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ABSTRACT 

 

The virulence potential of 9 L. monocytogenes strains isolated from food products at 

different stages of the fresh produce supply chain and a food processing facility was 

determined using G. mellonella. Strains were used to infect G. mellonella larvae 

through the haemocoel with a dose of 106 CFU, which were then compared to a L. 

monocytogenes reference EGD-e and also L. ivanovii. Virulence was assessed by 

evaluating mortality rates, larvae health index score (HIS), counting viable bacteria in 

larvae, and the larval immunological response to infection. Significant differences in 

ability to cause larval mortality were observed between strains. L. monocytogenes 

strains NLmo4 and NLmo5 caused the most mortality rates, 98.8% and 96.7%, 

respectively, at 7 d after infection, whilst NLmo20 induced a mortality rate of 65% at 

the same time point, significantly differing from NLmo4&5 (p<0.5). Six isolates that 

caused the least to most mortality rates we selected and tested for ability to replicate 

in vitro, in vivo and their effect on larvae haemocyte density. Growth rates in vitro were 

significantly not different amongst L. monocytogenes strains as well as when 

compared to L. ivanovii. However, whilst L. monocytogenes strains replicated and 

persisted in larvae for up to 7 d after infection L. ivanovii was gradually cleared from 

larvae decreasing by 5 Logs CFU at the end of the 7 d time course. The persistence 

of these strain in larvae caused damage to larval organs as seen by increasing 

melanisation and consequently larval death. Insignificant fluctuations in haemocyte 

density was observed after larvae infection, however, increased expressions of the 

antimicrobial peptides galiomycin and gallerimycin were noted upon infection with 

NLmo4, EGD-e and L. ivanovii. Taken together, results of this study suggest L. 

monocytogenes strains found in fresh produce products have different pathogenic 

potentials and are potential hazards for human health. 
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Chapter 1 - LITERATURE REVIEW 

 General introduction 

 

Listeria monocytogenes is a Gram-positive, rod-shaped, facultative intracellular 

anaerobe frequently implicated in foodborne disease outbreaks. Listeria 

monocytogenes (L. monocytogenes) is ubiquitous in nature and can persist in food 

processing environments, causing contaminations to ready-to-eat (RTE) food 

products and fresh agricultural produce. When introduced into a host, often through 

ingestion of contaminated food products, the organism causes the foodborne illness 

listeriosis. In mild cases the illness will lead to febrile gastroenteritis, but in invasive 

cases it traverses the intestines resulting in  septicaemia, meningitis, and prenatal 

complications in expectant mothers (preterm birth, miscarriage or stillbirth) (Vázquez-

boland et al., 2001). Survivors often end up with lasting neurological  sequelae  

(cognitive impairment, hearing loss, focal neurological deficits and epilepsy) (Lucas et 

al., 2016). Infants, the elderly, immunocompromised, and pregnant individuals are 

particularly susceptible to listeriosis (Barocci et al., 2015; Okike et al., 2013). 

In the European Union and European Economic Area (EU/EEA) L. monocytogenes 

infections are relatively rare with an incidence rate of 0.6 per 100,000 people (EFSA 

and ECDC, 2015). However, the number of reported listeriosis cases is steadily rising 

as 2,502 cases were reported in 2017, a 48.4% rise from total reported cases in 2010 

(ECDC, 2017). Fatality rates from L. monocytogenes infections are also tremendously 

high (20-30%) relative to other bacterial and fungal infections (≤1%) making  the 

bacterium an ever increasing public health concern (EFSA, 2015). In the USA, for 

instance, though L. monocytogenes is estimated to cause 1,591 foodborne ill health 

cases annually (0.02% of total cases) it accounts for 18.9% of all foodborne related 

deaths. By comparison, Salmonella accounts for 646 times as many cases but only 

causes 123 more deaths (0.5% mortality rate), and although E. coli causes 40 times 

as many cases it causes 92.2% less deaths annually as compared to L. 

monocytogenes (Scallan et al., 2011). These make listeriosis a notifiable disease of 

great concern and reporting it as mandatory in all EU member states, including the 

United Kingdom (EU Directive 2003/99/EC). 

Furthermore, L. monocytogenes also poses significant economic concerns. The 

bacterium can contaminate fresh produce, processed RTE meats, and dairy products 
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(Amato et al., 2017; Ponniah et al., 2010; Ruiz-Cruz et al., 2007). Currently, all L. 

monocytogenes strains are treated the same for regulatory purposes, thus the 

presence of L. monocytogenes on foodstuffs is sufficient to result in product recall and 

this costs the UK economy an estimated £245 million annually (Rayner & 

Scarborough, 2005). However, L. monocytogenes is genetically diverse and in silico 

predictions suggest there are significant differences in the disease-causing potential 

of different strains of the bacterium. Therefore, it is important to determine the 

virulence potential of isolates of the bacterium in order to evaluate the human health 

risks they pose. 

Mammals have been the first model animals of choice for virulence testing. However, 

increasing concerns around their use has led to the development of alternative insect 

model hosts, such as larvae of the greater wax moth (Galleria mellonella) (Mukherjee 

et al., 2015; Scully and Bidochka, 2006). G. mellonella larvae are inexpensive, readily 

available, and their use avoids the ethical issues and regulatory restrictions faced with 

the use of other animal models.  Tests using G. mellonella has been carried out at 

37⁰C, which is significant in the study of human pathogens as these are often 

temperature-sensitive and preferentially express virulence factors at 37⁰C. This is 

unlike in other invertebrate models, such as Caenorhabditis elegans (C. elegans) and 

Drosophila  melanogaster (D. melanogaster),  that do not facilitate testing at 37⁰C 

(Joyce & Gahan, 2010). More so, G. mellonella shares commonalities with 

mammals(Browne et al., 2013; Kavanagh and Reeves, 2007), has been used to 

discriminate between pathogenic species of different virulence potential (Harding et 

al., 2012; Mukherjee et al., 2010), with virulence observed in the model also been 

found to positively correlate with other mammalian models (Brennan et al., 2002; 

Slater et al., 2011). Thus, research groups now routinely use this model for virulence 

testing of many human pathogens (Camejo et al., 2009; Cotter et al., 2000; Mylonakis 

et al., 2005). This model was therefore used in this study to test for differences in 

virulence of L. monocytogenes strains from different food and environmental sources. 
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 Listeria 

 

1.2.1  History and Nomenclature 

Though the first complete description of Listeria monocytogenes only dates back to 

about a century ago, its isolation and partial characterisation dates as far back as the 

1800s. The bacterium was first described by Murray et al. in 1926, who reported 

discovering a short, rod-shaped, non-sporing, Gram-positive bacillus in septicemic 

laboratory rabbits and guinea pigs at  their laboratory in Cambridge, United Kingdom. 

The bacterium’s salient character to increase mononuclear leucocytes (white blood 

cells) production (monocytosis) led the authors to name it Bacterium monocytogenes. 

In their publication, however, it was acknowledged that the newly discovered organism 

was identical to an isolate earlier been identified as the causative agent of disease 

outbreaks in South Africa (Murray et al., 1926). 

Between 1916 and 1924 sporadic outbreaks of plague were documented in South 

Africa that resulted in 204 human deaths in its later years (Mitchell et al., 1927). The 

plague, reported by Harvey H. Pirie, was in wild gerbils (Tatera lobengulae) 

predominantly in the sandy stretches of the Tiger River (South Africa), which became 

known as the ‘’Tiger River disease’’ (Pirie, 1927). Pirie named the etiological agent 

Listeria hepatolytica, in part, due to its distinctive character of causing severe necrosis 

to the livers of gerbils and also to honour British Surgeon Lord Joseph Lister ‘father of 

antiseptic surgery’ (Gibbons, 1972). Having determined that Murray’s Bacterium 

monocytogenes and Pirie’s Listerella hepatolytica were identical in every physiological 

character tested, the name Listerella monocytogenes was proposed. However, this 

name was rejected a decade later by the Judicial Commission on Bacterial 

Nomenclature and Taxonomy at the third summit of the International Congress for 

Microbiology that was held in New York in 1939. It emerged Listerella had prior been 

adopted for a mycetozoan (slime mould) discovered by Jahn in 1906 (Jahn, 1906). 

This prompted the submission of a proposal for a name change to ‘Listeria 

monocytogenes’ in 1940 by Pirie  (Pirie, 1940). In 1948 ‘Listeria monocytogenes’ was 

included for the first time in the Sixth Edition of Bergey's manual of determinative 

bacteriology (Hulphers, 1911), and in 1954 the name Listeria monocytogenes was 

adopted by the Scientific community as it gained the Microbiology Commission’s 

approval (Dumon and Cotoni, 1921). 
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Nonetheless, though there was no complete description nor classification of L. 

monocytogenes hitherto 1926, there are multiple reports of isolations of L. 

monocytogenes resembling organisms causing infections in humans, and animals 

alike that with furtherance to our understanding of the organism are now believed to 

be Listeria monocytogenes. These include reports of its isolation from patients’ 

tissues-who in retrospect had died of listeriosis-by pathologists Hayem and Henle, in 

1891 (France) and 1893 (Germany), respectively, who described in their reports 

isolating rod-shaped, Gram-positive bacteria (Gray and Killinger, 1966). There are also 

reports of L. monocytogenes isolation from necrotic foci of a rabbit’s livers by Hulphers 

in Sweden in 1911-who named it Bacillus hepatis (Hulphers, 1911); from meningitis 

patients in France in 1917, 1920, and 1921 (Dumon and Cotoni, 1921; Miller et al., 

1990); from pigs in Russia in 1924; and a flock of sheep in Germany in 1925 (Gray 

and Killinger, 1966). Though these and many other reports (FAO, 2004) indicate that 

L. monocytogenes was isolated from humans and animals even prior its description in 

1926, it nonetheless continued to be unrecognised as a human pathogen for decades 

post 1926.  

 

1.2.2 Listeria as the aetiological agent of human listeriosis 

Despite numerous reports of human listeriois in the late 1800s to early 1900s it was 

not until 1929 that L. monocytogenes was first reported as the aetiological agent of the 

disease. In 1929 NYfeldt (1929) isolated the bacterium from three patients with 

grandular fever who presented with symptoms of a mononucleosis-like disease in 

Denmark. For the first time, Nyfeldt reported L. monocytogenes as the causative 

agent. Four years later, Burn (1936) also isolated the bacterium from heart blood, 

ileum and colon from post-mortem samples of a human infant. The following year he 

encountered two other identical cases from two female human infants, and a fourth 

case of isolation from the brain, liver, and kidneys of a 53 year old male. In the almost 

following two decades leading to 1949 few more cases of human listeriosis were 

reported (Fischer, 1941; Kapsenberg, 1941; Savino, 1940). However, during the same 

time period far more cases of listeriosis were reported in animals, including cattle 

(Graham et al., 1943), sheep (Poppensiek, 1944), goats (Olafson, 1940), pigs (Biester 

and Schwarte, 1940), foal (Krage, 1944), poultry (Hoffman and Lenarz, 1942), rabbits 

(Schoop, 1946), dog (Wramby, 1944), wood grouse (Lilleengen, 1942), and wild rat 
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(Macchiavello, 1942). This enforced an earlier held believe that L. monocytogenes is 

only pathogenic in non-human subjects. In addition, the assertion of L. monocytogenes 

being the aetiological agent of human listeriosis was hardly accepted in the scientific 

community due to several unsuccessful attempts at the time by many research groups 

to culture the organism. But as routine bacterial isolation procedures at the time mostly 

involved directly culturing samples on simple agar media, reasons for the failed 

attempt to culture the bacterium are now implicit; components present in food and 

tissue samples can impair L. monocytogenes growth on unenriched nonselective 

media (Beumer and Hazeleger, 2003), and L. monocytogenes can reach a viable but 

non-culturable (VBNC) state making it  undetectable by conventional culturing 

techniques (Giao and Keevil, 2014; Lindbäck et al., 2010).  

It was not until the late 1940s the consensus started to emerge as links were 

established associating listeriosis to consumption of contaminated food products. An 

outbreak of listeriosis in Eastern Germany and Czech Republic between 1949 and 

1957 saw increased research efforts in listeriosis. During the outbreak, at the Institute 

of Pathology of the University of Halle, Germany, Potel (Potel, 1951) isolated L. 

monocytogenes from two new-borns who suffered acute septicaemia. This was linked 

to the consumption of contaminated milk by the mother. In the following years Potel et 

al. (Reiss et al., 1951a, 1951b) also documented 83 more cases around Halle and 

Jena (Germany), and at the same time other authors (Benda, 1953, Patocka et al., 

1956; Suchanova et al., 1958) reported cases totalling 53 in Prague, Czech Republic. 

Leading to 1960 over 472 cases of human listeriosis had been reported in Europe and 

the USA (as reported by (Gray and Killinger, 1966). These in conjunction with H.P.R. 

Seeliger’s publication of his monograph ‘Listeriosis’ in 1955 (reviewed in 1957), which 

reviewed Listeria literature in the preceding almost 50 years, saw sustained research 

effort in Listeria and acknowledgment of it being the causative agent of human 

listeriosis. Ascribing a source to human listeriosis however remained contentious and 

this was evidence by failure by the World Health Organisation to recognise the 

bacterium as a foodborne pathogen, and L. monocytogenes been listed under the 

section of ‘’Bacteria Not Conclusively Proved to Be Foodborne’’ in the Second edition 

of ‘Foodborne Infections and Intoxications’ by Riemann and Bryan (Riemann, 1979) in 

1979. However, a 1981 Listeria outbreak in the Maritime Provinces of Canada 

provided conclusive evidence on the long contended problem. The epidemic strain 

(4b) was isolated from a coleslaw sample obtained from the freezer of one of the 
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patients. The product, it was discovered, was manufactured by a producer who 

obtained cabbage from a farm that had a flock of sheep. Compost and raw manure 

from the flock were been used to fertilise the vegetables and it occurred that two sheep 

had died of literiosis at the farm in the previous three years. Publication of these 

findings by Schlech et al. (1983) followed by several similar cases in the subsequent 

years (Fleming et al., 1985; Ho et al., 1986; Linnan et al., 1988) saw Listeria been 

listed as a ‘priority foodborne pathogen’ by the WHO in 1986 (as reported by Pal et al. 

(2017). Though this spurred regulations and directives in the EU, for instance, that 

prioritised all members of the genus Listeria it is now implicit that not only is over four-

fifth of the members of the genus non-pathogenic, strains within the pathogenic 

species also exhibit varied pathogenic potentials, as discussed later. 

1.2.3 Listeria spp. and discovery 

The first species of the genus Listeria to be identified was that described by E.G.D. 

Murray, R.A. Webb and M.B.R. Swann in 1926 (Murray et al., 1926). The strain, EGD 

(later named EGD-e with ‘e’ denoting ‘European’), belongs to the first species of the 

genus to be discovered (Listeria monocytogenes). Until 1948 L. monocytogenes 

remained the only species comprising the genus Listeria. Consequently that year, 

Sohier et al. (1948) isolated Listeria denitrificans from boiled ox blood in Germany, 

which was later transferred to a new genus, Jonesia (Rocourt et al., 1987). In 1955 

Ivanov (Ivanov, 1962) isolated the now known second member of the genus Listeria 

ivanovii, formerly Listeria monocytogenes serotype 5’ and Listeria bulgarica  (Heinz et 

al., 1984), from lambs with congenital listeriosis in Bulgaria. As at the moment of 

writing, nineteen Listeria species have been discovered, most of which in recent years 

(Table 1. 1).  

Expansion of the genus in recent years has been credited to the rapid development of 

whole genome sequencing technologies with the genus now divided into two groups: 

(i) Listeria sensu stricto, which constitutes six species that share common phenotypic 

characteristics (e.g. flagella motility, growth in low temperatures) and consists of L. 

monocytogenes, L. ivanovii, L. marthii, L. seeligeri, L. welshimeri, and L. innocua; and 

(ii) Listeria sensu lato, which consists of the remaining 13 members of the genus, 

generally regarded as non-pathogenic, non-motile (except L. grayi and L. costaricensis 

(Larsen et al., 2018), and nitrate reducing (except Listeria floridensis and L. goaensis 

(den Bakker et al., 2014; Doijad et al., 2018). However, only two, L. ivanovii and L. 
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monocytogenes, are pathogenic to humans and animals. But due to the rarity of L. 

ivanovii infections in humans, nine documented cases since 1970 as at the moment 

of writing (Beye et al., 2016), only L. monocytogenes is regarded as a priority pathogen 

and of a global public health concern (Allerberger and Wagner, 2010). Thus, this report 

will be based on L. monocytogenes hereafter.  

 

 

 

Table 1. 1 Listeria spp., discovery dates and sources of isolation. This table excludes 

any bacterial species that were prior identified as Listeria but later reclassified to other 

genera. 

 
Listeria species 

Year 
Discovered 

Sample isolated from 
……. (Country) 

 
Reference 

L. monocytogenes 1926 Rabbits and Guinea-pigs Murray et al. (1926) 

L. ivanovii 1955 Lambs (Bulgaria) Ivanov (1962) 

L. grayi 1966                  - Larsen & Seeliger (1966) 

L. innocua 1981 Soil (Germany) Seeliger (1981) 

L. seeligeri 1983 Soil (Germany) Rocourt & Grimont (1983) 

L. welshimeri 1983 Decaying vegetation (USA) Rocourt & Grimont (1983) 

L. marthii 2010 Forest Soil (New York, USA) Graves et al. (2010) 

L. rocourtiae 2010 Lettuce (Salzburg, Austria) Leclercq et al. (2010) 

L. fleischmannii 2013  Hard cheese (Switzerland) Bertsch et al. (2013) 

L. weihenstephanensis 2013 Freshwater pond (Germany) Halter et al. (2013) 

L. floridensis 2014 Running water (Florida, USA) Bakker et al. (2014) 

L. riparia 2014 Running water (Florida, USA) Bakker et al. (2014) 

L. cornellensis 2014 Water (Colorado, USA) Bakker et al. (2014) 

L. aquatic 2014 Running water (Florida, USA) Bakker et al. (2014) 

L. grandensis 2014 Water (Colorado, USA) Bakker et al. (2014) 

L. booriae 2015 Dairy processing plant (USA) Weller et al. (2015) 

L. newyorkensis 2015 Seafood processing plant (USA) Weller et al. (2015) 

L. costaricensis 2018 Food processing facility 
(Costa Rica) 

Montero et al. (2018) 

L. goaensis 2018 Mangrove swamps (Goa, India) Doijad et al. (2018) 
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1.2.4 L. monocytogenes classification: lineages and serotypes 

A combination of physiological and molecular based approaches have been used to 

group L. monocytogenes strains into four evolutionary groups, termed lineages I, II, 

III, and IV, and at least 13 serotypes. While lineage groupings use multigene 

phylogenetic to determine the relatedness of L. monocytogenes strains to one another, 

serotyping classify strains base on variations on the group-specific surface antigens 

somatic (O) and flagellar (H). Thus, each L. monocytogenes lineage comprises 

multiple serotypes with some serotypes overlapping lineages. Methods such as 

multilocus enzyme electrophoresis (MLEE), agglutination, Enzyme-linked 

immunosorbent assay (ELISA), ribotyping, and DNA-based techniques, such as 

pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and 

PCR-restriction fragment length polymorphism (PCR-RFLP) have been used to 

enable these classifications. In 1940 the first method used for L. monocytogenes 

subtype delineation was developed by Paterson (1940). As it had become apparent 

that L. monocytogenes organisms do not form a homogenous group, based on 

infection outcomes and physiological characteristics, Paterson collected and 

examined fifty-eight strains isolated from human and animal sources around Europe. 

