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Abstract 

The ability to perform vertical take-off and landing, hovering and lateral flight provides 

rotorcrafts crucial advantages over other aircrafts and land vehicles for operations in 

remote areas. However, a major limitation of rotorcrafts is the requirement of a flat 

surface to land, increasing the difficulty and risk of landing operations on rough terrain 

or unstable surfaces. This limitation is mainly due to the use of conventional landing 

gear like skids or wheels. The growing use of Unmanned Aerial Vehicles (UAVs) also 

increases the necessity for more landing autonomy of these systems. 

This thesis presents the investigation into the development of an adaptive robotic 

landing gear for a small UAV that enhances the landing capabilities of current 

rotorcrafts. This landing gear consists in a legged system that is able to sense and 

adapt the position of its legs to the terrain conditions.  

This research covers the development of effective tools for the design and testing of 

the control system using software and hardware platforms. Mathematical models using 

multibody system dynamics are developed and implemented in software simulations. 

A hardware robot is designed and built to validate the simulation results. 

The system proposed in this thesis consists in a landing gear with four robotic legs 

that uses an Inertial Measurement Unit (IMU) to sense the body attitude, Force 

Sensing Resistors (FSR) to measure feet pressure and a distance sensor to detect 

ground approach. The actuators used are position-controlled servo motors that also 

provide angular position feedback. The control strategy provides position commands 

to coordinate the motion of all joints based on attitude and foot pressure information. 

It offers the advantage of being position-controlled, so it is easier to be implemented 

in hardware systems using low-cost components, and at the same time, the feet force-

control and leg design add compliance to the system. 

Through software simulations and laboratory experiments the system successfully 

landed on a 20° slope surface, substantially increasing the current slope landing limit. 
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1 Introduction 

1.1 Background and Motivation 

A rotorcraft or rotatory-wing aircraft is a flying machine that produces lift by means of 

rotating blades. The main advantage of rotorcrafts with respect to fixed-wing aircrafts 

is their ability to provide lift without the need of moving forward, allowing them to 

perform vertical take-off and landing (VTOL) operations, thus avoiding the use of 

runways [1]. Rotorcrafts can also perform hover in one area and fly forward/backward 

and laterally. All these characteristics make rotorcrafts the best option for specific 

operations that are not possible to be carried out by other types of aircrafts or are 

inefficient to conduct by ground. For these reasons they are widely used to transport 

goods or people in hard-to-reach areas like mountains, disaster areas, offshore 

platforms or ships. 

The most popular type of rotorcraft is the helicopter since, during the 1940’s, the first 

large-scale models began to be mass-produced. Since then, many attempts have 

been made to reduce its size and realize autonomous flights, giving birth to the first 

miniature rotorcraft Unmanned Aerial Vehicles (UAV) [2]. During the 70’s and 80’s the 

industry of radio-controlled hobby helicopters developed and gave way to more 

sophisticated and powerful avionic systems integrating processing units, sensors and 

wireless communication. During the 90’s the appearance of modern rotorcraft UAVs 

attracted the attention of many research projects and academic communities, and they 

developed aerial robots capable of self-stabilizing, self-navigating and interacting with 

its surroundings. In more recent years, the use of UAVs has increased rapidly, not 

only in research and military projects, but also for civilian and industrial applications. 

Nowadays, they are being used for tasks such as surveying areas and assessing 

damage after a natural disaster, in monitoring and inspection tasks in industrial sectors 

like agriculture, mining, oil & gas, and construction, for deliveries to remote locations 

and in military operations [3]. In the near future, this application range is expected to 
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increase continually and UAVs to migrate from passive tasks like inspection or 

surveillance, into active tasks like grasping and manipulation [4]. 

Although, the use of rotorcraft vehicles has improved the performance and efficiency 

of many tasks, it still has one major limitation: they require a reasonably flat surface to 

land. In many environments where rotorcrafts operate, stable flat surfaces are often 

unavailable. This can lead to dangerous situations where a helicopter has to land on 

an unstable ship deck, a rough terrain, or a sloped hillside with the risk of entering 

dynamic rollover, a condition where the helicopter starts to pivot around a skid without 

sufficient control authority to recover stability [1]. In other cases, landing is not possible 

and the helicopter has to hover, which increases the power consumption and limits the 

time and range of the task that the rotorcraft can perform. 

The limitation on the landing capabilities is mainly due to the conventional landing gear 

construction which can be divided in two main categories: skids or wheels. Skids are 

used in light helicopters to save weight and cost and for its simplicity, while heavier 

helicopters use wheels as they offer better ground handling.  

In the case of the skids, the landing surface is composed of two parallel lines while the 

wheel type consists of 3 points on the same plane. They are stable when the landing 

surface is flat but have difficulties to find a stable solution on rough terrains. In the 

case of slope landings, for most helicopters a maximum slope of 5° is considered for 

normal operations, and between 5° and 8°, depending on the model, there is a risk to 

enter into dynamic rollover [1]. For dynamic rollover to occur, some factor has to make 

the helicopter roll or pivot around a skid or wheel. This is common in slope operations 

as the helicopter pivots around the uphill skid until the landing or take-off is completed. 

Some factors like crosswinds, hovering sideward at the moment of ground contact, or 

part of the landing gear being stuck, can produce an excessive rolling moment. If 

critical rollover angle is reached, the pilot doesn’t have enough control authority to 

recover and the helicopter would fall over. Slope landings and takeoffs are complicated 

manoeuvres and a coordinated action of controls must be used to decrease the lift 

force while tilting the main rotor disk in the direction of the slope [1]. 

A considerable amount of research has been carried out in the area of Autonomous 

Landing Systems, although most of this research focuses on finding the right place to 

land rather than adapting the landing gear to the ground conditions [5] [6]. These 
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systems provide the vehicles with different instrumentation such as vision-based or 

LIDAR systems, and control systems to give them the capability of trajectory 

generation, path planning and obstacle avoidance, and terrain identification in order 

to identify a suitable landing area [7]. 

The other approach to the problem of safe landing which has been less explored, is to 

make the helicopter adaptable to different kind of terrains and uneven surfaces by 

modifying the conventional landing gear system. Several early landing gear systems 

capable to tilt laterally were suggested, but this ideas were never fully developed, and 

only very recently this area has attracted the interest of some research work and 

several new designs are being developed. These systems are reviewed in Chapter 2. 

1.2 Aim and Objectives 

The aim of this thesis is to investigate how robotic landing gear systems can improve 

the landing capabilities and extend the operational range of current rotorcrafts, 

allowing such vehicles to land on uneven terrains, including irregular surfaces with 

obstacles, steps or slopes where they could not land using conventional landing gear. 

To achieve this aim, the following research objectives have been set: 

 To investigate the limitations of current landing gear systems. 

 To develop mathematical models for implementation in software simulation to 

analyse the behaviour of the system and to test control algorithms before 

implementing them into a physical prototype. 

 Investigate the development of appropriate control algorithms to perform 

landings on uneven terrains in a safe way, maintaining the main body of the 

vehicle in a stable position. Investigate the necessary sensing and controller 

design to achieve this goal. 

 The design and construction of a robotic landing gear prototype that can sense 

and adapt the position of its legs to the terrain conditions using available 

sensing information. The design includes the mechanical system and leg 

design, electrical system and sensors, and development of algorithms and 

control system. 

 Development of effective tools for testing and analysing the performance of the 

hardware platform in the laboratory environment.  
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1.3 Approach 

Two main methodologies are used to achieve this task, which are the use of software 

simulations and the design of a physical prototype to test the proposed design and to 

develop and implement the control algorithms.  

1.3.1 Modelling and software simulations 

Multibody system dynamics are used to develop a mathematical model of the system 

to implement it in a software environment. Software simulations serve as a simplified 

environment to test the core ideas in a simpler way before building a hardware robot, 

thus reducing the number of redesigns and potential damage due to unexpected 

system behaviour. 

Mathematic modelling techniques of robotic legged systems are reviewed. Dynamic 

and Kinematic models are developed using Newton-Euler and Lagrange 

methodologies, which are the most common techniques to obtain the equations of 

motion of the system. Although both methods produce the same equations, the 

formulation and development of these equations is quite different. While with Newton-

Euler, the final equations are more tedious to construct and there are more steps 

involved, the Lagrange method involves solving challenging differential-algebraic 

equations [8]. The equations of motion of multibody systems are complex to solve 

because of the internal constraints, and the selection of one or other method will 

depend on the system to solve. 

Ground contact models to simulate the ground interaction forces are also reviewed 

and developed. Models are integrated and implemented in Simulink for simulation 

purposes and to serve as a platform to design and test the control system. 

SimMechanics, a package for multibody dynamics simulations, has also been used to 

validate the results of the final models. 

1.3.2 Physical prototype 

A hardware robot is used to validate the simulation results. While software simulations 

provide more flexibility to test different control strategies without the risk of damaging 

physical components, hardware prototype testing provides the opportunity to validate 

these control algorithms in real situations. However, there are several limitations and 

challenges when implementing the control solutions in a prototype, like limitations in 
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the actuators specifications and functionality, availability of sensory information, 

sensors imprecisions and noise, computational power or robot’s weight. These 

constraints imposed by the hardware system are taken into account when designing 

the control architecture. 

One crucial factor on the controller design is the actuator technology. The prototype 

designed during this thesis consists in a robotic landing gear for a small UAV. Size 

and budget limitations conditioned the use of position-controlled motors, as torque-

controlled motors and accurate torque sensors are expensive and more difficult to 

integrate in small systems. Besides, torque-control strategies are usually more 

complex and require high computational power. 

From the control point of view, the system is not intended to be an autonomous landing 

system. The operation of the rotorcraft is assumed to be performed by an independent 

controller or a pilot who will control parameters like the orientation, direction or landing 

velocity of the rotorcraft. The robotic landing gear control will sense and adapt its legs 

to the landing surface and will work completely autonomously without any input from 

the helicopter control system or the pilot. 

For the landing gear to be able to level the aircraft, first it needs to be able to sense its 

orientation. The sensor selected for that purpose is an Inertial Measurement Unit (IMU) 

as it is commonly used, low-cost sensor with well-known algorithms to calculate the 

orientation of a body. Feet force sensors were selected to be able not only to detect 

ground contact, but also to make sure that the pressure supported by each leg within 

an accepted range and well distributed. To detect when the helicopter is approaching 

to land, a distance sensor has been added so the landing gear can prepare for landing 

position. 

For the mechanical design, prototyping techniques like CAD design and 3D printing 

manufacture have been used as they provide a quick and economic way to design 

and manufacture system components. The microcontroller platform used during the 

project has been the Arduino as it provides an open-source hardware and software 

with a large user community and compatible sensors and actuators. The prototype is 

used to run extensive tests to assess the robot’s capabilities and performance. 
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1.4 Hypothesis and Contributions 

The hypothesis of this thesis is that robotic landing gear can be used to increase the 

landing capabilities of rotorcraft vehicles. The literature review in Chapter 2 provides 

evidence of the research gap in this field as there are a small number of systems that 

use robotic landing gear. Also these works are very recent and detailed study of the 

performance of these systems is limited. 

This thesis contributes to cover this research gap by analysing the limitations of current 

systems, proposing new control algorithms and designs, and developing tools to 

model and test the performance of the system. 

The main contributions of this thesis are the following: 

 Design and construction of a robotic legged landing gear that allows rotorcrafts 

to land on uneven terrains and overcome objects, steps and slopes in the 

ground. A robotic platform has been built for a small UAV using off-the-shelf 

and 3D-printed materials to replace the conventional skid-type landing gear.  

 Development and implementation of posture control algorithms based on 

position and force control, to keep the helicopter body level during the whole 

landing operation. The control approach takes into account the hardware 

limitations and uses as little sensory information and computational power as 

possible.  

 Development of laboratory test to assess the robot’s performance. The platform 

is tested in our laboratory facilities to simulate landings on different ground 

configurations, with different control algorithms and results are analysed. 

 Development of mathematical models of the system and landing scenario, 

including ground contact models. Software implementation of these models that 

allows for testing of different configurations and control algorithms. This model 

built in Simulink provides a quick and safe way to test the control algorithms 

that later will be validated on the robot platform.  
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1.5 Publications 

 K. Goh, D. Melia Boix, J. McWhinnie and G. Smith, “Control of Rotorcraft 

Landing Gear on Different Ground Conditions”, in IEEE International 

Conference on Mechatronics and Automation (ICMA), Harbin, China, 2016. 

 D. Melia Boix, K. Goh and J. McWhinnie, “Modelling and control of helicopter 

robotic landing gear for uneven ground conditions”, in Workshop on Research, 

Education and Development of Unmanned Aerial Systems (RED-UAS), 

Linkoping, Sweden, 2017. 

 D. Melia Boix, K. Goh and J. McWhinnie, “Helicopter Lands on Uneven Terrain 

by means of Articulated Robotic Legs-Modelling, Simulation and Control 

Approach”, in IEEE/ASME International Conference on Advanced Intelligent 

Mechatronics (AIM), Auckland, New Zealand, 2018. 

1.6 Outline of Thesis 

This thesis is organized as follows: Chapter 1 presents the motivation, objectives and 

contribution of this research work. Chapter 2 reviews the state of the art of adaptive 

landing systems and legged robots and of modelling and control techniques. Chapter 

3 presents the methodology used to model the dynamics of the system as a floating 

base multi-body system. This chapter also presents the model for all the external 

forces including ground reaction forces and helicopter thrust force. Chapter 4 

describes the prototype design including the mechanical design, the sensory system, 

actuators and electrical equipment, and the control software. Chapter 5 discusses the 

control system for the robotic landing gear which can be divided into low-level joint 

controllers and high-level posture controllers. The high level controller uses combined 

foot pressure and body attitude information to provide position commands to each joint 

controller. In this chapter a PD feedback law is used for the high-level controller and 

simulation results are presented. An alternative controller using sliding mode control 

it’s also proposed and tested in simulations. Chapter 6 presents the results of the 

laboratory experiments using the robotic landing gear platform with different control 

algorithms in different scenarios. Chapter 7 and 8 end this thesis presenting the 

discussion, conclusions and future work. 

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8093781
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8093781
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8425581
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8425581
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2 Literature Review 

2.1 Adaptive Landing Gear Systems 

The question of providing rotorcrafts with an adaptable landing gear that enhances the 

vehicle’s landing capabilities is not new and several patents and designs already exist 

as an alternative to the conventional landing gear designs. 

