
Math. Control Signals Syst. (2017) 29:2
https://doi.org/10.1007/s00498-017-0203-z

ORIGINAL ARTICLE

Transfer functions of infinite-dimensional systems:
positive realness and stabilization

C. Guiver1 · H. Logemann1 · M. R. Opmeer1

Received: 3 January 2017 / Accepted: 17 September 2017 / Published online: 9 December 2017
© Springer-Verlag London Ltd., part of Springer Nature 2017

Abstract We consider a general class of operator-valued irrational positive-real func-
tions with an emphasis on their frequency-domain properties and the relation with
stabilization by output feedback. Such functions arise naturally as the transfer functions
of numerous infinite-dimensional control systems, including examples specified by
PDEs. Our results include characterizations of positive realness in terms of imaginary
axis conditions, as well as characterizations in terms of stabilizing output feedback,
where both static and dynamic output feedback are considered. In particular, it is
shown that stabilizability by all static output feedback operators belonging to a sector
can be characterized in terms of a natural positive-real condition and, furthermore,
we derive a characterization of positive realness in terms of a mixture of imaginary
axis and stabilization conditions. Finally, we introduce concepts of strict and strong
positive realness, prove results which relate these notions and analyse the relation-
ship between the strong positive realness property and stabilization by feedback. The
theory is illustrated by examples, some arising from controlled and observed partial
differential equations.
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1 Introduction

The concept of a positive-real function seems to originate in Brune’s 1931 paper [11]
and underlies the realization theory of electrical networks [1,6,32,48,52]. The appeal
of the frequency-domain notion of positive realness in circuits and networks stems
from the physical insight it provides together with the compactness and elegance of the
mathematical formulation. Positive realness and the associated time-domain concept of
passivity are not only pivotal in the theory of circuits and networks, but also play a key
role in systems and control theory (see, for example [1,9,10,13,22,25,27,28,47,53]),
with the positive-real lemma (or Kalman–Yakubovich–Popov lemma) being perhaps
the best known result of the field. Equally important concepts in control theory are
stability and stabilization to which positive realness is closely related via absolute
stability theory [10,22,25,27,47,53] and positive-real characterizations of sets of sta-
bilizing output feedback gains [9,25]. Whilst classical absolute stability theory focuses
on global asymptotic stability and L p-stability (where, usually, p = 2 or p = ∞),
more recent work [2,25,36,37] shows that the circle criterion extends to an input-to-
state stability setting and positive realness continues to play a key role in this context.
Furthermore, certain numerical methods (for example, linear multistep methods) can
be interpreted as (discrete-time) Lur’e systems and positive-real functions can be used
in the stability analysis of these methods [12,17,31].

The purpose of this paper is to derive basic properties of irrational operator-
valued positive-real functions and to study the relationship between positive realness
and stabilization by output feedback. Irrational operator-valued positive-real func-
tions arise naturally in the analysis and synthesis of infinite-dimensional control
systems. Whilst transfer functions (and, more generally, frequency-domain meth-
ods) for infinite-dimensional systems have received considerable attention in the
last 25 years [14,16,38,43,44,50,51,57], we feel that frequency-domain properties
of irrational positive-real functions and their relation to stabilization by output
feedback have not been sufficiently studied in the literature. Topics which we do
not discuss are time-domain characterizations of positive-real functions (such as
Poisson integral representations or characterizations in terms of inverse Laplace trans-
forms [52,54,55]) and state-space characterizations (the Kalman–Yakubovich–Popov
lemma [3–5,41,42]); however, we do consider sufficient conditions for positive real-
ness in state-space terms (see Theorem 7.8).

One motivation for the present study is to provide the necessary results on irrational
operator-valued positive-real functions needed for the development of satisfactory
versions of the circle and Popov criteria for infinite-dimensional systems. Positive
realness plays a crucial role in this development (see, for example, [22,25,27,47] for
the finite-dimensional case). In order to keep the paper at a reasonable length and with
a single focus, we, however, do not present absolute stability results here (but instead
refer to [20]).
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We now briefly highlight the main results obtained in this paper. We work in a fairly
general stetting given by the class of all operator-valued transfer functions which are
holomorphic on a half plane Re s > α with the exception of (possibly infinitely many)
isolated points, either poles or essential singularities, where α is a real number (usually,
α ≤ 0). We obtain a characterization of positive realness in terms of imaginary axis
conditions and a condition at infinity in Theorem 3.7 (which extends a well-known
result for rational matrix-valued functions to our general setting). Following the litera-
ture on finite-dimensional systems, we introduce concepts of strict and strong positive
realness and present a result (Theorem 4.4) which relates these concepts. Further-
more, Theorem 6.3 provides a necessary and sufficient condition for positive realness
in terms of a mixture of imaginary axis and stabilizability properties, and we prove
that positive realness of a transfer function is equivalent to every strictly dissipative
static output feedback being stabilizing (Theorem 6.4). Invoking the concept of strong
positive realness, the latter results are extended to include dynamic output feedback
(see Theorem 6.16). Our analysis of the relationship between positive realness and
stabilization by static output feedback culminates in Theorem 6.8 which is reminiscent
of the circle criterion: this result shows that, given a transfer function H and feedback
operators K1 and K2, the function (I −K2H)(I −K1H)−1 is positive real if, and only
if, every operator K in the “sector” defined by K1 and K2 is a stabilizing feedback
operator for H.

The paper is organized as follows. Section 2 collects relevant notation, termi-
nology and operator theory preliminaries. Sections 3 and 4, respectively, discuss
positive realness and strict/strong positive realness in some detail and contain two
of the main results mentioned above (namely Theorems 3.7 and 4.4). In Sect. 5, we
provide a careful treatment of static output feedback for irrational operator-valued
transfer functions: in particular, we introduce the concepts of admissible and stabiliz-
ing feedback operators (extending concepts in [51] to our setting) and investigate
their properties. Section 6 focuses on the relationship between positive-real con-
cepts and stabilization properties: Theorems 6.4, 6.8 and 6.16, already mentioned
above, are the key results in this context. In Sect. 7, the penultimate section, we
discuss links between positive realness and state-space systems (in form of system
nodes [43]): in particular, we present a sufficient condition for (strict, strong) positive
realness of the transfer function of a system node S in terms of certain dissipativ-
ity properties of S (see Theorem 7.8). These properties can frequently be checked
in a PDE context and this we do in a number of examples which serve to illus-
trate some of the main results of the paper. Section 8 contains some summarizing
comments and potential future lines of enquiry. Finally, to avoid disruptions to the
flow of the presentation, the proofs of some technical results are relegated to the
Appendix.

2 Notation and preliminaries

For α ∈ R and r > 0, set Cα := {s ∈ C : Re s > α} and Ar := {s ∈ C : |s| > r}.
Let U be a complex Hilbert space. The unit sphere in U will be denoted by EU , that
is, EU := {u ∈ U : ‖u‖ = 1}. The Banach space of all linear bounded operators
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U → Y , where Y is another complex Hilbert space, will be denoted by L(U,Y ). We
set L(U ) := L(U,U ). Furthermore, if K ∈ L(Y,U ) and r > 0, we set

B(K , r) := {L ∈ L(Y,U ) : ‖L − K‖ < r}.

The following result is well known (as is the fact that it is not valid for real Hilbert
spaces). A proof of statements (1) and (2) may be found in [29, Lemma 3.9-3 (b)]
and [29, Theorem 3.10-3 (b)], respectively.

Lemma 2.1 Let S ∈ L(U ). The following statements hold.

(1) If 〈Su, u〉 = 0 for all u ∈ U, then S = 0.
(2) If 〈Su, u〉 ∈ R for all u ∈ U, then S = S∗.

For self-adjoint operators S and T in L(U ), we define:

S 
 T if 〈(S − T )u, u〉 ≥ 0 for all u ∈ EU ,

S � T if 〈(S − T )u, u〉 > 0 for all u ∈ EU .

For S ∈ L(U ), we define the self-adjoint operator

Re S := 1

2
(S + S∗) ∈ L(U ),

the real part of S. The proof of the following lemma can be found in the Appendix.

Lemma 2.2 Let S ∈ L(U ) and 0 ≤ δ ≤ 1. The following statements are equivalent.

(1) 2 Re S 
 (1− δ2)(1+ δ2)−1
(
I + S∗S

)
.

(2) I + S is invertible and ‖(I − S)(I + S)−1‖ ≤ δ.

As an immediate consequence of Lemma 2.2, we obtain the following corollary.

Corollary 2.3 Let S ∈ L(U ) and letB ⊂ L(U ) be bounded. The following statements
hold.

(1) Re S 
 0 if, and only if, I + S is invertible and ‖(I − S)(I + S)−1‖ ≤ 1.
(2) There exists ε > 0 such that Re T 
 ε I for all T ∈ B if, and only if, I + T is

invertible for all T ∈ B and supT∈B ‖(I − T )(I + T )−1‖ < 1.

The mapping S �→ (I−S)(I+S)−1 is often called the Cayley transform. Corollary 2.3
is well known, but it is difficult to find a reference where a proof is given; this applies
particularly to statement (2). Statement (1) is a special case of a more general result
for accretive operators; see, for example, [23, Proposition C.7.2].

Recall that a linear operator S : D(S) → U with domain D(S) ⊂ U is said to be
dissipative if Re 〈Su, u〉 ≤ 0 for all u ∈ D(S) and strictly dissipative if there exists
ε > 0 such Re 〈Su, u〉 ≤ −ε‖u‖2 for all u ∈ D(S). Note that if S ∈ L(U ), then
dissipativity of S can be expressed as −Re S 
 0 and S is strictly dissipative if, and
only if, −Re S 
 ε I for some ε > 0.
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Lemma 2.4 An operator S ∈ L(U ) is strictly dissipative if, and only if, there exists
r > 0 such that ‖S + r I‖ < r .

Proof Let S ∈ L(U ) and r > 0 and note that

‖(S + r I )u‖2 = ‖Su + ru‖2 = ‖Su‖2 + 2r〈Re Su, u〉 + r2 ∀ u ∈ EU . (2.1)

Assume that S is strictly dissipative. Then, there exists ε > 0 such that

〈Re Su, u〉 ≤ −ε ∀ u ∈ EU .

Consequently, by (2.1),

‖S + r I‖2 = sup
u∈EU

‖(S + r I )u‖2 ≤ r2 + ‖S‖2 − 2rε.

Choosing r > ‖S‖2/(2ε), we see that ‖S + r I‖ < r .
Conversely, assume that there exists r > 0 such that ‖S + r I‖ < r . Setting

ε := r2 − ‖S + r I‖2, it follows from (2.1) that

−ε = ‖S + r I‖2 − r2 ≥ ‖Su‖2 + 2r〈Re Su, u〉 ≥ 2r〈Re Su, u〉 ∀ u ∈ EU ,

implying strict dissipativity of S. ��
Lemma 2.4 says in particular that every operator inB(−r I, r) is strictly dissipative.

The next result shows that the ball B(−r I, r) has a straightforward parametrization in
terms of all strictly dissipative operators.

Lemma 2.5 Let r > 0. An operator S ∈ L(U ) satisfies ‖S + r I‖ < r if, and
only if, there exists a strictly dissipative operator K ∈ L(U ) such that S = (I −
(1/2r)K )−1K.

Proof Let r > 0 and set σ := 1/(2r). If S ∈ B(−r I, r), then ‖(1/2)I + σ S‖ < 1/2
so that ‖σ S‖ < 1, and hence, I + σ S is invertible. Defining K := S(I + σ S)−1, we
have that I − σK = (I + σ S)−1 and so S = (I − σK )−1K . It remains to show that
K is strictly dissipative. A straightforward calculation yields that

‖(I + σK )(I − σK )−1‖ = 2σ‖S + 1/(2σ)I‖ = ‖S + r I‖/r < 1,

whence, by Corollary 2.3, it follows that there exists ε > 0 such that Re (−σK ) 
 ε I .
We conclude that K is strictly dissipative.

Conversely, let K be strictly dissipative. Then Re (−σK ) 
 ε I for some ε > 0
and we may use Corollary 2.3 to conclude

‖(I − σK )−1K + 1/(2σ)I‖ = 1/(2σ)‖(I − σK )−1(I + σK )‖ < 1/(2σ) .

Now, σ = 1/(2r) and so (I − (1/2r)K )−1K ∈ B(−r I, r), as required. ��
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Next, we introduce notation and terminology for various classes of operator-
valued functions that we shall make extensive use of. For open Ω ⊂ C, the set
of all holomorphic functions Ω → L(U,Y ) is denoted by H(Ω,L(U,Y )). For
H ∈ H(Ω,L(U,Y )), we set H∗(s) := [H(s)]∗ (the adjoint of H(s)) for all s ∈ Ω ,
and, if Y = U , H−1(s) := [H(s)]−1 for all s ∈ Ω for which H(s) is invertible.
Assume that the subset Π ⊂ Ω does not have any accumulation points in Ω . A func-
tion H ∈ H(Ω\Π,L(U,Y )) is said to be meromorphic if all points in Π are poles
of H, that is, for every point p ∈ Π , the principal part of the Laurent expansion of H
about p is a finite sum.

It is convenient to set

Hα(L(U,Y )) := H(Cα,L(U,Y )).

Furthermore, H∗
α(L(U,Y )) denotes the set of all L(U,Y )-valued functions which are

holomorphic on Cα , with the exception of isolated points, namely poles and essential
singularities.1 This means, H ∈ H∗

α(L(U,Y )) if, and only if, there exists a set ΣH ⊂
Cα such that ΣH does not have any accumulation points inCα (or, equivalently, ΣH∩K
is finite for every compact subset K ⊂ Cα) and H ∈ H(Cα\ΣH,L(U,Y )). Every
point in ΣH is a pole or essential singularity of H. Trivially, every L(U,Y )-valued
function which is meromorphic on Cα is an element of H∗

α(L(U,Y )). In particular,

Hα(L(U,Y )) ⊂ H∗
α(L(U,Y )).

Note that Hα(L(U,Y )) and H∗
α(L(U,Y )) are vector spaces and, if U = Y , these

spaces form (non-commutative) algebras with identity I := IU . We refer to [19,
Chapter 9] for a treatment of holomorphic and meromorphic functions and isolated
singularities in the vector-valued case.

Let H∞
α (L(U,Y )) denote the space of all bounded holomorphic functions Cα →

L(U,Y ). Obviously, H∞
α (L(U,Y )) ⊂ Hα(L(U,Y )) and, endowed with the norm

‖H‖H∞
α
:= sup

s∈Cα

‖H(s)‖,

H∞
α (L(U,Y )) is a Banach space. Furthermore, H∞

α (L(U )) is a Banach algebra.
In the scalar-valued case U = Y = C, we simply write H∗

α and H∞
α for H∗

α(L(C))

and H∞
α (L(C)), respectively.

3 Positive realness

We start with the definition of positive-real functions with values in L(U ).

Definition 3.1 A function H ∈ H∗
α(L(U )), where α ≤ 0, is said to be positive real if

Re 〈H(s)u, u〉 ≥ 0 ∀ u ∈ U, ∀ s ∈ C0\ΣH. (3.1)

1 We do not consider removable singularities: it is understood that they have been removed by holomorphic
extension.
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Alternatively, (3.1) can be expressed in the form,

H(s)+H∗(s) 
 0 ∀ s ∈ C0\ΣH,

or, equivalently,

ReH(s) 
 0 ∀ s ∈ C0\ΣH.

In Brune’s paper [11], a (scalar and rational) positive-real function is assumed to be
real on the real axis, and the term positive is used for the functions that satisfy (3.1).
Although many physically motivated transfer functions enjoy a realness property on
the real axis, we do not impose it in Definition 3.1 for the simple reason that it is
not needed in the present paper. Nevertheless, we still use the terminology positive
real since it captures that the real part of the function under consideration is positive
(non-negative, to be precise).

We provide a number of examples of positive-real functions, each of which has prop-
erties which cannot occur in the rational case. These examples show that positive-real
functions may have infinitely many simple poles on the imaginary axis and that absence
of essential singularities or branch points on the imaginary axis is not necessary for
positive realness.

Example 3.2 (a) The hyperbolic tangent function tanh, given by

tanh(s) = 1− e−2s

1+ e−2s ,

is meromorphic on the whole complex plane and hence is in H∗
α for every α ∈ R. The

function tanh has infinitely many simple poles and infinitely many simple zeros, all of
which are on the imaginary axis and are located at (k+ 1/2)π i and kπ i , respectively,
where k ∈ Z. Since

Re tanh(s) = 1− e−4Re s

|1+ e−2s |2 ,

for all s ∈ C which are not poles of tanh, it is clear that tanh is positive real.
(b) Consider H defined by

H(s) :=
∞∑

k=0

Ck

s − ik2 ,

where (Ck) is a bounded sequence of self-adjoint positive-semidefinite operators in
L(U ), none of which is the zero operator. The above series converges in the uniform
operator topology. It is not difficult to show that the function H is meromorphic on C,
it has simple poles at ik2 for every k ∈ N0, and it is positive real.

(c) Define H(s) := 1 + e−1/s . Then, H ∈ H∗
α for every α ∈ R and H ∈ H∞

0 . It
is clear that H has precisely one singularity, namely an essential singularity at s = 0.
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A straightforward calculation shows that ReH(s) > 0 for all s ∈ C0, and so H is
positive real.

(d) Let H be the principal branch of the function s �→ sq defined on the slit plane
C\(−∞, 0], where 0 < q < 1. Then, H ∈ H∗

0 (but H /∈ H∗
α for any α < 0) and H

has a branch point at 0. The function H maps C0 onto the sector {s ∈ C0 : −qπ/2 <

arg s < qπ/2} and hence is positive real. ��
It is clear that the sum of two positive-real functions is positive real and that the positive-
real property is retained under multiplication with non-negative scalars. Below, we will
derive a number of important properties of positive-real functions, see Propositions 3.3,
3.4 and 3.5.

Proposition 3.3 If a function H ∈ H∗
α(L(U )), where α ≤ 0, is positive real, then

H does not have any singularities in C0 (or, equivalently, ΣH ∩ C0 = ∅), and so
H ∈ H0(L(U )).

Proof We prove the claim by contraposition. To this end, suppose that ΣH ∩C0 �= ∅
and let s0 ∈ ΣH ∩ C0. Then, in a sufficiently small punctured open disc Δ ⊂ C0
centred at s0, H has a convergent Laurent expansion:

H(s) =
∞∑

j=1

H− j (s − s0)
− j +

∞∑

j=0

Hj (s − s0)
j ∀ s ∈ Δ,

where Hj ∈ L(U ) for all j ∈ Z. Let u ∈ U and define

Ju := { j > 0 : 〈H− j u, u〉 �= 0}.

