= 
N = [0011 0100 1111 1111] 

NZ (X 0) = 9 

Since the total number of zeros for variable X2 is less than TNZ from the last 

operation, therefore X2 will be converted to X2. Hence the new T vector is 

T = [1010 1001 0111 11 0 1 1111 1111 1111 1111 ]. 

The total number of zeros for the new vector TNZ = 6 and Pmin = {01100} = 12. 
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Repeat the same procedure for X4, Xl and Xo. 

[
1010 1001 0111 1101] x 4 

T(x4 )= 1111 - (x4 XNORx4 ) 
1111 1111 1111 x 4 

~----------------= 

N= [1010 1001 0111 1101] 

[
1010 0111 1111 1111] Xl 

T(x l )= 1001 - (xlXNORxl ) 
1101 1111 1111 Xl 

~----------------= 

N=[1100 0101 1111 1111] 

[
1110 0110 1111 1111] Xo 

T(xo) = 0001 - (xo XNOR xo) 
1111 1111 1111 Xo 

~--------------~ 

N = [0000 0110 1111 1111] 

NZ (X 0) = 9 

Since the total number of zeros from each operation is greater than TNZ from the last 

operation, there are no more variables to convert to the complemented form and the 

process is terminated at this point. 

Therefore, the final c vector is given as follows: 

c = [1010 1001 0111 11 0 1 1111 1111 1111 1111 ] 

The FPDRM terms that are needed for this form are {1,3,5,6,8,14}, and the best 

polarity is P = (01100) = 12. 
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A program has been developed based on the previous theory and sparse technique. A 

matrix is called sparse if most of its elements are non-zero [75, 76]. Considerable 

saving in memory and computation time can be a chieved by using sparse formats 

that store only the zeros in this case. Since most of the elements in the truth vector T 

are non-zeros where the normal size of T is 2'\ a sparse format will be a suitable 

solution to store the zero elements to avoid wasting memory. The following example 

illustrates this method. 

Example 6.S 

Let vector A = [0,4,7] and vector B = [2,4,6] then A XNOR B is given as follows: 

A = [0 Y Y Y 4 y Y 7] 

B = [y y 2 y 4 y 6 y] 

N = [0 y 2 y y y 6 y] 

Where 'y' repents a non-zero element' 1 ' in the truth vector. 
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6.4 Experimental Results 

In this section, experimental results are presented for the proposed algorithms. The 

proposed algorithms are implemented in C language and the programs are compiled 

using Borland C++ compiler. It is tested on a personal computer with Pentium 4 

processor of 2.4 GHz CPU and 512 MB of RAM under Window operating system. 

The algorithms where applied to several MCNC benchmarks. Table (6.1) shows the 

results obtained from converting POS coefficients into PPDRM coefficients. Where 

name denotes the name of circuit, n denotes the number of variables, init terms 

denotes the number of terms in POS form, P PDRM terms denotes the number of 

terms in PPDRM form and the CPU time is in seconds. For most of the circuits with 

n less 14 the CPU time is less than 0.6 seconds. The comparison time between the 

results which was obtained from Chapter 4 and Chapter 6 is nearly the same. Table 

(6.2) shows the results obtained from converting PPDRM coefficients into POSs 

coefficients. Finally Table (6.3) shows the results obtained to find the optimal 

polarity for some Boolean functions. The CPU time for most of the circuits is nearly 

zero, which reflects the efficiency of the algorithms and Improv. (%) represents the 

average saving in terms between polarity zero and the optimal polarity which is 

based on the following formula: 

I T Initi. Terms - DRM. Terms 100°/ mprov. erms = x /0 

Initi. Terms 

The CPU-time for chapter 6 is much less than the CPU-time for chapter 5, also for 

functions with variable number n greater than 14, algorithms in chapter 5 had failed 

to give results. Therefore, algorithms presented in this chapter is much more efficient 

than algorithms for chapter 5 in terms of CPU-time and large number of variables. 
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Table 6.1: 

Conversion table from POS to PPDRM 

Chapter 4 Chapter 4 

Init. terms PPDRM PPDRMTerms CPU-Time Chapter 6 

Name n CPU-Time 
inPOS Terms 

ConI 7 88 9 9 0.00 0.000 

Rd84 8 136 37 37 0.05 0.000 

Clip 9 480 92 92 0.00 0.000 

Ex1010 10 142 480 480 0.01 0.000 

F12t 12 1984 365 365 0.02 0.01 

F13t 13 4152 127 127 0.10 0.04 

F14t 14 16172 65 127 0.711 0.521 

F15t 15 5792 3100 3100 0.54 3.695 

spla 16 5348 517 517 0.931 1.843 

Table5 17 28552 3359 3359 9.845 162.85 
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Table 6.2: 

