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Abstract

OpenFlow is considered as the most known protocol for Software Defined Networking
(SDN). The main drawback of OpenFlow is the lack of support of new header defi-
nitions, which is required by network operators to apply new packet encapsulations.
While SDN’s logically centralized control plane could enhance network security by
providing global visibility of the network state, it still has many side effects. The
intelligent controllers that orchestrate the dumb switches are overloaded and become
prone to failure. Delegating some level of control logic to the edge or, to be precise,
the switches can offload the controllers from local state based decisions that do not
require global network wide knowledge. Thus, this paper, to the best of our knowl-
edge, is the first to propose the delegation of typical security functions from specialized
middleboxes to the data plane. We leverage the opportunities offered by programming
protocol-independent packet processors (P4) language to present two authentication
techniques to assure that only legitimate nodes are able to access the network. The first
technique is the port knocking and the second technique is the One-Time Password.
Our experimental results indicate that our proposed techniques improve the network
overall availability by offloading the controller as well as reducing the traffic in the
network without noticeable negative impact on switches’ performance.

Keywords Software-defined networking (SDN) - Data plane programmability - Port
scan - Security - P4

Mathematics Subject Classification 68M10 - 68M14 - 68M25

1 Introduction

Software-Defined Networking (SDN) is an emerging network paradigm in which the
control of the network is separated from the forwarding plane. In SDN, the logically
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centralized controllers orchestrate the data plane and process the packet forwarding
decision for the switches.

OpenFlow [1,2] is the main and most known interface to the switches in SDN.
Openflow provides a uniform abstraction to configure different network devices. This
means that the controller inserts and updates forwarding rules into flow tables inde-
pendent of the switch vendor. The main idea behind OpenFlow is to give network
administrators the possibility to remotely reconfigure the forwarding tables at run-
time, collect network statistics, and when no match exists in the table for any packet,
to redirect the packet to the controller for further processing. This reactive approach
exhibits additional undesirable latency.

In OpenFlow any stateful processing is de facto delegated to the intelligent con-
troller and the switches are just limited to installing forwarding rules provided by the
controller. This centralized decision-making process is advantageous when controller’s
global network visibility is required and time is not critical. However, when the global
network visibility is not needed or applications rely only on local flow/port states
which need to react at the packet-level time scale, the centralized decision-making
process might become a bottleneck [3]. As the latency caused by the reliance on an
external controller eliminates the possibility to enforce software-implemented control
plane tasks at wire-speed. For instance, a 64 bytes packet takes about 5 ns on a 100
Gbps speed, roughly the time needed for a signal to reach a control entity placed one
meter away. In addition, the execution of an even though simple software-implemented
control task may take way more time than this.

In the recent years, a lot of research investigated the possibility of delegating state-
ful processing to the switches, in order to reduce the switch-to-controller signaling
overhead. One of the most valuable outcomes of this research effort is P4 [4-7]. This
high-level language can be considered as a new phase in the development of SDN,
where the software running over the switches becomes more flexible, extendable and
powerful. P4 enables the SDN switches to perform advanced packet processing includ-
ing stateful processing. To this end, P4 provides stateful memories (counters, meters,
and registers), which persist the state across multiple packets of a flow.

Separating the control and forwarding planes with a centralized intelligence in the
controller can offer wide opportunities to reduce network control and management
complexity. However, in the context of security there is no need to centralize tasks that
only need the local state to be accomplished and therefore there is no benefits from
the network-wide knowledge that the controller provides [8—10]. On the contrary, this
explicit involvement of the controller for each stateful processing and for any update
of the match/action table leads to extra signaling overload and might cause the failure
of the controller itself. Port knocking is an example of tasks that do not need the
controller’s network-wide knowledge.

Port knocking is an authentication technique used by network administrators [11—
13]. It consists of a specified sequence of closed port connection attempts to specific I[P
addresses called a knock sequence. A host that wants to establish a connection delivers
a sequence of packets addressed to an ordered list of prespecified closed ports. Once
the exact sequence of packets is received, the firewall opens a specific port for the
considered host. Before this event, all packets are dropped. One-time password is also
a task that can be implemented without involving the controller.
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As argued above, we believe that equipping the data plane with some intelligence
can enhance the network overall performance, reduce the signaling load in the network
[14], offload the controller and fulfill real-time requirements for some applications.
Many applications that require sophisticated hardware can then run inexpensively and
in a distributed manner on the data plane. In this paper, we propose to delegate the
security tasks that usually need sophisticated equipment into the SDN switches by
taking port knocking application as a practical example. For our use case, we have
generalized the port knocking method to officiate like an authentication method for
hosts or subnetworks that intend to establish a connection to a specific server. We
show how a single SDN switch is programmed with P4 to efficiently perform the
port knocking application and officiate like an authentication unit directly on the
network ingress. To the best of our knowledge this is the first work, which delegates
the authentication entirely to the data plane using P4.