The most common landing gear is the skid type because of their design simplicity, they 

are light and require little maintenance. On larger, heavier helicopters, however, 

wheels can be preferable when utility and convenience are more important than weight 

savings, as wheels offer better ground handling capabilities like moving the helicopter 

on the ground. The possibility to add retractable wheels also reduces air drag, allowing 

for greater speeds and fuel savings for long distances, at the cost of adding additional 

equipment and complexity to the design. The landing gear with wheels usually have 

better damping properties reducing the impact forces on the helicopter fuselage during 

hard landings. 

Another important aspect to take into consideration is the capacity of the system to 

absorb impacts and to deal with hard landing mitigation which can cause from simple 

passenger discomfort to serious vehicle and cargo damage, injuries and even possible 

loss of life [9]. To deal with this problem, several hard landing mitigation technologies 

have been developed, including redesign of aircraft seats, subfloor and landing gear 

to attenuate the impact force. In the case of the landing gear, these technologies 

include the use of materials with elasto-plastic properties that can dissipate impact 

energy through the plastic deformation, or the implementation of supplementary 

devices such oleo-pneumatic shock absorbers. Additionally, several impact mitigation 

methods have been deployed including external airbags, collapsible plastic and 

metallic structures and supplementary systems to add to the conventional landing 
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gear, but these solutions are difficult to implement, not reusable, add significant weight 

to the rotorcraft, and offer no additional benefits apart from improved crash dynamics. 

To cope with the problem of landing on sloped surfaces, several patents were 

registered as early as in the 1960’s. These designs proposed the use of different 

hydraulic or mechanical systems to adapt the position of the landing gear to the 

irregularities of the terrain. In [10] and [11], the principle of operation of the mechanism 

consists in a hydraulic system (pistons, valves, oil/fluid) connecting both sides of the 

landing gear as shown in Figure 2-1. When one of the legs/struts touches the ground, 

the increasing pressure pushes the fluid out from the up-slope leg reducing the 

extension of that leg. The fluid is pushed into the down-slope leg which increases its 

extension due to the pressure. That way the main body of the rotorcraft is maintained 

in the right attitude. 

 

Figure 2-1 Slope landing compensator systems in [10] (left) and [11] (right) 

In [12], a self-levelling landing mechanism is presented consisting of two curved track 

members lying in parallel planes normal to the longitudinal axis of the helicopter and 

passing through a base frame of the helicopter. This base frame incorporates guides 

that allow the movement of the curved tracks through the guides and varies the 

distance of their opposite ends from the ground. The suggested system is shown in 

Figure 2-2 .The system locks the position of the curved tracks in the base frame after 

landing of the helicopter on uneven terrain. While landing, the curbed tracks are free 

to move so the pilot will simply have to maintain the helicopter level, and the far ends 

of the curved tracks and skids will adjust to the level of the terrain. 
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Figure 2-2 Helicopter self-levelling landing gear [12] 

Another type of adjustable landing mechanism focuses on the design of telescopic 

legs for helicopters [13] and UAVs [14], as shown in Figure 2-3 respectively.  In these 

systems, the legs can extend/retract by sliding one section into the other and can be 

driven by hydraulic, pneumatic or electric actuators. A central processing unit would 

be used to control the extension of each and different kind of sensors may be used to 

provide data to the central processing unit. 

 

Figure 2-3 Telescopic landing gear system for helicopter [13] (left) and UAV [14] (right) 

All these systems are patented but none of them are known to have been constructed 

or tested. 
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The most relevant work that has been reported on this field is a robotic landing gear 

developed by the Georgia Institute of Technology under funding from DARPA [15]. 

This landing gear consists of four articulated robotic legs with two joints on each leg 

actuated by one electric motor at each joint, as shown in Figure 2-4. Pressure pads 

are included at each foot to detect ground contact and to sense how much pressure 

they are exerting on the ground. A microprocessor uses information from the pressure 

pads to command the joints of each leg to bend to the angle needed to keep the 

helicopter’s fuselage and rotor level. The robotic legs have been attached to a 113 kg 

Rotor Buzz 2 unmanned helicopter and a series of test flights were performed from 

2013 to 2015. Multibody dynamic simulations have also been carried out and several 

publications have been made to present the results of this software simulations. 

 

Figure 2-4 Georgia Tech robotic landing gear on Robot Buzz 2 helicopter during test flight [15] 

In the first publication [16], a series of software simulations were run to model the 

system landing on a sloped terrain. Here the joints are modelled as rotational spring-

damper systems (shown in Figure 2-5), and the slope landing controller resets the 

joints stiffness zero-load points and sets the damping coefficients to zero if a leg 

touches the ground. This causes the leg to freely retract after touchdown. Once all 

legs are in contact with the ground, all joint damping coefficients are reset to its initial 

value and the stiffness zero-load points remain at its previous value, causing the legs 

to block its position in a compliant way. An additional proportional-derivative controller 

corrects the remaining tilt of the body after landing, by measuring the tilt angle and 

calculating the required moment applied to each hip to level the fuselage. In the 
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simulations, the system is able to land successfully at slopes of 20° with the robotic 

landing gear. 

 

Figure 2-5 Joints modelled as rotational spring-damper systems [9] 

In another publication [9], the system is tested for hard landing mitigation. In this case, 

as the aircraft descends, the controller also controls the spring and damper coefficients 

of the joints to freely retract if a leg makes ground contact. Once all legs are in contact 

with the ground, the spring and damper coefficients are calculated in order to control 

the deceleration of the fuselage until this is brought to rest. 

The system is also tested on a simulation of a landing on a moving shipboard [17]. 

Here the algorithm that controls the position of the legs uses a Virtual Model Control 

(VMC) technique. This methodology was developed by [18] for control of legged robots 

and consists in introducing a set of “virtual” elements like springs and dampers, into a 

real physical systems to create a desired dynamics. Then, the forces that this virtual 

system would produce on the real system are calculated and converted into the joint 

space as joint torque commands. Figure 2-6 shows examples of applications of virtual 

components used for locomotion. 

 

Figure 2-6 Two examples of VMC [18]. The Virtual Granny Walker (left) to control the altitude and the 
Bunny Mechanism (right) to make the robot move forward. 
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Although these publications show the application of different control techniques on 

software simulations, to our knowledge there haven’t been any published results on 

the practical flying tests. According to [15] the team at Georgia Tech has claimed that 

their system is able to land and take off from slopes up to 20° and their system would 

take up to about 7% of the maximum payload on a medium sized helicopter. 

In [19], the authors present a different design and control approach for an articulated 

landing gear. Their design uses the principle of mechanical differential to passively 

control the attitude of the system when landing on uneven surfaces. The system, 

shown in Figure 2-7, consists of four legs connected by a series of springs that are 

able to transfer loading from one leg to the others, and to evenly distribute the loading 

between its four legs when landing on uneven ground and to settle to a stable 

horizontal position. The authors presented a theoretical design and analysis, software 

simulations and physical implementation. A series of landing tests at 0, 10 and 20 

degrees slope were performed and the results were presented. Unlike other designs, 

this system does not require any power supply, active control systems or sensors. 

 

Figure 2-7 Passive legged landing gear [19] 

In more recent years, several designs of actively controlled articulated landing gears 

have been developed as shown in Figure 2-8. In [20] the authors published a letter 

presenting DroneGear, a landing gear aimed for multicopters. Their system consists 

of four compliant robotic legs of 2-DoF each embedded with optical torque sensors 

integrated into the knee joints and Inertial Measurement Units (IMU) into passive 

footpads for landing zone profile estimation. According to the authors, the optical 

torque sensors add active-passive compliance to the leg structure and provides the 

whole lower leg link with sensitivity to external perturbations, unlike foot pressure pads 
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which provide sensitivity only in the tip. The control system of the DroneGear is out of 

the scope of the letter and a series of tests are conducted with the system landing on 

3 and 11 degrees slopes, on step, and on flat surface. 

In [21], the authors present a legged landing gear that uses a 4-bar linkage to restrict 

the motion of the legs in the vertical direction only. A platform is built using plastic 3D 

printed components. This system incorporates one servo motor per leg, foot pressure 

sensors, an Inertial Measurement Unit to calculate the attitude of the system, an 

ultrasonic range finder to measure the distance from the system to the ground and an 

on-board controller. The paper describes a 3-DoF model of the system to control the 

roll, pitch and altitude dynamics. For the body attitude control, a cascade PID controller 

is used to calculate the actuator torque. For the body altitude control, a cascade PID 

determines the total support force of all four legs, and a force optimization algorithm 

is used to calculate the distribution of the forces on each leg. 

 

Figure 2-8 Adaptive landing gear systems in [20] (left) and [21] (right) 

Recently, the ETH Zürich created ATHLAS, a project in which a group of 12 

engineering students has developed an adaptive landing system for helicopters 

(shown in Figure 2-9). They constructed a prototype of the landing system and 

implemented it into a model helicopter of 50 kg and a rotor diameter of 3.2 m [22].  
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Figure 2-9 ATHLAS landing gear during flight test [22] 

The system consists of four individually controllable legs and each leg uses a 

brushless EC flat motor to drive a ball screw gear. According to their website, the 

controller adapts the position of each leg to the terrain using force control. By logging 

the current induced in the motors, they can detect ground contact and raise the legs 

until all legs are in contact without any additional sensory feedback. Then, the 

orientation of the helicopter is regulated using an IMU. A conference paper was 

published in 2018 [23], where the authors give details of the mechanical structure of 

the legs and the interface with the fuselage, the electronics and control software used. 

It also describes how the system was tested and future work. 

The systems found in the literature review are mostly patents that haven’t been 

developed or very recent and ongoing research projects with little technical information 

published. In the Darpa system, all the result analysis come from software simulations. 

While tests with a physical platform have been reported, to the author’s knowledge, 

there is not any scientific publication that analyses the performance of an adaptive 

landing gear during practical tests and the dynamics of the system during landing. 

Table 2-1 shows a comparison between the adaptive landing gear systems that have 

been built. 
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Table 2-1 Comparison of existing robotic landing gears 

System Design Controller Results Critique 

DARPA [9] 
[16] [17] 

4 2-DoF legs 
Feet force sensors 
Electric motors with brake 
system 
Medium-size helicopter platform  

Legs in ground contact 
retract using force control 
Joint torque-control adjusts 
joint stiffness and damping. 
Virtual Model Control 

3 publications based on 
simulation results using 
multibody systems modelling 
Landings on 20° slopes 
moving ship deck, and hard 
landing mitigations 
Video of practical test 

No result analysis on practical tests. 
No information on how the controller is 
implemented in the physical prototype. 
Only legs in ground contact move, and 
attitude control is applied after force 
control, increasing the time until the 
landing finishes. 

ETH 
Zürich, 

ATHLAS 
[22] 

4 1-DoF legs 
Brushless EC motors 
Ball Screw Gear 
Medium-size helicopter platform 

Position control and force 
regulation 
No specific details 

Claims landings on 20° 
slopes and 50cm steps 
1 publication shows the 
system description including 
mechanical structure, 
electronics and control 
software. 
Video of practical test 

Little result analysis on publications 
Only legs in ground contact move, and 
attitude control is applied after force 
control, increasing the time until the 
landing finishes. 

Drone 
Gear [20] 

4 2-DoF legs 
Custom-made knee optical 
torques sensors 
Feet IMU for relief profile 
estimation 
Small-size hexacopter platform 

Legs in ground contact 
retract using joint torque 
feedback 
Three-level controller 
Position-based control 
Very little details 

Practical tests on 1-axis 
slope of 3° and 11° 
Flight test with hexacopter on 
35 mm step 

Control system out of the scope of the 
letter 
No simulations performed. 
Practical tests at a maximum slope of only 
11°. 

UAV 
landing 

gear [21] 

4 1-DoF legs 
Feet force sensors 
Body IMU 
Distance sensor 
Small-size helicopter platform 

Altitude and attitude 
cascade PID control plus 
force optimization algorithm 

Simulation on 3-DoF model 
(altitude, roll, pitch) 

No result analysis on practical tests. 
Very little simulation analysis. 
 

Passive 
landing 

gear [19] 

4 1-DoF legs 
No sensing or active control 
elements 
Small-size multi-rotor platform 

Passive control 
Mechanical differential 
principle 
Legs in contact retract while 
the opposite extends due to 
load sharing 

Simulations and practical 
tests 
Drop tests with 0°, 10° and 
20° slopes 

No feedback signal to confirm landing 
state 
Less controllability as there is no active 
control 
Passive control cannot drive the system 
to completely level position 
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2.2 Legged Robots 

The preceding section focuses on adaptive landing systems. This section focuses on 

legged robots where significant progress has been done in recent years in the field of 

balance controllers for quadruped and biped locomotion on rough terrain. Although 

designed for a different purpose, the concepts applied for walking robots can be 

adapted to landing control in terms of leg design, sensors, actuators or controller 

design. In this section, a review of some of the most relevant quadrupeds for rough 

terrain locomotion is presented. 

One of the most important advances in legged robotic technology in recent years has 

been the development of BigDog by Boston Dynamics [24], because it addresses the 

two main limitations of previous robots, it includes on-board power supply, and is 

capable of walking in rough, slippery and sloping terrain. Although detailed information 

has not been found, some of its characteristics are known.  

 

Figure 2-10 BigDog quadruped walking robot [24] 

Figure 2-10 shows the BigDog which includes on-board systems that provide power, 

actuation, sensing, controls and communications. Each actuator has sensors for joint 

position and force and each leg has three joints: hip abduction/adduction, and hip and 

knee flexion/extension. It also has a spring in the lower leg and a rubber foot that 

makes ground contact compliant. It has about 50 sensors. Inertial sensors measure 

the attitude and acceleration of the body, while joint sensors measure motion and force 

of the actuators working at the joints.  
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The on-board control system includes a low-level control that regulates servos 

positions and forces at the joints and a high-level control system that coordinates the 

behaviour of the legs to regulate the velocity, attitude and altitude of the body during 

locomotion. For balancing, it uses an estimate of its lateral velocity and acceleration, 

determined from the sensed behaviour of the legs during stance combined with the 

inertial sensors, and while walking, the control system coordinates the kinematics and 

ground reaction forces at the feet while responding to postural commands. At the 

individual leg level, the control system uses joint sensor information to determine when 

feet are in contact with the ground and to determine the desired load on each leg and 

actuator. 

