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Abstract

Controllability of positive systems by positive inputs arises naturally in applications where both

external and internal variables must remain positive for all time. In many applications, particularly in

population biology, the need for positive inputs is often overly restrictive. Relaxing this requirement,

the notion of positive state controllability of positive systems is introduced. A connection between

positive state controllability and positive input controllability of a related system is established and

used to obtain Kalman–like controllability criteria. In doing so we aim to encourage further study

in this underdeveloped area.
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1 Introduction

Controllability is one of the most fundamental concepts in control theory. For finite–dimensional, linear,
time–invariant, continuous time systems the notions of reachability, controllability and null controllability
are all equivalent. The formulation of these concepts dates back to Kalman [1] and, as is well–known,
their appeal lies in the interplay between analytic and algebraic concepts. For instance, the existence of
a control steering the system to a desired state is equivalent to the reachability matrix having full rank.

Controllability does not a priori respect any (componentwise) nonnegativity of a system. This is prob-
lematic for many physically motivated applications, where state and input variables correspond to quan-
tities that cannot take negative values. The need for nonnegative variables motivated the development
of positive systems theory and there now exist several textbooks on the subject (for example, [2]–[4]).
Naturally, controllability, that is positive input controllability, in such a framework is more limited than
the general case, but the situation is well understood ([5, 6] and the references therein). A key feature of
positive systems theory is the notion that both the state and the input variables must be nonnegative.

It is of interest, however, to consider

x(t+ 1) = Ax(t) +Bu(t), t ∈ N0, (1.1)

where A and B are componentwise nonnegative under the constraints that just the state must be non-
negative – what might be termed positive state controllability. There are conceivably many applications
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of such a framework, for example in economic or logistic type models (see, for example, Miller & Blair
[7]). Our primary example of where such a framework is necessary, however, is population ecology. Here
matrix models are often used (see, for example, Caswell [8] or Cushing [9]) with the nonnegative state x

denoting a stage– or age–structured population, and the control u denoting a conservation strategy or a
form of pest control or harvesting. There are many papers (including, for example, [10]–[13]) where the
model (1.1) is suitable for describing the addition or removal of individuals from a population and for a
full description of these actions we require that u can take negative values.

The framework of positive state controllability places a nonnegativity constraint on the codomain, and
not on the domain, of the input–to–state map and it is not immediately clear that the positive input
controllability theory is applicable. Here we demonstrate that under certain assumptions (reasonable for
applications to population ecology) the problem of positive state controllability is equivalent to positive
input controllability of a related positive system. Using this approach we characterise both the set of
reachable states and the set of null controllable states of the pair (A,B) under the constraint that the
state must remain nonnegative. We demonstrate that, for example, the class of Leslie matrices [14] (with
suitable control) that is frequently used in ecological modelling are positive state controllable, but often
with negative control signals. We believe that there is seemingly a non–trivial ‘middle ground’ between
controllability of linear systems and positive input controllability of positive systems that is worthy of
in depth study.

2 Positive state control

For n ∈ N, Rn
+ denotes the nonnegative orthant in Rn and ei ∈ Rn is the ith standard basis vector.

For vectors x and matrices X , x ≥ 0 (also 0 ≤ x) and X ≥ 0 (also 0 ≤ X) denotes componentwise
nonnegativity. The superscript T denotes matrix transposition. We are interested in the pair (A,B)
generating the controlled system (1.1) where A,B ≥ 0 and the state x is nonnegative.

Our main result is Theorem 2.6 which relates nonnegative state trajectories with possibly nonpositive
inputs to nonnegative state trajectories with nonnegative inputs of a related system. Such a connection
allows us to appeal to existing positive input control results for this related system. Our key assumption
is the following

(A) Given the pair (A,B) ∈ Rn×n × Rn×m with A,B ≥ 0 there exists F ∈ Rm×n such that with
Ã := A−BF both Ã ≥ 0 and if v ∈ Rn

+, w ∈ Rm satisfy Ãv +Bw ≥ 0 then w ≥ 0.

The idea of assumption (A) is that by decomposing A into Ã+BF , then negative controls u in Ax+Bu

can be can be absorbed as Ãx + B(Fx + u). Lemma 2.1 below gives a constructive characterisation
of assumption (A) and demonstrates that if (A) holds then if holds for precisely one F which can be
calculated explicitly.

Lemma 2.1. Assumption (A) holds for (A,B) ∈ Rn×n × Rn×m with A,B ≥ 0 if, and only if, there
exist m rows of B such that the m×m submatrix, denoted B, formed by taking these m rows from B is
a positive monomial matrix and

A−BB−1A ≥ 0 . (2.1)

Here A is formed of the m rows of A that appear in B. Consequently, (A) holds if, and only if, it holds
with F = B−1A so that Ã := A−BF ≥ 0.