2 Centralized vs. distributed approach

As we have mentioned before, the centralized decision-making provided by the con-
troller in SDN is advantageous and can enhance the system security, when controller’s
global network visibility is required and time is not critical. However, the explicit
involvement of the controller for any stateful processing is problematic. In the best
case, this leads to extra signaling load and processing delay.

If we consider the scenario, in which our port knocking application is deployed
directly on the logically centralized controller, we will see that the potentially large
amount of signaling information (in principle up to all packets addressed to all n ports
in the sequence) must be sent to the controller. Moreover, a timely instruction from
the controller is needed for forwarding the packet after a correct knocking sequence,
in order to avoid the drop of the first legitimate packet. Additionally, the controller
must reserve memory resources to keep track on the state of all the nodes attempts
to knock the secret sequence. Both, the extra signaling and the memory consumed
are increasing with the length of the sequence and with the number of nodes attempts
to initiate a connection. Furthermore, implementing this application in the controller
brings no gain, as it does not benefit from global network visibility or high-level
security policies [15], but uses just local states associated to specific flows on a single
specific device.

Another argument for the delegation of some control to the data plane, when the
applications rely only on local flow/port states is to be explained as follows. Even if
stateful SDN moves some states down to the data plane, the core logic is maintained
by the (logically centralized) control plane. Therefore, it is challenged by potential
issues resulted by an inconsistent global view of the network, e.g., in a physically
distributed controller setting due to a controller crash or disconnection [16].

Moving states to the data plane, however, may eliminate the vulnerability for very
special applications; our port knocking application is an example. In this case, the
operations performed by the switch are entirely local and independent from the global
potentially inconsistent state maintained by the control plane.
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3 Related work

The research community has extensively studied programmable data planes options
in SDN. Recently there have been several approaches to overcome the limitations of
OpenFlow and the disadvantages of involving the controller in all decisions and the
associated extra latency. A great deal of emphasis on security functions in the data
plane has been placed in the proposed works.

F. Paolucci et al. [17] proposed the adoption of P4 technology in an SDN mul-
tilayer packet-over-optical network to enable advanced data plane programmability.
In particular, the work proposed an edge node architecture that includes a P4 switch
with support of deep packet inspection. The P4-enabled node exploits direct stateful
processing at wire speed without any intervention of the controller. Moreover, it pro-
posed dynamic P4-based traffic engineering solutions for a multilayer scenario, such
as traffic offloading. In addition, augmented firewalling capabilities are envisioned
by using a P4 DDoS mitigation proof-of-concept to protect internal edge resources
without the need for dedicated firewall hardware.

Experimental results showed impressive scalability performance with the size of
the P4 program and in terms of switch latency to perform P4 operations, especially
in the NetFPGA implementation. For example, only a 5 us overall switch latency
was experienced running the cybersecurity P4 code, with no performance degradation
using even 10* flow entries.

Lin, Frank Po-Chen et al. [18] have discussed the problem of the computation-
resource limited controller, which can be congested by heavy flows and then
experiences serious delay. To enhance network scalability and reduce computation
delay on SDN networks under Quality of Service (QoS) requirements, they have pro-
posed a hierarchical edge-cloud SDN controller system design.

By sharing computational resources in the edge and the cloud, the system architec-
ture provides a flexible mechanism for devices to allocate their computational tasks
according to traffic loads. They have proved their system to be effective even when
working on a large-scale SDN, without degrading the overall performance. Moreover,
the system’s performance remains highly stable even under highly fluctuating traffic
loads.

Sivaraman et al. [8] proposed HashPipe, a heavy hitter detection algorithm using
emerging programmable data planes with P4. They suggest running heavy-hitter mon-
itoring at all switches in the network all the time, to respond quickly to short-term
traffic variations. They argued that many network applications could benefit from
finding the set of flows contributing significant amounts of traffic to a link.

In [19], the authors have proposed security functions like access control and port fil-
tering in the data plane using P4. They described their approach as a second-generation
firewall, which works as packet filter and has stateful memory.

An SDN network based system for the mitigation of denial of service attacks,
specifically anti-spoofing techniques in the SDN data-plane, has been proposed in
[20].

Li et al. [21] proposed LOSSRADAR, a lightweight packet loss detection service
that quickly reports the locations and 5-tuple flow information of individual lost pack-
ets.
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Bianchi et al. [3] proposed in their OpenState study the use of eXtended Finite State
Machines (XFSM). They argue that programmers should be able to specify how states
on the switch should be handled and this specification should be executed directly on
the device without any controller interaction. They suggest modifications to OpenFlow
1.1 to allow stateful processing of flows in the switches.

Kabasele et al. [22] proposed a two-level network-based Intrusion Detection System
(IDS) for Industrial Control Systems (ICS) based on SDN. The first level of the IDS is
a whitelist-based filter implemented in P4 on network switches. If a switch cannot find
a matching whitelist entry for a packet, it forwards the packet to the second level of
IDS. This second level is a security engine running on a dedicated host. The security
engine determines whether the packet is malicious or benign and instruct the controller
to update the tables on the switches to accept or block connections.