Another significant platform is the HyQ quadruped robot developed by the Italian 

Institute of Technology, as shown in Figure 2-11 [25]. From the design point of view, 

each leg of the HyQ incorporates one electrically actuated joint for the hip, two 

hydraulically actuated joints at the hip and knee and a passive joint that connects the 

lower leg with the foot via a spring. The overall compliance of the leg is dealt with a 

combination of active control of the leg stiffness by means of the torque-controlled 

joints, and the compliant passive joint that absorbs initial ground impacts, to reach a 

trade-off between compliance and tracking performance. 

On the control side, HyQ is equipped with an on-board computer for low and medium 

control tasks, while high-level control is executed by an external computer that 

communicates via Ethernet. At low-level, joint controllers are executed at 1 kHz, and 

they control joint position and torque. High-level control, generates leg trajectories at 

200 Hz. The robot is equipped with over 50 sensors for control, system state 

monitoring and diagnostics. Among them there is an IMU with 9-DOF for robot 

balance, encoders at each joint for position feedback, load cells mounted on each 

hydraulic joint for force/torque feedback, and a potentiometer at the passive joint 

between the lower leg and the foot for estimation of the ground contact force by 

measuring the spring compression. 
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Figure 2-11 Detail of HyQ leg with component description and sketch [25] 

RoboCat-1 is an electrically actuated quadruped developed by the Toyota 

Technological Institute [26] that has two actuated degrees of freedom per leg at the 

hip and knee in the sagittal plane. The robot is powered via the torque-controlled 

Harmonic Drive systems FHA-8C series AC servo motors. The compliance is actively 

-controlled without any passive element. As for the sensors, it incorporates two single 

axis gyroscopes in the torso to measure roll and pitch and one force sensing resistor 

at each foot to measure ground reaction forces. The operating system is the MATLAB 

xPC Target and the sampling frequency is 1 kHz. The RoboCat-1 system is shown in 

Figure 2-12. 

The control system is divided into high-level and low-level controllers. In the high-level 

the CoM and foot trajectories are generated using polynomials and inverse kinematics 

equations are used to generate joint position commands. The low-level controller has 

three components [27]: friction and gravity compensation using friction hysteresis 

identification and inverse dynamics; active compliance control to generate joint 

displacements based on ground reaction force errors; and angular momentum control 

that uses gyro sensor information to calculate the compensating torque around the 

centre of mass. 
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Figure 2-12 RoboCat-1 quadruped robot prototype (a) and CAD model (b) [26] 

Most quadruped robots are torque-controlled systems, but there are also some 

examples of position-controlled robots like the Oncilla robot. This robot uses a bio-

inspired design with the size and weight of a house cat [28]. It features three 

segmented legs with the middle link being a four-bar pantograph mechanism with a 

diagonal passive spring mechanism. Three actuators operate each leg. One actuator 

control the upper link angle. A second actuator acts flexing the two mid-joints by a 

cable mechanism, while the extension is driven by the passive spring, and a third 

actuator is responsible for the adduction/abduction. The simulation and hardware 

example of the system are shown in Figure 2-13. 

In [29], a control architecture is designed to be implemented on the Oncilla platform 

based on a Central Pattern Generator (CPG) that creates synchronized rhythmic 

patterns for locomotion. Sensory feedback is added to implement reflexes fast 

corrections to add extra flexion to the leg in case of a collision of the foot with an 

obstacle, or to add extra extension in case of a missed contact and until the contact is 

sensed. Posture control feedbacks are also added to the CPG output based on the 

robot’s body orientation. This architecture uses minimal sensory information and low-

cost hardware and software. 
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Figure 2-13 Oncilla platform simulation (left) and hardware robot (right) [29] 

2.3 Mathematical Modelling 

A robot is usually a mechanical system composed of a number of links connected by 

articulated joints. In this context, robot dynamics refer to the equations that explicitly 

relate the forces and torques applied to the robot system with the motion produced 

[30]. This relationship can be expressed as a set of second order, nonlinear ordinary 

differential equations called equations of motion which depend on the kinematic and 

inertial properties of the robot. System modelling is used to extract information of its 

behaviour without the necessity of building a physical prototype and to design 

controllers. 

2.3.1 Lagrangian and Newton-Euler formulation 

In general there are two main methodologies to obtain the equations of motion of a 

system: the Newton-Euler and the Euler-Lagrange equations [31] [32] [33]. 

The Newton-Euler formulation to describe rigid body dynamics applies the principles 

that the rate of change of the linear momentum of a body equals the total force applied 

to this body, and the rate of change of the angular momentum of a body equals the 

total torque applied to this body [30] [34]. The expressions for the dynamics are given 

in equations 2.1 and 2.2 respectively. 

𝑚�̈�𝐜𝐦 = 𝐟 (2.1) 

𝐈�̇� + 𝐰 × (𝐈𝐰) = 𝛕 (2.2) 
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where m is the mass of the body and it’s constant, �̈�𝐜𝐦 is the linear acceleration of the 

Centre of Mass (CoM), f is the resultant or total force acting on the body, I is the inertia 

matrix, w is the angular velocity and 𝛕 is the total moment acting on the body.  

The Euler-Lagrange formulation is derived from Newton’s second law but it describes 

the dynamics of the system in terms of work and energy. The Lagrangian function (ℒ) 

of a system is defined as the difference between its kinetic energy (K) and its potential 

energy (P). 

ℒ(𝑞, �̇�) = 𝐾(𝑞, �̇�) − 𝑃(𝑞) (2.3) 

Kinetic and potential energy are expressed in terms of the generalised coordinates 𝑞𝑖 

and generalised velocities �̇�𝑖. The dynamic equations of motion are obtained using the 

Euler-Lagrange equation for each generalised coordinate. 

𝑑

𝑑𝑡
 
𝜕ℒ

𝜕�̇�
𝑖

− 
𝜕ℒ

𝜕𝑞
𝑖

= 𝜏𝑖 (2.4) 

where 𝜏𝑖 is the generalised torque associated with 𝑞𝑖. i = 1,…,n, and n is the number 

of degrees of freedom. 

Although both methods have differences, they generate equivalent sets of equations. 

The main difference between both methods arise from the coordinate systems they 

use. Newton-Euler method uses Cartesian coordinates, therefore, for each spatial rigid 

body, six coordinates are used to represent the body position and orientation. The 

connectivity between different bodies is defined by introducing constraint equations. 

In constrained multibody systems, this leads to a set of redundant coordinates, and 

the resulting equations are expressed in terms of dependant coordinates as well as 

constraint forces [35]. Lagrange method uses generalised coordinates, which are 

defined as the smallest set of independent variables that completely describe the 

system configuration. For a robot manipulator, these generalised coordinates are 

usually the joint angles. Lagrange method reduces the number of equations to the 

number of degrees of freedom of the system and provides a closed form expression 

in terms of the joint torques and joint displacements. In Newton-Euler method, 

additional arithmetic operations are required to eliminate constraint terms from the 

equations of motion and obtain explicit relations between the joint torques and joint 

displacements in a closed form expression. 
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2.3.2 Spatial and planar models 

Equations 2.1 and 2.2 are expressed in vector quantities. If the linear acceleration of 

a point i is expressed as 

�̈�𝐢 = �̈�𝐢−𝟏 + �̇�𝐢 × 𝐫𝐢 + 𝐰𝐢 × (𝐰𝐢 × 𝐫𝐢) (2.5) 

where �̈�𝐢−𝟏 is the linear acceleration of the previous point, �̇�𝐢 and 𝐰𝐢 are the angular 

acceleration and velocity of point i, and 𝐫𝐢 the vector from the previous point to point i. 

Then, the Newton equation for linear momentum for a spatial body can be expressed 

in its expanded form as  

𝑚 [

�̈�𝑥𝑖−1
+ �̇�𝑦𝑟𝑧 − �̇�𝑧𝑟𝑦 + 𝑤𝑦𝑤𝑥𝑟𝑦 − 𝑤𝑦

2𝑟𝑥 − 𝑤𝑧
2𝑟𝑥 + 𝑤𝑧𝑤𝑥𝑟𝑧

�̈�𝑦𝑖−1
+ �̇�𝑧𝑟𝑥 − �̇�𝑥𝑟𝑧 + 𝑤𝑧𝑤𝑦𝑟𝑧 − 𝑤𝑧

2𝑟𝑦 − 𝑤𝑥
2𝑟𝑦 + 𝑤𝑥𝑤𝑦𝑟𝑥

�̈�𝑧𝑖−1
+ �̇�𝑥𝑟𝑦 − �̇�𝑦𝑟𝑥 + 𝑤𝑥𝑤𝑧𝑟𝑥 − 𝑤𝑥

2𝑟𝑧 − 𝑤𝑦
2𝑟𝑧 + 𝑤𝑦𝑤𝑧𝑟𝑦

] = [

𝑓𝑥
𝑓𝑦
𝑓𝑧

] (2.6) 

The rotational characteristics of a spatial rigid body are determined by its inertia tensor 

𝐈 = [

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧

𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧

𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

] (2.7) 

where the diagonal elements are called the principal moments of inertia, and the off-

diagonal terms are the cross products of inertia. 

Then, the Euler equation for spatial rigid body rotational motion in expanded form is 

[

𝐼𝑥𝑥�̇�𝑥 + 𝐼𝑥𝑦�̇�𝑦 + 𝐼𝑥𝑧�̇�𝑧 − 𝑤𝑦𝑤𝑧(𝐼𝑦𝑦 − 𝐼𝑧𝑧) − 𝐼𝑦𝑧(𝑤𝑧
2 − 𝑤𝑦

2) − 𝑤𝑥(𝑤𝑧𝐼𝑥𝑦 − 𝑤𝑦𝐼𝑥𝑧)

𝐼𝑦𝑥�̇�𝑥 + 𝐼𝑦𝑦�̇�𝑦 + 𝐼𝑦𝑧�̇�𝑧 − 𝑤𝑧𝑤𝑥(𝐼𝑧𝑧 − 𝐼𝑥𝑥) − 𝐼𝑥𝑧(𝑤𝑥
2 − 𝑤𝑧

2) − 𝑤𝑦(𝑤𝑥𝐼𝑦𝑧 − 𝑤𝑧𝐼𝑥𝑦)

𝐼𝑧𝑥�̇�𝑥 + 𝐼𝑧𝑦�̇�𝑦 + 𝐼𝑧𝑧�̇�𝑧 − 𝑤𝑥𝑤𝑦(𝐼𝑥𝑥 − 𝐼𝑦𝑦) − 𝐼𝑥𝑦(𝑤𝑦
2 − 𝑤𝑥

2) − 𝑤𝑧(𝑤𝑦𝐼𝑥𝑧 − 𝑤𝑥𝐼𝑦𝑧)

] 

= [

𝜏𝑥

𝜏𝑦

𝜏𝑧

] 

(2.8) 

The Newton-Euler equations are significantly simplified for the case of planar motion. 

Considering a body that can move in the YZ plane and rotate around the X-axis, then 

𝑤𝑦 = 𝑤𝑧 = 0, and the inertia tensor becomes a scalar value 𝐼𝑥𝑥 

[

𝐼𝑥𝑥�̇�𝑥

𝑚(�̈�𝑦𝑖−1
− �̇�𝑥𝑟𝑧 − 𝑤𝑥

2𝑟𝑦)

𝑚(�̈�𝑧𝑖−1
+ �̇�𝑥𝑟𝑦 − 𝑤𝑥

2𝑟𝑧)

] = [

𝜏𝑥

𝑓𝑦
𝑓𝑧

] (2.9) 
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2.4 Ground Contact Models 

The modelling of contact forces is an important part of the robot dynamics and there 

are different standard approaches. Concerning friction forces, tangential to the contact 

surface, a Coulomb friction model is usually considered. Concerning the normal force 

to the surface, two options are the most used: a compliant or a rigid model [33]. 

Rigid models don’t allow the contact points to penetrate below the surface. Impacts 

are modelled as instantaneous events between ‘no contact’ and ‘contact’ states, and 

the foot velocity at the moment of contact changes instantaneously to zero. This 

produces switching dynamics, as the equations of motion (and DoF) of the robot are 

different for different contact situations [36]. 

By contrast, compliant models add additional forces acting upon the foot, instead of 

geometric constraints, hence, the equations of motion and the DoF of the system don’t 

change. These forces are simulated using spring-damper elements to take into 

account the viscoelastic properties of the materials in contact, and are a result of a 

penetration of the contact point below the contact surface. The most typical 

configuration to simulate contact forces is the linear spring-damper system [37] 

𝑓𝑛 = −𝑘 ∙ 𝑧 − 𝑏 ∙ �̇� (2.10) 

where fn is the normal contact force, z is the penetration depth and k and b are the 

spring and damper coefficients. 

This model has two main drawbacks, namely it introduces a discontinuity at the 

moment of impact if the velocity is not zero, and permits not only forces due to the 

compression of the contact surfaces, but also forces that tend to hold the objects 

together. The authors in [37] and [38] propose several alternatives to solve these 

problems. A common and easy to implement approach to avoid negative ‘sticking’ 

forces is to saturate these forces by setting them to zero when they become negative. 

To avoid the discontinuity at the moment of contact a usual approach is to add a 

nonlinearity in the damping element. Thus, equation 2.10 becomes 

𝑓𝑛 = −𝑘 ∙ 𝑧 − 𝑏 ∙ 𝑧 ∙ �̇� (2.11) 

The dependence of the damping term on the penetration depth causes the force to 

build up from zero and avoids the discontinuity. 
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An important question is how to parameterise the contact model. In, [39] the author 

presents a methodology to choose the appropriate spring-damper coefficients. The 

spring force is proportional to the amount of ground penetration and the spring 

coefficient, k. The desired amount of ground penetration at rest is used to choose the 

appropriate value for the spring constant using the equation  

𝑘 =  
𝑚𝑔

ℎ𝑒𝑞
 (2.12) 

where heq is the ground penetration at rest and m is the mass supported by each leg. 