Conversion table from PPDRM to POS 

PPDRM POS 
Name n Time (s) 

Terms Terms 

Clip 9 92 480 0.000 

ConI 7 9 88 0.000 

Ex1010 10 480 142 0.010 

Rd84 8 37 136 0.000 

Table3 14 2528 1859 1.29 

Table5 17 3359 28552 4.927 
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Table 6.3: 

Optimal Polarity for DRM forms 

PPDRM CPU Time DRM 
DRM-

Name Terms 
Optimal Improv. 

for 
Terms 

n Time Terms 

polarity 0 
Polarity (%) 

Ch- 5 Ch-6 Ch-6 
Ch- 5 

ConI 7 9 23 11.1 0.000 0.000 8 8 

Rd84 8 37 128 21.6 0.000 0.000 29 29 

Clip 9 92 496 31.5 0.031 0.000 63 63 

Ex1010 10 480 2 11.2 1.061 0.000 426 413 

F12t 12 143 2868 9 3.455 0.D1 130 127 

F13t 13 127 4800 48 4.16 0.01 65 65 

F14t 14 625 5587 89 260.07 0.031 66 66 

Misex3 14 913 12505 89 - 0.030 95 -

F15t 15 3100 29412 88 - 0.241 365 -

spla 16 517 3584 35.4 - 0.040 334 -

Table5 17 3359 21760 55.5 - 0.531 1494 -

tRandomly generated Boolean functions 
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6.5 Summary 

To find the best polarity, it is required in general to search among 2n different 

polarities, 

for large number of variables, this would be impractical, and it would require a long 

CPU time to search for the best polarity. Therefore, new algorithms have developed 

in this chapter which could handle a large number of variables to find the optimal 

polarity among the 2 n different polarities without searching for each polarity. The 

algorithms can be used to convert from POSs to FPDRM and find the optimal 

polarity for large number of variables. The algorithms are based on the truth vector 

of the POS function. The truth vector is separated around each variable (xD into two 

parts. The first part includes the coefficients of un-complemented Xi while the second 

part includes the complemented part of variable Xi. Following the procedure which is 

described in sections 6.2 and 6.3 respectively, the following can be obtained. 

I. The coefficients of the PPDRM or the FPDRM forms can be computed 

directly from the truth table ofPOS. 

II. The optimal polarity with the minimum number of sum terms for any n

variable function can be obtained directly. 

Thus, time efficiency and computing speed are thus achieved in this technique. 



Chapter 7 

Conclusions and future work 

The aim of the research is to develop a variety of algorithms for the synthesis and 

optimization for both types of Reed-Muller and Dual Reed-Muller logical 

expressIOns. 

7.1 Conclusions 

The main contribution in this thesis can be outlined as follows. 

~ In chapter 2, a novel, fast, computational technique for converting between 

Boolean functions in SOP form and FPRM expressions has been presented. 

This method is based on partitioning the Reed-Muller transformation matrix 

into vertical and horizontal layers. Sparse technique is used also to store the 

non-zero elements instead of storing the whole matrix. The algorithm is 

extended to convert between multi output SOP expressions and multi output 

FPRM expressions. The algorithm is implemented in C language. The 

program is tested on personal computers and the results for some 

benchmark functions of up to 20 inputs and 40 outputs are presented. The 

experimental results reflect the efficiency of the algorithm in terms of CPU 
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time and using less memory space to store the transformation matrix. The 

conversion time for functions with n equals 15 and outputs equals to 28 was 

less than 4.7 seconds. The other main advantage of the algorithm is its 

ability to handle large number of outputs, because the algorithm is not 

required to do any more calculations, except incrementing a counter for 

each new function. 

~ Chapter 3 presents the Dual Reed-Muller expressions, which are based on 

ORlXNOR operations. Any n-variable Boolean function in the Product of 

Sums form can be expressed by 2/l Fixed Polarity Dual Reed-Muller forms. 

Chapter three covers the basic theory and notations which are used in the 

Dual Reed-Muller form. It also introduced new operations which can be 

used to describe the Dual Reed-Muller form in 0 rder to convert between 

Product of Sums and Dual Reed-Muller form for single and multi output 

functions. An algorithm is developed based partitioning and Sparse 

methods. Algorithms were implemented using C language. The 

experimental results reflect the efficiency of the algorithms in terms of CPU 

time and memory size. 