In [23], the authors have proposed an approach to secure the access control system.
Controller modules dedicated to authentication, registration and tracking of switches,
hosts and users, as well as management of data flows were introduced. SDN capabilities
were used to achieve a tight binding between actual machines and network device ports,
combining with common RADIUS based user authentication, that enables network
security. This approach is again centralized in the controller, which might become a
bottleneck and prone to failure.

4 Specification using finite state machine

In this paper we have used the Finite State Machine (FSM) as model to specify the
desired deterministic behavior of port knocking as an authentication unit in the switch.
The FSM contains a finite number of states and it can be in exactly one state at any
given time. In response to some external inputs, the FSM can change from one state
to another (transition). The FSM is called deterministic, when at a state and upon an
input, the machine follows a unique transition to a next state [24].

This abstract model fits exactly to the desired behavior that we want to achieve.
Our motivation was to design this functionality and implement it in P4 to perform
authentication in the switch without involving the controller. In order to make the
design more reconfigurable, we have kept the port-sequence that must be knocked by
the initiating node flexible in terms of length and order. The sequence can be adjusted at
any time after the switch is deployed, in case the sequence was cracked by a malicious
node. We have also made the following two elements configurable:

(1) The set of untrustworthy nodes (the set of nodes that need to knock the correct
secret sequence of ports before they can initiate the connection to the server).

(2) The set of nodes that requires all the nodes that initiate connections to them to be
authenticated first.

We have taken the FSM as an abstract model, which consists of number of states
including default and final states. The transition between states is triggered by two
types of events. The first event occurs when the connection initiator, which needs
to authenticate being a member of the group of trustworthy nodes has knocked the
correct port in the sequence. This will lead to a transition to the next state, as illustrated
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in Fig. 1. A transition from default state to state 1 can take place, if and only if the
connection initiator has knocked the first correct port in the sequence (the pointer from
state default to state 1). Consequentially, the transition from state 1 to state 2 can take
place, if and only if the connection initiator has knocked the second correct port in the
sequence and so on.

The second event occurs when the initiator has knocked the wrong port in the
sequence while it is in any state except the default and final states. Consequentially, a
roll back action will be triggered and the state will set to default (Fig. 1, the pointers
from each state to the default state). As long as the initiator is in the default state and
has not knocked the first correct port in the sequence, no transitions occur. The final
state can just be achieved after the correct sequence of ports has been knocked from
the connection initiator as shown in Fig. 1. We will discuss this in more details later
when we demonstrate the functionality of our proposed application.

5 The implementation

To demonstrate the ideas proposed in this paper, we have used the behavioral model
(bmv?2) and Mininet. We have simulated a simple network consisting of one switch and
four hosts out of the larger topology illustrated in Fig. 2. We opted for this topology
for two key reasons. First, we propose an authentication node that runs entirely on a
single switch. Obviously, a larger topology would allow the demonstration of multiple
authentication nodes running on different switches, each responsible for a different
subnetwork. However, this would not contribute to the clarification of the concept. The
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Fig.2 Reference topology. Trustworthy nodes are highlighted with green oval shapes, while untrustworthy
nodes are highlighted with red oval shapes (color figure online)

second reason is to demonstrate the case, if the switch fails. In this case, the controller
in runtime can activate another switch, where the program was previously installed,
so that it takes over the authentication task. This scenario demonstrates the network’s
resilience, which is beyond the scope of this work.

In our implementation', we have proposed a scenario in which each host except H2
can initiate connection to any other host, the switch is just forwarding the packets to
the intended destination. In the illustrated scenario, we assumed that H2 is suspected
to be an untrustworthy node that needs to authenticate itself first before it can initiate
a connection to the server H4.

In the proposed authentication application, we have used the principle of tickets.
This mean that only nodes that can present a valid ticket can initiate a connection to
other nodes. We differentiate between benign nodes and those that are suspected to be
untrustworthy nodes. Benign nodes are granted valid tickets initially. This demon-
strates that they can initiate a connection to any other node without the need to
authenticate themselves.

In contrast, nodes that are suspected to be untrustworthy (e.g. because of any abnor-
mal activities in the past) are not granted valid tickets. This confirms that they need
to authenticate themselves first via port knocking. Only if they were able to knock the
correct secret sequence of ports, they will be granted with valid tickets to initiate the
connection.

In our scenario, after H2 has finished the port knocking process successfully, it
gains a valid ticket (Permission) to initiate a connection to H4 for a specific predefined
period of time. After this time, the ticket is invalidated and H2 needs to authenticate

1 https://github.com/amar-almaini/Delegation- of- Authentication- to- the- Data- Plane-in- SDN.
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itself again. This measure avoids a scenario in which a tampered node can use an old
ticket to initiate unpermitted connection to the server.