Agglutination tests were performed for presence of the somatic (O) and flagellar (H) 

agents, and L. monocytogenes strains were assigned into four groups based on the 

correlation outcomes of the two tests, marking the first L. monocytogenes groupings 

recorded. With several modifications to this method (Orsi et al., 2011) and further 

propositions on what constitutes a better way to group strains in the following years, 

in 1989 Piffaretti et al. (1989) grouped L. monocytogenes strains into two distinct 

phylogenetic divisions or lineages (I & II) using MLEE typing. The technique which 

involved analysing 16 genetic loci that encode metabolic enzymes was employed to 

analyse one hundred and seventy-five L. monocytogenes strains of human, animal, 

food, and environmental origins. Similar results were obtained using PFGE by Brosch 

et al. (1994) on a similar sample size (176 isolates) but with better discriminatory 

capability, as was ribotyping of an even larger sample size (305 isolates) (Graves et 

al., 1994), all validating the earlier reported groupings. 

Lineage III was added to the list following analysis of DNA sequences of three 

virulence-associated genes, flagellin (flaA), the invasive associated protein (iap), and 

listeriolysin 0 (hly), in 1995, which revealed that L. monocytogenes strains are more 
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diverse than earlier indications suggest (Rasmussen et al., 1995). An analysis of 46 

lineage III isolates and earlier reported lineages I & II strains (Roberts et al., 2006) 

indicated that L. monocytogenes strains belonging to lineage III could further be 

divided into three groups (IIIA, IIIB, and IIIC). This observation was based on 

differences found in the virulence-related gene actA (encoding proteins needed for 

cytoplasmic movement) and stress-response gene sigB. In 2008 lineage IIIB was 

reported as been phylogenetically divergent  enough from lineages IIIA & IIIC and thus 

should be considered as lineage IV (Ward et al., 2008). 

L. monocytogenes lineages contain disproportionate numbers of serotypes with some 

serotypes overlapping lineages. The L. monocytogenes surface antigen somatic (O) 

consists of 15 subtypes (I-XV) and the flagellar (H) comprises four subtypes (A-D). 

Using unique combinations of O & H from serological reactions between the two, 

Seeliger & Höhne (1979) identified at least thirteen L. monocytogenes serotypes (i.e. 

1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a, 4ab, 4b, 4c, 4d, 4e and 7). Lineages I and II contain a 

higher proportion of serotypes, and lineage IV with fewer and less characterised 

serotypes (Table 1. 2). 

Table 1. 2: L. monocytogenes lineages and serotypes groupings based on pooled 

data from sequencing and serotyping reports by various authors. 

L. monocytogenes lineage Serotypes within lineage Reference 

I 1/2b, 3b, 3c, 4b, 4d, 4e, 7 (Borucki & Call, 2003; 

Kuenne et al., 2013; 

Piffaretti et al., 1989) 

II 1/2a, 1/2c, 3a, 3c (Borucki & Call, 2003; 

Ward et al., 2008, 2004) 

III 4a, 4b, 4c,4d (Borucki & Call, 2003; 

Roberts et al., 2006; 

Ward et al., 2008) 

IV 4a, 4b, 4c (Roberts et al., 2006; 

Ward et al., 2008) 
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L. monocytogenes sequencing and serotyping has proved to be useful tools in 

surveillance of listeriosis outbreaks in both human and animal cases (CDC, 2011; 

FDA, 2014; Schlech et al., 1983). More importantly, in the food industry where L. 

monocytogenes contaminations remain a serious concern, it has been used to track 

contaminating strains at various stages of the food chain, and to identify strains that 

are persistent in the food processing environment to help mitigate contamination 

incidences. However, given that at least 95% of all human listeriosis cases and 

incidences of food contaminations are caused by only three serotypes (as discussed 

in the following section) the value of serological data is also rather limited. 

1.2.5 Prevalence of L. monocytogenes lineages and serotypes  

L. monocytogenes lineages have different, but overlapping, ecological niches with 

serotypes of given lineages being more prevalent in animals and humans. Lineage IV, 

the least described, comprises only three serotypes (4a, 4b, 4c) that have been 

predominantly isolate from animal sources. Cases of human infections with lineage IV 

isolates and their isolation from food substances remain rare. Unsurprising, as a 

lineage consisting of serotypes until fairly recently grouped as lineage III, it has similar 

prevalence rates to lineage III serotypes. For example, of the 112 food isolates 

characterised by Ward et al. (2004) only 2% were of serotypes now known to belong 

to lineages III and IV. Also, in a far more larger study consisting of 994 L. 

monocytogenes isolates from food products and clinical human samples by Gray et 

al. (2004), prevalence rates of lineages III and IV isolates were 0.4% in food products, 

and 2.24% in clinical human samples. More studies have found L. monocytogenes 

prevalence rates of <1% in food products (Norton et al., 2001) and as ranging from 

0% to 1.8% in clinical human cases (Jeffers et al., 2001; Norton et al., 2001; Wiedmann 

et al., 1997). However, prevalence rates of these lineages are higher in animals with 

studies showing incidence rates of 10-11% (Jeffers et al., 2001; Wiedmann et al., 

1997). 

In contrast, lineage I and II serotypes dominate listeriosis incidence rates in humans, 

animals, and food products, with lineage I been more prevalent in clinical human 

cases, and lineage II slightly more prevalent in animal and food products. For instance, 

a surveillance study by Norton et al. (2001) that characterised 117 food isolates found 

prevalence rates of 36.8% and 63.2% for lineages I and II, respectively. Also, studies 

on animal isolates have shown prevalence rates of 42.1% and 47.4% for lineage I and 
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II serotypes, respectively (Jeffers et al., 2001; Wiedmann et al., 1997), all indicating a 

higher prevalence of lineages II in food products and animals as compared to lineage 

I. Conversely, comparative studies have shown lineage I serotypes to have higher 

prevalence in clinical human cases as compared to lineage II. These studies show a 

range from 65% to 69.1% for lineage I, and 29.1% to 35% for lineages II serotypes 

prevalence in clinical human samples (Jeffers et al., 2001; Norton et al., 2001; 

Wiedmann et al., 1997). 

Taken into context, more than 95% of the clinical human cases are caused by only 

three serotypes (1/2a, 1/2b, and 4b) belonging to lineages I and II (Kathariou, 2002). 

This has led some to hypothesize that lineages I and II isolates have increased 

pathogenic potential in humans in comparison to lineages III and IV (Jeffers et al., 

2001; Wiedmann et al., 1997). However, as lineage I and II serotypes also 

predominate in food isolations this has led many to suggest that pathogenicity in 

humans is due to the higher exposure rates to these serotypes as compared to 

lineages III and IV serotypes that are rarely isolated from food products (Roberts et 

al., 2006). Yet, the latter view did not support the fact that whilst lineage II serotypes 

are over represented in food contaminations, lineage I serotypes predominate human 

clinical infections. Hence, pathogenic potential could be as a result of underlying 

genotypic differences in serotypes which enable them to colonise and adapt to 

different host and ecological environments, as discussed in the subsequent sections. 

 

 L. monocytogenes: a priority foodborne pathogenic bacteria 

 

1.3.1 Natural niches and prevalence 

 

1.3.1.1 L. monocytogenes prevalence in soil and water 

 

L. monocytogenes is ubiquitous in nature and has been isolated from various sources 

including soil, decaying vegetation, water courses, and animals (livestock and wildlife) 

which are believed to serve as the natural reservoirs of the bacterium. Evidence of L. 

monocytogenes survival in soils was first reported by Welshimer (1960) who tested 

the bacterium’s survival in clay and fertile garden soil. The bacterium was found to 

survive for over 28 weeks in both soil types without nutrient supplementation. Similar 

findings showing L. monocytogenes ability to survive in sterile and natural sandy, clay 
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loam, and sandy loam soils (Dowe et al., 1997). While L. monocytogenes numbers in 

soils are mostly low, prevalence rates are relatively high. For example, a 2013 

nationwide study of L. monocytogenes incidences in French soils that examined 1315 

soil samples found a prevalence rate of 17% but only with a bacterial density of 2.88 

x 104/g of dry soil (Locatelli et al., (2013). An earlier investigation (Welshimer & 

Donker-Voet, 1971) also reported a prevalence rate of 33% in samples collected from 

12 farms during three seasons. Variations in prevalence rates in soil of 9% to 51.4% 

have also been reported by other authors (Strawn et al., 2013; Weis & Seeliger, 1975), 

with studies of its isolation from vegetation and different natural soil environments 

including forests, meadows, creeks, pastures, and mountainous regions (Linke et al., 

2014; Sauders et al., 2012; Weis & Seeliger, 1975; Welshimer, 1968) also been 

reported. These demonstrate soil is an environmental L. monocytogenes niche but 

also show the bacterium’s ability to adapt to diverse soil environments. 

Water is also an ecological niche for L. monocytogenes. A study (Watkins & Sleath, 

1981) examining nine surface river waters reported isolating the bacterium from all the 

samples tested. Also, a study (Stea et al., 2015) that examined L. monocytogenes 

prevalence in urban and rural watersheds around Nova Scotia, Canada, reported a 

detection frequency of 17.5%. In another two year longitudinal study  of waters around 

five locations in New York, USA (Strawn et al., 2013), a 28% prevalence rate for L. 

monocytogenes was reported; higher than any of the other bacterial species tested 

for, Salmonella (9%), and Shiga toxin-producing E. coli (STEC) (2%). Other studies 

have reported L. monocytogenes prevalence rates of 8.6% to 67% in water courses 

(Colburn et al., 1990; Dijkstra, 1982; Lyautey et al., 2012; Rodas-Suárez et al., 2006) 

with reported loads of up to 1.8x102 counts/l (Watkins & Sleath, 1981). However, in 

almost all these studies, the authors suggested or affirmed outflow of agricultural 

effluents into water courses, runoffs, or contaminations with sewage sludge for the 

high prevalence rates of L. monocytogenes. This, it is believed, is due to numerous 

other studies that have reported livestock as being reservoirs of the bacterium. 

1.3.1.2 L. monocytogenes in livestock and livestock feed. 

A study by Strawn et al. (2013) analysing faecal samples of cattle at farms around the 

New York metropole reported L. monocytogenes prevalence rate of 15%. Prevalence 

rates were even higher in earlier findings by a previous study (Watkins & Sleath, 1981) 

who reported L. monocytogenes incidences in all livestock sewage and sewage sludge 
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samples that were examined. This study found L. monocytogenes concentrations of 

up to 1.8 x 104 counts/l in the sewage and sludge samples. In a more recent study 

(Boscher et al., 2012) L. monocytogenes was detected in 14% of the 172 pig faecal 

samples that were analysed with L. monocytogenes incidences in 25% of the 43 farms 

investigated. Conversely, a 2007-2008 exploratory study on 14 pig farms in France 

(Fosse et al., 2011) reported no L. monocytogenes incidences. The direct streaking 

method used in this study was however cited by other authors as a potential reason 

for the no detection, due to the low sensitivity of the technique.  

An earlier study (Fenlon et al., 1996) of farms around Aberdeenshire, Scotland, 

suggested that the incidences of L. monocytogenes in the faeces of livestock is linked 

to contaminated animal feeds, such as spoiled silage been fed to livestock. However, 

this cannot explain the numerous cases of L. monocytogenes isolations from other 

animals, including zoo animals (Bauwens et al., 2003; Kalorey et al., 2006), 

companion animals such as cats, dogs (Wramby, 1944), and wildlife; rabbits (Schoop, 

1946), wood grouse (Lilleengen, 1942),  wild rat (Macchiavello, 1942), racoon, otter, 

moose, and deer (Lyautey et al., 2007). In addition, clinically healthy humans 

reportedly carry the bacterium in their guts. A study of 92 clinically healthy office 

personnel (Kampemacher & Jansen, 1969) reported a L. monocytogenes recovery 

rate of 11.9% from faecal samples of these individuals. An even higher rate of 13.3-

29.1% was reported for abattoir workers at different sampling points over a two year 

period in the same study. These indicate that, though animal feeding regiments may 

increase faecal shedding of L. monocytogenes in ruminants, clinically healthy animals 

can serve as reservoirs of the bacterium. Nevertheless, silage (fermented grass or 

green fodder commonly used to feed ruminants) is reportedly L. monocytogenes 

niche. Various studies (Fenlon et al., 1996; Grant et al., 1995; Sharifzadeh et al., 2015; 

Tasci et al., 2010) have reported isolating L. monocytogenes from silage with 

concentrations of up to 1.1 x 106 CFU/g (Fenlon et al., 1996). This, however, is 

reportedly due to contaminations from soil sources during ensiling, and also the poor 

quality of the silage which is often caused by ensiling plant matter with inadequate 

moisture content, or poorly fermenting silage, caused by loosely packing silos which 

boost aerobic conditions (Fentahun & Fresebehat, 2012; Perry & Donnelly, 1990). 

Hence, these facilitate growth of this bacterium and when fed to ruminants help 

exacerbate its dissemination back into the environment through direct faecal shedding 

or via spreading of slurry on farmlands, but also to consumers through animal products 
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such as meat, cheese, and milk. Nevertheless, the contaminated environment, the 

variety of the contaminated food product(s) and the genotype of the contaminating L. 

monocytogenes spp. are pivotal in the transmission of the bacterium, as discussed in 

the subsequent sections. 

1.3.2  L. monocytogenes persistence in the fresh produce food chain 

L. monocytogenes contaminations of fresh produce mainly emanate during growth at 

the fields or at the food processing facility (Smith et al., 2018). The ability of L. 

monocytogenes to persist in these environments enables it to contaminate fresh 

agricultural produce, at both the pre and post-harvest stages, all facilitating its 

dissemination. Persistence refers to the consistent isolation of a bacterial strain from 

the same location over a period of several months or years. Various hypotheses have 

been proposed for L. monocytogenes’ persistence in various environments including; 

high prevalence and ability to withstand severe conditions in outdoor environments; 

enhanced tolerance to cleaning agents and disinfectants in processing facilities; and 

enhanced adherence to the surfaces of both food processing environments and the 

food products themselves (Bae et al., 2013; Cox et al., 1989; Lundén et al., 2002). The 

persistence of L. monocytogenes in farmlands, which can cause contaminations 

during plant growth, and at the processing environment, which poses a serious 

challenge for contamination post-harvesting, will be discussed. 

1.3.2.1 L. monocytogenes persistence in fresh produce farmlands 

Though soil is a natural ecological niche for L. monocytogenes, as discussed above, 

the practice of applying animal manure, and fresh sewage sludge to farmlands as 

fertilisers, or irrigating with livestock wastewater, is also responsible for increasing 

bacterial numbers and in the dissemination of the bacterium in the environment 

(Ivanek et al., 2006; Schlech et al., 1983). It is common practice to apply sewage 

sludge and other livestock manures to agricultural lands by many fresh produce 

farmers. Yet, for every 1-2 tonnes of sludge applied a L. monocytogenes load of 106-

108 CFU is introduced per hectare of farmland per year (Garrec et al., 2003).  It was 

reported by Nicholson et al. (2005) who examined survival of four faecal pathogens in 

livestock manure that Listeria can survive in dairy slurry for up to 6 months; twice that 

observed for any of the other pathogens investigated in the study. Also, it was seen in 

(Welshimer, 1960) demonstration earlier that L. monocytogenes can survival for up to 
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295 days in non-sterile soils. A more recent study by Locatelli et al. (2013) of 100 soil 

samples (representative of all soil types around France) also found that L. 

monocytogenes can survive up to 84 days in 71% of the tested soil types following 

inoculation with an initial dose of 1x106 CFU/gram of dry soil. Thus, the further 

introduction of L. monocytogenes to farmland could result in its persistence in the soil 

long enough to cause contaminations to growing crops. In fact, Watkins & Sleath 

(1981) isolated 1.6x102 CFU/100g of soil at 8 weeks post-sewage sludge application 

to a farmland, with no indications of a significant decline in bacterial numbers anytime 

soon post that time point; which is about the length of time it can take for spinach to 

grow to a harvestable stage in the field (Conte et al., 2008). However, reasons for L. 

monocytogenes persistence in soil environments is only partially understood. 

As both biotic and abiotic factors, such as soil pH, moisture content (Dowe et al., 

1997), soil type (Dowe et al., 1997; Welshimer, 1960), clay content,  and soil microflora 

have been evidenced as pivotal in L. monocytogenes persistence in soil (Locatelli et 

al., 2013; McLaughlin et al., 2011; Vivant et al., 2013), studies have also explored the 

role of intrinsic bacterial factors in L. monocytogenes’ persistence in soil environment. 

While experimental data on the mechanisms of L. monocytogenes survival and 

persistence in soil is still limited, there has been a few documenting these processes 

in recent years. A study  of L. monocytogenes strains reported a correlation between 

strain motility and soil survival (McLaughlin et al., 2011). The study found that the 

typically motile L. monocytogenes strain EGD-e and hyper-motile strain CD83 had 

increased soil survival when compared to other two L. monocytogenes EGD-e mutants 

(∆fliP and ∆fla) that lacked motility. 

Bacterial metabolism is also vital for L. monocytogenes survival in soil as this regulates 

nutrients acquisition, transport, and expulsion of toxic substances, among others, 

enabling adaptation to various environments. In L. monocytogenes the alternative 

stress factor SigmaB regulates expression of numerous genes involved in such 

processes that enable its adaptation (Becker et al., 2000; Ferreira et al., 2001). While 

this is only partially understood in in vitro conditions, Piveteau et al. (2011) reported 

on expressions of these genes in soil environments. In this study soil extracts (40ml) 

and sterilised soil (35g) were inoculated with the L. monocytogenes strain EGD-e at 

an initial dose of 1x105 CFU/ml and 1x105 CFU/g, respectively, and monitored over a 

year period. EGD-e populations were enumerated periodically with a whole-genome 

arrays analysis also conducted. Bacterial populations of 106 cfu/ml and 103 cfu/g were 
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reported at the end of the one-year period, signifying L. monocytogenes’ persistence 

in various soil conditions. Also, in the whole-genome arrays analysis SigmaB regulated 

genes expressions were prevalent, such as the ABC transporters and PTS used in 

nutrient acquisition, and catabolising enzymes. This study provided insights into a 

transcriptional re-profiling in L. monocytogenes in soil environments, which implicated 

stress regulators in its persistence in soil.  

In a further study   SigmaB was found to be a determinant is L. monocytogenes survival 

in soil (Gorski et al., 2011). In this study, contaminated soil samples were seeded with 

either of a SigmaB wild-type or SigmaB mutant of the L. monocytogenes serotype 4b. 

Over the course of the four weeks of this investigation a 3-5 log units differences in 

survival was reported in the soil samples between the wild-type and the mutant, with 

the lesser survival being in the SigmaB mutant. However, as L. monocytogenes was 

still recovered throughout the course of this investigation it indicates that other factors 

are also used by the bacterium to persist in soil. Evidently, this was demonstrated in 

a latter study by Vivant et al. (2015). In this study, an L. monocytogenes response 

regulator AgrA was investigated in 10 soil microcosms. agrA regulates genes encoding 

proteins, such as those involved in cell envelope and cellular processes, the ABC 

transporters, and antimicrobial resistance peptides, among others. They later 

observed that the mutant EGD-e strain (∆agrA) had significantly reduced survival in 

soil when compared to the parental strain. 

Other bacterial intrinsic factors such as the possession of plasmids-which can enable 

resistance to heavy metals, oxidative stress, multidrug efflux-are also probable soil 

persistence enablers (Harvey & Gilmour, 2001; Lebrun et al., 1992; McLauchlin et al., 

1997). Though a plasmid carried by a virulent L. monocytogenes lineage IV isolate 

(FSL J1-208) was found to have no role in resistance to antibiotics nor heavy metals 

by den Bakker et al. (2012), with the vast array of plasmids in environmental L. 

monocytogenes isolates (Harvey & Gilmour, 2001) the possibility of their roles in soil 

persistence cannot be ruled out. Nonetheless, as the interplay of these numerous 

factors enable the bacterium’s persistence in soil they in effect enable it to contaminate 

fresh produce during growth, and agricultural machinery during harvesting, all resulting 

in its transmission to food processing facilities where the cycle of transmission and 

persistence can continue. 
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1.3.2.2 L. monocytogenes persistence in food-processing environments 

During fresh produce harvesting contamination to harvesting equipment and 

personnel can be caused by L. monocytogenes contaminated soils, but also by 

contaminated fresh produce (Lianou and Sofos, 2007). As is often the case, fresh 

produce are sent to a dedicated processing facility post-harvest to be cut, washed and 

packaged for consumption. Despite strict sanitary and hygiene measures 

implemented at many food processing facilities L. monocytogenes have been known 

to be introduced into the processing environment through field-contaminated 

machinery used to transport fresh produce, the harvesting personnel’s clothing and 

footwear,  and raw materials (Camargo et al., 2017; CDC, 2011). At the processing 

facility control of L. monocytogenes is a challenge as it can persist for years. 