To prove Lemma 2.1 we first need an intermediate result.

Lemma 2.2. Given a pair (A,B) with A,B ≥ 0 then assumption (A) holds for (A,B) if, and only if,
there exists F,H ∈ Rm×n such that the following four conditions hold

(a) F,H ≥ 0 , (b) A−BF ≥ 0 ,

(c) HA = F , (d) HB = Im .
(2.2)

Here Ip with p ∈ N denotes the p× p identity matrix.
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Proof. Assumption (A) can be written as, there exists F ∈ Rm×n, F ≥ 0 such that Ã = A − BF ≥ 0
and for all v ∈ Rn, w ∈ Rm

[

Ã B

In 0

] [
v

w

]

≥ 0 ⇒ w =
[
0 Im

]
[
v

w

]

≥ 0 . (2.3)

By [15], (2.3) is equivalent to the existence of H̃ ∈ Rm×(n+m), H̃ ≥ 0 such that

[
H̃1 H̃2

]
[

Ã B

In 0

]

=
[
0 Im

]
⇐⇒

H̃1Ã+ H̃2 = 0, and H̃1B = Im .

(2.4)

Since we require that H̃ ≥ 0 we see immediately from (2.4) that we can always take H̃2 = 0 and hence
by writing H = H̃1 it follows that (A) is equivalent to the existence of F,H ∈ Rm×n such that

F,H ≥ 0, A−BF ≥ 0, HÃ = 0, HB = Im . (2.5)

Using the fact that Ã = A−BF so that HÃ = HA−HBF we have that (2.5) is equivalent to (2.2), as
required.

Proof of Lemma 2.1: First assume that B contains an m × m positive monomial submatrix, which we
denote by B. Let A denote the m × n submatrix of A formed by taking the m rows {i1, . . . , im} of A
that appear in B. Since B is positive monomial, it follows (from, for example, p. [16, p. 68]) that B has
a positive inverse. Define

F := B−1A ≥ 0 , (2.6)

the nonnegativity following as B−1, A ≥ 0. Furthermore, by assumption A−BB−1A ≥ 0 and hence

Ã := A−BF = A−BB−1A ≥ 0 .

Now assume that v ∈ Rn
+, w ∈ Rm are such that Ãv + Bw ≥ 0. By restricting attention to rows

{i1, . . . , im} (where A−BF = 0) we have that

(A−BF )v +Bw ≥ 0 ⇒ Bw ≥ 0 ⇒ w ≥ 0 ,

as B−1 ≥ 0. We conclude that (A) holds.

To prove the converse we use the characterisation of (A) from Lemma 2.2. Suppose that (A) holds so
that there exists H,F ∈ Rm×n such that (a)–(d) hold. We also need a corollary to [16, Lemma 4.3, p.
68], which we repeat here. A real nonnegative n×m matrix X of rank m has a nonnegative left inverse
if, and only if, X contains an m×m monomial submatrix.

Assumptions (a) and (d) imply that B has a nonnegative left inverse H and thus B must contain at least
one (although possibly many) m×m positive monomial submatrix (submatrices), as must H . From the
above arguments there must be a set of m rows

{i1, . . . , im} ⊆ {1, 2, . . . , n} ,

of B that give rise to a monomial submatrix B where the corresponding columns {i1, . . . , im} of H must
each have precisely one nonzero entry. The columns must each have at least one nonzero entry so that
the product HB does not have a zero column. They cannot have more than one else HB = Im cannot
hold.

The equalities HA = F and HB = Im together imply that H(A − BF ) = 0 and as H ≥ 0, H 6= 0,
A−BF ≥ 0 it follows that the rows {i1, . . . , im} of A−BF must be zero. Therefore, restricting to the
rows {i1, . . . , im} we have that

A−BF = 0 , (2.7)

where A is m× n submatrix formed from rows {i1, . . . , im} of A. From (2.7) it follows that F = B−1A

which by construction yields A−BB−1A = A−BF ≥ 0, as required.
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Matlab code for verifying whether (A) holds for a given (A,B) is available as online supplementary
material. We comment here that (A) holds for any A ≥ 0 in the single input case B = b = ciei,
ci > 0 and the corresponding multiple input version case when B is a combination of ei, that is, B =
[ci1ei1 , . . . , cimeim ] for positive cik . These two cases are arguably the most important for applications.
The following corollary interprets Lemma 2.1 in the single input case.