The damping force is proportional to the rate of penetration and the damping 

coefficient is defined as: 

𝑏 = 2𝑑√𝑚𝑘 (2.13) 

where d is the damping ratio and it defines the damping properties of the ground. A 

damping ratio of 1 will result in a critically damped system. If it’s less than 1 the system 

will be underdamped, and if it’s greater than 1 it will be overdamped. 

2.4.1 Friction Force 

Regarding the friction force models, there are also different approaches in the 

literature that use variations of the compliant and Coulomb models.  

A common approach is to model the friction force as being proportional to the normal 

force and friction coefficient, and in opposite direction to sliding motion [39]. 

𝑓𝑡 = −𝜇 ∙ 𝑓𝑛 ∙ 𝑠𝑔𝑛(𝑣𝑡) (2.14) 

where ft is the tangential force, μ is the friction coefficient and vt is the tangential 

component of the foot velocity. 

Friction models have two regions usually named as ‘sticking’ and ‘sliding’ regions, so 

in order to produce relative motion or sliding between two surfaces in contact, an 

external force has to overcome the initial ‘stickiness’. The switching between regions 

is usually produced by the change of the velocity from zero to non-zero value or 

because the friction force value exceeds the maximum static friction force. 
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Equation 2.14 provides the expression for the friction force in the ‘sticking’ region with 

μ being the static friction coefficient. In the ‘sliding’ region usually the value of μ 

changes to the dynamic friction coefficient or the model is saturated. 

Different Coulomb and viscous models are explained in [40]. Figure 2-14 illustrates 

the implementation if these models, the transitions between sticking and sliding 

regions, and the friction force against the sliding speed.  

 

Figure 2-14 Comparison of different Coulomb friction models [40]. 

In [38], the authors present a comparison between different ground contact models 

that have been found in the literature for modelling of walking, running and jumping 

robots. In [16] and [17], the authors present two different implementations of compliant 

friction models for the simulation of rotorcraft landing. Compliant friction models apply 

the same spring-damper forces in the tangential directions as in the normal direction. 

Switching between regions occur if the value of the force exceeds the static friction 

force. 

2.5 Joint Controllers 

Depending on the application they are designed for, there are commonly two main 

approaches to design joint controllers for robotic manipulators: Classical or 

Independent Joint Control, and Model-Based Control. 
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A simple type of controllers that often gives good results in practice is referred in the 

literature as classical joint control, independent joint control on non-model-based 

control [41] [42] [43]. Its implementation is relatively easy because the control input 

depends only on locally measured variables, like joint position and velocity, and it 

doesn’t depend on the variables of other robot joints. Thus, they can be implemented 

in local joint processors without the necessity of communication among the joint 

controllers at each joints. The term non-model-based control refers to the fact that they 

don’t require knowledge of the model parameters and structure. 

Proportional-Derivative or PD is the simplest controller of this type and the computed 

joint torque depends only on the position and velocity of that particular joint.  

τ = 𝐾𝑃𝑒 + 𝐾𝐷�̇� (2.15) 

where KP and KD are the proportional and derivative gains and e is the position error 

defined as the difference between the desired joint position and the actual position. 

However, PD control cannot guarantee that the position error will converge to zero, 

and the precision of the controller will depend of the gains. In theory, increasing the 

gains will reduce the steady-state error, but these gains are limited in practice by the 

measurement noise and other unmodeled dynamics [33]. 

A common approach to eliminate the steady-state error and improve the disturbance 

rejection capabilities is to add an integral part to the PD controller. This controller is 

the PID and nowadays is used in most industrial robots controllers.  

𝜏 = 𝐾𝑃𝑒 + 𝐾𝐷�̇� + 𝐾𝐼 ∫𝑒𝑑𝑡 (2.16) 

where KI is the integral gain. 

The integral part of the controller is proportional to the magnitude and to the duration 

of the error. Thus, if the error is accumulated over time the value of the integral term 

increases. This way, PID controllers can eliminate the steady state error using low 

controller gains. The integral term also accelerates the system response. However, if 

not properly tuned it can lead to overshoot and higher settling time. 
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When adding integral term to the controller it is important to be aware of the possibility 

of integrator windup due to actuator saturation limits [42]. This is a phenomena that 

appears specially when an error persists over a long period of time and causes the 

integral term of the PID to grow over the limits of an actuator. Then, a negative error 

is needed during a long time before the control signal returns to its normal operation 

range provoking that the controller gives an incorrect control input for a long period 

[44]. Anti-windup methods usually include a saturation model of the actuator to keep 

the output of the integral term within desired limits. 

PID joint controllers perform well in a wide variety of applications, and are easy to 

implement as the computed torques don’t depend on variables from other joints. Also, 

computational loads are low and do not involve solving complicated nonlinear inverse 

dynamics, thus, they can be implemented using low-cost hardware [33]. 

Robot manipulators are nonlinear systems that change their position over time. Due 

to coupling effects, the position of each joint affects the torques on the other joints, 

and it is not possible to select a joint controller with fixed gains that will give optimal 

response for all robot positions. Additionally, for application that require high-precision 

trajectory tracking or high-speed operations, a controller that takes into account the 

manipulator dynamics should be designed. For this purpose, the model-based control 

strategies were developed. 

Possibly the simplest model-based controller is the PD with gravity compensation 

which includes the gravitational terms of the dynamic model, G(q), in the control law. 

𝜏 = 𝐾𝑃𝑒 + 𝐾𝐷�̇� + 𝐺(𝑞) (2.17) 

This controller compensates for the joint torques created by the gravitational forces 

and, though still simple, it required knowledge of the gravity components of the model 

and model parameters. Unlike PD and PID controllers, independent joint controllers 

cannot be implemented as position information of all other joints is needed to compute 

the torque for any given joint. 

Although many different model-based controllers have been proposed, most of them 

are variations of the so-called Computed-Torque Control, also referred as Inverse 

Dynamics control, which applies a control law that includes the inverse model of the 

system being modelled.  
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𝜏 = 𝑀(𝑞)𝑢 + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) (2.18) 

Where M and C are the Inertia and Coriolis matrices respectively. Equation 2.19 

represents the inverse dynamics of the system but replacing the joint acceleration �̈� 

by the control input u. This control input is typically designed using a state feedback 

like PD or PID control 

𝑢 = �̈�𝑑 + 𝐾𝑃𝑒 + 𝐾𝐷�̇�  (2.19) 

where �̈�𝑑 is the desired joint acceleration. 

The controller design problem is divided into an inner loop that cancels the nonlinear 

dynamics and an outer feedback loop that corrects any error in the desired trajectory. 

Because the control input is multiplied by M, the controller gains are not constant, but 

varying with the actuator’s position. 

The strong point of this approach is that it uses a nonlinear control law to cancel out 

the nonlinearities of the dynamic model, so that the overall closed-loop system is 

linear. The result is that the controller can be much faster and accurate compared to 

a pure linear feedback control, like PD. On the other side, it is difficult to implement 

because it requires a good knowledge of the full model structure and parameters like 

masses and inertias, and because it involves complex and time-consuming 

computations, resulting in longer sampling times. 

A proposed model-based controller to reduce the computation time is the PD with 

feedforward control. This method computes the torques in terms of the desired 

dynamics (𝑞𝑑 , �̇�𝑑 , �̈�𝑑) instead of the measured ones, thus, if the desired path is known 

in advance, this values can be computed offline. A feedback PD control law is added 

afterwards. 

𝜏 = 𝑀(𝑞𝑑)�̈�𝑑 + 𝐶(𝑞𝑑 , �̇�𝑑)�̇�𝑑 + 𝐺(𝑞𝑑) + 𝐾𝑃𝑒 + 𝐾𝐷�̇� (2.20) 

2.6 Introduction to Sliding Mode Control (SMC) 

SMC belongs to the area of robust control which is an approach to controller design 

that aims to achieve system stability and performance even in the presence of model 

imprecisions, like uncertainty of model parameters or unmodelled dynamics. With this 

technique, the controller is designed to drive the system states and then constrain 
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them into a particular surface, known as the sliding surface, by using a control law 

based on a high-speed switching function. Here, the controller design consists in two 

parts: first, the design of the sliding surface that satisfies the control goal, and second 

the design of a control law that will drive the system into the sliding surface and keep 

it there for all subsequent time [45]. 

For the sliding surface design, usually, a function of the tracking error and some of its 

derivatives is selected, in such a way that its zeroing represents a linear differential 

equation which will drive the system error to zero. 

Consider the nonlinear single-input dynamic system: 

𝑥𝑛(𝑡) = 𝑓(𝐱, 𝑡) + 𝑢(𝑡) (2.21) 

where the scalar x represents the output of interest, for the system order n, the scalar 

u represents the control input, 𝐱 = [𝑥 �̇� … 𝑥𝑛−1]𝑇 is the state vector, and the function 

f(x,t) are the nonlinear modelled system dynamics and are not exactly known. 

The control problem is to get the state vector to track a desired time-varying state, 

𝐱𝐝 = [𝑥𝑑  �̇�𝑑 … 𝑥𝑑
𝑛−1]𝑇, in the presence of disturbances or modelling imprecisions. 

If the tracking error of the variable x is defined as �̃� = 𝑥 − 𝑥𝑑, then a typical choice for 

the sliding surface is  

𝑠(𝐱; 𝑡) = (
𝑑

𝑑𝑡
+ 𝜆)

𝑛−1

�̃� (2.22) 

where 𝜆 is a positive constant.  

An important condition derived from equation 2.22, is that when choosing the sliding 

surface, this should have relative degree one with respect to the control input, thus, 

the first time derivative of s should be a function of u. In the case of n=2 for example, 

then 

𝑠 = �̇̃� + 𝜆�̃� (2.23) 

The method of equivalent control is used to design the control law that restricts the 

motion of the system onto the sliding surface. To ensure that there’s no motion from 

the sliding surface once the system reaches sliding mode, the dynamics are written as 

[46] 
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�̇� = 0 (2.24) 

For instance, consider the second order system 

�̈� = 𝑓 + 𝑢 (2.25) 

In order to have x(t)=xd(t), we set �̇� = 0, then using equations 2.23 and 2.25 we have 

�̇� = �̈� − �̈�𝑑 + 𝜆�̇̃� = 𝑓 + 𝑢 − �̈�𝑑 + 𝜆�̇̃� (2.26) 

Because of uncertainties or unmodelled dynamics, the value of  𝑓 is not exactly known, 

but estimated as 𝑓. Then, �̂�, is the best approximation of a continuous control law to 

get �̇� = 0 

�̂� = −𝑓 + �̈�𝑑 − 𝜆�̇̃� (2.27) 

�̂� is the equivalent control, which can be interpreted as the continuous law that would 

maintain �̇� = 0 if 𝑓 was exactly known. To deal with model uncertainties or 

disturbances, we add a discontinuous or switching law 

𝑢 = �̂� + 𝑘 ∙ 𝑠𝑔𝑛(𝑠) (2.28) 

The system behaviour in Sliding Mode Control can be divided in two parts. During the 

time until the system trajectory reaches the sliding surface, the system is said to be in 

reaching mode. Here the controller acts pushing the system towards the sliding 

surface. When the sliding manifold is reached, the system is said to be in sliding 

regime or sliding mode. In this mode, the tracking error will converge asymptotically to 

zero following the equation 

𝑠(𝐱; 𝑡) = (
𝑑

𝑑𝑡
+ 𝜆)

𝑛−1

�̃� = 0 (2.29) 

Thus, the dynamic behaviour of the system in sliding mode can be tailored by the 

choice of the sliding surface [47]. 

Figure 2-15 shows the typical behaviour of a system with n=2 in sliding mode control 

showing the reaching and sliding mode phases. The sliding surface is a line with slope 

−𝜆 containing the point 𝐱𝐝. 
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Figure 2-15 Graphical interpretation of system pushed into sliding surface (a) and representation of 
chattering effect (b) [46] 

Figure 2-15(a) shows an ideal SMC where the switching frequency is supposed to be 

almost infinite, however, due to the discrete-time nature of digital computer 

implementation, in practice the sign function yields a “zig-zag” motion around the 

sliding surface, known as chattering (Figure 2-15(b)) [48]. 

In practice, it is important to avoid chattering since it involves high control activity and 

may excite high frequency neglected dynamics. A usual approach to solve this 

problem is to approximate the discontinuous control function in equation 2.28, in order 

to obtain a smooth/continuous control action, while keeping robustness and tracking 

precision. 

A proposed method is to replace the sign function by a “sigmoid function” 

𝑠𝑔𝑛(𝑠) ≈
𝑠

|𝑠| + 𝜀
 (2.30) 

where ε is a small positive scalar. 

Another common solution is to constrain the system inside a boundary layer around 

the switching surface by using an algorithm that smooths out the control discontinuity 

within this layer 
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𝑠𝑎𝑡(𝑠, 𝛿) = {
𝑠𝑔𝑛(𝑠), |𝑠| > 𝛿

𝑠 𝛿⁄ , |𝑠| ≤ 𝛿
 (2.31) 

where δ is the boundary layer thickness. 

Figure 2-16 shows the output of the three algorithms using sign function without 

smoothing out (a), sigmoid function (b) and boundary layer (c). 

 

Figure 2-16 Matlab simulation of sign function (a), sigmoid (b) and boundary layer algorithm (c) 

The previous methods are approximations used to obtain a smooth control law without 

chattering. However, some degree of tracking performance is lost. Moreover, the 

design of the sliding variable is constrained to be of relative degree one. 

Higher Order Sliding Modes (HOSM) are an alternative for the reduction or even 

complete elimination of chattering, without compromising the robustness of the 

standard sliding mode. They are characterised by applying the 

discontinuous/switching action on the higher-order time derivatives of the sliding 

variable instead of the first one, as conventional SMC [49], in such a way that in a nth-

order SMC, the discontinuity acts on 𝑠𝑛, and the controller can drive 𝑠 = �̇� =. . . = 𝑠𝑛−1 

to zero. 

In [50], some of the most common 2nd order SMC algorithms are presented. These 

include the Twisting, Sub-Optimal, Super-Twisting or Drift algorithms. Among them, 

the most popular seems to be the Super-Twisting algorithm for its versatility, simplicity 

of implementation and because, unlike other algorithms, it doesn’t require information 

of any of the time-derivatives of the sliding variable. 

The Super-Twisting algorithm is a special case in the sense that it only has relative 

degree one (u appears in the first derivative of s), but it’s second order as it can enforce 

𝑠 = �̇� = 0. The algorithm consists of two parts: one term is a continuous function of the 
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sliding variable, while the other is an integral of a discontinuous term, hence, the output 

is continuous as the discontinuity is hidden under the integral.  

