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Abstract 

Considerable progress has been made recently 1n the understanding of 

combinational logic optimization. Consequently a large number of university 

and industrial Electric Computing Aided Design (ECAD) programs are now 

available for optimal logic synthesis of combinational circuits. The progress 

with sequential logic synthesis and optimization, on the other hand, is 

considerably less mature. 

In recent years, evolutionary algorithms have been found to be remarkably 

effective way of using computers for solving difficult problems. This thesis is, 

in large part, a concentrated effort to apply this philosophy to the synthesis 

and optimization of sequential circuits. 

A state assignment based on the use of a Genetic Algorithm (GA) for the 

optimal synthesis of sequential circuits is presented. The state assignment 

determines the structure of the sequential circuit realizing the state machine 

and therefore its area and performances. The synthesis based on the GA 

approach produced designs with the smallest area to date. Test results on 

standard fmite state machine (FS:M) benchmarks show that the GA could 

generate state assignments, which required on average 15.44% fewer gates 

and 13.47% fewer literals compared with alternative techniques. 

Hardware evolution is performed through a succeSSlOn of 

changes/reconfigurations of elementary components, inter-connectivity and 

selection of the fittest configurations until the target functionality is reached. 

The thesis presents new approaches, which combine both genetic algorithm 

for state assignment and extrinsic Evolvable Hardware (EHW) to design 

sequential logic circuits. The implemented evolutionary algorithms are able to 

design logic circuits with size and complexity, which have not been 

demonstrated in published work. 

There are still plenty of opportunities to develop this new line of research for 

the synthesis, optimization and test of novel digital, analogue and mixed 

circuits. This should lead to a new generation of Electronic Design 

Automation tools. 
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TERMINOLOGY USED IN THE THESIS 

Logic design: A design as a network of logical components 

Logic synthesis: A usual way of carrying out logic design in which gates are 
generation from an abstract behavioural/ structure description. 

Netlist: A complete structural description of a circuit, which is ready to 
implement. 

Combinational circuit: 
A circuit is combinational if it computes a function, which depended only on 
the inputs applied to the circuit; for every input value, there is a unique output 
value. 

Sequential circuit 

Sequential circuits are basically combinational circuits with additional storage 
elements and feedback. 

State minimization: Combine equivalent states of a state machine to reduce the 
number of states. For most cases, minimizing the states results in smaller 
logic, although this is not always true. 

State assignment. Assign a unique binary code to each state of a finite state 
machine. State a collection of state variable whose value at anyone time 
contains all the information about the past value necessary to account for 
future behaviour. 

An evolved logic circuits: A logic circuit is evolved mean that the evolutionary 
algorithm started with randomly generated non-functional circuit and through 
evolution, finds a fully functional circuit. The circuit is evolved based on the 
test-and-assemble method. 

Evolvable Hardware 

A function set of logic gates, is a set of logic gates from which the circuit can be 
assembled. For example the AND-OR, the function set of logic gates 
contains AND, OR and NOT logic gates. In evolvable hardware any set of 
logic gate can be chosen. Each logic gate in a functional set of logic gates is 
encoded with integer. 



Adaptation 
The process of generating a set of behaviours that more closely match or 
predict a specific environmental regime. An increased ecological-physiological 
efficiency of an individual relative to others in the population. The response 
of an organism to the present stimulus and its present state. It is the total sum 
of behaviours of an organism that define the fitness of the organism to its 
present environment; thus it is the operative function against which selection 
operates. 

allele 
One of a set of possible values for a gene. In a binary string genome, the 
alleles are 0 and 1. 

Chromosome 

Rod-shaped bodies in the nucleus of cells, most visible particularly during cell 
division, which contain the hereditary units or genes. A data structure (e.g. 
binary bit-string or an array of integers), which holds a "string" of task 
parameters, or genes. In evolutionary algorithms, chromosome is often used 
to refer to a genome. 

Crossover 

In genetic algorithms, a reproduction operator which forms a new 
chromosome by combining parts of each of two "parent" chromosomes. 

Ecosystem 

Biological community of interacting orgarusms and their physical 
environment. 

Evolution 

The process of change which is assured given a reproductive population in 
which there are (1) varieties of individuals, with some varieties being (2) 
heritable, of which some varieties (3) differ in fitness (reproductive success). 

Evolutionary algorithms 

Search and optimisation techniques based on the principles of natural 
evolution. 

Evolution strategy 
A type of evolutionary algorithm developed in the early 1960s in Germany. It 
employs real-coded parameters, and in its original form, it relied on mutation 
as the search operator and a population of size one. Since then it has evolved 
to share many features with genetic algorithms. 
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Evolutionary computation 
Encompasses methods of simulating evolution on a computer. 

Extrinsic EHW the evolution is simulated in software, and only the elite 
chromosome (i.e. the configuring bit string) gets written. Thus the circuit is 
configured only once. 

Exploration 
The process of visiting entirely new regions of search space, to see if anything 
promising may be found there. 
Exploitation: Local search. 
Exploration: Global search. 

Fitness 
A summation of the quality of environmental prediction by an organism 
throughout its range of regimes. The probability of or propensity for survival 
of an individual or population. A value assigned to an individual who reflects 
how well the individual solves the task at hand. 

Genetic programming 
Genetic algorithms applied to programs. Genetic programming is more 
expressive than fixed-length character string genetic algorithms, though 
genetic algorithms are likely to be more efficient for some classes of 
problems. 

Gene 
A unit of heredity located on a chromosome and composed of DNA. Gene is 
the smallest unit in a genome. In a binary string genome, the bits are genes. 
In an array of characters, each character in the array is a gene. 

Genetic operator 
A search operator acting on a coding structure that is analogous to a genotype 
of an organism (e.g. a chromosome). 

Genotype 
The sum of inherited characters maintained within the entire reproducing 
population. Often also used to refer to the genetic constitution underlying a 
single trait or set of traits. 

Heredity 
The transmission of characteristics from parent to offspring through the 
gametes. 

Hyperspace 
A Cartesian co-ordinate space of high dimension, typically higher than three 
dimensions. 
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Individual 
A single member of a population. In evolutionary computation, each 
individual represents a potential solution to the problem. 

Intrinsic EHW the circuit gets configured for each chromosome for each 
generation (on-line). 

Mutation 
A reproduction operator, which forms a new individual by making alterations 
(usually small) to the parent. 

Natural selection 
The result of competitive exclusion as orgarusms fills the available finite 
resource space. 

Netlist 
For an electronic circuit is a data structure consisting of unordered list that 
define both topology and sizing of the circuits. 

Normal distribution 
A probability distribution that approximates a bell-shaped curve in shape. 

Offspring 
An individual generated by any process of reproduction. 

Phenotype 
The behavioural expression of the genotype in a specific environment. The 
realised expression of the genotype. 

Pleiotropy 
The capacity of a gene to affect a number of different phenotypic 
characteristics. 

Poisson distribution 
A discrete probability distribution commonly used to define arrivals 1n a 
queuing system. 

Polygeny 
The circumstance where a single phenotypic is affected by multiple genes. 

Population 
A group of individuals which may interact together, for example, by 
producing offspring. 

Probabilistic 
Models developed under conditions of uncertainty. 
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Reproduction 
The creation of a new individual from two parents (sexual reproduction). 
Asexual reproduction is the creation of a new individual from a single parent. 

Reproduction operator 
A mechanism, which influences the way in which genetic information is 
passed on from parent(s) to offspring during reproduction. Reproduction 
operators fall into three broad categories: mutation, crossover and reordering 
operators. 

Search space 
Generally, if the solution to a problem can be represented using a 
representation scheme R, then the search space is the set of all possible 
configurations, which may be represented in R. 

Selection 
The process by which some individuals in a population are chosen for 
reproduction, typically on the basis of favouring individuals with higher 
fitness. 

Species 
A group of similarly constructed organisms that is capable of interbreeding 
and producing fertile offspring. A population whose members are able to 
interbreed freely under natural conditions. 

Stochastic 
A situation in which imprecise or random events affect values of variables, so 
that results can be given only in terms of probabilities. 
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Chapter 1 

INTRODUCTION 

Chips that evolve and adapt to an environment 
The processor inside a computer is designed to be a jack-ofall-trades and master oj none, as 
people do ma'!)' dijferent things with their computers, from plqying games to word processing. 
However, researchers are currentlY creating computer chips that can adapt themselves to 
particular software called Evolvable Hardware (EHW). Rather than being programmed, 
the chips learn as needed. The first likelY use oj the new chips will be in supercomputers or 
satellites, but eventuallY thry will be used in everydqy computers. 
However, before this happens, the basics oj designing chips using evolution need to be 
mastered. 

1.1 Overview 

Telegraph Connected, 8 April 2000 
www.telegraph.co.uk 

This thesis addresses several problems in sequential circuit optimisation, that 

is, transformations on finite state machines which produce machines having 

equivalent behaviour, but whose implementations are either more 

economical, faster, or both. In particular, the focus of this thesis is a suite of 

algorithms and tools, which synthesize smail, high performance realizations of 

finite state machines, given a suitable specification. 

1.1.1 Objectives 

Biological organisms are among the most intricate structures known to man, 

exhibiting highly complex behavior through the massively parallel cooperation 

of huge numbers of relatively simple elements, the cells. As the development 

of computing systems approaches levels of complexity such that their 

synthesis begins to push the limits of human intelligence, more and more 

engineers are beginning to look at nature to find inspiration for the design. 

This thesis will present one such endeavor, notably an attempt to draw 

inspiration from biology in order to design novel digital circuits, endowed 

with a set of features motivated and guided by the behavior of biological 

systems: selfreplication and selfrepair. 
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The fIrst phase of this research looks at the state assignment problem of 

automated synthesis of synchronized sequential circuits and highlights the 

importance of considering the genetic algorithm and its parameters and how 

it is implemented to solve the state assignment problem for logic synthesis 

and optimisation. The genetic algorithms (GA) approache to state assignment 

has been evaluated by comparing with both industry standard tools and other 

research published in this area [1]. 

The second goal of the research is to develop Evolvable Hardware (EHW) 

approach capable to design practical digital logic circuits. 

In order to achieve this goal it was necessary to: 

1. Investigate the evaluation process in the extrinsic gate-level evolvable 

hardware apparatus 

2. Develop high-level self-adaptive EHW approach 

3. Design an extrinsic EHW approach that is capable of evolving large 

benchmark circuits. 

The proposed approach consists of four mam stages. The fIrst stage is 

concerned with the use of GA for the state assignment problem to compute 

optimal binary codes for each symbolic state to construct the state transition 

table of fmite state machines (FS:M). The second stage defInes the sub circuits 

required to achieve the desired functionality. The third stage evaluates the 

sub circuits using extrinsic Evolvable Hardware. During the fourth stage, the 

fmal circuit is assembled. The obtained results compare favourably with those 

produced by manual methods and other methods based on heuristic 

techniques. 

The focus of the research has mainly been directed towards traditional 

technology and applying evolutionary techniques to evolve new and hopefully 
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better circuits and thus prove the worth of EHW as a design technique. The 

EHW will then be compared with the traditional techniques. 

The motivation behind the study of digital circuit evolution is to design 

circuits that are more efficient than the conventional designs, and then, to 

learn new principles of design. 

Thus new methods and principles of evolving digital circuits are inferred. 

1.1.2 Generalities 

Evolutionary Algorithms, as defined in [2] is a "collection of computational 

search, learning, optimization and modeling methods loosely inspired by 

biological evolution". Some of those methods are evolutionary programming 

(EP) [3], evolution strategies (ESs) [4] and genetic algorithms (GA) [5]. In the 

first part of this research genetic algorithms will be used for solving the state 

assignment problem of finite state machine. A more detailed description of 

the genetic algorithms and their use will be given in chapter 3. It is sufficient 

here to say that since their initial development in the 1970 genetic algorithms, 

as a tool of optimization, have had many successes in solving problems where 

the search space is huge. The fact that they evaluate in parallel many different 

solutions confers on them the ability to solve some optimization problems 

much faster than more conventional optimization techniques. 

In the past, evolutionary algorithms methods have essentially been applied to 

software applications. It is only recently that those methods have been applied 

to the design of hardware circuits. Therefore in the second part of this 

research we use the evolutionary algorithms for the design of circuits. One of 

the main reasons for trying to design hardware circuits using alternative 

methods is to find some better circuits (for example smaller, faster or less 

power than those which could be designed using conventional techniques). 

A circuit designer is limited by the set of mathematical models, the rules and 

techniques that he/she learned, whilst by freely exploring the space of all 

possible circuits new unconventional designs may be found. Of those 
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alternative methods, evolutionary computation, and more precisely genetic 

algorithms, come naturally to mind: they are very efficient methods for search 

in large spaces. The result of applying evolutionary algorithms to the design of 

hardware circuits is named Evolvable Hardware [1, 6]. There are presendy 

two different trends in the field of EHW. On one side there are those who 

believe in a truly unconstrained evolution: the space of all possible circuits is 

freely explored. This approach can lead to spectacular results but also to 

failures. By tackling a too complex task the risks are high to the extent that no 

solution can be found [7]. On the other side there are those who perform 

hardware evolution within some constraints, generally by giving a structure to 

the circuits being evolved, thus reducing the size of the search space. The 

search space being smaller, the evolutionary process can explore it faster than 

with unconstrained evolution [1]. Some very interesting results have also been 

found, such as finding combinational logic circuits using fewer gates than 

what is obtained by using Karnaugh Maps and Boolean algebra or the Quine­

McCluskey procedure [6]. 

Evolutionary techniques reqwre evaluation and modification of large 

populations of individuals until a solution is found. For this reason, 

reprogrammable FPGAs (Field Programmable Gate Array) are usually the 

tool of choice, but not the only one, for EHW implementation [8]. 

1.1.3 Evolutionary Electronics 

Evolution of electronic circuits has been intensively investigated for the last 

decade. Evolutionary Electronics is a research area, which involved 

application of evolutionary algorithms in the domain of electronics. The main 

challenge of the area is the evolution of circuits for industrial applications and 

also to find methods to improve the performance of Evolutionary Algorithms 

in electronic circuit synthesis. 

Evolutionary Electronics Circuit design applies the concepts of genetic 

evolution to the evolution of electronic circuits [9]. The main idea behind this 

research field is that each possible electronic circuit can be represented as an 
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individual or a chromosome of an evolutionary process, which performs 

standard genetic operations over the circuits. Due to the broad scope of the 

area, researchers have been focusing on different problems, such as 

optimization of combinational and sequential digital circuits [1, 10], synthesis 

of digital circuits [11], placement and routing [12], synthesis of passive and 

active analogue circuits [13], synthesis of operational amplifiers [14], and 

transistor size optimisation [15]. Table 1.1 summaries some relevant work on 

evolutionary Electronics. This is not a complete list of research work in the 

area, there are many other no less important work that have not been 

mentioned here. The study attends to identify the research application that 

started innovative trends in this area. 

However, the evolutionary design of digital circuits is a process of evolving 

configurations of logic components for some prespecfied computational 

program. Often the aim is for a highly efficient electronic circuit to emerge in 

a population of instances of the program. Digital electronic circuits have been 

evolved intrinsically [16] and extrinsically [17]. The former is associated with 

an evolutionary process in which each evolved electronic circuit is built and 

tested in hardware, while the latter refers to circuit evolution implemented 

entirely in software using computer simulations. The motivation behind the 

study of digital circuit evolution is to design electronic circuits that are more 

efficient than the conventional designs, and then, to learn new principles of 

design. It is well-accepted fact that to evolve circuits with increasing size is a 

difficult task even for evolution. However, the evolution of small circuits is 

feasible. The studies have revealed that often the evolved solutions are 

unusual in construction, and can be efficient in terms of number of gates 

used. Learning new principles of design is beneficial for the design of 

electronic circuits. Thus new methods and principles of evolving digital 

circuits are inferred. 
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Table 1.1 Some key publications in evolutionary electronics. 

Date Authors Application 

1991 Louis and Rawilis [18] Evolution of basic digital function 

1993 H. De Garis [19] 
Introduction of the concept of 
Evolvable Hardware 

1995 Thompson et al. [9] 
Evolution of a hardware sensorimotor 
control structure 

1995 Hemmi et al. [20] 
used of hardware description language 
to evolve circuits 

1996 Koza et al. [21] 
Evolution of low-pass filter and 
bipolar transistor amplifies 

1997 Miller et al. [6] 
Evolution of novel arithmetic digital 
circuits 

1998 Zebulum et al. [22] 
Evolution of a digital circuit for CPU 
control 

1999 Chongstitvatana et al. [23] 
Learning finite state machine synthesis 
from partial input/ output sequences. 

2000 T. Kalganova [24] 
~~ Design for combinational logic 
ClrCUltS. 

2002 B. Ali et al. [1] Design of sequential logic circuit 
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correct solution by concentrating on too small an area. That is, too much 

exploration means too much time, and too much exploitation means that the 

correct solution may not be found. Striking a good balance between 

exploration and exploitation is critical for a successful search algorithm. 

Wasting time in unpromising areas of the search space may seem a small price 

to pay on the way to find the correct solution. Unfortunately, the size of the 

search space that arise in design domains is often so large that a human 

lifetime is short compared to the time needed by the fastest supercomputer to 

look at a significant fraction of the space. At the other extreme are algorithms 

that do no exploration and have knowledge available to solve the problem 

fast and directly. These algorithms make strong assumption about the search 

space and sufficient exploitable information is available to avoid searching. 

However, because these strong assumptions do not usually hold across­

domain (search space) these algorithms work only on the particular space they 

were designed for and marginally on others. 

In between these extremes of random and/or exhaustive search and no 

search, every other search algorithm makes assumptions of varying kinds 

about search space. These assumptions correspond to knowledge about the 

space and may be correct, incorrect, or misleading, implicit or explicit, and 

known or unknown, when used to search a particular space. This knowledge 

is exploited to guide exploration, speeding up search for generating a search is 

manifested in the set of generated solution. 

Genetic algorithms belong to a class of algorithms, called blind search 

algorithms, which make the assumption that there is enough knowledge to 

compare two solutions and tell which is better [25]. There are different tasks 

when using EHW to evolve: 

1. Because EHW are not subject to the limitations of human designers 

they can thus explore a much larger set of designs, maybe even the 

whole space of all designs (Figure 1.1). 
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Figure 1.1. Space of all designs. 

2. The EHW design space might grasp a larger part of the space of all 

designs than the human design space. 

3. Evolutionary Electronics deals with a huge search space, requiring, 

therefore powerful search techniques to handle the task. Naturally, 

when the search space is very large, only random search has some 

chance to succeed. Hence, with this new approach to circuit designs a 

search technique procedures have to be followed: 

• The search space sampled by the algorithm must have its size 

limited. 

• It is usually necessary to adapt the search technique to the 

particularities of the design problem. 

1.2 Scope of the Thesis 

This section discusses the scope and limitations of the present body of work. 

This thesis focuses exclusively on sequential logic synthesis and outlines the 

use of the extrinsic EHW approach to evolve FSM. Both GA and EHW are 

combined together to produce optimal logic circuit. GA is used to optimise 

the state assignment problem. EHW is used to design the combinational parts 

of the desired circuit. The approach is tested on a number of FSMs. These 

circuits have been evolved using different functional sets of logic gates and 
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GA parameters. The sequential behaviour of FSMs is represented by a set of 

logic components. 

We believe that an extension of each of the methods presented herein to 

extended sequential design is relatively straightforward. This is an area for 

future work. In addition, the algorithms in this thesis are all based on a single 

encoding model: the input-encoding model (described in detail in Chapter 4). 

This limits their effectiveness under certain cost metrics, because input 

encoding is only an approximation of optimal state encoding. As such, we 

expect that considerably better logic would result under these metrics from 

using a more precise model. In particular, a more potent model, namely 

output encoding could be substituted in the various steps, without disturbing 

the remainder of the synthesis path. As a result, input encoding is actually 

quite effective for this application. 

Finally, algorithms presented here are computationally too expensive for the 

full range of sequential machines encountered in practice. Implicit methods, 

such as those introduced in this work, would extend its capacity enough to 

handle any practical design. 

1.3 The position of this thesis within the field 

In preparing for this research program, it is intended to take a specific 

viewpoint: That small circuits evolved with as few constraints as possible may 

be of increased utility to engineering applications if they are properly 

understood. In addition to the factors governing a circuit's operation, 

understanding encompasses the influence an evolutionary design process has 

on its structure and properties, and whether altering the process for example 

by changing the types of basic element or evolutionary algorithm operators 

could improve the circuit in some way. It will be clear to the reader from the 

preceding pages that there are many ways of tackling this, and that some of 

the foundations have already been laid by the authors cited above. The first 

evolvable design suitable for general logic circuit, the first examples of 

extrinsic hardware evolution at the gate level, and the discovery and partial 

understanding of an entirely new form of evolved circuits. While the study 
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acknowledge the importance of large fInite state machine benchmarks for the 

evolution of complex circuits, this work is intended to provide insights into 

the types of circuit at which evolution excels, and further foundations for the 

methodologies by which they can be produced. It is believed that the most 

appropriate starting point for achieving this is through the evolution and 

analysis of relatively small circuits. If computer time and memory limitations 

can be overcome, large design can be evolved. 

1.4 Outline of the thesis 

The thesis is about relationship between redesign structure and search. The 

relationship has been studied in the context of digital circuit evolution. In 

general the thesis can be divided into two parts. The fIrst summarizes the 

theory of logic design processing and introduces an information analysis by 

which the structure of a circuit is characterized. The analysis is applied to a 

well-investigated model of design and thus the theoretical fInding is supported 

empirically. 

The use of the evolutionary algorithms to the problem of digital circuits 

design is discussed in the second part of the thesis. 

Three goals are pursued in this part: 

Firstly, demonstrate the advantages of the method. 

Secondly, to show how the study of the structure of design that originates 

from a particular optimization problem could help to improve the 

evolutionary search. Furthermore, to identify principles that help to overcome 

the problem of the very fast growth in the number of gates used in the target 

circuit as the number of inputs to the evolved logic function is increased. 

Thirdly, special attention is paid to the role in digital circuit evolution. 
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Chapter 2 is a brief introduction to the problem of design of logic circuits. 

Further, it describes various forms of synchronous circuits, which are the 

focus of the bulk of the thesis. It begins with a discussion of conventional 

methods of digital design and closes with a description of logic synthesis tools 

needed for computer aided. It offers a general overview of sequential 

synthesis and traditional approaches. Provides a survey of digital circuit design 

and optimisation technique, which speed up the design cycle and enhance 

design quality. The chapter presents the basic definition necessary for 

understanding the work presented in this thesis. The chapter summarize the 

commercial tools available for design. Synthesis of finite state machines 

method for both two-level and multilevel logic implementation of the 

combination logic section of fInite state machine is presented. Then, it 

presents one of the central themes of this thesis: the state assignment problem 

and previous approaches to this problem. The main contribution of the 

chapter is the algorithm for the state assignment problem that will be 

discussed further in chapter 4. 

Chapters 3 introduce natural selection, evolutionary algorithm theory and 

compares evolutionary algorithm and other search algorithms. This sets the 

stage for describing the innovative powers of a genetic algorithm and 

elaborating on encoding and evaluation of design for genetic algorithms. 

Further the chapter will discuss evolvable hardware. It will show how 

evolvable hardware has emerged from the combination of evolutionary 

algorithm and flexible electronic devices. It will also give an overview of the 

different subdivisions of EHW and their applications. After reading this 

chapter, the reader should have an understanding of the domain of evolvable 

hardware and the particular problems involved. 

Chapter 4 highlights the importance of considering the genetic algorithm and 

its parameters and how it is implemented to solve the state assignment 

problem for logic synthesis and optimization. The more general problem of 

logic circuit optimisation is explored. Synthesis based on a GA allows a 
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designer to minimise the actual area, power, or delay while performing state 

assignment. These GAs compensate for most of the unpredictability inherent 

in the logic reduction synthesis tools, providing a better measure of the 

circuit's characteristics. The genetic algorithm converges faster and finds 

better state assignment compared to previous reported methods. The genetic 

algorithm finds the best solutions for the encoding of all medium size MCNC 

benchmarks and tests result for these benchmarks are given. The synthesis 

based on the GA approach results in designs with the smallest area to date. 

Test results on standard benchmarks are given and compared with previously 

reported results. 

Chapter 5 Studies the evolutionary design of combinational and sequential 

logic circuits, particularly the sequential circuit. Thus digital circuits are 

evolved using evolutionary algorithms. The structure of the resulting circuits 

is investigated and it is shown that the principles of evolving digital circuits 

are valid. In this chapter an approach based on an evolutionary algorithm to 

design sequential logic circuits with minimum number of logic gates is 

proposed. 

Chapters 6 outlines the use of the extrinsic evolvable hardware approach to 

evolve fInite state machines. Both the genetic algorithm and Evolvable 

Hardware are combined together to produce optimal logic circuits. A GA is 

used to optimise the state assignment problem. EHW is used to design the 

combinational parts of the desired circuit. The approach is tested on a 

number of fInite state machines from MCNC benchmark sets. These circuits 

have been evolved using different functional sets of logic gates and GA 

parameters. The results show promise for the use of this approach as a design 

method for sequential logic circuits. 

Chapter 7 contains concluding remarks, which review the contribution of 

this work and include topics for further research. 
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1.5 Summary 
With the continuous increase in the complexity of electronic circuits, there is 

increased demand for effective methodologies for the design of such 

electronic circuits. These increases in complexity together with the increasing 

number of design objective (e.g. low power, high throughput, small area) 

provide the designer with a very hard task. For that reason there is a demand 

for effective ECAD tools, which perform some of the design tasks leaving 

the designer to concentrate on performance optimisation issues. 

The complexity of the electronic design search space has encouraged using all 

computer-based techniques in the design procedure. One such technique, 

which is used in this thesis, is called Genetic Algorithms. These algorithms 

have shown a high degree of flexibility in dealing with problems with complex 

and computationally hard Problems, such as the electronic circuit design 

problem. 

This thesis describes investigations carried out in order to develop a genetic 

based digital circuit design/synthesis ECAD tool. The investigations have led 

to the development of a novel custom genetic algorithm for the structural 

design of circuits. A number of circuit specific genetic operators have been 

produced and their use has been investigated together with conventional 

genetic operators. 
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Chapter 2 

REVIEW OF THE LOGIC DESIGN PROCESS 

2.1 Introduction 

The impact of Very Large Scale Integration (VLSI) circuits in modern life can 

be seen in various electronic facilities. Over the years, growth in the 

complexity of VLSI design has enable designer to include well over a million 

transistors on each chip. Designers are faced with the daunting task of 

packing more functionality into a smaller area and creating a circuit that 

operates faster than the previous generation. Design Automation (DA) 

technique play an invaluable role in this complex process. 

The first phase of this project looks at the state assignment problem of 

automated synthesis of synchronized sequential circuits. Automated synthesis 

for digital logic is rapidly increasing in importance in industrial design. This is 

due to the huge increase in possible circuit size over the past few years, 

making it extremely difficult to design efficiently by hand. Synthesis tools such 

as Synopsis free the designer to operate at a high level, performing the 

transition to lower level of design automatically, along with relevant 

optimisations. Optimisation of sequential circuits was first studied in detail in 

the late 1950s and 1960s [26], but has recently increased in importance. 

This chapter starts by introducing the reader to the relevant subject area. The 

concept of logic synthesis can be defmed as the process of transforming a 

verbal description of required functionality into a working circuit. 

Traditionally, it has been divided into combination and sequential synthesis. 

The research is focused on sequential synthesis and in particular the state 

assignment problem due to its impact on the complexity of the resulting 

circuit. The details of the algorithm implemented for the state assignment 
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problem using genetic algorithm are also glVen. This algorithm has been 

evaluated by comparing it with both standard industrial tools and other 

research published in this area. 

2.2 Overview of Optimal Logic Synthesis 

The benefits of automating the logic design process may be compromised if 

the result does not meet its area, speed, or power constraints, while 

optimising the design trade-offs. Effort is made to enable the design tools to 

make informed decisions as well as an expert designer could [27,28]. 

Therefore, a critical aspect of automatic logic synthesis is the optimization 

problem of deriving a high-quality design from the initial specification. The 

accepted optimization criteria for multi-level logic are to minimize some 

convex function of: 

1. Area occupied by the logic gates and interconnects. 

2. The Critical Path Delay of the longest path through the logic. 

3. The Degree of Testability of the circuit, measured in terms of the 

percentage of faults covered by a specified set of test vectors, for an 

appropriate fault model (e.g. single stuck-at faults, multiple stuck-at 

faults, etc.). 

4. Power consumed. 

This minimization is to be performed while simultaneously satisfying upper or 

lower bound constraints placed on these physical quantities. While humans 

are superbly equipped to solve such problems once they are clearly 

formulated, the sheer mass of detail in VLSI designs makes the use of 

synthesis tools imperative. 

Delay constrained area minimization has an immediate effect on practical 

microchip design. The design has to physically fit on the chip, which typically 

is of the order of 1cm square or less. We note also that area minimization has 

an economically important impact on yield, because net yield is known to 

decrease exponentially with the size of the chip. Alternatively, algorithms for 

area-constrained delay minimization are often used to maximize performance. 
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Another criterion, which is increasingly important especially for mobile 

technologies such as laptop, computers, and cellular phones, is to minimize 

the power consumption of the final circuit. The area, delay and power of a 

design before layout are estimated using models, which predict the effects of 

physical design, based on the cells and nets in the flnal design. Often power is 

minimized by just making the design slower, but transformations exist which 

reduce power while not increasing delay [132]. 

Another important part of integrated circuit design is the manufacturing test, 

which determines if a fabricated chip works as expected. A connection (wire) 

is untestable (or redundant) if replacing the connection with a constant value 

does not affect the functionality of the circuit. 

If the connection is not testable, it is called redundant and when a redundant 

connection is removed, a smaller circuit is formed. There is the further 

problem that redundancies interfere with the production line testing of the 

integrated circuit. Therefore, another goal for logic synthesis is to produce 

designs with no redundancies. 

Synthesis tools are also in an ideal position to tackle the testing problem. 

These tools create and alter designs, so that they can easily modify them for 

testability [28]. It makes sense for synthesis tools to insert the special 

structures needed for test, if any, and then optimise the whole design, 

including the test structures, for minimum speed and area penalty. Similarly, it 

is logical for synthesis tools to produce vectors that are inherently integrated 

with a design's test structures, and to minimize the vector set required to test 

the design. Thus the marriage of synthesis and test can achieve a fully 

automated test solution, and serves to move test forward in the design cycle. 

The design of the optimal circuit that meets all of these constraints is a 

difflcult problem due to the tremendous number of potential solutions for 

even a small set of logic equations. The size of VLSI circuits makes its logic 

synthesis a difflcult optimization problem, which usually requires automated 
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tools for practical designs. The next sections outline the tools needed to 

design and efficiently utilize computer aided design tools for automatic logic 

synthesis. 

2.3 Logic Synthesis with ECAD Tools 

Electronic Computer-Aided Design (ECAD) of microelectronic circuits is 

concerned with the development of computer programs for the automated 

design and manufacture of integrated electronic systems, with emphasis today 

on VLSI circuits [29]. Synthesis of VLSI circuits involves transformation of 

the specification of circuit behaviour into mask-level layout, which can be 

fabricated using VLSI manufacturing processes, usually a number of 

representations between abstract behaviour and mask-level layout. 

Optimisation strategies, both manual and automatic are vital in VLSI 

synthesis in order to meet the required specifications. However, the 

optimisation problems encountered in VLSI synthesis are typically NP hard. 

Therefore, solutions to the optimisation problem are incorporated in heuristic 

strategy, the development of which requires a thorough understanding of the 

problem at hand. Thus, automatic optimisation-based VLSI synthesis has 

evolved in to a rich and exciting area of research. 

Direct application of synthesis in industry has been a significant drive force 

for research in ECAD. Simple marketing principles that other factors being 

equal, a product available sooner would capture a large share of market and 

would remain in use longer. The desire to reduce time to market has led to 

the initial investment of considerable money and effort into the development 

of ECAD tools capable of producing designs competitive with the best 

manual design. Today, constantly shrinking geometry and increasingly reliable 

manufacturing process have led to complex systems being implemented on a 

single chip making the use of ECAD tools commonplace and mandatory. In 

its turn, the rapid automation of the VLSI design phase has allowed 

companies to keep pace with advances in other areas of VLSI like computer 

architecture and manufacturing. As a consequence of this rapid development 
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m VLSI technology, it is currently possible to produce an ASIC, 

microprocessors and other type of circuits that contain millions of transistors. 

ASIC designer and recent advances in systems on chip (SOC) make the use of 

ECAD tools commonplace and mandatory. 

2.4 VLSI Design Flow 

Design is the process of translating an idea into a product that can be 

manufactured. In the design of electronics this is simply a product formed 

from electronic equipments, software, and electromechincs. Effective design 

allows this translation to be done quickly cheaply and accuracy to produce a 

product that is commercially viable, competitive, fit for purposes, without 

problem and adaptable. 

The design process, at various levels, is usually evolutionary in nature. It starts 

with a given set of requirements. Initial design is developed and tested against 

the requirements. When the requirements are not met, the design has to be 

improved. If such improvement is either not possible or too costly, then the 

revision of requirements and its impact analysis must be considered. The Y­

chart shown in Figure 1.2 illustrates a design flow for most logic chips, using 

design activities on three different axes (domains), which resemble the letter Y 

[30]. The Y-chart consists of three major domains, namely: 

• Behavioural domain, 

• Structural domain, 

• Geometrical layout domains. 

The design flow starts from the algorithm that describes the behaviours of the 

target chip. The corresponding architecture of the processor is first defmed. It 

is mapped onto the chip surface by floor planning. The next design evolution 

in the behavioural domain defines fmite state machines, which are structurally 

implemented with functional modules such as registers and arithmetic logic 

units (ALUs). 
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These modules are then geometrically placed onto the chip surface USlng 

ECAD tools for automatic module placement followed by routing, with a 

goal of minimising the interconnection area and signal delays. 

Structural 
Domain 

Geometrical Layout 
Domain 

Figure 2.1.Typical VLSI design flow in 
three domains (Y-chart representation). 

Behavioral 
Domain 

The third evolution starts with a behavioural module description. Individual 

modules are then implemented with leaf cells. At this stage the chip is 

described in terms of logic gates ~eaf cells), which can be placed and 

interconnected by using a cell placement & routing program. The last 

evolution involves a detailed Boolean description of leaf cells followed by a 

transistor level implementation of leaf cells and mask generation. In standard­

cell based design, leaf cells are already pre-designed and stored in a library for 

logic design use. 
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Figure 2.2. i\ more simplified view of 
VLSI design flow. 

Figure 2.2 provides a more simplified view of the VLSI design flow; taking 

into accounts the various representations, or abstractions of design behavior, 

logic, circuit and mask layout. Note that the verification of design plays a very 

important role in every step during this process. The failure to properly verify 

a design in its early phases typically causes significant and expensive re-design 

at a later stage, which ultimately increases the time-to-market Although the 

design process has been described in linear fashion for simplicity, in reality 

21 



there is much iteration back and forth, especially between any two 

neighbouring steps, and occasionally even remotely separated pairs. Although 

top-down design flow provides an excellent design process control, in reality, 

there is no truly unidirectional top-down design flow. Both top-down and 

bottom-up approaches have to be combined. For instance, if a chip designer 

deflned architecture without close estimation of the corresponding chip area, 

then it is very likely that the resulting chip layout exceeds the area limit of the 

available technology. In such a case, in order to flt the architecture into the 

allowable chip area, some functions may have to be removed and the design 

process must be repeated. Such changes may require signiflcant modiflcation 

of the original requirements. Thus, it is very important to feed forward low­

level information to higher levels (bottom up) as early as possible. 

The most important message here is that the logic complexity per chip has 

been (and still is) increasing exponentially. The monolithic integration of a 

large number of functions on a single chip usually provides: 

• Less area/volume and therefore, compactness; 

• Less power consumption; 

• Less testing requirements at system level; 

• Higher reliability, mainly due to improved on-chip interconnects; 

• Higher speed, due to signiflcantly reduced interconnection length; 

• Signiflcant cost savings. 

It is now possible to design complex digital circuits systematically on a 

computer, simulate the entire design down to component level and verify that 

everything works before even considering making any hardware. Design of a 

complex system can be approached at different levels. Figure 2.3 shows the 

division between them with some relevant explanations. 

22 



Design level Design Primitive Theoretical Techniques 

Description Components 

Algorithmic Specification Functional Signal processing theory 

High-level Lang. Block Control theory 

Math. Equations Black boxes Sorting algorithm 

Functional VHDL, Verilog Register Automata theory 

FSMlanguage Counter Timing analysis 

C/Pascal ALU 

Logic Boolean equations Logic gates Boolean algebra 

Truth Tables Flop-flops K-rnap 

Timing diagrams Boolean minimization 

Circuit Circuit equations Transistor Linear/non-linear eq. 

Transistor netlist Passive compo Fourier analysis 

Figure 2.3. Level of design 

2.5 Probing the limits of Logic Synthesis 

Logic synthesis has freed designers from the complexities of gate-level design 

by converting RTL descriptions to optimised gate-level logic [29]. But ASIC, 

FPGA, and CPLD designers are still constrained by a dependence on silicon. 

Designers will need to pay more-not less-attention to layout as silicon 

densities continue to increase. 

A few years ago, logic synthesis seemed a first step into a world of higher­

level design. Back then, designers imagined being able to move higher and 

higher up the synthesis chain, until they could specify a design behaviourally 

and just push a button-and the software would do the rest. Nice dream, but 

not a reality. Why? Because design, even with high-level HDLs and 

simulation, must eventually meet silicon "reality." And that reality, especially 

at sub micron or deep-sub micron levels (below 0.5 /-tm L-effective) is not a 

nice, well-behaved world. Design rules will migrate down to 0.18 f.llIl, with 

chip voltages moving down to less than lV as well. But that's not the only 

reason for a re-evaluation of logic synthesis. Silicon's higher densities bring 
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new system-level problems. Larger ASICs can be likened to systems, and as in 

to systems, must be partitioned for design ease and clocking. And last, 

hardware design is still hardware design; writing code in VHDL or Verilog, 

even code that simulates well, does not guarantee working silicon. 