Corollary 2.3. Let A ≥ 0 with ith row denoted by ri and B = b be given by

b =

n∑

k=1

cikeik with cik > 0 .

Assumption (A) holds for (A, b) if, and only if, there exists ik ∈ {i1, . . . , in} such that

rij −
cij rik

cik
≥ 0, ∀ ij ∈ {i1, . . . , in} , (2.8)

and in this case F = fT =
rik
cik

, where ik is as in (2.8).

Remark 2.4. (i) Lemma 2.1 provides an algorithm for checking assumption (A). First, we see that B

containing an m × m monomial submatrix is necessary for (A). Second, there are then only finitely
many B (formed from the monomial rows of B) to check whether (A) holds by verifying whether
A−BB−1A ≥ 0.
(ii) The condition (2.8) is the single input version of (2.1). In words, it requires that A has a smallest
row (in the sense of (2.8)) over all the non–zero rows of b.

Example 2.5. Consider the systems

(a) A1 =





2 3 4
1 2 1
1 2 2



 , b =





1
0
1



 ,

(b) A2 =





2 3 4
1 2 1
3 2 2



 , b =





1
0
1



 ,

(c) A3 =





2 3 4
1 2 1
3 2 2



 , B =





1 0
0 1
1
2 0



 .

Assumption (A) holds in (a), fails in (b) and holds in (c). We proceed to prove these claims. For (a), if
we take fT

1 :=
[
1 2 2

]
so that

Ã1 := A1 − bfT
1 =





1 1 2
1 2 1
0 0 0



 , (2.9)

then whenever v ∈ Rn
+, w ∈ R are such that Ã1v + bw ≥ 0, by inspection of the third component we see

that w ≥ 0, which by definition is (A). Alternatively, with i1 = 1 and i2 = 3 we compute

r1 − r3 =
[
2 3 4

]
−
[
1 2 2

]
=

[
1 1 2

]
≥ 0 .

Thus Corollary 2.3 applies with ik = i2 = 3, so that f1 =
[
1 2 2

]
, as in (2.9). However, repeating this

process in (b) gives
r1 − r3 =

[
2 3 4

]
−
[
3 2 2

]
=

[
−1 1 2

]
� 0 ,

and also that r3 − r1 � 0 . We conclude from Corollary 2.3 that (A) does not hold for (b). For (c) we
note that B contains two 2× 2 positive monomial submatrices

B1 =

[
1 0
0 1

]

and B2 =

[
0 1
1
2 0

]

.
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formed from rows one and two, and rows two and three of B respectively. Taking the corresponding
submatrices from A gives

A1 =

[
2 3 4
1 2 1

]

and A2 =

[
1 2 1
3 2 2

]

,

from which we compute

A−BB−1
1 A1 =





0 0 0
0 0 0
2 1

2 0



 ≥ 0

and A−BB−1
2 A2 =





−4 −1 0
0 0 0
0 0 0



 � 0 .

We conclude that (A) holds for (c) with F = [ 2 3 4
1 2 1 ].

Reachability

Theorem 2.6. Let the pair (A,B) satisfy (A) and denote Ã := A − BF . Then the state trajectories
of (A,B) from initial state x0 ∈ Rn

+ with nonnegative state are precisely the state trajectories of (Ã, B)
from initial state x0 ∈ Rn

+ with nonnegative control.

Proof. Fix x0 ∈ Rn
+ and suppose that x = x(· ;x0, u) is a nonnegative state trajectory of (A,B) with

initial state x0 and control u, that is, x(t) ≥ 0 for every t ≥ 0. Note that the control u need not always
take nonnegative values. Defining

ũ := u+ Fx , (2.10)

we see that
0 ≤ x(1) = Ax0 +Bu(0) = Ãx0 +B(u(0) + Fx0)

= Ãx0 +Bũ(0) ,

and so (A) implies that ũ(0) ≥ 0. Arguing now by induction using (2.10) we see that for k ∈ N0

0 ≤ x(k + 1) = Ax(k) +Bu(k) = Ãx(k) +Bũ(k) ,

and so as before, (A) implies that ũ(k) ≥ 0. We conclude that x = x(· ;x0, ũ), a nonnegative state
trajectory of the pair (Ã, B) with initial state x0 and nonnegative control ũ. The converse argument
reverses these steps. Specifically, for fixed x0 ∈ Rn

+, let x = x(· ;x0, ũ) denote a (necessarily nonnegative)

state trajectory of (Ã, B) with initial state x0 and nonnegative control ũ. We define the control sequence
u by u := ũ− Fx which, by construction, satisfies for k ∈ N0

x(k + 1) = Ãx(k) +Bũ(k) = (A−BF )x(k) +Bũ(k)

= Ax(k) +Bu(k) .