Once introduced into the processing environment L. monocytogenes can colonise 

various sections of the plant including work benches, sinks, grinders, dicers, floor 

surfaces, walls, standing water, interior of drainages, niches (hard to clean sites) and 

fresh produce washing tanks, among others (Cox et al., 1989; Lundén et al., 2002). It 

is common practice in many facilities to disinfect the processing environment and 

equipment with quaternary ammonium compounds (QACs) such as sodium 

dichloroisocyanurate, sodium hypochloride, and peracetic acid (Camargo et al., 2017). 

As reviewed by Camargo et al. (2017), the use of alternative means such as 

bacteriophages, ultraviolet radiation, and ultrasonic treatments, among others, have 

also been trialled with some gaining industry approval.  

However, L. monocytogenes is capable of growth at a broad range of conditions that 

are often observed at processing facilities. Hudson et al. (1994) reported that 

temperatures as low as -1.5⁰C can initiate L. monocytogenes growth and that it can 

also survive in temperatures as high as 45⁰C, making it a psychrotroph and a 

mesophile. Upregulation of L. monocytogenes genes that cause increased 

metabolism and adaptation when exposed to low temperatures was reviewed recently 

by Saldivar et al. (2018). Protein transporters such BetL, Gbu, and OpuC which 

facilitate osmolytes uptake; HisJ, TrpG, CysS, and AroA which are needed for amino 

acids metabolism at low temperatures; and stress response genes such as trxB, flp, 

and rpoN were all reported to be upregulated at low temperatures. Additionally, L. 

monocytogenes is also reported to grow at broad pH ranges of 4.3 to 9.4 (Giffel & 

Zwietering, 1999), which can enable the bacterium to survive washes by many acid 
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based disinfectants. Even so, of major concern is the ability of L. monocytogenes to 

form biofilms which enables it to persist. 

Biofilms are a collection of microbial cells that are embedded in a layer of extracellular 

polymeric substances (EPSs). When L. monocytogenes colonies are deposited on a 

surface they attach, grow and multiply to form a monolayer consisting of a colony of 

fewer cells, then they produce EPSs to entrap organic and inorganic debris and other 

microorganisms, they continue to multiply forming a larger mass of multi-layered 

micro-colonies known as the L. monocytogenes biofilm (Di Ciccio et al., 2012). L. 

monocytogenes is able to form biofilms as early as 4 hours when deposited on a 

surface and can do so in a wide range of temperatures (4⁰C-37⁰C) (Giao & Keevil, 

2014). Biofilm formation enables the bacterium to adhere to various materials in the 

processing environment, such as stainless steel surfaces, floors, wastewater pipes, 

seals, interior of drainages, bends in pipes, and conveyor belts, among others 

(Beresford et al., 2001; Colagiorgi et al., 2017). The formation of biofilms can enhance 

protection of the bacterium from biocides, detergents or sanitisers (Klæboe et al., 

2006), and other cleaning agents that may be used at the facility. Though the use of 

disinfectants and frequent cleaning routines may be effective in clearing most of the 

formed biofilms (Chaitiemwong et al., 2014), the last stage of the biofilms formation 

process complicates its eradication from the processing environment. As part of the 

last stage, cells get detached from the mature biofilm and are released into the 

environment resulting in colonisation of new niches and a repeat of the cycle, thus 

resulting in persistence. Though conditions such as temperature, exposure to 

sanitisers or detergents, among others, are all known to induce the formation of 

biofilms (Jefferson, 2004), the mechanisms of its formation in L. monocytogenes is still 

partially understood. 

Flagella motility was reported as essential for biofilm formation by Lemon et al. (2007). 

In this study, a wild-type environmental strain of a L. monocytogenes serovar 

commonly associated with human literiosis (1/2a) and non-motile mutants of the 

parent strain were used. The mutant strains were observed to have defective 

attachment to glass and steel, and were unable to form mature biofilms. However, the 

inability to form mature biofilms could be attributed to the reported defective 

attachment to these surfaces as attachment is essential for biofilms formation. The L. 

monocytogenes agr operon has also been implicated in biofilm formation. The operon, 

which consists of four genes (agrB, agrD, agrC, and agrA), is required in bacteria 
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species for cell-to-cell communication during biofilm formation and maturation. Rieu et 

al. (2007) carried out an in-frame deletion of agrA and agrD, a transcriptional regulator 

and a propeptide encoding gene, respectively, in the L. monocytogenes strain EGD-

e. The authors observed that the mutants had significantly reduced adherence to glass 

and polystyrene surfaces. Also, biofilm formation within the first 24 hours of the 

experiment was impaired when compared to the parent strain. Similarly, a EGD-e agrD 

mutant (∆agrD) was found to have impaired biofilm formation on polystyrene in another 

study by Riedel et al. (2009). The authors also reported reduced invasion in Caco-2 

intestinal epithelial cells and attenuated virulence in mice by the mutant strain. In 

contrast, enhanced adherence to polystyrene was observed by Vuong et al. (2000) in 

S. aureus when a mutant (∆agr) was tested against a wild-type; suggesting the role of 

the operon in biofilm formation is species-dependent.  

1.3.3 L. monocytogenes contaminations and prevalence in RTE fresh produce 

Food contamination by L. monocytogenes can occur at any point in the fresh produce 

food chain, from the pre-harvest to post-harvest stage (farm-to fork), through direct or 

indirect sources including water, soil, dirty equipment, animals (wild and 

domesticated), and human handling, as summarised in Figure 1.1. Early reports of L. 

monocytogenes isolation from food products dates as far back as 1949 (Potel, 1951), 

and thereafter numerous listeriosis outbreaks have been linked to fresh produce and 

other RTE foods such as soft cheese, milk, frozen corn, and cabbage, among others  

(Dalton et al., 1997; Fleming et al., 1985; Ho et al., 1986; Linnan et al., 1988; Schlech 

et al., 1983). Although L. monocytogenes contamination has also been documented 

in other food products such as beef, pork, and poultry products (Gómez et al., 2015; 

Ingham et al., 2004), this section will only assess prevalence of the bacterium in fresh 

produce. 
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L. monocytogenes has been found to survive in a wide variety of fresh produce 

products. However, prevalence rates have been found to vary among various 

products. A 2010 study by Ponniah et al. (2010) of randomly selected commercial 

vegetables at four markets in Selangor, Malaysia, discovered L. monocytogenes in all 

10 vegetable types tested, 100% prevalence. However, L. monocytogenes was only 

Isolated from 69 of 306 (22.5%) samples that were investigated. Higher prevalence 

rates were found in yardlong bean (31.3%) and Japanese parsley (27.2%), with lower 

incidence rates reported in Winged bean and Indian pennyworth (15.6%). Other 

vegetables that tested positive for L. monocytogenes include cabbage, cucumber, and 

sweet potatoes.  Lower prevalence rates were reported in a later study by Althaus et 

al. (2012). The authors who investigated bacterial burden in RTE fresh produce in 

Swiss markets reported a prevalence rate of 3.5% (5 of 142 samples collected). 

However, all L. monocytogenes isolations were from RTE lettuce samples with no 

reported incidences in the sprouts and fresh-cut fruits samples investigated. Similar 

observations were reported by Hossein et al. (2013) in a survey of markets around 

Northern and Eastern Tehran, Iran, where a prevalence rate of 7% was reported. 

Interestingly, whilst the previous study by Althaus et al. found only one L. 

monocytogenes serotype (1/2a) in all L. monocytogenes positive samples, four 

serotypes (1/2a, 1/2b, 3b, and 4b) were found contaminating vegetables in this study. 

However, most of the serotypes were isolated from RTE mayonnaise salads (3 

serovars: 1/2a, 1/2b, and 4b), and cucumber (4 serovars), whilst only two serotypes 

Figure 1.1:  Potential sources of contamination, and transmission of L. monocytogenes 
………….… in the fresh produce food chain. 
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were found on lettuce and one in cabbage, 1/2a and 1/2b, and 1/2a, respectively. 

Several other studies demonstrating the prevalence of L. monocytogenes in fresh 

produce in recent years are summarised in Table 1.3: 

Table 1.3: Incidences and prevalence of L. monocytogenes in selected fresh 

produce products from selected studies between 2010 and 2017. 

 

 

Produce Country Prevalencea       Reference 

Beans Malaysia 64 (24, 37.5%)c Ponniah et al. (2010) 

Chicago, USA         -                                  FDA (2014) 

 
Cabbage 

Malaysia 32 (12, 37.5%) Ponniah et al. (2010) 

Iran 50 (3, 6%) Hossein et al. (2013) 

Brazil 11 (2, 18.2%)    Sant’Ana et al. (2012) 

Carrot Malaysia 33 (8, 42.9%)b Ponniah et al. (2010) 

India 60 (1, 1.7%)    Mritunjay & Kumar (2017) 

 
 
Cucumber 

Malaysia 32 (14, 43.8%) Ponniah et al. (2010) 

Iran 50 (7, 14%) Hossein et al. (2013) 

Greece         - Nastou et al. (2012) 

India 60 (3, 5%)    Mritunjay & Kumar (2017) 

Collard greens Brazil 30 (1, 3.3%) Oliveira et al. (2010) 

Brazil 24 (1, 4.2%)   Sant’Ana et al. (2012) 

 
 
Lettuce 

Iran 50 (5, 10%)      Hossein et al. (2013) 

Switzerland 142 (5, 3.5%)d      Althaus et al. (2012) 

Greece          - Nastou et al. (2012) 

Brazil 152 (3, 2.0%) Sant’Ana et al. (2012) 

 
Parsley 

Malaysia 49 (21, 24.2%) Ponniah et al. (2010) 

Poland 30 (3, 10.0%)      Szymczak et al. (2014) 

Greece         - Nastou et al. (2012) 

Brazil 22(1, 4.5%) Oliveira et al. (2010) 

 
Spinach 

Brazil 11 (1, 9.1%)   Sant’Ana et al. (2012) 

India 60 (8, 13.3%)    Mritunjay & Kumar (2017) 

Ireland         -      FSAI (2018) 

Sweet potato Malaysia 32 (9, 28.1%) Ponniah et al. (2010) 

Poland 30 (9, 30%)     Szymczak et al. (2014) 

Tomato Malaysia 32 (7, 21.9%) Ponniah et al. (2010) 

India 60 (4, 6.7%)                          Mritunjay & Kumar (2017) 

a Number of total analysed samples (number, and percent of positive sample for                              

L. monocytogenes), b Includes Wild and Japanese Parsley,  c include Winged and Yardlong 

beans, and d RTE lettuce, - (prevalence rates not reported for product). 
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1.3.4  EU regulations on L. monocytogenes in RTE food products 

 

Within the European Union (EU) every level of the food chain is controlled by food 

safety regulations. As EU regulations, these are binding and affect all member 

countries, and any foreign food supplier that exports food into the EU. As per 2005 

regulations, effective January 1st 2006, and amended in 2007, the European 

Commission regulation (EU Commission, 2007) categorises RTE food products into 3 

categories of 2 food groups (Table 1.4). 

 

Table 1. 4: Microbiological criteria for L. monocytogenes in food products as per European 

Commission regulation (EU Commission, 2007). The critical limits as indicated are the limits 

during the shelf-life of the product, except where stated in the food notes. 

(a) If food product is intended for persons other than infants and ones with special 

medical needs, before dispatch none must be detected in 25g but can be detected 

during shelf-life of the product. 

(b)  If the manufacturer is not able to demonstrate the product will not exceed 100 

cfu/g lower limits must be set. 

 

RTE foods are grouped into two; ones that support L. monocytogenes growth and 

ones that do not. Criteria for foods not supporting L. monocytogenes growth are based 

on pH,  water activity and shelf-life of the product, and challenge studies can be 

conducted as per the European Union Reference Laboratory (EURL) Technical 

guidelines of June 2014 (Beaufort et al., 2014) to ensue this determination. In addition 

to the two food groups, the intended consumer of any of the food products was used 

to categorise products into three; (a) foods that support L. monocytogenes growth that 

are intended for infants and person(s) with special medical needs (i.e. 

immunocompromised, organ transplants, etc.), (b) foods that support growth but not 

RTE-food category Critical limit            Comment on criteria 

Support growth None in 25g (a) For foods intended for infants and 

individuals with special medical needs 

Support growth  100 cfu/g  (b) For foods not intended for infants and 

individuals with special medical needs. 

Unable to support growth 

    - pH ≤ 4,4 or aw ≤ 0,92,               

....-pH ≤ 5,0 and aw ≤ 0,94,    

…-shelf-life < days 

 

 100 cfu/g  

 

For foods not intended for infants and 

individuals with special medical needs. 
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intended for the former two groups of people, (c (i)) food that cannot support growth 

and intended for any group of consumers, and (c (ii)) food that cannot support growth 

and intended for any consumer. In all categories, foods intended for infants and 

persons with special needs must have less than 25 cfu/g during the shelf-life of the 

product. Foods intended for individuals, other than infants and persons with special 

medical needs, that support L. monocytogenes growth can have up to 100 cfu/g during 

the shelf-life of the product. However, it must be demonstrated by the manufacturer 

that the product will not exceed the limit of 100 cfu/g throughout the shelf-life of the 

product. If this cannot be demonstrated, no L. monocytogenes should be detectable 

in 25g of the product at the time it is to be dispatched by the manufacturer. For food 

products that require the absence of L. monocytogenes in 25g and intended for infants 

and persons with special medical needs, the manufacturer must test ten samples to 

ascertain this and five samples if not intended for these groups of people. As 

demonstrated by Hunt et al. (2018) using the EURL guidelines, examples of RTE 

products that do not support L. monocytogenes growth include coleslaw and cheese 

and ones that do support growth include smoked salmon and pork.  

 An overview of L. monocytogenes virulence factors 

Though L. monocytogenes lives as a saprophyte in the environment it can transition 

into a disease causing organism (pathogen) when it enters into a human or animal 

(host), all due to the possession of a range of molecules (virulence factors) that enable 

it to replicate and disseminate intracellularly (virulence). Virulence factors refer to any 

secreted bacterial gene products that may contribute in the bacterium establishing 

itself on or within its host. In L. monocytogenes these factors are encoded by genes 

that cluster in groups known as virulence gene clusters (vgc) within chromosomal loci 

referred to as Listeria pathogenic islands (LIPIs). To date, all, except one (Bigot et al., 

2009), of the identified L. monocytogenes virulence factors are chromosomally 

encoded. In L. monocytogenes three pathogenic islands have been identified, LIPI-1, 

LIPI-3, and LIPI-4. LIPI-1 ‘the central virulence gene cluster’ is a 9kb chromosomal 

region of six genes (prfA, plcA, plcB, hly, mpl, actA) and a potential 7th (orfX) encoding 

the proteins PrfA-a virulence genes transcriptional regulator,  PlcA & B-two 

phospholipases, LLO-hemolysin, Mpl-zinc metalloproteinase, ActA-actin assembly 

inducing protein, and OrfX-a secreted microphages’ oxidation response dampener, 

respectively (Figure 1.2). LIPI-1 encode proteins necessary for the intracellular growth 
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and motility of L. monocytogenes and is found on all sequenced L. monocytogenes 

strains (Vázquez-boland et al., 2001).  

LIPI-3 is the second L. monocytogenes vgc to be identified and it encodes a second 

hemolysin/cytolysin, listeriolysin S (LLS). LLS is vital in L. monocytogenes survival in 

human polymorphonuclear neutrophils (PMNs) and escape from the phagosomes of 

macrophages in murine models, thus contributing to the bacterium’s virulence (Cotter 

et al., 2008). LIPI-3 consists of a vgc of 8 genes (llsA, llsG, llsH, llsX, llsB, llsY, llsD, 

and llsP) (Figure 1.3) encoding yet to be fully annotated proteins, and the only 

understanding held about them are by comparisons to other known proteins with 

closest identity. Presumptive functional roles include a peptide toxin (LlsA), 

components of an ABC transporter (LlsG, and LlsH), post-translational modification 

enzymes (LlsB, LlsY, and LlsD), a protease (LlsP) and a L. monocytogenes protein of 

undetermined function (LlsX) (Quereda et al., 2017). The island has been identified 

exclusively in a subset of L. monocytogenes lineage I strains, and only recently on 

atypical L. innocua strains (Clayton et al., 2014). Among L. monocytogenes lineage I 

strains LIPI-3 has been identified in only 52-72% of all sequenced strains (Clayton et 

al., 2014; Cotter et al., 2008; Kim et al., 2018), most of which have been strains 

frequently associated with sporadic and epidemic listeriosis outbreaks, such as 

serotypes 1/2b and 4b (EFSA & ECDC, 2018; Ho et al., 1986; Pérez-trallero et al., 

2014). This has led many to postulate that LIPI-3 may after all provide answers to the 

whys and wherefores of the enhanced virulence of lineage I isolates. 

However, the precise mechanisms through which LIPI-3 encoded proteins contributes 

to virulence is still barely understood. 

Listeria pathogenic island (LIPI)-4 was only identified recently following analysis of 

6,633 L. monocytogenes strains of food and clinical origin by Maury et al. (2016). 

Reports on L. monocytogenes isolates found to contain LIPI-4 has been mainly from 

lineages I and II isolates. Among these the serotype 4b isolates, which predominates 

in clinical human cases and also frequently implicated in listeriosis outbreaks, are the 

most LIPI-4 bearers (Kim et al., 2018).  The island consists of six genes (Figure 1.4), 

most of which uncharacterised, and include the cellobiose-family phosphotransferase 

system (PTS). The PTS permeases are systems used by bacteria to transport 

carbohydrates and often consist of three domains, seldomly four (EIIA, EIIB, EIIC, and 

EIID), that enable the utilisation of carbon sources. In microbes PTSs have been 

grouped into seven (Barabote & Saier, 2005), and one of these is PTSLac which in turn 
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is divided into six families. Of the six PTSLac families PTSLac-4 is reported to be the 

main transporter of the disaccharide cellobiose (Stoll & Goebel, 2010), and this 

cellobiose-family PTS is the main constituent of LIPI-4 (Maury et al., 2016). Therefore, 

as carbon metabolism has been reported to modulate virulence (Eisenreich et al., 

2010), the discovery of the L. monocytogenes LIPI-4 formed the basis for investigating 

its virulence potential. 

The virulence of this gene cluster was evaluated by Maury et al. (2016) in a mouse 

model whereby a mutant lacking the entire cluster (∆PTS) was created. Bacterial 

growth prior to mouse infection was determined in culture media and ∆PTS was 

reported to have no impaired growth when compared to EGD-e. In the mouse model 

the parent strain and ∆PTS strain were tested against EGD-e on their ability to invade 

the central nervous system (CNS) and other organs (spleen, liver). Interestingly, a 

considerably reduced ability to infect the CNS was observed in ∆PTS whilst the parent 

strain showed better fit than EGD-e, but no differences in ability to colonise other 

tissues was observed among the three strains. The tests were also carried out in a 

mouse maternal-neonatal (MN) infection model with similar results only this time it was 

impaired infection in the placentas and foetuses of pregnant mice. Competitive index 

experiments using ∆PTS and an isogeneic PTS complemented strain were also 

carried out. In summation, the results thus show the PTS locus of LIPI-4 strains 

enhances CNS and MN tropism and contribute to strain virulence. However, as not all 

epidemic strains contain this pathogenic island it indicates the involvement of other 

factors in CNS and MN listeriosis. 