~ In chapter 4, a new fast algorithm is introduced to convert between Product 

of Sums and Dual Reed-Muller forms without generating or using the Dual 

Reed-Muller transformation matrix. This facilitates efficient conversion 

between Product of Sums and Fixed Polarity Dual Reed-Muller (FPDRM) 

forms. New algorithm is presented for bidirectional conversion between the 

two forms. The algorithm starts by storing the off-set of the truth vector of 

the Product of Sums and uses two simple equations (4.15, 4.17) to calculate 

each coefficient of the Dual Reed-Muller expression. The algorithm is 

implemented in C language. Experimental results show that the algorithm is 
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very efficient in terms of space and CPU time. For Boolean functions with 

n equals 16, the CPU time was less than one second. 

~ The optimization of Fixed Polarity Dual Reed-Muller (FPDRM) 

expansions, require the search for the best function among the 21! fixed 

polarities to find the FPDRM with the least number of Sums. The classical 

exhaustive method for finding the best polarity requires the computation of 

the 211 FPDRM expansions from a Product of Sums expression using one of 

the conversion methods given previously. Then exhaustive search method is 

applied to find the best FPDRM with the least number of sums or with the 

least number of XNOR gates. In order to avoid all these disadvantages, a 

new, efficient algorithm is presented in chapter 5 to generate all the polarity 

sets from any polarity set q for a single output Boolean function. The 

algorithm is based on the dual property and the Gray code strategy. Time 

efficiency and computing speed were achieved in this technique because the 

information in finding FPDRM expansion of one polarity is utilized by 

others. Therefore, two-fixed polarities can be derived from each other 

without the need to go back to the original Boolean function in the Product 

of Sums form, if the two polarities are dual. The program is developed and 

implemented in C language. Test results for benchmark and some random 

examples of up to 13 inputs are given. 

~ To reduce the search time for finding the optimal Fixed Polarity Dual Reed

Muller for large input variables, two new, efficient, algorithms are 

presented in chapter 6. The first algorithm is used to convert between POSs 

and FPDRM, while the second algorithm is used to find the optimal polarity 

among the 21! different polarities for large n-variable functions directly 

without involving exhaustive search. The algorithms are based on Boolean 

matrix representation and maxterm separation techniques. The second 

technique used in the algorithms is sparse technique, were only the zero 
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coefficients are stored (saved) in order to reduce the memory size. The new 

algorithms are implemented in C language. The programs are tested on 

personal computers and the results for some benchmark functions of up to 

17 variables are given. The CPU time for finding the optimal polarity for n 

equals 17 is less than 0.55 seconds. Time efficiency and computing speed 

are thus achieved in this technique. 

7.2 Future Work 

The above work can be further generalized and improved along the following lines. 

~ The conversion algorithm for single output functions, presented in chapter 

four, has been successfully tested for n equals to 17 variables. This 

algorithm can be further improved and generalised for multiple output 

Boolean functions based on the same strategy. 

~ The exact polarity optimization method in chapter five can be utilized for 

incompletely specified Boolean functions. 

~ The conversion and the optimal polarity optimization algorithm for single 

output functions, presented in chapter 6, can be further generalized to 

incompletely specified Boolean functions. It can be extended also to 

minimize multiple outputs fixed and mixed polarity Dual Reed-Muller 

forms. 

~ The algorithms can form part of Electronic Computer Aided Design 

(ECAD) package for the synthesis and optimization of large logic 

functions and used as a front end in commercial tools. 
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Appendix A 
This section describes the input files that were used in the programmes and some 

information on how to run the programmes. 

The input file should be given in the following form: 

Table A.1: File-1 

.i4 
.0 1 

.ilb fb c d a h g 
.ob ill f1 

.p 
00001 
0001 0 
00100 
0011 1 
01000 
0101 1 
01101 
0111 0 
10000 
1001 1 
1010 1 
1011 0 
1100 1 
1101 0 
11100 
11111 

.e 

The minimum required set of keywords is .i ,.0 and.e (.end) for binary-valued 

functions using PLA description. 

Where 

.i [d] specifies the number of input variables . 

• 0 [d] specifies the number of output functions . 

. e (.end) specifies the end of the PLA description. 



Running the programmes 

The following commands are necessary to run the programmes in this disk 

InputFile 

OutputFile 

- name of the file with the input data, 

- name of the output file to store the results of the programme. 
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For example: using the first programme from chapter 6 (separationl) to convert 
from product of sums to positive polarity Dual Reed-Muller form using zero polarity 
using table A.l. 

The user needs to specify the input file name (File-I), polarity number (for example 
zero) and the output file name (c:\testtxt). 