Then, there exists v ∈ U such that Jv �= ∅ (otherwise, by Lemma 2.1, H− j = 0
for every j > 1 and s0 would not be a singularity). Define the scalar-valued function
h ∈ H∗

α by h(s) := 〈H(s)v, v〉 for all s ∈ Cα . If Jv is infinite, then h has an essential
singularity at s0 and it follows from the Casorati–Weierstrass theorem [30, Theorem
4, p. 43] that there exists z ∈ Δ such that

〈ReH(z)v, v〉 = Re h(z) < 0,

showing that H is not positive real.
Assume now that Jv is finite and set k := max Jv . Then, h has a pole of order k at

s0 and hence, on Δ, the function h is of the form

h(s) = h0 + g(s)

(s − s0)k
∀ s ∈ Δ,

where h0 �= 0, g is holomorphic on Δ ∪ {s0} and g(s0) = 0. For sufficiently small
r > 0, we have

h(s0 + reiθ ) = r−ke−ikθ
(
h0 + g(s0 + reiθ )

) ∀ θ ∈ (−π, π ].
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Choosing θ0 ∈ (−π, π ] such that Re (e−ikθ0h0) < 0 and using the fact that g(s0) = 0,
it follows, that, for all sufficiently small r > 0,

〈ReH(s0 + reiθ0)v, v〉 = Re h(s0 + reiθ0) < 0.

This shows that H is not positive real, completing the proof. ��
We remark that, in contrast to Definition 3.1, in the literature analyticity on C0 is

usually included in the definition of the positive-real property, see, for example, [1,10,
32,52,54,55]. Proposition 3.3 shows that this is not necessary and that the positive-real
property (in the sense of Definition 3.1) implies the absence of any singularities in C0.
The next result is concerned with right-half plane “zeros” (in some sense) of the real
part of a positive-real function.

Proposition 3.4 Assume that H ∈ H∗
α(L(U )), where α ≤ 0, is positive real, let

s0 ∈ C0 and let u ∈ U. The following statements hold.

(1) If 〈ReH(s0)u, u〉 = 0, then 〈H(s)u, u〉 = iη for all s ∈ C0, where η :=
Im 〈H(s0)u, u〉 ∈ R. In particular, 〈ReH(s)u, u〉 = 0 for all s ∈ C0.

(2) If 〈ReH(s0)u, u〉 > 0, then 〈ReH(s)u, u〉 > 0 for all s ∈ C0.
(3) If ReH(s0) � 0, then ReH(s) � 0 for all s ∈ C0.
(4) If ReH(s0) �= 0, then ReH(s) �= 0 for all s ∈ C0.
(5) If ReH(s0) = 0, then H(s) = H(s0) for all s ∈ C0.

Note that the condition ReH(s0) = 0 in statement (5) means that H(s0) is skew-
adjoint.

Proof of Proposition 3.4 Let s0 ∈ C0 and u ∈ U . Define a scalar-valued positive-real
function h on C0 by setting h(s) := 〈H(s)u, u〉 for all s ∈ C0. To prove statement (1),
let Ω ⊂ C0 be a neighborhood of s0. By the positive realness of h, the set h(Ω) is not
a neighborhood of h(s0) = iη ∈ iR, and so h must be constant as follows from the
open mapping theorem. Consequently, h(s) = h(s0) = iη for all s ∈ C0. Statement
(2) is an immediate consequence of statement (1). The proofs of statements (3)–(5)
follow from routine arguments based on Lemma 2.1 and statements (1) and (2). ��

We remark that statements (1) and (2) of Proposition 3.4 are known for matrix-
valued functions with rational components, see [32, Theorem 5.6] (the proof in [32]
is based on the maximum modulus principle and not on the open mapping theorem).

The following result shows that the positive-real property is preserved under inver-
sion. Not surprisingly, this fact is well known for rational positive-real matrices, see,
for example, [32, Theorem 5.8].

Proposition 3.5 Let H ∈ H∗
α(L(U )), where α ≤ 0, be positive real and assume that

H(s) is invertible for all s ∈ C0. Then, H−1 is positive real.

Proof Let u ∈ U and s ∈ C0 and set v := H−1(s)u. Then,

〈ReH−1(s)u, u〉 = Re 〈H−1(s)u, u〉 = Re 〈H(s)v, v〉 = 〈ReH(s)v, v〉 ≥ 0.

Since u ∈ U and s ∈ C0 are arbitrary, we conclude that H−1 is positive real. ��
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The next result, which is an immediate consequence of Corollary 2.3 and Proposi-
tion 3.3, relates positive realness to a certain contraction property (sometimes referred
to as “bounded real”).

Corollary 3.6 Let H ∈ H∗
α(L(U )), where α ≤ 0. The following statements hold.

(1) If H is positive real, then H ∈ H0(L(U )), I +H(s) is invertible for s ∈ C0 and
‖(I −H)(I +H)−1‖H∞

0
≤ 1.

(2) If, for every s ∈ C0\ΣH, the operator I +H(s) is invertible and

‖(I −H(s))(I +H(s))−1‖ ≤ 1,

then H is positive real.

Note that if the hypothesis of statement (2) of Corollary 3.6 holds, then (I−H(s))(I+
H(s))−1 extends holomorphically to C0 and the extension is a contraction (that is, its
H∞

0 -norm is less than or equal to 1). The mapping H �→ (I −H)(I +H)−1 is often
referred to in the systems and control theory literature as an external Cayley transform,
or a diagonal transform, see [32, Theorem 5.13] or [42].

In Sect. 6, we provide a number of characterizations of positive realness in terms
of stabilizing feedback operators. The remainder of the present section considers nec-
essary and sufficient conditions for positive realness in terms of analyticity on C0, the
behaviour on the imaginary axis and conditions at ∞.

Theorem 3.7 Let H ∈ H∗
α(L(U )), where α < 0. The function H is positive real if,

and only if, the following conditions hold.

(a) H ∈ H0(L(U )).
(b) ReH(iω) 
 0 for all ω ∈ R such that iω /∈ ΣH.
(c) If iω0 is a pole of H, where ω0 ∈ R, then it is simple and the residue operator

R := lim
s→iω0

(s − iω0)H(s),

is self-adjoint and positive semidefinite, that is, R = R∗ 
 0.
(d) If iω0 is an essential singularity of H, where ω0 ∈ R, then

lim inf
s→iω0, s∈C0

〈ReH(s)u, u〉 ≥ 0 ∀ u ∈ U .

(e) lim inf |s|→∞, s∈C0〈ReH(s)u, u〉 ≥ 0 ∀ u ∈ U.

As will follow from an inspection of the proof, Theorem 3.7 remains valid if the
inequality in statement (e) is replaced by the condition

lim inf|s|→∞, s∈C0
〈ReH(s)u, u〉 > −∞ ∀ u ∈ U.

The proof of Theorem 3.7 is facilitated by the following proposition which we shall
prove first, before we proceed to prove Theorem 3.7.
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Proposition 3.8 Let H ∈ H∗
α(L(U )), where α ≤ 0, and let U0 be a dense subset of

U. The function H is positive real if, and only if, H ∈ H0(L(U )),

lim inf
s→ξ, s∈C0

〈ReH(s)u, u〉 ≥ 0 ∀ u ∈ U0, ∀ ξ ∈ iR, (3.2)

and
lim inf|s|→∞, s∈C0

〈ReH(s)u, u〉 > −∞ ∀ u ∈ U0. (3.3)

Proof Assume that H is positive real. It is a consequence of Proposition 3.3 that
H ∈ H0(L(U )), whilst (3.2) and (3.3) follow immediately from the positive realness
of H.

Conversely, assume that H ∈ H0(L(U )) and that (3.2) and (3.3) hold. Let u ∈ U0
and define g(s) := −〈ReH(s)u, u〉. Since H is holomorphic on C0, we obtain that g
is harmonic and, a fortiori, subharmonic on C0. By (3.2) and (3.3),

lim sup
s→ξ, s∈C0

g(s) ≤ 0 ∀ ξ ∈ iR and lim sup
|s|→∞, s∈C0

g(s) < ∞,

and an application of the Phragmén–Lindelöf theorem for subharmonic functions
defined in the complex plane (see [34, Theorem 2.3.2 and Corollary 2.3.3]) yields that
g(s) ≤ 0 for all s ∈ C0. Since u was an arbitrary element in U0 and U0 is dense in
U , it follows that 〈ReH(s)u, u〉 ≥ 0 for all s ∈ C0 and all u ∈ U , showing that H is
positive real. ��
Proof of Theorem 3.7 Assume that H is positive real. Then, by Proposition 3.3, H ∈
H0(L(U )), and so condition (a) is satisfied. Conditions (d) and (e) follow trivially
from the positive realness of H.

It remains to show that conditions (b) and (c) hold, for which we shall make use of
the assumption that α < 0. Consequently, H(s) is well defined for every s ∈ iR\ΣH.
Let ω ∈ R be such that iω /∈ ΣH and let (sn) be a sequence in C0 such that sn → iω
as n →∞. Then, H(sn) → H(iω) (in the uniform operator topology) as n →∞ and
hence ReH(iω) 
 0, showing that condition (b) holds.

We proceed to show that condition (c) is satisfied. To this end, let ω0 ∈ R and
assume that iω0 is a pole of H. Then, in a sufficiently small punctured open disc
Δ ⊂ Cα centred at iω0, H has a convergent Laurent expansion of the form

H(s) =
k∑

j=1

H− j (s − iω0)
− j +

∞∑

j=0

Hj (s − iω0)
j ∀ s ∈ Δ.

where k ≥ 1 and H−k, H−k+1, H−k+2, . . . are operators in L(U ) with H−k �= 0.
For u ∈ U define hu(s) := 〈H(s)u, u〉 and ρ(u) := 〈H−ku, u〉. It is clear that hu
is holomorphic on Δ and, by Lemma 2.1, there exists v ∈ U such that ρ(v) �= 0,
implying that hv has a pole of order k at iω0. As in the proof of Proposition 3.3, it can
be shown that, for all sufficiently small r > 0 and all u ∈ U ,

hu(iω0 + reiθ ) = r−ke−ikθ
(
ρ(u)+ gu(iω0 + reiθ )

) ∀ θ ∈ (−π, π ], (3.4)

where gu is holomorphic on Δ ∪ {iω0} and gu(iω0) = 0.
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Seeking a contradiction, assume that k ≥ 2. Invoking (3.4) withu = v and using that
ρ(v) �= 0, it is clear that there exists θ0 ∈ (−π/2, π/2) such that Re (e−ikθ0ρ(v)) < 0.
Since gv(iω0) = 0, it follows that, for all sufficiently small r > 0,

〈ReH(iω0 + reiθ0)v, v〉 = Re hv(iω0 + reiθ0) < 0.

But iω0 + reiθ0 ∈ C0, and thus, we obtain a contradiction to the positive realness of
H. Consequently, k = 1 and the pole at iω0 is simple. Furthermore,

ρ(u) = 〈H−1u, u〉 = 〈Ru, u〉 ∀ u ∈ U,

where R := lims→iω0(s−iω0)H(s) is the residue operator. We now use (3.4) to obtain
that, for all sufficiently small r > 0,

0 ≤ r Re hu(iω0 + reiθ ) = Re ρ(u) cos θ + Im ρ(u) sin θ + O(r)

∀ θ ∈ (−π/2, π/2), (3.5)

where the term O(r) is real and O(r) → 0 as r → 0. Setting θ = 0 and letting r → 0,
it follows from (3.5) that Re ρ(u) ≥ 0. Furthermore, letting r → 0 and θ → ±π/2
in (3.5), we see that Im ρ(u) = 0. Since u ∈ U is arbitrary, we conclude that

〈Ru, u〉 = ρ(u) ≥ 0 ∀ u ∈ U. (3.6)

It is a consequence of Lemma 2.1 and (3.6) that R is self-adjoint.
To prove the converse, assume that conditions (a)–(e) are satisfied. By Proposi-

tion 3.8, it is sufficient to show that (3.2) and (3.3) hold. Obviously (3.3) is implied
by condition (e). Let ξ ∈ iR. If ξ is not a pole of H, then it follows trivially from
conditions (b) and (d) that

lim inf
s→ξ, s∈C0

〈ReH(s)u, u〉 ≥ 0 ∀ u ∈ U. (3.7)

It therefore only remains to show that (3.7) holds if ξ = iω0 is a pole of H. To this end,
note that, by condition (c), the function G defined by G(s) := H(s)− R/(s − iω0) is
holomorphic in iω0. Since R = R∗ 
 0, we have

Re 〈G(s)u, u〉 ≤ Re 〈H(s)u, u〉 ∀ s ∈ C0, ∀ u ∈ U,

implying that

lim inf
s→iω0, s∈C0

Re 〈G(s)u, u〉 ≤ lim inf
s→iω0, s∈C0

Re 〈H(s)u, u〉 ∀ u ∈ U. (3.8)

Choose a sequence (ωn)n∈N in R such that ωn → ω0 as n → ∞ and iωn /∈ ΣH for
all n ∈ N. We have

Re 〈G(iωn)u, u〉 = Re 〈H(iωn)u, u〉 ≥ 0 ∀ n ∈ N, ∀ u ∈ U,
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where the inequality follows from condition (b). Using that G is holomorphic at iω0,
we conclude that

Re 〈G(iω0)u, u〉 ≥ 0 ∀ u ∈ U,

and so

lim inf
s→iω0, s∈C0

Re 〈G(s)u, u〉 = Re 〈G(iω0)u, u〉 ≥ 0 ∀ u ∈ U.

Combining the above equality with (3.8) gives

lim inf
s→iω0, s∈C0

Re 〈H(s)u, u〉 ≥ 0 ∀ u ∈ U,

as desired. ��
We remark that, in the above proof, the argument which shows that condition (c) is

necessary for positive realness is well known and has been used in less general contexts,
see, for example, [1, Theorem 2.7.2] or [32, Theorem 5.1]. An inspection of the proof
of Theorem 3.7 shows that Theorem 3.7 remains valid if the liminf inequalities in
conditions (d) and (e) are assumed to hold only for all u in a dense subset of U .

The conditions (a)–(c) of Theorem 3.7 are familiar from finite-dimensional positive
realness theory, in the context of which condition (d) is irrelevant. In certain situations,
condition (e) in Theorem 3.7 can be expressed in a different, perhaps more appealing
way. To this end, it is useful to introduce the following terminology: a function H ∈
H∗

α(L(U )) is said to be meromorphic at∞ if there exists r > 0 such that H is defined
onAr and meromorphic onAr∪{∞}, that is, the function s �→ H(1/s) is meromorphic
on the disc with centre 0 and radius 1/r . Note that if H is meromorphic at ∞, then
there exists r > 0 such that H is holomorphic on Ar and, furthermore, there exist
k ∈ Z and operators Hj ∈ L(U ), where j = k, k + 1, k + 2 . . ., such that

H(s) =
∞∑

j=k
Hj s

− j ∀ s ∈ Ar . (3.9)

The operator H−1 is said to be the residue of H at ∞. If k = 0, then H is said to be
holomorphic at ∞ and we set

H(∞) := lim|s|→∞H(s) = H0 .

Obvious examples of functions which are meromorphic at∞ are the so-called rational
functions, that is,L(U )-valued functions which are meromorphic onC∪{∞}, see [35].
It is straightforward to show that a L(U )-valued function H is rational if, and only
if, H = (1/p)P, where p and P are scalar-valued and L(U )-valued polynomials,
respectively. A class of functions which are holomorphic at ∞ are the resolvents of
operators in L(U ).

123



2 Page 14 of 61 Math. Control Signals Syst. (2017) 29:2

The next result contains a characterization of positive realness for transfer functions
which are meromorphic at ∞.

Corollary 3.9 Let H ∈ H∗
α(L(U )), where α < 0. Assume that H is meromorphic at

∞. Under these conditions,H is positive real, if and only if, conditions (a), (b) and (d)
of Theorem 3.7 hold and, further, any pole ξ ofH in iR∪{∞} is simple and the residue
operator given by

Rξ :=
{

lims→ξ (s − ξ)H(s), if ξ ∈ iR,

lim|s|→∞(1/s)H(s), if ξ = ∞,
(3.10)

satisfies Rξ = R∗ξ 
 0.

Proof By assumption, H is meromorphic on Cα ∪ Ar for some r > 0. Define G
by G(s) = H(1/s) and let β < 0. We note that the function s �→ 1/s maps Cβ

onto the exterior of the closed disc {s ∈ C : |s − 1/(2β)| ≤ 1/(2|β|)}. By choosing
β := α/(r2) < 0, it is guaranteed that any point z with |z − 1/(2β)| > 1/(2|β|) and
Re z ≤ α satisfies |z| > r , implying that, with this choice of β, the function s �→ 1/s
maps Cβ into Cα ∪ Ar . Consequently, the function G is defined on (at least) Cβ ,
G ∈ H∗

β(L(U )) and G is positive real if, and only if H is positive real.
Assume that H is positive real. From Theorem 3.7, we immediately obtain all the

desired properties except for the condition at ∞. An application of Theorem 3.7 to
the positive-real function G shows that G is either holomorphic at 0 or has a simple
pole at 0 with residue operator S satisfying S = S∗ 
 0. It follows that H is either
holomorphic at∞ or has a simple pole at∞ with residue operator R∞ = S, showing
that H satisfies the desired condition at ∞.

Conversely, assume that H satisfies conditions (a), (b) and (d) of Theorem 3.7 and
that any pole ξ ∈ iR∪ {∞} of H is simple with self-adjoint and positive semidefinite
residue operator Rξ . By Theorem 3.7, it is sufficient to show that

lim inf|s|→∞, s∈C0
〈ReH(s)u, u〉 ≥ 0 ∀ u ∈ U. (3.11)

Setting

H0(s) := H(s)− sR, where R :=
{

0, if H is holomorphic at ∞
R∞, if H has a simple pole at ∞,

it is clear that H0 ∈ H∗
α(L(U )) and H0 is holomorphic at ∞. There exists ω0 > 0

such that for all ω > ω0 the function H (and hence H0) is holomorphic at iω and

ReH0(iω) = ReH(iω) 
 0 ∀ω > ω0.

Consequently,

ReH0(∞) = lim|s|→∞ReH0(s) = lim
ω→∞, ω∈R ReH0(iω) 
 0,
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and thus,

lim inf|s|→∞, s∈C0
〈ReH(s)u, u〉 = 〈ReH0(∞)u, u〉 + lim inf|s|→∞, s∈C0

(Re s)〈Ru, u〉
= 〈ReH0(∞)u, u〉 ≥ 0,

establishing (3.11) and completing the proof. ��
As an immediate consequence of Corollary 3.9, we obtain the following criterion for

positive realness of L(U )-valued rational functions (which, of course, is well known,
at least in the case of finite-dimensional U ).