Nevertheless, not all L. monocytogenes genes encoding virulence factors are within 

the above mentioned classical virulence gene clusters as several others lie outwith 

these regions on the bacterium’s chromosome. These include the internalin genes 

(inlA, inlB, inlC, inlF, inlJ, and inlK), aip (invasion associated protein), hpt (hexose 

phosphate transporter), and transcriptional regulators such as virR (virulence 

regulator), sigAB (stress response factors), and mogR (motility gene repressor) that 

all enhance L. monocytogenes virulence. Though there exists overlapping 

functionalities of these vast arrays of L. monocytogenes virulence factors and with 

certain factors of distinct yet virulence roles, these can be generally categorised into 

four groups based on their roles in infections: adhesion to cells; cell invasion or 

internalisation; nutrient mobilisation and intracellular growth; escape from vacuoles 

and immune cells; and cell-to-cell spread. 
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FIG 1.2: Transcriptional organisation of the chromosomal region of the virulence gene cluster 

LIPI-1 of L. monocytogenes. Yellow arrows show LIPI-1 genes and green arrows show 

flanking loci. orfX, only added to LIPI-1 recently, is only partially characterised and is therefore 

coloured green. Figure is as adapted from (Vázquez-boland et al., 2001). 

 

 

FIG 1.3 Arrangement of the haemolysin S (LLS) gene cluster (LIPI-3). The size of the genes, 

in base pairs, are enclosed within the arrow. Indicated at the cross line at the top is the size 

of the cluster and its position on the chromosome of L. monocytogenes serotype 4b strain 

F2365. Figure is adapted from (Cotter et al., 2008). 

 

FIG 1.4: Chromosomal arrangement of LIPI-4 of L. monocytogenes serotype 4b. Yellow 

arrows show genes encoded within the cluster and green arrows show flanking loci. The 

encoded gene products are shown below the genes, and the size of the genes, in base pairs, 

are shown within the arrows. Indicated at the cross line at the top is the size of the cluster and 

its position on the bacterial chromosome. *, a PTS associated protein of undetermined 

characteristic; **, a hypothetical protein. Figure is adapted from (Maury et al., 2016). 
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 G. mellonella as a model for studying L. monocytogenes virulence. 

Mammalian models have been the gold standard for in vivo experimentation, however 

there are now increasing social and ethical concerns which has subjected their use to 

strict laws and regulations (Trevijano-Contador & Zaragoza, 2014). This is evidenced 

by the introduction and expansions of the 3Rs that now underpins the use of animals 

in scientific research, which enforces refinement of conventional scientific procedures 

around animal experimentation and a need for reducing the number of test animals in 

research if they cannot be entirely replaced (ASPA, 2012). Consequently, there is a 

desperate need for alternative, yet suitable, host models that approximate mammalian 

systems, and this has led to a surge in the development of insect models. As essential 

features of the innate immunity of insects share commonalities with mammalian 

systems (Browne et al., 2013; Kavanagh & Reeves, 2007; Muller et al., 2008) this has 

enabled researchers to extrapolate human-pathogen interactions from these insect 

infection models. This in addition to the readily availability of insects, rapid growth 

rates, ease of handling, low rearing costs, and ethical acceptance of their use in 

scientific research has modelled insects as the potential vanguards of scientific 

research (Mukherjee et al., 2015; Scully & Bidochka, 2006; Vilcinskas, 2011). 

Larvae of the greater wax moth (Lepidoptera: Pyralidae [Galleria mellonella]) is an 

emerging and a useful model host now widely used as an alternative experimental 

model. Galleria mellonella (G. mellonella) larvae (Figure 1.5) at the sixth instar stage 

are used in experimental studies (Tsai et al., 2016). Tests using this model can be 

conducted at the physiological temperature of humans (37⁰C), unlike other 

invertebrate models such as C. elegans and D. melanogaster (fruit fly), which is 

significant as it enables studying human pathogens at conditions mimicking their 

natural hosts environments. Compared to C. elegans, fruit flies and many other 

invertebrates, G. mellonella has a relatively more complex innate immune system akin 

to mammals that makes it more suitable for modelling human infections (Ramarao et 

al., 2012). Evidently, it is now recurrently used as a viable alternative to animal models 

for antimicrobials testing (Aperis et al., 2007; Betts et al., 2014; Cools et al., 2019; 

Dean et al., 2011; Krezdorn, Adams, & Coote, 2014; Luther et al., 2014; Polenogova 

et al., 2019; Thomas et al., 2013), disease modelling (Bohovych et al., 2016; Li et al., 

2018; Loh et al., 2013; Mukherjee et al., 2013), and virulence determination of 
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numerous human pathogens (Camejo et al., 2009; Cotter et al., 2000; Harding et al., 

2012; Mukherjee et al., 2010; Mylonakis et al., 2005; Sousa et al., 2018). 

G. mellonella lacks specialised phagocytic cells and an adaptive immune system 

(Fallon et al., 2011), as can be found in mammals, however, it has features analogous 

to mammals both in structure and functions that enables it to effectively prevent an/or 

clear microbial infections. Such includes a physical first line of defence larval cuticle 

akin to a mammalian skin, haemolymph found in the larval body cavity or haemocoel 

which is analogous to mammalian blood in that it transports nutrients, metabolites, 

waste products, and the immune response haemocyte cells that are also comparable 

to mammalian neutrophils (Bergin et al., 2003; Browne & Kavanagh, 2013; Fuchs et 

al., 2010; Pereira et al., 2018). The G. mellonella haemocytes, a significant number of 

which are also found associated with the larval fat body-an organ functionally 

homologous to a mammalian liver (Lemaitre & Hoffmann, 2007; Meister et al., 1997), 

consists of six identified classes, including coagulocytes, granulocytes, oenocytoids, 

plasmatocytes, prohemocytes, and spherulocytes (Boman & Hultmark, 1987). These, 

haemocytes, recognise and phagocytose pathogens and initiate microbial killing 

through proteolytic enzymes activation, serving functionally mediating roles also 

similar to mammalian leukocytes (Jones, 1962; Siddiqui & Al-Khalifa, 2014).  

Similarly, the mediating role of haemocytes is complemented by antimicrobial peptides 

(AMPs) synthesised by the larval fat body through haemocyte activation signalling 

pathways (Ferrandon et al., 2007; Marmaras & Lampropoulou, 2009; Park et al., 2005) 

that include insect metalloproteinase inhibitors (IMPI), cecropin-like peptides, and 

peptides also analogous to human defensins such as galiomycin and gallerimycin 

(defensin 1 and 2, respectively) (Mak et al., 2010; Mukherjee et al., 2011). 

Notwithstanding, microbial killing is initiated by an immunological response that has 

also been likened to the induction of the complement cascade in mammalian systems 

(Gillespie et al., 1997; Pereira et al., 2018), in that bacterial or fungal polysaccharides 

recognition by haemolymph proteins such as cecropins, GmCP8  and lectins (Kim et 

al., 2010; Klunner et al., 1994; Zdybicka-Barabas et al., 2019) opsonize pathogens 

forming nodulations that physically restrict growth and lead to pathogen elimination. 

These have also been as observed in virulence and disease modelling studies of many 

human pathogens that reported correlation between G. mellonella and mammalian 

models such as mice and rats (Table 1.5). These in addition to delivery routes options 

for microbes and or pharmaceuticals at variable doses, such as through oral 
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(Dubovskiy et al., 2016; Lange et al., 2018), injection (Harding et al., 2013), and topical 

applications (Scully & Bidochka, 2005; Wrońska et al., 2018) has modelled G. 

mellonella as a viable alternative to mammalian models. 

 

 

 

 

 

 

 

 

 

 

 

Table 1.5: A selection of studies demonstrating correlation between G. mellonella 

and mammalian models using various. 

Microbial spp. investigated Reference 

Aspergilus fumigatus Slater et al. (2011) 

Burkholderia cepacia  Seed & Dennis (2008) 

Burkholderia pseudomallei, Burkholderia 
oklahomensis, Burkholderia thailandensis 

 
Wand et al. (2011) 

Candida albicans Brennan et al. (2002) 

Candida krusei Scorzoni et al. (2013) 

Escherichia coli Ignasiak & Maxwell (2017) 

Legionella pneumophila  Harding et al. (2012) 

Listeria monocytogenes Mukherjee et al. (2013) 

Mycobacterium smegmatis Ignasiak & Maxwell (2017) 

Mycobacterium tuberculosis Li et al. (2018) 

Pseudomonas aeruginosa   George et al. (2000), Jander et al. (2000),                
Ignasiak & Maxwell (2017) 

Streptococcus pneumoniae Evans & Rozen (2012), Ignasiak & Maxwell 
(2017), Cools et al. (2019) 

Yeast species Cotter et al. (2000) 

Yersinia pseudotuberculosis Champion et al. (2009) 

FIG. 1.5:  

Galleria mellonella larvae 

(Lepidoptera: Pyralidae) 

at sixth instar stage. 
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 Rationale and objectives for this study. 

Currently, all L. monocytogenes strains are treated the same for regulation purposes 

as potentially virulent isolates. However, L. monocytogenes is genetically diverse and 

in silico predictions suggest there are significant differences in the disease causing 

potential of different strains. In addition, the body of knowledge available that informed 

these regulations are mainly based on L. monocytogenes strains originating from 

clinical samples, whilst the virulence potential of L. monocytogenes strains isolated 

from ready-to-eat (RTE) foods and from the environment remains to be determined. 

Nonetheless, as agricultural activities increase leading to more interactions with the 

environment and the demand for RTE foods been on a daily rise, the possibility of 

people consuming L. monocytogenes contaminated foods are higher. Therefore, it is 

important to determine the virulence potential of food and environmental L. 

monocytogenes isolates in order to evaluate the risks they pose to human health. In 

this project, the differences in virulence potential of nine L. monocytogenes isolates 

collected from RTE fresh agricultural produce and from the environment were thus 

assessed in an invertebrate model with the following objectives;  

1) Validate a model of L. monocytogenes virulence in larvae of the Great wax 

moth (Galleria mellonella) 

2) Determine virulence of the environmental and food strains of L. 

monocytogenes in this model through survival assays. 

3) Assess the immunological response of G. mellonella to infections with the 

various L. monocytogenes strains. 
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Chapter 2 - VALIDATION OF A MODEL OF LISTERIA MONOCYTOGENES 

INFECTION IN GALLERIA MELLONELLA 

2.1 Introduction 

In order to determine the virulence of different L. monocytogenes strains, infection 

models that approximate listeriosis pathogenesis in mammalian systems are required. 

The larvae of the greater wax moth Galleria mellonella have been successfully used 

to study virulence of a number of Listeria species including clinically derived L. 

monocytogenes strains. However, there is a lack of standardisation using this model 

which often results in variability of reported outcomes by research groups despite 

using similar methodologies; such is as seen with these group A streptococcus (GAS) 

studies (Bohovych et al., 2016; Patterson et al., 2013) that reported a 0% and 20% 

survival  for the same strains at identical doses. This is known to be largely due to the 

source of larvae, their handling, and inocula preparations for larval infections (O. 

Champion, Titball, & Bates, 2018). Furthermore, the model has not been used to 

determine virulence of L. monocytogenes strains from food and environmental 

sources. Therefore, it was of importance to firstly validate L. monocytogenes infection 

in this model before it could be used to determine virulence of the L. monocytogenes 

strains investigated in this project.  

The L. monocytogenes strain EGD-e (NCTC7973, serotype 1/2a) is the best 

characterised of the L. monocytogenes strains and the most cited in the literature. It is 

a laboratory strain derived from the isolate that was originally isolated from guinea pigs 

by E.G.D. Murray et al. (1926). We therefore selected EGD-e as our reference strain 

for this investigation. In this chapter we validated a model of L. monocytogenes 

infection in Galleria mellonella by firstly evaluating EGD-e growth in vitro to enable 

standardisation of bacterial inocula, and then evaluated the sensitivity of G. mellonella 

larvae to EGD-e infections. Also, the work adapted the Galleria mellonella health index 

scoring system (HISS) to assess larvae health post infection. 

 

 

 

 



32 
 

2.2 Methodology 

 

2.2.1 Bacterial growth rate and inoculum size determination. 

The L. monocytogenes strain EGD-e (reference strain, NCTC7973) was grown 

overnight in a shaken incubator (200rpm, 37ºC) in broth culture of brain heart infusion 

(BHI, Oxoid) media (calf brain 2.5g/L, disodium hydrogen phosphate 2.5g/L, D+ 

glucose 2g/L, Nacl 5g/L), made up with distilled water and sterilised by autoclaving at 

120ºC for 15 minutes. The optical density (OD600 nm) was recorded and the planktonic 

cultures were diluted to a starting OD600 of 0.05. The cultures were again incubated 

under the same experimental conditions and the OD600 nm recorded at hourly intervals 

for 7 hours. To enumerate the viable bacterial colony forming units (CFU) at each 

recorded OD600, 100ul of culture was collected at hourly intervals, following OD600 nm 

determination, and serially diluted and plated on Oxford agar base (Oxoid Ltd) 

supplemented with Listeria selective antibiotics amphotericin B (10ug/ml), colistin 

sulphate (20ul/ml), acriflavin (5ul/ml), ceotetan (2ul/ml), and fosfomycin (10ul/ml). The 

agar plates were incubated at 37ºC and CFU determined after 24 hours. A calibration 

curve of OD600 and Log CFU was generated to determine the viable bacterial CFU ml-

1 over time. 

2.2.2 Bacterial culture preparations and Galleria mellonella larvae. 

The L. monocytogenes strain EGD-e cultures were prepared by inoculating 10ml BHI 

broth with a colony of EGD-e and incubating at 37ºC in a shaking incubator (200rpm, 

aerobic conditions). The planktonic cultures, in stationary phase, were diluted in fresh 

BHI to an OD600 of 0.42 which corresponds to 109 CFU ml-1, as determined from the 

growth curve (section 2.2.1). Cells were harvested by centrifugation at 12,000 x g for 

10 min at 22ºC. Prior to inoculation the growth media was removed by washing cells 

twice and then re-suspended in PBS to the required concentrations. 

Galleria mellonella larvae were purchased from UK Waxworms Ltd, Sheffield, UK. 

Larvae were in their final instar stage and were stored at 20ºC until used for bacterial 

challenge. Initial experiments were conducted on G. mellonella larvae 7 days after 

their arrival from the producers. This model was modified (for reasons explained in 

section 2.3.3) and all subsequent experiments were carried out on larvae a day post-

delivery by the producer. 
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2.2.3 Galleria mellonella larvae infection. 

Only G. mellonella larvae weighing 0.25-0.35g were used in all experiments. 

Experiments were repeated three times using larvae from a different batch each time. 

To assess dose-depended survival of G. mellonella larvae to EGD-e infections, larvae 

were separated into three treatment groups, using n = 30 per group. EGD-e planktonic 

culture concentrations of 109 CFU ml-1 108 CFU ml-1 and 107 CFU ml-1 were prepared, 

and for each treatment group larvae were inoculated with 20µl corresponding to a dose 

of 107 CFU, 106 CFU and 105 CFU, respectively, per treatment group. The infecting 

dose was determined from OD600 values (2.2.1) and were confirmed by serial dilution 

and plating prior larval infection. G. mellonella larvae were inoculated with 20µl of the 

relevant culture into the last right proleg using an insulin syringe as described 

previously (Joyce & Gahan, 2010), and control larvae were inoculated with 20ul of 

PBS. Larvae were incubated in the dark at 37ºC in 9cm petri dishes lined with 

Whatman paper for the duration of the experiment. 

2.2.4  Monitoring of Galleria mellonella larvae post bacterial infection. 

Post infection larvae were examined individually on a daily basis. To check mortality 

larvae were turned over to look for movement of legs, healthy larvae up righted 

themselves and dead larvae showed no movement. To evaluate the overall health 

index of the larvae the following attributes were examined daily as described in 

previous studies (Loh et al., 2013): activity, cocoon formation, cuticle melanisation, 

and survival. For each attribute a score was assigned and scores were totalled to give 

an overall score for the health index of each larva. A healthy uninfected larva will 

usually be assigned a total score of 8 to 9, with infected dead larva commonly scoring 

0. This scoring system was adapted from (Loh et al., 2013) and is as summarised in 

Figure 2.4. 
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2.3 Results and discussion 

2.3.1    L. monocytogenes growth rate in vitro. 

The L. monocytogenes strain EGD-e (NCTC7973) is the most characterised of the 

known strains of the species. We therefore used it as a reference strain to  establish 

the virulence of L. monocytogenes strains in G. mellonella larvae. We began by 

characterising EGD-e growth parameters in order to determine the bacterial inocula 

that can be used to infect G. mellonella larvae. Figure 2.1 shows that the OD600 nm 

threshold value of 0.05 was approximately equivalent to 8.0 log CFU ml-1, and a linear 

relation between the initial inoculum and the optical density was observed after this 

point. After 4 hours of incubation an OD600 nm of ~1.2 was observed, the rapid bacterial 

growth observed prior to this point slowed down for the remainder of the investigation; 

and this was also true for viable EGD-e CFU ml-1. Bacterial growth peaked at ~2.8x109 

CFU ml-1 after 7h incubation. 

EGD-e growth in these experimental conditions was enabled and this was consistent 

with findings by other research groups (Rea et al., 2004; Schär et al., 2010). It was 

determined that after 7 h incubation EGD-e growth had reach stationary phase, as 

seen in both plots of optical density and CFU ml-1. Earlier reports by Schär et al. (2010) 

also observed EGD-e can reach stationary growth after 6 h incubation at 37ºC, with 

similar findings also reported by Muchaamba et al. (2019) for EGD-e growth in BHI at 

37⁰C. It was significant to make this determinations due to reported differences in 

virulence profiles of L. monocytogenes in logarithmic and stationary growth phases 

(Hain et al., 2008; Riedel et al., 2009), which can have varied characteristics in 

virulence testing (Bortolussi et al., 1987). To ensure consistency and reproducibility of 

our results, we therefore used stationary phase planktonic cultures in all subsequent 

G. mellonella larvae infections. Using the above generated curve (Fig. 2.1) we were 

also able to determine the bacterial CFU ml-1 at any given OD600 nm, which was later 

used to determine bacterial inocula for G. mellonella infections. 
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FIG. 2.1:  L. monocytogenes strain EGD-e growth in BHI broth at 37⁰C. Growth was 

monitored by absorbance measurements and plate counting at hourly intervals. 

Platting was carried out on Oxford agar supplemented with Listeria selective antibiotics 

(OXOID). Results represent three independent determinations. 

 

2.3.2 Galleria mellonella larvae are sensitive to L. monocytogenes infection.  

                                         

In order to determine if G. mellonella larvae could be used as a model to assess the 

virulence of L. monocytogenes strains, the well characterised L. monocytogenes 

laboratory strain EGD-e (reference strain, NCTC7973) was used to infect insect 

larvae. To evaluate the sensitivity of G. mellonella larvae to EGD-e infections we 

carried out dose-dependent survival assays. Larvae were delivered to the laboratory 

and incubated at 20ºC in the dark, with no food, for 7 d prior infection assays. Larvae 

(0.25 to 0.35g) were divided into three groups (n = 30 per group) and each group was 

inoculated with one of three EGD-e doses; 105 cfu/larva, 106 cfu/larva or 107 cfu/larva 

delivered in 20µl of PBS. A control group (n = 30) was inoculated with 20µl of PBS. 

Inoculations were carried out intrahaemocoelically via the last right proleg, and 

subsequently larvae were incubated at 37ºC. Mortality was assessed at 24, 48, and 
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72 h post-inoculation (p.i) by touch-induced lack of larval movement. No mortality was 

observed in the control PBS-inoculated larvae (Figure 2.2). 
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FIG 2.2: Galleria mellonella larvae susceptibility to EGD-e infection is dose-dependent. 

