
New Crossover Operators for Timetabling with Evolutionary
Algorithms

Rhydian Lewis and Ben Paechter
Centre for Emergent Computing,

School of Computing, Napier University,
10 Colinton Rd, Edinburgh, EH10 5DT, Scotland, UK.

{r.lewis|b.paechter}@napier.ac.uk

Abstract: When using an evolutionary algorithm (EA) to optimise a population of feasible course
timetables, it is important that the mutation and crossover operators are designed in such a way so
that they don’t produce unfeasible or illegal offspring. In this paper we present some specialised,
problem specific genetic operators that enable us to do this successfully, and use these in conjunction
with a steady state EA to solve the University Course Timetabling Problem (UCTP)1. We introduce a
number of different crossover operators, each of which attempts to identify useful building blocks
within the timetables, and investigate whether these can be successfully propagated through the
population to encourage the production of high quality solutions. We test the effectiveness of these
crossover operators on twenty well-known problem instances and present the results found. Whilst the
results are not state-of-the-art, we make some interesting observations on the nature of the various
crossover operators and the effects that they have on the evolution of the population as a whole.

Keywords: Genetic Algorithms, Evolutionary Computation, Timetabling, Scheduling, Optimisation.

1. Introduction

Timetabling is NP-hard in almost all variants and is a problem that can take many forms such as exam
[3, 8], school [1, 5] and university [2, 4, 6, 7, 10]. Due to various quirks and characteristics of these
three types we tend to view them as separate problems. Consequently they are approached and solved
in different ways. As well as this, the process of timetabling may also be classified as a search
problem and/or an optimisation problem – the former is concerned with finding a timetable that
satisfies all its constraints [1, 9], the latter with forming a timetable that satisfies its hard constraints
and minimises an objective function that embeds a set of soft constraints [2, 4, 5, 6, 7, 10].

The International Timetabling Competition organised by the Metaheuristic Network in 2002-3
presented a simplified (but still NP-hard) version of a UCTP along with 20 input instances. A
competition was then run to see who could produce the best timetables over all the inputs using just
one algorithm. Various metaheuristc and hybrid approaches were presented, some of which can be
found in [2] and [4]. Two interesting points about the results of this competition were (1) the best
algorithms all used a two-stage approach where feasibility of the timetable was first obtained and then
optimality was sought (using various search methods), whilst always remaining in feasible search
space, and (2) none of the entries to the competition made use of an EA2. We therefore propose an EA
that starts with a population of feasible timetables and then evolves, whilst always remaining in the
feasible search space. There already exist some EAs that deal only with the search space of feasible
timetables, most notably by Burke and Weare et al. [3, 8]. However their methods are slightly
different in that they actually leave unspecified the number of timeslots in a timetable, and instead
incorporate this into the objective function (with the aim of reducing it). This research is also directed
towards examination timetabling which, as mentioned earlier, is generally considered to be a different
problem. Enzhe et al. [6] have also presented a two stage EA for a problem similar to UCTP and
introduce the idea of sector-based crossover, something that we will look at in this paper. However the
researchers in this case used their own input and failed to provide comparisons with other works in
order to gauge how effective their EA actually was.

1 As defined for the International Timetabling Competition organised by the Metaheuristic Network in 2002-3 – see the

competition website at - http://www.idsia.ch/Files/ttcomp2002/
2 An EA was presented for this problem before the competition [10], which attempted to solve hard and soft constraints at the

same time by applying weightings to hard constraints, but it was not particularly successful.

2. Problem Definition.

The input to the problem comprises a set of rooms R = {r1,…,rm}, each with an associated size that
represents the maximum number of students it can hold at any one time. We have a set of timeslots T
= {t1,…,t45}, representing five days of nine slots, and a set of events E = {e1,…,en}. We are also given a
set of students S = {s1,…,sp}, where for each event ei ∈ E we have a set Si ⊆ S which represents the
students that will attend ei. Finally we have a set of features F={f1,…,fq}. Each room rk ∈ R possesses a
set Fk ⊆ F of these features, whilst each event ei requires a subset Fi ⊆ F of these features. The
objective is to assign every event a room and timeslot such that there are no hard-constraint violations
and minimal soft-constraint violations. The hard constraints are (1) No student should attend more
than one event in any one timeslot, (2) each event should be assigned a room that is large enough to
hold all of the attending students, (3) each event should be assigned a room that has at least the
features it requires and (4) only one event should be scheduled in a room at any one time. In this paper
we will say that two events conflict if they have one or more common students. Only if all events are
scheduled and no hard-constraints are violated is the timetable considered feasible.