Corollary 3.10 A L(U )-valued rational function H is positive real if, and only if,
conditions (a) and (b) of Theorem 3.7 hold and, further, any pole ξ of H in iR∪ {∞}
is simple and the residue operator Rξ given by (3.10) satisfies Rξ = R∗ξ 
 0.

Finally, we replace condition (e) in Theorem 3.7 by a certain boundedness property
at ∞, to obtain a result which provides a sufficient condition for positive realness.

Corollary 3.11 LetH ∈ H∗
α(L(U )), where α < 0, and let U0 ⊂ U be a dense subset.

If conditions (a)–(d) of Theorem 3.7 are satisfied and

lim sup
|s|→∞, s∈C0

|〈H(s)u, u〉| < ∞ ∀ u ∈ U0, (3.12)

holds, then the function H is positive real.

Before proving Corollary 3.11, we discuss an example which illustrates condi-
tion (3.12) and demonstrates that (3.12) does not rule out the possibility of infinitely
many imaginary axis poles.

Example 3.12 Assume that U is separable and that (un)n∈N is an orthonormal basis
of U . Let U0 be the set of all finite linear combinations of the un , which is known to
be dense in U . For every s ∈ C\iN, define H(s) ∈ L(U ) by

H(s)u :=
∞∑

n=1

〈u, un〉
s − in

un ∀ u ∈ U.

Defining Rn ∈ L(U ) by

Rnu := 〈u, un〉un ∀ u ∈ U,

then Rn = R∗n 
 0 and the operator H(s) can be written in the form

H(s) =
∞∑

n=1

1

s − in
Rn ∀ s ∈ C\iN,
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where the series on the right-hand side converges in the strong operator topology. A
routine argument shows that H is holomorphic at s for every s ∈ C\iN. It is clear
that H is meromorphic on C, and so, in particular, H ∈ H∗

α(L(U )) for every α < 0.
Moreover, ΣH = iN and H has a simple pole at in for every n ∈ N.

Whilst it is obvious thatH is positive real, we nevertheless show that the assumptions
of Corollary 3.11 hold (implying that H is positive real). To this end, it is clear that the
conditions (a)–(d) of Theorem 3.7 are satisfied. Further, note that, for every u ∈ U0,
there exists ku ∈ N such that Rnu = 0 for all n ≥ ku and so

〈H(s)u, u〉 =
ku∑

n=1

〈Rnu, u〉
s − in

=
ku∑

n=1

|〈u, un〉|2
s − in

∀ u ∈ U0.

Consequently,

lim|s|→∞, s∈C0
〈H(s)u, u〉 = 0 ∀ u ∈ U0,

showing that (3.12) holds. Finally, we note that, for any u ∈ U\U0, the set Ju := {n ∈
N : 〈u, un〉 �= 0} is infinite, and therefore,

〈H(s)u, u〉 =
∑

n∈Ju

|〈u, un〉|2
s − in

has infinitely many poles on the imaginary axis, showing that (3.12) fails to hold for
every u ∈ U\U0. ��
Proof of Corollary 3.11 Condition (3.12) implies that

lim inf|s|→∞, s∈C0
〈ReH(s)u, u〉 > −∞ ∀ u ∈ U0.

Since conditions (a)–(d) of Theorem 3.7 are satisfied (H ∈ H0(L(U )), in particular),
arguments very similar to those used in the proof of Theorem 3.7 show that

lim inf
s→ξ, s∈C0

〈ReH(s)u, u〉 ≥ 0 ∀ u ∈ U0, ∀ ξ ∈ iR.

It follows now from Proposition 3.8 that H is positive real. ��

4 Strict and strong positive realness

The present section considers two stronger notions of positive realness and the rela-
tionships between them. We start with a definition.

Definition 4.1 Let H ∈ H∗
α(L(U )), where α ≤ 0.

(1) The function H is said to be strictly positive real if α < 0 and there exists
ε ∈ (0,−α) such that the function s �→ H(s − ε) is positive real.
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(2) The function H is said to be strongly positive real if there exists δ > 0 such that

ReH(s) ≥ δ I ∀ s ∈ C0\ΣH.

Trivially, strictly or strongly positive-real functions are positive real. By Proposi-
tion 3.3, strongly (strictly) positive-real functions are holomorphic on C0 (C−ε for
some ε > 0). The sum of a positive-real and a strongly positive-real function is strongly
positive real, but the sum of a positive-real and a strictly positive-real function is in
general not strictly positive real. The sum of two strictly positive-real functions is
strictly positive real.

In some papers, such as [45], the term strictly positive real is used for positive-real
functions H that satisfy the strict inequality ReH(s) � 0 for all s ∈ C0 and the term
extended strictly positive real is used for what we have termed strongly positive real.

Example 4.2 The function s �→ 2 + e−1/s is strongly, but not strictly, positive real.
Furthermore, the function s �→ 1/(s + 1) is strictly, but not strongly, positive real.
Each of the functions s �→ s+1 and s �→ 2+e−s is both strictly and strongly positive
real. ��
The next result is reminiscent of Corollary 3.6 and links strong positive realness to a
certain “strict” contraction property.

Corollary 4.3 Let H ∈ H∗
α(L(U )), where α ≤ 0. The following statements hold.

(1) IfH is strongly positive real andH ∈ H∞
0 (L(U )), then I +H(s) is invertible for

s ∈ C0 and ‖(I −H)(I +H)−1‖H∞
0

< 1.

(2) If I + H(s) is invertible for all s ∈ C0\ΣH and ‖(I − H)(I + H)−1‖H∞
0

< 1,
then H is strongly positive real and H ∈ H∞

0 (L(U )).

Proof Statement (1) is a consequence of Corollary 2.3 and so is statement (2), with the
exception of the claim thatH ∈ H∞

0 (L(U )). To prove this claim, setG := (I−H)(I+
H)−1. Then, by hypothesis, ‖G‖H∞

0
< 1. Consequently, (I + G)−1 ∈ H∞

0 (L(U )),

and thus, H = 2(I +G)−1 − I ∈ H∞
0 (L(U )). ��

For a function H ∈ Hα(L(U )), where α < 0, we consider the following two condi-
tions:

lim sup
|s|→∞, s∈Cη

‖H(s)‖ < ∞ for some η ∈ [α, 0) (4.1)

and

lim inf|ω|→∞, ω∈R

(
inf
u∈EU

〈ReH(iω)u, u〉
)

> 0. (4.2)

Several results relating strict and strong positive realness are given in the next theorem.

Theorem 4.4 Let H ∈ H∗
α(L(U )), where α < 0.

(1) If H is strictly positive real and conditions (4.1) and (4.2) hold, then there exist
β ∈ (α, 0) and δ > 0 such that H ∈ H∞

β (L(U )) and

ReH(s) 
 δ I ∀ s ∈ Cβ; (4.3)
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in particular, H is strongly positive real.
(2) If there exist β ∈ (α, 0) and δ > 0 such that H ∈ H∞

β (L(U )) and

ReH(iω) 
 δ I ∀ω ∈ R, (4.4)

then H is strictly and strongly positive real.
(3) If H is strongly positive real, H ∈ Hβ(L(U )) for some β ∈ (α, 0) and (4.1)

holds, then H is strictly positive real.

We state an immediate corollary of Theorem 4.4.

Corollary 4.5 LetH ∈ H∞
α (L(U )) for some α < 0. Then,H is strongly positive real

if, and only if, H is strictly positive real and (4.2) holds.

Proof of Theorem 4.4 To prove statement (1), assume that H is strictly positive real
and conditions (4.1) and (4.2) hold. By strict positive realness, there exists ϕ ∈ (α, 0)

such that

ReH(s) 
 0 ∀ s ∈ Cϕ\ΣH.

Invoking Proposition 3.3 shows that H is holomorphic in Cϕ . Appealing to (4.1) and
choosing γ ∈ R such that max{η, ϕ} < γ < 0, it follows that H ∈ H∞

γ (L(U )).
Next, we show that there exists δ > 0 such that

ReH(iω) 
 2δ I ∀ω ∈ R . (4.5)

To this end, for every u ∈ EU , define hu : Cγ → R+ by

hu(s) = 〈ReH(s)u, u〉 = Re 〈H(s)u, u〉 ≥ 0, ∀ s ∈ Cγ .

Moreover, we define h : Cγ → R+ by

h(s) = inf‖u‖=1
hu(s) ≥ 0, ∀ s ∈ Cγ . (4.6)

It is not difficult to show that h is continuous (see Appendix). Let s0 ∈ Cγ and ρ > 0
such that {s ∈ C : |s − s0| ≤ ρ} ⊂ Cγ . Then, since hu is harmonic (being the real
part of a holomorphic function), the mean-value property holds, that is,

hu(s0) = 1

2π

∫ 2π

0
hu(s0 + ρeiθ )dθ,

see, for example, [30, Chapter 11] or [34, Chapter 1]. Now, for every u ∈ EU , hu(s) ≥
h(s) for all s ∈ Cγ and so

hu(s0) ≥ 1

2π

∫ 2π

0
h(s0 + ρeiθ )dθ ∀ u ∈ EU .
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Consequently,

h(s0) ≥ 1

2π

∫ 2π

0
h(s0 + ρeiθ )dθ,

showing that − h is subharmonic (see [30, Chapter 11] or [34, Chapter 2]). It follows
from (4.2) that there exists ω ∈ R such that h(iω) > 0. There are now two possibilities:
h is constant or h is not constant. If h is constant, then h(s) ≡ h(iω) > 0 and (4.5)
holds with δ = h(iω)/2 > 0. Assume now that h is not constant, and let s ∈ Cγ . Then,
for sufficiently small ρ > 0, it follows from the maximum principle for subharmonic
functions (see [30, Chapter 11] or [34, Chapter 2]) that

− h(s) < sup
|ζ−s|=ρ

(− h(ζ )) ≤ 0.

Now s ∈ Cγ was arbitrary and so, h(s) > 0 for all s ∈ Cγ . Combining this with (4.2),
it follows that there exists δ > 0 such that (4.5) holds.2 Next, we show that

ReH(s) 
 2δ I ∀ s ∈ C0 . (4.7)

Let u ∈ EU and set gu(s) := 2δ − Re 〈H(s)u, u〉 for all s ∈ Cγ . Then, gu(iω) ≤ 0
for all ω ∈ R, and, since H is bounded on C0,

lim sup
|s|→∞, s∈C0

gu(s) < ∞.

An application of the Phragmén–Lindelöf Theorem for subharmonic functions defined
in the complex plane (see [34, Theorem 2.3.2 and Corollary 2.3.3]) shows that gu(s) ≤
0 for all s ∈ C0. Consequently,

〈ReH(s)u, u〉 = Re 〈H(s)u, u〉 ≥ 2δ ∀ s ∈ C0.

This holds for every u ∈ EU , establishing (4.7). In view of (4.5) and (4.7), it only
remains to show that there exists β ∈ (γ, 0) such that

ReH(s) 
 δ I for all s ∈ C such that β < Re s < 0. (4.8)

Since H ∈ H∞
γ (L(U )), H is uniformly continuous on every vertical strip a ≤ Re s ≤

b, where γ < a < b. Hence, there exists β ∈ (γ, 0) such that

‖H(r + iω)−H(iω)‖ ≤ δ ∀ r ∈ [β, 0], ∀ω ∈ R

Consequently,

〈ReH(r + iω)u, u〉 ≥ 〈ReH(iω)u, u〉 − δ ∀ r ∈ [β, 0], ∀ω ∈ R, ∀ u ∈ EU ,

2 In the case that U is finite dimensional, the use of subharmonic functions can be avoided by exploiting
the compactness of EU .
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and so, (4.8) follows from (4.5), establishing (4.3).
To prove statement (2), assume that there exist β ∈ (α, 0) and δ > 0 such that

H ∈ H∞
β (L(U )) and (4.4) holds. As in the proof of statement (1), it can be shown

that there exist γ ∈ (β, 0) and ε ∈ (0, δ) such that

ReH(s) 
 ε I ∀ s ∈ Cγ .

It now follows that H is strictly and strongly positive real.
Finally, to establish statement (3), assume that H is strongly positive real, H ∈

Hβ(L(U )) for some β ∈ (α, 0) and (4.1) holds. By the two latter assumptions, there
exists γ ∈ (β, 0) such that H ∈ H∞

γ (L(U )). Moreover, the strong positive realness
together with continuity on Cβ implies that (4.4) holds. It follows now from state-
ment (2) that H is strictly positive real. ��

5 Admissible and stabilizing feedback operators

The present section introduces the notions of admissible and stabilizing feedback
operators for the class of transfer functions given by

H∗(L(U,Y )) :=
⋃

α∈R
H∗

α(L(U,Y )),

and provides the required ingredients for the next section which contains results relat-
ing positive realness and stabilization. To that end, we define an equivalence relation
∼ on H∗(L(U,Y )) by setting

G ∼ H if G is a restriction of H or H is a restriction of G.

The corresponding equivalence classes form a vector space in a natural way and this
space is denoted by H∗∼(L(U,Y )). If H ∈ H∗

α(L(U,Y )) for some α ∈ R, then
H ∈ H∗(L(U,Y )) and we will usually identify H and the corresponding equivalence
class [H] and write H ∈ H∗∼(L(U,Y )). We note that in the case wherein U = Y ,
the vector space H∗∼(L(U,Y )) = H∗∼(L(U )) is a (non-commutative) algebra with
identity I := IU and the concept of an inverse is well defined: if H ∈ H∗∼(L(U )),
then G ∈ H∗∼(L(U )) is said to be an inverse of H if

GH = HG = I.

If an inverse G exists, then it is unique and we write G = H−1. It is clear that a
function H ∈ H∗

α(L(U )) is invertible in H∗∼(L(U )) if, and only if, there exists β ≥ α

and G ∈ H∗
β(L(U )) such that GH = HG = I on Cβ .

Definition 5.1 An operator K ∈ L(Y,U ) is said to be anadmissible feedback operator
for H ∈ H∗(L(U,Y )) if I − KH is invertible in H∗∼(L(U )).
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Note that if H ∈ H∗(L(U,Y )), then H ∈ H∗
α(L(U,Y )) for some α ∈ R, and K ∈

L(Y,U ) is an admissible feedback operator for H if, and only if, there exists β ≥ α

such that I−KH is invertible inH∗
β(L(U )). If K ∈ L(Y,U ) is an admissible feedback

operator for H ∈ H∗(L(U,Y )), then we define

HK := H(I − KH)−1 ∈ H∗(L(U,Y )). (5.1)

The concept of an admissible feedback operator presented in Definition 5.1 is similar,
but not the same, as that given in [51, Sect. 3] where the concept is defined in the
context of so-called well-posed transfer functions, that is, functions which belong to
H∞

α (L(U,Y )) for some α ∈ R. Proposition 5.2 extends results in [51] to the current
setting.

Proposition 5.2 Let H ∈ H∗(L(U,Y )) and K ∈ L(Y,U ). The following statements
hold.

(1) K is an admissible feedback operator for H if, and only if, I −HK is invertible
inH∗∼(L(Y )). Furthermore, if K is an admissible feedback operator forH, then

HK = (I −HK )−1H.

(2) Assume that K is an admissible feedback operator for H. Then, L ∈ L(Y,U ) is
an admissible feedback operator for HK if, and only if, K + L is an admissible
feedback operator for H, in which case,

(HK )L = HK+L .

Proof (1) Assume that K is an admissible feedback operator for H and set G :=
HK K + I ∈ H∗∼(L(Y )). Then,

G(I −HK ) = HK K (I −HK )+ I −HK = HK (I − KH)K + I −HK = I,

and similarly, (I − HK )G = I , showing that I − HK is invertible in H∗∼(L(Y )).
Furthermore, (I −HK )H = H(I − KH), and consequently,

HK = H(I − KH)−1 = (I −HK )−1H.

Conversely, if I −HK is invertible in H∗∼(L(Y )), then it is easy to show that K (I −
HK )−1H + I is the inverse of I − KH, implying that K is an admissible feedback
operator for H.

(2) Assume that K ∈ L(Y,U ) is an admissible feedback operator for H and let
L ∈ L(Y,U ). Noting that

(I − LHK )(I − KH) = I − (K + L)H, (5.2)

we conclude that I − LHK is invertible if, and only if, I − (K + L)H is invertible.
Consequently, L is an admissible feedback operator for HK if, and only if, K + L is
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an admissible feedback operator for H. Finally, if, say, K + L is admissible for H,
then, by (5.2),

(I − KH)−1(I − LHK )−1 = (I − (K + L)H)−1.

Multiplying from the left by H shows that (HK )L = HK+L . ��
Definition 5.3 We say that K ∈ L(Y,U ) is a stabilizing feedback operator for H ∈
H∗(L(U,Y )) if K is an admissible feedback operator for H and the intersection
[HK ] ∩H∞

0 (L(U,Y )) is non-empty.

If K is a stabilizing feedback operator for H, then, by the identity theorem, there exists
a unique function C0 → L(U,Y ) in the intersection [HK ] ∩ H∞

0 (L(U,Y )) which
will be denoted by HK

e . Note that if H ∈ H∗(L(U,Y )) and K is a stabilizing feedback
operator for H, then HK = H(I − KH)−1 is defined on Cβ \ΣH for some β ∈ R. If
β ≤ 0, then the restriction of HK to C0 \ΣH is bounded and extends holomorphically
to C0. If β > 0, then HK

e ∈ H∞
0 (L(U,Y )) is a bounded holomorphic extension of

HK to C0.

Proposition 5.4 Let H ∈ H∗
α(L(U,Y )) for some α ≥ 0 and let Δ ⊂ Cα be the set of

points at whichH is holomorphic. Assume that K ∈ L(Y,U ) is a stabilizing feedback
operator for H. The following statements hold.

(1) The operator I − KH(s) is invertible for every s ∈ Δ and HK
e (s) = H(s)(I −

KH(s))−1 for all s ∈ Δ.
(2) Let (sn) be a sequence in Δ such that limn→∞ sn = α + iω for some ω ∈ R.

If the strong limits of H(sn) and H∗(sn) exist as n → ∞, then HK
e (sn) has a

strong limit, and, denoting the strong limits of H(sn) and HK
e (sn) by H(α + iω)

and HK
e (α + iω), respectively, we have that I − KH(α + iω) is invertible and

HK
e (α + iω) = H(α + iω)(I − KH(α + iω))−1.

If, in the above proposition, α > 0, then, trivially, HK
e (sn) converges in the uniform

operator topology as n → ∞ (since HK
e is holomorphic on C0). Statement (1) says

that if K is a stabilizing feedback operator for H, then I − KH(s) is invertible for
every s ∈ Cα for which H(s) “makes sense”.