Inspired by the FSM We have implemented another security measure to avoid the

case in which a node accidentally or intentionally knocks the correct sequence by
knocking arbitrarily long sequence of ports that includes the secret correct sequence
of ports. To specify this, we have defined the condition to trigger a transition to the
next state as pair <Port, state>.
In our implementation, a knocked port is considered correct, if and only if it is the next
expected correct port-number in the sequence and the assigned state in the P4 program
to the knocking node is the correct state in the <Port, state> pair. This enforces that
only nodes, which knock the port-sequence in the predefined order are successively
authenticated otherwise the authentication fails and the node needs to start the port
knocking from first port in the sequence.

As long as the correct port-sequence is not provided and the ticket is not granted,
all packets sent by the node are dropped in the switch without sending any feedback
to the node. Only after the correct port-sequence is sent and the ticket is granted
the following packets are forwarded to the destination. This prevents the malicious
node from making any conclusions about any correct parts from the sequence. To
demonstrate this process, we suppose a secret port-sequence of (5100, 6150 and 7200).
Initially each suspected node that need to authenticate itself and gain a ticket has the
state 0 (Default) assigned. The switch expects initially the Pair <5100, 0>. When the
node knocks first the port 5100, this will lead to the correct pair and a transition to
state 1 is made. In the next step, the switch expects the pair <6150, 1>, therefore
only if the node knocks port 6150, the condition is fulfilled and a transition to state
2 is made. Otherwise a rollback to the Pair <5100, 0> is triggered and the state O is
assigned to the node as illustrated in Table 1.

Without the rollback transition, the switch will keep the state 1 assigned to that node
also when it knocks wrong ports after it has knocked the port 5100. This way, if the node
knocks anytime accidentally the port 6150, this will lead mistakenly to a transition
to state 2, which makes it possible to knock the correct sequence by knocking long
sequence of ports, that could accidentally include the correct sequence in the proper
order.

On the contrary, implementing this functionality on the logically centralized con-
troller will lead to a new packet-in message for each new packet arriving to the switch,
as the switch up to this time has no rules installed on how to deal with this packet.
Roughly, this will produce up to £ (the length of the port-sequence) more messages
towards the controller, and similarly, for each node that attempts to initiate a con-
nection to the server. Additionally, the controller needs to save the state for each port
knocking operation, to finally install a new rule in the switch, which forwards or blocks
the packets from this node. An attacker can use such an implementation to perform
a DoS attack by consuming computation resources on the controller using a set of
spoofed IPs.
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5.1 Dynamically reconfiguring the switch

Implementing the authentication application with P4 in the switch obviously has
numerous advantages such as reducing the malicious traffic in the network as all
traffic produced from suspicious nodes is filtered out at the network ingress without
the need to forward this traffic inside the network to specialized middleware where it
can be filtered out.

After the controller has added the authentication rules into the switch in the respon-
sible table, it is not involved anymore and the switch doesn’t need to ask the controller
for each successor incoming packet to make a decision or add a new forwarding rule.
This will reduce the load on the controller. Moreover, in case the switch goes down
for any reason, the authentication application can be activated at runtime in any other
switch in the network without influencing the network availability.

Despite all the advantages, it is worth indicating that this method of authentica-
tion does not provide adequate protection. To demonstrate this, we provide an attack
example, exploiting the vulnerability of the authentication function in the switch to
the memory saturation attack. We consider a scenario of an attacker who knows the
correct sequence of ports to knock. This information could be gained through several
ways, such as sniffing the traffic.

Assume the attacker sends a large amount of connection attempts (i.e., packets) to
the first port in the predefined sequence (i.e., 5100) from a set of spoofed IPs, towards
the switch. Upon receiving a packet from a source IP, the switch checks its state table
to retrieve the state of the incoming flow. If there is no record for this IP address,
the switch assigns the next state to the corresponding IP. Now, since all the incoming
packets are destined to the correct port, the state of all the incoming packets (i.e.,
the corresponding IPs) will be updated to the next state (i.e., State 1). Therefore, we
will have a large number of entries inside the state table of the switch. This way, a
conscious attacker is able to force the generation of thousands of records in the state
table, and thus exhausting the switch memory [25].

The consequence of this vulnerability can be reduced by configuring the switch
with a timeout, if the switch does not receive the second packet from the same flow
knocking the next port, the switch will reset the state of the flow and remove flow’s
state from the state table.

Additionally, distributing the authentication functionality over more than one switch
in the network, with efficient load balancing between the switches can also reduce the
effect of this attack significantly.

To make our implementation more realistic and scalable and in order to be able
to handle the continuous changes occurring in the network, we kept it dynamic and
reconfigurable at runtime. Nodes that are suspected as untrustworthy and need to
authenticate themselves before initiating a connection are defined as pairs of source
and destination, with IPv4-Addresses. The source represents the suspected node or
subnetwork whereas the destination represents the server or the protected node.