Today's engineers use logic synthesis primarily for control logic, optimising 

and mapping combinatorial logic (equations) into a netlist-and ready for 

layout [31]. They also use synthesis to instantiated major RTL components 

such as registers. Some tools, such as Synopsys Design Compiler, Cadence's 

Synergy, Exemplar's Core, allow designers to use module generators and 

megacell/ cell libraries to select the correct element. Megacells can be hefty, 

including /-LPS, FPUs, ALUs, and DSPs. In effect, the synthesis tools provide a 

single interface to specify a design. Some synthesis tools, such as Synopses' 

Design Compiler, Cadence's Synergy, and the forthcoming Viewlogic View­

Synthesis (was SilcSyn) provide some higher-level synthesis capabilities. These 

capabilities include resource allocation and sharing for key RTL blocks, such 

as adders or registers. 

Mainstream logic synthesis tools from Synopsys, Mentor Graphics, Exemplar, 

Cadence, and Viewlogic also provide state-machine generators and mappings 

to optimized state machines. Many engineers find these tools work for general 

state machines, but, typically, they turn to hand design for highly optimized 

state machines. 

Industry consensus seems to say it's still a bit early for efficient state-machine 

synthesis. However, engineers can define complex controls by defining 

multilevel state machines (state machines within state machines, etc); these 

can be defmed with current synthesis tools. Most synthesis users describe 

designs with a HDL, such as Verilog or VHDL. However, when using a 

HDL, it's easy to lose touch with the design; you can defme major RTL 

blocks with simple statements. Thus, a few lines of code can trigger major 

effects on a design's timing or performance. Good logic designers like master 

programmers, have to keep foremost in their minds the major flows of their 
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designs, continually monitoring any changes that add, delete, or modify RTL 

blocks. 

Finally, writing Verilog or VHDL code does not automatically stop you from 

violating propagation delays or logic constraints such as set up or hold. 

Moreover, many constraints are functions of the ASIC process (voltage and 

temperature) as well as of the signal characteristics (slow or fast edges). 

Consequently, you cannot realistically estimate these timing delays until floor 

planning or place and route. You'll have fewer problems downstream with 

synthesis if you keep these logic realities in mind when coding. Static timing 

analysers can catch timing errors, but it's far easier to design it right the fIrst 

time. 

2.6 Sequential logic synthesis 

2.6.1 Sequential circuits 

Almost all VLSI circuits are sequential circuits; i.e. they contain memory or 

storage element in the form of flip-flops or latches as well as combinational 

(or switching) circuitry. Sequential circuits can be either synchronous or 

asynchronous sequential logic. While asynchronous design has certain 

advantage, such as speed, synchronous design is more widely used and is the 

subject of this research. Considerable progress has been made in the 

understanding of combinational logic optimization in the recent past and 

consequently a large number of university and industrial ECAD programs are 

now available for the optimal synthesis of combinational circuits [30, 31]. 

These optimization programs produce results competitive with manually 

designed logic circuits. 

The understanding of sequential circuit optimization, on the other hand, is 

considerably less mature. The presence of internal states adds considerably to 

the complexity of the optimization problem. While the primary inputs and 

outputs are typically binary, internal states are represented in symbolic form. 
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Figure 2.4. Structure view of a finite state machine (FSM). 

Sequential, circuits are most often modelled using fInite state machines. A 

FSM is a mathematical model of a system (in our case, a switching circuit). 

The states of a system completely summarize the information concerning the 

past input to the system that is needed to determine its behaviour on 

subsequent inputs. 

More formally, a FSM, M, is a quintuple M =(y, X, Z, ex, 13) 

Y is the set of all possible secondary states stored within the machine 

memory. 

X is the set of all possible primary inputs to the machine from external 

sources. 

Z is the set of all possible output states from the machine. 
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ex is the next states Boolean function defme as ex: (1';xX t ) -+ 1';+1 

13 is the output Boolean function, which determines the current state of the 

output z. It has two possible forms: 

In Moore Machine [34], the output logic is a function of the secondary state 

only: 

f3 : (Y) t -+ Zt' Secondary state change only at clock times. 

In a Mealy machine [35], the output logic is a function of machine total state 

defmed as: 

f3 -+ (1';xXt ) -+ Zt , Since primary input may change at any time. 

It is convenient to visualize a FSM as a direct graph with nodes representing 

the states and the edge representing the transitions between states. Such a 

graph is known as a State Transition Graph (STG) Figure 2.5. An edge in the 

STG is labelled by the input causing the transition and the output asserted on 

the transition. In the State Transition Table (SST), Table 2.1, each row of the 

table corresponds to single edge in the STG. Conventionally, the left most 

column in the table corresponds to the primary inputs and the right most 

columns to the primary outputs. The column following the primary inputs is 

the present state column and the column following that is the next state 

column. A SIT is a tubular representation of the FSM. 

As well as state/output table, the FSM can be represented by Algorithmic 

State Machine (ASM) chart [32, 33]. The ASM chart, however, is not used in 

this thesis as it tends to hide the state assigtJffient problem, which is under 

investigation. 

To deal with complexity, VLSI circuits are invariably specified in a 

hierarchical fashion. Large sequential circuits are typical modelled by smaller, 

interacting FSMs. 
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Figure 2.5. An example of a State 
Transition Graph (STG). 

Table 2.1. An example of a State 
Transition Table (STT). 

InputPr esent States Next States Output 

0 S1 S2 11 

0 S2 S3 01 

0 S3 S1 10 

1 S1 S1 00 

1 S2 S2 00 

1 S3 S3 00 

Synthesis tools are required to encode the internal state of FSMs as binary 

strings. This encoding determines the complexity and the structure of the 

sequential circuit, which realize the FSM, and therefore has profound effect 

on its area, testability and performance. 

Stated differently, synthesis tools have the freedom of encoding states in such 

way that the design constraints are satisfied. The notation of structure is 

generally associated with the manner in which a machine can be realized from 

interconnected smaller component machines. It may be desired, for example 

to construct the circuit with the minimum amount of logic or to build it from 

an interconnection of smaller circuit to obtain superior performance. 
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A second degree of freedom available to sequential synthesis tools is based on 

the fact that the STG corresponding to a given functionality is not unique. 

Transformations to the STG like state splitting, state merging or STG 

partitioning, enable movement from one STG to another without changing 

the functionality. These transformations guide the encoding of states in a 

particular direction, in many cases into directions that would not have been 

taken otherwise. Such transformations are sometimes necessary to achieve the 

desired objectives. 

2.6.2 Early work on sequential logic synthesis 

Work on sequential logic synthesis dates back to the late '40 

discrete off the shelf components (relays and vacuum tubes) were used. In the 

1960's, Small-Scale Integrated circuits (SSI) became popular and much of the 

work in that period was motivated by the need to reduce the number of 

latches in the circuit since that meant a reduction in the number of relatively 

expensive chips on the circuit board. Also, since combinational logic synthesis 

was still in its infancy, techniques for state encoding and FSM decomposition 

were unable to target the combinational logic complexity of the sequential 

circuit effectively [137]. 

The minimization of the number of states in completely specified FSMs was 

first investigated by Moore [34], Huffman [35] and Mealy [36]. Ginsburg [36] 

and Unger [37] extended this work late on to the reduction of states in 

incompletely specified machines. An interesting technique for deriving 

maximal capability in state reduction using Boolean algebra was reported in a 

short communication by Marcus [38]. 

The relationship between state encoding, and the structure of the resulting 

sequential circuit was first investigated in terms of the algebraic theory of 

partitions by Hartmanis [26] and later by Hartmanis and Stearns [39]. Karp 

[40], Kohavi [27], Krohn and Rhodes [41], Yoeli [42] and Zeiger [43] also 

made contributions to machine structure theory. Hartmanis and Streams [39] 

developed the concept of state splitting to augment the possibilities of finding 

desirable decompositions and state assignments, among others, such as Zeiger 
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[43]. The book by Hennie [44] provides a bright and intuitive description of 

the above contributions. 

State encoding was treated from a different point of view by Armstrong [45] 

and Dolton and McCluskey [46]. The procedure of Armstrong formulated the 

state-encoding problem as one of assigning codes so that pre-derived 

adjacency relationships between states are satisfied in the Boolean domain. To 

a certain extent, the procedure of [45] inspired some state assignment 

algorithms developed in recent work (e.g. Devadas et al [47] for targeting 

multilevel implementation. The discussion of more recent developments is 

given in chapter 4. 

2.6.3 Classic Synthesis Trajectory 

This section described the sequential synthesis problem, and the traditional 

approach to this problem as a sequence of decomposition steps. A brief 

recount of the history of sequential synthesis and the current state of the art 

for FSMs is also given. 

Sequential synthesis is the process of creating a suitable implementation for a 

given FSM. It is an extremely difficult problem, for several reasons. First, the 

number of possible implementations for even a modest-sized specification is 

staggering. Second, although many tools approximate the cost criterion as a 

simple metric, in reality it is often a complex, multi-dimensional function. 

Moreover, trade-offs involving several characteristics of the solution (e.g. area, 

power) are typical. Furthermore, addressing even simplified cost metric of ten­

require algorithms of high computational complexity. In fact, many of the 

problems described below are NP-complete. 

As a result, the synthesis problem is typically broken into a sequence of 

decoupled subproblems, as shown in Figure 2.6. We first sketch the overall 

steps, and then give some more detailed background on certain key steps. 

The process starts with a specification of the FSMs behaviour in some form, 

such as a flow table. The machine's internal states are normally identified by 

symbols, so that the specification focuses as much as possible on the intended 

behaviour and not some particular implementation. 

30 



FSM 
Specification 

State 
Minimization 

2-levellogic 
minimization ~ 

State 
Encoding 

Multi-level 
logic 

minimization 
-?I> 

Logic 
Synthesis 

Tecchnology 
Mapping ~ 

Figure 2.6. Traditional sequential synthesis trajectories. 

2.6.3.1 State Minimization 

FSM 
Realization 

Tecchnology 
Depending 

Optimization 

The flrst step in the flow, state minimization, is an optimization that makes 

use of a classic observation [39] that don't cares in an incompletely specifled 

FSM speciflcation often permit a realization with fewer states. In fact, even 

when the FSM is completely specifled, states having indistinguishable 

behaviour can be merged, producing smaller equivalent machines. Often, the 

FSMs resulting from state minimization are fundamentally simpler than their 

unminimized counterparts, and can thus be implemented with better logic, 

regardless of the cost metric involved. Through state reduction is generally 

desirable, it was found that in some cases it can reduce the chance of 

decomposition based on closed partitions [39]. Many researchers have studied 

state minimization over several decades [48]. The bulk of this research has 

striven to flnd efflcient algorithms for solving the classic problem as stated by 

Luccio and Grasselli [49], both exacdy and heuristically. A small minority of 

recent work has attempted to solve the more difflcult problem of optimal 

state minimization, which targets logic complexity [48], rather than the fewest 

number of states. 
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2.6.3.2 State assignment of finite state machines 

A State Assignment Problem is to assign codes to the internal states of a FSM 

in order to minimize some cost function related to the circuit's realization 

(like PLA area or number of gates). Most of the research papers discuss only 

the problem of assigning internal states, assuming that the user specifies codes 

for inputs and outputs. However, there are efforts based on very similar 

principles, which assign input states and outputs (specified initially by names) 

with binary codes. They have found, for instance, application in minimization 

of microprogrammed control units [50] or in designing control units with 

PLAs [51]. 

The problem is a classic in Switching Circuits Theory, but relatively few 

programs have been widely available until recent years. In the early sixties the 

basic main approaches to state assignment and structural theory of FSMs 

were formulated. Few of them were programmed and the programming 

results were rather unsatisfactory. Recendy the state assignment problem is 

again gaining momentum because of widespread attempts to realize a logic 

level silicon compiler for VLSI [1,52,53,133]. 

State assignment approaches 

Obviously, a realization in binary logic is required; hence, state encoding 

assign a suitable assignment of binary codes to the symbolic states. The 

encoding so derived effectively transforms the symbolic FSMs specification 

into a set of pure binary valued Boolean (combinational) functions. 

Nominally, any encoding which maintains the distinction among the various 

states is valid, however certain codes permit more economical realizations 

than other. This realization spurred significant research into the problem of 

optimal state encoding. The resulting algorithms offer wide variety of 

heuristic and exact approaches. There are basically eight approaches to state 

assignment: 

1. Partition theory of Hartmanis, Stearns, Kohavi and Almaini [26, 27, 

54]. The theory is based on a concept of a partition of the state 
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machine into blocks. Partitions are found from state tables and used 

to find sets of partitions producing unique and optimal encoding. 

This theory is very elegant from mathematical point of view, gives an 

insight into the nature of structural properties of machines, and it 

permits the decomposition of FSMs. This approach is intractable for 

computer solutions of FSMs with more than 10 states, 10 inputs, and 

10 outputs. 

2. Column evaluation approach of Dolotta and McCluskey [46] 

extended by Curtis [55] Weiner [56] Vavilov [57] Torng [58]. The 

columns of the state table are scored with respect to many various 

criteria influencing quality of assignment. The scores are used to find 

good partitions and next the state assignment. This approach can 

produce very good realizations (also for various types of flip-flops); 

the results are even better than those from approach 1, but are also 

intractable for machines of more than 12 states. 

3. Enumerative approach of Story [59]. All possible partitions are 

evaluated as candidates for assignment separately by calculating the 

complexities of realizations of the corresponding Boolean functions, 

and assuming that all other partitions have been optimally selected for 

them. The subset of partitions with the best scores, also mutually 

matching, is selected for assignment. This approach gives better 

results than the approach from two, but it is even slower. 

4. Branch and bound approach of Perkowski, Lee and Zasowska [60, 

61]. This approach has two variants. The first permits realization of 

machines with up to 8 inputs, 8 internal and 8 outputs states and gives 

optimum realizations for arbitrary technology and flip-flops. This is 

perhaps the program that generates most optimum solutions of all the 

published programs, but is very slow. The approximate method based 

on this method [62] does not evaluate all partitions, but only 
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heuristically selected best partitions. It permits for realization of 

machines with 12 states, but can be extended to 18-20 states. Both 

approaches permit for state assignment combined with state 

minimization. 

5. Quadratic assignment approaches of Armstrong, DeMicheli and 

Perkowski [45,50,62]. All these approaches are based on embedding 

some graphs created from FSM table to hypercube graphs. ills 

approach permits realization of machines to 100 states but according 

to evaluations from [62] it gave solutions too far from optimum. 

Some theoretical improvements were made in [62] but not 

programmed. DeMicheli implemented two algorithms for state 

assignment at UC Berkeley. The flrst of them was based on the 

quadratic assignment method in which state assignment is reduced to 

the graph-embedding problem. The second algorithm was based on 

other principles since he was not satisfled with the quality of results. 

The results from [53], where both creation of the graph for 

embedding and the embedding algorithm were done on new 

principles, seem to be very satisfactory (machines with 136 states have 

been assigned), but no detailed comparison with other approaches is 

yet available. 

6. Approach of Moroz [64]. ills is a very fast constructive algorithm 

that is widely used in design automation systems in the Soviet Union. 

The author has implemented this algorithm and observed that it can 

fmd assignments for machines with more than 100 states. 

7. Approach of DeMicheli, Brayton and Sangiovanni-Vincentelli [65] 

(KISS program). This approach is based on minimization of multiple­

valued Boolean functions to fmd state groups and then constructive 

assignment by embedding of these groups to the faces of a 

hypercube. Its strategy is very innovative and the computer results are 
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very good. It is perhaps the best product currently available from the 

point of quality/time ratio. It was applied to machines with up to 100 

states, but the largest published result is for 27 states. The groups of 

states are found with the use of multi-valued Boolean minimization 

program Espresso-MV [66] applied to FSM before state assignment. 

This method of finding groups of states (blocks) combined with fast 

Boolean minimization was a source of programs success. The Kiss 

program is now widely available in universities and is used by many 

companies to build commercial software. A program extending this 

approach was built in Intel [67]. 

8. In recent year, considerable research has been on the application of 

genetic algorithm to the state assignment problem, particularly 

Almaini [1,68] and Amaral et al [69]. This approach is based on GA to 

find optimal state assignment for sequential machine. In this research, 

the GA approach proposed along with a set of operators needed for 

its implementation, as will discussed in more detail in chapter 4. 

2.6.3.3 A Problem with existing state assignment approaches 

We would like to have a program as fast as that of approach 6, as good as in 4 

and as useful in VLSI design as approach 7. However, this is impossible. The 

user then has to implement a method selected among the above for his class 

of machines and system's speed and performance requirements, or implement 

many algorithms and select among them interactively for any particular 

problem [70]. In this section a summary of the advantages and disadvantages 

of state assignment approach given in the previous section are considers. 

The method of DeMicheli fails when there are few or no groups of internal 

states those translate to the same state under some input state. Unfortunately, 

such types of machines often occur in industrial applications [70]. The new 

program developed by DeMicheli at IBM gives results of about 20-constraint 

assignment problem [53]. 
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The idea of applying Boolean minimization to the non-assigned machine is 

not new. It was used in the systems of Story, Harrison and Reinhard [59] and 

of Perkowski and Zasowska [61], but because of the lack of fast Boolean 

minimizes, like Espresso-MV, this approach was applicable only to machines 

smaller than 9 internal states. However, the method also a secondary 

assignment minimizes the numbers of gates and can be used for multi-level 

logic realization. The enumerative approach of the method allows finding an 

absolutely minimum solution to the problem for various technologies, since 

the cost function for realization is user defined. Approximate variant for 

larger machines was also created. Availability of fast minimizes permits the 

improvement of method [71]. 

The approach 8 is a new algorithmic method developed as part of this 

research project and will be presented in chapter 4. 

The disadvantages of the original approach of DeMicheli et al [65] are the 

following: 

They do not take into account the outputs, various structures and modern 

methods of solving the quadratic assignment problem and also do not 

minimize secondary assignment. Attempts to improve I<iss were successful 

[70]. However, the program still cannot be applied to machines with more 

than 100-state. 

The disadvantages of the approach of Armstrong are the following: 

The method of reduction to quadratic assignment was doubtful. Armstrong 

didn't take into account the possibilities of fast logic minimizes (they didn't 

exist at that time), modern approximate approaches to quadratic assignment 

(they didn't exist either), and the assignment of the outputs. 

The disadvantages of Moroz approach are the following: 

The method of creating the assignment graph can be essentially improved. 

The method of solving the quadratic assignment problem can be used instead 

of his embedding, which should produce results of better quality, and he 

didn't take into account assignment of outputs. 
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Different papers applying the embedding methods use different approaches 

to create the assignment graph. Saucier [72] creates a nonoriented weighted 

graph, whose edges correspond to transitions between states of FSM. 

Moroz [64] creates an oriented graph, whose edges correspond to oriented 

transitions between states. He writes about embedding, but his work can be 

treated as an approximate solution to quadratic assignment of a particular 

type, where the graph is oriented, costs of the edges are equal, and the cost 

function is defined as in the quadratic assignment. 

Armstrong [45] formulates a nonoriented graph, whose edges are created 

according to several principles of adjacency. 

The above authors use different constructive algorithms for embedding those 

graphs on hypercube. They do not give any, other than heuristic, explanations 

of adequacy of the proposed assignment (embedding) techniques. Also, the 

program of Saucier is designed for asynchronous machines. 

Perkowski uses a combination of factors that take into account adjacency of 

states, inputs, and outputs, both from the view of primary adjacency (like De 

Micheli), and also secondary adjacency with use of methods similar to 

partition theory and tabular methods. 

Although many interesting approaches to state assignment have been recendy 

proposed [1], careful comparison of algorithms is necessary on large 

benchmarks of industrial machines. Many new interesting algorithmic 

concepts arise from the papers and evaluation results recendy available. 

Perhaps in future systems, various algorithms will be used for small Oess than 

8 states), medium (9-40), and large (40-120) and very large (more than 120) 

machines to obtain good speed/performance ratios. Detailed analysis of 

reduction methods is necessary, as well as evaluation of the complexity of 

optimal and approximate algorithms for related mathematical problems, like 

hypercube embedding, embedding to faces and quadratic assignment. 
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2.6.4 Concurrent state minimization and state assignment to improve 

area. 

One of the methods to improve a chips area is discussed in this research. 

Current approaches to structural synthesis of flnite state machines are non­

minimal. As described above, the currendy used design approach is fIrst to 

minimize the number of machine's internal states and follow it with the states 

assignment. The aim of these methods is generally to decrease the 

semiconductor area of the realization for some selected implementing 

technology. However, the methods apply very abstract cost approximations 

to achieve this. It would be more desirable to minimize some generalized 

technology dependent cost functions. 

Minimization of the number of internal states results from the adopted 

assumption: "the more internal states, the more complicated is the realization, 

hence more memory elements are needed, there are more excitation 

functions, and therefore their realization is more complicated". Practical 

examples bear evidence that the flow table with the minimum number of 

internal states is not necessarily the appropriate starting point to achieve the 

circuit realization of the minimum total complexity (computed for instance as 

the weighted sum of the number of flip-flops and the number of 

combinational gates). 

Practical examples show evidence that we should not seek a FSMs with the 

minimum number of internal states, or one with the excitation functions 

depending on the minimum number of variables. Examples of FSMs can be 

easily found that have minimum realizations with the greater than minimum 

number of flip-flops (because of much simpler excitation functions). Also, the 

attempt to flnd a realization of the set of excitation functions with the 

minimum number of argument variables is often useless, because such 

realizations can have more gates or connections than other realizations of 

these functions. Moreover, these assumptions do not take into account the 

realization of excitation functions for flip-flops other than D flip-flops. One 

of the possible approaches is to replace two stages. 
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Minimization of the number of the machines internal states and state 

assignment of the machines internal states are joined. In this joint process, the 

cost function, related to the realization of the excitation functions in a 

selected technology, is optimized. The optimum and approximate methods of 

this type are presented in [62]. 

2.7 CAD Algorithms and tools 

Some of the commercially available synthesis systems are described in Table 

2.2. In order to experiment with synthesis it is necessary to work with a 

system in which source code is readily available. Thankfully, due to the work 

of many people, the SIS synthesis system is available from the University of 

California Berkeley [73]. SIS is built around the earlier work of Rudell [66] the 

development of the MIS system for combinatorial logic synthesis [74]. SIS 

incorporates many different algorithms that have been developed for 

sequential logic synthesis, such as state assignment, state minimization, 

retirning and technology mapping. 

Table 2.2. Some Commercial design Synthesis tools. 

Company Product name Synthesis level Chip type 

Cadence Design Synergy (VHDL, RTL, test state ASIC, PLD 

Systems Verilog) machine 

Mentor Graphics AutoLogic (VHDL) Datapath, RTL ASIC, FPGA 

test, state-

machine 

Synopsys Design Compiler RTL, test state- ASIC,FPGA 

(VHDL, Verlog) machine 

Altera (AHDL, Max-Plus-4 RTL, state- ASIC,FPGA 

VHDL) machine 
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2.8 Other approaches to FSM design and optimization 

Because the traditional approach to FSM design either involves solving at 

least two difficult combinational problems: state minimization and state 

assignment, or produces possibly poor solutions, many attempts to 

implement other FSM design methodologies have been undertaken. They 

attempt to minimize total areal chip count and include: 

• design of general-purpose FSMs based on shift-registers or other 

elementary machines instead of flip-flops [75], 

• design with special flip-flops with multiplexed inputs, 

• decomposition of FSMs into structures of FSMs [76,77], 

• converting the form of machine (Mealy to Moore and Moore to 

Mealy) to select one of better performance, 

• concurrent state minimization and state assignment [78, 79], 

• special structures of FSMs, like different type of micro-programmed 

control units with many ROMs and multiplexers, or partitioned 

realizations oflogic [80, 81]. 

• direct conversion of high level description like parallel FSMs to 

symbolic or geometric layout [82]. 

The above approaches are used selectively for various categories of machines: 

some of them can be used for all machines, some of them are reasonable for 

large machines only, some other can be applied only to small machines. 
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2.9 Summary 

The chapter presents a review of logic synthesis and design process and 

includes the necessary basic definition for an understanding of the work 

presented in this dissertation. After much research into the above synthesis 

problems, it has become apparent that the linear flow of isolated steps, while 

simpler to engineer, produces globally suboptimal solutions, even when 

optimum solutions are found at each step. Optimal state encoding represents 

a partial (and early) attempt to remedy this situation. 

A critical insight by De Micheli [50] states that optimal state encoding requires 

symbolic logic minimization. In other words, a better encoding method 

results when encoding and logic minimization steps are combined. The single 

most important development in recent times has been the availability of high 

quality tools and methods to support top-down design. 

41 



Chapter 3 

EVOLUTIONARY ALGORITHMS: A TOOL FOR DIGITAL 
DESIGN 

3.1 Introduction 

This chapter introduces evolutionary algorithm theory and show the 

difference between evolutionary algorithm and the classic design model. 

Evolutionary Algorithms have appeared as a general concept for developing 

new computational models for optimisation and design. The principles of 

evolution in nature have been modelled in a variety of different ways and thus 

a number of computational models have been developed. These are referred 

to as Evolutionary Algorithms. Evolutionary algorithms have a common 

conceptual basis associated with the simulation of two fundamental processes. 

These are the processes of random variation and selection within a 

population, described by Charles Darwin (1859) as the principles of evolution. 

The interplay of variation and selection gradually pulls the population to a 

target that in evolutionary computation is merely the solution of a 

computational problem. Thus evolutionary search is employed to solve 

difficult problems in optimization and design. In many problems, 

evolutionary algorithms have been found to produce solutions that are better 

than those produced by the traditional design and other search techniques 

[1,6]. Solutions obtained by evolution are often unusual in construction, since 

they are generated in a completely different manner from the conventional 

methods for optimization and design [13]. This concept of evolutionary 

design of efficient and novel solutions has also been adopted in electronic 

circuit design (Figure 3.1). In this case a process of natural selection evolves 

the design. The design starts as a set of instruction encoded in the DNA 

whose encoding region are first transcribed into RNA in the cell nucleus and 

then later translated into proteins in the cell cytoplasm [83]. The DNA carries 
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the instruction for building molecules USl11g sequence of arruno acids. 

Eventually after a number of extraordinarily complex and subtle biochemical 

reactions an entire living organism is created. The survivability of the 

orgarusm can be seen as a process of assembling a larger system from a 

number of component parts and then testing the organism in the 

environment in which it finds it self. 

Evolutionary 
algorithms 

Electronic 
I------~ circuits 

Figure 3.1. Use of the evolutionary 
algorithms (EA) to create electronic 
circuits. 

3.2 Outline of Evolutionary Algorithms 

Generally, all evolutionary algorithm methods follow the same procedures as 

shown in Figure 3.2. 

(terminate;1 

select 

initialize population 

1 
"v8lu8te 

-L so&le<:t mating p8J1ners 

"'" 
8 ) ""'mbine 

0-" evaluate 

t=O 
initi8Iize(P(tj) 
evaI1l8te(P(t)) 
while not tf'rminate(P(t)) do 

reeombine(P(t.i) 
mutate(p(t) ) 
evalu.ute{P(t) ) 
P(t+ 1 ):=select(P(t;l 
t=I+1 

end 

Figure 3.2. General outlines of any 
evolutionary algorithms method. 
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Seeding the population with random values normally carries out initialisation 

of the population. The fitness of each individual in the population is then 

evaluated. This fitness value is proportional to the value of the function being 

optimised. After that, selection is carried out to form a new population. 

Individuals in the population are normally selected for reproduction based on 

their fitness values. Those with higher fitness values are more likely to be 

selected for the new generation. Evolutionary operations (such as mutation 

and crossover) will then be applied on the population to randomly vary the 

individuals. This is carried out repeatedly as shown in the figure 3.2, until 

some terminating criterion is met. The paradigms of evolutionary Algorithms 

include genetic algorithm, genetic programming, and evolution programming 

and evolution strategies. Genetic programming applies the GA concept to the 

generation of computer programs. Evolution programming uses mutations to 

evolve populations. Evolution strategies incorporate many features of the GA 

but use real-valued parameters in place of binary-valued parameters. Their 

main different come from the operators they use and in general way they 

implement the three mentioned stages: selection, reproduction and 

representation. A population of individual structures is initialized and then 

evolved from generation to generation by repeated applications of evaluation, 

selection, recombination, and mutation. The population size N is generally 

constant in an evolutionary algorithm, although there is no a priori reason 

(other than convenience) to make this assumption. Table 3.1 outlines a typical 

paradigm of the evolutionary algorithms. 

Table 3.1. Paradigms in Evolutionary Algorithms 

Paradigms Proposed by 

Genetic Algorithms J. H. Holland [5] 

Genetic Programming J. Koza [84] 

Evolution Strategies I. Rechenberg [4] 

Evolutionary Programming L.J. Fogel, A.J.Owens, M.J.Walsh [3] 
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3.2.1 Genetic Algorithms 

Genetic algorithms are search algorithms that are based on the principles of 

genetics and biological evolution. John Holland first proposed it as an 

efficient search mechanism in artificially adaptive systems [5]. Recently, 

genetic algorithms have received considerable attention regarding their 

potential as an optimisation technique for complex problems and have been 

applied to many real world problems such as scheduling and sequencing, 

reliability design, vehicle routing and scheduling, group technology, facility 

layout and transportation [12]. 

A genetic algorithm is executed as shown in the Figure 3.3, which is adapted 

from Goldberg [25], Davis [85], for more details on how genetic algorithms 

are used in various applications [86]. 

1-'t;)p.1l:d;;ou. 

11 
/L.,/) J 

~''''.l-·''·· 

Dxc~mg 

~'l1.{;t:7i~ 

Figure 3.3. Execution of the genetic algorithms. 
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First, some terminologies used in genetic algorithms need to be explained. 

Genetic algorithms start with an initial set of randomly generated potential 

solutions called population. Each potential solution in the population is called 

a chromosome, and is normally represented as a string of symbols (binary bit 

string in conventional GA). The population of chromosomes evolves over 

successive iterations called generations. In each generation, chromosomes are 

evaluated using a fitness function. To form the next generation, applying the 

crossover and mutation genetic operators to the current population forms 

new chromosomes, called offspring. The entire population (parent and 

offspring) then undergoes selection based on their fitness value. Crossover, 

mutation and selection are discussed in more detail in following sections. 

3.2.1.1 Usage Requirements of Genetic Algorithms 

In order to apply genetic algorithms to solve a problem, there are a few 

requirements, which needs to be satisfied. These requirements are discussed 

below. 

Representation Scheme 

A representation scheme is needed for the chromosome. The length of the 

chromosome string, the alphabet size of the genes and the mapping that 

expresses each possible point in the search space of the problem as a fixed­

length character string needs to be determined. Any chosen representation 

scheme must satisfy the sufficiency requirement (i.e. must be able to express a 

solution to the problem) in order for the problem to be solved using genetic 

algorithms. A decoding function is also required to decode the chromosome 

into a phenotypic expression that can be evaluated by the fitness function. 

Genetic algorithm works with a coding of the parameters (the string or 

chromosome) and not with the parameters directly. Often, with integer 

parameters, plain binary coding is used [134]. If there is more than one 

parameter to be optimized then they are concatenated to give one string. 

Figure 3.4 illustrates this: 
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The problem has three parameters coded with 10, 4 and 6 bits respectively. 

The resulting string is obtained by concatenating those three parameters, 

resulting in a 20-bit length string. 

Parameters: 

Resulting string or 
chromosome: 

I ! 

a 
: I 

i I 

b 
i ! 

c 

-' 
J 

/ 
< J 

\i~~ 

Figure 3.4. Coding of three parameters in a single string. 

Initial population 
The initial population is composed of random strings. It should sample 

sufficiently well the search space so that, ideally, no area of it possibly 

containing a solution is left behind. This is of course dependent of the size of 

the search space and/ or the complexity of the problem. It is common for GA 

to have a population of 50 or more strings. Figure 3.5 shows an example of a 

random initial population of 6 chromosomes with a length of 12 bits. 
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I ............ ..l 

Fitness Measure 

Figure 3.5. A Random initial population 
with chromosome length of 12 bits. 

A fitness measure that is able to assign a fitness value to each fixed~length 

character string it encounters in the population is required. This fitness 

measure (fitness function) must be fully defined (i.e. capable of evaluating any 

chromosome that can exist in the search space of the problem). The genetic 

algorithm needs to know the fitness of each string. To compute the fitness, 

the string has to be decoded to retrieve the parameters it contains, and then 

the problem can be evaluated with those parameters, resulting in the fitness 

value [134]. Keeping the same strings as in the example above, we could get 

the fitness shown in Figure 3.6. 
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1 1 1 0 1 0 
0 0 1 1 1 1 
1 1 1 0 0 1 
1 1 0 1 1 1 
0 0 0 0 1 0 
1 0 0 0 1 0 
0 1 1 0 1 1 
0 0 1 0 0 0 
0 1 1 1 0 0 
0 1 1 1 0 
0 1 1 0 0 1 
1 0 0 0 1 1 

Fitness: 0.704 0.699 0.889 0.316 0.869 0.446 

Figure 3.6. The fitness of each string has been computed. 

Selection 
In this step we want to select the good strings for the next generation and 

discard the bad ones. Different methods can be used to perform this 

selection; two of those are the roulette wheel and the rank method. 

A. Rank method 
In this method the strings are fIrst sorted according to their fItness. Then, the 

fIrst few good strings are kept and reproduced. The number of good strings 

to keep and reproduce is a parameter of the genetic algorithm. For example in 

a population of 100 strings the 25 best strings could be reproduced 4 times 

each to give the new population. In Figure 3.7(a) the fIrst three strings are 

selected and are reproduced two times each. The resulting population is 

represented in Figure 3.7(b). 
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Figure 3,7. The new population with the rank method: (a) 
population in rank order, (b) the new population. 

B. Roulette wheel 
The fitness value are first of all normalized such as their sum equals to one. 

Figure 3.8 illustrates this. The reproduction process can then be viewed as 

selecting the strings with a probability equal to their normalized fitness. 
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Figure 3.8. The fitness of the strings is normalized. 

A simple implementation would be to use the roulette wheel (Figure 3.9). 

Roulette wheel spins a number of times equal to the size of the desired 

population to get the selected strings. In this example the wheel should be 

spun six times. 

0.227 

0.114 

0.221 

Figure 3.9. The roulette wheeL 
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Whether to use the roulette wheel or the rank method generally depends on 

the problem. With the rank method the good strings are always reproduced, 

whereas with the roulette wheel the good strings only have a higher 

probability of being reproduced. Thus, with the roulette wheel, good strings 

might be discarded, resulting in a larger number of iteration for the genetic 

algorithm to fmd a solution. The advantage of roulette wheel would be to 

preserve a bit more diversity in the strings, by allowing, although with a small 

probability, some bad strings to survive. Whether this diversity is needed or 

not depends on the nature of the problem. If the initial population samples 

sufficiently well the search space this diversity may not be needed. On the 

contrary, if the initial population doesn't sample the search space well enough 

this added diversity could allow exploration at locations farther away from 

current good strings, possibly leading to the discovery of other points with a 

good fitness. There are a few parameters such as the population size, 

maximum number of generations and the terminating criteria that are 

required in order to execute a genetic algorithm. The terminating criterion is 

usually either that the maximum number of generations has been reached, or 

a solution that satisfies a problem-specific success predicate has been found. 

3.2.1.2.Genetic Operators 

There are two GA operators described as follows: 

• Crossover 

The crossover operator allows new individuals to be created by recombining 

portions of chromosomes from the parents to form the offspring. The 

purpose of this operator is to allow for new points in the search space to be 

tested. Crossover is carried out by first probabilistically selecting two parents 

from the population based on their fitness values. A crossover point is then 

randomly chosen (using uniform probability distribution), and the remainder 

portions of both chromosomes are swapped. This produces two new 

offspring with genetic material from both parents. Figure 3.10 shows more 

clearly how the crossover operation is performed. 
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Parent 1 
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Offspring 2 
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J 1(1 1 0 

"- Cros9JYer 
Point 

Figure 3.10. Single point crossover operator. 

• Two point crossover 

Before 
Crossover 

After 
Crossover 

The process is essentially the same as with single point crossover, with the 

exception that two random locations are chosen. Figure 3.11 shows the two­

point crossover where the bits between those two locations are swapped 

between the two strings. 

Crossover points ... 
/' 

/./ 

Before crossover 

Figure 3.11. Two point crossover. 
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Multiple point crossover has been considered by De Jong [87] and his 

conclusions were that it decreased the performance increasingly with 

increased number of crossover points. An explanation is given in [25, p.119]: 

when the number of crossover points increase there are less structure that can 

be preserved and the crossover operator becomes more like a random shuffle. 

• Mutation 

This is carried out by probabilistically selecting an individual from the 

population, and randomly changing the single character (gene) at a randomly 

chosen mutation point (if the chromosome is a binary bit string, the bit at the 

mutation point is flipped). The probability of mutation is normally set a priori, 

and is usually very low. The purpose of mutation is to replace the genes lost 

from the population during the selection process so that they can be tested in 

a new context, or to provide new genes that were not present in the initial 

population [25]. This has the effect of increasing the search space and the 

chance of finding the global optimum solution rather than a local optimum. 

1 
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> 

1 
1 
1 
1 

1 
1 
1 
1 
o 
1 
o 

( 

After 
mutation 

Mutated bit 

Figure 3.12. The mutation operator 
changed a random bit of the string. 

Figure 3.12 show the mutation is the occasional random alteration of a bit in 

the string: changing a 1 in a 0 or vice versa. 
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3.2.1.3 Elitist Selection and Fitness Scaling: 

In roulette-wheel selection, individuals have a probability of being selected 

that is proportional to its fitness value. This has some undesirable properties, 

one of which is the possibility that the best individual in a population may not 

be selected for reproduction. Elitist selection guarantees that the best 

individual in the population always survives by copying it directly into the 

next generation. This way, when a good solution is found, it will never be lost. 

Also, as a population converges, the difference between fitness values of the 

individuals in the population decreases, resulting in a roulette-wheel with 

nearly equal sized slots. This means the chances of the best individuals being 

selected is about the same as the rest of the population, leading to a decrease 

in the rate of convergence. Fitness scaling provides a solution to this problem 

by scaling the fitness values to give fitter individuals an advantage. There are 

several methods of fitness scaling; of which "windowing" is probably the 

simplest. "Windowing" performs scaling by subtracting the lowest fitness 

value in the population from the fitness values of all individuals in the 

population. 