Therefore x = x(· ;x0, u), a nonnegative state trajectory of the pair (A,B) with initial state x0 and control
u which although not necessarily always nonnegative valued, nevertheless preserves nonnegativity of the
state.

The consequence of Theorem 2.6 is that (under assumption (A)) results for positive state controllability
of the pair (A,B) follow from existing results for positive input controllability results for the pair (Ã, B).
We discuss reachability, null controllability and then controllability.

In order to formalise reachability with nonnonegative state – positive state reachability – we introduce
the following definition.

Definition 2.7. Given the pair (A,B) with A,B ≥ 0, we say that xT ∈ Rn
+ is positive state reachable

in finite time if there exists a control sequence that steers the state x of (A,B) from 0 to xT in N steps
and additionally maintains nonnegativity of x. The collection of all such xT ∈ Rn

+ is called the positive
state reachable set (in finite time). We say that (A,B) is positive state reachable in finite time if this
set is Rn

+.
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We note that the positive state reachable set is a convex cone of the linear space Rn over R, and not a
linear subspace. For nonnegative vectors x1, x2, . . . , xk ∈ Rn

+ we let 〈x1, x2, . . . , xk〉+ ⊆ Rn
+ denote their

nonnegative linear span. For nonnegative matrices X1, X2, . . . , Xk ∈ Rn×n
+ we let 〈X1, X2, . . . , Xk〉+ ⊆

Rn
+ denote the nonnegative linear span of their columns.

Corollary 2.8. Let the pair (A,B) satisfy (A). Then the positive state reachable set of the pair (A,B)
in finite time is precisely

⋃

N∈N

〈B, ÃB, . . . , ÃN−1B〉+ , (2.11)

where Ã is as in (A). The positive state reachable set of the pair (A,B) in infinite time is precisely

⋃

N∈N

〈B, ÃB, . . . , ÃN−1B〉+ . (2.12)

Proof. This follows immediately from Theorem 2.6 and the definition of positive state reachable. We note
that the sets in (2.11) and (2.12) are denoted in [5, p. 41] as R∞(Ã, B) and R(Ã, B) respectively.

Remark 2.9. (i) For standard reachability of single–input systems (A,B) the Cayley–Hamilton Theorem
implies that every reachable state is reachable in at most n steps, where n is the dimension of A. It is
known ([5, p. 42]) that this is not the case for positive systems, and by Corollary 2.8 we see that the
same is true for positive state reachability. Example 2.10 contains a pair (A,B) that is positive state
reachable, but only in infinite time.
(ii) Clearly, classical positive input reachability of the nonnegative pair (A,B) pair implies positive state
reachability of (A,B). This is apparent from Corollary 2.8 as for each N ∈ N

〈B,AB, . . . , AN−1B〉+ ⊆ 〈B, ÃB, . . . , ÃN−1B〉+ .

Example 3.1 contains a pair (A,B) where the above inclusion is strict.

Example 2.10. Consider the 3× 3 nonnegative matrix and control vector

A =





a1 1 0
0 a1 1
0 0 a2



 , b = e3 ,

with 1 > a1 > 0 and a2 ≥ 0. By Corollary 2.3 it follows that (A) applies to the pair (A, b) with F = fT

the third row of A. A calculation shows that Ãb = e2 and for k ≥ 2

Ãkb =
[
(k − 1)ak−2

1 ak−1
1 0

]T
. (2.13)

The positive state reachable set in k + 1 steps is all nonnegative linear combinations of these vectors,
which here is strictly increasing with increasing k and note does not include e1 for finite k. However, by
noting that for k ≥ 2

1

(k − 1)ak−2
1

· Ãkb =
[
1 a1

k−2 0
]T

→ e1 ,

as k → ∞, it follows that the pair (A, b) is positive state reachable in infinite time.

Corollary 2.11. A pair (A,B) satisfying (A) is positive state reachable in finite time if, and only if,
for some N ∈ N the matrix

[

B ÃB . . . ÃN−1B
]
contains an n× n monomial submatrix.

Proof. This follows immediately from Theorem 2.6, Corollary 2.8 and [5, Proposition 3].

The next lemma provides sufficient conditions for when, given a pair (A,B) satisfying (A), the positive
state reachable set is achieved in finite time.