The following simple lemma will facilitate the proof of statement (2) of Proposi-
tion 5.4. For an invertible operator S ∈ L(U ), we will use the notation S−∗ to denote
the inverse of S∗.

Lemma 5.5 Let (Sn) be a sequence of invertible operators inL(U ). Assume that there
exists S ∈ L(U ) such that S and S∗ are the strong limits of Sn and S∗n , respectively. If
supn∈N ‖S−1

n ‖ < ∞, then S is invertible and S−1
n and S−∗n converge strongly to S−1

and S−∗, respectively.

A proof of Lemma 5.5 can be found in the Appendix.

Proof of Proposition 5.4 (1) Note that (I − KH)−1 = KHK + I in H∗∼(L(U,Y )),
that is, there exists β ≥ α such that

(I − KH(s))−1 = KHK
e (s)+ I ∀ s ∈ Cβ\ΣH,
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and thus

(I − KH(s))(KHK
e (s)+ I ) = (KHK

e (s)+ I )(I − KH(s)) = I ∀ s ∈ Cβ\ΣH.

The identity theorem implies that the above equation holds for all s ∈ Cα\ΣH = Δ,
showing that, for all s ∈ Δ, I−KH(s) is invertible andHK

e (s) = H(s)(I−KH(s))−1.
(2) By statement (1), I − KH(sn) is invertible for all n ∈ N. Since (I − KH)−1 =

I + KHK , it follows that

‖(I − KH(sn)
)−1‖ ≤ ρ ∀ n ∈ N,

where ρ := 1 + ‖K‖‖HK
e ‖H∞

0
. Furthermore, by hypothesis, I − KH(sn) and I −

H∗(sn)K ∗ have strong limits I − KH(α + iω) and I − H∗(α + iω)K ∗ as n →∞.
An application of Lemma 5.5 (with Sn = I − KH(sn)) shows that I − KH(α + iω)

is invertible and

H(sn)
(
I − KH(sn)

)−1 → H(α + iω)
(
I − KH(α + iω)

)−1 strongly, as n →∞.

Finally, since, by statement (1), HK
e (sn) = H(sn)(I − KH(sn))−1 for all n ∈ N, we

see that H(α + iω)(I − KH(α + iω))−1 is the strong limit of HK
e (sn) as n →∞. ��

For every H ∈ H∗(L(U,Y )), we define

S(H) := {K ∈ L(Y,U ) : K is a stabilizing feedback operator for H}.

The following result will be used extensively in Sect. 6.

Proposition 5.6 LetH ∈ H∗(L(U,Y )), K ∈ S(H)andr > 0. Then,B(K , r) ⊂ S(H)

if, and only if, ‖HK
e ‖H∞

0
≤ 1/r .

It is an immediate consequence of Proposition 5.6 that S(H) is an open subset of
L(Y,U ).

Proof of Proposition 5.6 Assume that ‖HK
e ‖H∞

0
≤ 1/r . Let L ∈ B(K , r). Then, L

is of the form L = K + D with D ∈ L(Y,U ) such that ‖D‖ < r . Consequently,
‖HK

e ‖H∞
0
‖D‖ < 1, and so D ∈ S(HK ). Proposition 5.2 guarantees that L = K + D

is an admissible feedback operator for H and, furthermore,

HL = HK+D = (HK )D in H∗∼(L(U,Y )).

Since [(HK )D] ∩H∞
0 (L(U,Y )) �= ∅, it follows that L ∈ S(H) and hence B(K , r) ⊂

S(H).
Conversely, assume that B(K , r) ⊂ S(H). Then, making use of Proposition 5.2,

B(0, r) ⊂ S(HK ) and

(I − LHK
e )−1 = I + L(HK

e )L ∈ H∞
0 (L(U )) ∀ L ∈ B(0, r). (5.3)
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Seeking a contradiction, suppose that ‖HK
e ‖H∞

0
> 1/r . Then, there exists z ∈ C0 such

that ‖HK
e (z)‖ > 1/r . It is sufficient to show that there exist operators Ln ∈ L(Y,U )

such that I − LnHK
e (z) is not invertible and ‖Ln‖ → 1/‖HK

e (z)‖ as n →∞. Indeed,
if this is the case, then, for all sufficiently large n, Ln ∈ B(0, r), but (I − LnHK

e )−1 /∈
H∞

0 (L(U )), contradicting (5.3). We proceed to construct a sequence (Ln) of operators
with the required properties. To this end, set M := HK

e (z) and choose vn ∈ U such
that ‖vn‖ = 1 and ‖Mvn‖ → ‖M‖ as n →∞. Setting

wn := 1

‖Mvn‖Mvn ∈ Y

and defining Ln : Y → U by

Ln y := 〈y, wn〉
‖Mvn‖ vn ∀ y ∈ Y,

we have ‖Ln‖ = 1/‖Mvn‖ → 1/‖M‖ as n →∞ and, furthermore, (I − LnM)vn =
0, showing that I − LnM is not invertible and completing the proof. ��

The next theorem shows that, if H has essential singularities in C0, then there does
not exist a stabilizing compact feedback operator for H.

Theorem 5.7 LetH ∈ H∗(L(U,Y )) and assume that S(H) contains a compact oper-
ator. Then, there exists ameromorphic functionHe : C0 → L(U,Y ) such thatH = He
inH∗∼(L(U,Y )).

The following lemma is a key tool for the proof of Theorem 5.7.

Lemma 5.8 LetΩ ⊂ C be open and connected and letF ∈ H(Ω,L(U )) be such that
F(s) is compact for every s ∈ Ω . Assume that there exists z ∈ Ω such that I − F(z)
is invertible. Then, the set

Δ := {s ∈ Ω : I − F(s) is not invertible}

does not have any accumulation points in Ω and, if Δ is non-empty, every s ∈ Δ is a
pole of (I − F)−1. In particular, (I − F)−1 is meromorphic on Ω .

A proof of the lemma is given in the Appendix.

Proof of Theorem 5.7 By hypothesis, there exists a compact operator K ∈ S(H). It
follows from Proposition 5.2 that− K is an admissible feedback operator for HK and
hence I + KHK is invertible in H∗∼(L(U )). In particular, there exists α ≥ 0 such that
I + KHK (s) is invertible for all s ∈ Cα . Furthermore,

HK (I + KHK )−1 = (HK )−K = H in H∗∼(L(U,Y )). (5.4)

An application of Lemma 5.8 with Ω = C0 andF = −KHK
e shows that (I+KHK

e )−1

is meromorphic on C0. Consequently, HK
e (I + KHK

e )−1 is meromorphic on C0 and
it now follows from (5.4) that the claim holds with He = HK

e (I + KHK
e )−1. ��
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The next example shows that the compactness assumption in Theorem 5.7 is essen-
tial: a function H ∈ H∗

0(L(U )) is constructed such that H is holomorphic in C0\{1}
and has an essential singularity at s = 1 and S(H) is non-empty.

Example 5.9 Let N ∈ L(U ) be quasi-nilpotent, but not nilpotent, that is,

spectral radius of N = lim
q→∞‖N

q‖1/q = 0

and Nq �= 0 for every q ∈ N (of course, the existence of such an operator N requires
U to be infinite dimensional). The function G : s �→ s I − N is holomorphic on C

and G(s) is invertible for every nonzero s ∈ C. Consequently, G−1 is holomorphic on
C\{0} and 0 is an isolated singularity of G−1. The Laurent expansion of G−1 about
s = 0 is given by

G−1(s) =
∞∑

q=1

s−q Nq−1 ∀ s ∈ C\{0},

showing that 0 is an essential singularity of G−1.
Defining H by H(s) := G−1(s−1), it is clear that H ∈ H∗

α(L(U )) for every α ∈ R

and H has an essential singularity at s = 1. Setting K := −2I ∈ L(U ), it is obvious
that K is not compact and we have that

I − KH(s) = I + 2
(
(s − 1)I − N

)−1

= (
(s + 1)I − N

)(
(s − 1)I − N

)−1 ∀ s ∈ C1.

We conclude that K is an admissible feedback operator for H, and, furthermore,

(I − KH(s))−1 = (
(s − 1)I − N

)(
(s + 1)I − N

)−1 ∀ s ∈ C1.

Thus,

H(I − KH(s))−1 = (
(s + 1)I − N

)−1 = (
s I − (N − I )

)−1 ∀ s ∈ C1.

The function s �→ (
s I − (N − I )

)−1 is in H∞
α (L(U )) for every α > −1. Noting that

HK
e (s) = (

s I − (N − I )
)−1 for all s ∈ C0, it follows that K is a stabilizing feedback

for H. ��

6 Positive-real functions and stabilization by feedback

In the present section, we analyse connections between positive realness and stabi-
lization by feedback by invoking material from Sects. 3, 4 and 5. We derive two
characterizations of positive realness, Theorems 6.3 and 6.4, in terms of dissipative
stabilizing feedback operators, from which we obtain a number of corollaries.
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First, we demonstrate that, under mild assumptions, positive realness is preserved
under dissipative feedback.

Proposition 6.1 LetH ∈ H∗
α(L(U )), where α ≤ 0, be positive real and let K ∈ L(U )

be dissipative. Assume that

I − KH(s) is invertible for all s ∈ C0. (6.1)

Then, HK is positive real.

The trivial example wherein

H(s) ≡
(

0 1
−1 0

)
and K =

(
0 −1
1 0

)
,

shows that positive realness and dissipativity ofH and K , respectively, do not guarantee
that (6.1) is satisfied.

Before we prove the above proposition, we state a lemma which shows that (6.1)
holds in a number of important situations.

Lemma 6.2 Let H ∈ H∗
α(L(U )), where α ≤ 0, be positive real and let K ∈ L(U ).

The following statements hold.

(1) If K is strictly dissipative, then (6.1) holds.
(2) If K is dissipative and K = K ∗ (meaning that K is negative semidefinite),

then (6.1) holds.
(3) If K is dissipative and an admissible feedback operator for H and dimU < ∞,

then (6.1) holds.

The proof of the above lemma can be found in the Appendix.

Proof of Proposition 6.1 We start by noting that

〈(H(s)+H∗(s))u, u〉 − 〈(K + K ∗)H(s)u,H(s)u〉 ≥ 0 ∀ s ∈ C0, ∀ u ∈ U.

Rearrangement of the left-hand side leads to

〈(I −H∗(s)K ∗)H(s)u +H∗(s)(I − KH(s))u, u〉 ≥ 0 ∀ s ∈ C0, ∀ u ∈ U.

Thus, for arbitrary invertible T ∈ L(U ), we have that, for all s ∈ C0 and all u ∈ U ,

〈T (I −H∗(s)K ∗)H(s)T ∗u + TH∗(s)(I − KH(s))T ∗u, u〉 ≥ 0. (6.2)

By (6.1), (I −H∗(s)K ∗)−1 is well defined for every s ∈ C0 and it follows from (6.2)
with T = (I −H∗(s)K ∗)−1 that

〈H(s)(I − KH(s))−1u + (I −H∗(s)K ∗)−1H∗(s)u, u〉 ≥ 0 ∀ s ∈ C0, ∀ u ∈ U,

showing that HK = H(I − KH)−1 is positive real. ��
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Theorem 6.3 Let H ∈ H∗
α(L(U )), where α ≤ 0. Assume that, for almost every

ω ∈ R, H and H∗ have strong non-tangential limits at iω, denoted by H(iω) and
H∗(iω), respectively. The following statements are equivalent.

(1) H is positive real.
(2) ReH(iω) 
 0 for almost every ω ∈ R and − I ∈ S(H).

Note that if α < 0, then H is holomorphic at every point in iR\ΣH and the assumption
on the existence of strong non-tangential limits is trivially satisfied.

For scalar-valued rational functions, the above result can be found in [48,49]. In
some publications, the conditions in statement (2) are used as defining properties
for positive realness of scalar-valued rational functions, see [9,40]. For matrix-valued
rational functions, the implication (1)⇒ (2) appears in [32, Theorem 5.10], albeit with
slightly different terminology.

Proof of Theorem 6.3 Assume that statement (1) holds, that is, H is positive real.
Invoking the assumption on the existence of strong non-tangential limits, we obtain that
ReH(iω) 
 0 for almost every ω ∈ R. Moreover, by statement (1) of Corollary 3.6,
(I −H)(I +H)−1 ∈ H∞

0 (L(U )) and so,

2H(I +H)−1 = I − (I −H)(I +H)−1 ∈ H∞
0 (L(U )),

showing that − I is a stabilizing feedback operator for H.
Conversely, assume that statement (2) holds. Then, H−I

e ∈ H∞
0 (L(U )), and, by

Proposition 5.4, I +H(s) is invertible for all s ∈ C0\ΣH. Furthermore,

I − 2H−I
e (s)= I − 2H(s)

(
I +H(s)

)−1 = (
I −H(s)

)(
I +H(s)

)−1 ∀ s ∈ C0\ΣH.

Appealing to statement (1) of Corollary 2.3, it suffices to show that ‖I −2H−I
e ‖H∞

0
≤

1, or, equivalently,

ess sup {‖I − 2H−I
e (iω)‖ : ω ∈ R} ≤ 1. (6.3)

Invoking the hypothesis on the existence of strong non-tangential limits, it follows
from Proposition 5.4 that I +H(iω) is invertible for almost every ω ∈ R and

(
I −H(iω)

)(
I +H(iω)

)−1 = I − 2H−I
e (iω) for a.e. ω ∈ R. (6.4)

By hypothesis, ReH(iω) 
 0 for almost every ω ∈ R and so, another application of
statement (1) of Corollary 2.3 yields

‖(I −H(iω))(I +H(iω))−1‖ ≤ 1 for a.e. ω ∈ R. (6.5)

The contraction condition (6.3) follows now from (6.4) and (6.5), completing the
proof. ��
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Theorem 6.4 LetH ∈ H∗
α(L(U )), where α ≤ 0. The following statements are equiv-

alent.

(1) H is positive real.
(2) Every strictly dissipative K ∈ L(U ) is a stabilizing feedback operator for H.

Proof Assume that statement (1) holds, that is, H is positive real. Then, I + 2rH is
positive real for every r > 0, and hence, by statement (1) of Corollary 3.6,

‖H(I + rH)−1‖H∞
0
= (

1/r)
∥∥[
I − (I + 2rH(s))

]

[
I + (I + 2rH(s))

]−1∥∥H∞
0
≤ 1/r ∀ r > 0.

Consequently, appealing to Proposition 5.6, every K ∈ L(U ) for which there exists
r > 0 such that ‖K + r I‖ < r is a stabilizing feedback operator for H. It now follows
from Lemma 2.4 that every strictly dissipative K ∈ L(U ) is a stabilizing feedback
operator for H.

Conversely, assume that statement (2) holds. Let r > 0 be arbitrary. By Lemma 2.4,
every L ∈ L(U ) satisfying‖L+r I‖ < r is strictly dissipative and hence is a stabilizing
feedback operator forH, that is,B(−r I, r) ⊂ S(H). Setting K := −r I , it follows from
Proposition 5.6 that ‖HK

e ‖H∞
0
≤ 1/r . Invoking Proposition 5.4, we see that, for every

s ∈ C0\ΣH, the operator I + rH(s) is invertible and HK
e (s) = H(s)(I + rH(s))−1.

Thus,
‖rH(s)(I + rH(s))−1‖ ≤ 1 ∀ s ∈ C0\ΣH. (6.6)

Now

−rH(s)(I + rH(s))−1 = [
I − (I + 2rH(s))

][
I + (I + 2rH(s))

]−1 ∀ s ∈ C0\ΣH,

and so it follows from statement (2) of Corollary 3.6 and (6.6) that I +2rH is positive
real. Since r > 0 is arbitrary, we see that I + 2rH is positive real for every r > 0,
which implies the positive realness of H. ��

We next present two corollaries of Theorem 6.4 which identify sets of stabilizing
feedback operators for functionsHwhich have the property that there exists L ∈ L(U )

such that − L is dissipative and H+ L is positive real.

Corollary 6.5 Let H ∈ H∗
α(L(U )), where α ≤ 0, and let L ∈ L(U ) with − L

dissipative. The following statements are equivalent.

(1) H+ L is positive real.
(2) Every strictly dissipative K ∈ L(U ) is a stabilizing feedback operator forH+ L.
(3) For every strictly dissipative K ∈ L(U ), (I − K L)−1K is a stabilizing feedback

operator for H.

The proof of Corollary 6.5 uses the following simple lemma which relates stabiliz-
ing feedback operators of H to those of H+ L .

Lemma 6.6 Let H ∈ H∗
α(L(U )), where α ≤ 0 and let K , L ∈ L(U ) with I − K L

invertible. The feedbackoperator K is stabilizing forH+L if, andonly if, (I−K L)−1K
is a stabilizing feedback operator for H.
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Proof Setting M := (I − K L)−1K and noting that

I − MH = (I − K L)−1(I − K (H+ L)), (6.7)

we see that K is admissible for H+ L if, and only if, M is admissible for H.
Assume that M is a stabilizing feedback operator for H. In particular, M is admis-

sible for H, and so K is admissible for H+ L . Appealing to (6.7), we obtain that

(H+ L)(I − MH)−1 = (H+ L)(I − K (H+ L))−1(I − K L),

which shows that K is stabilizing for H+ L .
The converse follows for symmetry reasons. Indeed, assume that K is a stabilizing

feedback operator for H + L . Noting that I + ML = (I − K L)−1, it follows that
(I + ML)−1M = K . Consequently, (I − M(−L))−1M is stabilizing for H + L ,
and by what has already been proved, we conclude that M is a stabilizing feedback
operator for (H+ L)+ (−L) = H. ��
Proof of Corollary 6.5 The equivalence of statements (1) and (2) follows from Theo-
rem 6.4. Using that, by hypothesis, L is a (constant) positive-real function, Lemma 6.2
guarantees that I − K L is invertible for all strictly dissipative K ∈ L(U ). The equiv-
alence of (2) and (3) now follows from Lemma 6.6. ��

In the special case wherein L = cI , for positive scalar c, we obtain another corollary,
which is an immediate consequence of Lemma 2.5 and Corollary 6.5.

Corollary 6.7 Let H ∈ H∗
α(L(U )), where α ≤ 0, let c > 0 and define r := 1/(2c).

The function H+ cI is positive real if, and only if, B(−r I, r) ⊆ S(H).

The above corollary extends and generalizes [15, Proposition 2.1] where, in the context
of well-posed linear systems, it is shown that positive realness of H+ cI implies that,
for every k ∈ (−2r, 0), the “scalar” feedback operator K = k I is stabilizing for H.