3.2.2 Genetic Programming 

John Koza [13] of Stanford University first introduced Genetic Programming 

(GP) (also called Evolutionary Programming, EP). GPs extend the GA 

approach to the space of programs in that the genotypes are effectively 

computer programs instead of fixed length strings. In principle, any language 

can be used but unfortunately, GP mutation and crossover would cause a 

large percentage of syntactic errors. Koza thus proposed a new language with 

syntax in prefix form (similar in structure to LISP). 

For genetic programming, one must first define a set of functions F and a 

set of terminals T (constants and variables) assumed a priori to be useful for 

the problem at hand. The sets of F and T must exhibit syntactic closure. 

Therefore, each F in the set must accept as arguments any other F return 

value or any terminal in the set of T . Therefore, the search space is defined as 
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being the set of all possible composition of F that can be recursively formed 

from elements of F and T . 

In order to illustrate this, it is best viewed as an example. Suppose the set of 

functions were defined as being {+, -,*, /} and T as {A, B, C}. 

Thus, two example programs could be defined as being 

(+(A,B, * (C,B,B)))or( -(A,/(b,C))). Both these programs are illustrated 

in Figure 3.13. 

" ;.~ ... ' ... "\ 
..., ",- " .,,-/ 

Figure 3. 13. GP example. 

The advantage of using such a postfix form for program representation is that 

it easily lends itself to be structured in a tree-like fashion with F as the nodes 

and T as the leaves. As will be seen, this makes it easy to define the genetic 

operators. 

2.2.2.1 GP Crossover Operator 

As illustrated in figure 3.14, crossover can be implemented in a 

straightforward fashion using this representation. A random sub tree is 

chosen in each genotype and then they are crossed creating two new 

programs. 
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Typically, two individual 
(parents) combine to 
produce two more 
individual 

+ 

Figure 3.14. Simplified GP crossover operators. 

2.2.2.2 GP Mutation 

Mutation is actually seldom used in GP but can be defmed in several ways: 

Sub tree destructive: Remove a sub tree and replace with a randomly 

generated one (or none at all). Node/sub tree swap: Randomly swap nodes or 

sub trees. An improvement in Genetic Programming that is often 

implemented is the generation of automatically defmed functions. What 

essentially takes place is that during the course of a run, if a useful function is 

generated and identified then this function is packaged up and treated as one 

function in subsequent iterations. 

3.2.3 Evolutionary Programming 

Evolutionary programming (EP), developed by Fogel et al. [3] traditionally 

has used representations that are tailored to the problem domain. For 

example, in real valued optimization problems, the individuals within the 

population are real-valued vectors. Similarly, ordered lists are used for 

traveling salesman problems (TSP), and graphs for applications with finite 

state machines. EP is often used as an optimizer, although it arose from the 

desire to generate machine intelligence. The outline of the evolutionary 

programming algorithm is shown in Figure 3.15. After initialization, all N 

individuals are selected to be parents, and then are mutated, producing N 

children. These children are evaluated and N survivors are chosen from the 

2N individuals, using a probabilistic function based on fitness. In other 
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words, individuals with a greater fitness have a higher chance of survival. The 

form of mutation is based on the representation used, and is often adaptive. 

For example, when using a real-valued vector, each variable within an 

individual may have an adaptive mutation rate that is normally distributed 

with a zero expectation. Recombination is not generally performed since the 

forms of mutation used are quite flexible and can produce perturbations 

similar to recombination, if desired. As discussed in a later in section 4.8, one 

of the interesting and open issues is the extent to which an EA is affected by 

its choice of the operators used to produce variability and novelty in evolving 

populations. 

Procedure EP; { 
t = 0; 

initialize population P(t); 
evaluate P (t); 
until (done) { 

t = t + 1; 
parencselection P(t); 

mutate P(t); 
evaluate P(t); 
survive P(t); 

}} 

Figure 3.15. Evolutionary programming algorithms. 

3.2.4 Evolution Strategies 

Evolution strategies (ESs) were independently developed by Rechenberg [4], 

with selection, mutation, and a population of size one. Schwefel [82] 

introduced recombination and populations with more than one individual, 

and provided a nice comparison of ESs with more traditional optimization 

techniques. Due to initial interest in hydrodynamic optimization problems, 

evolution strategies typically use real-valued vector representations. Figure 

3.16 outlines a typical evolution strategy. After initialization and evaluation, 

individuals are selected uniformly randomly to be parents. In the standard 

recombinative ES, a pair of parents produces children via recombination, 

which are further perturbed via mutation. The number of children created is 

greater than N. Survival is deterministic and is implemented in one of two 
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ways. The fIrst allows the N best children to survive, and replaces the parents 

with these children. The second allows the N best children and parents to 

survive. Like EP, considerable effort has focused on adapting mutation as the 

algorithm runs by allowing each variable within an individual to have an 

adaptive mutation rate that is normally distributed with a zero expectation. 

Unlike EP, however, recombination does play an important role in evolution 

strategies, especially in adapting mutation. 

Procedure ES; { 
t = 0; 

initialize population P(t); 
evaluate P(t); 
until (done) { 

t = t + 1; 
parencselection P(t); 

recombine P(t) 
mutate P(t); 
evaluate P(t); 
survive P (t); 

}} 

Figure 3.16. The evolution strategy algorithm. 

3.2.5 Phenotypic versus Genotype Evolution 

Evolvability strongly depends on a process of translation of genotypes to 

phenotypes. According to Fogel, "Living organisms can be viewed as a duality 

of their genotype and their phenotype"[88]. The genotype is the genetic 

constitution underlying a single trait or set of traits (the genetic coding), and 

the phenotype is the functional expression of a trait (behaviour, physiology 

and morphology). 

In evolutionary computation, the parameters that are subject to optimisation 

constitute the phenotypic (behavioural) space, while genetic operators such as 

mutation and crossover in genetic algorithms work on abstract mathematical 

objects like binary strings that constitute the genotype (informational) space. 

A mapping (decoding function) between the phenotypic space and the 

genotype space is therefore required in genetic algorithms (Figure 3.17). 
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Figure 3.17. Mapping between genotype space and phenotypic space. 

In addition, solutions in genetic algorithms are typically encoded in 

chromosomes with the assumption of a "one-gene/one-trait" model of the 

relationship between the genotype and the phenotype. This assumption is not 

however, entirely valid given the pleiotrophic and polygenic nature of the 

genotype [25] Pleiotrophy is the effect that a single gene may simultaneously 

affect several phenotypic traits and polygeny is the effect that a single 

phenotypic characteristic of an individual may be determined by the 

simultaneous interaction of many genes. Natural evolution, unlike genetic 

algorithms, evolves optimal solutions that are comprised of components that 

strongly interact seamlessly in some purposeful manner, without separate 

optimisation of the components. Also, because selection acts from the top­

down, survival of an individual depends on the suitability of its collective 

behaviour, rather than the superiority of some individual behaviour. David 

Fogel [2] also argues similarly, that this "one-gene/ one-trait" model of 

evolutionary genetics is an oversimplification given that naturally evolved 
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systems are both "extensively pleiotrophic and highly polygenic", as well as 

the fact that selection acts on the collection of phenotypic traits of an 

individual, not on singular traits in isolation (i.e. top-down) [89]. 

Biologist, Ernst Mayr has stated, "The genes are not the units of evolution 

nor are they as such the targets of natural selection" [88]. This means, only the 

behaviour of an individual in response to its environment has selective value, 

regardless of how this behaviour is generated. Evolutionary programming 

takes a top-down approach towards evolving solutions for solving problems, 

instead of the bottom-up approach taken by genetic algorithms. In 

evolutionary programming, the representations of the solutions are abstracted 

as vectors of behavioural traits, which reside in the phenotypic space, thereby 

avoiding the simplifying assumptions in genetic algorithms. This also means 

that there is no need for a decoding function. The significance of this is that a 

decoding function may introduce additional non-linearity and other 

mathematical difficulties, which can hinder the search process substantially. 

The mutation operator in evolutionary programming also operates at the 

phenotypic level, as opposed to the genetic operators in genetic algorithms. 

Studies and research have shown that evolutionary programming and 

evolution strategies have repeatedly outperformed genetic algorithms in 

various optimisation problems. Lawrence Fogel gave a list of examples for 

this, which includes the travelling salesman problem, automatic control, 

pattern recognition, functions with multiple local optima and even the test 

suite of functions that have been used by the genetic algorithm community 

for tuning their procedures [88]. 

3. 3 Evolutionary Designs of Digital Circuits 

Digital design as opposed to analogue design does not use full properties of 

underlying technology. It works at an abstract level where signal value above 

or below given thresholds are categorised as logic values. This mean that 

circuit design is easer to achieve since slight variations in the low-level signal 

value do not affect the logic value. 
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In recent years with greater demand for more efficient methods for electronic 

circuits design a novel method has been introduced to design digital circuit 

called evolutionary hardware. 

The evolutionary design of digital circuits 1S a process of evolving 

configurations of logic gates for some prespecfied computational program. 

Often the aim is for a highly efficient electronic circuit to emerge in a 

population of instances of the program. The motivation behind the study of 

digital circuit evolution is to design electronic circuits that are more efficient 

than the conventional designs, and then, to learn new principles of design. 

Learning new principles of design is beneficial for the design of electronic 

circuits [1,11]. Thus new methods and principles of evolving digital circuits 

are inferred. 

3.4 Evolvable Hardware 

3.4.1 Introduction 

Evolvable Hardware (EH\X!) refers to hardware that can change its 

architecture, and thus its behavior, dynamically and autonomously by 

interacting with its environment [100]. This domain emerged from the 

combination of evolutionary Learning and the rapid progress of electronic 

hardware during the recent years. While this was impossible some years back, 

Reconfigurable Hardware like FPGA can be reprogrammed both very quickly 

and while in operation. If we combine this with techniques like genetic 

algorithms that can solve difficult learning and searching tasks, we come to 

the idea of hardware that can learn from expertise and be reprogrammed to 

perform better next time. However, few industrial applications or commercial 

products of evolutionary algorithms have been reported so far, because of 

their computational costs. EHW is a promising approach to overcome such 

problem, and makes use of the adaptive capability of GA by reducing its 

computational costs. EHW is a hardware device, which is built on a 

software-reconfigurable device. 
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Figure 3.18. The concept scheme of Evolvable hardware. 

Its structure can be determined by downloading binary bit strings called the 

architecture bits. The architecture bits are treated as chromosomes in the 

population by the GA, and can be downloaded to the reconfigurable device 

resulting in changes to the hardware structure. The changed functionality of 

the device can then be evaluated and the fitness of the chromosome is 

calculated. The performance of the device is improved as GA evolves the 

population according to fitness [9,11]. 

The chromosome of EHW specifies two things. One is the function type of 

the evolution unit. In figure 3.18 the evolution units correspond to gates like 

AND/OR gates. The other is the interconnection among the evolution units. 

EHW can be classified into two classes according to the grain-size of an 

evolution unit, gate-level & function-level. Figure 3.19 shows the process of 

extrinsic EHW. The figure is an example of gate-level evolution and function­

level evolution, where each evolution unit is higher hardware function than 

gate-level evolution 

63 



EH\V prOCfiSS: 

I. InitialisHtion : randomlv L:l>nl.'rah.'d . .. 
initi~)1 population 

2. Evaluation: ChrOlnl1SOJ1lc:-i in initial 
population 

Desircd lOj!ic function J. Evolution : chang~ thL' .gl'l1(ltyp..: of 
chromosol11l..'s x. x, ... x . ., }'; }'J ••• r,lf 

4. Evaluation : dUIJtl10S011K'S in current 
populat (Gil 

5. If tcrminah: .. "nt.t. 1l1l'11 GO 10 Skp 
.\ Else (;0 to Skp (1 

6. EyahnHion : chromosom..::, in final 
populalilJt1 

0 I) 

0 I 

I 1 

, .. J 

n. I 

." I 

? 
• 

1 0 n. 0 
0 I ... [) 

1 1 ... f) 

EVQlved roek circuil ~~ 
~ 

II/pUll 

11...1 

(hr<)h1(1$(>m~: 

ClKutt 9'0111~by 3x 3 Ollipl/t\ 

Q 2 

(I 1 ••• I 

m'i~~1 (I 1 

I I ... I) 

Cl!( 1111 0111 p\ll~ I'> lZ 

Figure 3.19. Circuit design problem in EHW. In EHW 
approach, the circuits in initial population are generated 
randomly and do not implement the desired logic function. 
Therefore, an evolutionary algorithm design a circuit that 
correctly implements given logic function and optimises 
fully functional circuit. In other words, evolutionary 
algorithm evolves a logic circuit [24]. 
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3.4.2 Taxonomy of EHW 

Each evolutionary electronic system can generally be characterised by five 

main key properties [100] (see Figure 3.20). 
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Figure 3.20. Taxonomy of Evolvable Hardware. 

3.4.2.1 Evaluation process 

In EHW, evaluations of chromosomes can be performed on software or 

hardware. Depending on how the evolution process is implemented, two of 

evolutionary process can be defmed: 

Intrinsic EHW, the circuit gets configured for each chromosome for each 

generation [16]. 

Extrinsic EHW the evolution is simulated in software, and only the elite 

chromosome (i.e. the configuring bit string) gets written. Thus the circuit is 

configured only once [17]. 

3.4.2. 1.1 Extrinsic EHW 

Extrinsic design marked the beginning of the field of evolutionary electronics. 

It is in essence the application of evolutionary methodologies to hardware 

design in simulation. The approach thus consists of using software simulation 

to evaluate evolving circuits. At the end of the evolutionary process the best 
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individual is downloaded into the reconfigurable device. The extrinsic 

approach is simpler than the intrinsic approach and helps to draw theoretical 

results into the EHW area. Extrinsic design as mentioned before should 

actually be referred to as Evolutionary Circuit Design. This is because 

extrinsic design is in fact just that the use of evolutionary techniques as an aid 

in designing circuits. 

The main aim is the creation of an evolution based automation tool to design 

electronic circuits without the need of any kind of human intervention such 

that the evolutionary technique can replace the circuit designer. Using this 

approach, the designer must only worry about the specification of the system 

with the evolutionary process worrying about the rest [24]. 

Though a lot of the research in the area is moving towards intrinsic design, 

extrinsic hardware evolution does fulfill a niche in hardware design. Most 

importantly, as will be seen in the next section, intrinsic designs are not 

universal. This is due to the fact that analogue transients affect the 

evolutionary process implicitly. Thus, the same configuration downloaded 

onto a different programmable device, results in degradation in performance. 

As extrinsic design is done in simulation however, it is subject to the same 

abstractions placed on human designers. Thus, the solutions produced are as 

universal as conventional human designs are. A further important aspect of 

extrinsic evolution is that it is not limited to programmable devices. Thus, it 

can have a much wider scope for its applications. An evolved program can 

easily be designed to evolve towards a solution with particular characteristic 

advantages and thus several solutions for the same problem can be realized, 

each one optimized for a different aspect [13] 

In this way, the evolutionary algorithm can find novel approaches to 

problems that may not have been seen before as well as giving some very 

useful insights into possible solutions. The extrinsic EHW approach has been 

studied more than the intrinsic approach [84]. In Koza et al. [101] analogue 
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electronic circuits are successfully evolved usmg the SPICE simulation 

program to perform for standard mathematical operation: cube root, square 

root, cube and square. The extrinsic approach is simpler than the intrinsic 

approach and helps to draw theoretical results into the EHW area [11]. 

3.4.2.1.2 Intrinsic EHW (on line adaptation) 

EHW is only really interesting if it can be used to make systems adapt 

intrinsically, i.e. while in operation (see Figure 3.21). In this way, systems 

could cope with a changing environment or possible errors [100, 102, 103]. 

Unfortunately, such on-line adaptation is very difficult to achieve. Not only 

because of the learning process involved, but primarily because of the on-line 

requirement. The combination of fitness evaluation of a possible solution 

during the operation of the circuit is what causes part of the problem. 

Imagine for example the on-line adaptation of a robot controller circuit. 

Fitness evaluation would then load the possible solution into the controller 

and have it perform a test run to see how well the individual performs in the 

real environment. But because of the nature of crossover and mutation 

operators, very poor individuals can be created. Evaluating such a poor 

product of evolution in the real environment could cause the robot for 

example to hit obstacles, maybe even destroying things on its path. This is not 

the good approach to on-line evaluation. Although part of it is being solved 

by modern FPGAs, part of the problem still is the swapping of the program 

of a PLD during operation. In some way, the operation of the circuit has to 

be interrupted to allow reloading of data. This can only be done if the circuit 

is turned off from the outside, or it is made sure in some way that the circuit 

is temporarily not needed by the system it is in. Modern FPGAs, such as the 

Xilinx chip XC6216 model offer some interesting properties to improve the 

reloading of programs during operation, such as high reconfiguration speeds 

of reloading parts of the circuit, which can be used to improve reprogram 

ability. Another way of solving the reloading problem is having more that one 

circuit standing by, and using only the best one. The other circuit can then 
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learn from the environment, be reloaded, and take over from the fIrst circuit, 

once its fItness improves. 

Figure 3.21. On-line EHW. 

3.4.2.2 Evolvingplaiform 

The fIeld of EHW is relatively young but there have been many changes in 

the technology platform used. Some researchers have approached this 

problem by building their own platforms [8]. Evolving a VLSI design is either 

on a function level or a direct layout of oxides, metal and silicon. The 

function level can be more or less high level. Constructing circuits from a 

high level library of macro-cells or only by use of transistors (also a macro) are 

examples of functional EHW. The functional approaches do not handle the 

routing and the floor-planning problem of the chip design. These problems 

can be viewed as hard combinational problem that can be solved traditionally 

or by mean of evolutionary Algorithms [12]. The evolving platform is the 

physical media that the EHW system is intended to evolve circuit 

specifIcation for. In the following different physical media for EHW are 

described. 

Field-Programmable Gate Arrays 

An FPGA (Field-Programmable Gate Array) is basically a chip that can be 

confIgured (i.e., programmed via software) to realize any given function (that 

is, to implement any digital logic circuits). They are two-dimensional arrays of 
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logic elements and, while the exact structure of an FPGA element can vary 

considerably from one manufacturer to the next, certain essential features are 

constant Figure 3.22; each element can implement a programmable function, 

usually consisting of combinational logic plus one or more memory elements 

(flip-flops) for sequential behavior. The complexity and the structure of the 

programmable function can vary considerably from one type of FPGA to the 

next (for example, the combinational part can be implemented using a lookup 

table, as in the Xilinx XC4000 and XC5200 families, or be hard-wired, as in 

the Xilinx XC6200 [104] family. Communication between the elements is 

handled through programmable connections, again of varying complexity 

depending on the type of FPGA. Experience has shown that connections 

(rather than functionality) are the main bottleneck for the layout of FPGA 

circuits, an observation that has led most designers to add long-distance 

connections distributed homogenously throughout the array. 
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Figure 3.22. Basic structure of a generic FPGA circuit. 
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The functionality and the connections of an element are controlled by its 

configuration. The configuration bit stream (that is, the sum of all the 

configurations of the FPGA's elements determines the global behavior of the 

chip. An FPGA can be configured to implement any digital logic circuit 

(provided enough elements are available or the circuit can be subdivided 

among different chips) and in most cases is reprogramable (that is, its 

configuration can be erased and replaced by a new one, implementing a 

different circuit). 

The advent of FPGAs and, more recently, of open-architecture FPGAs, has 

given a considerable impetus to evolvable hardware research [91]. With 

FPGAs such as the Xilinx 6216, hardware architecture becomes as malleable 

as software. No longer is there any need to use a computer simulation to 

evolve electronic circuits, downloading only the final elite chromosome to a 

programmable chip. FPGAs allow online hardware evolution where all 

chromosomes can be downloaded to the FPGA and evaluated as 

configurations of real hardware [92,93,94]. 

Researchers configured FPGA circuits so that each cell within the system 

behaved in a random manner, then evolved cellular automata rules so that all 

cells oscillated between all Os and all is in unison. The important point about 

this implementation is that the evolutionary algorithm operates solely within 

the FPGA circuits, with no reference at all to an external computer. 

However, the most astonishing example of hardware evolution has to be the 

work of Thompson [102], who used genetic algorithms to coax a Xilinx 

XC6216 chip into distinguishing between the frequencies of two square wave 

inputs - without the aid of a clock input. Thompson believes that the 

structural and behavioural constraints inherited from conventional design 

methodologies can unconsciously become prejudices about what sorts of 

circuits are possible. As a result he has pioneered what he calls 'an 

unconstrained' approach to intrinsic hardware evolution. 
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3.4.2.3 Evolution process 

Evolution at EHW can be performed in different level: -

Gate-level evolutions 

The hardware evolution employing the primitive gate such as AND, OR and 

NOT gates in Figure 3.23. The works in [10,11, 18, 24] describe hardware 

evolution at gate level and demonstrate a combination of genetic learning for 

EHW which changes its own hardware structure in order to adapt to the 

environment in which it is embedded. 

Logic synthesis tools use a library of gates to create circuits at the logic level. 

In [1] the benchmark circuits were synthesized using EHW from state tables 

into gate-level networks. More details are given in chapter 5. 

Gate level evolved hardware is used in a number of real applications such as a 

Robot navigation system [9] and a pattern recognition system [105]. The main 

reason for using such hardware is to increase the speed of operation. Its 

generalizing ability has a considerable advantage due to the small number of 

observable data obtained by the robot interacting with its environment. 

However, the size of a circuit available to gate-level evolution is not so large 

because of the limitation of GA execution time. Thus the gate-level EHW 

can't be used for practical application. In order to solve this problem the 

function level evolution is proposed. 

Logic gates: elements of digital circuits, generally computing 
a Boolean function of the inputs. 

Name: 
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Logic functions: Q = A + B Q = A . B Q = A· B Q = A + B Q = E 

Figure 3.23. The primitive logic gates. 
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Function-level evolutions 

Function level evolution [24,13,63] 1S a natural extension of gate-level 

evolution. In the function level evolution, high level hardware functions, such 

as addition, subtraction, sine, etc., rather than simple logic function are used 

as primitive building blocks in the evolution. The function level EHW 

combines the advantage of both hardware and software, which make it 

suitable for applications that must be processed at very high speed. In [85] an 

evolutionary algorithm is applied to solve the system level synthesis (a 

mapping from a behavioural description) problem. 

3.5 Differences from Traditional Methods 

Evolutionary Algorithms methods generally differ from traditional search and 

optimisation techniques in three main areas [13, 18] in that evolutionary 

algorithms method: 

1. Utilise a population of potential solutions in their search. 

2. Use direct "fitness" information instead of function derivatives or 

other related knowledge. 

3. Use probabilistic, rather than deterministic transition rules. 

Most traditional optimisation methods move from one point in the decision 

hyperspace to another using some deterministic rule. The problem with this is 

that it is likely to get stuck at local maximal. Evolutionary Algorithms 

methods start with a diverse set (population) of potential solutions 

(hyperspace vectors), and typically, a new population of the same size is 

generated in each generation after. This allows for exploration of many 

maxims in parallel, lowering the probability of getting stuck. 

Even though evolutionary algorithm methods are probabilistic, they are not 

stricdy random search. The stochastic operators used in the operations on the 

population direct the search towards regions of the hyperspace that are likely 
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to have higher fitness values. Table 3.2 described some differences between 

design process and Evolution process 

Design 

Table 3.2. The different between design 
process and Evolution process. 

Evolution 

The design process 1S a top down The evolutionary process is a bottom 

approach up approach 

Key characteristics: Key characteristics: 

• The complete specification of the • No need for a detailed specification: 

input-output relationships must be the global quality (fitness) of the 

known (e.g. timing diagrams, truth circuit is used 

tables) 

Hierarchical decomposition ill • Flattened approach (no redundancy 

simpler blocks between building blocks) 

• Circuits designed to tolerate • Circuits are often tuned to the 

manufacturing process variations hardware they were evolved on 

• Use of mathematical models and • Evolution does not use 

design methodologies 

• Inner working 1S chosen by the 

designer 

mathematical models or design 

methodologies 

• Inner working 1S chosen by the 

evolutionary process 

3.6 Evolvable hardware implementation 

In recent year the application of EHW grew ill different direction as 

mentioned in Figure 3.20. All the known ways to design circuits can 

potentially be subject to evolution. For example, digital circuits where more 

complex digital circuits are generally done at a more high level using some 
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description language. The basic components (inverters, gates, multiplexers, 

etc.) are used to design digital circuits. 

For analogue circuits there is little to no choice other than to design directly at 

this level each transistor size can possibly be different; complex design rules 

are necessary to realize circuits that work despite the fluctuations in the 

manufacturing process; layouts have to be carefully thought so that the 

temperature gradient inside the chip do not alter the functioning of the 

circuit. Evolutionary techniques could be used to evolve the layout of the 

masks directly. To our knowledge, this has never been done for a number of 

reasons: the search space is really huge; to get the fitness of the circuit a 

simulation has to be done, but even if the circuit is working in simulation 

there is no certitude that it will work in silicon manufacturing a chip costs too 

much and takes way too long, ultimately, there are still many difficulties with 

approaches at a higher level, and working at a low level would not help, but 

only add problems. Even if this approach seems to be out of question today, 

this is where EHW might lead us in a few years. 

Other implementations of EHW have also been explored such as, for 

example, evolving resistors and capacitors values to perform analog filtering. 

Antenna design is also a vast field of application of evolutionary techniques. 

They are now industrially used to evolve application specific antennae. See for 

example [106] where genetic programming is used to design antennae, or 

[107] which reviews antennae that have been evolved for unconventional 

applications. See [108] for a broader set of examples of evolutionary 

techniques put to use in industrial applications. 

EHW already incorporates a large set of application. Special attention will be 

paid in this thesis to the progress made in the area of extrinsic EHW applied 

to digital circuit design. A number of works has been done in the area of 

evolving combinational circuits [24]. In this dissertation, an extrinsic EHW 

applied to combinational logic circuit will be extended to design sequential 
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circuits [1]. The needs of the EHW realm are discussed and the research area 

of this work drawn. 

3.6.1 Advantages 

Designing a circuit using evolutionary techniques has some advantages over 

classical circuit design. 

• Evolutionary design can explore a much wider range of solutions than 

human designers. 

• People who have only basic knowledge of the domain in which the 

design is wanted can use evolutionary design. 

• Evolutionary design can cope with varying degrees of constraints and 

special requirements. An extra constraint just needs to be 

incorporated in the chromosomes and fitness function to expand the 

requirements [109J. 

Circuits can be created even if the 110 relationships are not precisely known. 

This is especially useful when the problem is difficult to characterize (e.g. 

robot controller). A circuit can be evolved as long as the global performance 

of the circuit can be measured. 

Traditional models and design methodologies do not limit evolution. More 

performant circuits that are tuned to the hardware can thus be evolved (e.g. 

smaller or faster circuits). This is especially true for what is called 

unconstrained evolution. 

Environments where the logical behaviour of the hardware is not known in 

advance. In such situation, the traditional method of hardware design is 

ineffective. Furthermore, EHW will be very effective in situation where errors 

can occur, or where input data from the environment is unavailable due to 

accidents. Tradition hardware design overcame such problem with fault­

tolerant techniques, usually by using redundant circuits. An exciting aspect of 

hardware evolution is that very high-speed tasks can be performed, for 

instance, pattern recognition or control [105]. The function level EHW 
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combines the advantage of both hardware and software, which make it 

suitable for applications that must be processed at very high speed. 

3.6.2 Disadvantage of evolutionary Design 

The computational time complexity related to the length of chromosome has 

been mentioned in all EA used for problem solving [13,25]. 

Sometimes a fitness function is very difficult to find without paying a heavy 

computational cost in EAs. For example in digital circuit design, a circuit with 

a number of external inputs will require 2n (where n is the external input) 

possible input combinations when calculating functionality. It is thus difficult 

to obtain results for circuits with a large number of inputs. 

In the same study on EHW experiments [12], the correctness of evolved 

circuit was terminated. Where in the experimental results, not every single run 

can generate a correct circuit. 

Evaluating an EHW in a real physical environment can cause damage to the 

EHW or the physical environment. 

Most researches on EHW, so far, have a common problem in that the 

evolved circuit size is small [21]. Further the hardware evolution is based on 

primitive gates such as the AND/OR gates. This gate level evolution is not 

powerful enough for industrial applications. 
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3.7 Summary 

The area of Evolutionary Algorithms is a very rich area and has grown 

tremendously in the last decade. This chapter in no way attempts to cover the 

field in depth but rather to give an overview of the field and in particular, the 

areas of the field of particular importance for evolutionary electronics. As we 

shall see throughout this dissertation, the two most important issues when 

considering the application of GAs or ES involve the definition of a genotype 

phenotype mapping as well as the definition of a fitness criterion to guide the 

evolutionary process. Once these can be made, GA can be applied in a very 

straightforward manner to a large number of areas. 

The chapter has also given a brief account of evolutionary algorithm used for 

circuit design aspects. A set of major algorithms exists and the major 

difference between them can be summarized as follows: 

• GA: selection, crossover, mutation, and binary representation. 

• EP: selection, crossover, mutation integer and binary representation. 

• GP: selection, crossover, and mutation program representation. 

• ES: mutation elitism, binary, integer and real representation. 

The chapter discussed the mam concepts of EHW and their application 

according to five important properties summarised in EHW taxonomy 

properties classification. And finally summary of the advantages and 

disadvantages of using EHW in real world application has been given. 
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Chapter 4 

OPTIMAL STATE ASSIGNMENT OF FINITE STATE MACHINE 

4.1 Introduction 

Synthesis of VLSI circuits involves transforming a specification of circuit 

behaviour into a mask-level layout that can be fabricated using VLSI 

manufacturing processes. Optimization strategies are necessary in VLSI 

synthesis in order to meet the desired specification. The first order 

optimization criteria in this process are typically all a desired subset of area 

optimality, speed, power dissipation and testability. Considerable progress has 

been made in understanding combinational logic optimization in the recent 

past and large number of universities and industrial CAD programs are now 

available for optimal logic synthesis of combinational circuits. Optimization 

of sequential circuits is considerably less mature [28,29,52,103]. 

As explained in chapter 2, state assignment is an important step m the 

synthesis of a sequential circuit. This encoding determines the complexity and 

the structure of the sequential circuit realizing the state machine and therefore 

has a profound effect on its area. There is no exact algorithmic approach for 

fmding the optimum state assignment for the internal states of a sequential 

circuit. Various heuristic methods have been proposed for obtaining 

reasonable assignments. State assignment algorithms assign binary codes to 

each symbolic state. These codes are used to create a logic-level 

implementation using a register per bit of binary code, so the encoding has a 

direct effect on the quality of the implementation. The state assignment 

problem has been studied periodically since the early 1960s [45,46], and is one 

of the classical unsolved problems in logic synthesis. Recendy developed state 

assignment algorithms attempt to predict the effect of encoding on the size of 

resulting two level and multilevel implementations. Techniques for the 
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optimal state assignment of sequential circuits synthesis will be presented in 

this chapter. A more detailed discussion of these techniques and of genetic 

algorithms for state assignment will be discussed here. 

4.2 Complexity of the state assignment problem 

In the design of switching systems or circuits, which are to handle digital 

information, a problem arise as to how that information is to be coded. In 

general the states of the FSM keep information of previous inputs. In an 

implementation of the FSM as a logic circuit, the present state of the FSM has 

to be stored in memory. Figure 2.4 in chapter 2 shows a generic block 

diagram of a FSM. In order to obtain this logic circuit, a binary code has to be 

assigned to each state. The only restriction for a valid state encoding is that 

each state has to be assigned a unique binary value. 

If the numbers of states in the FSM is n then the number of states variables 

b is the smallest integer that is equal to or grater than [ log2 n [. The 

assignment process is that of deciding which of the 2b codes provided by b 

state variables must be assigned to any particular state in the state machine. 

The first state of FSM can be allocated anyone of the 2b combinations; the 

second state can be allocated anyone of remaining 2b -1 combinations, etc.; 

hence the nth state of FSM can be assigned anyone of the 2b - n + 1 

combinations of state variables. 

Then the total number of different possible encoding [110] is given by 

2b , 

T(n b) = . 
, (2b -n)! 

possibility of assigning 2b combination of state variable to the n states. The 

state variable can be permuted b! ways. In addition, each state variable can be 

complemented, so the set of state variables b can be complemented in 2b 
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ways. Many of these possible encoding yields the same logic circuit. This is 

the case when the encoding differs only by having one column complimented 

(2 b cases) and when the encoding differs only by having two columns 

permuted (b! cases). Then, the total number of distinct encoding that yield 

different logic circuit is 

A(n b)=T(n b)/(2b .b!)= (2
b 
-1)! 

, , b!(2b_ n)! 

Table 4.1 shows the value of T (n, b) and A (n, b) for different nand b. As 

can be seen; the number of combination is very large. Thus even for FSM 

with six states the number of possible state assignment to be considered is 

420, and it rapidly rise to more than ten million for a circuit with nine sates. 

Since the number of possible state assignments grows profusely with the 

number of internal states, it is almost impossible to try all assignment in order 

to select the one leads to the simplest logic circuit design. 

To try a new state assignment every 100 /-Ls, it would take 66 years to try all 

possible assignments for a small FSM with 16 states [45]. 

Table 4. 1. Number of Different state assignments. 

n b T (n, b) A (n, b) 

2 1 2 1 
3 2 24 3 
4 2 24 3 
5 3 6720 140 
6 3 20160 420 
7 3 40320 840 
8 3 40320 840 
9 4 "'" 4.10 19 107 

10 4 
"'" 2.10 13 ","5.10 10 

11 4 
-

12 4 -
-

13 4 -
-

14 4 -
-

15 4 -
-

16 4 -

17 5 "'" 2.10 23 "'" 10
20 
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Any valid state encoding will lead to a correct implementation of a FSM, 

though the complexity of the associated logic circuit may depend heavily on 

the state assignments. 

4.2.1 Problem Formulation 

The goal of optimum state assignment is to transform sequential circuits 

behaviours into functional circuits, which are less expansive according to 

some cost function. The cost function typically incorporates (area, speed, 

power consumption, testability) as the main objective of the optimization 

procedure. This chapter present concept and algorithm, which are mostly 

independent of specific cost function and are basic ingredients for a logic 

synthesis tool. In this work we will assume that minimum area is the primary 

objective of the optimization procedure. There are many possibilities for 

estimating the area requirement of physical circuit implementations if the 

circuit is described at gate-level. The gates, literals and connection count for 

next state and outputs equations are the optimization goals in this work. 

A literal is defined as a Boolean variable or its complemented (e.g. A or A). 

The numbers of literals needed to describe each function at individual nodes 

summed over all nodes of the Boolean network represent the circuit. A 

connection is defmed to be a distinct input of a gate having at least two 

inputs, i.e. input to inverters are not counted. Obviously, the literal count 

depended on how the circuit description is and how the function at each node 

is represented. For example, if the function at a node is represented in a 

factored form the literal count will usually be smaller than if the node 

function is represented in the SOP form. Therefore, when evaluating 

optimization results with respect to literal counts, great care has to be taken in 

order to ensure a fair comparison. 
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4.2.2 Motivation example 

Consider an example, Table 4.2, that illustrates how the state assignment can 

influence the cost of synchronized FSM with four states (SO, Sl, S2, S3) and 

one input x. The table shows three valid encoding for the FSM (Assign 

1,2,3). 

Table 4.2. State Table with three State Assignments. 

Present Next state Output Assign Assign Assign 

state #1 #2 #3 
x=O x=l x=O x=l 

SO SO Sl 0 0 00 00 00 

Sl SO S2 0 0 01 10 11 

S2 S3 S2 0 0 10 11 01 

S3 SO Sl 0 1 11 01 10 

• Assign 1: 

The transition table corresponding to the state assignment 1 is derived in 

Table 4.3. D flop-flops are used to implement the memory portion. The 

entries in the transition table represent the next state of D flip-flops for each 

combination of present state and input value. Karnaugh maps are for each of 

the flip-flop excitation input and output as shown in Figure 4.1. 

Table 4.3. State transition table for assignment 1. 

Input Present State Next State Output 

X 
Yl Yz Yl Yz Z 

0 0 0 0 0 0 

1 0 0 0 1 0 

0 0 1 0 0 0 

1 0 1 1 0 0 

0 1 0 1 1 0 

1 1 0 1 0 0 

0 1 1 0 0 0 

1 1 1 0 1 1 
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Y 1 Y2 

00 

01 

11 

10 

x=l X=O Y 1 Y2 X=O x=l Y 1 Y2 X=O x=l 

0 0 

0 1 

0 0 

(1 1 

(a) Karnaugh Map 

for D A 

00 0 1 

01 0 0 

11 0 1 

10 1 0 

(b) ICarnaugh Map 

for DB 

Figure 4.1. Karnaugh maps for D flip-flops 
realization and output for assignment 1. 

00 0 

01 0 

11 0 

10 0 

(c) Karnaugh Map 

for Z 

0 

0 

1 

0 

Note that for each flip-flops, the D input is made equal to the required next 
state. 
The assignment 1 yields the following equation: 

DA=y Y +xy Y 
1 2 1 2 

Z= xy Y 
1 2 

• Assign 2: 

The state transition table corresponding to the state assignment 2 derived 

in Table 4.4. 

Table 4.4. State transition table for assignment 2. 

Input Present State Next State Output 

X Yl Y2 Yl Yz Z 

0 0 0 o 0 0 

1 0 0 1 0 0 

0 1 0 0 0 0 

1 1 0 1 0 1 

0 1 1 o 1 0 

1 1 1 1 1 0 

0 1 0 0 0 0 

1 1 0 1 1 0 
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Y 1 Y2 

00 

01 

11 

10 

X=o x=l 
Y 1 Y2 X=o x=l Y 1 Y2 X=o x=l 

0 0\ 
0 1 

0 1 

0 \J 
a) Karnaugh Map 

for D A 

00 0 0 

01 0 0 

11 (1 (1\ 

10 0 ",,1.1 

(b) Karnaugh Map 

for DB 

I 

00 0 

01 0 

11 0 

10 0 

(c) Karnaugh Map 

for Z 

Figure 4.2. Karnaugh maps for D flip-flops 
realization and output for assignment 2. 