Lemma 2.12. Let the pair (A,B) satisfy (A). Then the statements
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(i) Ã is nilpotent,

(ii) the characteristic polynomial of Ã is given by tn −
∑n−1

i=0 βit
i, with βi ≥ 0 for each i,

(iii) the minimal polynomial of Ã is given by tm −
∑m−1

i=0 γit
i, with γi ≥ 0 for each i,

are each sufficient for
⋃

N∈N

〈B, ÃB, . . . , ÃN−1B〉+ = 〈B, ÃB, . . . , ÃMB〉+, (2.14)

for some M ∈ N. Equality (2.14) implies that the positive state reachable set of the pair (A,B) is attained
in finite time.

Proof. Each of the statements (i)–(iii) imply that the sequence of cones (〈B, ÃB, . . . , Ãn−1B〉+)n∈N

which is nested and increasing is in fact constant for some M ∈ N and hence all larger n ∈ N, which is
condition (2.14).

Remark 2.13. It is important to note that given A,B ≥ 0, when A = Ã+BF with Ã, F ≥ 0 then, even
without assumption (A), every state trajectory of (Ã, B) with nonnegative control is a state trajectory
of (A,B) with nonnegative state (this is one of the implications in Theorem 2.6). Consequently, the
positive input reachable set of the pair (Ã, B) is a subset of the positive state reachable set of the pair
(A,B). Although not giving the complete picture of positive state control, this connection can be used
as an intermediate stage between positive state control and positive input control. For example, consider
the pair A = [ 2 1

1 2 ], B = [ 1 1
1 0 ] where we have

〈B,AB〉+ =

〈[
1 1
1 0

]

,

[
3 2
3 1

]〉

+

. (2.15)

More generally an induction argument shows that the positive input reachable space is 〈e1, e1 + e2〉+;
the hatched area in Figure 1. The pair (A,B) in (2.15) do not satisfy assumption (A) (as B contains
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0 x1

x2

e1 + e2

e1

Figure 1: Positive input reachable set of the pair (A,B) in (2.15).

no 2× 2 monomial submatrices). However, taking F = B gives

Ã := A−BF = A− B2 =

[
0 0
0 1

]

≥ 0 ,

and so the positive state reachable set contains

〈B, ÃB〉+ =

〈[
1 1
1 0

]

,

[
0 0
1 0

]〉

+

= R2
+ .

We conclude that, although assumption (A) does not hold, the pair (A,B) is positive state reachable in
finite time. Note that in this instance the choice F = B is in no sense unique; the same conclusions are
reached for the pair (A,B) with F = [ 1 0

1 1 ] as here Ã = A−BF = [ 0 0
0 2 ] ≥ 0.

Notwithstanding the above, it is true that if F1 ≥ F2 then Ã1 := A − BF1 ≤ A − BF2 =: Ã2 and thus
for each k ∈ N

〈B, Ã2B, . . . , Ãk
2B〉+ ⊆ 〈B, Ã1B, . . . , Ãk

1B〉+ .
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Consequently, to describe positive state control for a pair (A,B) when assumption (A) fails, the above
suggests considering Ã := A−BF , where F is chosen as (componentwise) large as possible so that Ã ≥ 0.

Such a process can simplify calculations considerably. For example, consider the pair A =
[
2 1 1
1 3 1
1 1 4

]

and

B =
[
1 1
1 0
1 0

]

with

〈B,AB,A2B〉+ =

〈



1 1 4 2 19 6
1 0 5 1 25 6
1 0 6 1 33 7





〉

+

. (2.16)

Choosing F = BT gives Ã := A−BF =
[
0 0 0
0 2 0
0 0 3

]

≥ 0 so that

〈B, ÃB, Ã2B〉+ =

〈



1 1 0 0 0 0
1 0 2 0 4 0
1 0 3 0 9 0





〉

+

. (2.17)

We see by inspection of columns two and three in the matrices of the right hand sides of (2.16) and
(2.17) that in this example the difference between positive state control and positive input control is that
in the former the directions e1 and 2e2 + 3e3 have been ‘decoupled’.

Null controllability

Definition 2.14. Given the pair (A,B) with A,B ≥ 0, we say that x0 ∈ Rn
+ is positive state null

controllable in finite time if there exists a control sequence that steers the state x of (A,B) from x0 to 0
in N steps and additionally maintains nonnegativity of x. The collection of all such x0 ∈ Rn

+ is called the
positive state null controllable set (in finite time). We say that (A,B) is positive state null controllable
in finite time if this set is Rn

+.

Appealing to Theorem 2.6, we now characterise the positive state null controllable set of the pair (A,B).