This means that one node can be suspected in the context of connection initiation
to a specific node/server, but the same node may not be suspected in the context of
connection initiation to another node/server. To add one node (connection initiation)
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apply (ticket_deny_table) {

hit {
host_need_processing ();
¥
miss {
apply (grant_ticket_for_not_suspicious_table);
¥

Fig. 3 Hit/Miss construct. Hit identifies the untrustworthy nodes, while Miss identifies the trustworthy
nodes

table_add update_state_table update_state 5100 0
table_add update_state_-table update_state 6150 1
table_add update_state_table update_state 7200 2

([
\ARVARY/
W =
— o o

Fig.4 CLI commands to set the initial knock-sequence

to the list of suspected nodes, it’s sufficient that the controller adds one rule to the
responsible table and in contrast, it’s sufficient to remove this rule from the table to
remove the node from the list. This can be done dynamically at runtime to reconfigure
the switch and handle new incidents occurring in the network.

To implement this behavior, we have used the Hit/Miss construct in P4 [2]. When
there is a record in the table for a specific node (Hit), it will be handled as suspected
and it must authenticate itself first to gain a ticket. In contrast, when there is no record
in the table for this node (Miss), it will be handled as a benign node that has a ticket
by default (see Fig. 3).

Using the same approach, the secret sequence of ports that have to be knocked in
specific order to gain a valid ticket can be also configured by the controller at runtime.
The controller can delete the current sequence or a subsequence at any time and set
a new sequence with the same length or a longer sequence to increase the security
and difficulty of cracking the sequence, i.e., an oblivious attacker will need to guess
the correct sequence out of 65535¢ (£ is the length of the sequence) different possible
permutations.

To demonstrate this, we use the runtime command line interface (CLI). In the initial
configuration, we have set the sequence (5100, 6150, and 7200) with the following
commands (see Fig. 4).

Where 5100 is the first port in the sequence, O is the initial state, 1 is the state after the
transition and the last O in the first line is the ticket validity (O = not valid, 1 = valid).
To change this sequence, the controller need to delete these records and insert new
rules with the new sequence as shown in Fig. 5

This will cause a change in the sequence at runtime and only the suspected nodes, that
are able to knock the new sequence in the proper order will gain a valid ticket.

In our initial configuration, we have defined the node 10.0.1.10 (H2) in the context
of connection attempt to 10.0.3.10 (H4) as suspected, then we sent a TCP stream using
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table_delete update_state_table 0
table_delete update_state_table 1
table_delete update_state_table 2

table_add update_state_table update_state 6100 0 = 1 0
table_add update_state_table update_state 8150 1 => 2 0
table_add update_state_table update_state 9500 2 => 3 0
table_add update_state_table update_state 5100 3 => 4 1
Fig.5 CLI commands to change the knock-sequence

No.  Source Destination _Protocol _Length _Source Port _Destination Port Comment v -

1 100.1.10  10.0.3.10  TCP 74 58778 5001 =

2 10.0.1.10 100.3.10  TCP 74 58778 5001 not authenticated >> drop

3 100.1.10  10.0.3.10  TCP 74 58778 5001

4 100110  10.0.3.10  TCP 74 58778 5001

6 100.1.10  100.3.10  UDP 42 53 5100

9 10.0.1.10 10.0.3.10 uDP 42 53 6150 authentication started but packet 11 leads to

11 100.1.10  10.0.3.10  UDP 42 53 7500 Foliback - ction

12 100.1.10  10.0.3.10  UDP 42 53 7200

13 10.0.1.10  10.0.3.10  TCP 74 58780 5001 ;

14 10.0.1.10 10.0.3.10 TCP 74 58780 5001 no ticket >> drop

15 10.0.110  10.0.3.10  TCP 74 58780 5001

17 100110  10.0.3.10  UDP a2 53 5100

19 10.0.1.10 10.0.3.10 uDP 42 53 6150 successful authentication

21 100110  10.0.3.10  UDP a2 53 7200
~ 22 100.110  10.0.3.10  TCP 74 58782 5001

23 10.0.3.10 10.0.1.10 TCP 74 5001 58782

24 10.0.1.10 10.0.3.10 TCP 66 58782 5001 ticket gained >> forwarding

25 10.0.1.10 10.0.3.10 TP 74 58782 5001

26 100310 100110  TCP 74 5001 58782

27 100110 100310  TCP 66 58782 5001

28 100110  10.0.3.10  TCP 20 58782 5001

29 100310  10.0.1.10  TCP 66 5001 58782

30 100110  10.0.3.10  TCP 1514 58782 5001

31 100310  10.0.1.10  TCP 66 5001 58782

32 100110  10.0.3.10  TCP 1514 58782 5001

33 100310  10.0.1.10  TCP 66 5001 58782

34 100110  10.0.3.10  TCP 1514 58782 5001

35 10.0.3.10  10.0.1.10  TCP 66 5001 58782

36 100.1.10  10.0.3.10  TCP 1514 58782 5001

37 100310  10.0.1.10  TCP 66 5001 58782

38 100.1.10  10.0.3.10  TCP 1514 58782 5001

39 100310  10.0.1.10  TCP 66 5001 58782

40 10.0.1.10 100310  TCP 1514 58782 5001

41100310 100110  TCP 66 5001 58782

42 100110 10.0.3.10  TCP 1514 58782 5001 -

Fig.6 Wireshark screenshot shows how H2 knocks the port-sequence to gain a valid ticket

iperf from H2 towards H4. Figure 6 illustrates how all packets are dropped, initially,
because up to this point of time H2 have not yet authenticated itself.