Next, we will show that, given a transfer function H and feedback operators
K1, K2 ∈ L(Y,U ) with K1 admissible for H, positive realness of (I − K2H)(I −
K1H)−1 is necessary and sufficient for all linear feedback operators in the “sec-
tor” sec(K1, K2) to be stabilizing, where sec(K1, K2) is the set of all operators
K ∈ L(Y,U ) satisfying the following “strict” sector condition

sup
y∈EY

Re〈(K − K1)y, (K − K2)y〉 < 0, (6.8)

where we remind the reader that EY denotes the unit sphere in Y . Recall that an
operator S ∈ L(Y,U ) is said to be left invertible if there exists T ∈ L(U,Y ) such that
T S = I . It is well-known (and easy to show) that S ∈ L(Y,U ) is left invertible if,
and only if, S is bounded away from 0, that is,

inf
y∈EY

‖Sy‖ > 0.
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Theorem 6.8 Let H ∈ H∗
α(L(U,Y )) for α ≤ 0. Let K1, K2 ∈ L(Y,U ) and assume

that K1 is an admissible feedback operator forH. The following statements are equiv-
alent.

(1) (I − K2H)(I − K1H)−1 is positive real and K1 − K2 is left invertible.
(2) The set sec(K1, K2) is non-empty and every K ∈ sec(K1, K2) is a stabilizing

feedback operator for H.

The implication (1) ⇒ (2) is a linear version of the circle criterion, a well-known
absolute stability result (see, for instance, [22,27,47]). Note in this context that, in the
literature on absolute stability, it is usually assumed that (I − K2H)(I − K1H)−1 is
strictly or strongly positive real and, instead of (6.8), the “weak” sector condition

Re〈(K − K1)y, (K − K2)y〉 ≤ 0 ∀ y ∈ Y

is imposed. We will analyse this scenario further below by using Theorem 6.8 (see
Theorem 6.11). Whilst the implication (1) ⇒ (2) continues to hold for real3 Hilbert
spaces U and Y , this is not the case for the implication (2) ⇒ (1).

Proof of Theorem 6.8 Setting

N := 1

2
(K1 − K2) and M := 1

2
(K1 + K2), (6.9)

it is clear that K1 = M + N and K2 = M − N and so, for K ∈ L(Y,U ),

Re〈(K − K1)y, (K − K2)y〉 = Re〈(K − M)y − Ny, (K − M)y + Ny〉
= ‖Ky − My‖2 − ‖Ny‖2 ∀ y ∈ Y. (6.10)

As a consequence, for every K ∈ sec(K1, K2), there exists δ > 0 such that

− ‖Ny‖2 + ‖Ky − My‖2 ≤ −δ ∀ y ∈ EY . (6.11)

Assume that statement (2) holds. Let K ∈ sec(K1, K2) (such an operator K exists,
since sec(K1, K2) �= ∅ by hypothesis). Therefore, (6.11) holds for some δ > 0, which
implies that

‖(K1 − K2)y‖ ≥ 2
√

δ ∀ y ∈ EY .

Consequently, K1 − K2 is left invertible. Next, let X ∈ L(U ) be strictly dissipative
and define F := K1+ (I − (1/2)X)−1XN . Then, with Z := (1/2)X , which is strictly
dissipative, there exists ε > 0 such that

3 Note that ifU and Y are real, then, since s is a complex variable, the complexificationsUc and Yc ofU and
Y will still need to be considered to formulate the positive real condition, in particular,H ∈ H∗

α(L(Uc, Yc)).
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Re〈(F − K1)y, (F − K2)y〉 = Re〈Z(I − Z)−1(K1 − K2)y, (I − Z)−1(K1 − K2)y〉
≤ −ε‖(I − Z)−1(K1 − K2)y‖2

≤ −4εδ

‖I − Z‖2 ∀ y ∈ EY .

Hence, F ∈ sec(K1, K2), and thus, F is stabilizing for H. From statement (3) of
Proposition 5.2, it then follows that F − K1 = (I − (1/2)X)−1XN is stabilizing for
HK1 , and so with S := (I − (1/2)X)−1X , we have

HK1(I − SNHK1)−1 ∈ H∞
0 (L(U,Y )).

Since this implies that NHK1(I − SNHK1)−1 ∈ H∞
0 (L(U )), we see that S is stabi-

lizing for NHK1 . From Corollary 6.5 with L = (1/2)I , we then obtain that

I + 2NHK1 = (I − K2H)(I − K1H)−1.

is positive real.
Conversely, assume that statement (1) holds. Since K1 − K2 is left invertible,

inf
y∈EY

‖(K1 − K2)y‖ > 0,

and it follows that M ∈ sec(K1, K2), showing that sec(K1, K2) �= ∅. A further
consequence of the left invertibility of K1 − K2 is that N∗N is invertible; indeed,

‖N∗Ny‖ ≥ |〈N∗Ny, y〉| = ‖Ny‖2, ∀ y ∈ EY ,

showing that N∗N is bounded away from 0 (because N is bounded away from 0)
and thus, since N∗N is also self-adjoint, invertibility of N∗N follows. Consequently,
N † := (N∗N )−1N∗ is well defined and a left inverse of N . Obviously, boundedness
of N implies that N † is bounded away from 0 on im N , that is, there exists ν > 0 such
that

‖N †w‖ ≥ ν‖w‖ ∀w ∈ im N .

We note that the operator P := NN † ∈ L(U ) is the orthogonal projection onto
im N = (ker N∗)⊥ = (ker N †)⊥.

Let K be an arbitrary element in sec(K1, K2). Then, K satisfies (6.11) for some
δ > 0. Setting ε := δ/(2‖N‖), a routine calculation gives

‖Ky − My‖ ≤ ‖Ny‖ − ε‖y‖ ∀ y ∈ Y.

Hence

‖K N †y − MN †y‖ ≤ ‖Py‖ − ε‖N †y‖ ≤ ‖y‖ − ε‖N †y‖ ∀ y ∈ Y,
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and thus,

‖K N †y − MN †y‖ = ‖K N †Py − MN †Py‖ ≤ ‖Py‖
−εν‖Py‖ ≤ (1− εν)‖y‖ ∀ y ∈ Y,

which in turn implies that

sec(K1, K2)N
† := {K N † : K ∈ sec(K1, K2)} ⊂ B(MN †, 1). (6.12)

Furthermore, invoking Corollary 3.6, a straightforward calculation shows that the
positive realness of (I −K2H)(I −K1H)−1 is equivalent to the following contraction
property

‖NH(I − MH)−1‖H∞
0
≤ 1. (6.13)

Now

NH(I − MH)−1 = NH(I − MN †NH)−1 = (NH)MN†
,

and thus, appealing to Proposition 5.6 and (6.13), we obtain

B(MN †, 1) ⊂ S(NH). (6.14)

Together with (6.12), this shows that

sec(K1, K2)N
† ⊂ S(NH),

and therefore,

H(I − KH)−1 = N †NH(I − K N †NH)−1 ∈ H∞
0 (L(U,Y )) ∀ K ∈ sec(K1, K2),

showing that every K ∈ sec(K1, K2) is a stabilizing feedback for H. ��
In the following two corollaries of Theorem 6.8, the sector condition (6.8) is

replaced by certain norm conditions.

Corollary 6.9 Let H ∈ H∗
α(L(U,Y )) for α ≤ 0 and let K1, K2 ∈ L(Y,U ). Assume

that K1 is an admissible feedback operator for H and that K1 − K2 is left invertible.
Let N , M ∈ L(Y,U ) be given by (6.9) and set N † := (N∗N )−1N. Under these
conditions, the function (I − K2H)(I − K1H)−1 is positive real if, and only if, every
K ∈ L(Y,U ) such that K N † ∈ B(MN †, 1) is a stabilizing feedback operator for H.

As an immediate consequence of Corollary 6.9 we have that if (I−K2H)(I−K1H)−1

is positive real, then every K ∈ B(M, 1/‖N †‖) is stabilizing.

Proof of Corollary 6.9 By Theorem 6.8, the claim is equivalent to

K ∈ sec (K1, K2) ⇐⇒ K N † ∈ B(MN †, 1). (6.15)
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It is therefore sufficient to establish (6.15). To this end, recall that it has been shown
in the proof of Theorem 6.8 that if K ∈ sec (K1, K2), then K N † ∈ B(MN †, 1),
see (6.12). Conversely, let K ∈ L(Y,U ) be such that K N † ∈ B(MN †, 1). Then, there
exists ρ ∈ (0, 1) such that

‖Ky − My‖2 = ‖K N †Ny − MN †Ny‖2 ≤ ρ‖Ny‖2 ∀ y ∈ Y.

Consequently,

− ‖Ny‖2 + ‖Ky − My‖2 ≤ −(1− ρ)λ‖y‖2 ∀ y ∈ Y, (6.16)

where the constant λ > 0 is such that ‖Ny‖2 ≥ λ‖y‖2 for all y ∈ Y (such a constant
exists by the left invertibility of N ). It now follows from (6.10) and (6.16) that K ∈
sec (K1, K2). ��
Corollary 6.10 Let H ∈ H∗

α(L(U,Y )) for α ≤ 0, let K1, K2 ∈ L(Y,U ) and let
M be as in (6.9). Assume that K1 is an admissible feedback operator for H and
K1−K2 = cJ for some isometry J ∈ L(Y,U ) and some nonzero c ∈ C. The function
(I − K2H)(I − K1H)−1 is positive real if, and only if, every K ∈ B(M, |c|/2) is a
stabilizing feedback operator for H.

In the single-input single-output case (that is,U = Y = C), the assumption on K1−K2
is trivially satisfied and, furthermore, the condition that every K ∈ B(M, |c|/2) is a
stabilizing feedback forH can be checked by using the Nyquist criterion (which applies
provided that H satisfies suitable assumptions, see [9, Theorem 2 in Sect. 34] for the
finite-dimensional and [39] for the infinite-dimensional case).

An application of Corollary 6.10 with K1 = 0 and K2 = −2r I , where r > 0,
yields that I + 2rH is positive real if, and only if, B(−r I, r) ⊂ S(H). Obviously,
H is positive real if, and only if, I + 2rH is positive real for every r > 0, and thus,
invoking Lemma 2.4, we recover Theorem 6.4, showing that Corollary 6.10 (and
hence, Theorem 6.8) can be considered as generalizations of Theorem 6.4.

Proof of Corollary 6.10 Let N be as in (6.9), that is, N = (c/2)J . Since J is an
isometry, we have that J ∗ J = I and so N † := (N∗N )−1N∗ = (2/c)J ∗. Invoking
Corollary 6.9, it is sufficient to show that

K ∈ B(M, |c|/2) ⇐⇒ K N † ∈ B(MN †, 1).

Let K ∈ L(Y,U ) and assume that K N † ∈ B(MN †, 1). Then ‖K J ∗ −MJ ∗‖ < |c|/2
and so

‖Ky − My‖ ≤ ‖K J ∗ − MJ ∗‖‖J y‖ = ‖K J ∗ − MJ ∗‖‖y‖ ∀ y ∈ Y,

showing that ‖K − M‖ ≤ ‖K J ∗ − MJ ∗‖ < |c|/2.
Conversely, assume that K ∈ B(M, |c|/2). Then, there exists ε ∈ (0, |c|/2) such

that

‖Ky − My‖ ≤ (|c|/2− ε)‖y‖ = (|c|/2)‖J y‖ − ε‖y‖ = ‖Ny‖ − ε‖y‖ ∀ y ∈ Y.
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Setting P := NN † = J J ∗, the orthogonal projection onto im J = (ker J ∗)⊥, it
follows that

‖K N †y − MN †y‖ = ‖K N †Py − MN †Py‖ ≤ ‖NN †Py‖ − ε‖N †Py‖ ∀ y ∈ Y,

and therefore,

‖K N †y−MN †y‖ ≤ ‖Py‖ − ε‖N †Py‖ ≤ (1− εμ)‖Py‖ ≤ (1− εμ)‖y‖ ∀ y ∈ Y,

where the constant μ > 0 is such that ‖N †w‖ ≥ μ‖w‖ for all w ∈ im N = im J . We
conclude that K N † ∈ B(MN †, 1). ��

Next, we modify the scenario considered in Theorem 6.8 by replacing positive
realness with strong positive realness and the strict sector condition (6.8) with the
“weak” sector property

Re〈(K − K1)y, (K − K2)y〉 ≤ 0 ∀ y ∈ Y. (6.17)

Theorem 6.11 Let H ∈ H∗
α(L(U,Y )) for α ≤ 0 and let K1, K2 ∈ L(Y,U ). Assume

that K1 is an admissible feedback operator for H and that K1 − K2 is left invertible.
The following statements hold.

(1) If the function (I − K2H)(I − K1H)−1 is inH∞
0 (L(U )) and is strongly positive

real, then every K ∈ L(Y,U ) satisfying (6.17) is a stabilizing feedback operator
for H.

(2) If dimU < ∞ and every K ∈ L(Y,U ) satisfying (6.17) is a stabilizing feedback
operator for H, then (I − K2H)(I − K1H)−1 is in H∞

0 (L(U )) and is strongly
positive real.

Proof To prove statement (1), we define N by (6.9) and observe that

(I − K2H)(I − K1H)−1 = I + 2NH(I − K1H)−1 ∈ H∞
0 (L(U )).

Since N is left invertible, we conclude that K1 ∈ S(H). Together with the openness
of S(H), this yields the existence of a number ν∗ > 0 such that K1 + νN ∈ S(H) for
all ν ∈ [0, ν∗]. Defining

Gν :=
(
I − (K2 − νN )H

)(
I − (K1 + νN )H

)−1
, (6.18)

it is clear that the map

[0, ν∗] → H∞
0 (L(U )), ν �→ Gν

is continuous. Combined with the strong positive realness of G0, this shows that there
exists ν∗∗ ∈ (0, ν∗] such that

ReGν(s) 
 0 ∀ s ∈ C0, ∀ ν ∈ [0, ν∗∗]. (6.19)
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Let K ∈ L(Y,U ) be such that (6.17) holds. A straightforward calculation then shows
that

Re 〈Ky − (K1 + νN )y, Ky − (K2 − νN )y〉 ≤ −ν(ν + 2)‖Ny‖2 ∀ y ∈ Y.

Since N is left invertible, there exists μ > 0 such that ‖Ny‖2 ≥ μ‖y‖2 for all y ∈ Y ,
and thus

Re 〈Ky − (K1 + νN )y, Ky − (K2 − νN )y〉 ≤ −μν(ν + 2)‖y‖2 ∀ y ∈ Y.

Hence, for every ν ∈ (0, ν∗∗], the operator K is in sec (K1+νN , K2−νN ). Trivially,
(K1+ νN )− (K2− νN ) = 2(1+ ν)N is left invertible, and, by (6.19), Gν is positive
real for every ν ∈ (0, ν∗∗]. An application of Theorem 6.8 now shows that K is a
stabilizing feedback operator for H.

To prove statement (2), note that, since K1 satisfies (6.17), K1 is a stabilizing
feedback operator for H, and thus, (I − K2H)(I − K1H)−1 is in H∞

0 (L(U )). We
proceed to establish strong positive realness of (I − K2H)(I − K1H)−1. By the left
invertibility of K1 − K2, we have that dim Y ≤ dimU < ∞. Defining N and M by
(6.9), N is left invertible and the function y �→ ‖Ny‖ defines a norm on Y . We denote
the corresponding norm on L(Y,U ) by ‖ · ‖N , that is, for T ∈ L(Y,U ),

‖T ‖N := sup
y �=0

‖T y‖
‖Ny‖ .

Let S denote the set of all K ∈ L(Y,U ) satisfying (6.17). It follows from (6.10) that
K ∈ S if, and only if,

‖Ky − My‖ ≤ ‖Ny‖ ∀ y ∈ Y.

Consequently,
S = {K ∈ L(Y,U ) : ‖K − M‖N ≤ 1}. (6.20)

By hypothesis, S ⊂ S(H), and so, invoking the openness of S(H), it follows from
(6.20) and a routine compactness argument that there exists ν > 0 such that

Bν := {K ∈ L(Y,U ) : ‖K − M‖N ≤ 1+ ν} ⊂ S(H) . (6.21)

Furthermore,

Re〈Ky − (K1 + νN )y, Ky − (K2 − νN )y〉
= Re〈(K − M)y − (1+ ν)Ny, (K − M)y + (1+ ν)Ny〉
= ‖Ky − My‖2 − (1+ ν)2‖Ny‖2 ∀ y ∈ Y,

and therefore,

sec (K1 + νN , K2 − νN ) ⊂ Bν .
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It now follows from (6.21) that every operator in sec (K1+νN , K2−νN ) is stabilizing
for H and an application of Theorem 6.8 yields that the function Gν defined by (6.18)
is positive real. A routine calculation shows that

(I −Gν)(I +Gν)
−1 = (1+ ν)NH(I − MH)−1 = (1+ ν)(I −G0)(I +G0)

−1,

and consequently, by Corollary 3.6,

‖(I −G0)(I +G0)
−1‖H∞

0
≤ 1

1+ ν
< 1.

Appealing to Corollary 4.3, it follows that (I − K2H)(I − K1H)−1 = G0 is strongly
positive real, completing the proof. ��

The following result is, in a sense, a special case of statement (1) of Theorem 6.11.

Corollary 6.12 If H ∈ H∞
0 (L(U )) is strongly positive real, then every dissipative

K ∈ L(U ) is in S(H).

Note that in the above corollary, it is assumed that H ∈ H∞
0 (L(U )), that is, H is

stable. Therefore, Corollary 6.12 should not be viewed as a stabilization result, but as
a necessary condition for a function in H∞

0 (L(U )) to be strongly positive real or as a
robustness result in the sense that stability is retained under perturbations induced by
dissipative static feedback. A similar comment applies to Proposition 6.13.

Unlike Theorem 6.4, the converse of the conclusion of Corollary 6.12 is false, which
is easily seen by considering the scalar positive-real function H(s) = 1/(s+1). Every
K = k ∈ C with Re k ≤ 0 (precisely the set of dissipative operators C → C) is
stabilizing for H, but H is not strongly positive real.

Proof of Corollary 6.12 Let K ∈ L(U ) be dissipative and r > 0. Since H is strongly
positive real and in H∞

0 (L(U )), it is clear that I − (2K − r I )H = (I − 2KH)+ rH
is in H∞

0 (L(U )) for every r > 0 and strongly positive real for all sufficiently large
r > 0. Noting that

Re 〈Ku, Ku − (2K − r I )u〉 = −‖Ku‖2 + rRe 〈Ku, u〉 ≤ 0 ∀ u ∈ U,

as K is dissipative, an application of statement (1) of Theorem 6.11 with K1 := 0 and
K2 := 2K − r I shows that K ∈ S(H). ��

The next result identifies sets of stabilizing feedback operators for H under the
assumption that H + L is strongly positive real, where the operator − L is strictly
dissipative.