Corollary 2.15. Let the pair (A,B) satisfy (A). Then the positive state null controllable set of the pair
(A,B) in finite time is precisely

Rn
+ ∩ ker Ãn. (2.18)

The set of positive null controllable states in infinite time is precisely

Rn
+ ∩ (ker Ãn + E(Ã)), (2.19)

where E(Ã) is the sum of (generalised) eigenspaces corresponding to the stable eigenvalues of Ã (that is,
the eigenvalues λ of Ã with |λ| < 1).

Proof. The claims follow from Theorem 2.6. More specifically, ker Ãk is exactly the set of states that are
positive state null controllable in k steps. The increasing sequence (ker Ãk)k∈N is constant after some m

with 0 ≤ m ≤ n and so a state is null controllable in finite time if and only if it is null controllable in at
most n steps.

Corollary 2.16. Let the pair (A,B) satisfy (A). Then

(i) (A,B) is positive state null controllable in finite time if, and only if, Ã is nilpotent.

(ii) (A,B) is positive state null controllable in infinite time if, and only if, Ã is Schur (that is, every
eigenvalue λ of Ã has |λ| < 1).

Proof. The claims are straightforward to establish from (2.18) and (2.19) in Corollary 2.15, or can be
proven using arguments as in [5, Proposition 1] and [5, Proposition 2] respectively.
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Example 2.17. Using the above results it follows that for a pair (A,B) satisfying (A), ei is positive state
null controllable in k steps if, and only if, Ãk has ith column zero.

Remark 2.18. Analogously to Remark 2.13, when assumption (A) fails for a pair (A,B) then it follows
from Theorem 2.6 and Corollary 2.15 that the positive state null controllable set in finite time contains
Rn

+ ∩ ker Ã, where Ã = A−BF ≥ 0 for some F ≥ 0.

Controllability

We now comment on positive state controllability, which as the underlying system (1.1) is linear, is the
combination of positive state reachability and positive state null controllability.

Definition 2.19. Given the pair (A,B) with A,B ≥ 0, we say that x0 ∈ Rn
+ is positive state controllable

to xT ∈ Rn
+ in finite time if there exists a control sequence that steers the state x of (A,B) from x0

to xT in N steps and additionally maintains nonnegativity of x. We say that (A,B) is positive state
controllable in finite time if every x0 ∈ Rn

+ can be controlled to every x1 ∈ Rn
+ in finite time with

nonnegative state.

The proof of the next result is elementary and is therefore not provided. Note that assumption (A) is
not required here– the result follows from the definitions and the linearity of (1.1).

Corollary 2.20. The pair (A,B) with A,B ≥ 0 is positive state controllable in (in)finite time if, and
only if, (A,B) is both reachable and null controllable with positive state in (in)finite time.

If x0 ∈ Rn
+ is positive state null controllable and xT ∈ Rn

+ is positive state reachable, then x0 can be
controlled to xT by ‘travelling via the zero state’. The next lemma shows that under assumption (A),
this is in fact more or less everything.

Lemma 2.21. Let (A,B) denote a pair satisfying (A). If x0 ∈ Rn
+ is positive state controllable to

xT ∈ Rn
+ in N ∈ N steps then either

(i) x0 ∈ ker ÃN and xT ∈ 〈B, ÃB, . . . , ÃN−1B〉+, or,

(ii) xT − ÃNx0 ≥ 0 and
xT − ÃNx0 ∈ 〈B, ÃB, . . . , ÃN−1B〉+.

Proof. By hypothesis there exist N ∈ N and control u = (u(k))N−1
k=0 such that the state x = x(· ;x0, u)

of the pair (A,B) satisfies x(0) = x0, x(k) ≥ 0 for k ∈ {0, 1, . . . , N} and x(N) = xT . By Theorem 2.6,
we can choose a control sequence ũ = (ũ(k))N−1

k=0 (given by (2.10) in fact) such that x = x(· ;x0, ũ) of the

pair (Ã, B) satisfies

0 ≤ xT = ÃNx0 +
N−1∑

k=0

ÃN−1−kBũ(k)

︸ ︷︷ ︸

≥0

. (2.20)

Now either ÃNx0 = 0 and so from (2.20) condition (i) holds or,

0 ≤ xT − ÃNx0 =
N−1∑

k=0

ÃN−1−kBũ(k)

∈ 〈B, ÃB, . . . , ÃN−1B〉+ ,

which is condition (ii).
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3 Examples

One motivation for studying positive state controllability of the linear system (1.1) is the class of systems
that arise in population ecology. Here we present some examples.

Example 3.1. We recall that an n× n Leslie [14] matrix has the following structure

A =











f1 f2 . . . . . . fn
s1 0 . . . 0

0 s2 0
...