0 

1 

0 

0 

The assignment 2 yields the following equation: 

• Assign 3: 

DA =X 

DB = Y
j
Y

2 
+x Y

j 

Z= xy Y 
j 2 

The state transition table corresponding to the state assignment 3 derived 

in Table 4.5. 

Table 4.5. State transition table for assignment 3. 

Input Present State Next State Output 

X 
Yl Y2 Yl Y2 Z 

0 0 0 0 0 0 

1 0 0 1 1 0 

0 1 1 0 0 0 

1 1 1 0 1 0 

0 0 1 1 0 0 

1 0 1 0 1 0 

0 1 0 0 0 0 

1 1 0 1 1 1 
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Yl Y2 

00 

01 

11 

10 

X=o Y I Y2 x=o x=l x=o x=l 

0 00 0 (;\ 00 0 0 

01 0 1 01 0 0 

0 11 0 1 11 0 0 

0 10 0 \J 10 0 1 

a) Karnaugh Map (b) Karnaugh Map 

for DB 

(c) Karnaugh Map 

for Z for D A 

Figure 4.3. Karnaugh maps for 0 flip-flops 
realization and output for assignment 3. 

The assignment 3 yields the following equation: 

DA = x y +x y y 
2 1 2 

D =X 
B 

Z=xy Y 
1 2 

This example illustrates that choosing an appropriate state assignment greatly 

reduce the cost of implementation. The cost of the circuit is defined here as 

the number of 2 input AND/OR/NOT gates needed to realize the circuit. 

However, state encoding that leads to simpler equations and therefore smaller 

area designs can be selected. This can be seen from Table 4.6, which shows a 

comparison of the number of gates required to implement the circuit for each 

of the three assignments. 

Table 4.6. Gate comparison for three state assignments. 

State assignment # 2-input AND # 2-input OR #NOT #Total gates 

Assign 1 9 3 3 15 

Assign 2 4 1 1 6 

Assign 3 6 1 3 10 
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4.3 Automated state assignment 

In this thesis optimal state assignment algorithm creates assignments that use 

the minimum number of logic components. A number of algorithms to find 

good state assignments have been discussed in detail in chapter 2. 

The widely used algorithms in this area by researchers so far are: 

• In MUSTING [47], JEDI [111] and MUSE [112] a graphic is built, 

with a vertex corresponding to each state in a FSM and edges 

connecting every pair of states. Each edge has a weight that measure 

how desirable it is to assign close codes to this pair of states. The 

problem called graphic embedding, then reduces to minimization of 

the weight sum of the states in the graph. 

• In Nova [113] and I<JSS [114] symbolic minimization is used to 

obtain a set of constraints that the encoding must satisfy. Each uses a 

different approach for determining the state bit encoding. It is 

difficult to characterize which is best for a given FSM. A good 

approach is to try all of them, this possibly because execution time is 

very small. 

Nova, proposed by Villa et al. [113], builds upon the work done on the I<JSS 

algorithm. Minimisation is achieved by combining states, which share the 

same next state and outputs. A number of the approaches depending on 

certain heuristics, a combination of the algorithms are executed to produce 

logic minimisation. 

4.4 Mechanical state assignment 

State assignment algorithms that don't attempt an optimal state assignment 

are usually grouped under the category of mechanical state assignment 

algorithms. These algorithms are referred to as mechanical because they 

assign state values based on some type of rule. There are four mechanical 

state assignment algorithms: 

1. One-hot code 

2. Random code 
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3. Gray code 

4. Standard Binary sequence 

4.5 Previous Application of Genetic Algorithm to State Assignment 

In recent years, considerable research has been undertaken on an application 

of genetic algorithms to state assignment, particularly Almaini [68] and 

Amaral et al [69]. 

In [68] the Algorithm result was compared with NOVA, MUSTANG and 

SPECTRAL, with the assignment based on closed partitions. This work 

demonstrated that genetic algorithms are a valid method of finding good state 

assignments. 

In [69] the fitness function used the Hamming distance for evolution. So the 

problem is reduced to minimizing the weighted sum of the distance of the 

states in the graph, a classic problem called graph. 

There are some similarities between the state assignment and travelling 

Salesman Problem (fSP) [115]. Just as the goal of the TSP is to find a path 

that minimizes the travelling distance; the goal of the state assignment is to 

find an implementation that minimizes the implementation cost. The 

equivalence of the distance between two cites in the TSP is the connection 

value of desired adjacent graph arcs in the state assignment. However in the 

TSP only the distance between adjacent cities in a tour is computed to from 

the fitness of a given path. In the state assignment problem the connection of 

each state with all other states must be weight by the corresponding distance 

between these states, and then summed to form the fitness. In other words, 

the TSP can be seen as a special case of the state assignment problem where 

the Hamming distance is reduced to a binary function whose value is one if 

the states are adjacent, and zero otherwise. 

In the TSP, when the positions of two cities on a tour are swapped, only the 

connections with their neighbours change. Defining this property as locality, 
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we observe that the state assignment problem does not have locality: if two­

state assignment are swapped, their connection with all other states is 

affected. 

The fitness function used for an m-city TSP is the length of the tour. Due to 

the symmetry of this function, for each path there are at least 2m-1 other 

paths with same length. In this state assignment problem the symmetry of the 

fitness function result is 2 k k! equivalent solutions, where K is the number of 

bits used in the synchronous sequential circuit. This large number of 

equivalent solution results in a search space with many local minima, 

Therefore, it's harder to find a good solution for the state assignment 

problem a for the TSP. 

Table 4.7 presents a summary variety of available approaches for the state 

assignment problem. There is no completely satisfactory manual technique 

for fmding the optimum state assignment. The problem of fmding the 

optimum state assignment is NP-hard. The GA finds good optimal solutions 

short of complete enumeration and evaluation of all possible assignments [1]. 

Table 4.7. Summary of available approaches to find optimal state assignment 

Approach Theory Merits Comments 

Partition Theory Algebraic techniques The state assignment Not all machines 

Hartmans and are used to is based on closed have close 

Stearns. decompose the state partitions resulting in partitions. 

1967 [39]. machine. reduced dependency 

between the state 

variables. 

Column evaluation The column of state This approach gives It is intractable 

approach. Dolota table are scored with very good realisation, for machine of 

and McCuskey. respect to various the result even better more than 12 

1964 [46]. criteria to influence than approach in states. 

quality of assignment [26]. 
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Approach Theory Merits Comments 

Enumerative All possible All partitions are The 
approach of Story partitions are optimally selected implementation 
1972 [59]. evaluated as and the subset of of is slow. 

candidates for best partition 
assignment equally matching is 
separately by selected for 
calculating the assignment. 
complexities of the 
corresponding 
Boolean function. 

Approach of The graph The approach can It doesn't solve 
Moroz embedding created be treated as the quadratic 
1970 [64]. directly from the approximate assignment but 

state graph whose solution to simply edge 
edges quadratic embedding 
corresponding to assignment. problem. 
oriented transition 
between states. 

Quadratic This approach is This approach The approach 
assignment based on permits for still can't be 
approach. embedding some realisation of applied for 
DeMicheli 1984 graphs created machine up to 100 machine with 
[65]. from FSM table to states. more than 100 

hypercube graphs. states, and it 
doesn't take in 
to count output 
states for 
assignment. 

Devadas "Mustang Commercial Available For multilevel 
1988" [47]. ECAD tools look implementation 

for optimal state 
assignment. 

Approach of Villa Commercial Available For two level 
"NOVA ECAD tools look implementation 
1990"[113]. for optimal state only. 

assignment. 
"Genetic Using GA to All possible GA approach 
algorithm generate optimal assignment for a requires a set of 
approach "Almaini state assignment. given problem operators for its 
,Amaral,1995 maybe considered implementation 
[68,69] and as search space of . The selection 
Chalmeris, 2000 potential solution. of these 
[133]. operators is 

crucial for the 
efficiency of the 
algorithm. 

Proposed Using evolutionary Combination of both 
approach 2002 [1] algorithm to GA and EHW for 

optimise and design sequential logic 
sequential circuits. circuit. 
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4.6 Genetic Algorithms for state assignment problem. 

This section describes in details how GA techniques are used to find efflcient 

state assignment capable of minimizing the component count for a state 

machine. 

4.6.1 Chromosome representation for GA State assignment problem 

A finite state machine can be described by STT or state transition graph 

(STG). When implementing finite state machines, they are commonly 

represented as two-dimensional tables with a number of rows equal to the 

number of states and a number of columns equal to the size of the input 

alphabet. The intersection between a state and an input alphabet contains the 

next-state transition and the output symbol, if any. 

chromosome State list 

(a) Chromosome representation 
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2 I 4 I 5 

Random numbers 2 4 5 :2 
States list 0 1 2 3 
Chromosome 1 4 6 :2 
State assignment 001 100 110 010 

2 4 

4 :2 
456 
7 3 
111 011 

(b) An example coded assignment 

7 

Figure 4.4. Ca, b) Chromosome representation. 

2 

T 

The chromosome contains the encoded assignment for the internal state of 

the sequential machine. The length of the chromosome is equal to the 

number of the states used for the sequential machine. The initial population is 

randomly generated. The duplicate chromosomes are discarded. In order to 

encode the actual information, the FSM is represented as a list of n states; 

the i th element of the list is a number in the range from 1 to (2 b - i + 1 ). 

Consider the example in Figure 4.4 (a) where the genotype of the 

chromosome has been generated randomly. The genotype of a problem is 

represented by array of integers. The figure 4.4(b) shows how a six state 

sequential machine is encoded. 

According to the Figure, the method can be summarised as follows: 

• Random function is used to generate six integers (2,4,5,2,4,2). 

• The states represented as list (0,1,2,3,4,5,6,7); the list starts with zero 

and contains all possible assignments for states of an FSM using 

minimum length code, i.e. b = [log2 n ] bits to encode the set of n 

states; otherwise b is the integer that is greater than or equal to 

log2 n (or nearest higher integer). The content of the state list 

represents state assignments. The algorithm works through the status 
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validity table initially set to one. The numbers are counted from left to 

right. 

The procedure is interpreted as follows: (a) The fIrst random number is 2, 

take the second number from the possible state list 1 as fIrst code for the 

initial state and set validity (0), so it will not be used or counted for future 

selections; (b) The next random number is 4, take the fourth number from 

the possible state list (4), and remove it from the list by setting validity (0); (c) 

The next random number is 5, take the fIfth number from the possible state 

list (6) and set validity (0). 

The procedure continues in the same way for the remaining numbers in the 

list. It can be seen from the fIgure that the random number 2,4,5,2,4,2 would 

map the states 0,1,2,3,4,5,6,7 to the assignment 1, 4, 6, 2, 7, 3 respectively to 

assign a unique code to each state. This method is applied to generate 

randomly the initial generation. 

4.6.2 Fitness function 

The cost function typically incorporates (area, speed, power, testability) as the 

main objectives optimization procedure of logic synthesis tools. We will 

assume that the minimum area is the primary objective of the optimization 

procedure. 

The number of 2-input AND/OR and NOT gates defmes the fItness 

function, AND / 0 R logic gates that are used in the logic equations after being 

minimised using ESPRESSO logic minimisation [66]. The extent of fItness to 

the environment is evaluated by the following function: 

w n G n + waG a + W 0 Go, where functions G n , G a and Go are the numbers of 

NOT, AND and OR gates, and wn ' wa andwo are weight where the 

chromosome is realised as a circuit with NOT, AND / 0 R gates. 

A selection mechanism is necessary to select the individual that will generate 

offspring, and also to select the individual that will survive the next 

generation. In this task the roulette wheel method was chosen. In the method 

presented in [25], the probability of selecting a given individual is given by its 
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fitness divided by the length of the roulette wheel, where the length of the 

wheel is the sum of the fitness of all individual. 

For example the total fitness equal 100. The percentage of population total 

fitness is also shown in Figure 4.5. For this example the chromosome 1 had a 

fitness value of 30, which represented 0.3 of the total fitness. As a result, 

chromosome 1 is given 0.3 of the based roulette wheel, and each spin turned 

up chromosome 1 with probability 0.3. Each time we required another 

offspring, a simple spin of the weight roulette wheel the reproduction 

candidate. In this way more highly fit chromosome have higher number of 

offspring in the succeeding generation. Once the chromosome has been 

selected for reproduction, an exact replica of the chromosome is made. 

Initial population Randomly fitness % of Total 
Chromosome 1 30 0.3 
Chromosome 2 10 0.1 
Chromosome 3 20 0.2 
Chromosome 4 15 0.15 
Chromosome 5 25 0.25 

Figure 4.5. Roulette wheel parent selection. 
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4.7 Genetic operators 

Once gate count has been carried out for every chromosome, fitness values 

are assigned to each individual in the population. Roulette wheel selection is 

used to select the chromosomes from the previous population. Once the new 

generation is created, the recombination operations are applied. In this case, 

the two-point crossover operation is applied. A crossover operator that 

randomly selects two crossover points within a chromosome then 

interchanges the two chromosome genes between these points to produce 

two new offspring. The" I" symbol indicate the randomly chosen crossover 

point. This is illustrated in Figure 4.6: 

Before Crossover 
Chromosome 1= 2 1 I 3 5 I 6 
Chromosome 2= 4 2 I 7 3 I 1 

After Crossover 
Offspring1= 2 1 I 7 3 I 6 
Offspring2= 4 2 I 3 5 I 1 

Figure 4.6. The crossover operation. Two 
offspring are produced from a pair of parents. 

The mutation operation chosen was based on the interchange of two genes 

(states) in each chromosome. 

The mutation rate controls the number of operations to be applied and in this 

way controls the amount of random information introduced into an 

individual. For example, Table 4.8 shows two swapping operations are 

performed during mutation. The first one swap the state with assignments 6 

and 2, changing assignment of state Sl and S2, the second swapping IS 

between the pattern 3 and 7, change assignment of state S3 and SS. 

All solutions are reachable by this operation because given an assignment a 

finite number of single swapping operations can transform it to any other 

assignment in the solution space. The mutation rate was variable and 

increased with each generation if there had been no improvement in the gate 

count of the best chromosome. 

94 



Table 4.8. Example state mutation 

State Before mutation After mutation 

SO 1 001 1 001 

Sl 6 110 2 010 

S2 2 010 6 110 

S3 3 011 7 111 

S4 0 000 0 000 

S5 7 111 3 011 

Figure 4.7 shows the fitness values for different assignments. For example if 

the best chromosome corresponding to the assignment A. then the genetic 

algorithm will now search the local area for better solution by applying 

crossover. The best solution is stored in the first chromosome, so that 

moving towards other areas loses nothing. 

Fitness 

Mutation 

A possible assignments B 

Figure 4.7. Effect of Crossover and mutation 
on chromosome Fitness. 
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Once the local maximum is found the population will converge. Convergence 

of the population causes an increase in mutation rate and the population may 

fmd away out of the local maxima. After finding a better solution then the 

previous local maximum representing the genetic algorithm will a gain search 

that area and may end up with assignment B. During the search of the local 

area the mutation rate is dropped to its lowest possible value. 

Finally, the result of the application of this operator is always a valid 

assignment. Selecting the GA parameter values for optimal state assignments 

will be discussed in section 4.8. 

The algorithm used is described as: 

Step 1. Create num_chromosomes randomly generated chromosomes ci j 

Step 2. Evaluate the fitness of each chromosomef(c)j 

Step 3. besCchromosome=ci suchthatf(ci)=max {f(c})}j 

Step 4 No-tenerations=lj 

Step 5 num_children (percent breeding *num_ chromosomes)j 

Step 6 While (max no-tenerations not exceeded) do 

begin 

select num_children parent chromosomes by windowed roulette wheel; apply 

two-point crossover to create num_children new chromosomes; 

replace num_children parents with new chromosomes (children); 

mutate percenCmutation genes of total genes; 

replace randomly selected chromosome with besCchromosome (elitism); evaluate 

the fitness of new chromosomes f( c})j 

besCchrmosome= c} j 

no-tenerations = no-tenerations+ Ij 

end; 
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However, when creating a new population by crossover & mutation, the best 

chromosome might be lost. Hence, Elitism is utilised to copy the best 

chromosomes to the new population. Elitism rapidly lillproves the 

performance of the GA, by preventing the loss of the best-found solutions. 

Several parameters control the way the GA optimises the state assignment of 

the FSM, allowing the users to vary their value. The parameters are: 

• The population size of the genetic algorithm; 

• The number of generations of the GA around the main loop; 

• The initial number of runs of the GA to perform the optimisation; 

• The probabilities of crossover rate (PJ and mutation rate (Pm)' 

4.8 Experimental results 

This chapter discusses several major points. It shows how GA parameters 

affect the results of the state assignment. The results obtained on the MCNC 

benchmark set of FSMs [116] are presented for different number of 

generation, population size, probability of crossover and probability of 

mutation. In the following subsections more results obtained by the genetic 

algorithm are compared with the results obtained by NOVA algorithm and 

other heuristic technique. 

All the results given in this chapter are implemented in C on PC 450MHZ 

Pentium-III with 128Mb of RAM. The program seeks good assignment for 

the state variables. The users are required to input several parameters for the 

GA before running the program. 
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For a given state table, which is to be realized as a clocked sequential circuit, 

attempt is made to minimize the number of AND/OR gates necessary in the 

combinational part of the circuit under the following assumptions: 

• No internal state merging will be attempted. 

• The cost of the circuit is defined as the number of AND/OR gates 

needed to realize the circuit. 

• The program attempts to find good assignment for internal state 

variable of a sequential machine within a reasonable time but is not 

guaranteed to find the best solution. 

The following results show the performance, in terms of the number of two 

input (AND/OR) gates required, for the various state assignment algorithms 

considered. 

4.8.1 Parameter Effects 

This section covers two issues. Firstly, experiments were conducted to 

understand the effect of GA parameters before a suitable set is adopted. 

Secondly, for the set of parameters found, several benchmark circuits are 

synthesised for different areas: number of AND/OR /NOT gates and 

number of literals. 

Benchmark Set 

A subset of the MCMN benchmark set given in Table 4.9 is used in this 

evaluation. The table shows the benchmarks used, together with their number 

of input/ output/states. 
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Table 4.9. Statistics of benchmark examples 

Benchmark # Input # Output # States 

Bbara 4 2 10 

Bbtas 2 2 6 

dk15 3 5 4 

dk16 2 3 27 

dk27 1 2 7 

dk512 1 3 14 

donefile 2 1 24 

Lion9 2 1 9 

modulo12 1 1 12 

Sl 8 6 20 

shiftreg 1 1 8 

trainll 2 2 11 

tav 4 4 4 

4.8.2 Parameter space 

Several parameters control the way GA operates a state assignment of the 

FSM, allowing the user to vary their value. The parameters that must be 

chosen are: the probabilities of crossover rate (PJ and mutation rate (PrJ, 

the population size, the number of generations of the GA around the main 

loop and the initial numbers of runs of the GA to perform the optimisation. 

We cannot choose the control parameters until we consider the interaction 

between the genetic operators. Because they cannot be determine 

independently. 

Therefore in choose these parameters, it was decided to search the space 

parameter by parameter except for crossover and mutation probability, which 
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are considered together. For each parameter chosen, the parameter is flxed, 

and the process continues for the next parameter. 

4.8.3 Crossover and mutation 

Crossover and mutation probabilities are dealt with as a single unit, as they are 

similar and each has a signiflcant effect on a good choice of the other. 

A too-small probability of crossover could be partially compensated for by 

too large probability of mutation. A too large probability of mutation is likely 

to mask the effect of crossover. Again, there is computation time problem 

with searching a large space for good parameters. 

Firstly, the probable range for values were decided to be 0.1 ::::; Pc, as below 

0.1 there is little chance of any change from generation to generation. Also 

0.001 ::::; Pm , as below there is a little chance of having any effect. 

Three benchmarks were used, modulo12, dkS12and dk16 from the MCNC 

benchmark set. It was important to choose three signiflcantly different 

benchmarks. "Module12" number of state =12, while "dkS12" number of 

state=14 and "dk16" number of state=27. As expected with any optimization 

method based on genetic algorithm, it is possible to choose Pc or Pm either 

too high or too low. If Pc or Pm are too high, not enough good 

chromosomes are retained from generation to generation. 
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Table 4.10. Compression crossover and mutation. 

Benchmark Examples Pc Pm No. Gates No. literals 

modulo12 0.10 0.08 27 31 

0.20 0.01 21 29 

0.40 0.01 22 25 

0.60 0.025 25 24 

0.80 0.05 24 31 

dk512 0.10 0.08 48 52 

0.20 0.01 43 47 

0.40 0.01 50 54 

0.60 0.025 44 48 

0.80 0.05 60 47 

dk16 0.10 0.08 745 622 

0.20 0.01 479 501 

0.40 0.01 538 522 

0.60 0.025 549 601 

0.80 0.05 773 650 

Table 4.10 shows the effect of Pc and Pm on the number of gates. Figure 4.5 

shows the plot of different probability of crossover Pc with the number of 

gates. The plot of probability of mutation Pm and the number of gates is 

shown in figure 4.8. However if Pc or Pm are too low, few changes are made 

from generation to generation, leading to static population. As can be seen in 

Figures 4.8 and 4.9, it was decided to choose Pc =0.25 and Pm = 0.01. 
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The results plotted in Figure 4.12 and 4.13 for modulo12, dk512 and dk16 

show different probability of crossover Pc and mutation Pm with the number 

of literals. 
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Figure 4.8 Effect ofP (Crossover) for example modulo12. 
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Figure 4.9. Effect ofP (Mutation) for example modulo12. 
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Figure 4.12. Effect of P (Crossover) for 
examples modulo12, dk512 and dk16. 

Mutation probability vs No. Literals 

0.01 0.025 0.05 
P (Mutationr) 

0.08 

~modulo12 

--dk512 
--dk16 

Figure 4.13. Effect of P (Mutation) for 
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4.8.4 Population Size 

The probability of crossover and mutation were then fixed at the values given 

above, and attention was turned to discovering a good value for population 

size. Increasing in the population size increase its diversity and reduces the 

probability that the GA will prematurely converge to a local optimum, but it 

also increases the time required for the population to converge to the optimal 

regions in the search space. This is a one-dimensional problem, requiring 

fewer execution runs, and therefore it was possible to use benchmarks which 

proved a good cross-section of the benchmarks, as seen in the benchmark 

table. The benchmark circuits modulo12, dk512 and dk16 were used and run 

with different population sizes. The population size was varied from an initial 

setting (15) by doubling and halving to explore the value around 15. Once 

results were obtain for 15 and 30, it was clear that this range was nearly large 

enough, and so the point 5,10 and 50 were added as in Table 4.11. 

The aggregation of results has been treated in the same way as in the previous 

section. Also plotted are the numbers of gates (No. Gates) Vs Population 

sizes in figure 4.14 and the numbers of literals (No. Literals) Vs Population 

plotted in figure 4.15. The plots shows that increasing the population size will, 

on average, lead to decreased number of gates. 

However an increase in the population size will increase the CPU time of the 

program. So, we decide to fix the defaults Population size =20. 
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Table 4.11. Population size numbers of gates and number of literal 

Benchmark Example Population_ size No. Gates No. literals 

modulo12 5 30 34 

15 23 25 

20 24 28 

30 23 27 

50 24 28 

dk512 5 43 55 

15 39 47 

20 32 43 

30 41 36 

50 35 45 

dk16 5 549 601 

15 538 522 

20 479 501 

30 477 495 

50 475 504 
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No. Gates vs population size 
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4.8.5 GAs Generation 

In this section, we compare the effect of the number of generations on three 

benchmarks with the crossover and mutation rate fIxed. The results obtained 

are tabulated and plotted as shown in fIgure 4.16. In the table 4.12, number of 

generations was varied from 10 to 500. It was clear this range is large enough 

to see the effect of this parameter on the GA. 

We can see from the plot Figures 4.16 and 4.17, that the best results occur 

when number of generation >100 for modulo12 and dklS. After this range, 

there is no signifIcant effect when the number of generation increases. Figures 

4.18 and 4.19 shows the affect of increasing the number of generations on the 

number of gates and literals. However when the number of generation is 

small this allows the algorithm to be run within a reasonable period of time. 

No. Gates vs No.Generations 

00 40+-~~~~~~~~~~~~~~~-4 

-+- rrodulo12 
m ----------~ 

~ 30~--~~--~~~~--------~---4 
o -fl-dk512 
z20+-~~~~--~~ ____ ~~=-~ 

10 

o 50 100 150 200 250 300 350 400 450 500 550 

NO. Generations 

Figure 4.16. Variation of No. Generations with No. Gates. 

108 



Table 4.12. Result number of generation. 

Benchmark examples NO. Generation No. Gates No. Literals 

modulo12 10 29 33 

20 27 31 

50 25 27 

100 21 25 

500 19 23 

dk512 10 51 57 

20 43 49 

50 37 40 

100 37 51 

500 37 41 

donflle 10 425 429 

20 435 430 

50 416 421 

100 340 435 

500 316 421 

dk16 10 549 601 

20 538 522 

50 479 501 

100 455 393 

500 397 365 
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No. litearls vs No. Generations 
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From tabulated and graphical results it was decided to choose the number of 

generation=100. This gave us better results in less time. 

We can see the function of GAs as a balanced combination of exploration of 

new regions in the search space and exploitation of already sampled regions. 

This balance critically controls the performance of GA. However, the 

performance of the GA is determined by the choice of control parameters as 

was discussed in the previous result. 

Here the trade-offs that arise are pointed out: 

• Increasing the crossover probability increases recombination of 

building blocks, but it also increases the disruption of good strings. 

• Increasing the mutation probability tends to transform the genetic 

search into a random search, but it also helps reintroduce lost genetic 

material. 
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• Increasing the population size increases it's diversity and reduces the 

probability that the GA will prematurely converge to a local optimum, 

but also increase the time required for the population to converge to 

the optimal region in the search space. So we can't choose control 

parameter until we consider the interaction between the genetic 

operators. The choice of control parameter itself can be a complex 

non-linear optimization problem and the choice of optimal parameter 

largely remains an open issue. 

4.9 Comparison of results 

The second set of experiments aims to compare the GA results with NOVA 

using the system "SIS" disturbed by the department of EECS, UC Berkeley 

[73]. These comparisons were based on the number of literals for sum of 

products form and number of the gates. 

The genetic algorithm with population size of 20 was demonstrated for the 

probability of crossover is 0.25 and the probability of mutation is 0.01. The 

number of generations over which GA was run was 100. However, it was 

observed that, for FSMs with less than 15 states, the number of generations 

required for GA to operate effectively was lower somewhere between 50 and 

100. For the MCNC FSMs benchmark with number of states more than 15, 

the number of generations was over 100 and it took less than 30 minutes of 

CPU time to run. The results obtained from the GAs are compared with 

Nova in terms of two inputs gates required in Table 4.13 and with number of 

literals in Table 4.14. These results are plotted in Figures 4.20 and 4.21. 
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Benchmarks 

Examples 

Bbara 

Bbtas 

Dk15 

Dk16 

Dk27 

Dk512 

Donefile 

Lion9 

modulo12 

Swmal 

Swma2 

Swma3 

Table1 

Table2 

Table3 

trainll 

Tav 

Table 4.13. Comparison of GAs with Nova 
based on the number of gates. 

Number of states Genetic algorithm 

10 60 

6 15 

4 20 

27 351 

7 10 

14 39 

24 186 

9 22 

12 27 

8 6 

8 4 

16 94 

16 42 

6 21 

6 26 

11 38 

4 20 

Total Number of gates 981 

113 

Nova 

[113] 

79 

31 

21 

379 

19 

53 

207 

38 

31 

17 

12 

129 

84 

37 

36 

45 

25 

1243 
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Figure 4. 20. Comparison of GAs with Nova based on number of gates. 
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Figure 4.21. Comparison of GAs with Nova based on number of Literals. 
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Table 4.14. Comparison of GA with 
Nova based on the number of literal 

Benchmarks # States Genetic algorithm 

Examples 

Bbara 10 60 

Bbtas 6 19 

dk15 4 22 

dk16 27 351 

dk27 7 13 

dk512 14 41 

DonefJ.!e 24 192 

Lion9 4 14 

modulo12 12 31 

Shiftreg 8 3 

Swma1 8 11 

Swma2 8 7 

Swma3 16 99 

Table1 16 46 

Table2 6 24 

Table3 6 24 

trainll 11 54 

Tav 4 32 

Total Number of Literals 1043 

Nova 

[113] 

79 

31 

21 

397 

19 

53 

207 

17 

31 

18 

17 

14 

115 

75 

37 

36 

67 

38 

1272 

The main observation to make from these tables is that, the genetic algorithm 

produces superior solutions to the state assignment problem compared with 

NOVA. The GA approach and NOVA results are presented for many 

benchmarks. In all benchmark tested in Table 4.13 the GA assignment 

produce better results compared to NOVA. Experimental results For the 17 

benchmark tested showed that the GA could generate state assignments, 
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which required on average 15.44% fewer gates and 13.47% fewer literals 

compared with NOVA. After state assignment generated, area should then be 

the main concern. The network was mapped in to a library with NAND, 

NOR and NOT gates using SIS [73]. The area is estimated as the sum of gates 

area. 

The following SIS script are used for area testing: 

read_kiss benchmark.kiss2 #read FSM description 

state_assign PROGRAM <OPTIONS> #state assignment 

#constrict logic network 

source script. rugged; #area minimizing logic reduction 

#area minimizing map to lib2 

#print mapped area 

This script performs the test state assignment on the benchmark and then lets 

SIS perform the logic minimization. A logic network is constricted from the 

state assignment and then minimized by running the script Rugged to 

produce the smallest possible circuit. The logic network is mapped to a gate 

representation, and then characterised about design area calculated and 

printed. Comparative results are presented in Table 4.15. The actual 

assignments are presented in Table 4.16. Each assignment is presented as 

tables of decimal numbers that represent the binary code of the states of the 

benchmark. 

The tables show that the area-based state assignment running the algorithm of 

NOVA and the GA state assignment 
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Table 4.15. Results for some Benchmark circuits 

Benchmark Area (GA) Area (Nova) 

Examples 

Bbara 340 528 

Bbtas 117 120 

dk14 437 500 

dk15 327 289 

dk16 1336 1118 

Donfile 858 984 

modle12 156 184 

Shifreg 101 132 

Table 4.16. State assignments for each algorithm. 

Benchmark GA NOVA 

Bbara 0-6-2-144-5-13-7-3-1 9-0-2-13-3-8-15-54-1 

Bbtas 04-10-5-12-13-11-14-15-8-9-2-6- 2-3-6-15-1-13-7-8-124-9-0-5-

7-3-1 10-11-14 

dk14 5-7-1-3-6-04 14-0-2-7-5-3 

dk15 0-3-54 0-24-1 

dk16 12-8-1-2-7-1-3-2-8-1-4-29-0-16- 12-7-1-34-10-23-24-5-27-15-

26-9-2-4-3-10-11-17 -24-5-18-7- 16-11-6-0-20-31-2-13-25-21-

21-25-6-20-19 14-18-19-30-17-22 

donftle 0-12-9-1-6-7-2-14-11-17-20-23-8- 12-14-13-5-23-7-15-31-10-8-

15-10-16-21-194-5-22-18-13-3 29-25-28-6-3-24-0-30-21-9-

17-12-1 

modulo 12 0-8-1-2-3-9-104-11-12-5-6 0-15-1-14-2-13-3-124-11-5-

10 

Shitreg 0-2-5-74-6-1-3 04-2-6-3-7-1-5 
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4.10 Comparison of GA algorithm with different state assignment 

approach 

In order to verify the behaviour of the genetic algorithm, it was applied to six 

examples from the MCNC benchmark set. The results from these machines 

were compared to different methods, applied to state assignment problem, 

closed partition method Almaini [68], codable column method [32] and 

MUSTANG [47] in Table 4.17. In addition the results from genetic algorithm 

are tabulated against mechanical state assignment in Table 4.18. The table 

shows that the number of two input AND/OR gates using fixed GAs 

parameter value as indicated in section 4.8, produced minimal logic 

implementation than those produced by conventional methods. The 

comparisons results presented are plotted in Figure 4.22 and 4.23. From the 

figures, it can be seen that GA produce results comparable to those obtained 

by the heuristic algorithms. 

Kiss2 file 

Bbtas 

dk16 

dk27 

dk512 

Donfile 

Modulo12 

Kiss2 file 

Bbtas 

dk16 

dk27 

dk512 

Donfile 

Modulo12 

Table 4.17.Comparison of GA state assignment 
with optimal algorithms. 

#States Genetic Codable- Partitioning 
algorithm Column 

6 15 35 --

27 351 -- --

7 10 30 16 

15 39 82 72 

24 186 -- --

12 27 28 16 

Table 4.18. Comparison of GAs state 
assignment with mechanical algorithms. 

Mustang 

25 

455 

19 

86 

293 

37 

#States Genetic Random search Standard Binary 

algorithm 

6 15 21 39 

27 351 812 743 

7 10 12 13 

15 39 57 94 

24 186 596 293 

12 27 21 28 
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4.11 Discussion of Results 

The results given in the previous section show that in most examples a better 

solution can be found for the state assignment by using GAs rather than a 

commercial package like NOVA. After a large number of experiments it was 

found that the GAs consistently fmds solutions that are minimal. From the 

previous experiment the following GA parameters were chosen: population 

size = 20, breeding rate = 0.25, minimum mutation rate = 0.015. The 

mutation rate was variable and increased with each generation if there was no 

improvement in the literal count of the best chromosome. The number of 

generations over which the GA was run was a maximum of 500. However it 

was observed that for machines with less than 9 states, the number of 

generations required for the GA to operate effectively was lower at 

somewhere between 50 and 100 and time less than 30 sec on average. For the 

medium size benchmark of MCNC the number of generation was between 

100 to 1000 and the time less than 30 min. 

Specifically, the following three questions were answered. 

1. Are the optimal values of the GAs parameter truly different for 

different circuits, or are the variations merely a function of the 

stochastic nature of the algorithm? 

2. Are the optimal values of the GAs parameters truly different for 

different costs function for the same circuit? 

3. If the parameters are different for different circuits or within a single 

circuit, is there any way of estimating what parameters should 

perform the FSMs and cost function specifications? 

The logic equation produced by the fittest state assignments found was 

converted into equivalent 2-input AND/OR gates to allow comparison with 

other methods. 

Comparison of results between genetic algorithms and different state 

assignments approaches has been discussed for the average area needed. 
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From experiments the average area produced by GA is 83% of the result 

produced by NOVA. The CPU time of GAs varied from 30s for small size 

benchmarks to 30.0m for large benchmarks depending on the GA 

parameters. Future, it is believed that better chromosome encoding and more 

effective parent selection may enhance the effectiveness of the genetic 

algorithm itself, possibly, and that as a consequence improved results may be 

obtained. 

4.12 Summary 

In this chapter the use of genetic algorithms is proposed to solve the state 

assignment problem. Given the huge search space and the existence of many 

local minima, this problem is well suited for genetic algorithms. The results 

are presented to show that this approach can achieve solutions superior to 

previous methods. The observations show that the choice of the GA 

parameters is a very important issue. 

A program using genetic algorithms to fmd the optimum state assignment for 

fmite state machines has been written and it can produce a fairly good 

assignment. Through evolutionary operations of recombination, mutation, 

and selection new generations of search points are found that show a higher 

average fitness than their ancestors do. Evaluation of the performance of the 

search technique can be very compact depending on: 

1. How quickly the search fmds a solution. 

2. How good the solution is. 

So, there is a difference between finding a good solution and an optimised 

solution. The results show that the state assignments as found by the genetic 

algorithm are at least as good, but in most cases better, than those derived by 

NOVA and similar techniques. It has been demonstrated that the GA is a 

valid method of finding a good state assignment; it is competitive with 

commercial software, and is not dependent on any particular feature of the 

sequential machine. 
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Chapter 5 

EVOLUTIONARY DESIGN FOR LOGIC CIRCUITS 

5.1 Introduction 

Design is the process of translating an idea into a product that can be 

manufactured. In the design of electronic circuits this implies a product 

formed from electronic components, software and electromechanics. 

Effective design allows this translation to be done quickly, cheaply and 

accurately to produce a product that is fit for the purpose. 

The top-down automatic design method of electronic circuits is generally a 

complex task requiring knowledge of a large collection of domain specific 

rules [33]. It should be emphasised that during all these stages great care has 

to be taken to maintain the logical functionality of the original circuit 

specification. Hence, there is a demand for effective ECAD tools that 

perform some of the design tasks leaving the designer to concentrate on 

issues of performance optimisation. The complexity of the electronic design 

search space has encouraged the use of evolutionary computation in 

Evolutionary Electronic Design (EED) procedures. 

Moore's law seems to be valid for the development of new computer 

hardware [90]. This implies that a larger number of transistors implementing 

digital logic gates are becoming available for designers. Earlier we have seen a 

limit in the size of hardware devices. However, we may very well soon see 

limits in design ability. That is, designers are not able to use all the transistors 

in the largest integrated circuits becoming available. To overcome this 

problem, new and more automatic design schemes would have to be 

invented. One such method is evolvable hardware. 
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Evolvable hardware was introduced recently [97,100] as a new way of 

designing electronic circuits. Instead of manually designing a circuit, only 

input/ output-relations are specified. The circuit is automatically designed 

using an adaptive algorithm, which is illustrated in Figure.S.l 

Initialize a 
population IIIj 

ofdrcuits 

Evaluate the 
SOli circuits Is the best 

circuits 
IIIj based on ~ circuit 

their fitness acceptable? 

, ~'Iake ne\v circuits I No 
by combiuing parts 

from the highest 
mnked circuits 

Figure 5. 1. The automatically circuit designed 
using an adaptive algorithm. 

Yes 
~ 

Apply 
Circuit 

These techniques have shown a high degree of flexibility in dealing with 

complex and computationally hard problems [9]. The automated synthesis of 

digital logic to satisfy the function specification is a well-researched area [117]. 

A circuit synthesised using a functional specification is a relatively 

straightforward process. However, optimising either the size or the 

performance of such circuits is a considerably more difficult problem. There 

is very little research, which actually evolves the functionality of sequential 

logic circuits [9,118]. EHW approach has begun to show that it is possible to 

evolve such circuits in a radically different way [1]. 