Bacterial cultures were grown in BHI to stationery phase, washed twice and re-

suspended in PBS.  Larvae were inoculated with a dose of 105 CFU, 106 CFU or 107 

CFU, and controls with 20µl of PBS and subsequently incubated at 37°C. Results are 

Mean ± SD of three independent tests. Statistical comparisons are at 7 d p.i between 

EGD-e inocula. No significant differences was observed between PBS-inoculated 

larvae and 105 CFU (Two-Way ANOVA, **: p < 0.01, **** P<0.0001). 

The results showed EGD-e has a time and dose-dependent virulence in G. mellonella 

as the effects of the three doses on larval survival varied at each time point and 

throughout the course of the investigation. For instance at 24 h p.i the 107 CFU only 

had a 14.4 ± 8.6% survival whilst 106 CFU had a 94.4 ± 1.1% survival. At the same 

time point the 105 CFU treatment was almost avirulent as a 98.9 ± 1.1% larval survival 

was observed. Survival rates continued to decline in the two highest doses over time. 

At about 72 h p.i a 50% mortality was observed for the dose of 106 CFU (48.9 ± 2.2%) 

whilst a mortality rate of 100% was seen with the 107 CFU treatment. The 105 CFU 

treatment approximates to a sub-lethal dose as only 1.1±1.1% mortality was observed 

at the end of the 72h period of the investigation. 
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These findings correlated with earlier reports by Mukherjee et al. (2010) who reported 

a 100% mortality at 72 h p.i for EGD-e using a dose of 107 CFU and no mortality 

caused by 105 CFU at the same time point. In contrast the 106 CFU had a higher 

survival rate (~80%) at 72 h p.i to that observed in this investigation. The time and 

dose-dependent survival of larvae to EGD-e infection, as observed here, was also as 

reported by Joyce and Gahan (2010). However, incubation temperature p.i was also 

reported in this study as inducing larval susceptibility to infection. All assays in this 

investigation were carried out three times and were reproducible. This demonstrated 

the sensitivity of G. mellonella larvae to bacterial infections and that it can be used as 

model for L. monocytogenes strains’ virulence testing. 

 

2.3.3 Modifying a model of Listeria monocytogenes infection in G. mellonella. 

As indicated earlier, G. mellonella larvae used in the dose-dependent EGD-e assays 

were incubated at 20⁰C for 7 d with no food prior bacterial challenge. However, as 

studies indicate that starvation, temperature, and prolonged incubation period before 

bacterial challenge all decrease G. mellonella larvae’s ability to withstand microbial 

infections, we modified our experimental setup to minimise these effects in subsequent 

experiments. 

It was found by Banville, Browne, and Kavanagh (2012) that larval susceptibility to 

infections increased significantly among larvae that had been food starved for 2, 4, or 

7 d prior challenge with Candida albicans infections. At 48 h p.i larvae that had been 

starved for 2 and 4 d had 30% reduced survival as compared to non-starved larvae. 

Whilst larvae starved for 7 d were most susceptible to infection with a 16.7% survival 

rate at 48 h, non-starved larvae had a 60% survival rates at the same time-point. 

Similar findings were also later reported by Browne et al. (2015) who observed 

prolonged pre-incubation (as short as a week), significantly increased larvae 

susceptibility to Candida albicans and Staphylococcus aureus infections. A decrease 

in levels of proteins involved in metabolic pathways and decrease in density of 

haemocytes correlated with the prolonged incubation, resulting in decreased larvae 

survival. To minimise these influences and ensure consistency and reproducibility of 

results we resorted to using larvae for L. monocytogenes challenge a day after their 

delivery to the lab (2 days post-shipment from the producer) that are hereafter refer to 

as ‘one day larvae’. This was observed to have significant effects on larval survival 
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when challenged with the same bacterial doses as carried out earlier. Except for the 

use of one day larvae all experimental conditions were maintained as earlier described 

in 2.3.1. Results (Figure 2.3) showed the LD50 for the dose of 107 CFU increased from 

under 15 h (Figure 2.2) to over 50 h, with the LD50 for 106 CFU increasing by over 24 

h when one day larvae were used. Larval survival for 105 CFU (sub-lethal dose) was 

similar to that observed in PBS-inoculated control larvae during the 7d course of the 

experiment. A dose-dependent survival was observed using one day larvae as earlier 

seen in the use of 7 d old larva. 
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FIG 2.3: L. monocytogenes strain EGD-e infection of G. mellonella induces dose-dependent 

mortality. Kaplan-Meier survival curves of G. mellonella larvae post-inoculation with EGD-e. 

Bacterial cultures were grown in BHI to stationary phase, washed twice and re-suspended in 

PBS.  Larvae were inoculated with one of three doses, controls with 20µl PBS and 

subsequently incubated at 37°C. All three doses caused time-dependent mortality of larvae 

with 107 CFU inducing the highest mortality. 105 CFU caused insignificant larval mortality and 

106 CFU induced gradual larval death.  Results are Mean of three independent tests. Statistical 

comparisons are survival rates at day 7 p.i (* p < 0.05; *** P<0.001; **** P<0.0001; ns, no 

significant differences). 

 

The use of one day larvae led to extension of the investigation period for all 

subsequent experiments, from 72 h to 168 h (7 days), providing more data collection 

points for larval survival, and bacterial recoveries and haemocyte density 
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quantification (discussed in chapter 4). This also enabled the use of the health index 

scoring system (HISS) which was significant in determining subtle differences in larval 

sensitivity to infection by different bacterial strains (Chapter 3-section 3.3.5) and as 

well as in the dose-dependent survival assays. As the 105 CFU dose was found to be 

sub-lethal and 107 CFU caused rapid larval death, the dose of 106 CFU, which showed 

a steady decline in larval survival, was to be used for all further virulence testing. 

2.3.4 G. mellonella larvae health index assessment enables observation of 

subtle differences in EGD-e virulence. 

In order to assess more subtle differences in larval sensitivity to EGD-e infection we 

further assessed larval health using a modified health index score system (HISS) 

earlier described by Loh et al. (2013). The index evaluates larval activity, cocoon 

formation, and cuticle melanisation in addition to survival (Fig 2.4). Larvae were 

examined individually and a score was assigned for each attribute and totalled to give 

a final health assessment of each larva. This was collated for each treatment group  

(n = 30 per treatment) to give a final health score per treatment group at each time 

point. 

One day larvae weighing between 0.25 to 0.35g were divided into three treatment 

groups with each group treated with a different planktonic dose of EGD-e; 105 

cfu/larva, 106 cfu/larva or 107 cfu/larva. A control groups was inoculated with 20µl of 

PBS and larvae were incubated at 37ºC. Larvae were examined individually on a daily 

interval. Larval melanisation over time was dose-dependent (not shown). The highest 

dose, 107 CFU, caused more melanisation than that observed in the 105 CFU and 106 

CFU infections. Melanin is produced by larvae to aid microbial trapping and killing 

(Bergin et al., 2005), thus the increased dose-dependent melanisation observed here 

could indicate an increased larval immune response proportionate to the infection 

dose. In most cases larval melanisation correlated with reduced larval activity and was 

accompanied by death, as demonstrated for a dose of 106 CFU (Fig 2.5). The dose-

dependent melanisation and larval death was also as observed for strain and dose-

dependent virulence of Acinetobacter baumannii (Wand et al., 2012). It was observed 

that more virulent strains and higher bacterial doses caused increased melanisation 

resulting in higher mortality rates. L. monocytogenes induces the pro-phenoloxidase 

(PPO) system of G. mellonella, a process instituted by larvae for microbial 

phagocytosis  and destruction (Bidla et al., 2009; Joyce & Gahan, 2010), which leads 
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to nodulation and then melanisation as observed here. This therefore served as an 

indicator of the larval immune system been overwhelmed by the EGD-e infections. 

 

FIG. 2.4: G. mellonella health index scoring system. (A) Scores ascribed to different 

larvae attributes post-inoculation. (B) Larvae melanisation: uninfected larva showing 

no melanisation (1), infected larva with <3 melanisation spots (2), larva with >3 

melanisation spots (3), brown larva (4), black and typically dead larva (5). (C) Pupae 

(fully formed cocoon) with arrow indicating silk formation. Table (A) is as adapted from 

Loh et al. (2013). 

 

FIG 2.5: L. monocytogenes causes time dependent larval melanisation. Larvae were 

inoculated with stationary phase planktonic cultures of EGD-e at a concentration of 

106 cfu/larva and incubated at 37ºC. Time dependent melanisation was observed with 

increased melanisation accompanied by larval death. Not all larval deaths were 

preceded by total darkening of larvae. Results are representative of general 

observations of larval challenge with EGD-e. 
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The overall health index of larvae (Fig 2.6) was found to be dose-dependent. As early 

as 24 h p.i 107 CFU had induced significant differences in larval health to that seen in 

the 105 CFU dose (p < 0.01), and larvae health declined rapidly post this time-point to 

a score of zero in about 4 days p.i On the other hand, stable health scores were 

observed for PBS-inoculated larvae (control) with insignificant variations for 105 CFU 

throughout the course of the experiment. No significant differences were observed 

between PBS-inoculated larvae and the 105 CFU dose (p = 0.642). Also, melanisation 

in PBS-inoculated larvae was insignificant, whilst all significant melanisations 

observed with 105 CFU resulted in larval death. The 106 CFU treatment showed a 

steady decline in larval health correlating with that observed for larval survival using 

the same dose. Though no studies on EGD-e dose-dependent health index 

assessment are available, the results observed in this study correlated with that 

observed in dose-pendent studies in group a streptococcus (Loh et al., 2013). 
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FIG 2.6: Dose-dependent effect G. mellonella larvae health post-infection with L. 

monocytogenes strain EGD-e. Larvae were inoculated with a dose of 105 CFU, 106 

CFU or 107 CFU, and controls with 20µl of PBS and subsequently incubated at 37°C. 

Larvae health were scored base on activity, cocoon formation, melanisation, and 

survival. Results are Mean ± SD of three independent tests. Statistical differences are 

as compare to PBS-inoculated larvae (control).  *p< 0.05; **p< 0.01; *** P<0.001; **** 

P<0.0001; ns, no significant differences (Two-Way ANOVA). 
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2.4 Conclusions 

Whilst no significant larval death was observed in one day larvae infected with 105 

CFU during the course of this investigation a dose of 107 CFU was found to be toxic 

and induced 100% morality in 4 d. By comparison 106 CFU only caused mortality in 

50% of larvae at that time point and 70% by the end of the 7 d period. A dose of 107 

CFU was found to be toxic whilst the dose of 105 CFU proved to be sub-lethal. Larvae 

infection with a dose of 106 CFU was found to be suitable for virulence testing due to 

the steady increase in mortality rates, which enabled the subsequent evaluation of 

other aspects of L. monocytogenes virulence using this model, such as larval 

immunological responses and bacterial growth in vivo.  

Furthermore, the health index scoring system (HISS) was found to be useful in 

highlighting subtle differences in virulence in larvae that would otherwise be 

unnoticeable if using only binary assessments of alive or dead. At 1 d p.i significant 

differences in virulence were observed between larvae infected with 107 CFU and the 

other doses. Although no significant differences were observed between PBS-

inoculated larvae and ones inoculated with 105 CFU differences were more apparent 

as compared to the survival assays. The HISS thus has potential to discriminate 

between L. monocytogenes strains that have similar virulence characteristics. Using 

different doses of EGD-e we therefore demonstrated that G. mellonella larvae are 

sensitive to L. monocytogenes infections and could potentially be used to determine 

differences in virulence of L. monocytogenes strains. 
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Chapter 3 - DETERMINING VIRULENCE OF LISTERIA MONOCYTOGENES STRAINS IN 

GALLERIA MELLONELLA 

3.1  Introduction 
 

Listeria monocytogenes consists of four lineages that comprises at least 15 serotypes 

of equal significance, at least for regulatory purposes, as causative agents of listeriosis 

(Okike et al., 2013; Vázquez-boland et al., 2001). However, L. monocytogenes 

serotypes of L. monocytogenes lineages I and II are the most frequent cause of 

listeriosis due to being responsible for more than 95% of sporadic and epidemic 

listeriosis outbreaks (Kathariou, 2002). This has led to a growing consensus that 

lineages I and II strains have higher virulence potential in animal hosts as compared 

to other L. monocytogenes lineages (Jeffers et al., 2001). However, it is also 

suggested that the increased prevalence of these lineages in listeriosis outbreaks is 

due to high exposures of humans to these isolates from food products (Roberts et al., 

2006). While strains from both lineage I and II are prevalent in food products (Norton 

et al., 2001) lineage I strains are the most implicated in listeriosis outbreaks (EFSA & 

ECDC, 2018; Pérez-trallero et al., 2014), in contradiction to these widely held 

assumptions. Although a great deal of research efforts have been devoted to 

understanding the in vivo differences in virulence of L. monocytogenes strains and 

lineages, these studies have largely been carried out on clinical isolates. Hence, the 

virulence potential of L. monocytogenes strains from food and environmental sources 

remains to be evaluated. Therefore, this investigation aimed at determining the 

virulence potential of L. monocytogenes strains that were directly isolated from fresh 

produce (FP) foodstuff and from a food processing environment using the invertebrate 

model Galleria mellonella. 

In Chapter Two we validated a model of L. monocytogenes infection, and in this 

chapter we used that model to test the pathogenic potential of nine L. monocytogenes 

strains of both lineages I and II. We compared the virulence potential of these strains 

to that of the well characterised L. monocytogenes strain EGD-e (NCTC7973, serotype 

1/2a) whose virulence has widely been tested in this model (Martinez et al., 2017; 

Mukherjee et al., 2010). 
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3.2 Methodology 
 

3.2.1. Bacterial isolates used in this study 

The virulence of 10 Listeria monocytogenes strains and one Listeria ivanovii strain 

were used for this section of the investigation (Table 3.1). All strains, except EGD-e 

(reference strain), were obtained from a commercial food testing laboratory. These 

strains were isolated from various stages of the fresh produce supply chain (FPSC) 

around the UK between May 2016 and April 2017. Strains were isolated using 

ISO11290-2: 2017, species identification was carried out using biochemical tests (API 

Listeria , bioMerieux/Microbact Listeria , Thermo Scientific) and strain identification by 

whole genome sequencing, except Listeria ivanovii, in an earlier publication (Smith et 

al., 2019). The strains were processed for long term storage at Edinburgh Napier 

University (ENU) as described by Smith et al. (2019), suspended in BHI broth  and 

50% glycerol, and frozen at -80ºC until required for virulence testing. 

 

Table 3.1: Virulence profiles of L. monocytogenes isolates used in this investigation 

and Stages in the FPSC they were isolated from. Strain lineage, sequence types and 

virulence profile of L. monocytogenes strains were determined by whole genome 

analysis and MLST in an earlier publication from this laboratory (Smith et al., 2019). 

RP = raw produce, FP = final produce, PC = post cooling. 

 

 

 

Internal 

reference 

 

Source of isolate 

 

Lineage 

Sequence 

type 

Virulence 

profile 

NLmo2 RP spinach (Unwashed) I ST-5 34 

NLmo3 RP spinach (Unwashed) I ST-5 34 

NLmo6 RP red leaf lettuce (Unwashed) I ST-4 41 

NLmo7 PC spinach (Unwashed) I ST-1 41 

NLmo14 FP Beetroot (Washed) I ST-1 41 

NLmo20 FP Baby salad kale (Unwashed) I ST-6 41 

NLmo4 Environmental swab (drain) II ST-325 31 

NLmo5 RP Spinach (Unwashed) II ST-325 31 

NLmo18 RP Baby salad kale (Unwashed) II ST-399 33 

EGD-e  Laboratory (Reference strain) II ST-35 31 
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3.2.2. DNA extraction and 16S sequencing 

The species identification of the Listeria ivanovii isolate was confirmed by 16S 

sequencing. From a long term stock, a streak plate on BHI agar was prepared before 

DNA extraction. DNA extraction was carried out using GeneElute Bacterial Genomic 

DNA kit (SIGMA-ALDERICH, UK) according to manufacturer’s protocol. Amplification 

was performed using the 16S primers (27F, 5’-AGAGTTTGATCMTGGCTCAG-3’; 

1492R, 5’-GGTTACCTTGTTACGACTT-3’) with PCR conditions: 95⁰C for 4 minutes 

(1 cycle); 95⁰C for 1 min, 55⁰C for 1 min, 72⁰C for 2 min (30 cycles); and 72⁰C for 2 

min (final extension). The PCR product was cleaned using GeneJet Gel Extraction Kit 

(Thermo Scientific) and the sample sent to Edinburgh Genomics (Edinburgh, UK) for 

sequencing. BLASTN searches (NCBI: http://www.ncbi.nlm.nih.gov) was conducted to 

for species identification. 

3.2.3. Preparation of bacterial cultures for Galleria mellonella infections. 

To prepare bacterial inoculum for G. mellonella larvae infection, 10ml of brain heart 

infusion (BHI) broth was inoculated with a single colony from a subculture and 

incubated in a shaken incubator (37ºC, 200rpm, aerobic conditions) for 16 h. The 

cultures were diluted in BHI broth to an OD600 of 0.42, which corresponds to 109 

CFU/ml. Cells were harvested by centrifugation at 12,000g for 10 min at 22ºC, washed 

twice in phosphate buffered saline (PBS), and diluted to a concentration of 108 

CFU/ml.  

3.2.4. Infection of Galleria mellonella larvae and monitoring  

G. mellonella larvae were purchased from UK Waxworms Ltd (Sheffield, UK). Larvae 

were stored at 20ºC and used for bacterial challenge within a day after their delivery 

to the lab. Only healthy looking larvae weighing between 0.25-0.35g with no signs of 

melanisation were used, and a new batch of larvae was used in each of the three 

experimental replicates. For each strain G. mellonella larvae (n = 30) were injected 

with 106 CFU/larva delivered in 20ul through the last right proleg using an insulin 

syringe, as described previously (Joyce & Gahan, 2010). Each time 100ul of the 

bacterial inoculum was serially diluted and plated to confirm the CFU counts injected 

into larvae. As a control, larvae (n = 30) were injected with 20ul of PBS, larvae were 

incubated at 37ºC in 9cm petri dishes lined with Whatman paper p.i.  

http://www.ncbi.nlm.nih.gov/
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Galleria mellonella larvae were examined individually on a daily basis p.i. Larval 

mortality was assessed by turning larvae on their backs and checking for leg 

movement; health larvae upright themselves with dead ones showing no movement. 

In order to evaluate more subtle differences in larvae health status the health index 

scoring system (HISS), earlier described by Loh et al. (2013), was applied by 

examining the following attributes: larvae activity, cocoon formation, cuticle 

melanisation, and survival, as discussed in section 2.2.4 and demonstrated in Fig 2.4. 
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3.3 Results and Discussion. 

  

3.3.1. Sequencing and Listeria ivanovii identification 

To test virulence of L. monocytogenes strains in the G. mellonella model a non L. 

monocytogenes species was to be included that can be used as a second reference 

point to ensure potential difference in virulence observed are not species dependent. 

As L. monocytogenes strains to be tested were obtained from predominantly food 

sources a L. ivanovii isolate obtained from a final product spinach sample was 

selected. To identify this isolate a 16S ribosomal sequencing was carried out and 

BLASTn search was conducted for sequence alignment (Fig 3.1). Using the Query 

blast on the NCBI website an Expected value (E-value)-probability of such an 

alignment been found by chance in the database-of 0.0 was obtained with a Query 

coverage of 99% and percentage identity of 99.98% for the isolate. The isolate was 

thus identified as Listeria ivanovii strain indoniensis (NCTC12701). 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 3.1: BLASTn alignment for L. ivanovii (Accession number: NCTC12701)  

using the NCBI online software (https://blast.ncbi.nlm.nih.gov/Blast.cgi). 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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3.3.2. L. monocytogenes virulence in G. mellonella is strain and time dependent. 