The soft-constraints are (1) no student has a class in the last timeslot of the day (the last-slot
constraint), (2) no student has more than two classes in a row (the long-intensive constraint) and (3) no
student has just one lesson in a day (the single-event constraint). As we only consider feasible
timetables in this approach, we refer to the total number of soft-constraint violations as our objective
function. The way this value is calculated can be found on the competition web page.

3. The Evolutionary Approach to the Problem

3.1 Chromosome representation.
For our EA we use a direct representation and employ a genetic repair function. An assignment of
events to rooms and timeslots is represented as a matrix Xmµ45 such that rows represent rooms and
columns represent timeslots [4]. In the context of the EA, we refer to each cell as a gene, and an entire
matrix as a chromosome. A gene x(y, z) in X can be blank, or can contain at most one event e∈ E. If
gene x(y, z) contains e, then event e is to be scheduled in room y and timeslot z; if x(y, z) is blank, then
room y is unoccupied during timeslot z. We note that this particular representation disallows the
possibility of assigning more than one event to a room in any timeslot allowing us to disregard the 4th
hard constraint. Additionally, hard constraints 2 and 3 can be easily avoided by ensuring events are
placed on appropriate rows in the matrix. Violations of the remaining constraint are detected by
examining the individual columns of the matrix.
3.2 Forming an initial Population.
To construct an initial population of feasible timetables we use a constructive algorithm similar to the
method outlined in [2]. To start, we construct a list L of all the events in E, with each event also
owning a list specifying all the places to which it can be assigned. The complete set of places P is the
Cartesian product of the timeslot set and the room set P = R × T. Thus an event ei∈ E will have an
attached place list Ki⊆ P that holds all the places where we may feasibly put ei. Obviously at the
outset, we will not yet have assigned any events to places, so each Ki will simply say that ei can be
placed into all suitable rooms in all time slots. To form one feasible timetable we do the following:
1. Determine the event ei in L that has the shortest list Ki. If there is more than one of minimal size,

choose between these randomly.
2. Choose a place for this event by doing the following. For each k∈ Ki, calculate:

• The total number of events left in L that may feasibly be assigned to k (i.e. that have k in their
place list).

• The number of events currently scheduled in the same timeslot as k,
3. Choose the k∈ Ki that minimises the total of these two values. If there is more than one minimum

choose between these randomly.
4. Update the data structures by inserting ei into the timetable at the chosen place and removing all

instances of this place k from the other place lists. Also remove any node from any other event
place list that defines a place in the same timeslot as our chosen place whose event conflicts with
ei. Finally, remove ei from L.

5. If L is not empty, we iterate back to step 1 otherwise we have a feasible solution.
If at some point during this process we encounter an event ei that has an empty place list Ki we
consider ei as unassignable. In this case we start the whole process again with a different random seed.
For the competition problem instances however, this is rarely necessary.

3.3 Crossover Operators.
The purpose of crossover is to encourage the combining of useful groups of genes (building-blocks)
into new and hopefully fitter offspring than the preceding generations. However, when considering
feasible timetables, it is unclear where these building blocks lie and indeed, what actually constitutes a
good one. To investigate this we propose four different methods of crossover, all of which utilise a
similar method of ‘genetic repair’ in order to ensure the feasibility of the resultant offspring. We then
describe how we go about transferring these genes in section 3.3.5, the resultant genetic repair
operator in section 3.3.6 and the mutation operator in section 3.3.7. For ease of reading, we explain
how to make child1 from parent1 and parent2. To make child2 we simply reverse the roles of the two
parents.
3.3.1. Sector-Based Crossover. The first crossover operator explores the idea that there will be
‘sectors’ of a chromosome that will have a strong sub-fitness [6]. That is, areas of the timetable that
may have few soft-constraint violations. We start by making an exact copy of parent1 called child1.
We then choose randomly a sector in parent2 and try to insert each gene within the sector of parent2
into the same gene position in child1. Fig. 1(i) shows the basic idea. We allow wraparound of the
sector to allow greater flexibility and to avoid showing unnecessary bias to genes in the centre of the
chromosome - see fig 1(iii).
3.3.2. Day-Based Crossover. Day-based crossover is a limited version of sector-based crossover
based on the observation that none of the three soft-constraints carry across different days - all the
events in a day may be considered a sub-timetable with all its soft-constraints contained within it. It
might therefore be useful to exploit this fact by trying to insert these sub-timetables into other
timetables to try and promote the good ones in the population. Thus we limit the form that a sector can
take so that it can only contain entire days’ assignments.
3.3.3. Student-Based Crossover. For student-based crossover we calculate all the events that a
randomly chosen student s is scheduled to take (that is, calculate a set E’⊆ E). We now go through
parent2 and try to insert each event e œ E’ into child1 in the position it holds in parent2. See Fig 1(ii).
We consider the personal-timetable of student s to be the timetable that describes only the events that
s attends. Some students will have better personal-timetables than others and so it is reasonable to see
if these can be propagated through the population during evolution.
3.3.4. Conflicts-Based Crossover. Our final operator follows a similar idea to student-based
crossover. This time however we choose an event e at random and calculate the list E’⊆ E that
represents all the events that conflict with e. So, similar to student-based crossover, we are identifying
collections of genes that are related due to common students, and attempting to promote the good ones
in the population. The competition problem instances, just like in real world timetabling situations
have events that conflict due to groups of students taking both events. Thus we hope to be able to
identify building blocks that involve multiple students and therefore arm ourselves with the potential
to alter the objective function to a larger degree.
3.3.5. Inserting Genes into child1. To start, child1 will be an exact copy of parent1. The
recombination operator of choice will define a set of genes in the parent2 that we wish to insert into
child1 and the positions we wish to put them. We now attempt to insert these whilst always
maintaining feasibility. Going through each gene in turn, there are four things that can happen.
Let e, g œ E such that e∫ g and let (x, y) define the gene’s coordinates.
1. Parent2(x, y) = child1(x, y). In this case we do nothing.
2. Parent2(x, y) is blank, child1(x, y) contains e. In this case we make child1(x, y) blank, and attempt

