
A Generative and Component based Approach to Reuse
in Database Applications

Beihu Wang 1, Xiaodong Liu 1, Jon Kerridge 1

1 School of Computing, Napier University, Edinburgh, Scotland UK
{t.wang, x.liu and j.kerridge}@napier.ac.uk

Abstract. The development of database application systems will benefit from
high reusability because similar design circumstances recur frequently in da-
tabase developments. However, research in software reuse has shown that mis-
matches of components with the application architecture, state and other
components, destroy the component reusability. In this paper, a generative
and component based reuse framework is presented to tackle the problem of
high variability and therefore to achieve higher reusability in database applica-
tion development. A Scenario based dynamic component Adaptation and Gen-
erAtion technology (SAGA) is developed to support deep component adapta-
tion and component generation. XML has been used as the universal informa-
tion carrier in the approach.

1 Introduction

Software reuse has shown very successful improvement on efficient, high quality
and low cost software design and development. However, reuse in database domain
seems not to have received enough attention. Until now the most of the reuse re-
search has been done only on the reuse of general software systems [9][10]. Ap-
proaches and tools for improving reusability in database application development
are urgently needed.
Research in software reuse has shown that “as-is” reuse occurs extremely little and
that components generally need to be changed in some way to match the application
architecture, state and other components. Based on the existing component adapta-
tion technologies, a component can be altered in several ways. As the adaptee is a
black-box component, the alteration is restricted to what can be done using its pub-
lic sets, such as conversion of parameters, modification of access mechanism, and
extension of functionality. And as inheritance and wrapping techniques are popu-
larly used, adapted component can be too complex and less reusable. Therefore, the
problem of component mismatch has not been well solved by existing component
adaptation techniques, due to the lack of component information, high redundancy,
and shallow adaptation.

In this paper, a generative and component based reuse framework is introduced to
achieve high reusability in data-intensive system development. SAGA is developed
in the framework as the core technique. It is often the case that provisionally quali-
fied components still have some architectural and behavioural inconsistency with
the requirements of a specific application system. To eliminate these inconsisten-
cies, adequate adaptation technology must be applied to the components. For adap-
tation in very depth, the new component instance may need to be created with gen-
eration technology. In this PhD project, we propose to use a set of scenarios to re-
cord the design configuration of components reused in specific applications. Scenar-
ios may be adjusted, composed or associated interactively to cope with complex
reuse cases. As the foundation, a comprehensive component specification is required
for component’s understanding, use and implementation. As the XML documents
are easy to understand by both human and machine, an XML formatted Component
Definition Language (CDL) is designed to represent component specification.

2 Existing techniques

Some related works have been done to improve the reusability of components.
These works can be summarised into the following three categories.

2.1 Component Customisation

Component-users customise a software component by choosing from a fixed set of
options that are already pre-packaged inside the software component. A component
should be customisable during the reuse to fit itself into specific real-world require-
ments. Based on this perspective, component customisation [12] is popularly used in
component-based development. Because the modification is limited on certain pre-
defined options, it may not be possible to satisfy the additional requirements.

2.2 Component Adaptation

Component-users adapt a software component for a new use by writing new code to
alter existing functionality. If an application builder decides to adapt the component,
the application builder must understand the complex behaviour and functionality of
its classes, so any change in either of them will not break the structure of the system
specified by the component designer. However, in most adaptation mechanisms
[1][7][8], such as inheritance, wrapping, active interfaces, binary component adapta-
tion, and superimposition, the adaptee is black-box components. So without enough
understanding about component, the modification is limited on some shallow level,
such as conversion of parameters, refinement of operations, modification of access
mechanism, and extension of functionality. And also, with the more layer code addi-
tion on existing code, the redundancy of component could affect system efficiency.

2.3 Component Generation

Component-users generate a software component by accepting a configuration de-
scription to be interpreted by their configuration code and assemble the concrete
components according to this description. It is not sufficient just to be able to write
configuration code. It is also needed to deploy some design principles to organize
the code in a clean way. One such principle is to encapsulate configuration knowl-
edge, and then based on the configuration to generate components. In existing com-
ponent generation systems [2][3][6][11], configuration is composed by fixed op-
tions, provided by component-developers. Component-user can only modify com-
ponents in limited choices, which may not be possible to satisfy the additional re-
quirements.

3 The Framework

It was advocated that the initial start point of component reuse is requirement analy-
sis. In this stage both data and processing requirements will be decomposed and
represented with data-intensive use cases, which is an extension of UML use cases
with database application features and rigorous descriptions. The selection of suit-
able components happens at the architectural design stage. Based on the require-
ments expressed in data-intensive use cases, the architectures of the data schema and
processing software will be developed. Component qualification will be done in
parallel with architectural design, which means that the selection of components
should comply with the architecture of the database application. Pre-qualified com-
ponents are selected from the component repository constructed during component
mining. Components repository involves Component Specification (CS) presents in
CDL, and primitive component code, which is used to compose the selected compo-
nent.
During component adaptation, design configurations will be collected interactively
with the component-user. These design configurations define how the selected com-
ponents can be adapted from existing primitive components for use in a particular
database application. The design configurations are presented as scenarios, which
consist of a serial of component adaptation actions to satisfy particular adaptation
requirements. According to the scenario, component adaptation process will gener-
ate adapted Component Derivative Instance Specification (CDIS). Final products of
architectural design are qualified CDIS and the architectural model, which validates
the requirements.
The next stage is component generation and integration. The qualified component,
which may be parts of the database schema or processing transactions or both, will
be generated, based on its CDIS. The process is cyclic, i.e., the design configura-
tions may be adapted or refined further to fit better to the particular database appli-
cation, and then more suitable components may be generated or adapted until the
software engineer is satisfied so the components can be integrated into the applica-
tion.