Prior work on genomic analysis of the L. monocytogenes strains used in this study 

suggested there exists differences in their virulence potentials (Smith et al., 2019). 

However, the virulence potential of these strains had not been determined in this 

model, as is also the case for numerous other preceding in silico studies of L. 

monocytogenes strains of foodstuffs and environmental sources (Liu, 2006; 

Poimenidou et al., 2018). We therefore intended to test for differences in their virulence 

potential using the G. mellonella model. Nine L. monocytogenes strains were tested 

in addition to a L. monocytogenes reference strain (EGD-e) and also a non L. 

monocytogenes strain (Listeria ivanovii) that was included as a second reference 

strain. As previously described (Chapter 2, section 2.3.1) bacterial CFU ml-1 values 

corresponding to given OD600 nm were determined in order to guarantee that the same 

amount of CFU is injected into larvae for all the bacterial strains in this investigation 

(Table 3.1). The inoculating dose (106 CFU/larvae-as determined in section 2.3.2) was 

also confirmed each time by serial dilution and plating of 100μl of bacterial inoculum 

on Oxford agar before larval infection.  Briefly, to determine the differences in virulence 

of L. monocytogenes strains in G. mellonella, 30 larvae were inoculated with 106 

CFU/larvae of each tested strain and their survival and health status monitored for 7 

d. For a control group 30 larvae were inoculated with 20μl of PBS. 

PBS-inoculated larvae remained alive during the 7 d course of this investigation with 

similar observations also made for L. ivanovii inoculated larvae 96 ± 4.4% survival at 

7 d. L. monocytogenes inoculated larvae showed increasing mortality rates over time 

indicating cumulative bacterial pathogenesis, which was analogous to earlier reports 

using clinical and mutant isolates of L. monocytogenes in G. mellonella (Martinez et 

al., 2017). Inter-strain strains comparisons revealed strain specific variations in 

virulence based on the mortality rates and overall larvae survival at the end of the 7 d 

time course. Inoculation with different Listeria strains caused significant differences in 

G. mellonella larval mortality (F = 23.69, df = 11, 66, p < 0.0001) (Fig 3.3). Notably, 

NLmo4, NLmo5 & NLmo7 induced >90% mortality at 7 d p.i while a 4.4 ± 4.4% 

mortality was observed in L. ivanovii inoculated larvae at the same time point.  

All L. monocytogenes strains induced significantly higher larvae mortality than L. 

ivanovii (p < 0.05), and all, except NLmo20, were also found to be more virulent in G. 

mellonella than the reference strain (EGD-e). Amongst the investigated L. 
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monocytogenes strains NLmo4 and NLmo5 induced the highest mortality rates (98.8 

± 1.1% and 96.7 ± 1.9%, respectively) and NLmo20 caused the least larval deaths 

(65±2.9%), an over 30 percentage points variation indicating significant differences in 

strains virulence. ‘Epidemic clones’ of L. monocytogenes of the same sequence type 

(ST6) as NLmo20 have been reported to be hyper virulent, causing central nervous 

system (CNS) infections (Koopmans et al., 2013; Maury et al., 2016), contrary to the 

low mortality rates observed in this model. Interestingly, NLmo4 and NLmo5 are of the 

same sequence type, and both strains along with NLmo20 belong to the same L. 

monocytogenes lineage (II). Additionally, varied mortality rates were observed among 

L. monocytogenes lineage I strains, albeit were statistically insignificant (p ≥ 0.05). 

And when compared to lineage II isolates statistical significance was only observed 

between NLmo6 (lineage I) and NLmo4 and NLmo5 (both lineage II). 

  

FIG. 3.3: Listeria strains induced significant and varied differences in virulence in 

Galleria mellonella larvae. Bacterial cultures were grown in BHI to stationary phase, 

washed twice and resuspended in PBS. Larvae were inoculated with 106 CFU/larva, 

and control with 20µl/ of PBS. All Listeria strains caused time-dependent mortality of 

larvae with NLmo5 & 5 inducing higher mortality rates. L. ivanovii caused insignificant 

larval mortality and was similar to PBS-injected larvae.  Results are Mean ± SEM of 

three independent tests. 

 In agreement with previous reports (Martinez et al., 2017; Mukherjee et al., 2010) L. 

ivanovii was found to be less virulent in G. mellonella than L. monocytogenes strains. 
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A survival rate of over 90% was reported for L. ivanovii at 7 d p.i (Mukherjee et al., 

2010), near identical to that observed in this study. Similar outcomes to those 

observed in this study for the reference strain (EGD-e) was also reported at a dose of 

106 CFU, all indicating consistency of G. mellonella as a virulence testing model. 

These results thus allow us to conclude that the larvae mortality kinetics observed here 

were strain specific and that these L. monocytogenes strains have significantly 

different virulence potentials. Moreover, as correlations have already been established 

between virulence variations observed in G. mellonella larvae and that observed in 

mammalian models for several human pathogens (Brennan et al., 2002; Cotter et al., 

2000; George et al., 2000; Mukherjee et al., 2013; Slater et al., 2011) our data suggest 

the existence of potential differences in pathogenicity of L. monocytogenes strains 

from food sources to induce infections in humans.  

3.3.3. L. monocytogenes lineage types do not correlate with virulence. 

Differences in virulence of L. monocytogenes lineages I and II strains (as a collective) 

were assessed by comparing mean survival rates and larvae health status using the 

HISS. Briefly, for each strain one day old larvae (n = 30) were intrahaemocoelically 

inoculated through the last right proleg with a stationary phase infectious dose of       

106 CFU/larvae delivered in 20μl, and control larvae (n = 30) were inoculated with 20μl 

of PBS. Larvae were incubated at 37ºC and monitored daily for survival by touch-

induced lack of larval movement, and overall health status by examining larval activity, 

cocoon formation, melanisation and mortality for 7 d (as demonstrated in Chapter 2-

section 2.3.4). The survivals and health indices were determined for each strain and 

averaged for all strains belonging L. monocytogenes lineage I (six strains) and lineage 

II (three strains). No mortality was observed in PBS-inoculated larvae (control) during 

the course of the 7d investigation (Fig 3.4A). In contrast, a gradual increase in mortality 

rates were observed in bacterial inoculated larvae of lineages I and II reaching 80.74 

± 0.68% and 91.48 ± 6.33%, respectively, at 7 d. Whilst significant differences in 

mortality rates were observed between PBS-injected larvae and L. monocytogenes 

lineages (p < 0.0001), no significant differences were observed between mean 

mortality rates of lineages I and II (p = 0.567, Log-rank test). However, although 

lineage II strains induced higher mean mortality rates than lineage I strains, high 

variability in mortality rates of up to 10.4% was observed in lineage II strains; and these 
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were consistent with observations on the overall larvae health status (Fig 3.4B), albeit 

differences in lineages virulence were more apparent. 
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FIG 3.4: Virulence of L. monocytogenes lineages in Galleria mellonella. Virulence of 

six L. monocytogenes lineage I and four lineage II strains was assessed. Larvae were 

inoculated with a dose of 106 CFU/larvae of stationary phase cultures and monitored 

daily for 10 d. (A) Kaplan-Meier survival curves. ****p < 0.0001, ns, not significant (Log-

rank test). (B) Mean ± SEM health index scores of larvae. **** p< 0.001, ns not 

significant (Two-Way ANOVA). Results represent three independent experiments. 

 

3.3.4. L. monocytogenes virulence in G. mellonella using HISS is strain and 

……………. time dependent, correlating with survival assays. 

In order to evaluate more subtle differences that L. monocytogenes strains may exhibit 

in G. mellonella we assessed larval health using a modified HISS that examines larval 

health by assigning scores (Loh et al., 2013). Briefly, for each larva four major 

observations are made: mobility/activity, cocoon formation, melanisation as observed 

on the cuticle, and survival. Larvae (n = 30) were treated with standardised doses of 

106 CFU for each strain and incubated at 37ºC, and health status was monitored daily 

for 10 days. Results presented are up to 7 d p.i to ease comparisons with other 

experiments and also due to a 4.0 ± 1.1% mortality been observed in the control group 

at 9 d p.i (see appendix for the complete 10 d trials). Cocoon formation and higher 

larval activity indicate high health status and such larvae most commonly score 8-9, 

and highly melanised larvae typically score 0-1 indicating poor health status. The index 
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thus correlate with different stages of bacterial pathogenicity in the larvae serving as 

a marker of overall larval health. 

PBS-injected larvae were observed to have stable health statuses during the 7d 

course of this investigation and were closely comparable to that observed in L. ivanovii 

inoculated larvae with statistically no significant differences (p ≥ 0.05) (Fig 3.5 A-D). In 

contrast, wide-ranging variations were observed in L. monocytogenes inoculated 

larvae, mainly emerging after 5 d of incubation. In the first 3 d p.i most inter-strains 

comparisons and comparisons with control subjects showed less significant variations 

(See Appendix 1) and differences became more apparent with increasing incubation 

time. The time-dependent variation with increasing statistical significance could 

indicate progressive bacterial pathogenicity in larvae as this correlated with larval 

death. This phenomenon was also as reported by Sousa et al. (2018) when 

determining virulence of Legionella pneumophila isolates. Thus, increasing virulence 

correlated well with decreasing larvae health index scores. 

A notable characteristic was also the gradual increase in cuticle melanisation in 

bacterial inoculated larvae, chiefly amongst L. monocytogenes strains. This was 

observed to start with distinctive black spots around the tail region (inoculation site) 

and increased in size and numbers culminating to entire larval melanisation (dark 

brown and then completely black, typically). Melanisation is reportedly employed by 

larvae to enable killing of encapsulated microbes through the synthesis and deposition 

of melanin (Barnoy et al., 2017). This process is preceded by the oxidisation of 

phenolic substances to quinones and melanin by phenoloxidase (PO) (Pereira et al., 

2018). Therefore, it is intuitive that as the infection progresses more microbial 

encapsulations will occur leading to further nodulations (black spots) characteristics of 

what is observed in this study. However, although increasing melanisation correlated 

with larval death the reverse was not always true. For instance, at 4 d p.i the proportion 

of larvae mortality in NLmo4 inoculated larvae was 0.61/1 as compared to the 

proportions of completely melanised larvae of 0.12/1, and for NLmo14 inoculated 

larvae it was 0.51/1 to 0.21/1, respectively, with also similar observations made for 

NLmo18 (death: 0.33/1, completely melanised 0.04/1) at the same time point. 
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FIG. 3.5: Strain and time-dependent effect of infection on G. mellonella larvae health status. 

Larvae were inoculated with a stationary phase dose of 106 CFU for each of the tested strains, 

and controls with 20µl of PBS and subsequently incubated at 37°C. Larvae health were scored 

base on activity, cocoon formation, melanisation, and survival. Results are Mean ± SD of three 

independent tests. (A-D) overall larvae health status at 4, 5, 6, and 7 days post infection, 

respectively. Statistical differences are as compare to PBS-inoculated larvae (control).             

*p< 0.05; **p< 0.01; *** P<0.001; **** P<0.0001; ns, no significant differences (Two-Way 

ANOVA). 

 

3.3.5. Listeria infection causes opposing developmental effect in G. mellonella  

Inoculating G. mellonella larvae with Listeria isolates was observed to cause opposing 

developmental effects to the larval life cycle. Last-instar larvae are predominantly used 

in disease modelling, antimicrobial and virulence testing. The last-instar stage is also 
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the final stage before G. mellonella larvae start producing silk and forming cocoons 

which then pupate to moths (Kwadha et al., 2017). In this study, we observed that 

inoculating larvae with Listeria strains cause developmental arrest in larvae. After 10 

d incubation 26% of PBS-inoculated larvae had either formed partial or full cocoon. In 

contrast, only 2% of larvae inoculated with NLmo20, or L. ivanovii had at least a 

partially formed cocoon. More so, no cocoon formation was observed in larvae 

inoculated with the remaining 9 L. monocytogenes strains (Fig 3.6). Interestingly, 

NLmo20 and L. ivanovii were the least virulent of the bacterial strains in this 

investigation, in both larval survival and overall health status. This suggests more 

virulent strains are capable of inducing arrest to larval metamorphosis. Our 

observations are consistent with a study (Mukherjee et al., 2013) that showed 

inoculating larvae with L. monocytogenes EGD-e can postpone development of G. 

mellonella larvae.  It was also demonstrated in that study that inoculating larvae with 

heat-killed EGD-e accelerates larval development. Yet, strain comparisons were not 

conducted in the study as only EGD-e was used. However, at the moment we do not 

know what applicability our data may have though it suggests upon infection these 

strains could impact the endocrine system interfering with developmental processes 

(Mukherjee et al., 2013; Ruang-Rit & Park, 2018).  
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FIG. 3.6: Metamorphosis of G. mellonella larvae following infection with Listeria isolates. Last-

instar larvae were inoculated with a stationary phase dose of 106 CFU for each of the tested strains, 

and controls with 20µl of PBS and subsequently incubated at 37°C. Larvae health were monitored 

for cocoon formation as part of a health status assessment. Results represent Mean ± SD of three 

independent trials at 10 d p.i Statistical differences are as compare to PBS-inoculated larvae 

(control) (*** p = 0.0006, One-Way ANOVA). 
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3.4 Results summary and conclusions 

Prior work provided evidence that L. monocytogenes strains have different pathogenic 

potentials when tested in Galleria mellonella larvae (Mukherjee et al., 2010), but to the 

best of our knowledge, virulence potential of various L. monocytogenes strains from 

environmental and food sources has not been determined previously. We therefore 

evaluated the virulence potential of nine L. monocytogenes strains (eight from food 

products and one from a drain swab) belonging to L. monocytogenes lineages I and 

II. To test pathogenicity and also determine differences in virulence of these strains 

we carried out infection assays in the Galleria mellonella model. We compared 

virulence of these strains with the L. monocytogenes strain EGD-e (reference strain), 

whose pathogenic potential in the model is well characterised (Joyce and Gahan, 

2010; Mukherjee et al., 2010), and also a non L. monocytogenes strain (Listeria 

ivonovii) known to rarely cause clinical cases and less virulent in G. mellonella larvae 

(Mukherjee et al., 2010). 

It was observed that L. monocytogenes lineages do not correlate with virulence in this 

model with no significant differences in mean mortality rates been found between L. 

monocytogenes lineage I and II. However, significant differences in virulence were 

observed in inter-strain comparisons. Notably, NLmo4, NLmo5, and NLmo7 were most 

virulent inducing highest mortality rates (98.8 ± 1.1%, 96.7 ± 1.9% and 91 ± 4.4%, 

respectively) and NLmo20 was least virulent with 66 ± 2.9% mortality at the end of the 

7d course of the investigation. The observed mortality rates strongly correlated with 

overall larvae health status for all the strains. Also, data obtained for the reference 

strains EGD-e and L. ivanovii, were consistent with prior reports using these strains, 

and when compared to the L. monocytogenes strains used in this investigation 

significant differences in virulence were also noted. We therefore report that there 

exists significant differences in virulence potential of L. monocytogenes strains from 

food sources and that these could cause varied pathogenicity in human infections. 

Additionally, L. monocytogenes strains of the same sequence type, example NLmo2 

and NLmo3, NLmo4 and NLmo5, and NLmo7 and NLmo14, were found to have 

closely comparable virulence characteristics base on both larval survival and overall 

health status with no significant differences among any pair throughout the course of 

the 7 d investigation. It is also noteworthy that each of these pairs have the same 

virulence profile (equal number of examined virulence factors) and were isolated from 
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different environments, except NLmo2&3. Therefore, we propose that L. 

monocytogenes sequence types could be dependable genomic predictors of L. 

monocytogenes strains virulence, and suggest for further investigation using a larger 

sample size of isolates from diverse food sources be carried out to ascertain this 

hypothesis.  
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Chapter 4 : IMMUNOLOGICAL RESPONSES OF G. MELLONELLA LARVAE TO 

L.  MONOCYTOGENES INFECTIONS. 

 

4.1 Introduction  

Mammalian models have been the gold standard for pathogenicity testing and 

understanding of the mechanistic host response to infections. However, with mounting 

costs and the social and ethical issues associated with animal testing insect models, 

such as Galleria mellonella, have been introduced as alternatives. Although insects 

diverged from vertebrates about 500 million years, their innate immune response to 

microbial infections still share a lot of commonalities with mammalian systems 

(Kavanagh & Reeves, 2007; Muller et al., 2008). In recent years G. mellonella larvae 

have widely been used as a model to study microbial disease pathology of various 

human pathogens (Barnoy et al., 2017; Harding et al., 2012; Li et al., 2018; Mukherjee 

et al., 2013; Senior et al., 2011). Though G. mellonella lack an adaptive immunity and 

specialised phagocytic cells, as opposed to mammalian systems, it mounts linked cell-

mediated and humoral immune responses effective in clearing microbial infections. A 

major component in the G. mellonella immunological response to infection are the 

haemocyte cells, which are analogous mammalian phagocytes (Pereira et al., 2018). 

Total and viable haemocyte counts in addition to immunocytochemistry 

characterisation of these cells have therefore been used to unravel many aspects of 

their function and deduce the host responses to pathogens (Browne et al., 2013; 

Browne & Kavanagh, 2013; Chain & Anderson, 1983; Fallon et al., 2011). Haemocytes 

secreted antimicrobial peptides (AMPs), such as galiomycin, gallerimycin, and insect 

metalloproteinase inhibitor (IMPI), amongst others, are also recurrently used to assess 

G. mellonella responses to specific microbial species. 

Additionally, haemocyte are commonly used in conjunction with microbial load post 

larvae infection to correlate microbial generation time, disease progression, and host 

mortality, with corresponding immunological response (Barnoy et al., 2017; Cools et 

al., 2019; Polenogova et al., 2019). Therefore, based on the virulence profile of L. 

monocytogenes strains determined earlier (sections 3.2.2 & 3.2.3), representative L. 

monocytogenes strains were selected for investigating G. mellonella larvae immune 

responses to strains of significantly different virulent potential. The growth rates of 

these strains in vivo and in vitro were determined, and haemocyte density post larvae 
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infection quantified and compared to controls and reference strains. Additionally, 

induction of immune response associated genes were also evaluated. 

 Methodology 
 

4.2.1 In vitro growth rate of L. monocytogenes strains 

Base on the virulence profile of L. monocytogenes strains, as determined in Chapter 

3 (sections 3.2.2 & 3.2.3), three L. monocytogenes strains (NLmo4, NLmo14, and 

NLmo20) were selected as representative strains for further investigation. NLmo4 

induced the highest mortality rates and NLmo14 induced intermediate mortality rates 

relative to other strains whilst NLmo20 infection resulted in the least larval deaths at 7 

d p.i. Growth rate of these strains in vitro were hence assessed and compared to the 

L. monocytogenes reference strains EGD-e and L. ivanovii.  

Microbiological media preparation and bacterial growth conditions were as described 

previously (Chapter 2, section 2.2.2) with modifications. Overnight planktonic cultures 

were diluted to a starting absorbance (OD600 nm) of 0.01, and OD600 was determined 

at hourly intervals for 12 h whilst CFU enumerations were carried out at bi-hourly 

intervals. Calibration curves of Absorbance and Log CFU were generated to determine 

bacterial growth over time. 

4.2.2 Preparation of bacterial cultures for G. mellonella inoculation. 

Planktonic bacterial cultures were prepared by seeding 10ml BHI broth with one CFU 

and incubating at 37ºC in a shaking incubator (200 rpm, aerobic conditions). The 

planktonic cultures, in stationary phase, were diluted in fresh BHI to an OD600 of 0.42 

which corresponds to 109 CFU ml-1, as determined from growth curves (section 4.2.1). 

Cells were harvested by centrifugation (12000 x g, 10 min, 22ºC). Prior larval 

inoculation the growth media was removed by washing cells twice and re-suspending 

in PBS at 108 CFU ml-1. 