The sequential circuits are divided into purely combinational blocks and 

registers. Large sequential circuits are typically modelled by smaller interacting 

finite state machines. The aim of this work is to look at the problem of 

automated synthesis of synchronous sequential circuits using a new approach 

124 



based on GA. EHW extends the concept of GA to evolution of electronic 

circuits [119,120]. 

This new approach can be expressed as a black box of the problem. From 

this point of view, one regards the problem of implementing the circuits as 

being equivalent to designing a black box with inputs and outputs. This black 

box should be such that on presentation of the original input signals the 

desired outputs are delivered. The essential new feature of this technique is 

that the details inside the box are encoded into chromosomes. The 

chromosome representing a circuit is subject to the usual processes of 

evolutionary algorithms. The advantage of EHW over the traditional circuit 

design approach is its capacity for dynamic and autonomous adaptation. 

EHW can reconfigure its structure dynamically (on-line) and autonomously, 

according to changes in the task requirement or the environment in which the 

EHW is embedded. 

This chapter will consider the circuit design technique that is based on 

evolutionary algorithm. The extrinsic EHW approach to evolve sequential 

logic circuits is proposed. In the proposed approach both GA for state 

assignment and EHW are combined together, to produce optimal logic 

circuits. GA is used to optimise the state assignment problem. EHW is used 

to design the desired circuit. The aim of this approach is to generate a gate 

level netlist for the target circuit. 

5.2 The space of all representations 

Every binary function is specified by a truth table. The truth table specifies 

what values the outputs of a function are for all values taken by the function 

inputs. There are certain special collections of operators that act on a binary 

function that have the property that any function can be represented by 

expressions involving these operators and the input variables. The collection 

of these operators and the sets they operate on is often referred to as algebra. 

In the case of binary functions there are two well-known algebras: standard 
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Boolean which uses AND, OR, and NOT, and Reed-Muller which uses 

AND, EX-OR and NOT. When these algebras are used, a particular class of 

expressions can only represent a given function. The basic concept is shown 

in Figure 5.2. 

The space of all 
T ruth Tab~es 

Applying BDOBean ruLes 

The space of all represen1ations 

Figure 5.2. How assemble-and-test reaches the 
unknown regions of the space of all 
representations [24]. 

The unknown region in Figure 5.2 depicts all the representations of logic 

functions which are written as an expression which does not use operations 

taken from the set {NOT, AND, OR, EX-OR}. Any expression in this 

region once known could be manipulated to become either an expression in 

the R-M or Boolean regions [24]. 

5.2.1 Representation of Boolean function 

There are different ways of representation Boolean function, which can be 

classified into tabular forms, logic expressions and decision diagrams. In the 

logic level of design synthesis, the two-level minimization is a mature and very 

popular approach. Boolean expression can be simplified with use of 

Karnaugh maps [135]. The Karnaugh map is a way of representing a Boolean 

function so that logically adjacent terms are physically adjacent. The Karnaugh 
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map approach is not suitable for ffiln1ffilsmg Boolean functions which a 

higher number of input variables (more than SL'{ variable). For such functions, 

Quine laid down the basic theory that was adapted later by McCluskey, 

known as Quine-McCluskey procedure [136]. The Quine-McCluskey 

algorithm involved the systematic and exhaustive reduction of Boolean 

expressions. The method is applied repeatedly using a formal tabular 

procedure, which is suitable for minimisation of a Boolean expression 

containing a large number of variables. This procedure can easily be 

programmed into a computer. The difficulty is that computation time and 

memory space are of exponential order, with respect to the number of inputs 

to above 16 variables. 

Two-level and it's Programmable logic Array (PLA) implementation shown 

figure 5.3 (a) provide good solution to a wide class of problem in logic design. 

However, there are situations, especially for large multiple output circuit, 

where multilevel design is desirable and more effective. It facilitates sharing 

and simplifies testing. 

For example, simple logic circuit, 

Which can be shown in Figure 5.3 (b), has three levels. In the first level, the 

product term Xo X3 is generated, which has an AND level. In the second 

Finally, they are combined by an AND gate to produce the output for the 

function. However, multilevel logic circuits are much more difficult to 

synthesise than two-level circuits. In 1964, Lawler proposed an approach for 

exact multilevel logic minimization [121]. All the multilevel prime implicants 

are first generated, then a minimum subset is found by solving a covering 

problem using any method for two-level minimization. As an exact 

optimization method, it is only suitable for small Boolean function on 
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account of high complexity. In the last two-decades, many heuristic 

techniques have been developed. An example of a heuristic technique for 

logic minimization is ESPRESSO [66]. ESPRESSO is a technique that, when 

applied to an arbitrary sum of product will produce an equivalent sum of 

products expression and, when applied repetitively, a succession of 

expressions, each with fewer products than its predecessor. 

IllPUts 

Programmable Array 

of AND gates 

Programmable Array 

of OR gales 

Outputs 

(A)-Tow-level programmable logic array (PLA) structure 

.1"1_ ........... 

(b)-A simple example for multiple logic circuit 

Figure 5.3. Comparison between two­
level and multilevel structures. 
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5.2.2 Reed-Muller functions 

It is well known that many Boolean functions, which can be easily 

implemented using exclusive-OR gates, are very inefficiently represented in 

canonical Boolean logic. When a Boolean logic function is expressed using 

XOR gates and uncomplemented variables it is called a Reed-Muller (RM) 

canonical form [122] (see figure 5.4). There are also generalized Reed­

expansions where the variable can be fixed or mixed polarizes [33]. 

Traditionally functions are represented in logic synthesis system using the 

SOP representation as inclusive OR sum of AND product terms. However, 

there has been interest recently in using the Reed-Muller representation, 

which is an Exclusive-OR sum of product terms. 

l.ll/urrs 

AND 

EXOR 

OlltPJl[S 

Figure 5.4. R-M form is an exclusive-OR sum of products. 

There are two reasons for this interest: firstly in using it as a means of design 

classes of circuits based on exclusive OR gates, and secondly as an efficient 

way of representing and manipulating functions. Implementations based on 

Exclusive-OR gates can be more economical in some application, such as 
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arithmetic circuits, coding schemes for error control [123]. Further the RM 

approaches result in circuits that are generally easier to test [33]. 

5.2.3 Mixed functions 

The Boolean function represented by (AND, OR and NOT) and Reed-Muller 

function (AND, EX-OR and NOT) gates. In mixed functions, both type of 

representations are used to represent the logic function. The new approaches 

of EHW introduce new methods to design circuits using mixed functions by 

creating a library of components for the EHW to select from [24]. 

5.3 Backgrounds and Motivation 

EHW has only recently been applied to the synthesis of combinational and 

sequential logic circuits [1,18,84]. Though a number of authors made useful 

contributions; the subject area is still in the early stage of development. At the 

earlier stage of EHW investigation, the main purpose of EHW was to evolve 

fully functional circuits starting with randomly generated populations. The 

requirements to EHW change with time and current research intend not only 

evolve fully functional solution but also optimise the obtained solution by a 

number of optimisation criteria. In respect of these requirement a dynamic 

fitness function has been proposed by Kalganova [124], where the quality of 

evolved circuits is estimated in terms of the number of logic gates actually 

used in the circuits. Thesis by Kalganvoa [24] investigates a number of issues 

in extrinsic EHW. They include the circuit layout evolution, function level 

evolution and increment evolution of combinational logic circuits. 

In this section, an overview of work done in this area is outlined. 

Louis [117] is one of earliest sources that reports the use of GA to design 

combinational logic circuits. He has made use of genetic algorithms on design 

structures to attempt to solve the combinational logic circuit design problem. 

Coello et al. [125] extended the research done by Louis, and used a GA to 

automate the design of combinational logic circuits. They modeled logic 

circuits with matrices, with each element representing a gate and the inputs 
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from previous elements. The gate was selected from a list of five fundamental 

gates: AND, NOT, OR, XOR and WIRE, where the first four are self­

explanatory, and the last representing a physical wire (and thus, the absence of 

a gate). Logic minimization was thus solved by a constraint on the matrix 

elements: maximizing the wire element, and hence minimizing the total 

number of gates necessary for the implementation of the circuit. 

Koza [13], on the other hand, used genetic programming to assist in the 

design of combinational circuits. The main goal of Koza research was the 

successful generation of the circuits, and not their minimization, thus does 

not completely apply to the task at hand. 

In Higuchi [126] work's, the input/output sequence is generated by feeding 

random input sequence to a given state diagram and gets corresponding 

output sequence. The existing optimal solution can be reached in reasonable 

time, but the disadvantage is that correct input/output sequences are not 

equivalent to given state diagram. 

Fogel [127] evolved the state machine that can predict the next output 

symbols from one given input output symbol sequence using Evolutionary 

Programming (EP). 

Thompson et al. [9, 102], another interesting question is how the ideas of 

artificial evolution can be used to evolve hardware. Currently there are 

technological limitations mainly regarding time and costs, which prevent the 

application of such ideas in many areas. Nevertheless there are interesting 

developments in this field such as the configuration of Field Programmable 

Gate Arrays (FPGA) using Evolutionary Algorithms. An FPGA is VLSI 

Silicon Chip containing a large array of components and wires. Switches 

distributed throughout the chip determine how each component behaves and 

how the components are connected to the wires. Configuring these switches 

determines the behavior of an FPGA. The specific arrangement is stored in 

its configuration memory. Since the FPGA can be interfaced to a host 
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computer an Evolutionary Algorithm running on the host computer can write 

to its configuration memory. By setting the switches the EA creates a 

physically real electronic circuit, which can be tested and evaluated according 

to its real-world performance. 

REPEAT UNTIL SATISFACTORY 

A population of Population" 
(initially random) 10111 111101010(1111" 
bit-string 
genotypes is /110111010101110101 

maintained, ," " 11111 010111111101 01 
each individual 1011/11 011101011111 
coding for a 
possible FPGA D~lT:'T!TLL 

, configuration. 

Fitness Evaluation: 
. , " 

Each individual is 
taken in turn and 
used to-confi,gUre ' "~,' ,', 
a real FPGA, which' , ' 
is then scored at = 
how well it performs " 

" the desired task. 

Fitness 
Scores Next Generation 

Anew 
4::?51~' , I II II I I I I I population is 

" 9',0,',0,1" ' ",", .II I II I I I f I formed, made 
0.000 ' II I I I I I I I I of the offspring 

of the fitter 
.3.94.? ~ }F-U I I I-II I (on average) 

0.030--------,: , I I I II"-J I I I I members of the 

i i . ______________ ~Old one. 

,: / '-' ..... ~:-...,-,.~" 

.. !,',.,~,.".,~'.,.,;Y' ";.,, 
~ .• \-"". __ > ____ ~l\Ml)~lolo~------ .... :;··.:· 

'Higher scoring individuals are more likely 
.to parent offspring (selectiol1).Offspring are 
formed by stochastically combining segment: 
from each parent (crossover), and by 
randomly inverting a few bits (mutation): 

Figure 5.5. Evolving an FPGA configuration 
using a simple genetic algorithm_ 

By automatically designing electronic circuits using an evolutionary algorithm 

major differences between the circuits designed according to conventional 

goal-oriented methods and those configured using evolutionary methods 

could be discovered. Perfect behaviour was achieved using only a lOxlO array 

out of the whole 64x64 array to implement an electronic circuit (see Figure 

5.5) whereas conventional design would need a much larger area to achieve 

the same performance. Within the lOxlO array not all cells contributed to the 

circuits behaviour and among them are cells which are not even connected to 

the main part of the circuit but do still influence the behaviour of the system. 

The detailed physical properties of the silicon the spatial relationships of the 
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components and their interactions have been exploited by evolution in a 

fascinating way. A circuit evolved with an EA can use the electronic resources 

more effectively than an equivalent circuit designed by conventional methods. 

Thompson [128] has attained a control system in which the original finite 

state machine used to control the robot movement, was substituted by a 

Dynamic State Machine, in which synchronous and asynchronous variable are 

mixed. Thompson is concentrating on the evolution of robust circuits. 

Robustness is especially important for the use of so evolved circuits in real­

world applications. Robustness means in this context that the circuit is able to 

operate in a satisfactory way even when variations in its environment or 

implementation occur. 

Hemmi et.al [20] described hardware with software and came to be able to 

generate hardware and are proposing hardware evolution system AdAM 

(Adaptive Architecture Methodology) based on hardware description 

language SFL of CAD system PARTHENON (parallel Architecture Refiner 

Theorized by NIT Original Concept) that NIT developed. The FPGA is 

used in the field where prototype design and a small amount of other 

electronic circuits should be made. 

P. Chongstitvatana et.al [23, 118, 129] show that the evolutionary process 

has been used to synthesise synchronous sequential circuits that perform 

according to observed partial input/output. GA was applied to synthesis 

circuits that are based on Moore and Mealy's model on PLDs and FPGAs 

(programming logic device and field programming gate arrays). 

The authors indicated that the sequential logic circuit modeled 1n FSM 

constructed as lookup table (LUT) representing state transition and output 

function. 

Since the FSM can be directly translated into RAM, it can be seen that the 

RAM content is evolved. With experiment they show that the results can be 

classified into two categories, complete solution and incomplete solution 
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depended on the correctness of partial input/output. Without the behaviour 

description of the target circuit, the correctness of resulting circuit cannot be 

verified. The correctness percentage is defined as the number of runs that 

yield a complete solution divided by the total number of runs. 

The correctness varied with the length of input/output sequence and it is 

increased with the number of input/ output sequences. Their experiment was 

conducted to synthesise a number of simple FSMs such as serial adder, 

counter and sequence detector. 

The disadvantage of this approach is that a GA requires a large number of 

generations to synthesize a large circuit. Due to the cost of the selection 

method, which required sorting and a large number of generations, the GA 

took several hours, sometime days to find the target FSM. 

Table 5.1 summarises the recent work concerning the evolution of sequential 

logic circuits. Analysing the table it can be noticed that EHW has been used 

mainly to synthesise relatively small sequential logic circuits. The hardware 

evolution is based on primitive logic gates, which is not powerful enough for 

industrial applications. The development of large circuits is still an important 

challenge to EHW researchers. The table shows that there is no developed 

EHW method, which can be applied to evolve real-world sequential circuits. 
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Author Year 

T Higuchi [126] 1993 

HHemmi [20] 1994 

A Thompson 1995 

[128] 

C. Manovit [118] 1998 

AndP. 

Chongstitvatana 1999 

[23] 

C. Apomtewan 2000 

et al. [129] 

B. Ali [1] 2002 

Table 5.1. Recent EHW approach used to 
evolve sequential logic circuits 

Type of Evolvllig 

sequential circuit platform 

State transition 

graph 

Digital Sequential AdAM system 

adder 

Dynamic state Simulator"l\1r. 

Machine (DSM) Chip robot" 

Synchronous PLD,GAL 

sequential logic 

circuits partial 

input/ output 

sequence [118] 

and Finite-state 

machine 

synthesis from 

multiple partial 

input/ output 

sequences [23]. 

Learning finite PLD,FPGA 

state machine 

synthesis from 

partial 

input/ output 

sequences. 

Combine both Logic gates 

state assignment 

andEHWto 

design sequential 

logic 
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Target TYPE 

Application OFEHW 

Digital logic Extrinsic 

circuit 

Serial Adder Extrinsic 

Robotics Intrinsic 

Frequency Intrinsic 

detector, Odd 

Parity Detector, 

Module-5 

counter, Serial 

Adder. 

Serial Adder, Intrinsic 

0101 Detector, 

Module-4 

counter, 

Reversible 8-

counter. 

Serial adder, Extrinsic 

module-8 

counter, Detector 

and MCNC 

benchmark [116] 



5.4 Basic idea of the proposed approach 

In this work, a new approach is introduced to evolve sequential logic circuits. 

This approach treats the synthesis of entire sequential circuits, breaking a 

circuit up to sub-blocks of combination logic and flip-flops [1]. 

The proposed approach is based on evolving the functionality and 

connectivity of a rectangular array of logic gates. The complexity of a logic 

circuit is a function of the number of gates in the circuit. The central idea of 

this approach is to represent the circuits in such a way that the genetic 

operations can be carried out. The proposed approach consists of 4 main 

stages as follows: 

1. Optimisation of the state assignment problem using GAs, 

2. Formulation of the task for the combinational logic circuit, 

3. Design of the combinational logic circuits using an extrinsic EHW 

approach. 

4. Assembly of the sequential logic circuit. 

From the previous chapters in this thesis, it can be seen that the design of 

sequential circuits involves optimisation of the state assignments, generation 

of the circuit structure and synthesis of the combinational logic in the next­

state and output functions of the sequential logic circuit using extrinsic EHW. 

In other words, the idea is to identify the sequential logic circuit structure and 

generate the combinational parts of the circuit using the evolutionary 

algorithm approach. Hence, both the GA for state assignment problem (SAP) 

and extrinsic EHW approach are combined to create powerful tools to design 

sequential logic circuits. 
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Stage 1 

Stage 2 

State Machine specification 

I State Assignment I 
t STI 

EH\V 

logic level 

Figure 5.6. Procedure of the proposed 
approach to design sequential logic circuit 
using genetic algorithm and extrinsic 
evolvable hardware 

In Figure 5.6, the architecture of the genetic synthesis of sequential logic 

circuits is described. This architecture contains several stages. The first stage 

represents the specification of the target sequential circuit behaviour using 

symbolic state table. The state minimisation, if required, can be done using 

existing tools [73]. In the next stage, the genetic algorithm uses this symbolic 

state table to generate optimal state assignments to assign a binary code for 

each state. Therefore, the state transition table (STI) of the sequential circuit 

is formatted as a two-level logic PLA file. The extrinsic EHW uses software 

models to evaluate the fitness function of the resulting circuit. The genetic 

synthesis creates circuits at the gates-level by using function sets of logic 

device such as AND, OR, NOT and D flip-flops. It is up to the evolutionary 

algorithm to choose among these components to create the best possible 

desired circuits. 

5.5 Problem Modelling 

In this work, the state transition table has been chosen to describe the 

behaviour of the synchronous sequential logic circuit. The structure of 

sequential logic circuits shown in Figure 5.7 comprises a set of two sections of 

combinational logic and D flip-flops (DFFs). The state transition table gives 

the desired function of the circuit. The circuit is generated using a given set of 

available logic gates. The combinational parts of sequential logic circuits are 
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generated using EHW approach, where the state machine truth tables for the 

combinational parts are defmed using GA. Note that in the proposed 

approach the synthesis procedure of sequential logic circuits is similar to the 

synthesis of the combinational logic circuit. The desired functionality for the 

combinational parts of the logic circuit is evaluated using STT. The search 

space is defmed by a number of different factors: (1) building blocks 

presented to the framework; (2) the number of logic elements used to 

generate the circuit; (3) the application for which the circuit is being evolved. 

inputs outputs 
~,-----.. ------------ .. ---------,~ 

X (t) output logict Z (t) 

Next states 

Figure 5.7. Description of the circuit's parts 

In the design process, it has been long accepted that the best way to solve a 

problem is to decompose the problem into several simpler sub-problems. The 

structure of a sequential circuit in the proposed approach contains 3 

sub circuits as shown in Figure 5.7. Each sub circuit is evolved separately. For 

instance the chromosome representing circuits C is evolved by state table T, 

T can be decomposed in to smaller state table T1 for sub circuit A and T2 

state table for sub circuit B. Once the sub circuits have been evolved, the 

sequential circuit is assembled. In this case, the 2-combinationallogic circuits 

A and B have to be evolved. Each combinational circuit is represented as a 

rectangular array of logic gates. Each logic gate in this array is uncommitted 

and can be removed from the network if it is proved redundant. 
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Figure S.S. The procedure of generating 
the circuits from the symbolic state 
transition table. 
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circuit 

Logic level 

Figure 5.S described the procedure of generating the circuit from the 

symbolic state transition table. 

5.6 Encoding of evolution 

1bis section describes both the representation and evaluation used within our 

evolutionary approach. The gate level representation [24] has been used to 

encode each circuit into an integer string. Figure 5.9 illustrates an example of 

this kind of representation for a hypothetical output. The circuit (phenotype) 

is constituted by a combinational part (arrangement of Boolean gates) and a 

sequential part (D flip-flop). The latter provides the means whereby a delayed 

version of the output signals can be used as feedback for the same or other 

circuits. 
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Figure 5.9. the representations for a 
hypothetical inputs/ outputs. 

5.6.1 Chromosome representation and connectivity 

Outputs 

The chromosome defines the connection in the network between the primary 

inputs and primary outputs. Figure 5.10 shows the representation of the 

chromosome connection between the 4-primary inputs and 2-primary output. 

The network is designed using logic gates. The chromosome layout described 

by 2x2 (ncolumns Xillrows) geometry of uncommitted logic cells and netlist 

numbering. Each logic cell is represented by a triple of integers < c1 c 2 c 3 >, 

where c 1 defines functional gene and c 2
, c 3 define the gate inputs. The 

genotype is made up of blocks of integer numbers or genes that encode the 

type of each particular logic gate. The genes associated with the gates of the 

first layer will encode its nature and also the source of the input signals. 
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Inputs Outputs 

,'5 l! 
~I~ 

E~coded circ'.it: 15 02 6 1 3 15 4..j. 10 15 

Figure 5.10 Schematic of the chromosome 
structure used in EHW approach with circuit 
layout equalled to 2x2. 

The circuit structure is encoded as connectivity list of rectangular array of 

components. The genotype is characterised by three parameters: the number 

of columns, the number of rows and the level back parameter [1]. The fIrst 

two parameters are merely the dimension of the rectangular array and the last 

one is a parameter, which controls the internal connectivity. The level back 

parameter determines how many columns of cells to the left of a particular 

cell may have their outputs connected to the inputs of that cell. The 

maximum cell connectivity can be achieved if the number of rows is one and 

the level back parameter is equal to the number of columns. At the same time, 

if the number of rows is one and the level back parameter is one then each 

cell must be connected to its immediate neighbour to the left. Further, cells 

within any particular column cannot be connected to each other and each 

logic gate has two-inputs and one output. 

To encode a digital electronic circuit into a genotype, the array is defIned as a 

composition of cells each of which can be any allowed two-input logic gate. 

The allowed cell functions are listed in Table 5.2. The sixteen letters in the list 

represent all Boolean functions of two arguments. 

141 



Table 5.2. The full set of components, 
gates 0 to 15 and their logic functions. 

Gene Function Gene Function 

0 0 8 a·b 
- -

1 1 9 a.b 
2 a "we" 10 a+b 

3 b " \Vl.re" 
a+b 11 

-
4 a 12 a+b 

5 b 13 a+b 

6 a·b 14 atBb 

7 a.b 15 atBb 

5.6.2 Genetic operators 

Crossover and mutation are the operators through which new circuit 

solutions are generated. Due to the complex interaction of logic elements, 

which comprise a circuit, the effects of both crossover and mutation can be 

highly disruptive to the search. 

Recombination is implemented with uniform crossover. The whole logic cell 

is considered as a gene. Two cells are chosen from two chromosomes and 

swapped. The number of chromosomes selected for breeding is deflned by 

the crossover rate, which is carried out on a cellular level. In order to preserve 

the interconnection conditions, the repair algorithm checks the parameters of 

logic gates for correctness. When two chromosomes with different 

geometries undergo crossover it is very likely that merely swapping genes to 

produce the offspring. These would have to be repaired (randomly initialised), 

and this would introduce a considerable amount of randomness into the 

recombination process. Thus, the selection of correct crossover rate and its 

type is very important. 
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There maybe result of broken connection between logic elements caused by 

recombination. So as to minimize the negative effects of crossover, 

chromosome repair is used to reconnect any element connection broken 

during the operation. 

Mutation is used to maintain diversity within the population. It operates 

directly after crossover and is analogous to a copying infidelity as material is 

transferred from parent to offspring. 

PARAMETER CIRCUIT MUTATION: The parameter circuit mutation allows us 

to change the following three parameters of the circuit: (1) Cell input, (2) Cell 

type, and (3) Circuit output. Each of these parameters is considered as an 

elementary unit of the genotype. The parameter circuit mutation rate defines 

how many genes in the population are involved in mutation. The 

chromosome contains 3 different types of genes. The three mutation 

operators applied are highlighted in Figure 5.11. 

GEOMETRY MUTATION: Geometry mutation allows us to change the number 

of rows and columns in chromosome. Geometry mutation can be applied to 

each chromosome with the geometry mutation probability. The number of 

rows and columns are treated as an elementary unit of the genotype. Each 

such unit can be changed with a probability 0.5. The geometry mutation 

consists of two main steps: (1) Gene mutation, (2) Repair algorithm. On the 

first step the new number of columns or rows of the chromosome is 

randomly defmed. This number cannot exceed the maximum number of 

columns or rows. On the second step, the repair algorithm is applied to 

ensure that a chromosome with new geometry represents a valid genotype. 
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1. Inter-chromosome cell swapping: 
.. 

~ 
Before mutation After mutation 

2. Cell replacement: 

Befure mutation After mutation 

3. Connection interchange: 

Befure mutation After mutation 

Figure 5. 11. Three mutation operators 
used by the genetic algorithm. 

Let us consider geometry mutation process for chromosomes with 3x3 circuit 

geometry. Let Nco/llmnf and N coo" be the number of columns and rows of 

chromosome assigned to be mutated and new-f,ene is the new value of mutated 

genes, which is synthesised randomly. The gene mutation procedure is the 

following: 
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D. Chromosome: 2x3 

~~~~ 
y, 

~~~ 

B. Chromosome: 3x2 

~ check for 
~ correctness 

D initialise new 
gate 

Figure 5.12. The geometry mutation 
process (3x3 circuit geometry) [24]. 

Define the circuit mutation rate PIJIg. 

C. Chromosome: 4x3 

Generate random number for each chromosome, rand! E {O, 1}. 

If (rand! < PIJI) the geometry mutation is applied to the current chromosome 

Generate random number rand2 E {O, 1}. 

If (rand2 < 0.5) the number of columns in chromosome is chosen to be 

mutated and the new number of columns (new....gene) is generated from the 

range [1, Nma,x ]. Else the number of rows is considered as mutated gene 
co umns 

and the new number of rows (new fJene) is generated from the range [1, N max ] . 
........b' rows 

When new....gene is defmed, the geometry mutation is performed in the 

following manner. Let us consider the case when the mutated gene is the 

number of columns. In this case the new circuit structures, shown in Figure 

5.12 (A and B), can be synthesised. If (new....gene > Ncolumns) we have to add new 

columns in the chromosome representation (Figure 5.12 (A)). The gates in 

new columns are initialised using initialisation procedure. It is possible, 

however, that the circuit output disobeys the levels-back constraint. Thus, the 
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chromosome may need to be repaired. The repair algorithm checks whether 

the circuit outputs obey the levels-back constraint, and whether all the cell 

inputs are valid. If the circuit output does not satisfy this condition a new 

circuit output is initialised. If (new-,gene < Ncolumns) we have to remove some 

columns in the circuit structure (Figure 5.12 (B)). After the new structure is 

obtained, a repair algorithm is applied to the circuit output, because the circuit 

output can refer to a gate which no longer exists in the circuit. In the case 

when the mutated gene is the number of rows, the structures C and D given 

in Figure 5.12 can be synthesised. If (new-,gene > Nrows) the new rows of gates 

are added to the circuit structure (Figure 5.12 (C)). Again, these gates are 

initialised. There is no need to apply repair algorithm to the circuit outputs in 

this case because connections are not changed and the circuit outputs will still 

refer to the correct logic cells in the circuit structure. If (new--,gene < Nrows) 

some rows are removed from the circuit structure (Figure 5.12 (D), then the 

inputs of the remaining gates as well as circuit outputs can refer to gates, 

which are no longer present. The repair algorithm has to be applied to each 

genotype of the gate and to the circuit outputs. 

5.6.3 Connection repair algorithm 

The result of GA operation (mutation and crossover) correctness of genotype 

can be broken if the functionally of any logic gate has been changed. 

Therefore, once the number of outputs in the logic cell has been changed, the 

gate input connections and circuit output connections are checked for 

correctness. 

The repair algorithm needed for: 

• Circuit output connections; 

• Gate input connections; 

• Gate output connections. 
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The repair algorithm is activated once the number of output logic cells has 

been changed. If the repair algorithm is activated the circuit output 

connections and the gate input connection are checked for correctness. 

Nconnect is defined as the connectivity parameter representing the number of 

columns on the left to which a cell of a particular column or an output may 

be connected. 

5.6.4 Criteria used in an extrinsic EHW 

The main purpose of the extrinsic EHW approaches is to evolve the fully 

functional circuit with optimal parameters. Any type of circuit parameter can 

be chosen to define the quality of evolved circuit. In this work the number of 

primitive logic gate is used as optimization criteria. 

1. Let the percentage of correct output bits be F1 ; 

2. Let the number of active primitive logic gates in the circuit be F2 ; 

One objective of circuit design is to construct a fully functional circuit 

optimised by given criteria. In EHW approaches the search for the desired 

circuit begins with the randomly generated circuits. This means that initially 

the chosen circuits are not fully functional. Hence, there are two main 

objectives in EHW: 

• to evolve a fully functional circuit; 

• to optimise the evolved circuit by given criteria; 

The first objective of EHW can be achieved by checking the actual circuit for 

correctness. This can be provided by criteria F1 • These criteria show how 

close the actual circuit functionality is to the requested one. 
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5.6.4.1 Fitness function 

An evaluation function, called fitness function needs to be defined for a 

problem to be solved in order to evaluate chromosomes. A chromosome with 

a high fitness value is likely to be a good solution to the problem. Therefore, 

the goal of EHW can be defined as generating fully functional circuits in 

which the whole manufacturing cost is minimum. At the beginning of the 

search, only compliance with the state table is taken into account. Once the 

first fully functional solution appears, the evaluation process switches to a 

new fitness function in which fully functional circuits that have less 

manufacturing cost are rewarded. Each of these two fitness functions can 

optimise the circuit by a number of criteria. For example, Dynamic fitness 

function variables (F] + F2 ) are used to evaluate the circuit [1, 24]. F] uses 

Hamming distance to measure the 100% functionality of the circuit between a 

given set of inputs and outputs. F2 defmes the number of primitive logic cells 

that are used in the circuit. F2 1S activated when F] reaches 100% 

functionality. The following steps are required in order to evaluate the 

chromosome. 

-Set the initial inputs to circuit. 

-The output of the circuit is mapped with the corresponding next state 

columns in the STT. 

The first fitness function compares the corresponding outputs of sub circuit A 

and sub circuit B with given next state column of STT. The percentage of 

correct next state bits corresponding to the j-th output, Fy j is calculated as 

follows: 

p 
II y. -d· I 
. 1 J J 

Fy. = e= ) * 100 ; 
j p 

where p is the number of input combinations in the given logic function and 

I y j- d j I is the absolute difference between the actual next state output and 
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the desired output d j' Y j is the vector of the j-th circuit outputs. The circuit 

completely implements the output Y j if F] reaches 100% functionality. Once 

the solution has been evolved the circuit optimisation criteria is activated. The 

second fitness function F2 mirIimises the number of logic gates by rewardirIg 

those circuits with the least number of active logic gates. The procedure 

described above applies for both sub circuits A and B. 

5.6.4.2 Test vectors 

The experiments with test vectors aim to evolve the cell such as for a given 

input it gives the correct output. Figure 5.13 illustrates the procedure that is 

used to compute the fitness based on the test vectors. For each line of the 

truth table the following is done: the entry in the input column is sent to the 

cell as its input; the output of the cells is then compared with the entry in the 

output column; and, finally, this comparison gives the fitness for the current 

(F]). The process is repeated for each line and the whole fitness can be taken 

as the sum of the fitness obtained for each line. For the experiments with the 

test vectors, the fitness is taken as the number of output bits of the cell that 

match the truth table. The three input circuit, for example, would be 

evaluated over 23 = 8 possible input combinations. 
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Figure 5.13. Test vectors. 

5.6.5 Definition of subcircuits for combinational logic circuits 

In this section, the components in Table 5.2 with the D flip-flops are used to 

implement the example given in Table 5.3. In order to evolve the whole FSM, 

the genetic algorithms have to be executed, one for each circuit output 

adopting the following strategy: 

1. Run the GAs for each input, assuming a delay flip-flop in each circuit 

output. 

2. Find the outputs which were hardest to evolve, and store the delayed 

output used as inputs to these cells. 

3. Re-run the GA for the other inputs, keeping available only the 

delayed outputs used by the circuits representing the signals 

mentioned in the second item, 
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The aim of this strategy is to minimize the amount of time, by placing a delay 

flip-flop only in those inputs to the cells, which have been more difficult to 

evolve. 

For that reason, the initial state is read and sub circuits A and Bare 

constructed using the primitive logic gates to implement the next state 

function. The initialisation procedure contains several steps: (1) Define circuit 

geometry of chromosomes in the population; (2) Initialise the genotype of 

cells; (3) Generate the circuit outputs for each of the chromosomes. 

The first step is constrained to observe the maximum number of rows and 

columns in the chromosome. During the second and third steps, the 

initialisation of cell inputs and circuit outputs is performed according to the 

levels-back constraint and to the type of variables. 

i/p Ps Ns o/p 
0 SO SI 0 

SI S4 

0 S2 S4 

0 S3 S4 0 
0 S4 SO 0 

I SO S2 0 

SI S3 
S2 S3 0 
S3 S4 

S4 SO 0 

i/p inputs 

o/p outputs 
Ps Present state 
Ns Next state 

Table 5.3. The transformation process of STI in to 
PLA file format. Where .i inputs = input + present 
state bits, .0 designed the number of outputs 
calculated, outputs =next state +output bits, .p is the 
number of product terms, .e is end of file. 

STT of the circuit STT of subcircuit A SIT of subcircuit B 

.i 4 .i 4 .i 4 

.0 4 .0 3 .0 

.p 10 .p 10 .p 10 

StateO =000 0000 0010 0000 001 0000 
Statel =001 0001 0101 0001 010 0001 
State2 =101 0101 010 I 0101 010 0101 
State3 =110 OliO 0100 0110 010 OliO 0 
State4 =010 0010 0000 0010 000 0010 0 

1000 1010 1000 101 1000 0 

1001 1101 1001 110 1001 

1101 1100 1101 110 1101 0 

1110 0101 1110 010 1110 

1010 0000 10 I 0 000 1010 

.e .e .e 

Step 1 Step 2 Step 3 
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Table 5.4. Initial parameters used to evolve the circuit. 

Parameters GA EHW 

Population size 20 10 

Number ot generatIOns 100 5000 

Number otGA runs 10 100 

Crossover rate 0.2:' 0.6 

Crossover type Two-pOInt Uniform 

Mutation rate 0.015 0.05 

-------- -- ------1 
: sub circuit A I 

~---- --- - ----- -------, 
: sub circuit B i 

I Xo I 
.~ 

I Input r----i 
I 

I 

Q 

Figure 5.14. Circuit structure is implemented 
according to state table given in Table 5. 3. 
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In Table 5.3, step 1 shows the symbolic state table of FSM and the state 

assignment generated by GA. In step 2 the encoding is used to obtain the 

standard two-level PLA format. In step 3, the STT of the circuit is divided 

into input combinational logic sub circuit (A) and the output combinational 

logic subcircuit (B). Once the decomposition is completed, the fully 

functional circuits can be generated using EHW. The initial data of GA 

parameters is given in Table 5.4. The graphical representations of evolved 

sub circuit A and B are shown in Figure 5.14. The total number of logic gates 

in the assembled circuit is 10 (6 AND, 3 OR, 1 NOl). The most efficient 

evolved sub circuit consists of 3 logic gates in sub circuit A, 7 gates in 

sub circuit Band 3 D flip-flops. The functional set of logic gates contains all 

gates encoded from 0 to 15 (see Table 5.2). 

5.7 Experimental results 

In this section, the circuit structure synthesised using the proposed approach 

is considered and compared to manual designs. We present the problem of 

designing a digital circuit in terms of a set of examples. Where in this 

experimental result, the GA parameters in Table 5.4 are used for the state 

assignment problem. A number of experiments have been carried out in order 

to determine suitable values for the EHW parameters. 

This section will describe the actual experiments conducted. For every 

experiment we will describe the following: 

• General description 

• Implementation aspects 

• Experiment settings 

• Number of runs 

• Number of generations 

• Population size 
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• Creational scheme 

• Selection techniques 

• Evolutionary operators 

• Fitness function 

• Success and termination predicate 

• Fitness distribution 

• Structural variety 

• Fitness evolution 

5.7.1 Example 1: Serial Adder 

In this synchronous sequential circuit there is a combinational logic 

comprised of l-bit full adder, with latch storing the value of the adders carry 

output. By definition, a full adder adds two logic variable A and B and carry 

input Ci. Many different approaches have been developed to evolve full adder 

using primitive logic gates [11]. The serial adder accepts as input two-serial 

strings of digits of arbitrary length, starting with low order bits, and produces 

the sum of the one-bit stream as its output. So this device can be easily 

descried as state machine has 2 inputs (AB), one output (S) and number of 

internal state is 2 (SO, Sl) where generated carry (CO) is feed back. However, 

in this case we don't have to implement GA for state assignment because the 

circuit has only two states (see figure 5.15). 
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Figure 5.15. Serial adder (a) State 
transition graph, and (b) state transition 
table; where #I/p inputs, #Ps present 
state, #Ns Next state, #O/p Outputs. 

p" x:; 01' 
Ci CO S 

SO SO " " SO SO :. 
SO SO , . 
so 5: C 
Sl SO . 
51 5: 0 
Sl S~ 0 
S1 S~ 1 

Table 5.5 shows the comparison of functional circuit of serial adder generated 

by human designer [33] using Kamaugh maps and the one evolved using 2-

inputAND/ OR, NOT gates. 

Table 5.5. Solution obtained for serial adder 
using EHW approach and manual method [1]. 