A general form of the Super-Twisting algorithm is defined by [47] 

𝑢𝑠𝑡 = 𝑢1 + 𝑢2 (2.32) 

�̇�1 = {
  −𝑢𝑠𝑡                       𝑖𝑓 |𝑢𝑠𝑡| > 𝑈

 −𝑊𝑠𝑖𝑔𝑛(𝑠)         𝑖𝑓 |𝑢𝑠𝑡| ≤ 𝑈
 (2.33) 

𝑢2 = {
−𝜆|𝑠0|

𝜌𝑠𝑔𝑛(𝑠)         𝑖𝑓 |𝑠| > 𝑠0

−𝜆|𝑠|𝜌𝑠𝑔𝑛(𝑠)           𝑖𝑓 |𝑠| ≤ 𝑠0
 (2.34) 

where W and λ are positive constants, 0<ρ≤0.5, U is the maximum magnitude of the 

control output and s0 is a boundary layer around s. 

Simplified versions of the algorithm neglect the effect of the bound of the control, U, 

and the boundary layer, s0, and consider ρ=0.5, so the algorithm can be expressed as 

[45] 

{
𝑢𝑠𝑡 = −𝜆√|𝑠|𝑠𝑖𝑔𝑛(𝑠) + 𝑢1

�̇�1 = −𝑊𝑠𝑖𝑔𝑛(𝑠)
 (2.35) 

A single-parameter tuning method is proposed in [45] and [48], by defining a positive 

constant, C, and then select 𝜆 = √𝐶 or 𝜆 = 1.5√𝐶, and 𝑊 = 1.1𝐶. There are also 

methods to select this constants as a function of system parameters, but in practice it 

is usual to tune the system heuristically [49] [50]. 

 

Figure 2-17 Block diagram of Super-Twisting algorithm where σ is the sliding surface and u the 
controller output [45]. 

2.7 Summary 

This chapter provides a literature review of the state of the art of adaptive landing gear 

systems, quadruped robots, modelling techniques for legged robots, contact models 

and joint controller design. 
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The comparison between adaptive landing gear systems ranges from small to medium 

size, for helicopters and multicopters, with 1-DoF and 2-DoF legs, and using a variety 

of sensor and controller designs based on position and torque control. 

From a control perspective, systems can be broadly classified as position or torque 

controlled. In position-controlled systems, a controller provides position commands to 

the joint actuators, while in the torque-controlled systems, the controller provides 

torque commands. The later require that the actuators have torque-control capability 

which is not common in small and low-cost servo motors. In some of these systems 

there’s limited information about the control system, or this is used only in simulations 

and it’s not clear how it would be implemented in a physical robot. 

Sensor wise, the preference is to use feet force sensors rather than joint torque 

sensors to detect ground contact as they are easier to integrate, and usually less 

expensive. The control logic of some of these systems acts only in the legs that are in 

ground contact by retracting them, while the rest of the legs remain immobile until they 

touch the ground too.  

There’s a research gap as most of these systems are still under development and they 

offer limited information about their operation and control system. Some publications 

analyse the results of software simulations. Although some real flights have been 

reported, to the author’s knowledge, there are no publications that analyse the 

performance of an adaptive landing gear on a real system. 

The review of quadruped robots also reveals that most platforms share some 

characteristics like a hierarchic control structure with two or more levels, with different 

modules to control different tasks like balancing, centre of mass trajectory or leg swing 

trajectory. They all include some kind of inertial position and force or torque sensing, 

and achieve system compliance by active or passive methods. The overall system 

behaviour is designed to reach a trade-off between compliance and tracking 

performance. 

From a modelling perspective, the application of the two main methodologies, Newton-

Euler and Euler-Lagrange formulations, is reviewed in the field of legged robots. Rigid 

and compliant ground contact models are analysed and the main approaches to joint 

controller design, namely classical and model-based control, are also introduced. 

Finally, the main concepts of Sliding Mode Control are introduced.  
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3 System Modelling 

This chapter presents the methodology to model the system dynamics. The system 

formed by the rotorcraft plus the landing gear can be considered as a “flying legged 

robot” and thus, similar modelling approaches to those used for legged robots can be 

applied to model the system. Legged robots can be classified as floating base systems 

as they are not connected to a rigid support. They have an unactuated base and fully 

actuated limbs. The motion of the limbs is completely defined by the joint torques, 

while the motion of the base is determined by the interaction forces between the limbs 

and the ground. 

Two different models are presented. The first represents a landing gear with two 

robotic legs (one on each side) with a skid on each foot. In this case, the system motion 

can be represented with a planar model. The second, represents a landing gear with 

four legs (two on each side). In this case, the base can move in 6 DoF and a three 

dimensional model is used. This chapter also presents the model for all the external 

forces including ground reaction forces and helicopter thrust force. 

3.1 Modelling of legged robots 

In general, legged robots can be classified as floating base systems because they are 

not connected to a rigid support like a robotic arm. Instead, they have an unactuated 

(or underactuated) base connected to some actuated limbs, and the system uses the 

interaction forces between the ground and the limbs to produce motion on the base. 

The configuration space of legged robots is composed of 6+n degrees of freedom 

(DoF), where n is the number of joints, and the other 6 DoF typically correspond to the 

position and orientation of the central body [33]. 

[
𝐌𝐮(𝐪)

𝐌𝐚(𝐪)
] �̈� + [

𝐂𝐮(𝐪, �̇�)

𝐂𝐚(𝐪, �̇�)
] �̇� + [

𝐆𝐮(𝐪)

𝐆𝐚(𝐪)
] = [

06

𝛕
] + [

𝐉𝐮
𝐓(𝐪)

𝐉𝐚
𝐓(𝐪)

] 𝐟 (3.1) 
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where the subscrips a and u stand for the actuated and underactuated parts, M is the 

inertia matrix, C is the matrix of centrifugal and Coriolis terms, G is the vector of gravity 

terms, 𝜏 is the vector of joint actuator torques, JT is the transpose of the Jacobian 

matrix that maps ground reaction forces f, into generalised forces and torques. The 

vector of state variables is 𝐪 = [𝐪𝐛
𝐓 𝐪𝐧

𝐓]𝐓, where qb is a 6x1 vector representing the 

position and orientation of the main body, and qn is an nx1 vector representing each 

joint angle. 

The structure of this model can be decoupled into base and manipulator dynamics. 

The first 6 rows are written in terms of Cartesian coordinates and Euler angles and 

coincides with the Newton-Euler equations of motion for the base. The n last rows 

correspond to the dynamics of a robot manipulator making contacts with its 

environment [51], and are usually obtained using Lagrangian formulation as it provides 

the closed-form equations for the manipulator.  

There are different approaches in the literature to model the dynamics of legged 

robots. In [52], the author classifies dynamic models depending on how many 

assumptions they use to simplify the system dynamics. A common approach is to use 

simplified dynamics models like the Linear Inverted Pendulum. These models reduce 

considerably the complexity of the system dynamics but its use is restricted to basic 

environments and cannot deal with more complex scenarios. On the other hand, full-

rigid-body models, fully describe the system in terms of every link and derive the 

relation between each joint torque and the corresponding motion. These models are 

very accurate but can become too complex, computationally expensive and intractable 

for complex robots. In a middle ground between these extremes, there are models like 

Single Rigid Body or Centroidal dynamics which make use of the Centroidal 

Momentum Matrix (CMM) to map the momentum of each individual link into a common 

reference frame, expressed at the system’s CoM. The idea is to divide the problem 

into two sub-problems. The Centroidal model is used to find the correct motion of the 

unactuated base, then the fully-actuated manipulator dynamics are used to compute 

joint torques and joint motion. These methods are an exact projection of the full-body 

dynamics while reducing the dimensionality and complexity of the problem. 
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3.2 Two-legged planar model 

This model represents a system formed by a rotorcraft and landing gear with two 

articulated robotic legs and a skid at the tip of each leg. This system can allow 

helicopters to safely land sideways on a slope or in terrains with two levels. It is divided 

in two main components: the main body and the legs. The first one includes the 

rotorcraft and the base of the landing gear, it contains most of the system’s mass and 

provides a link to connect both legs, one on each side. The position and attitude of the 

body are controlled with the action of the legs which also transmit ground contact 

forces and moments to the body. The legs are attached to the main body at their 

respective hips and consist of two links connected by two revolute joints at the hip and 

the knee with its axes of rotation perpendicular to the YZ plane. A sketch of the landing 

gear is shown in Figure 3-1, where the main body is defined by its mass, mB, and 

inertia, IB. The distances Dx and Dy represent the horizontal and vertical distance from 

the CoM to the hips. The position of the CoM is defined by the vector 𝐫𝐜𝐦 = [𝑦𝐵, 𝑧𝐵] 

and the roll angle 𝜃. The upper leg segments have a mass, 𝑚𝑈, inertia, 𝐼𝑈, and length, 

𝑙𝑈. The lower leg segments have a mass, 𝑚𝐿, inertia, 𝐼𝐿, and length, 𝑙𝐿. The joint angles 

are represented by  𝑞𝐻𝑙
, 𝑞𝐾𝑙

, 𝑞𝐻𝑟
 and 𝑞𝐾𝑟

 respectively. The vectors 𝐫𝐜𝐡 and 𝐫𝐡𝐟 represent 

the distances between the CoM and each hip, and between each hip and its respective 

foot. The forces acting on the system are the ground reaction forces, 𝐟𝐢 = [𝑓𝑦, 𝑓𝑧], the 

helicopter thrust force, 𝐟𝐭𝐡, and the gravity, g. 
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Figure 3-1 Sketch of the planar landing gear model. 

To obtain the equations of motion of this planar model, a full-model approach has been 

adopted using Newtonian mechanics [53]. In this method, each link is analysed 

separately and there are three equation for each link: summation of forces in the 

horizontal and vertical directions and summation of torques about each link’s CoM. 

The result is a system of 15 equations that express the acceleration of each link as a 

function of its position and velocity, the joint torques, external forces and internal 

constraints. Once the internal constraints are eliminated this gives a system of seven 

equations in terms of the state vector of generalised coordinates consisting of linear 

and angular acceleration of the main body and the four joint angles. 

𝐌(𝐪)�̈� + 𝐂(𝐪, �̇�)�̇� + 𝐆(𝐪) =  𝛕 + 𝐉𝐓(𝐪)𝐟 (3.2) 

where q is the generalised coordinates vector, 𝐪 = [𝑦𝐵, 𝑧𝐵, 𝜃, 𝑞𝐻𝑙
, 𝑞𝐾𝑙

, 𝑞𝐻𝑟
, 𝑞𝐾𝑟

]𝑇, M is 

the inertia matrix, C is the matrix of centrifugal and Coriolis terms, G is the vector of 

gravity terms, 𝛕 = [0, 0, 0, 𝜏𝐻𝑙
, 𝜏𝐾𝑙

, 𝜏𝐻𝑟
, 𝜏𝐾𝑟

]𝑇 is the vector of joint actuator torques, JT is 

the transpose of the Jacobian matrix, and f is the vector of external forces. 
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Detailed below are the free body diagrams for each link of the system, and the 

derivation of the rigid body dynamic equations using Newton and Euler laws for linear 

and angular momentum. 

 

Figure 3-2 Free body diagram for the main body. 

The Newton-Euler equations for the main body are: 

𝑚𝐵�̈�𝐵 = 𝐻𝐿𝑦
+ 𝐻𝑅𝑦

+ 𝑓𝑡ℎ𝑦
 (3.3) 

𝑚𝐵�̈�𝐵 = 𝐻𝐿𝑧
+ 𝐻𝑅𝑧

+ 𝑓𝑡ℎ𝑧
− 𝑚𝐵𝑔 (3.4) 

𝐼𝐵�̈� = 𝐻𝑅𝑧
𝑦𝑅 − 𝐻𝐿𝑧

𝑦𝐿 + 𝐻𝑅𝑦
𝑧𝑅 + 𝐻𝐿𝑦

𝑧𝐿 − 𝜏𝐻𝑙
− 𝜏𝐻𝑟

 (3.5) 

where 𝐇𝐋 = [𝐻𝐿𝑦
, 𝐻𝐿𝑧

] and 𝐇𝐑 = [𝐻𝑅𝑦
, 𝐻𝑅𝑧

] are the reaction forces at the left and right 

hips respectively. 

The distances from the CoM to the hips are defined by the vectors: 

𝐫𝐜𝐡𝐋
= [𝑦𝐿 , 𝑧𝐿 ] = [𝐷𝑦𝑐𝜃 − 𝐷𝑧𝑠𝜃 , 𝐷𝑧𝑐𝜃 + 𝐷𝑦𝑠𝜃] (3.6) 

𝐫𝐜𝐡𝐫
= [𝑦𝑅 , 𝑧𝑅 ] = [𝐷𝑧𝑠𝜃 + 𝐷𝑦𝑐𝜃 , 𝐷𝑧𝑐𝜃 − 𝐷𝑦𝑠𝜃] (3.7) 

The abbreviations 𝑠𝜃 and 𝑐𝜃 are used to refer to the sine and cosine of the roll angle 

and analogue abbreviations will be used from now on to refer to the sine and cosine 

of all angles. 

The accelerations at the hips are: 
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�̈�𝐻𝑅
= �̈�𝐵 + (𝐷𝑧𝑐𝜃 − 𝐷𝑦𝑠𝜃)�̈� − (𝐷𝑧𝑠𝜃 + 𝐷𝑦𝑐𝜃)�̇�2 (3.8) 

�̈�𝐻𝑅
= �̈�𝐵 + (𝐷𝑧𝑠𝜃 + 𝐷𝑦𝑐𝜃)�̈� + (𝐷𝑧𝑐𝜃 − 𝐷𝑦𝑠𝜃)�̇�2 (3.9) 

�̈�𝐻𝐿
= �̈�𝐵 + (𝐷𝑧𝑐𝜃 + 𝐷𝑦𝑠𝜃)�̈� + (𝐷𝑦𝑐𝜃 − 𝐷𝑧𝑠𝜃)�̇�2 (3.10) 

�̈�𝐻𝐿
= �̈�𝐵 + (𝐷𝑧𝑠𝜃 − 𝐷𝑦𝑐𝜃)�̈� + (𝐷𝑧𝑐𝜃 + 𝐷𝑦𝑠𝜃)�̇�2 (3.11) 

The Newton-Euler equations for the right leg are: 

 

Figure 3-3 Free body diagram for the upper (left) and lower (right) right leg. 