Proposition 6.13 Let H ∈ H∞
0 (L(U )) and let L ∈ L(U ) be such that − L is strictly

dissipative and H+ L is strongly positive real. The following statements hold.

(1) For every dissipative K ∈ L(U ), (I−K L)−1K is a stabilizing feedback operator
for H.
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(2) If, additionally, the operator L is self-adjoint, then every K ∈ L(U ) such that
K = K ∗ and 0 
 K 
 −L−1 is a stabilizing feedback operator for H.

Note that in statement (2) of Proposition 6.13, the existence of the inverse of L is
guaranteed, since, by self-adjointness of L and strict dissipativity of − L , both L and
L∗ are bounded away from 0. For matrix-valued rational functions, statement (2) can
be found in [8, Corollary 2.1] (the proof in [8] relies on finite-dimensional state-space
realizations).

Proof of Proposition 6.13 Statement (1) can be proved by arguments similar to those
used in the proof of Corollary 6.5, where references to Theorem 6.4 should be replaced
by references to Corollary 6.12.

To prove statement (2), we assume that L = L∗. As H+ L is strongly positive real,
there exists ε ∈ (0, 1) such that H+ εL = H+M is also strongly positive real, where
M := εL . Let K ∈ L(U ) be such that K = K ∗ and 0 
 K 
 −L−1. The aim is to
prove that K is stabilizing for H. By statement (2), it is sufficient to show that there
exists a dissipative operator F ∈ L(U ) such that K = (I − FM)−1F . Solving this
equation for F gives

F = K (I + MK )−1 .

We now have to show that: (i) I + MK is invertible (to make sure that F is well
defined), and; (ii) F is dissipative. To establish the invertibility of I +MK , note that

I + MK = I + M(K + L−1)− ε I = (1− ε)
[
(I − (ε − 1)−1M(K + L−1)

]
.

Thus, the invertibility of I+MK is equivalent to that of I−(ε−1)−1M(K+L−1). The
invertibility of the latter follows from Lemma 6.2 since (ε−1)−1M = −ε(1− ε)−1L
is strictly dissipative and Re (K + L−1) 
 0.

It remains to show that F is dissipative. To this end, let P and Q denote the square
roots of − K and L−1, respectively. Then, P = P∗, Q = Q∗, K = −P2, L−1 = Q2

and Q is invertible. Since 0 
 K 
 −L−1, we have that

〈−L−1v, v〉 ≤ 〈Kv, v〉 ≤ 0 ∀ v ∈ U,

and so, taking v = Q−1u yields that

−‖u‖2 ≤ 〈K Q−1u, Q−1u〉 = −〈P∗PQ−1u, Q−1u〉 = −‖PQ−1u‖2 ∀ u ∈ U .

We conclude that ‖PQ−1‖ ≤ 1, and thus, ‖Q−1P‖ = ‖(PQ−1)∗‖ = ‖PQ−1‖ ≤ 1.
Therefore, for u ∈ U and v = Q−1u,

〈K LKu, u〉 = 〈K LK Qv, Qv〉 = 〈Q−1K Qv, Q−1K Qv〉
= ‖Q−1K Qv‖2 = ‖Q−1PPQv‖2 ≤ ‖Q−1P‖2‖PQv‖2

≤ ‖PQv‖2 = 〈PQv, PQv〉 = 〈Pu, Pu〉
= −〈Ku, u〉 . (6.22)
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Furthermore, we note that, for u ∈ U and v = (I + MK )−1u,

〈Fu, u〉 = 〈K (I + MK )−1u, u〉 = 〈Kv, (I + MK )v〉
= 〈Kv, v〉 + 〈v, KMKv〉.

Invoking (6.22), it follows that

〈v, KMKv〉 = ε 〈v, K LKv〉 ≤ −ε 〈v, Kv〉,

whence

〈Fu, u〉 ≤ (1− ε)〈Kv, v〉 ≤ 0,

showing that F is dissipative and completing the proof. ��
Corollary 6.14 LetH ∈ H∗

α(L(U )) for α ≤ 0 and let K1, K2 ∈ L(U ) be self-adjoint
and such that K2−K1 is strictly dissipative. If K1 is a stabilizing feedback operator for
H, andHK1+(K1−K2)

−1 is strongly positive real, then every self-adjoint K ∈ L(U )

such that K1 
 K 
 K2 is a stabilizing feedback operator for H.

Note that the existence of the inverse of K1 − K2 is guaranteed, since, by self-
adjointness and strict dissipativity of K2 − K1, both K2 − K1 and (K2 − K1)

∗ are
bounded away from 0. The above corollary is a generalization of statement (2) of
Proposition 6.13: indeed, if the assumptions of Corollary 6.14 hold with K1 = 0, then
we recover statement (2) of Proposition 6.13 with L = −K−1

2 .

Proof of Corollary 6.14 Let K ∈ L(U ) be self-adjoint and such that K1 
 K 
 K2.
Then, obviously, the operator K − K1 is self-adjoint and 0 
 K − K1 
 K2 − K1.
The hypotheses of statement (2) of Proposition 6.13 hold with L = (K1− K2)

−1 and
H replaced by HK1 . Hence,

{
F ∈ L(U ) : F is self-adjoint and 0 
 F 
 K2 − K1

} ⊆ S(HK1) .

Consequently, K − K1 is a stabilizing feedback operator for HK1 , and it follows
from statement (2) of Proposition 5.2 that K is a stabilizing feedback operator for H,
completing the proof. ��

We conclude this section, by turning our attention briefly to feedback with dynamic
compensators by defining the notion of a (stabilizing) feedback interconnection of two
transfer functions. The following definition generalizes Definitions 5.1 and 5.3 to the
dynamic feedback case. Theorem 6.16 then considers the feedback interconnection of
two transfer functions H and K with H positive real and −K strongly positive real.

Definition 6.15 Let H ∈ H∗(L(U,Y )) and K ∈ H∗(L(Y,U )). Then, K is called an
admissible feedback for H if

F :=
(

I −K
−H I

)
,
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is invertible in H∗∼(L(U×Y )). An admissible feedback is called stabilizing if [F−1]∩
H∞

0 (L(U × Y )) �= ∅.

Note that K is an admissible feedback for H if, and only if, I − KH is invertible in
H∗∼(L(U )), or, equivalently, if I−HK is invertible inH∗∼(L(Y )) (cf. Proposition 5.2).
Moreover, if K is an admissible feedback for H, then

(
I −K
−H I

)−1

=
(

(I −KH)−1 K(I −HK)−1

H(I −KH)−1 (I −HK)−1

)
.

Since, for admissible K,

(I −KH)−1 = I +KH(I −KH)−1 and (I −HK)−1 = I +H(I −KH)−1K,

we see that, if K ∈ H∞
0 (L(Y,U )), then K is a stabilizing feedback if, and only if,

H(I −KH)−1 ∈ H∞
0 (L(U,Y )). In particular, K ∈ L(Y,U ) is a stabilizing feedback

operator according to Definition 5.3 if, and only if, K(s) ≡ K is a stabilizing feedback
in the sense of Definition 6.15.

Theorem 6.16 Let H ∈ H∗
α(L(U )), where α ≤ 0. The following statements are

equivalent.

(1) H is positive real.
(2) Every K ∈ H∞

0 (L(U )) such that −K is strongly positive real is a stabilizing
feedback for H.

Other sufficient conditions for the stability of the feedback interconnection of H and
K in terms of positive-real properties of H and −K have appeared in the literature,
and we only refer here to the recent result [56, Theorem 4.2].

The proof of Theorem 6.16 is facilitated by two technical results which will be
presented next. The proof of the following corollary is similar to that of Lemma 2.4
and is therefore omitted.

Corollary 6.17 A function H ∈ H∞
0 (L(U )) is strongly positive real if, and only if,

there exists an r > 0 such that ‖H− r I‖H∞
0

< r .

The lemma below is a simple small-gain result and is a straightforward generalization
of one direction of Proposition 5.6. The proof is left to the interested reader.

Lemma 6.18 Let H ∈ H∗∼(L(U )), r > 0 and let K ∈ H∞
0 (L(Y,U )) be a stabilizing

feedback for H. If ‖H(I −KH)−1‖H∞
0
≤ 1/r , then any C ∈ H∞

0 (L(U )) with ‖C−
K‖H∞

0
< r is stabilizing for H.

Proof of Theorem 6.16 The claim that statement (2) implies statement (1) follows
from Theorem 6.4 since any strictly dissipative operator K ∈ L(U ) has the property
that − K is a (constant) strongly positive-real function.

The converse direction is proven along the lines of the corresponding part of The-
orem 6.4. The references to Lemma 2.4 and Proposition 5.6 should be replaced by
references to Corollary 6.17 and Lemma 6.18, respectively. ��

123



2 Page 40 of 61 Math. Control Signals Syst. (2017) 29:2

Example 6.19 We note that in Theorem 6.16, it is crucial that−K is strongly positive
real; it is generally not sufficient to only have −ReK(s) � 0 for all s with Re s ≥ 0.
As an example, consider the positive-real function H(s) = tanh(s) and the function
K(s) = −1/(s + 1). Note that −ReK(s) > 0 for all s with Re s ≥ 0, but −K is not
strongly positive real. Moreover, we have

HK
e (s) = H(s)

1−H(s)K(s)
= (s + 1) tanh(s)

s + 1+ tanh(s)
.

Setting sn := (n + 1/2)π i for n ∈ Z (the poles of H), we have HK
e (sn) = sn + 1.

In particular, |HK
e (sn)| → ∞ as n → ∞. It follows that HK

e /∈ H∞
0 and so K is not

stabilizing for H. ��

7 Connections with operator theory and partial differential equations

In this section, we establish some links between the material in Sects. 5–6 on the one
hand and operator theory and PDEs on the other. In particular, we will provide several
examples of positive-real transfer functions arising in PDEs.

For a closed linear operator A : D(A) ⊂ U → U , we let ρ(A) denote the resolvent
set of A. The map ρ(A) → L(U ), s �→ (s I − A)−1 is called the resolvent of A.

Proposition 7.1 Let A : D(A) ⊂ U → U be densely defined and closed, and let H
be the resolvent of A. The following statements are equivalent.

(1) A is dissipative and ρ(A) ∩ C0 is non-empty.
(2) H belongs toH∗

0(L(U )) and is positive real.
(3) A is the generator of a strongly continuous contraction semigroup.

Proof The equivalence of statements (1) and (3) is the Lumer–Phillips Theorem (see,
for example, [43, Theorem 3.4.8]).

(1)⇒ (2): The implication (1)⇒ (3) guarantees that A is the generator of a strongly
continuous contraction semigroup and so C0 ⊂ ρ(A). Consequently, H ∈ H0(L(U ))

since the resolvent is holomorphic on ρ(A). Let s ∈ C0 and u ∈ U and set v := H(s)u.
Then, v = (s I − A)−1u ∈ D(A) and

Re〈H(s)u, u〉 = Re〈v, (s I − A)v〉 = (Re s)‖v‖2 − Re〈v, Av〉 ≥ 0,

which shows that H is positive real.
(2) ⇒ (1): Since H belongs to H∗

0(L(U )), the resolvent set includes C0\ΣH. Let
s ∈ C0\ΣH = ρ(A) ∩ C0, let u ∈ D(A) and set v := (s I − A)u. Then, u = H(s)v
and

(Re s)‖u‖2 − Re〈Au, u〉 = Re〈(s I − A)u, u〉 = Re〈v,H(s)v〉 ≥ 0 ∀ s ∈ C0\ΣH.

Since ΣH has no accumulation points in C0, there exists a sequence sn ∈ C0\ΣH with
Re sn → 0 and (Re sn)‖u‖2 − Re〈Au, u〉 ≥ 0 for every n ∈ N. Letting n →∞, this
gives −Re〈Au, u〉 ≥ 0, which shows that A is dissipative. ��
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We remark that the equivalence of statements (1) and (2) in Proposition 7.1 is
known, see [7, Theorem 4.2]. The above proof simplifies that given in [7] which rests
on a result on distributional boundary values of positive-real functions.

Corollary 7.2 Let A : D(A) ⊂ U → U be densely defined and closed, let H be the
resolvent of A and let ω > 0. The following statements are equivalent.

(1) Re 〈Au, u〉 ≤ −ω‖u‖2 for all u ∈ D(A) and ρ(A) ∩ C−ω �= ∅.
(2) H belongs toH∗−ω(L(U )) and the function s �→ H(s − ω) is positive real.
(3) A generates a strongly continuous semigroup T which satisfies ‖T (t)‖ ≤ e−ωt

for all t ≥ 0.

Proof Obviously, ρ(ωI + A) = ρ(A)+ω and the resolvent of ωI + A is the function
s �→ H(s−ω). Furthermore, if ωI+A generates a semigroup Tω, then A generates the
semigroup T given by T (t) = Tω(t)e−ωt . The result now follows from an application
of Proposition 7.1 to ωI + A. ��
The next corollary is an immediate consequence of Corollary 7.2.

Corollary 7.3 Let A : D(A) ⊂ U → U be densely defined and closed, and let H be
the resolvent of A. The following statements are equivalent.

(1) A is strictly dissipative and ρ(A) ∩ C0 is non-empty.
(2) H is strictly positive real.
(3) A is the generator of an exponentially stable strongly continuous semigroup

which, for some ω > 0, satisfies ‖T (t)‖ ≤ e−ωt for all t ≥ 0.

From Proposition 7.1 and Corollary 7.3, we obtain the following result.

Corollary 7.4 Let A : D(A) ⊂ X → X be densely defined and closed, and let
B ∈ L(U, X), where X is a complex Hilbert space. Define H : ρ(A) → L(U ) by
H(s) := B∗(s I − A)−1B. The following statements hold.

(1) If A is dissipative and ρ(A)∩C0 is non-empty, thenH belongs toH0(L(U )) and
is positive real.

(2) If A is strictly dissipative and ρ(A)∩C0 is non-empty, then there exists an α < 0
such that H belongs toHα(L(U )) and is strictly positive real.

In the following, we will derive a suitable generalization of Corollary 7.4 which allows
for unbounded control operators B. To this end, we need the concept of a system node.
We note that by [43, Lemma 4.7.7], the definition below is equivalent to that given
in [43].

Definition 7.5 LetU , X and Y be complex Hilbert spaces and let S : D(S) ⊂ (
X
U

) →(
X
Y

)
be a linear operator. We write S in the form

S =
(
A&B
C&D

)
, where A&B : D(S) → X and C&D : D(S) → Y

and define an operator A by

A : D(A) ⊂ X → X, x �→ A&B
( x

0
)
, where D(A) := {x ∈ X : ( x

0
) ∈ D(S)}.
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We say that S is system node on the triple of Hilbert spaces (U, X,Y ) if the following
conditions hold:

(a) S is closed;
(b) A&B is closed;
(c) A generates a strongly continuous semigroup;
(d) for every u ∈ U , there exists x ∈ X such that

(
x
u
) ∈ D(S).

Given a system node S on (U, X,Y ) and using the notation of Definition 7.5, we
denote the usual interpolation and extrapolation spaces associated with A and X by X1
and X−1, respectively (see, for example, [43, Sect. 3.6]): letting β ∈ ρ(A), the space
X1 is D(A) endowed with the norm ‖x‖1 := ‖(β I−A)x‖X and X−1 is the completion
of X with respect to the norm ‖x‖−1 := ‖(β I − A)−1x‖X . The operator A extends to
an operator A|X ∈ L(X, X−1) (which generates a strongly continuous semigroup on
X−1 with the same growth bound as the strongly continuous semigroup generated by
A) and A&B has an extension to an operator A&B|X ∈ L(

(
X
U

)
, X−1). The control

operator B ∈ L(U, X−1) is defined by Bu := A&B|X
(

0
u

)
. The observation operator

C ∈ L(X1,Y ) is defined by Cx = C&D
( x

0
)
. For every s ∈ ρ(A), the operator(

(s I−A|X )−1B
I

)
maps U into D(S). Let ω be the growth bound of the semigroup

generated by A. Then, the transfer functionH : Cω → L(U,Y ) of the system node S
is defined by

H(s) := C&D

(
(s I − A|X )−1B

I

)
. (7.1)

The system node S is called compatible if there exists a Hilbert space W with X1 ⊂
W ⊂ X (with continuous embeddings) and an operator C |W ∈ L(W,Y ) such that

(1) C |W z = Cz for all z ∈ X1, and
(2) there exists s ∈ ρ(A) such that (s I − A|X )−1B maps U into W .

It can be shown [43, Lemma 5.1.4] that for a compatible system node the operator
(s I − A|X )−1B maps U into W for all s ∈ ρ(A). Moreover, the operator D :=
H(s)−C |W (s I − A|X )−1B is independent of s ∈ ρ(A). This operator D is called the
feedthrough operator induced by S and C |W and, from [43, Lemma 5.1.4], we have
that

C&D

(
z
v

)
= C |W z + Dv for all

(
z
v

)
∈ D(S).

We note that, in general, W is not unique and moreover that the operator C |W is
generally not uniquely determined by S and W . However, for any compatible system
node there is a canonical minimal space Wmin (minimal in the sense that Wmin ⊂ W
for any compatibility space W ), namely (see [43, Theorem 5.1.8 and Lemma 4.3.12])

Wmin := {w ∈ X : ∃ v ∈ U such that A|Xw + Bv ∈ X},

(with an inner product as given in [43, Lemma 4.3.12]). Not every system node is
compatible, but those that arise in applications typically are (as they are mixed bound-
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ary/distributed control nodes as defined in [43, Definition 5.2.14], which by [43,
Theorem 5.2.15] are compatible).

A function H, which belongs to Hα(L(U,Y )) for some α ∈ R, is said to have
feedthrough DH : U → Y if, for every u ∈ U , H(s)u converges weakly to DHu as
s →∞ on the real axis, that is

lim
s→∞, s∈R〈H(s)u, y〉 = 〈DHu, y〉 ∀ u ∈ U, ∀ y ∈ Y. (7.2)

It is clear that DH is linear and, by the uniform boundedness principle, the oper-
ator DH is bounded (note that we assume only H ∈ Hα(L(U,Y )) rather than
H ∈ H∞

α (L(U,Y )) for some α ∈ R, which is usually done in the literature, for
instance, in the context of regular transfer functions, see [50]).

If a system node is compatible and has a transfer function which has feedthrough
DH [defined by (7.2)], then it is natural to demand that DH is the feedthrough operator
of the system node. By [43, Lemma 5.1.10], this choice is always possible and more-
over, by fixing the feedthrough operator, we also fix C |Wmin . Hence, for a compatible
system node which has transfer function H with feedthrough DH, we have a canonical
extension of the operator C&D to Wmin ×U and with this extension we have

H(s) = DH + C |Wmin(s I − A|X )−1B.