EHW Human design 

Co = (A+B) Cj+AB Co=AB+CjA+ CjB 

S=A.BC j +ABCj+A. BCI + ABC j S=A.BCj +ABCj+A.BCI +ABC j 

Number of 2-input i\ND&OR Number of 2-input AND&OR 

Gates =16 Gates =16 

In this case, the circuits are evolved for one output sum (S) and two inputs 

(AB) with next state carry Co. Miller [11] shows it was possible to evolve the 

one-bit adder by evolving the functionality and connectivity of interconnected 

AND, OR and EX-OR gates. The gate-level representation of this circuit 

required 5 logic gates, where the sum output implemented with EX-OR gates 

(see Figure 5.16a). Further, in our case we concentrate on using two-level gate 

PLA format representation to evolve the serial adder, which required more 

155 



gates than the previous work done using multilevel function representation of 

full adder. For simplicity, we used full adder structure, which connected to D 

flip-flips and the specification of desired circuit is in the form of STT in PLA 

format. However, the gate-level encoding would require geometry 3x10 

circuit layout. The most efficient logic gates representation is shown in figure 

5.16. In Figure 5.16(b) a gate array representation of an evolved serial adder is 

given. The inputs A, B, and Ci are binary inputs. The allowed cell functions 

can be chosen to be any subset of those shown in Table 5.5. 

A --It---~\ 

B -----i:;~:~L;~-t+----___}D_1_ 

(a) 

Co 

(b) 

Figure 5. 16. Evolved Serial adder design using (a) functional set (0-6, 
15,16), (b) functional set (0-6, 10). 
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It should be noted that the circuit was actually evolved by separating the carry 

function from the sum and evolving them separately. The genetic algorithm 

had the following parameters: population size =10, maximum number of 

generations=5000, crossover rate=0.6, mutation rate=0.05, elitism, levels­

back= 10. In the 10 runs, three solutions were obtained which were 100% 

functional. 

5.7.2 Example 2: Module-4 counter 

The simplest synchronous digital system is the binary counter. Module-4 

counter has four internal states as shown in Figure 5.17. The optimal state 

assignment has been identified using GA as in Figure 5.17(c). The 

evolutionary algorithm parameters to design the combinational parts of the 

GA are: the population size is 5, the maximum number of generation is 5000, 

the total of runs is 100, the crossover rate is 0.6, the mutation rate is 0.05, 

layout described by lxl0 in proposed approach (a) and by 4x4 in proposed 

approach (b) and the resulting equations are given in Table 6. 

o 

o 

o 

lip Ps Ns 
0 so so 
1 so SI 
0 SI SI AB 
1 SI S2 
0 S2 S2 so~ 00 

1 S2 S3 SI~ 0 1 

0 S3 S3 S2~ 11 

1 S3 so S3~ 1 0 

(a) (b) (c) 

Figure 5.17. Module-4 counter a)-state 
transition graph, b) State table and c) State 
assignment generated by GA. 
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Table 5.6. Solution obtained for model-4 counter 
using EHW approach and manual method. 

Proposed approach (a) Proposed approach (b) Manual method 

- -
-

DA=XoA+XoB DA = XoB+XoB DA=XoA +)("B 
-

Ds=XoA +XoB - - DB=XoAB+XoA+AB 
DB=XoA+XB 

S ubcircuit A = 5 gotes 
Subcircuit A =5 gates SubcircuitA=9 gotes 

Subcircuit C=2 D flipjlops. Subcircuit C=2 D flipjlops 
Subcircuit C= 2-D jlipjlops 

In this example, small size of population and large numbers of generations are 

used. The circuit shown in Figure 5.18 has also been tested using two layout 

sets with the same state assignment. Choosing too small circuit layout run the 

risk that no 100% functional solution could be found because it is physically 

impossible to build the circuit of required functionality with few logic gates. 

Choosing too large a circuit layout gives the evolutionary algorithm too many 

possibilities to work with. This is has been proved for combinational logic 

circuit in [24]. 

(a) Layout 1xl0 

Figure 5.1S. Evolved optimal circuit 
solution of the model-4 counter. 

) 

~ ~ '$:,i-iitx:'-::;-

(b) Layout 4x4 

. ) 
" 

Figures 5.18a and 5.18b show how the numbers of the columns and rows 

influence the evolution of circuits. The search space of evolutionary algorithm 
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increases with increase of the number of rows and columns. It can be seen 

that in Figure5.18b the evolved optimal circuit solution with circuit layout 4x4 

required 2 AND, 4 OR and 1 NOT logic gates. Note that there is no fIxed 

solution of evolved circuit structure with the same state assignment. Three 

evolved circuits of the problem are given with different circuits structures. 

The module-4 counter has been evolved and the experiment results show that 

it is possible to improve the GA performance considerably by careful choice 

of the number of columns of the cell and level-back parameter. 

5.7.3 Example 3: Sequence detector 

In this example, we synthesise a sequence detector. This circuit has one-input 

and one-output. The behaviour of circuit can be described as shown in Figure 

5.19. When the input sequence 011 occurs, the outputs become 1 and remains 

1 until the sequence 011 occur again. In this case, the output returns to O. The 

output then remains 0 until the sequence 011 occurs a third time, etc. The 

comparison of result produced by the proposed approach and manual design 

based on a random assignment are shown in Table 5.7. 

lip Ps Ns O/p 
0 so Sl 0 
I so so 0 
0 Sl Sl 0 

Sl S2 0 
0 S2 SI 0 

S2 S3 0 
o 0 S3 S4 so 000 

S3 S3 SI 010 

0 S4 S4 S2 001 

S4 S5 S3 100 

0 S5 S4 S4 110 

I S5 so S5 101 

(a) (b) (e) 

Figure 5.19. A sequence detector described as a) state transition 
graph, b) state table, c) State assignment generated by GA. 
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Table 5.7. Solutions obtained for sequential detector produced 

by proposed approach and manual method. 

Proposed Approach 

DB=X 

Dc=X AC+XC+ AC 
Z =C 

Subcircuit A =8, 

Subcircuit C=3 D flip-flops 

Manual method 

DA=AC+AX+BCX 

DB=BX+ACX 

Dc=BX+ACX+ABX+ACX 

Z =A+BC 

Subc1rcuit A =17, 

Subc1rcuit B =2 

Subc1rcuit C=3 D flip-flops 

Once the EHW generate the same output as the target machine, the 

sequential network of sub circuit A can be structured using 5 AND, 2 OR, 1 

NOT and sub circuit C implemented by 3 D flip-flops as shown in Figure 

5.20. The manual design uses a random state assignment and Karnaugh maps 

to minimize the equations. The parameters of the evolutionary algorithm for 

this example are as follows: the cell mutation rate is 0.05, the population size 

is 20, and the maximum numbers of generations is 5000. A circuit layout 

structure of 4 rows and 5 columns is used with maximum level back 

parameter equal to 5. The parameter help to obtain a reasonable probability of 

achieving 100% correct solution. 

Analysing the evolved circuit structure in Figure 5.20 it can be seen that the 

resulting circuit has a more efficient structure than the circuit obtained by 

manual method. 
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Sub circuit A Subcircuit B 
~ - - - - - - - - - - - - - - - - - - - - - 1,- - - - - - - -: 
I Inputs I' I 
i I! 
I 

{>:-.r----------+'-l 

I IL---------------+I--.--...J 

I Lf-+------------------------+I-----.--...J 
I '---t:============!:1 I 
L ____________ ------'L _____ J 

Figure 5.20. Evolved optimal circuit solution of the 
sequence detector with circuit layout 4x5. 

5.7.4 Example 4: 1010 detector 

Sub circuit C 
----

Output 

, 

I 

I 
I 

______ J 

The example demonstrates the synthesis of 1010 detector. This circuit has 

one input, one output and 4 internal states, as shown in Figure5.21. The 

results produced by the proposed method are compared with results 

produced by a random assignment [33] as shown in Table 5.S. 

0/0 
lip Ps Ns O/p 
0 so so 0 
I so SI 0 

1/0 0 SI S2 0 
SI SI 0 so 00 

0 S2 so 0 SI II 

I S2 S3 0 S2 10 

0 S3 S2 S3 01 

S3 SI 0 

(a) (b) (e) 

Figure 5.21. 1010 Detector a) state tranSition graph, b) state 
transition table, c) state assignment. 
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Table 5.S. Solution obtained for 1010 
detector produced using proposed 
method and manual design. 

Proposal approach 2001 Almaini, 1994 [33] 

-

DA =X B+A D" = X A B + X A B+ XAB 
- -

DB =X 
DB=AB+AB+XB 

Z =XAB 
Z =XAB 

Suhcircuit A =2 Subcircuit A =12 

Subcircuit B =3 Subcircuit B =2 

Subcircuit c= 2 D flip-flops Subcircuit C= 2 D flip-flops 

The solution reported in [33] uses almost 3 times more gates than the circuit 

produced by the proposed approach. It is interesting to note that the outputs 

are implemented in the same way for both circuits. The evolved circuit 

requires 5 logic gates in comparison with 14 logic gates for manual design 

based on random assignment (00,01,10,11). Note that the circuit was actually 

evolved by separating each sub circuit and evolving each sub circuit separately 

to obtain the target circuit. The probability of the cell mutation rate is 0.05, 

the population size is 20 and the number of generations is 5000 with 1 x 10 

circuit layout. 

Eubci.r:cui.t C 
r - - - - - - - - - - --I :--------: 
;L-'!puu 

Output 

~-------T~--------~I 
1 ____________ ..1. :. ______ ---' L. _________ --1 

Figure 5.22. Evolved optimal circuit solution for 
1010 detector using 4x5-circuit layout. 
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5.8 Analysis of the results 

In this chapter we have put forward the view that evolutionary algorithms 

together with the assemble-and-test methodology can be regarded as a 

discovery engine or creative machine for new designs. We studied this idea in 

the context of different examples of sequential logic circuits. From results it 

can be seen that unusual structure may be able to be discovered by examining 

a series of evolved designs. We examined the concept of the space of all 

circuit representations but feel that similar ideas may well carry over to the 

general field of design. The human designed algebras, forms a subsets of the 

space of all representations employing evolutionary techniques. 

The new proposed approach is based on using GA to generate optimised 

state assignment and EHW to design the logic circuit. All results have been 

discussed in the pervious examples used these methods. The results given 

compared with manual designed method. The comparison results are based 

on the number of logic gates at gate level. In term of Boolean gates, the 

evolved circuits use number of gates given in Table 5.2. Nevertheless, the 

experiments shows that the amount of hardware (gates) can be reduced 

compared with manual design method. 

The results of some of the experiments showed that it is possible to improve 

the evolutionary algorithm performance considerably by choosing carefully 

the number of columns of cells and the number of rows as discussed in 

example 2. 

In the experimental results the different population size is used and consider 

the sensitivity of EHW approach to this parameter is discussed. The number 

of generations also grows with the size of the circuit. The most significant 

results have been obtained by analysing the circuit structure. We showed that 

combinations of different logic gates allowed us to evolve more optimal 

circuit structures. Moreover because our algorithm is based on the state table 

analysis the GA finds the substitutions of logic operators, which is impossible 
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to deflne using well-known algebra logic rules. We contend that evolving the 

functionality and connectivity of logic gates can only discover such strange 

non-algebraic circuits. 

Table 5.9. Initial parameters used to evolve the 
circuits and their results. 

Circuit Examplel Example 2 Example 3 

Circuit layout 3xl0 lxl0 4x5 

#Population size 5 10 10 

#Generation 5000 5000 5000 

Crossover 0.5 0.5 0.5 

Mutation 0.06 0.06 0.06 

#Run 10 10 10 

100%functionality 3 2 2 

#Active gate 15 5 8 

Evolving logic circuit using criteria F1 and F2 

Example 4 

1xl0 

20 

5000 

0.5 

0.06 

10 

3 

5 

In this section we will consider some experimental results obtained for the 

sequence detector. The main idea of this experiment is to deflne whether 

using different optimization criteria during the second stage of dynamic 

fltness function affect the evolved circuit structure and algorithm 

performance or not. The initial data of evolutionary algorithm for this 

experiment are given in Table 5.9. Only primitive logic gates of one-and two 

inputs are allowed to participate in evolution. Each gate is considered as a 

separate chromosome element. The obtained experimental results are 

summarised in Table 5.10. As mentioned in the previous section that the 

number of primitive logic gates in the circuit deflnes the quality of evolved 

circuits. 
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#Run 1 

Fl 50 

F2 3 

Circuit 
4xl 

Geometry 

2 

Table 5.10. Sequence detector experimental results 
the algorithm performance during the circuit layout 
and functionality distributions with variable circuit 
structure and Function set: 2,6,7 ,8. 

3 4 5 6 7 8 

62.5 75 62.5 65 75 100 75 

9 3 5 7 6 8 4 

10xl 4xl 8xl 9xl 6xl 4x5 7xl 

functionality vs Numbers of runs 

120~---------------------------, 

~ 100 

~ 80 +---------+---..,;~-+--I 
o 

9 

75 

6 

6xl 

~ 
§ 60 +---~~----~~~----------------~ I-+-F11 
u. 

40+-------------------------~ 

20+-------------------------~ 

1 2 3 4 5 6 7 8 9 10 

numbers of runs 

Figure 5.23. Fitness distribution in 10 runs 

10 

100 

9 

4x5 

Justification of evolved circuit layout together with circuit functionality can be 

derived empirically from the results reported in the Table 5.10 and plotted in 

Figure 5.23. It can be seen from the result how the connectivity parameters 

and circuit layout affect the algorithm performance. The layout is 

characterized by the following parameters: 

1. Connectivity parameters; 

2. The numbers of rows and columns in rectangular array. 
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Each results has different circuit layout parameters. The experiments have 

yielded some very interesting results that performance may depend on the 

number of columns and connectivity parameters rather than evolutionary 

algorithm only. In this case the algorithm performance is defIned by number 

of fully function circuit evolved during 10 runs and the quality of evolved 

circuits. Moreover the experiment investigates how the numbers of columns 

in rectangular array influence the algorithm performance. 

It can be seen that the number of logic gates involved in the circuit increases 

as the number of columns in the rectangular array is increased (see Figure 

5.24). Therefore, in order to evolve logic circuits with minimum number of 

logic gates, a suitable number of columns must be chosen. 

10 
9 

rJ) 

8 c 
E 7 ::::l 
(5 

6 () - 5 0 
L.. 

4 Q) 
.0 
E 3 
::::l 
C 2 t-- l-

1 l- I-- l-
0 

2 3 

# Columns vs # Runs 

I-
I--

t-- t--
l- t-- t-
l- t-- t--
l- t- t-
I-- I-- I--

4 567 
Number of runs 

t--
t-
I--

~ 

1-. 
I 

t-i 
t-- H 

I 
t- t-j 

t-- t--

~ t- t-
I-- I--

8 9 10 

Figure 5.24. The graphic illustration how the 
circuit layout and evolved functionality affect 
the solutions of sequence detector. 

OF2 

The experiments shows how the fItness function with different optimisation 

affect the algorithm performance and the quality of evolved circuits. The 

percentage of correct bits Fl and the number of active primitive logic gates in 

circuits, F2 have been chosen as the criteria to compare the algorithm 

performance. It is clear that F2 criteria have to be minimized during the 

evolutionary process when Fl criteria is maximised. 
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#Run 0 

Fl % 100 

F2 7 

Circuit 
lxl0 

Geometry 

Time 
23 

(sec) 

Table 5.11. Module-4 counters with fixed 
circuit geometry and Function set: 2-8,12. 

1 2 3 4 5 6 

100 100 100 100 100 100 

8 6 7 6 5 6 

lxl0 lxl0 lxl0 lxl0 lxl0 lxl0 

41 39 39 39 38 38 

7 8 9 

100 100 100 

5 4 4 

lxl0 lxl0 1xl0 

38 39 39 

Table 5.11 shows a summary of the experimental results received for 

algorithms with the dynamic fitness function for Module 4-counter. The 

numbers of columns and rows in rectangular array have been chosen to be 

constant. The quality of circuit evolved with fixed circuit geometry comparing 

with 100% function circuit evolved (Fl). It can be noticed that the number of 

active logic gates is not fixed. This proves that there is no fixed circuit when 

we use evolution algorithm. The experimental results show that in terms of 

the 100% cases evolved the chromosome representation with flexible and 

permanent circuit geometry give similar results. Analysing the structure of 

circuits evolved allows us to make the conclusion that proportion of the 

number of available gates in the circuit to the number of actual gates becomes 

fixed with increasing numbers of available gates in circuit 

The CPU times of model 4-counter required for ten runs are presented in the 

Table 5.11. In general, the time required for each run tends to increase as we 

solve more complex circuit. 

In this experiment some issues concerning analysis and verification of evolved 

circuits at gate-level EHW have been considered. Firstly, some function 

representation and their suitability for extrinsic EHW have been examined. 

Secondary, the dynamic fitness function strategy has been introduced to 

improve the quality of evolved circuit. Two criteria to define the functionality 

of the logic function are introduced. These are: 
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• The type of primitive logic function describing the behaviour of 

building block (AND, OR, NOT); 

• The type of input used in the building block (primary or inverted). 

The experimental results show that these two functionality types have 

different influence the algorithm performance. 

5.9 Summary 

The chapter presented a new synthesis metohd which provide for both GA to 

deftne optimal state assignment and EHW to design the combitional part of 

sequential logic circuits.The EHW approach described is based on the 

extrinsic evolution at gate-level, in the sense that each gene of a chromsome 

corresponds to a primitive logic gate. The problem of how to evolve a 

sequential logic circuit that performs a desired function (specifted by state 

table) in a given set of available logic gates has been discussed. Most of the 

previous work is summarised in Table 5.1. The extrinsic evolution EHW is 

used to evolve sequential logic circuit and to our knowledge no similar work 

has been published in this area to compare with. The experimental results 

obtained are compared with results produced by the manual design methods. 

The minimum numbers of AND, OR, NOT logic gates in the combinational 

block of the circuit is the criteria set by the user to choose the optimal 

solution. The state assignment of state machine is often critical and a small 

change in the codes assigned to the state can lead to very wide difference in 

the number of logic gates and in the topological structure of that logic. The 

work shows how an evolutionary algorithm could be used to produce a novel 

and efftcient design for digital logic circuit some time difftcult for human 

design to expect because of it's unusual structure. As it has been verifted 

through the presented EHW approach implementations, the proposed 

approach can be successfully applied to the design of the sequential logic 

circuits. Further we believe that the GA-based approach has a great potential 

to provide a practical tool for assisting designers of logic circuits. 
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Chapter 6 

EXTRINSIC EVOLUTION OF FINITE STATE MACHINES 

6.1 Introduction 

The chapter outlines the use of the extrinsic evolvable hardware approach to 

evolve MCNC finite state machine benchmarks. The approach introduced in 

chapter 5 is tested on a number of Hnite state machines from MCNC 

benchmark set. These circuits have been evolved using different functional 

sets of logic gates and GA parameters. The results show promise for the use 

of this approach as a design method for sequential logic circuits. The 

approach is divided into two stages using GA as encoding scheme, which 

described in chapter 4 and EHW to design general FSMs from MCNC 

benchmark set [1]. The developed approach is the fust attempt to evolve 

sequential logic circuits from the standard benchmark set. 

6.2 Evolution of MCNC FSMs 

Weare ready to complete the FSM design processing introduced in Chapter 

5. In order to evolve the MCNC FSMs benchmarks, two stages are combined. 

The fust stage depends on the state table to represent the chromosome for 

state assignment. The second stage depends on the layout structure of the 

circuit at the functional level. The architecture of the genetic synthesis of FSM 

benchmark set of sequential logic circuits is similar to one described in 

chapter 5 (see Hgure 5.7). In chapter 5, small size sequential circuits were 

evolved and compared with manual design methods. Here the main design 

processing is the same but we try to evolve more general circuits, large size of 

MCNC benchmark sets. Therefore a third stage is added to Figure 6.1 labelled 

as stage 2. In this stage the symbolic state minimization is used to produce the 

smallest possible circuit. This involves examination of the symbolic state 
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transition table to see if there are any equivalent states. Equivalent states are 

those, which have the same output and next state transition, and these can be 

merged to minimise the numbers of states. 

Stage 1 

Stage 2 

Stage 3 

logic level 

Figure 6.1. Procedure of the proposed 
approach to design FSM circuit using 
genetic algorithm and extrinsic evolvable 
hardware 

The evolutionary algorithm representation had been illustrated in chapter 5, 

where we saw that an important task in any evolutionary experiment is to be 

able to defIne a genotype-phenotype mapping. In this case, the phenotypes 

were made up of one or more of the cells shown in Figure 6.2. 

As can be seen from Figure 6.2, an integer representation is being employed. 

In this particular example, a predeflned structure composed of layers must be 

evolved. In addition, only 2-input gates are being used. The total number of 

cells is a representation parameter. In the above fIgure, there are eight inputs, 

from io to i7 . These inputs may come from two different sources: external 

inputs applied to the circuit, feedback coming from the D flip-flops. The gate 

level representation has been used to encode each circuit into an integer string 

as described in section 5.6.1. The circuit (phenotype) is constituted by a 

combinational part (arrangement of logic gates) and a sequential part (D flip­

flop). 
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Figure 6.2. Gate level representation of a 
sequential circuit. 

This representation provides the following interesting feature: 

• Both combinational and sequential circuits can be encoded. In the 

case of pure combinational circuits, the D flip-flop is not considered. 

• There is no feedback path in the combinational parts of the cell, 

• It is a very flexible representation, allowing the implementation of a 

wide variety of combinational and sequential functions. The sum of 

products representation is used. Allows this scheme to also include 

the possibly of using XOR logic gates. 

• The user may change the depth (number of columns and rows) of the 

circuit. In Figure 6.2 there are an 8x4 array of logic cells between eight 

required inputs and one output. Depending on the particular 

application, it may be desirable to use only two or three level, due to 

speed requirements. 

• The total number of cells that makeup the circuits can be changed by 

circuit layout structure. 
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6.3 EHW to design the combinational part of the circuit 

For efficiency, a simple tabular representation for the FSMs is chosen. Rows 

in a table correspond to states, and columns correspond to inputs. This circuit 

layout of FSMs is represented as a rectangular array of components. These 

components are uncommitted and can be removed from the actual circuit 

design if they prove to be redundant. 

Genetic operators 

The circuit evolution is performed using a rudimentary (A + 1) evolutionary 

strategy with uniform mutation [24]. The population consists of (A + 1) 

genotype. Initially the elements of population are chosen at random. Once the 

fitness values of the genotype are evaluated a mechanism of population 

update is applied. The algorithm is as follows: 

Step 1 Randomly initialise a population of genotype 

Step 2 Evaluate fitness of genotype, 

Step 3 Copy fittest genotype into new population; 

Step 4 Fill remaining places in the population by mutated version of fittest 

genotype, 

Step 5 Replace old population by new and return to step 2 unless stopping 

criterion is reached. 

Once this genotype phenotype mapping has been identified, the next step is 

to be able to identify a suitable fitness function. In this case, the functionality 

of the FSM is very well defmed [1]. Thus the fitness function can be very 

precise, essentially testing to see whether or not the desired outputs are 

generated and if not, how many correct desired outputs are generated and 

awarding a score. We use dynamic fitness strategy disused in chapter 5, first 

we are trying to find the circuit with 100% functionality (F..) and second we 
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are trying to minimise the number of active gates in functionally completed 

circuit (F2). F2 Adds reward for the 100% functionally correct circuits that 

have minimum number of logic gates. 

The parameter circuit mutation is used to change the type of genes in 

chromosome excluding the number of columns and rows. The mutation rate 

defines how many genes in the population are involved in mutation. 

6.4 Motivating Example 

The proposed approach described ill Figure 6.2 is tested against dk27 

benchmark with seven states (SO, Sl, S2, S3, S4, S5, S6), one input and two 

outputs. The experimental plan is outlined and results are given. A number of 

experiments have been carried out in order to investigate the specific features 

of the proposed method. 

The initial data for the experiment are given in Table 6.1 for both GA state 

assignment and extrinsic EHW. The benchmark is given to the system in a 

file containing the objective state table in the form of a programmable logic 

array flie (pLA). The structure of dk27 circuit in the proposed approach 

contains 3 subcircuits. The combinational part of the benchmark circuit is 

decomposed into sub circuits A for next state combinational logic and B for 

outputs combinational logic. Sub circuit C represents the D flip-flops. Each 

sub circuit has been evolved separately using the extrinsic EHW approach. 
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Table 6.1. Initial parameter used to evolve 
sequential logic circuit (dk27.kiss2) 

Problem State assignment Combinational logic design 

(GA) 
(EHW) 

Population size 20 15 

The number of 100 5000 

generations 

The number of GA runs 10 100 

Type of crossover Two-point -

Crossover rate 0.25 -

Mutation rate 0.015 0.05 

The number of rows - 4,8 

The number of columns - 3,8 

Target function dk27.kiss2 dk27.kiss2 
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Input Present State 

0 State 0 
0 State 1 
0 State 2 
0 State 3 
0 State 4 
0 State 5 
0 State 6 
1 State 0 
1 State 1 
1 State 2 
1 State 3 
1 State 4 
1 State 5 
1 State 6 

1100 

1100 

1100 

Next State Output 

State 5 00 
State 4 00 
State 4 00 
State 5 00 
State 0 10 
State 0 01 
State 4 00 
State 3 00 
State 2 00 
State 6 00 
State 5 10 
State 1 10 
State 1 01 
State 5 10 

Figure 6.3. DK27 State Diagram and 
symbolic state transition table 
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Figure 6.4. The procedure of generation the *.pla 
@e from the state transition table based on example 
of dk27 (Kiss2 benchmark). Step! shows the initial 
symbolic State Transition Table, Step2 generates 
State Assignments using the genetic algorithm and 
Step 3 generates the PLA @es (*.pla) based on the 
state assignments obtained. 
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In Figure 6.4, stepl shows the valid encoding for the benchmark by simply 

replacing the symbols of the states in the SST by the respective state binary 

code generated by GA. Step 2 generates the state assignment. Step 3 

partitions the STT of the benchmark circuit into next state combinational 

logic circuit A and output combinational logic circuit B. Once the EHW 

decomposition is completed, the fully functional circuit can be generated. 

An example of chromosome representation with actual circuit structure is 

given in Figure 6.5 and Figure 6.6. These circuits represent a dk27 A next state 

combinational logic and dk27B outputs combinational logic evolved using 

functional set in Table 5.2. The function circuit of dk27 A has 4 inputs, 3 

outputs and dk27B has 4 inputs, 2 outputs both implemented here on a 

combinational network with 3x4 circuit layout (Ncol xNrow ). The labels of 

dk27A circuit inputs 0,1,2,3,4 corresponding to the inputs variables 

xO, xl, x2 and x3 respectively. Each gates is assigned an individual address. 

Thus the logic gates located in Oth column and Oth row is labelled as 4 in Figure 

6.5. The logic gate located in 3th column 1st row is labelled as 14. Each output 

of a logic gate is labelled with a real number. The integer part of this number 

defInes the code of logic gate and the functional part determines the position 

of output in logic gate. The number of outputs in the logic function 

implemented defInes the number of circuit outputs. The outputs of circuit are 

connected to the outputs of logic gates 10, 14 and 15 for dk27A. These 

integer values, whilst denoting the physical location of each input, gate or 

output within the structure, now also represent connections or routes 

between the various points. The chromosomes is merely a netlist of these 

integer value, where the position on the list tells us the gate or output which is 

being referred to, while the value tell us the connection to which that point is 

connected, and the gate functionality. Table 6.2 shows four chromosomes 

with 100% evolved circuit functionality and the numbers of gates required are 

listed. 
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Logic function: dk27A 
Ci rcu it stru ctu re: 
Circuit layout: 4 x:.:l 

Circuit mputs: 0 4 8 12 

0: x'D 

1: xl 

2:x2 

3:x3 
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1~)~~D~ 13 
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61612· 1011067 14113211 

34:)- ~y- If)~1 
71702 1111203 1511497 

Circuit outputs: 1 0 14 15 
Functionality: 100% 
The number of active gates: 8 

4.1312 8: 1031 12: 0 1 0 

5: 1403 9: 1251 13:1366 

6: 61 2 10: 1067 14: 13 211 

7: 7 02 11: 1203 15:1497 

Figure 6.5. An example of the gate array 
representation and corresponding genotype of a 
chromosome with 4x3 circuit layout. Functional 
set (0-15). 
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Figure 6.6. An example of the phenotype and 
corresponding genotype of a chromosome with 4x3 
circuit layout. Functional set (0-15). 

Table 6.2. A typical netlist chromosome for 100% 
functional of dk27 A next state logic. 

#Generation # Gates Chromosome 
70 12 1 1 1 2 10 1 1 1 8212 10 1 0 11 22 

121 1 79 5 0000 987 85 4 
90 10 13 1 6 300 203 33 1 33 12 1502 

12 32 1 12 23012 
500 13 13 12 10 0 3 612 702 103 1 125 1 

3 41 1 1079 010 13 6 6 1230 

722 

1232 

10 6 7 

5000 9 13 1 2 103 1 612 702 12 5 1 1067 14 
13 2 11 1203 

179 

1466 

221 

140 
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Evolving circuits using different function set 

To see how choosing the functional set of logic gates affects the evolved 

circuit structures the obtained experimental results are shown in Figure 6.7 (a) 

and Figure 6.7(b). In Figure 6.7(a), the circuit has been evolved using 

functional set (0-10) and the circuit consists of 11 gates in sub-circuit A, 10 

gates in sub-circuit Band 3 D flip-flops in sub-circuit C. The total number of 

logic gates in assembled circuit is 21 (12 AND, 7 OR, 2 NOT). Figure 6.7 (b) 

shows the circuit evolved using functional set (0-15). The most efficient 

evolved circuit consists of 10 logic gates in sub-circuit A, 5 gates in sub-circuit 

Band 3 D flip-flops. The total number of logic gates in the circuit is 15 (5 

AND, 3 OR, 4 XOR, 3 NOT). The two circuits discussed above illustrate 

how choosing the functional set of logic gates affects the evolved circuit 

structures. The functional genes are encoded according to Table 5.2. 

Subcircuit A Subcircuit C Subcircuit B 
r----------inpurs---------------------------------------------------------1 r------------------

(a) 
Subcircuit C 

(b) 
Figure 6.7. Evolved dk27 design using (a) 
functional set (0-10) (b) functional set (0-15) 
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It should be noted that after a chromosome has been obtained it is subject to 

analysis and any redundantly gate are removed. This may occur when gates 

are not involved in a circuit or connected to an output or when because of a 

certain input a gate is made redundant as in case of an input of 0 to an AND 

gate or an input of 1 to an OR gate. 

6.5 Experimental results 

In this section the experimental results are presented for a set of machine 

chosen from MCNC and literature benchmarks [116]. Table 6.3 shows the 

state assignment generated by GA and used to design the circuit. 

Table 6.3. State assignments generated by GA. 

FSM #State State assignment 

bbara 10 2,3,5,4,7,8,9,0,1,11 

beecount 7 7,6,1,3,4,0,2 

dk15 4 0,2,1,3 

dk16 27 12,8,1,27,13,28,14,29,0,16,26,9,2,4,3,10,11, 
17,24,5,18,7,21,25,6,20,19 

dk27 7 6,1,5,7,4,3,0 

ex3 10 3,15,7,1,13,11,2,6,10,8 

ex5 9 8,13,11,10,4,9,0,12,2 

1ion9 9 1,0,4,6,7,5,3,1,11 

mark 1 15 4,3,15,14,9,12,7,2,1,0,10,13,8,5,6 

opus 12 11,14,4,3,10,12,7,2,8,15,6,0 

Sse 16 6,15,14,10,8,0,2,4,12,7,9,11,3,1,5,13 

Shiftreg 8 6,2,4,0,7,3,5,1 

trainll 11 8,13,11,10,4,9,0,12,2,1,3 
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The state assignment of a state machine is often critical and a small change in 

the codes assigned to the state can lead to very wide difference in the number 

of logic gates and in the topological structure of that circuit. 

However EHW begins from randomly connected and randomly chosen logic 

gates and gradually evolves the target functionality. The evolutionary 

algorithm does not guarantee that 100% functionality circuit of the resulting 

connections will be achieved in all cases. So, the results reported here are the 

averages of the correct solutions from 100 runs. In this section, some 

experimental results obtained for the MCNC benchmark circuits are given. 

In order to evolve better circuit in terms of the number of active logic gates, 

we use two stages. At First stage, the objective in digital evolution behaviour 

is to merely produce a 100% functionality correct circuit (Fl). Second stage, 

continues evolving the circuit to optimise number of active logic gates in the 

circuit (F2). The approach performance can be estimated by: 

1. The mean functionality fitness of best chromosome over 100 runs 

(Av.Fl). 

2. The mean numbers of active gates in fully function design evolve over 

100 runs (Av.l00F2), #100% cases is the number of fully functional 

circuits evolved. 

The experimental results obtained are summarised in Tables 6.4. Each 

benchmark circuit has been performed 100 times. The function sets of logic 

gates are chosen according to encoding in Table 5.2. It can be seen from the 

table that large FSM benchmarks are difficult to evolve. 

We have discussed the possible ways to improve the quality of evolved 

circuits. The choice of suitable circuit geometry is a very complicated task and 

is intimately linked with the complexity of the function implemented. So, in 

order to avoid this we have investigated the possibility of evolving the circuit 
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layout at the same time as trying to evolve the fully functional circuits. The 

circuit geometry deflnes the length of the chromosome, thus we worked with 

chromosomes of variable length. The main purpose of circuit layout 

evolution was to try to evolve the best circuit layout together with evolving 

circuit functionality. 

Table 6.4. Experimental results of extrinsic EHW approach. 

Benchmark Function set Av.Fl Av.100F2 #100 
tEHw 

circuit cases (S) 

bbara 0,1,2,3,4,5, 6, 10,15 93.437 60 7 660 

bbtas 2,3,4,5,6,7,10,11,15,16 99.078 15 24 480 

dk15 0,1,6,7,10,11,13,14,15,16 90.530 53 11 300 

dk16 0,1,2,3,4,5,6,7,8,10,11,13,14,15, 89.00 265 1 3180 

dk27 0,1,2,3,4,5,6,10,15 98.875 20 28 420 

dk512 2,3,4,5,6,9,10,11,13,14,16 93.421 25 31 484 

doneflle 2,3,4,5,6,10,11,12,13,14,15 94.0625 105 2 410 

lion9 0,1,2,3,4,5,6,10,15 94.7500 50 7 100 

modulo12 0,1,2,3,4,5,6,7,8,9,10,11,16 98.678 15 36 360 

shiftreg 0,1,2,3,4,5,6,10,11,12,13,15 97.531 18 21 660 

tav 0,1,2,3,4,5,6,10,15,16 95.743 29 19 480 

In the table we show the measure of computing CPU time t EHW . The result 

shows that for the benchmark with small numbers of states the EHW 

required signiflcandy less CPU time. The tEHW run on a 450MHZ PC 

128MBRAM for all the benchmark appears in the literature 
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The experimental results obtained are summarised in Table 6.5. The table 

shows the numbers of gates used to evolve each sub circuit after 100 runs. 

The particular set of logic gates used is fixed in advance, but whether or not 

any particular gate is used, or how many times a gate is used, is entirely free. 

The advantage of this approach is that it allows us to synthesise the 

benchmark circuits using any set of logic gates. Consequently, it permits the 

synthesis of compact and unusual circuit structures. The number of logic 

gates in the circuit defmes the quality of evolved circuits. 

It can be seen from Table 6.5 that large FSM benchmarks (dk16) are difficult 

to evolve with one valid solution after 100 runs. These benchmark sets results 

are compared against SIS [73] for sequential logic synthesis and optimisation. 

The inputs to SIS are given in state table format and the library is given in 

genlib format. The circuit was first optimized using script.rugged, which 

performs combinational optimization on the network. The optimized circuit 

was mapped with a library consisting of 2-input gates and inverters. The 

sequential redundancy removal algorithm was run on the mapped circuit. The 

output is a netlist of gates for the target technology. It can be seen that in 

some cases the evolved circuits are much better then the circuits generated by 

SIS. 

EHW is no doubt a very pronusmg technique for solving optimization 

problems with a tradeoff between speed and perfection. However, not all 

problems lend themselves very well to a solution with EHW. In case of 

problems involving design of benchmark consisting of more than 30 states, 

the barrier to applications of the EHW technique is that the possible 

combinations' are too vast to search using a conventional genetic algorithm. 
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lBenchma 
rk. Kiss 

bbara 

bbtas 

dk15 

dk16 

dk27 

dk512 

Lion9 

shiftreg 

tav 

Table 6.5. Experimental results of extrinsic EHW 
approach. #in, #out and #stat are the number of inputs, 
outputs and states respectively. #100 cases is the number 
of fully functional solutions obtained after 100 runs of 
GA. The evolved circuits which are more optimal in 
comparison with SIS [73] are shown in bold. 

Specification Estimation of the best 
Function Sub- Sub-

Sub-
#100 

#in #out #stat -al set circuit circuit 
circuit C Irotal ases 

A B 

4 2 10 0-5,6,10,15 32 28 3 60 7 

2 2 6 
2-7,10, 
11,15,16 15 4 3 19 24 

3 5 4 0,1,6,7,10, 
20 33 2 53 11 

11-16 

0-6,8,10, 

2 3 27 11,13,14, 265 40 5 305 1 

15 

1 2 7 
0- 6, 10, 

11 5 3 16 28 
15 

1 3 14 2-6,9-14, 
25 22 4 47 31 

16 

2 1 9 0-6,10,15 29 21 4 50 7 

1 1 8 0-13,1513 5 3 18 21 

4 4 4 0-6,10,15,16 3 23 2 26 19 

Total number of gates 413 181 29 594 

SIS 
[73] 

79 

28 

66 

285 

20 

58 

35 

19 

29 

619 

In the experiments reported here, the number of logic gates chosen is equal 

the number required to build conventional circuit over 100 runs. The evolved 

circuit use D flip-flops, which described as sub circuit C in the Table 6.5, 

meaning that evolutionary circuit minimize number of the D flip-flops in the 
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synthesis of state assignment. It may be concluded that the result found by 

this approach are at least as good as CAD tools, but in some case better than 

those derived by the available methods in small size benchmarks. The 

advantage of this approach is that it allows us to synthesise the benchmark 

circuits using any set of logic gates. Consequendy, it permits the synthesis of 

compact and unusual circuit structures. 