𝐾𝑅𝑦
− 𝑚𝑈�̈�𝑈𝑟

= 𝐻𝑅𝑦
 (3.12) 

𝐾𝑅𝑧
− 𝑚𝑈𝑔 − 𝑚𝑈�̈�𝑈𝑟

= 𝐻𝑅𝑧
 (3.13) 

𝐼𝑈(�̈� + �̈�𝐻𝑟
) = 𝜏𝐻𝑟

− 𝜏𝐾𝑟
+ (𝐾𝑅𝑧

+ 𝐻𝑅𝑧
)𝑙𝐶𝑈

𝑐𝛽𝐻𝑟
− (𝐾𝑅𝑦

+ 𝐻𝑅𝑦
) 𝑙𝐶𝑈

𝑠𝛽𝐻𝑟
 (3.14) 

𝑓𝑅𝑦
− 𝑚𝐿�̈�𝐿𝑟

= 𝐾𝑅𝑦
 (3.15) 

𝑓𝑅𝑧
− 𝑚𝐿𝑔 − 𝑚𝐿�̈�𝐿𝑟

= 𝐾𝑅𝑧
 (3.16) 

𝐼𝐿(�̈� + �̈�𝐻𝑟
+ �̈�𝐾𝑟

) = 𝜏𝐾𝑟
+ (𝑓𝑅𝑧

+ 𝐾𝑅𝑧
)𝑙𝐶𝐿

𝑐𝛽𝐾𝑟
− (𝑓𝑅𝑦

+ 𝐾𝑅𝑦
) 𝑙𝐶𝐿

𝑠𝛽𝐾𝑟
 (3.17) 

where 𝐊𝐑 = [𝐾𝑅𝑦
, 𝐾𝑅𝑧

] is the reaction force at the right knee. The positions of the upper 

and lower link CoM are defined by 𝐫𝐔𝐫
= [𝑦𝑈𝑟

, 𝑧𝑈𝑟
] and 𝐫𝐋𝐫

= [𝑦𝐿𝑟
, 𝑧𝐿𝑟

], the joint angles 
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are expressed as 𝛽𝐻𝑟
= 𝜃 + 𝑞𝐻𝑟

 and 𝛽𝐾𝑟
= 𝜃 + 𝑞𝐻𝑟

+ 𝑞𝐾𝑟
, and the distance from the 

extreme of a link to its CoM as 𝑙𝐶𝑖
= 𝑙𝑖 2⁄ . 

The accelerations at the CoM of the upper and lower links are: 

�̈�𝑈𝑟
= �̈�𝐻𝑅

− 𝑙𝐶𝑈
𝑐𝛽𝐻𝑟

�̇�𝐻𝑟

2
− 𝑙𝐶𝑈

𝑠𝛽𝐻𝑟
�̈�𝐻𝑟

 (3.18) 

�̈�𝑈𝑟
= �̈�𝐻𝑅

− 𝑙𝐶𝑈
𝑠𝛽𝐻𝑟

�̇�𝐻𝑟

2
+ 𝑙𝐶𝑈

𝑐𝛽𝐻𝑟
�̈�𝐻𝑟

 (3.19) 

�̈�𝐿𝑟
= �̈�𝐻𝑅

− 𝑙𝑢𝑐𝛽𝐻𝑟
�̇�𝐻𝑟

2
− 𝑙𝑢𝑠𝛽𝐻𝑟

�̈�𝐻𝑟
− 𝑙𝐶𝐿

𝑐𝛽𝐾𝑟
�̇�𝐾𝑟

2
− 𝑙𝐶𝐿

𝑠𝛽𝐾𝑟
�̈�𝐾𝑟

 (3.20) 

�̈�𝐿𝑟
= �̈�𝐻𝑅

− 𝑙𝑢𝑠𝛽𝐻𝑟
�̇�𝐻𝑟

2
+ 𝑙𝑢𝑐𝛽𝐻𝑟

�̈�𝐻𝑟
− 𝑙𝐶𝐿

𝑠𝛽𝐾𝑟
�̇�𝐾𝑟

2
+ 𝑙𝐶𝐿

𝑐𝛽𝐾𝑟
�̈�𝐾𝑟

 (3.21) 

The Newton-Euler equations for the left leg are: 

 
Figure 3-4 Free body diagram for the upper (right) and lower (left) left leg. 

𝐾𝐿𝑦
− 𝑚𝑈�̈�𝑈𝑙

= 𝐻𝐿𝑦
 (3.22) 

𝐾𝐿𝑧
− 𝑚𝑈𝑔 − 𝑚𝑈�̈�𝑈𝑙

= 𝐻𝐿𝑧
 (3.23) 

𝐼𝑈(�̈� + �̈�𝐻𝑙
) = 𝜏𝐻𝑙

− 𝜏𝐾𝑙
+ (𝐾𝐿𝑧

+ 𝐻𝐿𝑧
)𝑙𝐶𝑈

𝑐𝛽𝐻𝑙
− (𝐾𝐿𝑦

+ 𝐻𝐿𝑦
) 𝑙𝐶𝑈

𝑠𝛽𝐻𝑙
 (3.24) 

𝑓𝐿𝑦
− 𝑚𝐿�̈�𝐿𝑙

= 𝐾𝐿𝑦
 (3.25) 

𝑓𝐿𝑧
− 𝑚𝐿𝑔 − 𝑚𝐿�̈�𝐿𝑙

= 𝐾𝐿𝑧
 (3.26) 
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𝐼𝐿(�̈� + �̈�𝐻𝑙
+ �̈�𝐾𝑙

) = 𝜏𝐾𝑙
+ (𝑓𝐿𝑧

+ 𝐾𝐿𝑧
)𝑙𝐶𝐿

𝑐𝛽𝐾𝑙
− (𝑓𝐿𝑦

+ 𝐾𝐿𝑦
) 𝑙𝐶𝐿

𝑠𝛽𝐾𝑙
 (3.27) 

where 𝐊𝐋 = [𝐾𝐿𝑦
, 𝐾𝐿𝑧

] is the reaction force at the left knee. The positions of the upper 

and lower link CoM are defined by 𝐫𝐔𝐥
= [𝑦𝑈𝑙

, 𝑧𝑈𝑙
] and 𝐫𝐋𝐥

= [𝑦𝐿𝑙
, 𝑧𝐿𝑙

], and the joint 

angles are expressed as 𝛽𝐻𝑙
= 𝜃 + 𝑞𝐻𝑙

 and 𝛽𝐾𝑙
= 𝜃 + 𝑞𝐻𝑙

+ 𝑞𝐾𝑙
. 

The accelerations at the CoM of the upper and lower links are: 

�̈�𝑈𝑙
= �̈�𝐻𝐿

− 𝑙𝐶𝑈
𝑐𝛽𝐻𝑙

�̇�𝐻𝑙

2
− 𝑙𝐶𝑈

𝑠𝛽𝐻𝑙
�̈�𝐻𝑙

 (3.28) 

�̈�𝑈𝑙
= �̈�𝐻𝐿

− 𝑙𝐶𝑈
𝑠𝛽𝐻𝑙

�̇�𝐻𝑙

2
+ 𝑙𝐶𝑈

𝑐𝛽𝐻𝑙
�̈�𝐻𝑙

 (3.29) 

�̈�𝐿𝑙
= �̈�𝐻𝐿

− 𝑙𝑢𝑐𝛽𝐻𝑙
�̇�𝐻𝑙

2
− 𝑙𝑢𝑠𝛽𝐻𝑙

�̈�𝐻𝑙
− 𝑙𝐶𝐿

𝑐𝛽𝐾𝑙
�̇�𝐾𝑙

2
− 𝑙𝐶𝐿

𝑠𝛽𝐾𝑙
�̈�𝐾𝑙

 (3.30) 

�̈�𝐿𝑙
= �̈�𝐻𝐿

− 𝑙𝑢𝑠𝛽𝐻𝑙
�̇�𝐻𝑙

2
+ 𝑙𝑢𝑐𝛽𝐻𝑙

�̈�𝐻𝑙
− 𝑙𝐶𝐿

𝑠𝛽𝐾𝑙
�̇�𝐾𝑙

2
+ 𝑙𝐶𝐿

𝑐𝛽𝐾𝑙
�̈�𝐾𝑙

 (3.31) 

The Newton-Euler equations are expressed in terms of the acceleration of the CoM of 

each link. By introducing the expressions of the accelerations into the Newton-Euler 

equations and eliminating the constraints, the full model is obtained. The detailed full 

model equations are presented in Appendix A. 

The full-body model approach fully describes the relationship between the applied 

forces and moments and the resulting motion of the system. It is a suitable approach 

for relatively simple systems like planar models or systems with a small number of 

links. However, the complexity of the model and the number and length of the 

equations grows rapidly with the number of links and the degrees of freedom of the 

system. For more complex systems, it is preferable to use other approaches like 

Centroidal Dynamics. The methodology used has been the Newton-Euler as it 

presents an intuitive way to construct the equations of motion of the whole system link 

by link.  
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3.3 Four-legged model 

This model represents a system formed by a rotorcraft and landing gear with four 

articulated robotic legs. This system can allow helicopters to land on more complex 

terrains than the two-legged version, including 2-axis slopes and irregular terrains with 

more than 2 levels. The main body includes the rotorcraft and the base of the landing 

gear, it contains most of the system’s mass and provides a link to connect all four legs, 

two on each side.  

As shown in Figure 3-5, the position and orientation of the main body is defined by the 

vector 𝐫𝐜𝐦 = [𝑥𝑐𝑚, 𝑦𝑐𝑚, 𝑧𝑐𝑚] that describes the position of the system’s CoM with 

respect to the inertial frame and the roll (𝜃), pitch (𝜑) and yaw (𝜙) angles. Each leg is 

attached to the main body at its respective hip and consists of two links and two 

revolute joints at the hip and knee with its axes of rotation perpendicular to the YZ 

plane of the reference frame attached to the main body. The relative position of each 

hip with respect to the CoM is defined by the vector 𝐫𝐜𝐡, and the distance between 

each hip and its respective foot is given by the vector 𝐫𝐡𝐟. The forces acting on the 

system are the ground reaction forces at each foot, 𝐟𝐢, the helicopter thrust force, 𝐟𝐭𝐡, 

and the gravity g. 

 
Figure 3-5 Sketch of the system with coordinate frames, important position vectors and external 

forces. 
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3.3.1 Whole Body Motion 

The dynamic model used to generate the system’s equations of motion is the 

Centroidal Dynamics or Single Rigid-Body Dynamics which has been used in 

quadruped locomotion [54], [55], [56]. This approach divides the system into two 

coupled dynamics equations, one for the floating-base and one for the n rigid bodies 

attached to it, in this case the four legs. First, the mass of each link is combined at the 

CoM and the inertia of each individual link is projected and expressed around the CoM 

to create a Centroidal Momentum Matrix (CMM). Thus, this centroid has equivalent 

mass and inertia properties to those of the whole body. Then, the robot Kinematic 

model is used to determine geometric parameters like the position of the end-effector, 

and the interaction between the robot and the environment, like determining the points 

where the external forces are applied with respect to the CoM. 

This allows to obtain a set of equations that computes the motion of the centroid (and 

therefore the base) as a function of the external forces and doesn’t depend on the 

links angular accelerations, resulting in a much simpler set of equations than the whole 

rigid body model. Second, once the trajectory of the centroid is known, the legs motion 

is calculated using the dynamic model of a single leg. 

According to Single Rigid Body Dynamics, all the different bodies that form the system 

are reduced to a single point that has a mass and inertia that emulates those of the 

whole system in its nominal joint configuration and it’s located at the CoM. Then, 

Newton-Euler equations for linear and angular motion are applied to this point.  

𝑚�̈�𝐜𝐦 = ∑𝐟𝐢

n

i=1

+ 𝐟𝐭𝐡 − 𝑚𝐠 (3.32) 

𝐈�̇� + 𝐰 × (𝐈𝐰) = ∑𝐟𝐢

n

i=1

𝐫𝐜𝐟𝐢  (3.33) 

where m is the combined mass of the whole system, n is the number of feet, I is the 

combined inertia of the main body and all legs in its initial joint configuration, expressed 

with respect to a coordinate frame situated at the system CoM and parallel to the 

inertial frame, w is the angular velocity of the system and 𝐫𝐜𝐟𝐢 is the distance between 

the CoM and the foot i with respect to the inertial frame.  
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By expressing the inertia in the initial joint configuration, it is assumed that the mass 

of the legs is small compared with that of the main body and they do not move 

significantly from their initial position. This way we can express the dynamics of the 

robot in Cartesian coordinates only and the inertia matrix doesn’t depend on the joint 

configuration. 