to find a new place for e using the genetic repair function (see section 3.3.6).
3. Parent2(x, y) contains e, and child1(x, y) is blank. In this case we first delete the occurrence of e in

child1. Next, we insert e into child1(x, y). If this maintains feasibility of column y then we accept
the move and end. Otherwise we reset the change and we consider this particular insertion as
having failed.

4. Parent2(x, y) contains e, and child1(x, y) contains g. In this case we first delete the occurrence of e
in child1. Next, we insert e into child1(x, y). If this makes column y infeasible then we reset the
change and end. Otherwise we need to find a new place for g using the genetic repair operator
(section 3.3.6).

Fig. 1. (i) Sector-based crossover, (ii) Student and Conflicts-based crossover (iii) Varying ways a
sector can wraparound.

3.3.6. The Genetic Repair Function. In our methods of crossover we often have a situation during
gene transfer where we have an unplaced event e. The genetic repair function is responsible for
finding a new place for e that preserves feasibility. Let the coordinates (x, y) indicate the original
position of e. We find a new position for e by searching horizontally along row x looking for a blank
gene in which to insert e without making the timetable infeasible. Note that we already know the room
defined by row x to be feasible for e, so once again we only need to check for violation of hard-
constraint 1. If we cannot find a position for e in row x, we can go on to check any other rows (if there
are any), which define other feasible rooms for e. We continue this process either until a new place for
e is found, or until all free feasible places have been tried and we still cannot find anywhere suitable.
In the latter case, the process has failed - we reset the timetable to its previous state and move on.

Although seemingly straightforward, this method does invoke one additional problem that
needs addressing. Generally a good timetable, according to soft-constraint 1 should not have many (if
any!) events scheduled in the last-slots of each day. Using our form of repair, there will be a tendency
to want to put e into these last-slots. The reasons for this are twofold. (1) The columns which define
the last-slots in a good timetable will contain a higher than usual number of blank genes and (2)
because there are less events in these columns, there is a smaller probability that there will be an event
here that will clash with e. To produce good offspring by crossover, we really want to show prejudice
towards placing events in these columns. We therefore introduce the parameter ls (where 0§ ls< 1)
that we keep at a relatively low value which defines the probability of us allowing an event to be put in
one of these penalised slots each time our repair function encounters one
3.3.7. Mutation Operator. The mutation operator selects two genes x(a, b) and x(c, d) in the
chromosome at random such that x(a, b) ∫ x(c, d), and swaps them. We note that mutations may result
in violations of hard-constraints 1, 2 and/or 3. If this happens, we reset the swap, and select another
two genes, repeating this process until we find a swap that maintains feasibility. As we run the risk of
an infinite-loop here, we limit the number of attempted swaps to 1000 (although in practice, with the
instances used this was never reached).