Using a second terminal, we sent UDP packets from H2 to H4 with destination
ports 5100, 6150 and 7200 to gain a valid ticket. The first attempt went wrong because
another packet with wrong port arrived in between. This triggered a rollback action
forcing the host to initiate the sequence again from the beginning. Only when the
sequence was knocked in the proper order, the host was authenticated and the ticket
is supplied. All the successor packets were forwarded normally to the destination.

The ticket is valid just for a predefined time. Consequently, the switch checks the
arriving time for all successor packets and as soon as the validity time is expired, the
ticket is invalidated and the packets are dropped until the node gains a new valid ticket.

While the switch was running, we have reconfigured the switch with a new secret
sequence as shown in Fig. 5, which is normally done by the controller as a reaction to
specific incidents or anomalies in the network. Consequently, any suspected node that
attempts to initiate a connection must first supply the new sequence to gain a valid
ticket as shown in Fig. 7, a previously cracked sequence is not applicable anymore.
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No. Source Destination Protocol Length Source Port Destination Port Comment -
1 10.0.1.10 10.03.10  TCP 74 58802 5001
2 10.0.1.10 10.0.3.10 TCP 74 58802 5001 not authenticated >> drop
3 10.0.1.10 10.0.3.10  TCP 74 58802 5001
5 10.0.1.10 10.0.3.10 uDP a2 53 5100
7 10.0.1.10 10.0.3.10 UDP a2 53 6150 old sequence
9 10.0.1.10 100310  UDP a2 53 7200
10 10.0.1.10 10.0.3.10  TCP 74 58804 5001
11 10.0.1.10 100310  TCP 74 58804 5001 no ticket >> drop
12 10.0.1.10 10.03.10  TCP 74 58804 5001
14 10.0.1.10 10.0.3.10 upP a2 53 6100
16 10.0.1.10 10.0.3.10 upP a2 53 8150 new sequence
18 10.0.1.10 10.0.3.10 uDP a2 53 9500
20 10.0.1.10 10.0.3.10 uDpP a2 53 5100

~ 21 10.0.1.10 10.03.10  TCP 74 58806 5001
22 10.0.3.10 10.0.1.10  TCP 74 5001 58806
23 10.0.1.10 10.03.10  TCP 66 58806 5001 ticket gained >> forwarding
24 10.0.1.10 100310  TCP 74 58806 5001
25 10.0.3.10 10.0.1.10  TCP 74 5001 58806
26 10.0.1.10 10.03.10  TCP 66 58806 5001
27 10.0.1.10 100310  TCP 20 58806 5001
28 10.0.3.10 10.0.1.10  TCP 66 5001 58806
29 10.0.1.10 100310  TCP 1514 58806 5001
30 10.0.3.10 10.0.1.10  TCP 66 5001 58806
31 10.0.1.10 10.0.3.10 TCP 1514 58806 5001
32 10.0.3.10 10.0.1.10 TCP 66 5001 58806
33 10.0.1.10 100310  TCP 1514 58806 5001
34 10.0.3.10 10.0.1.10  TCP 66 5001 58806
35 10.0.1.10 10.03.10  TCP 1514 58806 5001
36 10.0.3.10 10.0.1.10  TCP 66 5001 58806
37 10.0.1.10 100310  TCP 1514 58806 5001
38 10.0.3.10 10.0.1.10  TCP 66 5001 58806
39 10.0.1.10 100310  TCP 1514 58806 5001
40 10.0.3.10 10.0.1.10 TCP 66 5001 58806
41 10.0.1.10 100310  TCP 1514 58806 5001
42 10.0.3.10 10.0.1.10  TCP 78 5001 58806 v

Fig.7 Wireshark screenshot shows how H2 knocks the new port-sequence to gain a valid ticket

5.2 Port scan mitigation through authentication

Attackers routinely perform random “portscans” of IP addresses to find vulnerable
servers to compromise. Portscan [25,26] work by sending requests to a big range
of port addresses on a host, analyzing the responses to identify the open ports on
this node. Our proposed application is able to mitigate such attacks conducted from
untrustworthy nodes.

Non-suspected nodes are able to initiate a connection to host/server without authen-
tication. However, suspected nodes in the context of connection initiation to a specific
node/server are initially blocked and all incoming packets from these nodes are
dropped by the switch before reaching the node. As long as a suspected node have not
yet authenticated itself, the protected node for it is invisible.