Fig. 1. The Generative Component-Based Reuse Framework

Finally, the generated components (implementations) are integrated in the system
integration stage. For database applications, the generated components may contain
a data schema part and a transaction part, or both.

4 Scenario based dynamic component Adaptation and GenerAtion
technology (SAGA)

The rationale underlying scenario based deep component adaptation is that pre-
qualified components must be adapted to eliminate the conflicts to specific reuse
requirements and these conflicts can be eliminated with adequate adaptation and
generation based on correct reuse requirements captured in scenarios. The pre-
qualified component is defined in CS. CS defines the overall capability of the com-
ponent. It involves signature, constraints and non-functional properties.
Based on the above observation, we have identified that component-based develop-
ment, in addition to a set of reusable components, requires a set of scenarios. A
scenario is composed of a series of adaptation actions, which are defined in adapta-
tion types. With scenario and generation, deep component adaptation becomes fea-
sible.
Scenarios may be required in three aspects: 1) the component may be used in differ-
ent reuse contexts; 2) the component may be used under different constraints; 3) the

component may act different roles in given reuse contexts. Scenarios can be com-
posed, associated and adjusted to tackle various and complex reuse cases. The role
of scenarios can be defined as the design configuration of components in specific
kinds of applications. The pre-qualified component is defined in a CS. Scenarios
aim to perform the adaptation actions on CS instead of component code. The result
will be the specification of the adapted component derivative, namely CDIS.

Fig. 2. The process of SAGA

Adaptation actions are grouped into relevant component adaptation types. An adap-
tation action is defined with the following attributes and sub-statements: (1) name,
which is the identity of the action; (2) type, which indicates the type the action; (3)
requirement, which shows the reuse context the adaptation action suits for;(4) posi-
tion, which shows a position in CS where the actions to be done; (5) extra detail,
which covers other details needed by the action. A typical scenario of component
adaptation is given below.

<scenario ID=" xxxxx " >
 <adapt_action name="xxxxx " type="xx_xxx">
 <requirement>xxxxxx</requirement>
 <position>xxx.xxx.xx</position>
 ……
 extra detail
 ……
 </ adapt_action>
 <adapt_action name="xxxxx " type="xx_xxx">
 ……
 </ adapt_action>
 </scenario>

5 Conclusion

Based on the observation that similar design circumstances recur frequently in the
development of database applications, we concluded that raising reusability in data-
base applications would improve the efficiency of development greatly. The fact
that most reuse approaches and tools have been concentrated on general software
systems with little emphasis on reuse in a data intensive environment has triggered
the research in this paper.

As a reuse methodology, the current framework aims to facilitate the database ap-
plication development with improved reusability. Components in our approach aim
to be highly adjustable or generateable based on the design configurations and
primitive components. These components are the reusable blocks to build a new
database system. Existing expertise and idioms of database design recorded in these
components are then presented as the starting point for the design of a new database
application. Components are described in the XML-based CDL and stored in the
component repository. The component definition language is a semi-semantic defi-
nition language. The features inherited from XML make the components easier to
understand, to exchange and to propagate over software communities.
The SAGA technology gives a great potential for coping with component incom-
patibilities, it meanwhile reduces component overhead. A scenario gives compo-
nent-users understandable and interactive component adaptation information, and
components generated based on the scenarios will enjoy high suitability and effi-
ciency in particular applications. As a PhD project, the work presented in this paper
is ongoing. Our initial case studies have shown the work is promising.

References

1. Bosch, J., Superimposition: A component adaptation technique, Technical Report TR,
Department of Computer Science and Business Administration, University of
Karlskrona/Ronneby, (1997).

2. Batory, D., Composition Validation and Subjectivity in GenVoca Generators, Software
Engineering, (1997).

3. Biggerstaff, T.J., A characterization of generator and component reuse technologies, Gen-
erative and Component-Based Software Engineering, (2001).

4. C.J.EGYHAZY, From software reuse to database reuse, in International journal of software
engineering and knowledge engineering, 10: pp. 227-249, (1998)

5. Han, J., A comprehensive interface definition framework for software components,Asia-
Pacific Software Engineering Conference, Taipei, (1998).

6. Hans de Bruin, H.v.V., The future of component-based development is generation, not
retrieval, 9th IEEE Conference and Workshops on Engineering of Computer-Based Sys-
tems

7. Geoge T. Heineman, H.M.O., An evaluation of component adaptation techniques, Carnegie
Mellon Software Engineering Institute, (1999).

8. Ralph keller, U.H., Binary Component Adaptation, Department of Computing Sciense,
University of California, (1997).

9. TATJANA WELZER, M.D., Similarity Search in Database Reusability -- a Support on
Efficient Design of Conceptual Models., Vaasa: Vaasan yilopisto, (2000).

10.TATJANA WELZER*, B.S., Reuse Database Components, the Patterns From MetaBase
Repository , HAWAIIAMS98, (1998).

11.Ulrich Breymann, K.C., Generative components: one step beyond generic programming,
Generic Programming, (1998).

12.Stephen S. Yau, Choksing Taweponsomkiat, An Approach to Object-Oriented Component
Customization for Real-time Software Development, Fifth IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing, (2002).