6.6 Summary 

This chapter proposes a new approach to evolve FSM benchmark circuits and 

consider circuit structures designed by applying different function set of logic 

gates. The basic idea of this approach is to use the strength of an evolutionary 

algorithm at both state assignment and circuit design stages. The standard 

genetic algorithm has been used in order to identify the optimal state 

assignment for the given problem. The extrinsic evolvable hardware with 

rudimentary evolutionary strategy has been applied to synthesise the 

combinational parts of FSMs. Former results are associated with an 

evolutionary process in which each evolved FSM benchmark circuit is built 

and tested in software using computer simulations. The implemented EHW is 

able to design logic circuits with size and complexity, which have not been 

demonstrated in published work so far on structural genetic and evolutionary 

algorithms. This automated approach has the added advantage of reduced 

dependency on the designer's knowledge and experience. Finally it can be 

concluded that because we produce valid logic circuits by merely connecting 

logic gates together and then testing to see if the resulting circuits is correct it 

becomes possible to design circuits which lie outside the space of circuits 

produced by ECAD tools. The method allows the synthesis of very novel 

circuit structures, which have never been seen before. 
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Chapter 7 

CONCLUSIONS AND FURTHER WORIZ 

7.1 Conclusions 

The principle objectives of this thesis have been fulfilled. A novel technique, 

using Evolutionary Algorithm is implemented to design combinational and 

sequential digital circuits. The technique provides improvement over existing 

tools for circuit design. This automated approach has the added advantage of 

reduced dependency on the designer's knowledge and experience. 

The sequential circuit design methodology has been divided into two main 

parts. 

In the fIrst part of our design process the GA has been used for 

optimised state assignment The work has tended to look for assignment that 

can be automated and give optimum result. Using genetic algorithm, all 

assignments may be considered as a search space of potential solutions. 

In this work a set of methods for assigning code to FSMs is presented. The 

main concern has been the encoding of internal states of sequential circuit 

with a view to minimizing circuit complexity. 

Chapter 2 includes literature survey and summary of previous work done on 

sequential logic synthesis and the methods for encoding the internal states of 

FSM. The optimal state assignment problem has been the object of intense 

research for many years but no completely satisfactory solution has been 

found. This problem has been proven to be NP-complete. Thus, all methods 

proposed to solve it are heuristic approaches as discussed in chapter 2. 

Synthesis based on a GA allows a designer to minimise the actual area while 

performing state assignment. These GAs compensate for most of the 
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unpredictability inherent in the logic reduction synthesis tools, providing a 

better measure of the circuit's characteristics. 

The use of genetic algorithms is proposed to solve the state assignment 

problem in chapter 4. Given the huge search space and the existence of many 

local minima, this problem is well suited to genetic algorithms. 

In addition results are presented to show that this approach can achieve 

solutions superior to previous methods. And the observations show that the 

choice of the GA parameters is a very important issue. 

A program using the genetic algorithm to flnd the optimum state assignment 

for flnite state machines has been written and it can produce a fairly good 

assignment within a fraction of the time required by other methods. Through 

evolutionary operations of recombination, mutation, and selection new 

generations of search points are found that show a higher average fitness than 

their ancestors do. 

So, there is a difference between fIDding a good solution and an optimised 

solution. A FSMs state assignment can significantly affect the quality of the 

synthesized circuit. This observation is significant since the state assignment is 

relatively independent of other optimisations used during the synthesis 

process. Much of the state assignment research has been concentrated on 

reducing the circuit area. They select state encoding that leads to simpler 

equations and therefore smaller area designs. 

The results reported in chapter 4 show that the state assignments as found by 

the genetic algorithm are at least as good, but in most case better, than 

derived by NOVA and similar techniques. In all benchmark tested in Tables 

4.13 and 4.14 the GA assignment produce better results compared to N OVA. 

Experimental results For the 17 benchmarks tested showed that the GA 

could generate state assignments, which required on average 15.44% fewer 

gates and 13.47% fewer literals compared with NOVA. The experiment with 
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FSMs of various sizes show that the optimum parameters do not change 

significantly from one machine to the next. It has been demonstrated that the 

GA is a valid method of finding a good state assignment; it is competitive 

with commercial software, and is not dependent on any particular feature of 

the sequential machine. 

I n the second part of the thesis, extrinsic evolvable hardware has been 

proposed as a new method for designing circuits for complex real world 

applications. 1bis work highlights some of the reasons that can explain why 

EHW has not yet been widely applied. 

The idea of evolvable hardware is to use evolutionary techniques to develop 

new electronic circuits. There are at least three motivations for EHW: 

When tackling a problem a human designer tries to split the initial complex 

problem in to many simpler elementary tasks to find basic building blocks 

that can be used in the design. The designer can then assemble those elements 

to build more and more complex designs. One of the limitations of this 

approach is that there might be a lot of redundancy between those basic 

blocks. Evolved hardware is not subject to this limitation and can explore a 

much larger space than what can be conceptualized by a designer, possibly 

leading to more efficient circuits (size, speed, etc). 

When designing at a low level (at the gate level, or in analog circuits) the 

designer must rely on a mathematical model of the hardware. 

That is the reason why there are rules of design to facilitate the design of 

working circuits in all (or most of) the cases. EHW has the advantage that it 

does not need a model: the circuit is tested and its fitness is the only requested 

information to evaluate its performance. Not being limited to those rules 

allows EHW to tune itself to the hardware it is running on, possibly getting 

more performance from the same hardware than a human-designed circuit. 

This tendency of EHW to tune itself to the hardware at hand can also be a 
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disadvantage: a circuit evolved on one chip might not work on another one 

because of slight changes in some characteristics (propagation time, parasitic 

capacitance, etc.). 

Miller et al. suggested in [11], the above three points can be summarized by 

saying that the space of all the human-designed circuits is just a subset of the 

space of all possible designs. Because EHW are not subject to the limitations 

of human designers they can thus explore a much larger set of designs, maybe 

even the whole space of all designs. 

The evaluation and evolutionary process are studied in detail in ordered to 

defIne the specifIc features of the extrinsic EHW approach and apply them to 

overcome a number of problems. 

Extrinsic evolvable hardware still has two useful features not provided by 

intrinsic evolvable hardware. Extrinsic evolvable hardware can work with any 

design paradigm, and so any bias towards a particular kind of circuit 

behaviour is limited only by the researcher's imagination and the quality of the 

simulation used for evaluation. 

Secondly, circuit designs evolved extrinsically can be simulated with only a net 

list description of the circuit. This avoids any potentially computationally 

expensive technology mapping stage needed to implement a circuit from a 

more general genotype representation. However, the time saved comes at the 

expense of the speed of solution evaluation 

In chapter 5 the research has put forward the Vlew that evolutionary 

algorithms together with the assemble-and-test methodology can be regarded 

as a discovery engine or creative machine for new designs. This idea is studied 

in the context of digital logic. The study suggested that new principles might 

be discovered by examining a series of evolved designs. During this phase we 

developed a gate library that contains the circuit components, as well as an 

easy parameterised evolutionary algorithm. 
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In chapter 6, the proposed method to synthesise the sequential logic circuits 

has been tested on the standard benchmarks circuits. 

From the experimental results presented in this dissertation, we examined the 

concept of the space of all circuit representations but feel that similar ideas 

may well carry over to the general field of design. We also looked at the 

difficult problem of principle extraction from evolved data. However, a 

method from evolutionary algorithms as optimization procedures, or more 

generally as design methods have proven very useful. Using evolutionary 

algorithms solutions have been found that humans could not easily have 

derived. 

Finally, we feel confident that the process of learning new principles from a 

blind evolutionary process is inevitable; it is just a matter of time and 

evolutionary algorithm is a rapidly growing branch of science that introduces 

new means and methods to find new solutions to existing problems. 

The main contribution of the thesis can be summarised as follows: 

• A review of the theoretical basis and generic techniques generally 

applied in the state assignment problem was carried out. 

• A literature review of the techniques and developments used and the 

use of EHW design for sequential logic circuit was carried out and 

reported work critically evaluated. 

• The approaches are used to evolve the sequential benchmark circuits 

and combined both the state assignment and EHW to design the 

circuit. 

• The detailed results of the application of the approach to each 

benchmark machine are analyzed. 

• The obtained results compare favourably against those produced by 

manual methods and other methods based on heuristic techniques. 
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• The approach is tested on a number of finite state machines from 

MCNC benchmark set. These circuits have been evolved uSUlg 

different functional sets of logic gates and GA parameters. 

• The circuits are designed by using an evolutionary based scheme 

rather than by traditional manual design. 

• Another aspect that has to be mentioned is that the computation time 

of the proposed method depends on evolutionary algorithms 

parameters. 

7.2 Future work 

There are several directions stemming from this research that could be 

followed for further exploration. 

First, in chapter 4 a method for using genetic algorithm to solve the state 

assignment problem is developed. Therefore further improvement in genetic 

state assignment algorithm might be carried out to appropriate fitness 

function, crossover and mutation methods. Portable applications have made 

low power design an important issue. Besides, the power consumed may be 

the limiting factor in high performance systems, due to cooling costs and 

reliability concerns. The state assignment phase of digital system design 

affects the structure and complexity of the internal logic as well as the 

number of clocked elements. Thus, it affects both the power consumed and 

the area taken up by the synthesized logic. In this work, we deal with the 

problem of optimizing state assignment for area. Alternatively a state 

assignment, which explores power tradeoffs during state assignment, would 

be useful. 

Second, The thesis proposes a new approach to evolve sequential logic 

circuits. Not enough work has been done in this direction and it is necessary 

to investigate the evolution of sequential logic circuits more closely. Further, 

several applications have been developed based on EHW. This is both in 

digital and analog target technology. There seem to be two major directions 

for the future: 
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First, evolution can be applied to tune the parameters of a circuit. 

Second, the evolution can be applied to make online adaptable real-time 

systems. However, the evolutionary schemes would have to be improved to 

overcome the limitations described in this work. It seems like evolution will 

be introduced as a substitute to traditional analog design earlier than it is 

applied in traditional digital design. 

It can be concluded that there are a number of areas of future study. These 

are briefly explained as follows: 

• In the current work, the GA is used in the ftrst stage to ftnd state 

assignments with an optimised solution based on cost function. Then 

EHW is used to design the circuits as the second stage. Design in this 

way may introduce additional constraints. If the GA based state 

assignment is ignored, the search space will be enlarged for EHW 

consequendy, EHW may ftnd better results. 

• Developing new library for model level components. One of the 

disadvantages of using gate design in GA is that the designed circuits 

are small. This problem can be avoided by using an advanced library, 

as shown in chapter 6. 

• Much larger benchmark sets of sequential logic circuit can be evolved 

using decomposition technique 

• The work can be extended to logic circuit synthesis on-line on 

programmable logic devices. 

• Most of the work so far concentrated on using gate level EHW. 

Evolving circuits at transistor level would be useful. Further, the 

optimisation could be tailored to target area, power dissipation or 

both. 

193 



PUBLICATIONS 

1. Ali B, Benhamida S, Roli A, Saadah S, Tavares J. Solving CSP 

using Evolutionary Algorithm and PIBL approaches. EvoNet 

Summer School, Technological Educational Institution of 

Thessaloniki (TEI), Thessaloniki, Greece, August 2001. 

2. Ali B, Kalganova T., Almaini A.E.A. Extrinsic Evolution of 

finite state machines. In I.e. Parmee, editor, proceedings of 

Adaptive Computing in Design and manufacture V, ACDM, 

pp. 157-167, UK, 2002. 

3. Xia Y, Ali B, Almaini A.E.A. Area and power optimization of 

FPRM functions based circuits, IEEE International 

Symposium on Circuits and Systems, vo1.329 , pp.329-332, 

Bangkok, 25-28 may 2003. 

4. Ali B, Kalganova T, Almaini A E A. Evolutionary algorithms 

and their use in the design of sequential logic circuits. 

(Accepted and to be published in international journal of 

Genetic Programming and Evolvable Machines 2003 

(GENP). 

194 



REFERENCE 

1. Ali B., Kalganvoa T. and Almaini A.E.A. Extrinsic evolution of 

fmite state machine. In I.e. Parmee, editor, proceedings of 

Adaptive Computing in Design and manufacture V, ACDM, pages 

157-167, UK, 2002. 

2. Fogel D. B. An Introduction to Simulated Evolutionary 

Optimization. IEEE Trans. on neural networks, vol. 5, No.1, 

pages 3-14, 1994. 

3. Fogel L. J, Owens A. J. and Walsh M. J. Artificial Intelligence 

through Simulated Evolution. New York: John Wiley, 1966. 

4. Rechenberg I. Evolutionsstrategie: Optimierung technischer 

Systeme nach Prinzipien der biologischen Evolution. Stuttgart: 

Frommann-Holzboog, 1973. 

5. Holland J. H. Adaptation in natural and artificial systems. Ann 

Arbor, MI: The University of Michigan Press, 1975. 

6. Miller J. F., Thomson P., and Fogarty T. e. Designing Electronic 

Circuits Using Evolutionary Algorithms. Arithmetic Circuits: A 

Case Study, in Genetic Algorithms and Evolution Strategies in 

Engineering and Computer Science: D. Quagliarella, J. Periaux, e. 
Poloni and G. Winter (eds), Wiley, 1997. 

7. Thompson A. n evolved circuit, intrinsic in silicon, entwined with 

physics. Proc. 1st Int. Conf. on Evolvable Systems (ICES96), T. 

Higuchi, M. Iwata, L. Weixin, eds., pp. 390-405, Springer, 1997 

8. Layzell, P. The 'Evolvable Motherboard': A Test Platform for 

Research of Intrinsic Hardware Evolution. Csrp 479, School of 

Cognitive and Computing Sciences, University of Sussex, 1998. 

195 



9. Thompson A. Silicon evolution. In Koza, J. R, editor, Proc. of the 

Int. Conference on Genetic Programming, MIT Press, pages 444-

452,1996. 

10. Miller J. E, Thomson P. Combinational and sequential logic 

optimization using genetic algorithms. In Proc. 1st lEE/IEEE Int. 

Conf. on Genetic Algorithms in Engineering Systems: Innovations 

and Applications (GALESIA'95), pages 34 38. IEE ConE. 

Publication No. 414, 1995. 

11. Miller. J, Kalganvoa T., Lipnitskaya N. and Job D. The Genetic 

Algorithm as a Discovery Engine: Strange Circuits and New 

Principles. (CES'99). Edinburgh, UK. Published by The Society 

for the Study of Artificial Intelligence and Simulation of Behaviour 

(AISB), pages 65-74, 1999. 

12. Mazumder P., Rudnick E. M. Genetic Algorithms for VLSI 

Design, Layout & Test Automation. Prentice-Hall, 1999. 

13. Koza J. R., Andre D, Bennett III F. H. and Keane, M. Genetic 

Programming III. Morgan Kaufmanns 1998. 

14. Kruiskamp W., Leenaerts D. Darwin. CMOS opamp synthesis by 

means of a genetic algorithm. In 32nd Design Automation 

Conference, pages 433-438. Association for Computing 

Machinery, 1995. 

15. Robert R., Hubert K., Tobias B. Stochastic Methods for Transistor 

Size Optimization of CMOS VLSI Circuits. PPSN, pages 849-858, 

1996. 

16. Kajitani .1 .et aL An evolvable hardware chip for prosthetic hand 

controller. In Proc. of MicroN euro'99, pages 179-186, 1999. 

17. Higuchi T. et aL Evolvable hardware: A first step towards building 

a Darwin machine. In Proc. of the 2nd Int. Conf. on Simulated 

Behavior, pages 417-424. MIT Press, 1993. 

18. Louis S., Rawlins J. G. Designer genetic algorithms: Genetic 

algorithms in structure design. In Proceedings of the Fourth 

196 



International Conference on Genetic Algorithms, pages 53-60. 

Morgan Kaufman, San Mateo, CA, 1991. 

19. DeGaris H. Evolvable hardware: Genetic Programming of a 

Darwin machine, in Artificial neural Nets and Genetic Algorithms, 

Albretch, R.F., Reeved, C. R, and Steele, N. c., Eds. Springer­

Verlag, New York, 1993. 

20. Hemmi H., Mizoguchi, J., Shimonara K. Development and 

Evolution of Hardware Behaviors. Artificial Life IV, R.A. Brooks 

and P. Maes, ed., pages 371-376, MIT Press, 1994. 

21. Koza J. R, Andre D., Bennett III F. H., et al. Use of automatically 

defined functions and architecture-altering operations 1!l 

automated circuit synthesis with genetic programming. In Genetic 

Programming 1996: Proc. 1st Annual Con£ (GP96), J. R Koza et 

al., Eds., pages 132-140, Cambridge, MA: The MIT Press, 1996. 

22. Ricardo S. Zebulum, M.A.C. Pacheco, Marley M.B.R Vellasco, 

Evolutionary Systems Applied to the Synthesis of a CPU 

Controller, The Second Asia-Pacific Conference on Simulated 

Evolution and Learning - Canberra, Australia, 24-27, November 

1998. 

23. Chongstitvatana P., Aporntewan C. Improving Correctness of 

Finite-State Machine Synthesis from Multiple Partial 

Input/Output Sequences. Proc. of the First NASA/DoD 

Workshop on Evolvable Hardware, Pasadena, California, pages 

262-266, 1999. 

24. Kalganova T. Evolvable Hardware Design for Combinational 

Logic Circuits. Ph.D. thesis, Napier University, Edinburgh, UK, 

August 2000. 

25. Goldberg D. E. Genetic Algorithms in Search Optimisation & 

Machine Learning. Addison-Wesley, 1989. 

197 



26. Hartmanis J., Stearns, R. E. Algebraic Structure Theory of 

sequential Machines. Prentice-Hill, Englewood Cliffs, New Jersey, 

1966. 

27. Kohavi, Z. Switching and finite state automata theory. McGraw­

Hill,1970. 

28. Rudell R. L. Logic Synthesis for VLSI Design. UCB/ERL 

M89 / 49, April, 1994. 

29. Hill J. F., Peterson G.R. Computer Aided Logical Design with 

Emphasis on VLSI. 4 th Edition, John Wiley &Sons, inc, 1993. 

30. Gajski D., Kuhn R. Guest Editor Introduction-New VLSI Tools. 

IEEE Computer, Vol.16, No.12, pages 11-14,1983. 

31. Mazumder P., Rudnick E. Genetic Algorithms for VLSI Design, 

Layout and Test Automation. Prentice Hall, December 1998. 

32. Clare C. R. Designing logic systems using state machines. 

McGraw-Hill, 1973. 

33. Almaini A. E.A. Electronic logic systems. Prentice-Hall, 3rd Ed 

1994. 

34. Moore E. F. Gedanken-experiment on sequential machines. In 

Automata Studies, pages 129-153, Princeton, New Jersey, 1956. 

Princeton University Press. 

35. Huffman D. A. The Synthesis of Sequential Switching Circuits. In 

J. Franklin institute, volume 257, No. 4,pages 275-303,1954. 

36. Ginsburg S. A synthesis Technique for Minimum State Sequential 

Machines. In IRE Transactions on Electronic Computers, volume 

EC-8, pages 13-24,March 1959. 

37. Paull M. C, Unger S. H. Minimizing the number of state in 

Incompletely Specified Sequential Circuits. In IRE Transactions 

on Electronic Computers, volume EC-8, pages 356-357, 

September 1959. 

198 



38. Marcus M. P. Deriving Maximal Compatible using Boolean 

algebra. In IBM Journal of Research and Development, volume 8, 

pages 357-538, November 1964. 

39. Hartmanis J., Stearns R. E. On the state assignment problem for 

sequential machines II. In IEEE Trans on Electronic Computer, 

Volume 16, pages 593-604,August 1967. 

40. Karp R. Some techniques for state assignment for synchronous 

sequential machines. In IEEE Trans. Elect. Comput., vol. EC-13, 

pages 507-518, Oct. 1964. 

41. Krohn K., Rhodes J. Algebraic Theory of Machines. In 

Proceeding Symposium on Mathematical Theory of Automata. 

Polytechnic Press, NY., 1962. 

42. Y o eli M. Cascade Parallel Decomposition of Sequential Machines. 

In IRE Transaction on Electronic Computers, Volume EC-12, 

pages 587-592, April 1963. 

43. Zeiger HP. Loop-free Synthesis of Finite-state Machine. Ph.D. 

thesis, Massachusetts Institute of Technology, Cambridge, 1964. 

44. Hennie F. C. Finite-state Models for logical Machines. Wiley, New 

York,1968. 

45. Armstrong D.B. A programmed algorithm for assigning internal 

codes to sequential machines. IRE Trans. Elect. Comput., vol. 

EC-ll, pages 466-472, Aug. 1962. 

46. Dolotta T. A, McClusky E. J. The coding of internal states of 

sequential machines. In IEEE Trans. EC-ll, pages 549-562. 1964. 

47. Devadas S., HK. Ma, Newton A. R., and Sangiovanni-Vincentelli 

A. MUSTANG: State assignment of finite state machines targeting 

multi-level logic implementations. IEEE Transactions on CAD, 

CAD-7 (12), pages 1290-1300, December 1988. 

48. Avedillo M. J, Quintana J.M. and Huertas J.L. Smas: program for 

the concurrent state reduction and state assignment of flnite state 

machines. In ISCAS, pages 1781-1784, 1991. 

199 



49. Grasselli A., Luccio F. method of minimizing the number of 

internal state in incompletely specified sequential network. IEEE 

TEC, EC-14, pages 350-359, June 1965. 

50. De :Micheli G. Optimal Encoding of Control Logic. Int. Conf. on 

Cire. and Compo Des. Rye NY, Sept. 1984. 

51. Kalnberzin A.Ya and Chapenko v.P. Method of Input State 

Assignment for Digital Devices Implemented Using 

Programmable Logic Devices, Avtomatika i Vychislitel'naya 

Tekhnika, VoL 17, No.1, pages 41-47,1983. 

52. Almaini A.E.A. Sequential machine implementations using 

universal logic modules. IEEE Trans Computers. VoL C-27, No 

10, pages 951-960, Oct 1978. 

53. De :Micheli G. Symbolic :Minimization of Logic Functions, Proc. 

ICCAD 85, Santa Clara, California, pages 293-295, Nov.18-21, 

1985. 

54. Almaini A.E. A, Woodward M, E. Computer program for S.P 

Partition of sequential machine, Electronic letter. VoL 10, No 

21,pages 951-960, 17th Oct 1978. 

55. Curtis H.A. Systematic Procedures for Realising Synchronous 

Sequential Machines Using flip-flop Memory: Part 1. IEEE Trans. 

on Compo VoL C-18, pages 1121-1127, December 1969. 

56. Weiner P., Smith E. J. Optimisation of Reduced Dependencies for 

Synchronous Sequential Machines. IEEE Trans. on Electr. Compo 

VoL EC-16, pages 835-847, December 1967. 

57. Vavilov E.N and Portnoy G. P. Synthesis of Circuits of Electronic 

Computers. Energia Publishers, Moscov, 1966. 

58. Tomg H. C. Introduction to the Logical Design of Switching 

Systems. Addison-Wesley, Reading, Massachusetts, 1964. 

59. Story J. R., Harrison H.J and Reinhard E.A. Optimum State 

Assignment for Synchronous Sequential Circuits. IEEE Trans. on 

Comp, VoL C-21, No.12, pages 1365-1373, December 1972. 

200 



60. Perkowski M. A System for Automatic Design of Digital Systems. 

Magyar Tudomanyos Akademia. Szarnitastechnikai Es 

Automatizalesi Kutato Intezete. Budapest Tanulmanyok 99/1979 

pages 93-112. Hungary, 1979. 

61. Zasowska A and Perkowski M. The Computer-Oriented Method 

for Joint Minimization and State-Assignment of Synchronous and 

Asynchronous Automata. Proc. of the Conf., Application of 

Computers in Engineering Design. Katowice, Poland, 1979. 

62. Lee E.B and Perkowski M. Concurrent Minimization and State 

Assignment of Finite State Machines. Proceedings of the 1984 

Intern. ConE. on Systems, Man, and Cybernetics, IEEE, Halifax, 

N ova Scotia, Canada, October 9-12, 1984. 

63. Murakawa M., S. Y oshizawa 1. Kajitani, et al. Hardware evolution 

at function level. In Proc. 4th Int. ConE. on Parallel Problem 

Solving from Nature (pPSN IV), W. Ebeling et al., Eds. vol. 1141 

ofLNCS, pages 62-71, Springer-Verlag. 1996. 

64. Moroz D.Z. An Algorithm for Encoding the States of an 

Automaton. Avtomatika i Vychislitel'naya Tekhnika, Vol.4, No.4, 

pages 21-24, 1970. 

65. De Micheli G., Brayton R., Sangiovanni-Vincentelli A.L. KISS: A 

Program for Optimal State Assignment of Finite State Machines. 

Int. Conf On Compo Aid. Design. Santa Clara, November 1984. 

66. Rudell R.L and Sangiovanni-Vincentelli A.L. Espresso-MV: 

Algorithms for Multiple-Valued Logic Minimization. IEEE 

Custom Integrated Circuits Conference, pages 230-234, 1985. 

67. Coppola A.J. An Implementation of a State Assignment Heuristic. 

Proc. of the 23-rd Design Automation Conference, pages 643-649, 

June 29 - July 2, 1986. 

68. Almaini A. E. A, Miller J.F, Thomson P, Billina S. State 

assignment of state machine using genetic algorithm. lEE Proc 

201 



Comp and Digital Techniques, Vol. 142, No 4, pages 279-286,July 

1995. 

69. Amaral J. N, Turner K. And Ghosh J. Design genetic algorithm 

for the state assignment problem. IEEE Trans, SMC-25, (4), pages 

689-694,1995. 

70. Perkasie M. A New Approach to the Structural Design of Finite 

State Machines. Department ofEE, PSU, Report, 1986. 

71. Lee. E.B and Perkowski. M. A New Approach to Structural 

Synthesis of Automata. University of Minnesota, Department of 

Electrical Engineering, report, 1982. 

72. Saucier G. State Assignment of Asynchronous Sequential 

Machines Using Graph Techniques. IEEE Trans. on Compo Vol. 

C-21, pages 282-288, March 1972. 

73. Sentovich E. M., et al. SIS: A System for Sequential Circuit 

Synthesis. Tech. Rep. UCB/ERL M92/41,Electronics Research 

Lab, Univ. of California, Berkeley, CA 94720, May 1992. 

74. Brayton R., Sangiovanni-Vincetelli R., Wang, A. MIS: A Multiple­

level Optimization System. In IEEE Transaction on Computer­

Aided Design of International Conference on Computer Aided 

Design, pages 66-69,November 1987. 

75. Davis W.A. Single Shift-Register Realization for Sequential 

Machines. IEEE Trans. on Comp., Vol 1-17, No.5, pages 421-

431, May 1968. 

76. Krohn K, Rhodes J.L. Algebraic Structure Theory of Machines I: 

the Decomposition Results. Trans. American Math Soc., CXVI 

1965. 

77. Hurson A.R. A VLSI Design of the Parallel Finite State 

Automaton and its Performance Evaluation on a Hardware 

Scanner. Incl. J. of Compo and Info. Science, Vol. 13, No.5, pages 

481-505, 1984. 

202 



78. Lee E.B., Perkowski M. ANew Approach to Structural Synthesis 

of Automata. University of Minnesota, Department of Electrical 

Engineering, report, 1982. 

79. lee E.B., Perkowski M. Concurrent Minimization and State 

Assignment of Finite State Machines. Proceedings of the 1984 

Intern. ConE. on Systems, Man, and Cybernetics, IEEE, Halifax, 

Nova Scotia, Canada, October 9 - 12, 1984. 

80. Sklyarov V.A Design of Automata Using Programmable Logic 

Arrays with Memory. Kibernetika, pages 840-848, Plenum 

Publishing Corp., 1985. 

81. Zeiger H.P. Cascade Decomposition of Automata using Covers. 

In the Algebraic Theory of Machines, Languages, and Semigroups, 

by M.A Arlib, Academic Press, Netherlands, 1968. 

82. Schwefel H. P. Numerical Optimization of Computer Models. 

N ew York. John Wiley & Sons, 1981. 

83. Zalzala AM.S., Fleming P.J. Genetic algorithms in engmeermg 

system. lEE, Control Engineering Series, QA402.5.G3, 1997. 

84. Koza J. R. Evolving a computer program to generate random 

numbers using the genetic programming paradigm. Proceedings of 

the Fourth International Conference on Genetic Algorithms, 

pages 37-44. LaJolia, CA: Morgan Kaufmann, 1991. 

85. Davis L. Adapting operator probabilities in genetic algorithms. 

Proceedings of the Third International Conference on Genetic 

Algorithms, pages 60-69. La J olia, CA: Morgan Kaufmann, 1989. 

86. Gen M. and Cheng R. Genetic Algorithms and Engineering 

Design. John Wiley & Sons, 1997. 

87. De Jong K.A. An analysis of the behavior of a class of genetic 

adaptative systems. Doctoral dissertation, University of Michigan, 

1975. 

203 



88. Fogel D.B. Phenotypes, Genotypes, and Operators m 

Evolutionary Computation. In Proceedings of the 1995 IEEE 

Conference on Evolutionary Computation, Perth, Australia, IEEE 

Press, pages 193-198, 1995. 

89. Fogel L.J. Evolutionary Programming in Perspective: The Top­

Down View, in ZURADA, ]. M., et aI., eds. Computational 

Intelligence: Imitating Life, Piscataway, IEEE Press, pages 135-

146,1994. 

90. Moore G.E., An Update on Moore's law, 

http://developer.intel.com/, Intel Developer Forum Keynote, San 

Francisco, 1997. 

91. Haddow P. and G Tufte. An evolvable hardware FPGA for 

adaptive hardware. In congress on Evolutionary computation 

(CECOO), pages 553-560, 2000. 

92. Lienig]. A parallel genetic algorithm for performance-driven VLSI 

routing. IEEE Transactions on Evolutionary Computation, vol. 1, 

no. 1, pages. 29-39, Apr. 1997. 

93. Fourman M. P. Compaction of symbolic layout usmg genetic 

algorithms. In Proc. 1st Int. Conf. on Genetic Algorithms and 

their Applications, J. J. Grefenstette, Ed., pages 141-153, Lawrence 

Erlbaum Associates, 1985. 

94. Kalganvoa T. Bi-directional Increment Evolution in Evolvable 

Hardware. Proc. Of The second NASA/DoD workshop on 

Evolvable hardware. Palo Alto, California, USA. Published by 

IEEE Computer Society, EH2000. 

95. Coen E. The Art of Genes. How organisms make themselves. 

Oxford, UK, Oxford University Press, 1999. 

96. Torresen]. A Divide-and-Conquer Approach to Evolvable 

Hardware. Second International Conference on Evolvable 

Hardware (ICES98), Lausanne, Switzerland, September 1998. 

204 



97. Torresen 1. Evolvable Hardware: The Coming Hardware Design 

Method? In the book: "Neuro-fuzzy techniques for Intelligent 

Information Systems", page 435-449, published by N. Kasabov 

and R. Kozma (editors), Physica-Verlag (Springer-Verlag), 1999. 

98. De Micheli G., R. K. Brayton, and A Sangiovanni-Vincentelli. 

Optimal state assignment for flnite state machines. IEEE 

Transactions on CAD, CAD-4 (3), pages 269-285, July 1985. 

99. De Michelli G., Sangiovanni-Vincentelli A, Villa T. Computer­

Aided Synthesis ofPLA-Based Finite State Machines. Proc. IEEE 

1983 Intern. Conf on Computer Aided Design, pages 154-156, 

September 1983. 

100. Ricardo Z, Marco P, Marley V. Evolvable Systems in Hardware 

Design: Taxonomy, Survey and Applications, Proceedings of The 

First International Conference on Evolvable Systems: From 

Biology to Hardware (ICES'96), Lecture Notes in Computer 

Science 1259, pages 344-358, Tsukuba, Japao, October 1996. 

101. Koza J. R. Future work and practical applications of genetic 

programming. In Handbook of Evolutionary Computation, page 

H1.1: 3. lOP Publishing Ltd and Oxford University Press, 1997. 

102. Thompson A An evolved circuit, intrinsic in silicon, entwined 

with physics. In Proc. of into ConE. on Evolvable Systems 

(ICES'96),1996. 

103. Aporntewan c., Chongstitvatana P., An on-line evolvable 

hardware for learning flnite-state machine. Proc. of Int. Conf. on 

Intelligent Technologies, Bangkok, December 13-15, pages 125-

134,2000. 

104. XC6200 fleld programmable gate arrays, Data Sheet, Xilinx Inc., 

April 1997. 

105. Higuch T, Iwata M., lZajitanai J., Iba N., Hirao J., Furuya T., and 

Manderick B. Evolvable hardware and its application to pattern 

recognition and fault tolerant systems. In Sanchez E. and 

205 



Tomassini M., editors, Towards Evolvable Hardware. The 

evolutionary Engineering approaches, volume 1062 of lecture 

Notes and Computer Sciences, pages 118-135. Spring-Verlag, 

1996. 

106. Cornisky W., Yu J. and Koza J. Automatic synthesis of a wire 

antenna using genetic programming. Late Breaking Papers at the 

2000 Genetic and Evolutionary Computation Conference, pages 

179-186, Las Vegas, Nevada, 2000. 

107. Linden D. S. Evolving Wire Antennas Using Genetic Algorithms: 

A Review. Proc. of the First NASA/DoD W okshop on Evolvable 

Hardware, pages 225-232, Pasadena, Calif., 1999. 

108. Quagliarella D., Periaux J., Poloni c., Winter. G., eds. Genetic 

Algorithms and Evolution Strategies in Engineering. Winter (eds), 

Wiley, 1997. 

109. Davis L. Handbook off Genetic Algorithm. by Van Nostrand 

Reinhold. QA402.5 D3, 1991. 

110. Hartmanis J. On the state assignment problem for sequential 

machines I. In IRE Trans., EX-l0, pages 157-165, 1961. 

111. Lin B., Newton A.R. Synthesis of multi level logic from Symbolic 

High-level Description Language. In Proc. Int. Conference on 

VLSI, August 1989. 

112. Rudell R., Sangiovanni-Vincentelli A. Multiple-valued optimization 

for PLA optimization. IEEE Transactions on Computer-Aided 

Design of Integrated Circuits and Systems, 6(5), pages 727-750, 

September 1987. 

113. Villa T., Sangiovanni-vincentelli A. NOVA: state assignment of 

flnite state machines for optimal two level logic implementation. 

IEEE Trans., C-9, pages 905-924, 1990. 

114. De Micheli G., Brayton R., Sangiovanni-Vincentelli A.L. KISS: A 

Program for Optimal State Assignment of Finite State Machines. 

Int. ConfOn Compo Aid. Design. Santa Clara, November 1984. 

206 



115. Lawler E. L, Lenstra J. K., Rinnooy Kan A. H. G. and Shimoys 

D.B. The Travelling-Salesman Problem. John Wily & Sons, 

Chichester, 1985. 

116. Yang S. Logic synthesis and optimisation benchmark user guide 

version 3.0. MCNC, 1991. 

117. Louis S. Genetic Algorithm as computational Tool for design. 

Ph.D. Dissertation, Department of computer Science, Indiana 

University, 1993. 

118. Manovit c., Aporntewan c., and Chongstitvatana P. Synthesis of 

synchronous sequential logic circuits from partial input/output 

sequence. In Proceedings of International Conference on 

Evolvable Systems, pages 98-105, 1998. 

119. Blickle T. Theory of Evolutionary Algorithms and Application to 

System Synthesis, TIK.-Schriftenreihe Nr. 17, vdf, Hochsch-Verl. 

an der ETH, Swiss Federal Institute of Technology, Zurich, 1997. 

120. Hill A. M., King S.M. Genetic algorithm based design 

optimization of CMOS VLSI circuits. In Proc. 3rd Conf. on 

Parallel Problem Solving from Nature (pPSN III), Y. Davidor, 

H.P. Schwefel, and R. Manner, Eds. vol. 866 of LNCS, pages 546-

555, Springer-Verlag, 1994. 

121. Lawler E. L. An Approach to Multilevel Boolean Minimization, 

Journal of the Association for computing Machinery, Vol.11, 

No.3, pages 283-295,1964. 

122. Green D. Modem Logic Design, Electronic System Engineering 

Series. TK7868, L6.G7, 1994. 

123. Wang L. Automated Synthesis and Optimisation of Multilevel 

Logic Circuit. Ph.D. thesis, School of Engineering, Napier 

University, Edinburgh, UK, 2001. 

124. Kalganvoa T. and J. Miller. Evolving more efficient digital circuits 

by allowing circuit layout and multi-objective fitness. IEEE 

Computer society Press, In A. Stoica, D. Keymeulen, and J. lohn, 

207 



editors, proceeding of the flrst NASA/DoD Workshop on 

Evolvable Hardware. Pages 54-63, Los Alamitos, Califorina, 1999. 

125. Coello c., Hernandez-Aguirre A., Buckles B. P. Evolutionary 

Multiobjective Design of Combinatorial Logic Circuits, Proc. of 

the Second NASA/DoD Wokshop on Evolvable Hardware, pp. 

161-170, Palo Alto, Calif., 2000. 

126. Higuchi T., Niwa T., Tanaka T., and Iba H. A Parallel Architecture 

for Genetic Based Evolvable Hardware Proc. of 2nd Workshop on 

Parallel Processing for Artiflcial Intelligence, PP AI-93 (IJ CAl -93 

Workshop),1993. 

127. Fogel D. B. Evolutionary Computation. IEEE Press, pages 75-84, 

1995. 

128. Thompson A. Evolving electronic robot controllers that exploit 

hardware resources. 3'd Eur. Conf. on Artiflcial Life, 1995. 

129. Aporntewan, C. and Chongstitvatana, P. An on-line evolvable 

hardware for learning flnite state machine. Proc. of Int. Conf. on 

Intelligent Technologies, Bangkok, December 13-15, pages 125-

134,2000. 

130. Darringer J., Brand D., Gerbi W, joyner J. and Trevillyan L. LSS: 

system for Production logic Synthesis. In IBM J. Res. Develop, 

volume 28, pages 537-545, September 1984. 

131. Zbigniew M. Genetic algorithms + data structures = evolutionary 

programs. Berlin, Springer-Verlag, 1992. 