4. Experiments and Results

Experiments were carried out to compare the effectiveness of the various crossover operators. The 20
problem instances for the competition were used. In all cases we used population sizes of 100, binary
tournament selection with a selection bias of 0.75, and a crossover rate of 0.75. A steady state
population was used with an elitist replacement strategy whereby an offspring always replaced the
weakest individual in the population. The mutation rate was controlled by two parameters – nm and
mr. Every time we produce an offspring, a loop is performed nm times, and in each loop we choose
whether to mutate the chromosome or not with a probability mr. The parameter nm was started at 2
and was increased by 1 every n generations (where n is the number of events). The parameter mr was
kept constant throughout at 0.75. Finally, ls was set to 0.05. Two sets of control experiments were also
performed - the first used no crossover at all (i.e. the population was evolved using mutation
reproduction and selection), the second just selected some genes randomly in each of the parents and

(iii) (i) (ii)

Fig 2. Objective Function Vs Generations
for various Crossovers on Instance 19.

transferred them in the usual manner3. We call these mut and rand respectively. Although we spent
some time experimenting with various parameter settings, the values used in these experiments should
not be assumed optimal in any case.

5. Conclusions and Discussion

Table 1 displays the results
of our experiments for each
crossover operator (sector,
day, student, conflict, mut.
and rand. respectively) and
for each problem instance.
Ten trials were carried out
and we present the score
(Sco.) of the best timetable
found in each run, averaged
over the ten trials. We also
present the average number
of generations the population
was able to evolve for within
the competition time limit
(Gens.) and the percentage of
the total time that it took to
produce the initial population

(Init Pop %). Fig. 2 shows a
typical run of the EA and the
different effects that the

crossover operators had upon the objective function within the time limit. It can be seen here that some
of the crossover operators allow more generations to be produced within the time limit than others.

 The first thing to notice from table 1 is that conflicts-based crossover (conf.) seems to be on
the whole, the more effective crossover method. This is reflected in the number of instances where it
produced the best result, and also in the total score for the 20 instances. However this is also the
operator that tends to transfer the largest number of genes per crossover so there is the possibility that
this recombination operator might just be chancing upon good results due to it taking larger steps in
the search space than the others (as opposed to
propagating useful building bocks). However, this
theory is contested by the corresponding results of the
second control group (rand), which in most cases is
outperformed. An interesting observation is that when
conflicts-based crossover is outperformed it is always
with a problem instance where the solution has been
able to evolve for a large number of generations within
the time limit, and by sector-based crossover or rand.
We suggest that this is due to the fact that these two
operators generally offer more flexibility in what
genes can be selected for crossover, and consequently
manage to avoid population convergence for longer. This hypothesis is also backed up by the fact that
day-based crossover, a considerably inflexible operator, performs very badly in most cases. In
conclusion then, the selection and propagation of appropriate building blocks does allow us to move
into good areas of the search space in less generations (as demonstrated by student and conflicts-based

3 As we will see, conflicts-based crossover was usually the best, but this might’ve simply been occurring because more genes

on average were being transferred during crossover than the other crossover operators. To investigate this phenomenon we
kept the number of genes selected for crossover with the second control (rand) similar to the number of genes selected, on
average, with conflicts crossover.

 Sec. Day Stu. Conf. Mut. Rand.
Init

Pop %
Gens. Sco. Gens. Sco. Gens. Sco. Gens. Sco. Gens. Sco. Gens. Sco.

1 2.4 2746 307 2737 320 2570 293 2225 288 2715 318 2209 295
2 2.9 2595 260 2589 271 2414 282 2091 266 2571 264 2075 269
3 3.4 2354 322 2332 377 2180 339 1869 330 2316 327 1873 327
4 4.2 962 688 956 741 931 692 851 679 950 710 859 689
5 2.8 1905 561 1853 571 1772 565 1543 557 1844 573 1530 583
6 5.5 954 549 949 637 904 548 814 532 936 614 817 537
7 6.1 404 468 537 507 469 456 410 430 408 513 374 445
8 4.2 1400 319 1259 365 1084 310 577 305 1259 376 415 328
9 4.2 1562 330 1569 373 1487 301 1332 283 1556 371 1325 300
10 3.3 2218 332 2217 323 2095 319 1823 316 2196 336 1811 311
11 2.9 2260 340 2251 346 2117 329 1846 330 2211 347 1846 328
12 2.6 2491 379 2491 370 2338 366 2053 373 2476 385 2040 350
13 3.2 1734 475 1727 510 1644 464 1484 420 1721 507 1469 433
14 5.9 606 479 612 511 590 506 458 469 610 503 542 486
15 3.5 1252 421 842 446 759 412 659 400 681 448 574 419
16 5.2 1222 321 1218 324 1155 309 1031 302 1211 329 1028 308
17 2.2 1030 521 2015 563 1902 545 1669 548 2003 539 1672 542
18 2.4 2772 260 2762 282 2588 255 2247 256 2743 270 2228 254
19 6.6 541 596 543 590 527 569 490 550 457 584 488 566
20 5.7 765 447 687 505 292 481 277 424 578 524 596 442

Total Score 8375 8932 8341 8058 8838 8212

400

600

800

1 600Generations

O
bj

. F
n.