...
. . .

. . .

0 . . . 0 sn−1 0











, (3.1)

which models a population partitioned into discrete, increasing age–stages. Correspondingly, fi ≥ 0
denote reproductive rates and si ≥ 0 denote survival rates, the latter as proportions are each no greater
than one. For ecologically meaningful models [17], we will always assume that the Leslie matrix (3.1) has
s1, . . . , sn−1 > 0, f1, . . . , fn ≥ 0 and there exists at least one i ∈ {1, 2, . . . , n} such that fi > 0. Noting
that the n× n positive diagonal matrix

T = diag

(

1,
1

s 1
,

1

s1s2
, . . . ,

1

s1 . . . sn−1

)

, has T−1 ≥ 0,

for positive state controllability it is sufficient to consider the similarity transformed pair (T−1AT, T−1B).

Since T−1AT has the same structure as A with ones on the subdiagonal and top row with entries f̂i > 0
(which we abuse notation and write as fi), when considering controllability with positive state there is
no loss of generality in assuming that a Leslie matrix has sj = 1 for each j.

We consider the (transformed) pair (A, b) and single input b = ej, j ∈ {1, 2, . . . , n}. Assumption (A) is
always satisfied for such a pair, with F = fT the jth row of A.

When j = 1 so that b = e1 it follows that Ã is nilpotent with Ãn = 0. The positive state reachable set
is therefore

〈b, Ãb, . . . Ãn−1b〉+ = 〈e1, e2, . . . , en〉+ = Rn
+ ,

and by Corollary 2.8 the pair (A, b) is positive state reachable. Furthermore,

Ãn = 0, ⇒ Rn
+ ∩ ker Ãn = Rn

+ ,

and so the pair (A, b) is positive state null controllable. In this very special case it follows that positive
state controllability and standard controllability coincide: the unique control u that steers x between
any two nonnegative states in n steps is such that the state remains in Rn

+. Such a control can take
negative values and thus is not permitted in a positive input framework.

For example, consider the pair A = [ 2 2
1 0 ], b = e1. Trivially e1 is reachable from zero with positive state in

one step and the control u(0) = 1, u(1) = −2 steers the state from zero to e2 in two steps. The resulting
state trajectories are plotted in Figure 2(a). By taking suitable linear combinations of these inputs all
of R2

+ can be reached with nonnegative state. If we restrict attention to (A, b) with only positive inputs,
then the positive input reachable space is spanned by b = e1 and Ab = 2e1+e2, and is depicted in Figure
2(b): note that not all of R2

+ is reachable. Even in this very simple example there is a difference between
positive state controllability and classical positive input controllability.

For b = ej , j > 1 the situation is somewhat different. Assumption (A) holds with F = fT the jth row

of A and we note that the characteristic polynomial of Ã is given by

tn −

j−1
∑

k=1

fkt
n−k ,

which follows easily from, for example, the expression on [4, p. 121]. Consequently, by Lemma 2.12 (ii)
the positive state reachable set of the pair (A, b) is achieved in finite time; indeed, in n steps. However,
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Figure 2: (a) Positive state trajectories steering the state of (A, b) to e1 and e2 respectively. (b) The
positive input reachable space of the positive system (A, b) is the hatched area between b and Ab =
2e1 + e2. The line w is parallel to limk→∞ Akb and so here the positive input reachable set is not all of
R2

+ but is attained in finite time.

the pair (A, b) is not, in general, positive state reachable. In the case n = 3 and b = e2 the positive state
reachable set in finite time is contained in

〈b, Ãb, Ã2b〉+ =

〈



0
1
0



 ,





f2
0
1



 ,





f3 + f1f2
0
0





〉

+

.

If f2 > 0 then e3 cannot be steered to whilst maintaining nonnegative state (in finite time), but the vectors
e1 and e2 can (in the former case provided that f1f2 + f3 > 0). For positive state null controllability we
see that

Ã2 =





f2
1 f1f2 + f3 f1f3
0 0 0
0 0 0



 , Ã3 = f1Ã
2
1 .

The important term here is f1, reproduction of individuals in the first stage class. If f1 = 0 then Ã3 = 0
and so every state can be steered to zero with nonnegative state. However, if f1, f2, f3 > 0 then the top
row of Ã3 is positive and thus there are no nontrivial positive state null controllable states in finite time!

Remark 3.2. The conclusions of Example 3.1 are biologically sensible. When state i > 1 is controlled
then the structure of A means that it is not possible to remove individuals from the earlier stage classes.
Consequently we can steer to the later stage classes ej , j > i which appear in the terms Ãjb, but also
with a contribution from stages one to i− 1. When i = 1 then it follows that all stages are positive state
reachable.