4.2.3 G. mellonella larvae infection 

Last instar Galleria mellonella (G. mellonella) larvae were purchased from UK 

Waxworms Ltd (Sheffield, UK) and stored at 20ºC. Larvae weighing between 0.25-

0.35 g were selected and used within a day of receipt. For Listeria l load (3.2.4) and 

haemocyte density determination (3.2.5) 75 healthy larvae per treatment were 
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inoculated to ensure sufficient survival for experimentation at 7 d, and n = 30 were 

used per treatment for RNA assays. Larvae were inoculated with 106 CFU dissolved 

in 20μl PBS through the last right proleg using an insulin syringe as described 

previously (Joyce & Gahan, 2010). Control groups were inoculated with 20ul of PBS, 

and larvae were incubated in the dark at 37ºC in 9cm petri dishes lined with Whatman 

paper. 

4.2.4 Determination of Listerial load in G. mellonella larvae 

Listeria monocytogenes bacterial burden was evaluated in larvae inoculated with 106 

CFU at fixed time points daily for 7 d. Three larvae were homogenised using a 

Stomacher (Stomacher® 80 Biomaster, Seward, UK) in 3 ml of sterile PBS. This was 

serially diluted with PBS and aliquots of 100 μl plated on Oxford Listeria plates 

containing amphotericin B (10ug/ml), colistin sulphate (20ul/ml), acriflavin (5ul/ml), 

ceotetan (2ul/ml), and fosfomycin (10ul/ml) to inhibit growth of native larval flora and 

allow Listeria selection. Plates were incubated at 37⁰C for 48 h and Listeria CFU per 

larvae was enumerated base on the number of CFU counts growing at specific 

dilutions (Sheehan and Kavanagh, 2018). Experiments were performed independently 

three times using a different batch of larvae each time and the means ± SD 

determined. 

4.2.5 Determination of larval haemocyte density post Listeria inoculation 

Larvae were inoculated with 106 CFU and the haemocyte density was assessed daily 

for 7 d. At each time point p.i three alive larvae were pierced at the side of the head 

with a sterile needle and the haemolymph pooled together into a pre-chilled Eppendorf 

containing phenylthiourea granules to prevent melanisation, as carried out previously 

(Mowlds et al., 2010). Haemolymph was diluted in PBS containing 0.37% (v/v) 2-

Mercaptoethanol and cell density assessed using a haemocytometer. Three 

independent experiments were performed and the means ± SEM were expressed as 

haemocytes per ml of haemolymph. 

4.2.6 Haemocyte cells staining and morphology 

Haemolymph was collected and processed as discussed in section 4.2.3 above. 

Before haemocyte density was determined cells were washed in PBS, using a 1:10 
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haemolymph to PBS dilution, and cells harvested by centrifugation (1000 x g, 20ºC, 

and 5 min). Haemocytes were resuspended in PBS and density determined as 4.2.3, 

thereafter concentrations were normalised to 5 x 105 haemocytes/ml. Using 150μl of 

cell suspension cells were concentrated to a glass slide using a Shandon cytospin 3 

cytocentrifuge (110 x g for 5 min). Cells were air-dried, fixed using methanol (30 sec), 

and stained with eosin (repeatedly dipping and withdrawing slide for 30 sec) and 

haematoxylin (repeatedly dipping and withdrawing slide for 30 sec). Slides were rinsed 

in buffer, air-dried, and cells were viewed under a light microscope. 

4.2.7 Semiquantitative RT-PCR of insect immunity-related genes. 

Three genes previously detected as part of larval immune response were investigated. 

These were genes coding for the antimicrobial peptides galiomycin, gallerimycin, and 

the insect metalloproteinase inhibitor (IMPI). RNA was extracted from larvae 

inoculated with either Listeria sp. or PBS at 6 h and 24 h post- inoculation. Total RNA 

was isolated from whole larvae using RNeasy® Mini Kit (Qiagen, UK) according to 

manufacturer’s protocol with modification. Three larvae were homogenised in 1ml PBS 

using a Stomacher (Stomacher® 80 Biomaster, Seward, UK) at each time point. 150 

mg of homogenate was weighed out and spun at 12000 g (60 sec) and 60 mg of 

supernatant collected into a new 1.5ml microcentrifuge tube. 600μl of RLT lysis buffer 

(supplied with kit) was added and sample was left at room temperature for 20 min with 

manufacturer’s protocol been followed afterwards. The first strand cDNA synthesis kit 

(Fisher Scientific) was used for reverse transcription using normalised samples of 800 

ng RNA. RT-PCR was performed using the StepOnePlus Real-Time PCR System 

(Applied Biosystems) and Rox SYBR Green master mix (Primer Design, UK) following 

the manufacturer’s instructions. This was done relative to the house keeping gene β-

actin using gene specific primers as listed in Table 4.1.   

Table 4.1: Primers used for real-time RT-PCR analysis. 

Gene Forward primer sequence (5’-3’) Reverse primer sequence (5’-3’) 

Galiomicin TCC AGT CCG TTT TGT TGT TG CAG AGG TGT AAT TCG TCG CA 

Gallerimycin GAA GAT CGC TTT CAT AGT CGC  TAC TCC TGC ACT TAG CAA TGC  

IMPI AGA TGG CTA TGC AAG GGA TG AGG ACC TGT GCA GCA TTT CT 

β-actin ATC CTC ACC CTT AAA TAC CC CGA CAC GGA GCT CAT TGT A 
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 Results and Discussion 

 

4.3.1  Listeria isolates have similar growth kinetics in vitro 

Given the earlier determined inter strain differences in virulence (Chapter 3) isolates 

representative of the least to the potentially most virulent strains were selected for 

further assessment. It has been reported that bacterial growth rate in vitro can be used 

as a predictor of strain virulence in hosts. Flavobacterium columnare strains that 

exhibited significantly varied virulence in rainbow trout (O. mykiss) and zebra fish (D. 

rerio) hosts were reported to have different replication rates in media (Kinnula et al. 

2017). This phenomenon was also true for the bacterial insect pathogen Xenorhabdus 

nematophila when grown in liquid Luria Bertani medium (LB) and later tested in in vivo 

assays using G. mellonella larvae (Chapuis et al., 2011). To therefore establish 

whether L. monocytogenes strains used in this study have different growth capabilities 

in laboratory media, mean growth rates in BHI broth was determined over a 12 h time 

course as described (section 4.2.1). 

Starter cultures, at OD600 of 0.01, contained mean CFU of 107 per ml (Fig. 4.1). Rapid 

growth was observed amongst all L. monocytogenes strains within the first 6 h 

(exponential growth), consistent with reported growth rates for L. monocytogenes 

EGD-e in BHI media at 37ºC (Rea et al., 2004). Over the same time points L. ivanovii 

exhibited slower but gradual growth dynamics. Inter strain comparisons showed no 

statistical significance in replication rates amongst the L. monocytogenes strains within 

the first 6 h (p ≥ 0.05), except between EGD-e and NLmo14 at 6 h (p < 0.05). In 

contrast, significant differences in viable CFU counts were observed when L. 

monocytogenes strains were compared to L. ivanovii at both 4h and 6h with 

differences been more significant at 6 h especially between EGD-e and NLmo14 as 

compared to L. ivanovii (p < 0.0001, Two-Way ANOVA, Fig 4.1). At ~7h all isolates, 

except L. ivanovii, had reached station growth as observed in both CFU ml-1 and OD600 

nm. Though L. ivanovii had a slow growth rate after 9h incubation it was observed to 

have CFU counts parallel to that observed in the other isolates (p ≥0.05, Two-Way 

ANOVA). During the 12h time course bacterial growth increased by ~2 Logs for all 

isolates plateauing at 109 CFU ml-1. Though NLmo14 and NLmo20 attained the most 

mean CFU ml-1 no significant differences were observed amongst all the strains 

investigated at the stationary phase as all isolates reached the same CFU ml-1 and 
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final OD600 nm by 12 h. Therefore, the bacterial replication in vitro did not correlate 

with the prior observed differences in virulence by number of larval mortalities caused.  
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FIG. 4.1: Growth of L. monocytogenes strains EGD-e, NLmo4, NLmo14, and NLmo20, and L. 

ivanovii (absorbance and CFU counts) as a function of time. BHI broth was seeded with 

bacterial cultures in stationary phase to a starting absorbance (600 nm) of 0.01 and incubated 

at 37ºC (200 rpm, aerobic conditions). Absorbance was measured hourly and CFU ml-1 at bi-

hourly intervals. Results represent individual replicates (CFU ml-1) and mean ± SEM values of 

three independent determinations. 
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4.3.2 L. monocytogenes infection of G. mellonella larvae was accompanied by 

bacterial growth. 

L. monocytogenes virulence factors are reportedly expressed at low levels during 

growth in laboratory media but are upregulated during infections (Camejo et al., 2009; 

Ermolaeva et al., 2004; Riedel et al., 2009). We therefore tested whether the 

differences in L. monocytogenes induced G. mellonella mortality observed previously 

depended on bacterial replication and persistence within G. mellonella larvae. G. 

mellonella larvae were inoculated with 106 CFU/larva as described (section 4.2.3) 

using 75 larvae per treatment. Three alive larvae were crushed at each time point p.i 

and bacterial cells harvested at 1hr, 6hr, and thereafter at fixed time points daily for 7 

d. To ensure the bacteria recovered from these larvae were Listeria samples were 

plated on Listeria selective media that inhibit growth of the natural larval flora. 
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FIG. 4.2: Bacterial replication after Listeria infection of G. mellonella. Larvae were inoculated 

with 106 CFU and incubated at 37˚C. At each time point larval bacterial load was assayed by 

crushing 3 live larvae in 1ml PBS and plating on Listeria selective Oxford agar. The 

experiments were repeated 3 times and values represent Mean ± SEM. A Mixed-effects 2-

Way analysis was used to assess statistical significance and data shown is of L. ivanovii as 

compared to the Listeria strain with most significant difference at that time point (*p<0.05; ** 

p< 0.01; ***p< 0.001; ****p<0.0001; ns, no significance). 
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Viable CFU counts decreased for the first 6h p.i for all isolates with replication rates 

varying thereafter (Figure 4.2). However, recovered bacterial counts from larvae in the 

first 6h p.i did not significantly differ from the dose used to initiate infection for all 

strains, except L. ivanovii (p = 0.001 and p < 0.0001, at 1hr and 6 hr p.i, respectively). 

After 24h bacterial burden was observed to increase rapidly in all L. monocytogenes 

infected larvae and plateaued after 72h. This corresponded to ~2 Logs increase in 

bacterial burden from the infecting bacterial dose. Though NLmo14 consistently 

exhibited higher replication rates in vitro final bacterial burden in G. mellonella did not 

significantly differ amongst L. monocytogenes strains at the end of the 7d time course 

(p = 0.488, one-Way ANOVA). In contrast, bacterial burden significantly differed 

between L. monocytogenes and L. ivanovii inoculated larvae. Viable L. ivanovii CFU 

counts gradually declined during the 7d time course decreasing by a total of 5 Logs at 

7 d p.i. This strain was unable to establish an infection indicating it is relatively avirulent 

at a dose of 106 CFU in G. mellonella larvae, and these results corresponded with its 

relatively low mortality rates. G. mellonella was therefore effective at clearing the L. 

ivanovii infection, which was demonstrated by a lack of recoverable CFU even in neat 

samples at certain time points in the investigation. 

The in vivo bacterial generation time observed in this investigation was proportional to 

that seen in in vitro growth rates for all the investigated strains, except L. ivanovii. It is 

a classic virulence theory that pathogens with higher growth rates within hosts have 

higher virulence potential than slower growing pathogens. This trade-off theory 

assumes that parasites with higher internal growth rates have higher transmission 

rates but also cause increased host mortality (Anderson & May, 1982; Frank, 1996).  

However, in this study the contrary was observed when assessing L. monocytogenes 

strains, though such can be presumed when compared to the L. ivanovii strain. 

Amongst L. monocytogenes strains no positive correlation between bacterial 

generation time and mortality rates in G. mellonella larvae was found. Instead, 

amongst the L. monocytogenes strains the strains with the highest observed mortality 

rates (NLmo4) had the least recoverable bacterial load, albeit differences were not 

significant when compared to other isolates. This was also as reported recently by 

Leggett et al. (2017) who analysed data of bacterial growth rates in relation to virulence 

for 61 human pathogens that included L. monocytogenes. A significantly negative 

correlation between microbial growth and higher host mortality rates was reported. It 

has also been reported that Flavobacterium columnare strains that induced significant 
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high and low mortality rates in zebra fish had no significant differences in growth rates 

in vivo (Kinnula et al., 2017). Such was also observed for Xenorhabdus nematophila 

isolates exhibiting significant differences in virulence in G. mellonella larvae that had 

similar growth characteristics in LB media (Chapuis et al., 2011). The latter study, 

however, did not evaluate in vivo generation time of X. nematophila isolates. 

Nevertheless, increased mortality rates corresponding to higher bacterial burden have 

been demonstrated for yeast strains,  Burholderia cepacia species, and Actinobacillus 

pleuropneumoniae strains in G. mellonella larvae  (Bergin et al., 2003; Seed & Dennis, 

2008; Terra et al., 2015). In summation, though fast bacterial growth could be one way 

to be virulent, these results suggest this is, at least in L. monocytogenes, a 

multifactorial trait dependent on other strain specific factors. 

4.3.3 Inoculation of G. mellonella larvae with Listeria leads to alterations in 

haemocyte density 

Haemocytes are the main cellular component in G. mellonella immunity and they 

mediate the larvae immune response to infections (Fallon et al., 2011). Fluctuations in 

G. mellonella haemocyte densities following exposure to a range of microorganisms 

have been demonstrated (Matha & Áček, 1984; Morton et al., 1987; Mowlds et al., 

2010). In fact these fluctuations, in addition to microbial load, have been suggested as 

indicators of microbial pathogenicity in G. mellonella larvae (Bergin et al., 2003). 

Hence, having determined mortality rates and Listerial burden we assayed how these 

could correlate with haemocyte density. The objective was to understand larval 

immunological response to L. monocytogenes infections and also determine relative 

pathogenicity of the isolates. G. mellonella infection and haemocyte quantification is 

as described (sections 4.2.3 & 5) using 75 larvae per bacterial treatment, 30 for 

controls, and extracting haemolymph from 3 alive larvae at each time point for a 

duration of 7 d. Experiments were carried out three times using different batches of 

larvae. 

Before larval inoculation haemocyte density was quantified, and this represented 0 hr 

for each tested isolate. The results (Figure 4.3) indicate at 0 hr larvae haemocyte 

density was 3.15 ± 0.96 x 107 per ml of haemolymph. In Listeria inoculated larvae a 

gradual decline in haemocyte density was observed within the first 24 h p.i and 

thereafter increased to pre-inoculation levels, except in EGD-e and L. ivanovii. 

However, in EGD-e and L. ivanovii inoculated larvae the rapid decline continued till 48 
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hr p.i. before stabilising. In contrast, a decline in haemocyte density in PBS-inoculated 

larvae was only observed in the first 1 h p.i which gradually increased to pre-

inoculation levels within 24 hr. Though haemocyte density levels increased in L. 

monocytogenes inoculated larvae after 48 hr p.i this was mostly followed by a gradual 

decrease and was more apparent in NLmo14 and NLmo20 towards the conclusion of 

the time course. Nonetheless, mean haemocyte density comparisons amongst 

treatment groups showed PBS inoculated larvae had higher haemocyte densities than 

Listeria inoculated larvae throughout the course of the investigation, albeit differences 

were insignificant at most time points. Notwithstanding, though differences in 

haemocyte density was observed between all strains these were largely between PBS 

and L. ivanovii inoculated at most time points larvae and were more apparent at 24-

72 hr p.i.  After 7 d incubation however, haemocyte densities amongst treatment 

groups did not significantly differ from pre-inoculation levels nor were there any 

significant inter-strain differences at this time point (p < ≥ 0.05, Two-way ANOVA). 

Interestingly, while L. ivanovii had the least recoverable CFU and exhibited slower 

growth rates in vitro relative to L. monocytogenes strains it induced the most sustained 

decrease in haemocyte density. 

A correlation between strain virulence and haemocyte density was not observed in G. 

mellonella larvae for the investigated L. monocytogenes isolates in this study. It was 

also recently reported that Streptococcal strains of different virulence potentials that 

included a heat-killed bacterial dose exhibited no significant differences in haemocyte 

densities (Cools et al., 2019). Also, a study using a wild type (WT) Legionella 

pneumophila serogroup I strain (130b) and a mutant (∆DotA) lacking a type IV 

secretion system (T4SS) that induced 70% differences in G. mellonella mortality rates 

at 18 h p.i reported these strains had no significant differences in haemocyte density 

at the same time point (Harding et al., 2012). In contrast, other studies (Bergin et al., 

2003; Joyce & Gahan, 2010; Terra et al., 2015) have reported a linear relationship 

exist between strain virulence and haemocyte density. These suggest mortality rates 

do not correlate with decreased haemocyte density in all microbial spp. The observed 

differences in this study in relation to the findings by latter research groups could also 

be as a result of the methodology used. Whilst we determined total haemocyte counts 

in this study, live (viable) haemocyte counts were assessed in one of the latter studies 

(Joyce & Gahan, 2010). 
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FIG. 4.3: Fluctuations in haemocyte density in larvae inoculated with Listeria strains and PBS. 

Bacterial cultures were grown to stationary phase, washed, and resuspended in PBS. Larvae 

were inoculated with a dose 106 CFU/larvae, and Controls with 20µl of PBS, thereafter 

incubated at 37°C. At each time-point haemolymph was collected from 3 alive larvae, and 

haemocytes quantified on a haemocytometer chamber. Statistical significance was tested by 

comparing haemocyte density of Listeria inoculated larvae to PBS at each time point (* p < 

0.05, Two-Way ANOVA). Results represent mean ±SEM of three independent determinations. 
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FIG. 4.4: Light microscopy of 

circulating G. mellonella 

haemocytes at 24 hr post-

inoculation. Images (400X 

magnification) are of haemocytes 

stained with haematoxylin-eosin. 

(a) PBS inoculated larvae (control), 

(b) EGD-e inoculated larvae,         

(c) NLmo4 inoculated larvae. 

Results are representative of 

haemocyte subpopulations and not 

total haemocyte count (THC). 

4.3.4 L. monocytogenes infection of G. mellonella larvae induces 

morphological and population changes of haemocytes. 

An attempt was made to characterise haemocytes post-larval inoculation through cell 

staining. The L. monocytogenes reference strain (EGD-e) and the L. monocytogenes 

strain with highest observed mortality rates (NLmo4) were tested. G. mellonella larvae 

were inoculated with 106 CFU and controls with 20µl PBS, and at 24 h p.i haemolymph 

was collected and cell staining using haematoxylin and eosin carried out as described 

(section 4.2.6). Different haemocyte morphologies were observed in the different 

treatments (Figure 4.4)  

 

 

(a) 

 

 

 

(b) 

 

 

 

(c) 

 

 

 

 

Haemocytes stained with haematoxylin and eosin showed many cytoplasmic granules 

of variable sizes and also cells without granules. In haemocytes of larvae inoculated 

with L. monocytogenes strains more granulation was observed (Figures 4.4(b) and 

4.4(c)). NLmo4 inoculated larval haemocytes had less visible nuclear membranes as 
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compared to controls, higher numbers of granules were also present (Figure 4(c)). 