Remark 7.6 We comment that there are alternative, but equivalent, methods of defining
transfer functions: transfer functions can be defined via Laplace transforms [14,16]
or they can be defined via exponential trajectories (see [24, Chapter 12] and [57]).
The equivalence of these definitions is shown in [57] (in a setting less general than
that provided by the system node concept). As will be illustrated by several examples
later in this section, many physically meaningful control systems may be realized as
system nodes, with corresponding transfer functions given by (7.1). A simple example
which cannot be represented as a system node is the differentiator y = u̇, and thus,
the transfer function H(s) = s cannot be written in the form (7.1) (see [42, Theorem
7.4]). ��
The following example (adapted from [15, Example 5.6]) shows that Corollary 7.4 is
in general not valid for unbounded B, that is, in the system node context, dissipativity
of A together with the conditions C = B∗ and DH = 0 is not sufficient for the positive
realness of H.

Example 7.7 Consider the first order hyperbolic PDE:

∂w

∂t
(x, t) = ∂w

∂x
(x, t), w(1, t)− w(0, t) = u(t),

y(t) = w(0, t), t > 0, x ∈ (0, 1).

The operator S given by

D(S) =
{(

z
v

)
∈

(
H1(0, 1)

C

)
: z(1)− z(0) = v

}
, S

(
z
v

)
=

(
z′
z(0)

)
.
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corresponds to the above PDE in a natural way. Using standard PDE techniques, it can
be shown that S is a system node on (U, X,Y ), where X = L2(0, 1) and U = Y = C.
We can calculate z := (s I − A|X )−1Bv from

sz(x) = z′(x), z(1)− z(0) = v,

which gives z(x) = esxv/(es − 1). Since C&D ( z
v ) = z(0), we obtain H(s) =

1/(es − 1). Obviously, DH = lims→∞, s∈RH(s) = 0, showing that H has zero
feedthrough. Furthermore, H(1+ iπ) = −1/(e+ 1) < 0, and thus, H is not positive
real. We show that, however, A is dissipative and C = B∗. We have

D(A) = {z ∈ H1(0, 1) : z(0) = z(1)}, Az = z′,

and so,

Re〈Az, z〉 = Re〈z′, z〉 = 1

2
|z(1)|2 − 1

2
|z(0)|2 = 0 ∀ z ∈ D(A),

showing that A is dissipative. The observation operator is given byCz = z(0). By [43,
Lemma 6.2.14], the adjoint of the control operator can be calculated as the observation
operator of S∗. A routine calculation shows that

D(S∗) =
{(

z
v

)
∈

(
H1(0, 1)

C

)
: z(0)− z(1) = v

}
, S∗

(
z
v

)
=

(−z′
z(1)

)
.

The observation operator of S∗ equals B∗z = z(1). We also see that D(A) = D(A∗)
and that A∗ = −A. For z ∈ D(A), we have z(0) = z(1) and therefore B∗ = C as
operators on D(A) = D(A∗).

For the minimal compatibility space, we have (see [43, Sect. 5.2])Wmin = H1(0, 1).
We can choose C |W as C |W z = z(0). As calculated above, we have that (s I −
A|X )−1Bv equals x �→ esxv/(es − 1), so that (s I − A|X )−1B maps U into Wmin,
showing that the system node is indeed compatible. The corresponding feedthrough
operator D satisfies D = 0 = DH, as desired. ��
Notwithstanding the above example, the next result shows that Corollary 7.4 may be
generalized to system nodes. Note that Corollary 7.4 can be obtained as a special case
of statements (1) and (2) of the theorem below. It is convenient to define

J :=
(
I 0
0 −I

)
∈ L

((
X
U

))
,

a self-adjoint operator (sometimes referred to as signature operator).

Theorem 7.8 Let S be a system node on (U, X,U ) with transfer function H. The
following statements hold.

(1) If Re 〈J ( z
v ) , S ( z

v )〉 ≤ 0 for all ( z
v ) ∈ D(S), then H is positive real.
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(2) If there exists ε > 0 such that Re 〈J ( z
v ) , S ( z

v )〉 ≤ −ε‖z‖2 for all ( z
v ) ∈ D(S),

then H is strictly positive real.
(3) If there exists ε > 0 such that Re 〈J ( z

v ) , S ( z
v )〉 ≤ −ε‖v‖2 for all ( z

v ) ∈ D(S),
then H is strongly positive real.

(4) If there exists ε > 0 such that Re 〈J ( z
v ) , S ( z

v )〉 ≤ −ε(‖z‖2 + ‖v‖2) for all
( z

v ) ∈ D(S), then H is strictly and strongly positive real.

Proof Let γ, δ ≥ 0 and assume that

Re

〈
J

(
z
v

)
, S

(
z
v

)〉
≤ −γ ‖z‖2 − δ‖v‖2 for all

(
z
v

)
∈ D(S). (7.3)

Note that the assumptions imposed in statements (1)–(4) are all special cases of (7.3):
for example, the assumptions imposed in statements (2) and (3) correspond to the
cases wherein (γ, δ) = (ε, 0) and (γ, δ) = (0, ε), respectively.

Let z ∈ D(A). Evaluating (7.3) with v = 0 shows that Re〈Az, z〉 ≤ −γ ‖z‖2. From
this, we obtain that γ I + A is dissipative which implies that C−γ ⊂ ρ(A) and that
H ∈ H−γ (L(U )).

Let v ∈ U and s ∈ C−γ . Define z := (s I − A)−1Bv. Then, ( z
v ) ∈ D(S) and

Re

〈
J

(
z
v

)
, S

(
z
v

)〉
= Re(s) ‖(s I − A)−1Bv‖2 − Re〈H(s)v, v〉.

From (7.3) we then obtain, for all v ∈ U and s ∈ C−γ ,

(Re s) ‖(s I − A)−1Bv‖2 − Re〈H(s)v, v〉 ≤ −γ ‖z‖2 − δ‖v‖2,

which can be re-arranged to arrive at

Re〈H(s)v, v〉 ≥ (Re(s)+ γ ) ‖(s I − A)−1Bv‖2 + δ‖v‖2 ∀ v ∈ U, ∀ s ∈ C−γ .

Statements (1)–(4) now follow by choosing, respectively, γ = δ = 0, (γ, δ) = (ε, 0),
(γ, δ) = (0, ε) and γ = δ = ε. ��

We provide some commentary on the above theorem.

Remark 7.9 (a) Theorem 7.8 shows that certain dissipativity properties of J S guar-
antee positive realness properties of the transfer function H of the system node
S. Statement (1) of Theorem 7.8, which also appears in [41, Theorem 4.2],
is reminiscent of one direction of what is known in the finite-dimensional
setting as the Kalman–Yakubovich–Popov (or positive real) lemma, see, for
instance, [1,10,13,21,22]. Whilst Theorem 7.8 is not deep, it is nevertheless use-
ful because it provides a sufficient condition for (strict, strong) positive realness
which may be checked in the context of physically motivated PDE examples.
Indeed, the analysis of such systems often benefits from dissipativity properties
with respect to “energy” norms and, in this context, (7.3) should be interpreted
accordingly.
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By way of comparison, if a finite-dimensional, continuous-time, linear control
system is specified by the operators (A, B,C, D) with A dissipative, B = C∗ and
− D dissipative, then the dissipativity assumption in statement (1) holds, as

0 
 Re

(
I 0
0 −I

) (
A B
C D

)
=

(
A + A∗ B − C∗
B∗ − C −(D + D∗)

)
.

(b) Partial converses of statement (1) of Theorem 7.8 have appeared in [41, Theo-
rem 4.2] and [42, Theorem 4.1]. These references address the problem from a
time-domain perspective, and [5, Theorem 5.4] focuses on contractive transfer
functions. We emphasize that the dissipativity of J S guaranteed by these results
is with respect to an inner product which is not necessarily equivalent to the
“natural” inner product on X ×U . ��

We illustrate Theorem 7.8 by a modified version of Example 7.7.

Example 7.10 Consider the first order hyperbolic PDE from Example 7.7, but now
with point observation at the right end:

∂w

∂t
(x, t) = ∂w

∂x
(x, t), w(1, t)− w(0, t) = u(t),

y(t) = w(1, t), t > 0, x ∈ (0, 1).

The corresponding system node on (U, X,U ), where X = L2(0, 1) and U = C, is
given by

D(S) =
{(

z
v

)
∈

(
H1(0, 1)

C

)
: z(1)− z(0) = v

}
, S

(
z
v

)
=

(
z′
z(1)

)
,

and so,

Re

〈
J

(
z
v

)
, S

(
z
v

)〉
= Re〈z, z′〉 − Re〈z(1)− z(0), z(1)〉. (7.4)

The right-hand side of (7.4) equals

1

2

(
|z(1)|2 − |z(0)|2

)
− Re〈z(1)− z(0), z(1)〉 = −1

2
|z(1)− z(0)|2 = −1

2
|v|2.

Theorem 7.8 shows that the transfer function H is strongly positive real.
To calculate the transfer function, we consider z := (s I − A|X )−1Bv. Then

sz(x) = z′(x), z(1)− z(0) = v,

which gives z(x) = esxv/(es−1). SinceC&D
(
z
u
) = z(1), we haveH(s) = es/(es−

1). This transfer function has feedthrough DH = 1.
As in Example 7.7, we have Wmin := H1(0, 1) and similarly as in that example we

see that the system node is compatible. With the choice C |Wmin z = z(0), we have that
the corresponding feedthrough operator D equals one, as desired.
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We note that A and Wmin are the same in this example and Example 7.7 and that
the observation operators from the two examples are the same on Wmin. However, the
feedthrough operators are different.

Alternatively, in the present example, we could have chosen the feedthrough D
to be zero (and therefore not equal to DH). The corresponding extended observation
operator is given by C |Wmin z = z(1). Then, we have a feedthrough operator which is
the same as in Example 7.7, an observation operator which (on D(A)) is the same as
is Example 7.7, but an extended observation operator C |Wmin which is not the same as
in Example 7.7. ��

We give several more examples of partial differential equations with positive-real
transfer functions to further illustrate some of the results from Sections 3–6.

Example 7.11 Consider the heat equation from [16, Example 4.3.12]:

∂w

∂t
(x, t) = ∂2w

∂x2 (x, t),
∂w

∂x
(1, t) = u(t),

∂w

∂x
(0, t) = 0

y(t) = w(1, t)

⎫
⎬

⎭
t > 0, x ∈ (0, 1) .

Routine arguments show that the corresponding operator S given by

D(S) =
{(

z
v

)
∈

(
H2(0, 1)

C

)
: z′(1) = v, z′(0) = 0

}
, S

(
z
v

)
=

(
z′′
z(1)

)

is a system node on (U, X,U ), where X = L2(0, 1) and U = C. We have

Re

〈
J

(
z
v

)
, S

(
z
v

)〉
= Re〈z′′, z〉 − Re〈z′(1), z(1)〉 ∀ ( z

v ) ∈ D(S),

and integration by parts shows that the right-hand side of the above identity is equal
to

Re〈z(1), z′(1)〉 − Re〈z(0), z′(0)〉 − ‖z′‖2 − Re〈z′(1), z(1)〉 = −‖z′‖2 ≤ 0.

Theorem 7.8 guarantees that the transfer function H is positive real. To calculate H,
set z := (s I − A|X )−1Bv and note that

sz(x) = z′′(x), z′(1) = v, z′(0) = 0,

which gives

z(x) = v cosh(
√
sx)√

s sinh(
√
s)

.

Since C&D ( z
v ) = z(1), it follows that

H(s) = 1√
s tanh (

√
s)

.
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It may appear that H has a branch point at 0; however, this is not the case. Indeed,
consider the power series expansion of tanh(z) at zero which converges for |z| < π

2
and has only odd powers of z. It follows from this that

√
s tanh

√
s has a power series

expansion at zero which converges for |s| < π2

4 . Therefore, H is meromorphic in the
whole of C, with poles at − n2π2 for n ∈ N0. It is clear that H is neither strictly nor
strongly positive real. ��
Example 7.12 Consider the following heat equation with control in a Robin boundary
condition:

∂w

∂t
(x, t) = ∂2w

∂x2 (x, t),
∂w

∂x
(1, t)

+ kw(1, t) = u(t),
∂w

∂x
(0, t) = 0

y(t) = w(1, t)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

t > 0, x ∈ (0, 1),

where k > 0. This controlled heat equation is obtained from the system in Exam-
ple 7.11 by application of feedback with the operator K ∈ L(C) defined by
Ku := −ku. Since K is strictly dissipative, we obtain from Proposition 6.1, Lemma 6.2
and Example 7.11 that the transfer function of the above Robin controlled heat equa-
tion is positive real. Moreover, we obtain from Theorem 6.4 that its transfer function
is stable (that is, it belongs to H∞

0 ). ��
Example 7.13 Here, we revisit Example 7.11, but now with a Dirichlet rather than
Neumann boundary condition at zero and with non-negative feedthrough DH:

∂w

∂t
(x, t) = ∂2w

∂x2 (x, t),
∂w

∂x
(1, t) = u(t), w(0, t) = 0

y(t) = w(1, t)+ κ
∂w

∂x
(1, t)

⎫
⎪⎪⎬

⎪⎪⎭
t > 0, x ∈ (0, 1),

where κ ≥ 0. With X = L2(0, 1) and U = C, the above system corresponds to a
system node S on (U, X,U ) given by

D(S) =
{(

z
v

)
∈

(
H2(0, 1)

C

)
: z′(1) = v, z(0) = 0

}
, S

(
z
v

)
=

(
z′′

z(1)+ κz′(1)

)
.

Calculations similar to those in Example 7.11 lead to

Re

〈
J

(
z
v

)
, S

(
z
v

)〉
= −‖z′‖2 − κ|v|2 ∀ ( z

v ) ∈ D(S).

Since z(0) = 0, we have ‖z‖2 ≤ ‖z′‖2, and so,

Re

〈
J

(
z
v

)
, S

(
z
v

)〉
≤ −‖z‖2 − κ|v|2 ∀ ( z

v ) ∈ D(S).
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From Theorem 7.8, we now obtain that the transfer function H is strictly positive real,
and furthermore, H is strongly positive real if κ > 0. Routine calculations give

H(s) = κ + tanh(
√
s)√

s
,

showing in particular thatH has feedthrough DH = κ . We see thatH is in fact strongly
positive real if, and only if, κ > 0. ��
The next example involves an operator-valued transfer function.

Example 7.14 Consider the following heat equation on the squareΩ := (0, 1)×(0, 1):

∂w

∂t
(x1, x2, t) = ∂2w

∂x2
1

(x1, x2, t)+ ∂2w

∂x2
2

(x1, x2, t),

w(0, x2, t) = 0, w(1, x2, t) = 0,

∂w

∂x2
(x1, 0, t) = 0,

∂w

∂x2
(x1, 1, t) = u(x1, t),

y(x1, t) = w(x1, 1, t).

Setting X = L2(Ω) and U = L2(0, 1), it follows from the standard theory of elliptic
boundary value problems that this PDE system corresponds to the following system
node S on (U, X,U ):

D(S) =
⎧
⎨

⎩

(
z
v

)
∈

(
H2(Ω)

L2(0, 1)

)
:

z(0, x2) = 0, z(1, x2) = 0

∂z

∂x2
(x1, 0) = 0,

∂z

∂x2
(x1, 1) = v(x1)

⎫
⎬

⎭
,

S

(
z
v

)
=

(
Δz

z(· , 1)

)
, where Δ is the Laplacian.

Invoking Green’s identity, we obtain

Re

〈
J

(
z
v

)
, S

(
z
v

)〉
= Re〈z,Δz〉L2(Ω) − Re

∫ 1

0

∂z

∂x2
(x1, 1)z(x1, 1) dx1

= −‖∇z‖2
L2(Ω)

≤ 0,

which holds for all ( z
v ) ∈ D(S). As a consequence, the transfer function H is positive

real (where we have used, once again, Theorem 7.8).
We calculate z := (s I − A|X )−1Bv from

sz(x1, x2) = ∂2z

∂x2
1

(x1, x2)+ ∂2z

∂x2
2

(x1, x2),

z(0, x2) = 0, z(1, x2) = 0,
∂z

∂x2
(x1, 0) = 0,

∂z

∂x2
(x1, 1) = v(x1).

123



2 Page 50 of 61 Math. Control Signals Syst. (2017) 29:2

This problem can be solved by separation of variables, so we substitute ϕ(x1)ψ(x2)

for z(x1, x2) and re-arrange to obtain

ϕ′′

ϕ
= s − ψ ′′

ψ
= c,

for some constant c (which may depend on s). Solving

ϕ′′(x1) = cϕ(x1), ϕ(0) = ϕ(1) = 0,

we see that c = −n2π2 with n ∈ N and ϕ(x1) =
√

2 sin(nπx1). Next, we solve

ψ ′′(x2) = (s + n2π2)ψ(x2), ψ ′(0) = 0,

to obtain ψn(x2) = cn cosh(x2
√
s + n2π2), where cn is a constant (depending on n

and s). We then have

z(x, y) =
∞∑

n=1

cn cosh(x2

√
s + n2π2)

√
2 sin(nπx1)

and still need to satisfy the boundary condition (∂z/∂x2)(x1, 1) = v(x1). This leads
to

∞∑

n=1

cn
√
s + n2π2 sinh(

√
s + n2π2)

√
2 sin(nπx1) = v(x1).

We infer that cn
√
s + n2π2 sinh(

√
s + n2π2) must equal the n-th Fourier sine coef-

ficient of v. Therefore,

cn = γn(v)√
s + n2π2 sinh(

√
s + n2π2)

,

where the linear functional γn is given by

γn(v) = √
2〈v, sin(nπ ·)〉L2(0,1) =

√
2

∫ 1

0
v(x1) sin(nπx1)dx1.

As consequence, we obtain for the transfer function H,

H(s)v =
∞∑

n=1

cosh(
√
s + n2π2)γn(v)√

s + n2π2 sinh(
√
s + n2π2)

√
2 sin(nπ ·).
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Note that this means that the Fourier sine coefficients of H(s)v are obtained by mul-
tiplication of the Fourier sine coefficients γn(v) of v with

hn(s) := 1√
s + n2π2 tanh(

√
s + n2π2)

,

which itself is a positive-real function. ��
Next, we will be considering a wave equation example.

Example 7.15 Consider the wave equation

∂2w

∂t2 (x, t) = ∂2w

∂x2 (x, t), w(0, t) = 0,
∂w

∂x
(1, t) = u(t)

y(t) = ∂w

∂t
(1, t)

⎫
⎪⎪⎬

⎪⎪⎭
t > 0, x ∈ (0, 1) .

Define X := Z× L2(0, 1), where Z := {z ∈ H1(0, 1) : z(0) = 0}with inner product

〈z1, z2〉Z := 〈z′1, z′2〉L2 .