Leslie matrices of course have a very simple structure, but already the results presented here demonstrate
the differences that arise between positive state control and positive input control. Our next example
considers an application of positive state control.

Example 3.3. Discrete time matrix models for the invasive weed Cirsium vulgare (spear thistle) in
Nebraska, USA, are considered in [18], and also [19, Section 3.1]. Here time–steps correspond to years
and a four stage model is used with states one to four corresponding to the seed bank, small plants,
medium plants and large plants respectively (see [18]). The nominal uncontrolled system has A given by

A =







0 0 f̃1 f̃2
s1 0 f̃3 f̃4
0 s2 s3 0
0 s4 s5 s6






,

with
s1 = 0.0077, s2 = 0.12, s3 = 0.11 , s4 = 0.02,

s5 = 0.27, s6 = 0.17, f̃1 = 93.1, , f̃2 = 423 ,

f̃3 = 6.74, f̃4 = 30.6 .

(3.2)
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As with Leslie matrices, the si denote survival and growth parameters and the f̃i are reproductive values.
We note that as s4 > 0, small plants can grow into large plants in one year. Furthermore, f̃3, f̃4 > 0
means that in a given year both medium and large plants can produce seeds that germinate and grow
into small plants (in addition to seeds that germinate the following year).

The uncontrolled population is unstable as the spectral radius of A is r(A) = 1.57 > 1. We seek to
reduce the weed population by using an additive management strategy, so that the system is of the form
(1.1). As a management strategy we add or remove large plants so that B = b = e4. When this action
is performed (shortly) before the census or measurement then the resulting model is well described by
(1.1). Here assumption (A) holds with F = fT the fourth row of A so that Ã := A− bfT is given by

Ã =







0 0 f̃1 f̃2
s1 0 f̃3 f̃4
0 s2 s3 0
0 0 0 0






.

As Ãk has no zero columns for any k ∈ N we see that no state is null controllable in finite time. Here
r(Ã) = 1.0024 > 1 and although Ã is not primitive (or even irreducible), r(Ã) is a simple eigenvalue and
the following limit holds

lim
k→∞

Ãk

(r(Ã))k
x0 =

vTx0

vTw
w , (3.3)

where vT and w are left and right eigenvectors of Ã corresponding to r(Ã) respectively(which are both
positive once positively scaled and satisfy vTw 6= 0). When x0 ≥ 0 and x0 6= 0 the right hand side
of (3.3) is positive and hence there are no non–trivial states that are positive state null controllable in
infinite time. Equivalently, the negative control u(t) = −fTx(t) does not stabilise any nonzero initial
population. Furthermore, the characterisation from Theorem 2.6 shows that this system cannot be
stabilised by positive state control.

If instead the control action is in fact performed (shortly) after the census or measurement, then a more
accurate model is

x(t+ 1) = A(x(t) + bu(t)) = Ax(t) +Abu(t), t ∈ N0 ,

and so we replace b = e4 by Ab =
[

f̃2 f̃4 0 s6
]T

. Corollary 2.3 can be applied to check whether
assumption (A) holds for the pair (A,Ab). Of rows one, two and four (the nonzero rows of Ab) the
only possible candidate ‘smallest’ row of A (in the sense of (2.8)) is the first (as rows two and four have
nonzero entries that are zero in the first row). A straightforward calculation shows that (A) holds with
F = fT = [ 0 0 f̃1/f̃2 1 ] if, and only if,

f̃1f̃4 ≤ f̃2f̃3 and f̃1s6 ≤ f̃2s5 . (3.4)

Both of these conditions are satisfied for the parameters in (3.2). Therefore, if F = fT = [ 0 0 f̃1/f̃2 1 ]
then

Ã := A−AbfT =








0 0 0 0

s1 0 f̃3 −
f̃1f̃4
f̃2

0

0 s2 s3 0

0 s4 s5 −
f̃1s6
f̃2

0







≥ 0 ,

and hence positive state control for the pair (A,Ab) is precisely positive input control for the pair
(Ã, Ab). As the fourth column of Ã is zero, we have that x = e4 is null controllable (in finite time)
and as r(Ã) = 0.1153 < 1, every state is positive state null controllable in infinite time. The above
observations suggest that when control actions act on large weeds, organising these actions to take place
post census is preferable to pre census. This is not biologically surprising because, loosely speaking, the
fourth stage class is the most reproductive and the post census control strategy limits to a greater extent
reproduction in this stage class.
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