132. Xia Y, Ali B, Almaini A.E.A. Area and power optimization of 

FPRM functions based circuits. IEEE International Symposium 

on Circuits and Systems, vo1.329, pp.329-332, Bangkok, 25-28 may 

2003. 

133. Chalmers S. Study of methodology for fault tolerant state machine 

controllers. PhD. thesis, Robert Gordon University, Aberdeen, 

UI<:, June 2000. 

208 



134. Roggen D. Evolvable electronics for vision-based robots. Diploma 

project. Institute de system Robotiques (ISR) , Lausanne, 

Switzerland, 2001. 

135. Kamaugh M. The Map Method for synthesis of Combinational 

Logic circuits. Transaction of the AIEE, VoL72, Pt.1, pages 593-

598, 1953. 

136. McCluskey E. Minimization of Boolean Functions. Bell System 

Technical Journal, Vo1.35, No.5, pages 1417-1444, 1956. 

137. Ashar P. Synthesis of Sequential Circuits for VLSI Design. PhD 

thesis, University of California at Berkeley, November 1991. 

209 





Appendix A FSM Benchmark Kiss files 

Appendix A 

This appendix contains the FSM benchmark transition tables in standard 
"KISS" format as discussed in chapters 4&6. 

bbara.kiss2 

.i4 

.02 

.p 60 

.s 10 
--01 stO stO 00 
--10 stO stO 00 
--00 stO stO 00 
0011 stO stO 00 
-111 stO stl 00 
1011 stO st4 00 
--01 stl stl 00 
--10 stl stl 00 
--00 stl stl 00 
0011 stl stO 00 
-111 stl st2 00 
1011 stl st4 00 
--01 st2 st2 00 
--10 st2 st2 00 
--00 st2 st2 00 
0011 st2 stl 00 
-111 st2 st3 00 
1011 st2 st4 00 
--01 st3 st3 10 
--10 st3 st3 10 
--00 st3 st3 10 
0011 st3 sa 00 
-111 st3 st3 10 
1011 st3 st4 00 
--01 st4 st4 00 
--10 st4 st4 00 
--00 st4 st4 00 
0011 st4 stO 00 
-111 st4 stl 00 
1011 st4 stS 00 
--01 stS stS 00 
--10 stS stS 00 
--00 stS stS 00 
0011 stS st4 00 
-111 stS stl 00 
1011 stS st6 00 
--01 st6 st6 01 
--10 st6 st6 01 
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--00 st6 st6 01 
0011 st6 st7 00 
-111 st6 stl 00 
1011 st6 st6 01 
--01 sO st7 00 
--10 st7 st7 00 
--00 sO sO 00 
0011 sO st8 00 
-111 st7 stl 00 
1011 st7 st4 00 
--01 st8 st8 00 
--10 st8 st8 00 
--00 st8 st8 00 
0011 st8 st9 00 
-111 st8 stl 00 
1011 st8 st4 00 
--01 st9 st9 00 
--10 st9 st9 00 
--00 st9 st9 00 
0011 st9 stO 00 
-111 st9 stl 00 
1011 st9 st4 00 
.e 
states: state-assignment: 

0 0000 
1 0110 
2 0010 
3 1100 
4 0100 
5 0101 
6 1011 
7 0111 
8 0011 
9 0001 
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Bbtas.kiss2 
.i2 
.02 
.p24 
.s 6 
00 stO stO 00 
01 stO stl 00 
10 stO stl 00 
11 stO stl 00 
00 stl stO 00 
01 stl st2 00 
10 stl st2 00 
11 stl st2 00 
00 st2 stl 00 
01 st2 st3 00 
10 st2 st3 00 
11 st2 st3 00 
00 st3 st4 00 
01 st3 st3 01 
10 st3 st3 10 
11 st3 st3 11 
00 st4 st5 00 
01 st4 st4 00 
10 st4 st4 00 
11 st4 st4 00 
00 st5 stO 00 
01 st5 st5 00 
10 st5 st5 00 
11 st5 st5 00 
.e 
states: state-assignment: 

0 000 
1 010 
2 100 
3 110 
4 001 
5 011 
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dk15.kiss2 

i 3 
.05 
.p 32 
.s 4 
000 statel statel 00101 
000 state2 state2 10010 
000 state3 state 1 00101 
000 state4 state2 10010 
001 statel state200010 
001 state2 state2 10100 
001 state3 state2 00010 
001 state4 state2 10100 
010 statel state3 00010 
010 state2 state3 10010 
010 state3 state3 00010 
010 state4 state3 10010 
011 state3 statel 00100 
011 state4 statel 00100 
011 state1 state2 10001 
011 state2 state2 10001 
111 state3 state1 00100 
111 state4 statel 00100 
111 state1 state3 10101 
111 state2 state3 10101 
100 state1 state 1 01001 
100 state3 state1 10100 
100 state4 state1 01001 
100 state2 state3 01001 
101 state 1 state2 01010 
101 state2 state2 01010 
101 state3 state2 01000 
101 state4 state2 01010 
110 state 1 state3 01010 
110 state2 state3 01010 
110 state4 state3 10000 
110 state3 state4 01010 
.e 
states: 

o 
1 
2 
3 

state-assignment: 
00 
10 
11 
01 

FSM Benchmark Kiss files 
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dk16.kiss2 

.i2 

.03 

.p 108 

.s 27 
00 statel state3 001 
00 state2 statel 001 
00 state3 state4 001 
00 state4 state4 010 
00 stateS statel 010 
00 state6 state3 010 
00 state7 state9 010 
00 state8 state1S 010 
00 state9 statel 000 
00 state1 0 state14 000 
00 statell state3 000 
00 state12 state20 000 
00 state13 state3 101 
00 state14 statel 101 
00 statelS state4 101 
00 state16 state20 000 
00 state17 statelS 010 
00 state 18 state4 100 
00 state19 state18 100 
00 state20 state19 100 
00 state21 state2 100 
00 state22 state3 000 
00 state23 state2 100 
00 state24 state14 000 
00 state2S state1S 010 
00 state26 state20 000 
00 state27 statelS 010 
01 statel state10 001 
01 state2 state2 001 
01 state3 stateS 001 
01 state4 stateS 010 
01 stateS state2 010 
01 state6 state21 010 
01 state7 state18 010 
01 state8 state26 000 
01 state9 stateS 000 
01 statel0 state13 000 
01 statell state23 000 
01 state12 state19 000 
01 state13 state10 101 
01 state14 state2 101 
01 statelS stateS 101 
01 state16 state19 000 
01 state17 state23 000 
01 state18 stateS 010 
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01 state 19 state23 010 
01 state20 state20 010 
01 state21 state1 010 
01 state22 state3 010 
01 state23 statel 010 
01 state24 state13 000 
01 state2S state3 010 
01 state26 state19 000 
01 state27 state3 010 
10 statel statell 001 
10 state2 stateS 001 
10 state3 state6 001 
10 state4 state6 010 
10 stateS state16 010 
10 state6 statel0 010 
10 state7 state19 010 
10 stateS state 13 010 
10 state9 state6 000 
10 state1 0 state1 000 
10 statell state24 000 
10 state12 state1S 000 
10 state13 statell 101 
10 state14 stateS 101 
10 state 15 state6 101 
10 state16 state13 010 
10 state17 state1S 000 
10 statelS state6 100 
10 state19 state24 100 
10 state20 state9 100 
10 state21 state13 100 
10 state22 state 15 100 
10 state23 state13 010 
10 state24 state13 100 
10 state2S state1S 000 
10 state26 statelS 000 
10 state27 state13 100 
11 statel state12 001 
11 state2 state9 001 
11 state3 state7 001 
11 state4 state7 010 
11 stateS state17 010 
11 state6 state22 010 
11 state7 state20 010 
11 stateS state14 010 
11 state9 state7 000 
11 statel0 state2 000 
11 statell state2S 000 
11 state12 statelS 000 
11 state13 state12 101 
11 state14 state9 101 
11 state1S state 7 101 

A-6 



Appendix A FSM Benchmark Kiss files 

11 state16 state14 010 
11 state17 state27 000 
11 state18 state7 100 
11 state19 state25 100 
11 state20 state26 100 
11 state21 state14 100 
11 state22 state15 000 
11 state23 state14 010 
11 state24 state14 100 
11 state25 state15 000 
11 state26 state21 000 
11 state27 state14 100 
.e 
states: state-assignment 
1 00000 
2 00010 
3 00011 
4 00100 
5 00101 
6 00110 
7 00111 
8 01000 
9 01001 
10 01001 
11 01011 
12 01010 
13 01101 
14 01110 
15 01111 
16 10000 
17 00001 
18 10010 
19 10011 
20 10100 
21 10101 
22 11010 
23 10111 
24 11000 
25 10101 
26 11010 
27 11011 
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donfI1e.kiss2 
.i2 
.0 1 
.p 96 
.s 24 
00 stO stO 1 
01 stO st6 1 
10 stO st12 1 
11 stO stl8 1 
00 stl stl 1 
01 st1 st7 1 
10 stl st12 1 
11 stl stl8 1 
00 st2 st2 1 
01 st2 st6 1 
10 st2 stl2 1 
11 st2 stl9 1 
00 st3 st3 1 
01 st3 st6 1 
10 st3 st13 1 
11 st3 st19 1 
00 st4 st4 1 
01 st4 st7 1 
10 st4 st13 1 
11 st4 stl8 1 
00 stS stS 1 
01 stS st7 1 
10 stS st13 1 
11 stS stl9 1 
00 st6 stO 1 
01 st6 st6 1 
10 st6 st14 1 
11 st6 st20 1 
00 st7 st1 1 
01 st7 st7 1 
10 st7 stl4 1 
11 st7 st20 1 
00 st8 stO 1 
01 st8 st8 1 
10 st8 stl4 1 
11 st8 st21 1 
00 st9 stO 1 
01 st9 st9 1 
10 st9 stlS 1 
11 st9 st21 1 
00 st10 st1 1 
01 stlO stlO 1 
10 stlO stlS 1 
11 stlO st20 1 
00 stl1 stl 1 
01 st11 stl1 1 
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10 st11 st15 1 
11 st11 st21 1 
00 st12 st2 1 
01 st12 st8 1 
10 st12 st12 1 
11 st12 st22 1 
00 st13 st3 1 
01 st13 st8 1 
10 st13 st13 1 
11 st13 st22 1 
00 st14 st2 1 
01 st14 st8 1 
10 st14 st14 1 
11 st14 st23 1 
00 st15 st2 1 
01 st15 st9 1 
10 st15 st15 1 
11 st15 st23 1 
00 st16 st3 1 
01 st16 st9 1 
10 st16 st16 1 
11 st16 st22 1 
00 st17 st3 1 
01 st17 st9 1 
10 st17 st17 1 
11 st17 st23 1 
00 st18 st4 1 
01 st18 st10 1 
10 st18 st16 1 
11 st18 st18 1 
00 st19 st5 1 
01 st19 st10 1 
10 st19 st16 1 
11 st19 st19 1 
00 st20 st4 1 
01 st20 st10 1 
10 st20 st17 1 
11 st20 st20 1 
00 st21 st4 1 
01 st21 st11 1 
10 st21 st17 1 
11 st21 st21 1 
00 st22 st5 1 
01 st22 st11 1 
10 st22 st16 1 
11 st22 st22 1 
00 st23 st5 1 
01 st23 st11 1 
10 st23 st17 1 
11 st23 st23 1 
.e 
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states: state-assignment 
1 00000 
2 01100 
3 00101 
4 00001 
5 00110 
8 00111 
9 01001 
10 00100 
11 01011 
12 01100 
13 01101 
14 01011 
15 01111 
16 10000 
17 11001 
18 10001 
19 10011 
20 10100 
21 10101 
22 10100 
23 10111 
24 11000 
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lion9.kiss2 
.i2 
.0 1 
.p 25 
.s 9 
10 stO st1 0 
00 stO stO 0 
00 stl stO 0 
10 stl stl 0 
11 stl st2 0 
10 st2 st1 0 
11 st2 st2 0 
01 st2 st3 0 
11 st3 st2 1 
01 st3 st3 1 
00 st3 st4 1 
01 st4 st3 1 
00 st4 st4 1 
10 st4 st5 1 
00 st5 st4 1 
10 st5 st5 1 
11 st5 st6 1 
10 st6 st5 1 
11 st6 st6 1 
01 st6 st7 1 
11 st7 st6 1 
01 st7 st7 1 
00 st7 st8 1 
01 st8 st7 1 
00 st8 st8 1 
.e 
states: state-assignment: 

0 0000 
1 0100 
2 1100 
3 1101 
4 1111 
5 0001 
6 0011 
7 0111 
8 0101 

FSM Benchmark Kiss files 
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module12.kiss2 
i 1 
.01 
.p 24 
.s 12 
0 stO stO 0 
1 stO st1 0 
0 st1 st1 0 
1 stl st2 0 
0 st2 st2 0 
1 st2 st3 0 
0 st3 st3 0 
1 st3 st4 0 
0 st4 st4 0 
1 st4 stS 0 
0 stS stS 0 
1 stS st6 0 
0 st6 st6 0 
1 st6 sO 0 
0 st7 st7 0 
1 sO st8 0 
0 st8 st8 0 
1 st8 st9 0 
0 st9 st9 0 
1 st9 st10 0 
0 stl0 stl0 0 
1 stl0 st11 0 
0 st11 st11 0 
1 stll stO 0 
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dk27.kiss2 
.il 
.02 
.p 14 
.s 7 
0 START state6 00 
0 state2 stateS 00 
0 state3 stateS 00 
0 state4 state6 00 
0 stateS START 10 
0 state6 START 01 
0 state7 stateS 00 
1 state6 state2 01 
1 stateS state2 10 
1 state4 state6 10 
1 state7 state6 10 
1 START state4 00 
1 state2 state3 00 
1 state3 state7 00 
.e 
states: state-assignment: 

0 110 
1 100 
2 101 
3 111 
4 010 
S 011 
6 001 
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dk512.kiss2 
.i3 
.05 
.p 32 
.s 4 
000 statel state1 00101 
000 state2 state2 10010 
000 state3 statel 00101 
000 state4 state2 10010 
001 statel state2 00010 
001 state2 state2 10100 
001 state3 state2 00010 
001 state4 state2 10100 
010 state1 state3 00010 
010 state2 state3 10010 
010 state3 state3 00010 
010 state4 state3 10010 
011 state3 statel 00100 
011 state4 statel 00100 
011 statel state2 10001 
011 state2 state2 10001 
111 state3 state1 00100 
111 state4 statel 00100 
111 state 1 state3 10101 
111 state2 state3 10101 
100 state1 state 1 01001 
100 state3 statel 10100 
100 state4 state 1 01001 
100 state2 state3 01001 
101 state 1 state2 01010 
101 state2 state2 01010 
101 state3 state2 01000 
101 state4 state2 01010 
110 state 1 state3 01010 
110 state2 state3 01010 
110 state4 state3 10000 
110 state3 state4 01010 
.e 
states: 
o 
1 
2 
3 

state-assignment: 
01 
10 
00 
11 

FSM Benchmark Kiss files 
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shifreg.kiss2 
.i 1 
.01 
.p 16 
.s 8 
o stO stO 0 
1 stO st4 0 
o stl stO 1 
1 stl st4 1 
o st2 stl 0 
1 st2 stS 0 
o st3 stl 1 
1 st3 stS 1 
o st4 st2 0 
1 st4 st6 0 
o stS st2 1 
1 stS st6 1 
o st6 st3 0 
1 st6 st7 0 
o st7 st3 1 
1 st7 st7 1 
States state-assignment: 
o 110 
1 010 
2 100 
3 000 
4 111 
5 011 
6 101 
7 001 

FSM Benchmark Kiss files 
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tav.kiss2 
.i4 
.04 
.p 49 
.s 4 
1000 stO stl 1000 
0100 stO stl 0100 
0010 stO stl 0010 
0001 stO stl 0001 
0000 stO stl 0000 
11-- stO stl 0000 
1-1- stO stl 0000 
1--1 stO stl 0000 
-11- stO stl 0000 
-1-1 stO stl 0000 
--11 stO stl 0000 
1000 stl st2 1000 
0100 stl st20100 
0010 stl st20010 
0001 stl st2 0001 
1100 stl st21100 
1010 stl st21010 
1001 stl st2 1001 
0110 stl st20000 
0000 stl st2 0000 
0011 stl st2 0011 
0101 stl st2 0101 
0111 stl st2 0001 
1011 stl st21011 
1101 stl st21101 
111 0 stl st2 1000 
1111 stl st21001 
1000 st2 st3 1000 
0100 st2 st3 0100 
0010 st2 st3 0010 
0001 st2 st3 0001 
0000 st2 st3 0000 
11-- st2 st3 0000 
1-1- st2 st3 0000 
1--1 st2 st3 0000 
-11- st2 st3 0000 
-1-1 st2 st3 0000 
--11 st2 st3 0000 
1000 st3 stO 1000 
0100 st3 stO 0100 
0010 st3 stO 0010 
0001 st3 stO 0001 
0000 st3 stO 0000 
11-- st3 stO 0000 
1-1- st3 stO 0000 
1--1 st3 stO 0000 

FSM Benchmark Kiss files 
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-11- st3 stO 0000 
-1-1 st3 stO 0000 
--11 st3 stO 0000 
.e 

states: state-assignment 
0 00 
1 10 
2 11 
3 01 
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Appendix B 

This appendix provides an over view of SIS [73]. It contains brief description of the sequential 

circuit model. SIS is an interactive tool for synthesis and optimization of sequential circuits. The 

research idea and code implementation contains there in the product of the efforts of many 

graduate students and professors at US Berkeley. Many of the research projects in the course 

involved exploration of new sequential optimization algorithm that consider logic and state 

together. This necessitated the development of a sequential circuit synthesis design program. 

Furthermore, such a program would be convenient for synthesis a sequential design from a 

symbolic state representation to a mapped implementation without user intervention in patching 

the input and output of various tools together. SIS produces an optimized netlist in a target 

technology given as input a state. A sequential circuit can be input to SIS in several ways (see 

Figure lB), allowing SIS to be used at various stages of the design process. The two most 

common entry points are a netlist of gates and a finites machine in STT. 

Design 

SpcciJication 

Figure lB. A design is specified as an ASTG, STG, or logic implementation 
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Finite State Machine Descriptions 

A sequential circuit can be specified in BLIF (Berkeley logic interchange format) logic form, as a 

finite state machine, or both. An fsm-description is used to insert a finite state machine description 

of the current modeL It is intended to represent the same sequential circuit as the current model 

(which contains logic), but in FSM form. The format of an fsm-description is: 

.starckiss 

.i <num-inputs> 

.0 <num-outputs> 

[.p <num-terms>] 

[.s <num-states>] 

[.r <reset-state>] 

<input> <current-state> <next-state> <output> 

<input> <current-state> <next-state> <output> 

.end_kiss 

[.latch_order <latch-order-list>] 

[<code-mapping>] 

num-inputs is the number of inputs to the FSM, which should agree with the number of inputs in 

the .inputs construct for the current modeL 

num-outputs is the number of outputs of the FSM, which should agree with the number of 

outputs in the . outputs construct for the current modeL 

num-terms is the number of "<input> <current-state> <next-state> <output>" 4-tuples that 

follow in the FSM description. 

num-states is the number of distinct states that appear in "<current-state>" and "<next-state>" 

columns. 

reset-state is the symbolic name for the reset state for the FSM; it should appear somewhere in the 

"<current-state>" column. 

input is a sequence of num-inputs members of {O, 1, --}. 
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outputis a sequence of num-outputs members of {a, 1, --}. 

cutTent-state and next-state are symbolic names for the current state and next state transitions of the 

FSM. 

latch-order-list is a white-space-separated sequence of latch outputs. 

code-mapping is newline separated sequence of: 

.code <symbolic-name> <encoded-name> 

num-terms and num-states do not have to be specified. If the reset-state is not given, it is assigned to 

be the first state encountered in the "<current-state>" column. 

The ordering of the bits in the input and output fields will be the same as the ordering of the 

variables in the .inputs and . outputs constructs if both an fsm-description and logic functions are 

given. 

latch-order-list and code-mapping are meant to be used when both an fsm-description and a logical 

description of the model are given. The two constructs together provide a correspondence 

between the latches in the logical description and the state variables in the fsm-description. In a code­

mapping, !ymholic-name consists of a symbolic name from the "<current-state>" or "<next­

state>" columns, and encoded-name is the pattern of bits ({O, 1}) that represent the state encoding 

for !ymholic-name. The code-mapping should only be given if both an fsm-description and logic 

functions are given .. latch-order establishes a mapping between the bits of the encoded-names of the 

code-mapping construct and the latches of the network. The order of the bits in the encoded 

names will be the same as the order of the latch outputs in the latch-order-list. There should be the 

same number of bits in the encoded-name as there are latches if both an fsm-desmption and a logical 

description are specified. 

If both logic-gates and an fsm-description of the model are given, the logic-gate description of the 

model should be consistent with the fsm-descnption, that is, they should describe the same circuit. 

If they are not consistent there will be no sensible way to interpret the model, which should then 

cause an error to be returned. 

If only the fsm-description of the network is given, it may be run through a state assignment 

routine and given a logic implementation. A sole fsm-description, having no logic implementation, 

cannot be inserted into another model by a model-reference; the state assigned network, or a 

network containing both logic-gates and an fsm-desmption can. 
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Example of an fsm-description: 

.model101 

.starckiss 

.i1 

.0 1 

o stO stO 0 

1 stO st1 0 

o st1 st2 0 

1 st1 st1 0 

o st2 stO 0 

1 st2 st3 1 

o st3 st2 0 

1 st3 st1 0 

# outputs 1 whenever last 3 inputs were 1, 0, 1 

Above example with a consistent fsm-description and logical description: 

.model 

.inputs vO 

.outputs v3.2 

.latch l6] v1 

.latch [7] v2 

. start_kiss 

.i 1 

.0 1 

.p 8 

.s 4 

.r stO 

o stO stO 0 

1 stO st1 0 

o st1 st20 

1 st1 st1 0 

0 

0 

SIS forFSM 
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o st2 stO 0 

1 st2 st3 1 

o st3 st2 0 

1 st3 stl 0 

.end_kiss 

.latch_order v1 v2 

.code stO 00 

.code stl 11 

.code st2 01 

.code st3 10 

.names vO [6] 

1 1 

.names vO v1 v2 [7] 

-1- 1 

1-01 

.names vO v1 v2 v3.2 

101 1 

. end 

SIS forFSM 
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STG 

Partial BLIF file format: 

--/1 

.model circuit 

.inputs inI in2 

.ouputs output 

.start kiss 

.i2 

.01 

00 stO stO 0 

- 0 stO stl 

.end kiss 

. latch b a 

.latch d c 

. name a inI 

III 1 

. name c inI 

--1 

-1-

I-- I 

in2 

in2 

. name b d output 

01 

10 

.end 

SIS forFSM 

b 

[7ut 

d 

Logic Implementation 

b 

d 
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Espresso for logic minimization 

.i 1 #Number of input 

.02 #Number of output 

.p 14 #Number of product terms 

.s 7 #Number of states in machine 

0 START state6 00 

0 state2 stateS 00 

0 state3 stateS 00 

0 state4 state6 00 

0 stateS START 0 

0 state6 START 01 

0 state7 stateS 00 

state6 state2 01 

stateS state2 10 

state4 state6 10 

state7 state6 10 

START state4 00 

state2 state3 00 

state3 state7 00 

The result of a state assignment produced by SIS using NOV A program is: 

$ NOV A state_assign -e h dk27.kiss2 

.code START 100 

.code state2 101 

.code state3: 000 

.code state4 111 

.code stateS 010 

.code state6 110 

.Code state7 011 

The input file, which presented to ESPRESSO state minimization for the benchmark dk27.kiss sets up for a kiss­

style minimization using state assignment, from NOVA is 
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.i4 #Number of input 

.05 #Number of output 

.p 14 #Number of product terms 

0 100 110 00 

0 101 010 00 

0 000 010 00 

0 III 110 00 

0 010 100 10 

0 110 100 01 

0 011 100 10 

100 III 00 

101 000 00 

000 011 00 

III llO 10 

010 101 10 

110 101 01 

011 110 10 

.e 

The result output file produced by ESPRESSO is shown as flows: 

.i4 

.05 

.p 9 

o 1 0 - 01000 

1 - 11 10010 

-110 00001 

-1- 0 10000 

1- -0 00100 

- 010 10010 

- - 11 01000 

- - 00 01000 

-1 1- 10000 

.e 
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Design of Sequential Circuits 
The design of a synchronous sequential circuit starts from a set of specifications and 

culminates in a logic diagram or a list of Boolean functions from which a logic diagram 

can be obtained. In contrast to a combinational logic, which is fully specified by a truth 

table, a sequential circuit requires a state table for its specification. The first step in the 

design of sequential circuits is to obtain a state table or an equivalence representation, 

such as a state diagram. The recommended steps for the design of sequential circuits are 

shown in the Figure below. 

~ 
Input spicification 

t 
Comintional problem Sequential problem 
Produ1e truth table producf state table 

~ t 
Esspresso ~ State minimization 

minimization 
I 

~ ~ 
Library of loic ~ Output equations 

State Assignmnet gates SOP,-or-POS 

t ~ 

I Logic diagram I Type of ~ Evalution of input 
[llp-flops equation for ~-flops 

I 
In this appendix we will consider a number of evolved dk27 benchmark designs. These 

circuits evolved using a gate-level EHW proposed in chapter 5 and it is extension to 

work done by Kalganova [24]. 
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1. Generate state assignment for dk27.kiss2 benchmark 

. i 1 

.0 2 

.p 14 

. s 7 
o START state6 00 
0 state2 stateS 00 
0 state3 stateS 00 
0 state4 state6 00 
0 stateS START 10 
0 state6 START 01 
0 state7 stateS 00 
1 state6 state2 01 
1 stateS state2 10 
1 state4 state6 10 
1 state7 state6 10 
1 START state4 00 
1 state2 state3 00 
1 state3 state7 00 

states: state-assignment: 
0 001 
1 011 
2 010 
3 000 
4 101 
5 111 
6 100 

;: Kis s Input 
;:; Benchmarl: < dk27.Kiss2> 

:-;umber of generation = 100 

states: state-assignment: 

0 100 
1 101 
2 000 
3 111 
4 010 
5 110 
6 011 
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2.Exterinsic EHW to design circuits 

I\III!i Untilled - E H\I{ for Digital Crcuit I!!!I~ £i 

How to input data 

Initial data can be defmed using input data file with extension *.dat or using input data 

forms. 

1. In order to inport input data me (*.dat), click "Input data", tick "Input from me 

eh1.chr", go to "*.dat me" and then click "OK". The data from the me will be loaded to 

the memory. The PLA me processed has to be located in the folder "PLAmes". In this 

case the initial population is generated randomly. 

2. In order to import input data using forms, click "Input data", choose parameters that 

are required, click "OK". Input data file with name "File Name.dat" will be created in the 

directory specified in "*.PLA me". In order to load data from the PLA me, choose 

required PLA me and click "Load PLA file". At the right, the initial data of PLA me will 

be appeared. In this case initial population is generated randomly. 

In order to generate given initial population from the me, the data have to be written in 

the me "*.chr". This me contains the initial parameters (the same as in *.dat me) and the 

population of chromosomes that has to be loaded into memory. In order to download 

the chromosomes into memory click "Draw circuit", choose "Slide Best Circuits", click 

"Open File", choose the me with extension *.chr and click "OK". The initial parameters 

and chromosome genotypes will be downloaded to the memory. The downloaded 

parameters remain the same if "Circuti Display Form" is closed. 

C-3 



Extrinsic EHW tools 

Input data from form 
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Circuit I GA parameters I *.PLA file I GA type 3-1 Logic I 
! Type of Logic Gates--'--"'--""---"'~~--'--'-~'--~"'~-"--~-""'--'~ 

I r ·0· constant (0) r a"'~b EXOR(a ~b) (11)r ~a"!b EXOR(!a !b) (22 

I r ·1· constant (1) r alb ORCa b) (12) r NANO(ab) (23) 

r al!b ORCa !b) (13) 
NOR (ab) (24) 

r ab· wire (3) !alb OR(!a b) (14) 

r !a NOT(a) (4) r lallb OR(la !b) (15) 

!b NOT(b) (5) alclbc Muxl (16) 
, 

P' ~:~:::~E!?I~~j:::t~ll r a!cllbc Mux2 (17) 

P' alb ANO(a !b) (7) r la!clbc Mux3 (18) 

lab ANO(!a b) (8) !wcl!bc Mux4 (19) 

P' !a!b ANO(!a !b) (9) a"(bc) (20) 

r a"b EXOR(ab) (10) r a"b EXOR(lab) (21) 

r 11lputftomfi1e eh 1.eI,]" OK Cancel Help 
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*.dat ftle contains the initial data that include the Evolvable Hardware and Evolutionary 

Algorithm parameters. 

5 population_size 
100 # _runs_total 
5000 # ~enerations 
0.05 ParameterMutationRate 
0.05 GeometryMutationRate 
0.6 BreedingRate 
1 SelectionPressure 
1 Elitism 
GATypeOfAlgorithm 
Percentage RateType 
GeneUniform CrossoverType 
Tournament SelectionType 
Gene MutationType 
No MutationTypeLowLevel 
TwolnputOneOutput CellRepresentation 
ParallelDynamic FitnessStatus 

C-6 



Extrinsic EHW tools 

o FunctionalityWeight 
o NumCompleteInOutWeight 
o NumActiveGatesWeight 
No TypeOfExperiment 
1 gate_distribution(l-proportional 
o history 
1 num_rows 
10 num_cols 
10 levels_back 
2 MaxNumCellInputs 
1 MaxNumCellOutputs 
o flex~eometry 
o flex_levels_back 
D K27 a.PLAfile 
16 num_basis~ates 
00 
1 0 
21 
30 
40 
50 
6 1 
71 
8 1 
91 
101 
11 1 
120 
130 
140 
150 
160 

*.chr file example 

*.chr file contains the chromosome genotype and initial data required to download this 
genotype in the memory. 
"The_population of 5" defines that 5 chromosome will be loaded in the memory. If this 
parameter is not specified, the chromosomes are not loaded in the memory. 

5 population_size 
1 # _runs_total 
500 # ~enerations 
0.03 ParameterMutationRate 
0.05 GeometryMutationRate 
0.6 BreedingRate 
1 SelectionPressure 
1 Elitism 
GA TypeOfAlgorithm 
Percentage RateType 
GeneUniform CrossoverType 
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Tournament SelectionType 
Gene MutationType 
No MutationTypeLowLevel 
No GA_control 
TWOlnputOneOutput CellRepresentation 
No TypeOfInvertedlnput 
No FitnessDisplay 
No DisplayDistribution 
Yes PopulationDisplay 
No BestRunChromosome 
No BestChangedChromosomeDisplay 
No Best100ChromosomesDisplay 
Yes ResultFileDisplay 
ParallelFitnessF1 F2 FitnessStatus 
o FunctionalityWeight 
o NumCompleteInOutWeight 
o NumActiveGatesWeight 
No TypeOfExperiment 
1 gate_distribution(l-proportional 
o history 
1 num_rows 
10 num_cols 
10 levels_back 
2 MaxNumCellInputs 
1 MaxNumCellOutputs 
o flex~eometry 
o flex_levels_back 
DK27.PLA PLAftle 
DK27 DataFileName 
16 num_basis~ates 
00 
1 0 
21 
30 
40 
SO 
60 
71 
8 1 
91 
100 
11 0 
120 
130 
140 
150 
160 
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TwolnputOneOutput Rectangular Array Chromosome Representation 

The TwolnputOneOutput rectangular array chromosome representation should be 
represented by the following way: 
The cell data are the following: 
CellI: <FunctionalGene inputl input2 > 

The chromosome data are 
//*************************************************************************** 
The_chromosome <ChromosomeIndex> <NumColumns> x <NumRows> 
4: <CellO> 6: <Cell2> 8: <Cell4> 10: <Cell6> 
5: <Cell1> 7: <Cell3> 9: <CellS> 11: <Cell7> 
Outputs: <Outputl> <Output2> .. <OutputM> 
Fitness1 <Fitness 1 > 
//*************************************************************************** 

All chromosome data is given in rectangular array representation. 
An example of *.chr fJle is given below. 

//*************************************************************************** 
eh.dat 
The_population of 5 

The_chromosome 0 3 x 5 
8:767 13:283 18:141710 
9:474 14:1110019:4813 
10: 3 7 5 15: 51 0 20: 11 816 
11:124616:4126 21:11910 
12:84217:3101 22:12912 
Outputs: 18 19 
Fitness 50 

The_chromosome 1 5 x 3 
8:85611:110714:12911 
9: 727 12: 128 6 15: 3 8 9 
10: 432 13: 11 52 16: 1 11 13 
Outputs: 21 21 
Fitness 37.5 

The_chromosome 2 2 x 3 
8:65411:742 
9:1024 12:4 5 10 
10:365 13:1254 
Outputs: 1213 
Fitness 62.5 

The_chromosome 3 3 x 2 
8:84710:123412:689 
9:124111:99713:12118 
Outputs: 10 10 
Fitness 50 

17:21612 
18:51612 
19:81315 

20: 10 16 18 
21:51814 
22: 217 18 
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The_chromosome 4 5 x 2 
8:107510:95412:5119 14:21311 16:21213 
9:467 11:24613:3111015:4121017:111314 
Outputs: 17 16 
Fitness 50 
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How to display data 
The chromosome genotype can be displayed in graphical form. In this case click "Draw 

Circuit", go to "Evaluate Chromosome", chose the number of chromosome required to 

be displayed and click "Draw Chromosome". The graphical form of chromosome 

genotype will be displayed in the new window. As an alternative way the chromosome 

can be downloaded from the ftle and, then, the required chromosome can be displyed by 

clicking "Find". 

The algorithm performance can be displayed in different way as well. In order to observe 

the progress of GA in graphical form, tick any of the following options in the main 

menu: "GA progress View" (It displays the GA progress during run as a function of the 

number of generations and the fitness parameters.), "GA Statistic View" (It displays the 

statistic parameters of GA.), "Run GA Progress View" (It displays the results of each 

run.). In order to manipulate by parameters displayed in the graph can be manipulated, 

tick "ChartAuto Paging". In order to save data from the chart into ftle, click "Save Chart 

to File". 

The data stored in the memory can be displayed in the window, if "Result View 

Window" is ticked. In this case depending on the data required to be checked, the 

buttons "Data", "F", "Struct", "Code", "Best", "Basis", "PLA ftle" can be clicked. In 

order to clear data in the "Result View" window, click "Clear 

• Circuit Display Form R~eJ 

Circuit display fonn 
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Graphic display during evolutionary algorithm execution 

Circuit I GA parameters *_PLA file I GA type I N-M Logic I 

I2:J c:\ 
I2:J c++builder 
I2:J CBuilder4 
I2:J Projects 
I2:J Sunli ht 1_10_02 

dk27 PLA 

Load PLA file Loading ofPL4fzle is tf.oJfe!!l! 

OK 

Input data from file 

C-12 



Extrinsic EHW tools 

How to evaluate data 
In order to evaluate data, load the data into memory, click "Draw Circuit", and then click 

"Evaluate Circuit". 

In order to define the percentage of correct bits 1n evaluated circuit, click "Evaluate 

(Consistent)" . 

In order to evaluate the correctness of the circuit for the specific input combination, 

choose required input combination and click "Input Combination". The logic values for 

each logic gate will be displayed in the "Circuit View Form" and the percentage of 

correct bit and evaluated input combination will be displayed in the "Evaluate Circuit" 

window. 

l!!I!i Circuit Oi.plav Form I!!!llIiI E1 

dkZ7.'~"L' cur_ chr = 0; F unction.[ily: 100 N umCorrecllnOu!: 100 Num6.ctiveG.tes: 7 Fitness: 353 

Before circuit evaluation 

,dkZ7.'..PL' cu,_chr = 0; Function.[ity: 100 NumCorrectlnOut:l 00 NurrActiveG.tes: 7 Fitness: 353 

4[6123 5]6133 6[6030 7110646 816257 91681210[21451 

After Evaluation 

5 population_size 
1000 #_runs_tota[ 
5000 # _generations 
0,05 ParameterMutationRa 
0,05 Geometl)'MutationRat 
0,6 BreedingRate 
1 Se[ectionPressure 
1 Elitism 
ES TypeOfA[gorithm 
Percentage RateType 
GeneUniform CrossoverTy 

population_size 
#_runs_tota[ 
#_generations 

BreedingRate 
Se[ectionPressure 
Elitism 
TypeOfA[gorithm 

RateType 
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After input evaluation 

After input combination evaluation 

How to compare data 

~11\g YO.gf12\g _ Hf1~g Y1 
"'--L.J 0·0 LJ 0 .uu 0·0 

population_size 
# _runs_total 

In order to compare two genotypes, load into memory two chromosomes using "Find 

Circuit 1" and "Find Circuit 2" ("Draw Circuit" -> "Slide Best Circuits") and press 

"Compare". The different genes in the chromosome genotype are displayed in colour. 
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<lIZ."..?",-' cu,-ch, = 0; Funclionalily: 75 NumCorreclinOut 37,5 NumllcliveGales: 0 Filness: 75 

416100 512420 6110350 719144 8111132 9122360 10111458 

Before comparison 

I!iIIIl ResultViewForm 

population_size 
#_runs_total 
I_generations 

population_size 
#_runs_total 
I_generations 
ParameterMutationRat 
GeometryMutationRate 
8reedingRate 
SelectionPressure 
Elitism 
TypeOfAlgorithm 

P"I,,,,,,,tRr,I'! RateType 
CrossoverTyp 

5 0 Y3V' 6 0 Y2t[)-' 7- 0 V" -8 0 ~I\!l\o V' 0 V" 11 0 ~. 12 0 4-- ,,- "" - b..(j r- - "c -
I IL/ I 

dkZ"A .. "!-" :uI_chr· 0; Functionalily: 75 NumCorreclinOut 37,5 Numl\ctiveGales: 0 Filness: 75 

416100 512420 6110350 719144 8111132 9122360 10111458 

After comparison 
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Appendix D 

Information about CD 

The attached CD contains the programs developed in the previous chapters. 

The main menu of CD includes 

• Developed software (GA for SAP &EHW) 

• Source codes of the programs 

• Electronic version of thesis 
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