The distance between the CoM and the foot i with respect to the inertial frame can be 

expressed as 

𝐫𝐜𝐟𝐢 = 𝐑(𝐫𝐜𝐡𝐢
+ 𝐫𝐡𝐟𝐢) (3.34) 

where 𝐫𝐜𝐡𝐢
 and 𝒓𝒉𝒇𝒊

 are the CoM-hip and hip-foot distance vectors expressed in the 

body-fixed coordinate frame. R is the rotation matrix that transforms a point from the 

main body fixed coordinate frame to the inertial coordinate frame and it is expressed 

in terms of the roll (𝜃), pitch (𝜑) and yaw (𝜙) angles [27]: 

𝐑 = 𝐑𝐱(𝜃) 𝐑𝐲(𝜑)𝐑𝐳(𝜙) = (
1 0 0
0 𝑐𝜃 −𝑠𝜃
0 𝑠𝜃 𝑐𝜃

)(
𝑐𝜑 0 𝑠𝜑
0 1 0

−𝑠𝜑 0 𝑐𝜑
)(

𝑐𝜙 −𝑠𝜙 0
𝑠𝜙 𝑐𝜙 0
0 0 1

) 

= (

𝑐𝜑𝑐𝜙 −𝑐𝜑𝑠𝜙 𝑠𝜑
𝑠𝜃𝑠𝜑𝑐𝜙 + 𝑐𝜃𝑠𝜙 −𝑠𝜃𝑠𝜑𝑠𝜙 + 𝑐𝜃𝑐𝜙 −𝑠𝜃𝑐𝜑

−𝑐𝜃𝑠𝜑𝑐𝜙 + 𝑠𝜃𝑠𝜙 𝑐𝜃𝑠𝜑𝑠𝜙 + 𝑠𝜃𝑐𝜙 𝑐𝜃𝑐𝜑
) 

(3.35) 

To obtain the orientation of the main body from the angular motion equation 3.32, the 

angular velocity w has to be expressed in terms of the Euler angles as well: 

𝐰 = (

𝑤𝑥

𝑤𝑦

𝑤𝑧

) = (
�̇�
0
0

) + (
0
�̇�
0
)𝐑𝐱(𝜃) + (

0
0
�̇�

)𝐑𝐱(𝜃)𝐑𝐲(𝜑) = (

�̇� + 𝑠𝜑�̇�

𝑐𝜃�̇� − 𝑠𝜃𝑐𝜑�̇�

𝑠𝜃�̇� + 𝑐𝜃𝑐𝜑�̇�

) (3.36) 

To calculate the CMM, first the inertia of each individual link i with respect to the main 

body fixed-frame coordinates is calculated [57]. For this purpose, the principal 

moments of inertia of each link are first aligned with the axes of the main body fixed-

frame and then the parallel axis theorem is applied to express the moments of inertia 

around the CoM. 

𝐈𝐢 = 𝐑𝐱(𝑞𝑖) (

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

)𝐑𝐱
𝐓(𝑞𝑖) + 𝑚𝑖[𝐝𝐢𝐝𝐢𝟏𝟑 − 𝐝𝐢⨂𝐝𝐢] (3.37) 
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where Ixx, Iyy and Izz are the principal moments of inertia of the link i, 𝐑𝐱(𝑞𝑖) is the 

rotation matrix around the joint angle qi, mi is the mass of the link, di is the distance 

from the link’s CoM to the system’s CoM, 13 is a 3x3 identity matrix and ⨂ is the outer 

product. 

The total inertia for each link expressed in the body-fixed coordinate frame is 

𝐈𝐢 = 

(

𝐼𝑥𝑥 + 𝑚𝑖(𝑑𝑦
2 + 𝑑𝑧

2) −𝑚𝑖𝑑𝑥𝑑𝑦 −𝑚𝑖𝑑𝑥𝑑𝑧

−𝑚𝑖𝑑𝑥𝑑𝑦 𝐼𝑦𝑦𝑐2𝑞𝑖𝐼𝑧𝑧𝑠
2𝑞𝑖 + 𝑚𝑖(𝑑𝑦

2 + 𝑑𝑧
2) (𝐼𝑦𝑦 − 𝐼𝑧𝑧)𝑐𝑞𝑖𝑠𝑞𝑖 − 𝑚𝑖𝑑𝑦𝑑𝑧

−𝑚𝑖𝑑𝑥𝑑𝑧 (𝐼𝑦𝑦 − 𝐼𝑧𝑧)𝑐𝑞𝑖𝑠𝑞𝑖 − 𝑚𝑖𝑑𝑦𝑑𝑧 𝐼𝑦𝑦𝑠2𝑞𝑖 + 𝐼𝑧𝑧𝑐
2𝑞𝑖 + 𝑚𝑖(𝑑𝑦

2 + 𝑑𝑧
2)

) 
(3.38) 

The total inertia of the system around its CoM expressed in the body-fixed coordinate 

frame, It, is obtained as the sum of the main body inertia, Ib, and the inertia of each 

link, Ii. 

𝐈𝐭 = 𝐈𝐛 + ∑𝐈𝐢

𝑖=8

𝑖=1

 (3.39) 

To use the inertia in equation 3.33 it needs to be converted into the inertial frame 

coordinates. 

𝐈 = 𝑹𝑰𝒕𝑹
𝑻 (3.40) 

3.3.2 Single Leg Dynamics 

In the previous section, the motion of the main body is computed using as inputs the 

external forces and the forward kinematics relating the distance between the foot and 

the system’s CoM. In this section, the dynamic model of a single-leg is presented, and 

the inverted dynamics are used to calculate the joint torques needed to follow the 

desired foot trajectory considering the effect of the external forces. 

Figure 3-6 shows a sketch of a robotic leg. Since the axes of rotation of the knee and 

hip joints are parallel and are in the same plane, the single-leg can be represented by 

a 2-DoF planar model using the ZY coordinate system at the hip. The joint angles at 

the hip and knee are represented by 𝑞ℎ and 𝑞𝑘 respectively and the joint torques by 

𝜏ℎ and 𝜏𝑘. All are positive in the anti-clockwise direction. 𝑙𝑈 and 𝑙𝐿 represent the length 

of the upper and lower links, and 𝑚𝑈, 𝐼𝑈 and 𝑚𝐿 , 𝐼𝐿 are their respective masses and 

inertias. The ground contact forces are represented by 𝐟𝐢. 
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Figure 3-6 Sketch of a single leg with relevant parameters 

To obtain the equations of motion of the single leg, the Lagrange methodology is used 

as it provides the equations of motion of the 2-DoF leg in its closed-form [58]. First, 

the positions of the masses in the main body coordinates are calculated assuming 

they are at the center of each link. 

𝐫𝐦𝐔
= [

𝑦𝑚𝑈

𝑧𝑚𝑈
] = [

𝑙𝐶𝑈
𝑐𝑞ℎ

𝑙𝐶𝑈
𝑠𝑞ℎ

] (3.41) 

𝐫𝐦𝐋
= [

𝑦𝑚𝐿

𝑧𝑚𝐿
] = [

𝑙𝑈𝑐𝑞ℎ + 𝑙𝐶𝐿
𝑐(𝑞ℎ + 𝑞𝑘)

𝑙𝑈𝑠𝑞ℎ + 𝑙𝐶𝐿
𝑠(𝑞ℎ + 𝑞𝑘)

] (3.42) 

The velocities of mU and mL are calculated through the derivative of their positions, 

and the Lagrangian of the system is obtained through the kinetic and potential energy 

of each link as explained in Section 2.3.1. 

ℒ = 𝐾 − 𝑃 = ∑(
1

2
𝑚𝑖𝑣𝑖

2 + 
1

2
𝐼𝑖�̇�𝑖

2) − ∑(𝑔𝑚𝑖𝑧𝑖) (3.43) 

Then, the Euler-Lagrange Equation (Equation 2.4.) is solved and the equations of 

motion are obtained and expressed in its canonical form in joint-space coordinates 

𝐌𝐢(𝐪) (
�̈�ℎ

�̈�𝑘
) + 𝐂𝐢(𝐪, �̇�) (

�̇�ℎ

�̇�𝑘
) + 𝐆𝐢(𝐪) = (

𝜏ℎ

𝜏𝑘
)  + 𝐉𝐓(𝐪)𝐟 (3.44) 

with 
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𝐌𝐢(𝐪) = (
𝐼𝑈 + 𝐼𝐿 + 𝑚𝐿(𝑙𝑈

2 + 𝑙𝐶𝐿

2 + 2𝑙𝑈𝑙𝐶𝐿
𝑐𝑞𝑘) + 𝑚𝑈𝑙𝐶𝑈

2 𝐼𝐿 + 𝑚𝐿(𝑙𝐶𝐿

2 + 𝑙𝑈𝑙𝐶𝐿
𝑐𝑞𝑘)

𝐼𝐿 + 𝑚𝐿(𝑙𝐶𝐿

2 + 𝑙𝑈𝑙𝐶𝐿
𝑐𝑞𝑘) 𝐼𝐿 + 𝑚𝐿𝑙𝐶𝐿

2
) (3.45) 

𝐂𝐢(𝐪, �̇�) = (
0 −𝑚𝐿𝑙𝑈𝑙𝐶𝐿

𝑠𝑞𝑘(2�̇�ℎ + �̇�𝑘)

𝑚𝐿𝑙𝑈𝑙𝐶𝐿
𝑠𝑞𝑘�̇�ℎ 0

) (3.46) 

𝐆𝐢(𝐪) = (
(0.5𝑚𝑈 + 𝑚𝐿)𝑔𝑙𝑈𝑐𝑞ℎ + 𝑚𝐿𝑔𝑙𝐶𝐿

𝑐(𝑞ℎ + 𝑞𝑘)

𝑚𝐿𝑔𝑙𝐶𝐿
𝑐(𝑞ℎ + 𝑞𝑘)

) (3.47) 

The term 𝐉𝐓(𝐪)𝐟 maps the effect of the ground reaction forces (𝐟 = [𝑓𝑦 𝑓𝑧]) into the 

joint torques and the Jacobian 𝐉(𝐪) is obtained through the partial derivatives of the 

forward kinematic equations for the foot. 

𝐫𝐡𝐟 = [
𝑦ℎ𝑓

𝑧ℎ𝑓
] = [

𝑙𝑈𝑐𝑞ℎ + 𝑙𝐿𝑐(𝑞ℎ + 𝑞𝑘)
𝑙𝑈𝑠𝑞ℎ + 𝑙𝐿𝑠(𝑞ℎ + 𝑞𝑘)

] (3.48) 

𝐉(𝐪)  =

[
 
 
 
 
𝜕𝑦ℎ𝑓

𝜕𝑞ℎ

𝜕𝑦ℎ𝑓

𝜕𝑞𝑘

𝜕𝑧ℎ𝑓

𝜕𝑞ℎ

𝜕𝑧ℎ𝑓

𝜕𝑞𝑘 ]
 
 
 
 

= [
−𝑙𝑈𝑠𝑞ℎ − 𝑙𝐿𝑠(𝑞ℎ + 𝑞𝑘) −𝑙𝐿𝑠(𝑞ℎ + 𝑞𝑘)

𝑙𝑈𝑐𝑞ℎ + 𝑙𝐿𝑐(𝑞ℎ + 𝑞𝑘) 𝑙𝐿𝑐(𝑞ℎ + 𝑞𝑘)
] (3.49) 

The single-leg model represents the equations of motion of a 2-DoF planar 

manipulator with a fixed coordinate frame situated at the hip joint. In reality, the hip 

reference frame is attached to the main body and it moves with it, but here it is 

considered as a fixed reference frame, hence the velocity at the hip is zero. Because 

the velocity of the main body is relatively slow and is considered to be near level 

position at all times, it is assumed that the motion and orientation of the main body 

doesn’t affect to the joint torques calculations. 

3.4 Leg Inverse Kinematics 

Leg inverse kinematics are used to convert the position commands from the controller 

into joint coordinates. The main controller operates in the Cartesian space as it is more 

intuitive to specify end-effector motion in that way [33].  

The motion of each leg is confined inside a parallel plane to the YZ plane of the main 

body fixed-frame, so the distance between one hip and its respective foot expressed 

in the main body fixed-frame will be 𝐫𝐡𝐟 = [0, 𝑦ℎ𝑓 , 𝑧ℎ𝑓]. To maintain stability, the lateral 

hip-foot distance 𝑦ℎ𝑓 is maintained constant during all the landing process while only 
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the vertical distance 𝑧ℎ𝑓 is adjusted by the controller. Ignoring the x-coordinate as it is 

equal to 0, the hip-foot distance is expressed as 

𝐫𝐡𝐟 = [𝑦ℎ𝑓 , 𝑧ℎ𝑓] = [𝑦ℎ𝑓0 , 𝑧ℎ𝑓0 + ∆𝑧ℎ𝑓] (3.50) 

where 𝑦ℎ𝑓0 and 𝑧ℎ𝑓0 are the leg coordinates of the initial landing position and ∆𝑧ℎ𝑓 is 

the adjustment of the leg height due to the action of the controller as a function of the 

force at its respective foot and the attitude of the main body. 

Control actions are performed in the joint space, so the hip-foot coordinates need to 

be converted into joint angles before sending them as inputs to the joint controllers or 

low-level controllers by using inverse kinematics equations for a 2-link planar 

manipulator as described in [30] 

𝑐𝑞𝑘 =
𝑦ℎ𝑓

2 + 𝑧ℎ𝑓
2 − 𝑙𝑈

2 − 𝑙𝐿
2

2𝑙𝑈𝑙𝐿
 (3.51) 

𝑠𝑞𝑘 = ±√1 − 𝑐𝑞𝑘
2 (3.52) 

𝑞𝑘 = 𝑎𝑡𝑎𝑛2(𝑠𝑞𝑘 , 𝑐𝑞𝑘) (3.53) 

𝑞ℎ = 𝑎𝑡𝑎𝑛2(𝑧ℎ𝑓 , 𝑦ℎ𝑓) − 𝑎𝑡𝑎𝑛2(𝑙𝐿𝑠𝑞𝑘 , 𝑙𝑈 + 𝑙𝐿𝑐𝑞𝑘) (3.54) 

These equations provide a straightforward way to compute the joint angles by knowing 

the Cartesian coordinates. By selecting the positive or negative sign in equation 3.52, 

the angles are solved for the elbow-up or elbow-down configurations. 

3.5 External forces 

The external forces that determine the whole body motion and the leg motion and joint 

torques are the ground reaction forces and the helicopter thrust force. 

The thrust controller is a simplified version of the one used in [16] where the only aim 

is to control the descent rate of the helicopter 

𝐟𝐭𝐡 = 𝐑[𝐶 ∙ (�̇�𝐶𝑀𝑑
− �̇�𝐶𝑀) + 𝑚𝐠] (3.55) 

where C is a constant and �̇�𝐶𝑀𝑑
 is the desired descent rate. 

The ground contact model simulates the interaction forces between the feet of the 

landing gear and the ground. By using the centroidal dynamics model, the position of 
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the system’s CoM is known, and using whole body kinematics the position of each feet 

in the inertial frame coordinates, 𝒓𝒇𝒊
, is determined. 

𝐫𝐟𝐢 = 𝐫𝐜𝐦  +  𝐫𝐜𝐟𝐢 = 𝐫𝐜𝐦 +  𝐑(𝐫𝐜𝐡𝐢
+ 𝐫𝐡𝐟𝐢) (3.56) 

In order to calculate the ground reaction forces, first a ground surface has to be 

defined. In this project, two types of irregular landing surfaces have been considered. 