Note that this inner product is equivalent to the standard inner product which Z inherits
from H1(0, 1). Setting U = C, the above wave equation is described by the system
node on (U, X,U ) given by

D(S) =
⎧
⎨

⎩

⎛

⎝
z1
z2
v

⎞

⎠ ∈
⎛

⎝
H2(0, 1)

H1(0, 1)

C

⎞

⎠ : z1(0) = 0, z′1(1) = v, z2(0) = 0

⎫
⎬

⎭
,

S

⎛

⎝
z1
z2
v

⎞

⎠ =
⎛

⎝
z2
z′′1

z2(1)

⎞

⎠ .

We note that the condition z2(0) = 0 which appears in the definition of the domain
D(S) corresponds to the additional boundary condition (∂w/∂t)(0, t) = 0, which is
a compatibility condition.

It follows from the definition of S that

Re

〈
J

(
z
v

)
, S

(
z
v

)〉
= Re〈z1, z2〉Z + Re〈z2, z

′′
1〉L2 − Re〈z′1(1), z2(1)〉 ∀ ( z

v ) ∈ D(S).

Integration by parts shows that the right-hand side of the above equation is equal to

Re〈z1, z2〉Z − Re〈z′2, z′1〉L2 + Re〈z2(1), z′1(1)〉 − Re〈z2(0), z′1(0)〉 − Re〈z′1(1), z2(1)〉.
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Using that 〈z1, z2〉X1 = 〈z′1, z′2〉L2 , we see that the above expression equals zero, and
hence,

Re

〈
J

(
z
v

)
, S

(
z
v

)〉
= 0.

Consequently, by Theorem 7.8, the transfer function H is positive real.
To obtain a formula for H, we calculate z := (s I − A|X )−1Bv from

s2z1(x) = z′′1(x), z1(0) = 0, z′1(1) = v, z2(x) = sz1(x),

which gives

z1(x) = v sinh(sx)

s cosh(s)
.

Since C&D ( z
v ) = z2(1), we conclude that H(s) = tanh(s). Noting that H(0) = 0

and that H has poles at iπ(2n + 1)/2 for n ∈ Z, we see that H is neither strongly nor
strictly positive real. ��

Example 7.16 Consider the following wave equation

∂2w

∂t2 (x, t) = ∂2w

∂x2 (x, t), w(0, t) = 0,

∂w

∂x
(1, t)+ k

∂w

∂t
(1, t) = u(t)

y(t) = ∂w

∂t
(1, t)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

t > 0, x ∈ (0, 1) .

where k > 0. This system is obtained from that in Example 7.15 by feedback with the
operator K ∈ L(C) defined by Ku := −ku. Since K is strictly dissipative, we obtain
from Proposition 6.1 and Lemma 6.2 that the transfer function of the above wave
equation is positive real. Moreover, Theorem 6.4 ensures that its transfer function is
stable (that is, belongs to H∞

0 ). ��

Example 7.17 Consider the overdamped wave equation

∂2w

∂t2 (x, t) = ∂2w

∂x2 (x, t)+ ∂3w

∂x2∂t
(x, t), w(0, t) = 0

∂w

∂x
(1, t)+ ∂2w

∂x∂t
(1, t) = u(t)

y(t) = ∂w

∂t
(1, t)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

t > 0, x ∈ (0, 1) .
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Set U := C and X := Z × L2(0, 1), where Z is defined as in Example 7.15. The
above wave equation is described by the following system node on (U, X,U ):

D(S) =

⎧
⎪⎨

⎪⎩

⎛

⎝
z1
z2
v

⎞

⎠ ∈
⎛

⎝
H1(0, 1)

H1(0, 1)

C

⎞

⎠ :
z1 + z2 ∈ H2(0, 1),

z1(0) = 0, z′1(1)+ z′2(1) = v,

z2(0) = 0

⎫
⎪⎬

⎪⎭
,

S

⎛

⎝
z1
z2
v

⎞

⎠ =
⎛

⎝
z2

z′′1 + z′′2
z2(1)

⎞

⎠ .

Calculations similar to those in Example 7.15 yield

Re

〈
J

(
z
v

)
, S

(
z
v

)〉
= −‖z′2‖2

L2 ≤ 0 ∀ ( z
v ) ∈ D(S),

and hence, by Theorem 7.8, the transfer function H is positive real. As before, H can
be determined via calculation of z = (s I − A|X )−1Bv and we obtain

H(s) =
tanh( s√

s+1
)

√
s + 1

.

As in Example 7.11, H does not have a branch point at− 1. Points for which s√
s+1

=
iπ 2n−1

2 with n ∈ Z (the poles of tanh) are the poles of H. Consequently,

−π ± i
√

16π − π2

8
,

−π(2n − 1)2 −√
π2(2n − 1)4 − 16π(2n − 1)

8
, n ≥ 2

are poles of H, as are,

sn := −2π(2n − 1)2

π(2n − 1)2 +√
π2(2n − 1)4 − 16(2n − 1)2

, n ≥ 2.

Since limn→∞ sn = −1, we see that − 1 is an accumulation point of poles. Further-
more, sn < −1 for all n ≥ 2, and so H ∈ H∗−1, but H /∈ H∗

α for any α < −1. In
particular, the transfer function H is not meromorphic on C, but it is meromorphic on
C−1. ��

Finally, we consider an example of the feedback interconnection of a heat and a wave
equation, both of which have positive-real transfer functions.
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Example 7.18 Consider the following coupled heat-wave equation:

∂z

∂t
(x, t) = ∂2z

∂x2 (x, t),
∂2w

∂t2 (x, t) = ∂2w

∂x2 (x, t),

z(0, t) = 0, w(0, t) = 0,

y1(t) = −z(1, t)− κ
∂z

∂x
(1, t), y2(t) = ∂w

∂t
(1, t),

∂z

∂x
(1, t) = y2(t)+ v1(t),

∂w

∂x
(1, t) = y1(t)+ v2(t),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

t > 0, x ∈ (0, 1),

where κ ≥ 0. This is the feedback interconnection of the heat equation from Exam-
ple 7.13 (with output multiplied by − 1) and the wave equation from Example 7.15,
with respective input/output pairs (v1, y1) and (v2, y2). The respective transfer func-
tions are given by

Kκ(s) := −κ − tanh(
√
s)√

s
and H(s) := tanh(s) .

Since H is positive real, Kκ ∈ H∞
0 and−Kκ is strongly positive real for every κ > 0,

it follows from Theorem 6.16 that the transfer function

H(s)(I −Kκ(s)H(s))−1 = tanh(s)

1+ tanh(
√
s)√

s
tanh(s)+ κ tanh(s)

,

is in H∞
0 , provided that κ > 0. Since Kκ ∈ H∞

0 , the coupled heat-wave equation is
stable for κ > 0 (in the sense that all four transfer functions are in H∞

0 ). If κ = 0,
then, akin to Example 6.19, it can be shown that the feedback interconnection is not
stable. ��

8 Conclusion

A general class of irrational and operator-valued transfer functions has been con-
sidered, with a particular focus on the positive realness property, and its relation to
stabilization by output feedback. The main result in Sect. 3, Theorem 3.7, gives a char-
acterization of positive realness in terms of imaginary axis data and provides a clear-cut
generalization of the well-known rational case. Section 4 introduces stronger notions of
positive realness, namely strict and strong positive realness, and Theorem 4.4 describes
relationships between the two. In Sect. 5, we discuss admissible and stabilizing feed-
back operators, generalizing the formulation of [51] and “preparing the way” for our
main results in Sect. 6—relationships between positive realness and stabilization by
output feedback. We highlight here Theorem 6.3, which contains a characterization
of positive realness in terms of mixed imaginary axis conditions and stabilizability
properties, and Theorem 6.4, which states that H being positive real is equivalent to
the condition that every strictly dissipative output feedback operator is a stabilizing
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feedback operator for H. Furthermore, given a transfer function H and feedback oper-
ators K1 and K2, Theorem 6.8 shows that the function (I − K2H)(I − K1H)−1 is
positive real if, and only if, every operator K in the sector defined by K1 and K2 is a
stabilizing feedback operator for H. The necessity direction of this result is reminis-
cent of the well-known circle criterion. We note that in less general contexts, the circle
criterion is usually formulated for nonlinear control systems (guaranteeing global sta-
bility for all nonlinear static locally Lipschitz functions satisfying a sector condition
determined by K1 and K2) and we remark that suitable extensions of Theorem 6.8 and
its corollaries to the nonlinear case are in preparation [20]. Finally, we would like to
highlight Theorem 6.16 which shows that positive realness of a transfer function H is
equivalent to H being stabilized by every stable transfer function K such that −K is
strongly positive real. Establishing alternative sufficient conditions for the stability of
the feedback interconnection of two transfer functions H and K in H0(L(U )) in terms
of positive-real type properties of H and −K seems an interesting problem for future
work (see also [56, Theorem 4.2] which has some overlap with Theorem 6.16). We
feel that the theory developed in the current paper is likely to be useful in this context.

9 Appendix

Proof of Lemma 2.2 We first prove the following lemma.

Lemma 9.1 If S ∈ L(U ) is such that Re S 
 0, then I + S is invertible.

Proof Assume that Re S 
 0. Noting that

‖(I + S)u‖2 = ‖u‖2 + 2〈Re Su, u〉 + ‖Su‖2 ≥ 1 ∀ u ∈ EU ,

it follows that I + S is bounded away from 0. Now, since Re S∗ = Re S, we have
Re S∗ 
 0, and, by replacing in the above argument S by S∗, we see that I + S∗ is
bounded away from 0. Consequently, I + S and (I + S)∗ are both bounded away from
0 and therefore I + S is invertible (see [33, Proposition 3.2.6]). ��
Proof of Lemma 2.2 We start by noting that

2 Re S 
 (1− δ2)(1+ δ2)−1(I + S∗S
)

(9.1)

is equivalent to
(1+ δ2)(S + S∗)− (1− δ2)(I + S∗S) 
 0, (9.2)

which in turn is equivalent to

δ2(I + S∗)(I + S)− (I − S∗)(I − S) 
 0. (9.3)

Obviously, (9.1) implies that Re S 
 0, and so, by Lemma 9.1, I + S is invertible, and
hence, the operator I + S∗ is also invertible. Consequently, (9.3) is equivalent to

δ2 I − (I + S∗)−1(I − S∗)(I − S)(I + S)−1 
 0. (9.4)

123



2 Page 56 of 61 Math. Control Signals Syst. (2017) 29:2

Moreover, (9.4) is equivalent to

δ2 ≥ 〈(I + S∗)−1(I − S∗)(I − S)(I + S)−1u, u〉
= 〈(I − S)(I + S)−1u, (I − S)(I + S)−1u〉 ∀ u ∈ EU , (9.5)

or, equivalently,
‖(I − S)(I + S)−1‖ ≤ δ. (9.6)

The claim now follows since the inequalities (9.1)–(9.6) are all equivalent. ��
Continuity of the function defined by (4.6). Here, we show that the function h :
Cγ → R+ defined by (4.6) is continuous.4 To this end, let s ∈ Cγ and let (sn) be
sequence in Cγ such that sn → s as n →∞. We note that

|〈ReH(sn)u, u〉 − 〈ReH(s)u, u〉| ≤ ‖ReH(sn)− ReH(s)‖ ∀ n ∈ N, ∀ u ∈ EU .

(9.7)
We now choose un ∈ EU such that

δn := 〈ReH(sn)un, un〉 − h(sn) → 0 as n →∞.

By (9.7),

rn := 〈ReH(sn)un, un〉 − 〈ReH(s)un, un〉 → 0 as n →∞.

Now, for all n ∈ N,

h(sn) = 〈ReH(sn)un, un〉 − δn = 〈ReH(s)un, un〉 + rn − δn,

and so, h(sn) ≥ h(s)+ rn − δn , showing that

lim inf
n→∞ h(sn) ≥ h(s). (9.8)

Furthermore, we choose vn ∈ EU such that

εn := 〈ReH(s)vn, vn〉 − h(s) → 0 as n →∞.

By (9.7),

qn := 〈ReH(sn)vn, vn〉 − 〈ReH(s)vn, vn〉 → 0 as n →∞.

Noting that, for all n ∈ N,

h(sn) ≤ 〈ReH(sn)vn, vn〉 = 〈ReH(s)vn, vn〉 + qn,

4 Actually, for the purpose of proving Theorem 4.4, it would be sufficient to show that h is lower semi-
continuous (and hence, − h is upper semicontinuous), since that is all that is needed for the mean-value
characterization of subharmonic functions.
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we conclude that h(sn) ≤ h(s)+ qn + εn , which in turn implies

lim sup
n→∞

h(sn) ≤ h(s). (9.9)

Finally, we obtain from (9.8) and (9.9) that

lim
n→∞ h(sn) = h(s),

proving the continuity of h. ��
Proof of Lemma 5.5 By hypothesis, there exists μ > 0 such that

‖S−1
n ‖ = ‖S−∗n ‖ ≤ 1

μ
∀ u ∈ U, ∀ n ∈ N.

Furthermore, 〈S−∗n u, Snu〉 = ‖u‖2 for all u ∈ U and all n ∈ N, and thus,

‖Snu‖ ≥ μ‖u‖ ∀ u ∈ U, ∀ n ∈ N,

which in turn implies that

‖Su‖ ≥ μ‖u‖ ∀ u ∈ U.

Similarly, the identity

〈S−1
n u, S∗nu〉 = ‖u‖2 ∀ u ∈ U, ∀ n ∈ N

can be used to show that

‖S∗u‖ ≥ μ‖u‖ ∀ u ∈ U.

Hence, S and S∗ are both bounded away from 0 and therefore S is invertible (see [33,
Proposition 3.2.6]). Finally, for every u ∈ U ,

‖S−1
n u − S−1u‖ ≤ 1

μ
‖u − SnS

−1u‖ → 0 as n →∞

and

‖S−∗n u − S−∗u‖ ≤ 1

μ
‖u − S∗n S−∗u‖ → 0 as n →∞,

completing the proof. ��
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Proof of Lemma 5.8 Under the conditions of the lemma, it follows from [26, Theorem
1.9, Chapter VII] that the set Δ does not have any accumulation points in Ω . It remains
to show that, if Δ is non-empty, then every point in Δ is a pole of (I − F)−1 (and
not an essential singularity). To this end, assume that Δ �= ∅ and let p ∈ Δ. By [18,
Lemma 4.3.3], I − F(s) is a Fredholm operator for all s ∈ Ω . Choose an open
neighborhood Π ⊂ Ω of p such that I − F(s) is invertible for all s ∈ Π\{p} =: Π∗.
Obviously, index (I − F(s)) = 0 for all s ∈ Π∗, and so, invoking [18, Theorem
4.3.11], we conclude that index (I − F(p)) = 0. An application of [18, Theorem
4.3.5] now shows that there exist closed subspaces U0, U1, V0 and V1 of U such that
dimU1 = dim V1 < ∞, U = U0 ⊕U1 = V0 ⊕ V1 and I − F(p) is of the form

I − F(p) =
(
F0 0
0 0

)
: U0 ⊕U1 → V0 ⊕ V1,

where F0 ∈ L(U0, V0) is an isomorphism. Let F1 ∈ L(U1, V1) be an isomorphism
and define

T :=
(
F−1

0 0
0 F−1

1

)
: V0 ⊕ V1 → U0 ⊕U1.

Trivially, T is an isomorphism and

T (I − F(p)) =
(
I 0
0 0

)
.

We now partition T (I − F) as follows:

T (I − F) =
(
A B
C D

)
,

where A, B, C and D are holomorphic functions defined on Ω with values in L(U0),
L(U1,U0), L(U0,U1) and L(U1), respectively. It is clear that A(s) is invertible for all
s in a sufficiently small neighborhood of p. Therefore, by suitably “shrinking” Π if
necessary, we may assume thatA(s) is invertible for all s ∈ Π . The Schur complement

S(s) := D(s)− C(s)A−1(s)B(s)

of T (I − F(s)) is holomorphic on Π with values in L(U1). Since T (I − F(s)) is
invertible for all s ∈ Π∗, the Schur complement S(s) is invertible for all s ∈ Π∗ and

[
T (I − F(s))

]−1 =
(
A−1(s)

(
I + B(s)S−1(s)C(s)A−1(s)

) −A−1(s)B(s)S−1(s)
−S−1(s)C(s)A−1(s) S−1(s)

)
∀ s ∈ Π∗,

(9.10)
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see [46, Proposition 1.6.2]. Since S(s) is invertible for all s ∈ Π∗, S is holomorphic on
Π with values in L(U1) and U1 is finite dimensional, the function S−1 holomorphic
on Π∗ and the singularity at p is a pole. Finally, each of the functions A−1, B and C
is holomorphic on Π , and thus it follows from (9.10) that p is a pole of T (I − F)−1

and hence of (I − F)−1. ��
Proof of Lemma 6.2 Statement (1) follows immediately from Theorem 6.4. We pro-
ceed to establish statement (2). By hypothesis, we have that − K = −K ∗ 
 0 and
hence there exists a unique operator S ∈ L(U ) such that S = S∗ 
 0 and S2 = −K
(that is, S is the square root of − K ). Then, trivially, I − KH = I + S2H and thus,
for every s ∈ C0, the operator I − KH(s) is invertible if, and only if, I + SH(s)S
is invertible. But the function s �→ SH(s)S is positive real and the invertibility of
I + SH(s)S for every s ∈ C0 is a consequence of statement (1) of Corollary 2.3.

Finally, to prove statement (3), assume that K is dissipative and an admissible
feedback operator for H and dimU < ∞. Let εn > 0 be such that εn → 0 as n →∞
and set Kn := K − εn I . Then, Kn is strictly dissipative and Theorem 6.4 implies that

gn(s) := det(I − KnH(s)) �= 0 ∀ s ∈ C0, ∀ n ∈ N. (9.11)

Seeking a contradiction, suppose that (6.1) does not hold. Then, setting g(s) := det(I−
KH(s)) for all s ∈ C0, there exists s0 ∈ C0 such that g(s0) = 0. Let Δ ⊂ C0 be a
closed disc centred at s0 such that g(s) �= 0 for all s ∈ Δ, s �= s0 (the existence of
such a disc follows from the admissibility of K ). The boundary of Δ is denoted by
∂Δ, and we set μ := infs∈∂Δ |g(s)| > 0. The sequence of holomorphic functions gn
converges locally uniformly to g, and so there exists N ∈ N such that

sup
s∈∂Δ

|g(s)− gn(s)| < μ ∀ n ≥ N .

It now follows from Rouché’s theorem [30, Theorem 5 in Chapter 5] that, for every
n ≥ N , the function gn has a zero in the interior of Δ, contradicting (9.11). ��
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