This was consistent with reviewed literature on mechanistic haemocyte response to 

pathogen invasion. Reportedly, following microbial infections granular G. mellonella 

haemocytes recognise and encapsulate pathogens. Upon contact these cells lyse or 

degranulate to release enzymes, such as phenoloxidase (Battistella et al., 1996), that 

promote plasmatocytes to attach and aid microbial killing (Browne et al., 2013; Joyce 

& Gahan, 2010). Compared to PBS controls, larger nucleated cells of varying shapes 

were also observed in L. monocytogenes inoculated larvae with smaller and more 

spherical cells seen in the PBS controls. Haemocyte subpopulations were also more 

diverse in PBS-inoculated larvae than seen in ones inoculated with L. monocytogenes 

strains, suggesting L. monocytogenes infections only induce increased production of 

certain haemocyte subtypes.  However, given time limitation of this project no attempts 

were made to identify the different haemocyte subtypes. Nonetheless, the results 

suggest L. monocytogenes strains induce varied larval immunological responses. The 

use of Flow Cytometry and differential staining (Estrada et al., 2016) is proposed to 

quantify haemocyte subpopulations and identify haemocyte cell types. 

4.3.5 L. monocytogenes infections induce expression of AMPs 

The innate cellular response of insects is reportedly followed by synthesis of a broad 

range of antimicrobial peptides (AMPs) in response to microbial infections (Sheehan 

& Kavanagh, 2018). AMPs, secreted by haemocytes in G. mellonella, are a major 

component of immune defence to injury and microbial invasion and an increase in their 

expression levels can mediate larvae survival (Bergin et al., 2006; Kelly & Kavanagh, 

2011). Since Listeria infection was accompanied by a decreased in haemocyte density 

within the first 24 hr p.i we investigated whether this has opposing effect to expression 

levels of AMPs. We used the L. monocytogenes reference strain EGD-e and the strain 

found to induce the highest mortality rates, NLmo4, and also compared these to L. 

ivanovii to evaluate whether the response could also be strain or species dependent. 

Larvae were infected with 106 CFU and RNA was extracted at 6 and 24 hr p.i with 

gene expression evaluated by semiquantitative RT-PCR. The fold change in 

transcriptional activation of the AMPs galiomycin and gallerimycin (also sometimes 

referred to in the literature as defensin 1 & 2, respectively), and the metalloproteinase 

inhibitor IMPI relative to PBS inoculated larvae were assessed and normalised to the 

house keeping β-actin gene (Figure 4.5). 
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FIG. 4.5: Semiquantitative determination of induction of G. mellonella immune response genes 

after challenge with Listeria isolates. Larvae were inoculated with L. monocytogenes reference 

strain EGD-e, NLmo4 or Listeria ivanovii. Whole larvae RNA extraction of three live larvae at 

the indicated time points was carried out. The transcriptional levels of Galiomycin, 

Gallerimycin, and IMPI were determined by real time RT-PCR analysis and the results are 

relative to PBS inoculated larvae. These were normalised to expression levels of actin mRNA 

and the results are mean of three independent determinations ± SEM. 

 

 



71 
 

Expression levels of galiomycin and gallerimycin were upregulated for all bacterial 

isolates at all given time point p.i. In contrast, a down regulation of IMPI expression 

was observed amongst all isolates at 6 hr p.i. Expression levels of all AMPs tested for 

increased over the course of Listerial infection and significant mean differences were 

observed between expression levels at 6 hr and 24 hr (p = 0.031, Two-way ANOVA).  

At any time point EGD-e was found to elicit the most AMPs expression, except at 24 

hr for galiomycin, with a highest fold change of 37.9 been observed at 24 hr p.i in 

gallerimycin. Interestingly, an earlier report using EGD-e found galiomycin and 

gallerimycin to be most induced at 6 hr p.i though a gradual increase in gene 

expression, as found in this investigation, was also reported (Mukherjee et al., 2010). 

Though lower AMPs induction fold changes were reported using the same EGD-e 

inoculum, except for gallerimycin, the 18S mRNA used for normalising expressions in 

that study could be a reason for the observed differences. In a later study that used 

heat-killed Listeria monocytogenes (Mukherjee et al., 2011), mRNA fold-changes in 

the AMPs investigated were significant less than that observed in this study at 24 hr 

p.i, suggesting immune induction is dependent on strain virulence. However, as the 

observed differences in AMPs inductions in this study were not proportional to earlier 

determined inter-strain virulence differences it indicates expression levels cannot be 

used to correctly predict differences in virulence in otherwise all virulent strains. 

 

4.4 Results summary and Conclusions 

Our results show that Listeria isolates have different growth kinetics in laboratory 

media but can grow to comparable CFU counts within 12 h. Though these in vitro 

growth dynamics were proportional to that observed in in vivo assays for L. 

monocytogenes isolates, bacterial generation time was longer in vivo with ~2 Logs 

CFU less than in vitro growth at the point when bacterial growth plateaued. Virulence 

of L. monocytogenes strains did not correlate with bacterial growth during the time 

course of this investigation. In contrast, though L. ivanovii had similar growth 

characteristics to L. monocytogenes strains in vitro a rapid decline in growth was 

observed in vivo. G. mellonella larvae were effective in clearing the L. ivanovii infection 

keeping CFU counts at sub lethal numbers which correlated with earlier observed 

mortality rates. Interestingly, the potentially most virulent L. monocytogenes strain 
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(NLmo4) was found to have the least viable CFU counts amongst the L. 

monocytogenes isolates in vivo. 

 

Additionally, infection of G. mellonella larvae with Listeria isolates resulted in 

fluctuations in haemocyte density but fluctuations were mostly insignificant amongst 

L. monocytogenes infected larvae. Nonetheless, significant differences were observed 

between L. ivanovii and PBS controls with lower haemocyte densities in the L. ivanovii 

inoculated larvae. These indicate larvae response to infection is species dependent, 

and that though fluctuations haemocyte densities could be virulence dependent total 

haemocyte counts do no correlate with the severity of the pathogenic potential of 

strains. Similar deductions can also be made for the ability of L. monocytogenes 

strains to induce expression of immune response associated AMPs. However, these 

observations require further investigation using more diverse L. monocytogenes 

isolates with larger sample size.   
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Chapter 5 – GENERAL DISCUSSION. 

Differences in pathogenic potential of Listeria spp. is an area of ongoing research and 

still of limited understanding. More so is our understanding of virulence differences of 

L. monocytogenes strains, which, as a consequences, means all L. monocytogenes 

strains are still treated as the same for regulatory purposes. Of the characterised L. 

monocytogenes strains, whose determined virulence are used to predict the 

pathogenic potential of other L. monocytogenes isolates and disease pathology, 

nearly all are from clinical sources. Therefore, studied L. monocytogenes strains are 

mainly of already disease causing capabilities whilst isolates from environmental and 

food sources that could be avirulent or of different virulent profiles to clinical isolates 

are yet hardly characterised. This study thus investigated the pathogenic potential of 

L. monocytogenes strains isolated from fresh leafy produce at different stages of the 

fresh produce supply chain (FPSC) and another isolate from a drainage at a food 

processing environment. These included strains belonging to L. monocytogenes 

lineages I or II. The aim of the project was to determine the differences in pathogenic 

potential of these strains in the G. mellonella infection model.  

Numerous methods have previously been used to determine the virulence potential of 

L. monocytogenes strains, including the chicken embryo test (Gripenland et al., 2014; 

Lattmann et al., 1989; Quereda et al., 2018), Anton’s test (Abdeltawab et al., 2015; 

Bhat et al., 2011), cell lines based assays (Rupp et al., 2017; Van Langendonck et al., 

1998), laboratory animals (Bécavin et al., 2014; Brosch et al., 1993; Joyce & Gahan, 

2010; Maury et al., 2016), and in recent times invertebrate models such as G. 

mellonella (Joyce & Gahan, 2010; Mukherjee et al., 2013). G. mellonella as an 

infection model is now routinely used to assess virulence due to the commonalities it 

shares with mammalian models, ethical acceptance of its use, ease of handling, cheap 

to acquire, and low rearing costs (Bergin et al., 2003; Browne et al., 2013; Mukherjee 

et al., 2015; Scully & Bidochka, 2006). Studies using G. mellonella as a model host 

commonly induce infections by inoculating larvae through the haemocoel with viable 

L. monocytogenes strains. Microbial virulence in the model has mostly been evaluated 

by either comparing the total mortality rates or 50% lethal dose, determining the 

microbial burden in larvae, larval health index score (HIS), or by quantifying 

haemocyte density and other immunological responses such as expression of AMPs 

following microbial infections. As each of these variables can be used to determine the 
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pathogenic potential of microorganisms, we recognised that a combination of these 

assays may enable consistent determination and better discrimination between strains 

of different virulence profiles. This is also as has been carried out in earlier studies 

that determined differences in virulence of other bacterial and fungal pathogens, as 

well as in correlation studies that demonstrated that virulence observed in the model 

parallels those seen in mammalian infection models (Brennan et al., 2002; Seed & 

Dennis, 2008; Slater et al., 2011; Wand et al., 2011). 

Key to our investigation was to test whether L. monocytogenes strains exhibit different 

virulence potentials in G. mellonella. As depicted in Figure 3.3, significant differences 

in virulence were observed between L. monocytogenes strains (p<0.05) based on the 

rates of larvae mortality induced. L. monocytogenes strains induced mortality rates in 

the range of 65 ± 2.9% to 98.8 ± 2 1.1% by the end of the 7 d time course. All L. 

monocytogenes strains, except NLmo20, were found to cause higher mortality rates 

in G. mellonella larvae than the reference strain used in this in study, EGD-e. Also, 

mortality rates observed for EGD-e corresponded to that reported in other studies at 

the same time point (Martinez et al., 2017; Mukherjee et al., 2010). A correlation with 

the L. ivanovii strain used in this study as a second reference strain was also found in 

these studies. These demonstrated reproducibility and consistency of the G. 

mellonella model but also confirming that observed differences in virulence between 

L. monocytogenes strains are strain-dependent.  

L. ivanovii was found to be the least virulent isolate relative to the investigated L. 

monocytogenes strains in this study, causing mean mortality rates of 4.4 ± 4.4% at 7 

d. L. ivanovii is known to be of low pathogenic potential relative to L. monocytogenes 

in animal models (Mukherjee et al., 2010). This spp. of Listeria rarely causes clinical 

cases as of the nine reported clinical cases involving the bacterium since 1970 only 

one fatality was detailed (Beye et al., 2016). The low pathogenicity of L. ivanovii is 

mainly predicated on the low number of virulence factors found in strains of this 

bacterium relative to L. monocytogenes (Beye et al., 2016). L. ivanovii strains contain 

only two of the identified four Listeria pathogenic islands (LIPI) with far less virulence 

factors present in its core genomes as compared to L. monocytogenes. Thus, this 

study in addition to prior in vivo studies (Martinez et al., 2017; Mukherjee et al., 2010) 

supported the postulate that virulence of Listeria strains is dependent on number of 

virulence factors found in their genomes. However, the in silico predicted virulence of 
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the L. monocytogenes strains did not correlate with in vivo virulence in our 

investigation.  

The number of identified virulence factors from whole genome sequencing (WGS) and 

other genetic based analysis tools such as PFGE have routinely been used to predict 

pathogenic potential of L. monocytogenes isolates (Klaeboe et al., 2006; Smith et al., 

2019; Wiedmann et al., 1997). L. monocytogenes isolates used in this study (Table 

3.1) were of different in silico predicted virulence stratifications (Smith et al., 2019). Of 

the 42 virulence factors (genes) tested for NLmo6, NLmo7, NLmo14 and NLmo20 

carried the highest number of copies of those (41) whilst NLmo4 and NLmo5 

possessed the least (31). Contrary to what we expected, NLmo4 and NLmo5 were the 

most virulent in G. mellonella and the strains of highest predicted virulence mostly 

exhibited medium (NLmo6 and NLmo14) and low virulence (NLmo20) relative to 

NLmo4 and NLmo5. In a literature search no prior studies testing for correlation 

between in silico predictions and in vivo virulence for such a wide range of determined 

virulence factors of L. monocytogenes were found. However, clinical strains of different 

virulence profile for eight L. monocytogenes virulence associated genes (inlA, inlB, 

and the six genes of LIPI-1) have been evaluated (Franciosa et al., 2005). All 27 

isolates in that study were equally pathogenic in mice, more so, no correlation was 

found between in silico predictions and strains’ virulence in a mouse model. Similar 

findings have also been reported for Coxiella burnetii strains in a mouse model 

(Melenotte et al., 2019). A C. burnetti strain (Guiana Cb175) that had 77 times less 

virulent genes compared to two other strains, C. burnetti German (Z3055) and C. 

burnetti Nine Mile (RSA 493), was found to be the most virulent causing 100% mortality 

at 4 week p.i whilst at the same time point a 0% and 75% mortality was reported for 

the two other strains. These correlated with the findings of this study, suggesting that 

total number of virulence factors is an inaccurate predictor of in vivo virulence, at least 

in L. monocytogenes. 

Listeria strains were investigated for their growth rates in vitro and in vivo as a means 

to explaining the differences in mortality rates they induced. However, similar growth 

rates in vitro were observed for all strains and viable CFU recovered from larvae were 

only significantly different when L. ivanovii was compared to the L. monocytogenes 

strains (Figure4.2). Though bacterial burden was not significantly different in larvae 

inoculated with the most and least virulent L. monocytogenes strains, relative to the 

mortality rates they induced, the most virulent strain, NLmo4, had the least recoverable 
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bacterial CFU at 7 d p.i when compared to the least virulent NLmo20 strain. This 

indicated that increased numbers of viable bacterial CFU do not correlate with 

increased mortality rates in the larvae. In addition, G. mellonella response to infection 

and bacterial burden in larvae can also be quantitatively inferred from the rate of larval 

melanisation (Terra et al., 2015). After infection haemocytes are recruited which bind 

to and limit bacterial growth and dissemination (Bidla et al., 2009; Joyce & Gahan, 

2010). This opsonisation process that initiate bacterial killing causes nodulations, an 

increase in nodule formation is visualised by the increase in larvae melanisation 

(Bergin et al., 2005; Pereira et al., 2018). High bacterial load thus correlate with 

increased melanisation, which was as observed on the dose dependent assays carried 

out in this study (section 2.3.4) as well as in reports by other research groups (Terra 

et al., 2015; Wand et al., 2012). In the HISS analysis conducted in this study, however, 

significant differences in larval melanisation between NLmo4 and NLmo20 inoculated 

larvae was not observed (melanisation data not shown). This further indicate that 

though mortality rates are dependent on bacterial burden reaching a lethal threshold, 

mortality rates beyond such a limit are independent of the bacterial replication rates; 

thus suggesting an intrinsic expression of virulence factors by bacterial strains to drive 

the differences in mortality rates seen between strains of similar growth 

characteristics. Given the determined negative correlation between high presence of 

virulence factors and increased mortality rates, strains were also evaluated for the 

presence of non-chromosomal factors from WGS data. The two most virulent strains 

in this study (NLmo4 and NLmo5) were also the only strain reported to carry plasmid 

derived QAC resistant genes (Smith et al., 2019). However, these plasmid were not 

characterised in the study. Nonetheless, plasmids are known reservoirs of bacterial 

virulence factors and their role in enhancing strain virulence in in vivo models, 

including G. mellonella, have been reported in other human pathogens including 

Salmonella (Barnoy et al., 2017), Staphylococcus aureus (McCarthy & Lindsay, 2012), 

Escherichia coli (Wijetunge et al., 2014), and Pseudomonas aeruginosa (Rodríguez-

Andrade et al., 2016). It was thus theorised that plasmid derived virulence in L. 

monocytogenes strains NLmo4 and NLmo5 could have caused the virulence 

phenomena observed in this study. 

Notwithstanding, a reason for in silico predictions not correlating with in vivo virulence 

of L. monocytogenes strains from food and environmental sources could also be as a 

result of differences in ability of strains to modulate certain virulence determiners. L. 
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monocytogenes lives as a non-pathogenic saprophyte in the environment but 

transitions into a disease causing intracellular life cycle upon infecting a host by 

modulating the transcriptional regulatory prfA gene (Freitag et al., 2009; Gray et al., 

2006). The L. monocytogenes PrfA regulon encompasses 10 genes, including genes 

of the Listeria pathogenic island 1 (LIPI-1), and is directly regulated by PrfA. PrfA is 

found in all L. monocytogenes strains and it also regulates 145 other putative genes 

in both the core and accessory L. monocytogenes genomes (Scortti et al., 2007). 

However, demonstrations of transcriptional activation of PrfA amongst L. 

monocytogenes strains in in vivo models have already been carried out and significant 

differences in its modulation have been documented (Fang et al., 2015; Sokolovic et 

al., 1996). Also, differences in prfA expression was reported by Sokolovic et al. (1996) 

to result in differences in virulence of L. monocytogenes strains in a mouse model and 

a Caco-2 line. The mechanisms behind modulations of this factor that underpins L. 

monocytogenes transition from a saprophyte to a disease causing bacterium remains 

to be elucidated, but differences in the ability of L. monocytogenes isolates from food 

sources to modulate its expressions could be key to their in vivo virulence, which would 

help explain the differences in virulence observed in this study. 

Nevertheless, a limitation of this study based on the route chosen to establish L. 

monocytogenes infection could also be an underlying factor to the negative correlation 

of in silico prediction to in vivo virulence observed in this study. L. monocytogenes is 

a foodborne pathogen thus infections by the bacterium is primarily via the oral route. 

In listeriosis when the bacterium is ingested through contaminated food it traverses 

the intestines into the blood stream, subsequently infecting the liver, cerebrospinal 

fluid, meninges, and spleen. In one such pathological process the bacteria has been 

found to colonise the Peyer’s patches in the small intestine upon its ingestion (Marco 

et al., 1992). It is postulated that L. monocytogenes uses the membranous or microfold 

(M) cells epithelium as an entry portal to cross the intestinal barrier, an entry route that 

has however been observed to be inefficient for successful infection (Pron et al., 

1998). In a model using rabbit ileal loop it was found to transverse the intestinal barrier 

by binding to epithelial (E)-cadherin receptors through the bacterial surface protein 

Internalin A [InlA] (Pentecost, Otto, Theriot, & Amieva, 2006). In either routes, failure 

to clear the infection by immune cells (macrophages, neutrophils, etc.) in the liver 

following this process could lead to severe listeriosis as the bacterium gets released 

into circulation. In pregnant women L. monocytogenes spread from the maternal 
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bloodstream to placental villi and eventually into the foetal bloodstream, aided by the 

bacterial surface internalin proteins InlA and InlB to traverse the fetoplacental barrier 

(Lecuit, 2005) where it induces abortion, stillbirth, and neonatal septicemias (Gray et 

al.,1955). However, in this study infections were established by injecting bacterial 

inocula directly into the haemocoel which bypasses the required intestinal barrier 

breach required for the bacterium to successfully establish an infection. The 

differences in virulence of L. monocytogenes strains could thus be significantly 

dependent on their ability to traverse the intestinal walls. As such, inoculating bacteria 

directly into the haemocoel would eliminate a key first line virulence determiner and 

minimise the potential of identifying significant differences in virulence that are 

dependent on the variable virulence factors found in L. monocytogenes strains. 

 

 Concluding remarks 

L. monocytogenes remains a priority pathogen and poses significant health risks 

globally. As global human population increases leading to an increasing need for food 

production, there is a significant need to: (a) determine differences in virulence of L. 

monocytogenes isolates found in food and food processing environments, and            

(b): test the pathogenicity of these isolates in animal model hosts to extrapolate the 

imminent danger they pose human health. This will enable better risk assessments 

and the delivery of safe food products to consumers, and enhance source tracking of 

L. monocytogenes outbreaks to curtail and prevent epidemics. 

The first part of this thesis validated a model of L. monocytogenes infection in in G. 

mellonella. This was in turn used to determine that L. monocytogenes food products 

and environmental sources have significantly different virulence potential. This 

highlighted the need for research to heed the significant of L. monocytogenes and lays 

the groundwork for how future work could be used in this model to assess virulence of 

this bacterium. Potential reasons for differences in virulence of L. monocytogenes 

strains from food sources were discussed and suggestions of future work that could 

enhance our understanding of the pathogenicity of L. monocytogenes were made in 

this process. 
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