The out put of this programme is given as follows: 

Number of variables = 4 
Number of Dual Reed-Muller coefficients = 4 

7 
11 
13 
14 

Therefore, the Dual Reed-Muller coefficients are (7, 11, 13, 14) and Dual Reed
Muller function is: 
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Decimal-
f 

Fast-Algm 
Exact-Algm 

Optimal-
value X3X2X j XO P=O Algm 

0 0000 1 
1 0001 0 
2 0010 0 
3 0011 1 
4 0100 0 
5 OlOl 1 
6 0110 1 
7 0111 0 7 7 7 
8 lOOO 0 
9 1001 1 
10 10lO 1 
11 1011 0 11 11 11 
12 1100 1 
13 1101 0 13 13 13 
14 1110 0 14 14 14 
15 1111 1 
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Disk containing the programs 

The following programs are developed in this thesis and written in C language. 

1 Polarity conversion program (Chapter-2): This program reads the information 

from a benchmark (PLA-file), by storing the coefficients of the SOP in a vector. 

Then converts SOP coefficients to FPRM form. More details on this programme 

can be found in chapter 2. 

2 Polarity converSIOn between POS and FPDRM (Chapter-3). This program 

converts between POS and FPDRM forms using sparse and partitioning techniques. 

More details on this programme can be found in chapter 3. 

3 Polarity converSIOn between POS and FPDRM (Chapter-4) usmg fast 

transformation method. More details on can this programme be found in chapter 4. 

4 Exact minimization of the FPDRM (Chapter-5) forms. This program finds the 

best polarity for FPDRM forms, which leads to FPDRM expression with the 

minimum number of sums. More details on this programme can be found in chapter 5. 

5 Polarity conversion between POS and FPDRM (Chapter-6) forms. The program 

converts and finds the optimal polarity among the 2/1 different polarities for large n

variable functions, without generating all of the polarity sets. More details on this 

programme can be found in chapter 6. 


	414367_0001
	414367_0001a
	414367_0002
	414367_0003
	414367_0004
	414367_0005
	414367_0006
	414367_0007
	414367_0008
	414367_0009
	414367_0010
	414367_0011
	414367_0012
	414367_0013
	414367_0014
	414367_0015
	414367_0016
	414367_0017
	414367_0018
	414367_0019
	414367_0020
	414367_0021
	414367_0022
	414367_0023
	414367_0024
	414367_0025
	414367_0026
	414367_0027
	414367_0028
	414367_0029
	414367_0030
	414367_0031
	414367_0032
	414367_0033
	414367_0034
	414367_0035
	414367_0036
	414367_0037
	414367_0038
	414367_0039
	414367_0040
	414367_0041
	414367_0042
	414367_0043
	414367_0044
	414367_0045
	414367_0046
	414367_0047
	414367_0048
	414367_0049
	414367_0050
	414367_0051
	414367_0052
	414367_0053
	414367_0054
	414367_0055
	414367_0056
	414367_0057
	414367_0058
	414367_0059
	414367_0060
	414367_0061
	414367_0062
	414367_0063
	414367_0064
	414367_0065
	414367_0066
	414367_0067
	414367_0068
	414367_0069
	414367_0070
	414367_0071
	414367_0072
	414367_0073
	414367_0074
	414367_0075
	414367_0076
	414367_0077
	414367_0078
	414367_0079
	414367_0080
	414367_0081
	414367_0082
	414367_0083
	414367_0084
	414367_0085
	414367_0086
	414367_0087
	414367_0088
	414367_0089
	414367_0090
	414367_0091
	414367_0092
	414367_0093
	414367_0094
	414367_0095
	414367_0096
	414367_0097
	414367_0098
	414367_0099
	414367_0100
	414367_0101
	414367_0102
	414367_0103
	414367_0104
	414367_0105
	414367_0106
	414367_0107
	414367_0108
	414367_0109
	414367_0110
	414367_0111
	414367_0112
	414367_0113
	414367_0114
	414367_0115
	414367_0116
	414367_0117
	414367_0118
	414367_0119
	414367_0120
	414367_0121
	414367_0122
	414367_0123
	414367_0124
	414367_0125
	414367_0126
	414367_0127
	414367_0128
	414367_0129
	414367_0130
	414367_0131
	414367_0132
	414367_0133
	414367_0134
	414367_0135
	414367_0136
	414367_0137
	414367_0138
	414367_0139
	414367_0140
	414367_0141
	414367_0142
	414367_0143
	414367_0144
	414367_0145
	414367_0146
	414367_0147
	414367_0148
	414367_0149