To demonstrate this, we have used nmap from H2 to perform a portscan on the
protected host H4 (initial configuration). Because to this point of time H2 was not
authenticated, all packets sent from nmap were dropped on the switch and the scanner
returned the message “Host seems down”.

6 Evaluation

The setup we have used for this evaluation is Mininet with bmv2 (behavioral model)
installed as virtual machine in VirtualBox. The host machine has an Intel i7 CPU and
8 GB RAM.

We will use two methods to evaluate the performance of the proposed work. The
first one is comparing the performance of the switch between forwarding packets from
a node initially defined as benign, which does not need to knock the secret sequence
of ports and forwarding packets from a node initially defined as untrustworthy, which
need to knock the secret sequence of ports and gain a ticket first.
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As long as the ticket is valid, the only check made in the switch for all successor
packets is comparing the packet’s arriving time with the ticket’s expiring time. The
purpose of this experiment is to investigate, if the check of ticket validity negatively
impacts the performance of the switch.

The second method is to compare the performance between a switch that imple-
ments our proposed implementation and the same switch performing only packet
forwarding without any additional functionality.

6.1 Performance comparison of the switch with and without check, if time
window is valid

To compare the switch performance in both cases, we have measured the throughput by
sending fifty TCP streams for ten seconds duration per stream from the benign host H3
to H4, and fifty TCP streams from the untrustworthy host H2 to H4 (see the topology
in Fig. 2), after the ticket was gained. After that, we have measured the average of all
throughputs. As we can see in the Fig. 10a, b, the throughput average is approximately
the same. This means that after a suspicious node was successfully authenticated, there
is no negative impact on the performance of forwarding functionality in the switch.

InFig. 8, we can see the performance of the switch when both nodes H2 and H3 send
TCP streams, almost in parallel to H4. H3 starts sending while H2 is not authenticated,
yet. We perform the authentication (knocking the port-sequence in the proper order)
using a Python script from a second terminal to gain a valid ticket for H2. After that, we
switch back to the first terminal to start the stream from H2 to H4. Switching between
the two terminals manually requires a few seconds. This explains the delayed start of
the stream sent from H2 as shown in Fig. 8.

Subsequently, we resend the streams this time for a duration of two minutes and
we perform the authentication for H2 in advance. The intention for this experiment
was to observe the impact of expiring the ticket while the stream is passing through
the switch. Figure 9 shows how the ticket expired two times within the two minutes
(validity time 50 s,). This has a noticeable negative impact on the overall throughput,
which is the expected behavior in this case.

As we mentioned before we perform the authentication manually with a Python
script, which requires additional time and scales up the effect. However, this effect
can be reduced remarkably by increasing the validity time of the ticket.

6.2 Performance comparison of the switch with and without the authentication
functionality

Our motivation for this evaluation was to find out if our application has any negative
impact on the performance of the switch, and if yes, how large? For this, we have
replaced the switch implementing our application with the same switch (bmv2), but
without any additional functionality besides the basic forwarding functionality.
Again, we have sent fifty TCP streams for ten seconds duration per stream, from
the host H2 to H4. After that, we have measured the average of all throughputs. As
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Fig. 9 Two times ticket expiration within two minutes (validity time 50 s)

we can see in the Fig. 10c, the throughput average is ~ 20% better than the one we
got with the switch implementing our application.

As discussed previously, despite the apparently lower throughput, the implemen-
tation of the authentication functionality in the switch still offers many advantages,
compared with the implementation of the authentication functionality in the logically
centralized controller.

To clarify, if the basic switch performs better in the case when many nodes are
sending simultaneously to the server, we simultaneously started two streams from H2
and H3 to H4 with a duration of two minutes each. The result shows again that the
behavior of the switch is not significantly negatively impacted in terms of throughput
when our implementation is running as shown in Fig. 11.
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7 One-time password by the switch

One-Time Password (OTP) is an authentication/login-system, in which a password is
only valid for one login or transaction. The Challenge with this approach is to track the
next correct password for the switch as well as for the client. There are two approaches
to solve this problem, the first solution is to use a password generator, which generates
and distributes the password for the next login on request, the second approach is
by maintaining a password list on the server as well as on the client. The last one is
commonly known from online banking as TAN-Lists.