Sec. Day
Stu. Mut.
Rand. Conf.

Table 1: Comparison of the different crossovers and control groups
with the 20 competition input instances.

crossover) but it also imposes a certain inflexibility as to what genes we can select, which may cause
earlier convergence in some cases (as indicated when the sector or random-based crossover produced
the best result). A possible downfall of this approach is that complete building blocks of genes can
sometimes not be fully injected into offspring due to the failure of the repair operator from time to
time. Similarly, the repair operator will also sometimes need to introduce foreign genes in order to
keep a timetable complete, which can also have an effect of disrupting other building blocks.

Although these results are not state-of-the-art, we have still made useful observations on the
nature of the different crossover operators. With careful consideration of what constitutes a good
building block, and by the use of appropriate operators that preserve feasibility we can see that good
progress can be made through the search space. We also believe that these results could be
substantially improved by the introduction of local search at various points [4, 7] and/or the use some
sort of smart-mutation (e.g. [9]), although in order not to cloud any of the conclusions that we have
drawn here in regards to the various crossover operators, we leave this for later experiments.

Finally, as with the methods described in [3, 6, 8], the approach outlined here depends very
much on being able to produce large numbers of diverse, feasible timetables in reasonable time, and to
consistently preserve this feasibility during crossover and mutation. The competition problem
instances allow us to achieve this. In reality there will of course be instances that are so heavily
constrained that this may not be possible. It is envisaged that harder instances would also cause
problems with the genetic-repair function because the rate at which the process fails would increase,
perhaps to a point where we were stopped from doing anything particularly useful.

References

[1] D. Abramson & J. Abela (1991). A Parallel Genetic Algorithm for Solving the School Timetabling
Problem. Technical report, Division of Information Technology, C.S.I.R.O, 1991.

[2] H. Arntzen & A. Løkketangen (2003). A tabu search heuristic for a university-timetabling
problem. MIC 2003, Fifth Metaheuristics International Conference pp02-1, 02-7.

[3] E. Burke, D. G. Elliman, and R. F. Weare (1995). Specialised recombinative operators for
timetabling problems. In T. C. Fogarty (ed), AISB Workshop on Evolutionary Computing. LNCS
993, pp. 75-85. Springer-Verlag, Berlin, 1995.

[4] M. Chiarandini, K. Socha, M. Birattari, and O. Rossi-Doria (2003). An effective hybrid approach
for the university course timetabling problem. Technical Report AIDA-2003-05, FG Intellektik,
FB Informatik, TU Darmstadt, Germany, 2003.

[5] A. Colorni, M. Dorigo and V. Maniezzo (1992). A genetic algorithm to solve the timetable
problem. Technical report. 90-060 revised, Politecnico di Milano, Italy 1992.

[6] Yu Enzhe & Ki-Seok Sung (2002). A Genetic Algorithm for a University Weekly Courses
Timetabling Problem. International transactions in Operational Research 9 pp 703 – 717, 2002.

[7] B. Paecher, R. C. Rankin, A. Cumming, T. C. Fogarty. Timetabling the Classes of an Entire
University with an Evolutionary Algorithm (1998). T. Beck, M. Schoenauer (eds.), Parallel
Problem Solving from Nature PPSN V. Springer-Verlag, Berlin, 1998.

[8] R. Weare, E. Burke and D. Elliman (1995). A Hybrid Genetic Algorithm for Highly Constrained
Timetabling Problems, in Eshelman (ed) Proceedings of the Sixth International Conference on
Genetic Algorithms, pp. 605-610, Pittsburg, Morgan Kaufmann, 1995.

[9] Peter Ross, Dave Corne, and Hsiao-Lan Fang. (1994). Improving evolutionary timetabling with
delta evaluation and directed mutation. In Davidor, Schwefel, and Manner (eds), Parallel Problem
Solving in Nature, PPSN III. Springer-Verlag, Berlin, 1994.

[10] Rossi-Doria, O., Sampels, M., Birattari, M., Chiarandini, M., Dorigo, M., Gambardella, L.M.,
Knowles, J., Manfrin, M., Mastrolilli, M., Paechter, B., Paquete, L., Stützle T. (2002) A
comparison of the performance of different metaheuristics on the timetabling problem. In Burke
and De Causmaecker (eds) The Practice and Theory of Automated Timetabling IV: 4th
International Conference, PATAT 2002. LNCS 2740. pp. 329-351. Springer-Verlag, Gent 2004.