We propose to use this approach as an authentication method between the switch
on the one side and the client, which intend to access the network on the other side.
Our system uses cryptographic hashing functions (e.g. SHA-2, SHA-3 or BLAKE?2)
and is based on the Leslie Lamport algorithm [27].
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Fig. 11 Throughput of H2 and H3, as they send TCP streams to H4 (H2 dotted curve, H3 solid curve)
without the authentication functionality deployed on the switch

The idea is to use a sequence of passwords x1, x2, ... .., X100, Where x; is the pass-
word with which the client identifies himself for the ith time (100 is quite arbitrary).
Our solution is to let the ith password x; equal F%0~ (x), where F is a cryptographic
hashing function and F” denotes n successive applications of F. Thus, the sequence of
100 passwords is F°(x), ..., F(F(F(x))), F(F(x)), F(x), x, which is called hash
chains. With this background, we design the algorithm to achieve the One-Time Pass-
word authentication in the data plane. The algorithm consists of several steps as shown
in Fig. 12:

1. Generate a random initial value (seed) s.

2. A cryptographic hash function f will be repeatedly applied for n times to acquire
the hash chain, e.g. FI06), ., FFF$))), F(f(s)), f(s),s. The first n — 1
values from the chain will be stored on the client side in a table.

. The value of f1%0(s) will be stored on the switch as the Target value 7.

4. For each client that intends to access the network, it needs first to authenticate
itself by the switch. For this, the client presents for the first authentication the first
password f99 (s).

5. On the switch side, the switch compares the password sent from the client with
its target value. For the first authentication round, this will mean comparing the
following values f(f°(s)) = f!%0(s). If the authentication was successful, the
switch stores f°°(s) instead of £1%9(s) as its new target.

6. For the next authentication to be successful, the client needs to present f 98 (s),
then %7 (s) and so forth. A successful authentication can be established for n — 1
times, where n is the length of the hashing chain until the chain gets exhausted
and a new chain must be generated.

(O8]

By using a cryptographic hash function, this approach has inherently the property of
not invertible, which means an eavesdropper has no chance to recalculate the chain, if
he has successfully eavesdropped one password. Furthermore, the system is resistant
against Replay-Attacks, because each password is only valid for one time.
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Fig. 12 Flow design of the One-Time-Password authentication

To the other end, the process is vulnerable to man-in-the-middle attacks, when an
attacker hooks up between the client and the switch and pretends to be the legitimate
switch. Another Problem is that the client must know which password is the password
in use. This might lead to problems, if there is a package loss. This problem can be
solved by sending an acknowledgment back for each received password.

8 Comparison with existing work

In this section, we compare our proposed work with existing work that focuses on
authentication using port knocking. In [28], the author describes a similar scheme
where a client opens a port by attempting connections to a secret sequence of port
numbers. The port-sequence is used as a password. The connection attempts are sent
to the firewall. All connections will be ignored but logged, the firewall will not send
any error packets to the client. Using another service that monitors the firewall log, the
port-sequence can be extracted and associated with the incoming IP address. As soon
as the client sends the correct sequence, this specific port-sequence acts as a trigger to
manipulate the firewall rules and the client is authenticated.
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This concept has some similarity to our work; however, the crucial difference is the
need for a sophisticated firewall unit to perform the authentication. This adds additional
cost and more complexity to the system. The other drawback is that when the firewall
fails, the network becomes unreachable, as the clients cannot be authenticated. While
it is certainly possible to keep a second firewall node ready in the network that can
replace the failed firewall, this will add even more cost and complexity. On the contrary,
our work does not cause any extra cost or complexity in the system.

To highlight further the advantages of our work in more details, we will consider
two key network characteristics, namely the scalability and the reconfigurability. Scal-
ability is very important aspect of any dynamic modern network. However, the firewall
approach in [29] supplies merely limited support for the scalability. As whenever the
network grows, new firewall nodes are necessary to serve the new network segments,
which increase the costs and complexity of the network. On the contrary, scalabil-
ity is an inherent characteristic of our approach, as whenever the network grows, the
new segments will require new basic network elements such as switches, where our
application can be deployed to serve the new segments.

Reconfigurability is another key characteristic especially in highly dynamic net-
works. The continuously changed network leads to fast adjustments in the assigned
rolls and access rights in the network. However, the firewall approach supplies merely
limited support for the reconfigurability, as each firewall needs to be reconfigured
individually, normally by the network administrator (e.g. new port-sequence). On the
contrary, in our approach, all switches can be centrally and individually reconfigured
by the controller depending on the network current status.

9 Conclusion and future work

We have presented a technique with P4 for performing authentication and port scan
mitigation inside the switch on the transport Layer of the TCP/IP protocol stack. We
showed the flexibility and dynamic nature of our technique in runtime. Experimen-
tal evaluation showed that our technique has no noticeable negative impact on the
performance of the switch, which makes it applicable to real world scenarios.

This paper shows the advantages of delegating some of the controller intelligence
into the data plane, which can enhance the network overall performance, reduce the
signaling load in the network, offload the controller, and fulfill real-time requirements.
Some aspects, such as the secure distribution of the knock-sequences to the trustworthy
nodes, and the timeout to trigger a rollback action when the time between knocking
the ports exceeds a specific threshold, have been not considered in this work. However,
these aspects are subjects for future work.

In addition, we plan to test more security functions in the data plane using P4,
and to test the applicability of dynamically distributing different security functions on
different switches in the network considering the incidents and anomalies occurring
in the network.
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