One is a slope, and it´s defined by the slope (𝛼𝑆𝐿) and azimuth angles (𝛼𝐴𝑍), and 

another one composed of several flat surfaces at different ground levels. In the second 

case, the surface is defined by the elevation of each surface. 

 

Figure 3-7 Irregular terrains: sloped surface (left) and multi-level ground (right) 

Second, the foot position has to be defined in the ground coordinate system. In the 

stepped surface (Figure 3-7, right), the distance from each feet to the ground is defined 

by the z distance to the surface below each foot. In the slopped surface (Figure 3-7, 

left), the distance from each feet to the ground below is defined in the normal direction 

to the surface (zG). In this case, the foot position in ground coordinate system is 

defined by 

𝐫𝐟𝐢
𝐆 = 𝐑𝐆𝐫𝐟𝐢 (3.57) 

where 𝐫𝐟𝐢
𝐆 is the position of the ith foot in the ground coordinates and 𝐑𝐆 is the rotation 

matrix around the slope angles.  

The initial ground contact points are defined as the points where the distance to the 

ground of each foot (in the zG direction) changes from positive to zero: 𝐩𝟎 = (𝑥0, 𝑦0, 0). 

In this project a compliant contact model is used with a non-linear spring-damping 

model to generate forces that tend to hold the foot in the initial contact position and 

simulates the deformation of the contact bodies. 
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The normal force (in the z-axis of the ground coordinate system) is given by the 

equation 

𝑓𝑧
𝐺 {

−𝑧𝑓
𝐺 ∙ 𝑘𝑧 − �̇�𝑓

𝐺 ∙ 𝑏𝑧(𝑧𝑓
𝐺)             𝑖𝑓 𝑧𝑓

𝐺 ≤ 0

 0                                                    𝑖𝑓 𝑧𝑓
𝐺 > 0

 (3.58) 

where 𝑓𝑧
𝐺 is the value of the ground reaction force in the z-axis of the ground 

coordinate frame and kz and bz are the spring and damper coefficients in the z 

direction.  

To avoid the instantaneous damping force at the initial moment of touchdown, the 

damping coefficient is a function of ground penetration as introduced in [59] 

 𝑏𝑧(𝑧𝑓
𝐺) {

(𝑧𝑓
𝐺 ℎ𝑚𝑎𝑥⁄ ) ∙ 𝑏𝑚𝑎𝑥             𝑖𝑓 𝑧𝑓

𝐺 < ℎ𝑚𝑎𝑥

 𝑏𝑚𝑎𝑥                                    𝑖𝑓 𝑧𝑓
𝐺 > ℎ𝑚𝑎𝑥

 (3.59) 

where 𝑏𝑧(𝑧𝑓
𝐺) varies linearly from 0 to the maximum damping coefficient 𝑏𝑚𝑎𝑥 as the 

penetration depth increases from 0 to the maximum penetration depth ℎ𝑚𝑎𝑥. 

Thus, normal force is proportional to the amount of ground penetration (spring 

component) and velocity (damper component) of the foot during touchdown. It is 0 

before the moment of touchdown (𝑧𝑓
𝐺 = 0) and builds up as the foot penetration 

increases. To avoid “sticking forces”, it can only have positive values. In simulations, 

a saturation block is used to avoid negative forces that try to stick the foot to the 

ground, which would be physically incorrect. 

This model is straightforward to implement and it’s a good representation of the reality 

as it avoids sticking forces and discontinuities at the moments when the foot makes 

and loses contact. The spring and damper coefficients are calculated using equations 

2.12 and 2.13. 

Friction force is modelled on the x and y-axes of the ground coordinate frame and it 

opposes the sliding of the feet on the slopped surface. The friction force has a “stick” 

region where it is modelled as a spring-damper and a “slip” region where the value of 

the force exceeds the maximum static friction force. If the model switches to “slip” 

mode, the friction force is equal to the value of the dynamic friction force. 
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𝑓𝑥
𝐺 {

−(𝑥𝑓
𝐺 − 𝑥𝑓0

𝐺 ) ∙ 𝑘𝑥 − �̇�𝑓
𝐺 ∙ 𝑏𝑥             𝑖𝑓 𝑓𝑥

𝐺 < 𝜇𝑠𝑓𝑧
𝐺

 𝜇𝐷𝑓𝑧
𝐺                                                    𝑖𝑓 𝑓𝑥

𝐺 ≥ 𝜇𝑠𝑓𝑧
𝐺

 (3.60) 

𝑓𝑦
𝐺 {

−(𝑦𝑓
𝐺 − 𝑦𝑓0

𝐺) ∙ 𝑘𝑦 − �̇�𝑓
𝐺 ∙ 𝑏𝑦             𝑖𝑓 𝑓𝑦

𝐺 < 𝜇𝑠𝑓𝑧
𝐺

 𝜇𝐷𝑓𝑧
𝐺                                                    𝑖𝑓 𝑓𝑦

𝐺 ≥ 𝜇𝑠𝑓𝑧
𝐺

 (3.61) 

Friction force is 0 if 𝑧𝑓
𝐺 > 0, and 𝑥𝑓0

𝐺  and 𝑦𝑓0
𝐺  are the x and y coordinates at the moment 

of touchdown. Thus, friction force acts like two spring-dampers opposing movement 

on the sloped surface. 𝜇𝑠 and 𝜇𝐷 are the static and dynamic friction coefficients and 

kx, ky, bx and by are the respective spring and damper coefficients on each direction. 

The reason to use a compliant spring-damper model to simulate friction force is 

because in most Coulomb models the friction force is 0 when the sliding velocity is 0. 

When modelling a sloped landing, the normal force (perpendicular to the slope) has a 

vertical and horizontal component, so if the friction force is 0, the horizontal component 

of the normal force will accelerate the system downslope until the sliding velocity 

makes the friction force large enough to stop it, thus, the system would be constantly 

accelerating and stopping. The spring-damper system depends on the sliding velocity 

and the distance between the current foot position and the initial contact point, thus, 

even when the sliding speed is zero the force will be non-zero. 

To apply the ground reaction forces into the system’s dynamic equations, they have 

to be converted to the inertial frame coordinate system. 

𝐟𝐢 = 𝐑𝐆
𝐓𝐟𝐢

𝐆 (3.62) 

where 𝐟𝐢 = [𝑓𝑥𝑖
;  𝑓𝑦𝑖

;  𝑓𝑧𝑖
] and 𝐟𝐢

𝐆 = [𝑓𝑥𝑖

𝐺;  𝑓𝑦𝑖

𝐺;  𝑓𝑧𝑖

𝐺]. 

3.6 System Model 

Figure 3-8 shows a view of the implementation of the whole 4-legged model into 

Simulink. The main blocks that compose the whole model are: one block that simulates 

the motion of the main body, one block to simulate the motion of each of the legs, one 

block to simulate the ground reaction forces at each foot, and one block that includes 

the controller. 

In the model also exist different coordinate frames, namely the inertial frame, main 

body coordinate frame, the legs coordinate frame, and the ground coordinate frame. 
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When sending data from one block to another appropriate coordinate transformations 

will be applied using rotation matrices. 

A brief explanation of the model implementation is given in this section, although the 

Matlab/Simulink files for the models are included in the CD attached to this thesis.   

 
Figure 3-8 Simulink view of the whole system integration 

3.6.1 Main body motion block (Centroidal Dynamics) 

This block calculates the motion of the main body of the landing gear. It takes the 

ground reaction forces and the position vector from the CoM to each foot as the inputs 

and returns the position and orientation of the CoM.  

In the 4-legged model, this block includes the equations for the Centroidal Dynamics, 

described in section 3.3.1, as shown in Figure 3-9. The CMM is calculated offline using 

a Matlab script (see Appendix B). The Newton-Euler equations provide 6 equations to 

calculate the 3 linear accelerations and 3 angular accelerations of the system, and the 

Euler angles are obtained using equation 3.36. It also includes equation 3.55 for the 

thrust force to regulate the descending velocity.  

In the 2-legged model, the motion of the main body is modelled by implementing 

equations A.2-A.4 (See Appendix A) 
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Figure 3-9 Centroidal Dynamics Block Diagram 

3.6.2 Legs motion blocks 

The legs models are used to calculate the required joint torques to move each joint to 

the desired position as shown in Figure 3-10. The inputs to the block are the ground 

reaction forces and the desired leg position from the controller. The block returns the 

actual leg position.  

In the 4-legged model, this block includes the equations for the Single-Leg Dynamics, 

described in section 3.3.2. In the 2-legged model, this block includes equations A.5-

A.8 (See Appendix A). There is one block per leg. 

 

Figure 3-10 Single-leg Block Diagram. The abbreviations IK and FK refer to Inverse and Forward 

Kinematics respectively 

3.6.3 Ground Reaction Forces Blocks 

The ground reaction force block implements the equations for the ground contact 

model described in section 3.5 as shown in Figure 3-11. The input to the block is the 
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position vector of the foot which is previously converted to the ground coordinate 

frame. The output of the block is the vector of resultant ground reaction forces. 

In the case of the 4-legged model, there will be 4 blocks (one per leg) with 3 forces 

per foot (in the X, Y, and Z directions). In the case of the 2-legged model, there will be 

2 blocks (one per leg) with 2 forces per foot (in the X, and Y directions). 

 

Figure 3-11 Ground Contact Model Block Diagram and transformations between ground and inertial 

coordinate frames. 

3.6.4 Controller Block 

The controller block includes the control system, which will be introduced in chapter 5. 

The controller block takes the Euler angles and feet pressure as inputs and sends 

position commands to the legs in the form of Cartesian coordinates. 

3.7 Conclusions 

This chapter presented the methodology to obtain the dynamic equations of the 

system. First a planar model of the rotorcraft plus landing gear was obtained using a 

full-body model, and then a three-dimensional model of the system was obtained by 

using two decoupled models of the centroidal dynamics and the single leg dynamics. 

The external forces, consisting in the rotor thrust and ground contact models are also 

modelled. Finally, an explanation of the implementation of the model in 

Matlab/Simulink is presented. 
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4 Prototype Design 

This chapter presents the robotic landing gear design, including the mechanical design 

of the main body, legs and feet, the sensory system, actuators and electrical 

equipment, and the control software. Figure 4-1 shows a top view of the landing gear 

(a) and a view of the system attached to a model helicopter Align T-Rex 500. 

 

Figure 4-1 (a) top view of the landing gear with its main components and (b) view of the landing gear 
attached to the model helicopter on a slope landing. 

4.1 System Overview 

The robotic landing gear consists of four legs with two electrically actuated joints each. 

Its dimensions are designed proportionately to the model helicopter Align T-Rex 500, 

which is used as a platform for testing, and its mechanical structure is built as a 

combination of 3D-printed parts and aluminium frames. An On-board microprocessor 

controls the motion of all joints and uses feedback from force sensors, an inertial 

measurement unit (IMU) and a distance sensor to stabilise the system during landing. 

Table 4.1. shows an overview of the main system specifications. More details and 

justification of the components and parameters is given over chapters 4 and 6. 
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Table 4-1 General System specifications 

Property Value 

Dimensions (fully stretched legs) 505x205x38 mm 

Weight 1050g 

Active DOF 8; 2 per leg 

Actuators 
Dynamixel AX-18 servo 

motors 

Onboard sensors IMU, force, distance 

Onboard controller Robotis OpenCM9.04 

Control frequency 20 Hz 

4.2 Mechanical Design 

The mechanical structure of the system uses some off-the-shelf components and 

some custom-made parts. After a survey of available products in the market, the team 

decided to use the Dynamixel series servo motors and all its product family of 

controllers, brackets and other mechanical and electrical accessories. Compatible 

brackets have been used where possible, but some parts had to be designed and built 

to meet the specific requirements of the project. Figure 4-2 shows the top view of the 

mechanical structure of the system with its legs stretched. It shows the four identical 

legs with two servo motors each, where one servo motor at the hip joint connects the 

main body with the upper leg and another servo motor at the knee joint connects the 

upper and lower leg segments. All legs are attached to the main body through its 

respective hip and are identified as left front (LF), left back (LB), right front (RF) and 

right back (RB) legs respectively. 
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Figure 4-2 CAD drawing of the mechanical structure of the system 

4.2.1 Main Body 

The principal function of the main body is to carry most of the robot components as 

well as providing a rigid support for the legs. It is custom-made through a rapid 

prototyping process, using a CAD software to design the part and a 3D printer to 

manufacture it. The base provides enough space to accommodate the battery, 

microcontroller, IMU, distance sensor, wireless transmitter, power hub and all the 

circuitry. Most of these components are rigidly attached by means of screws. The legs 

are attached to the lateral sides through the aluminium brackets F2 (shown in Figure 

4-5). A lid is mounted on top of the base to protect the electronic components (Figure 

4-3). The landing gear is attached to the helicopter by means of screws on the lid. The 

main body is lightweight, helping to keep the total weight low and strong enough to 

resist impacts and protect the internal components. 
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Figure 4-3 CAD view of the main body including the base and the lid 

4.2.2 Robotic Legs 

The main function of the legs is to keep the helicopter level during landing and take-

off operations, plus they need to fold up during flight. In order to meet this 

requirements, while keeping the design simple, the adopted solution has been the one 

with two joints at the hip and the knee moving in the same plane, providing 2 DOF to 

each leg. 

The upper link servo motor is attached through its moving horn to the bracket F2 

(shown in Figure 4-5), which connects it to the main body. The body of the servo motor 

is assembled to the brackets F1 and F4 to connect it to the lower link servo motor 

horn. The lower link uses a custom-made 3D printed part assembled to the servo 

motor body to accommodate the foot. Both servo motors are part of the leg structure 

(see Figure 4-4). 
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Figure 4-4 CAD drawing of a single leg. 

 

Figure 4-5 BIOLOID AX compatible metal brackets F1 (a), F2 (b) and F4 (c) [60] 

4.2.3 Lower leg and Feet 

The foot is an important part of the robot since it’s where it happens the interaction 

with the ground. It needs to provide good contact with the ground, avoiding slipping 

and accommodate the force sensors to provide feedback to the system. 

The force feedback is crucial for the good operation of the system. It must provide not 

only the status of the leg with the ground (contact or not contact) but also an analog 

value that is proportional to the weight supported by the leg. This way, the controller 
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can give different response depending on the measured force and a minimum force 

threshold can be set to detect ground contact. 

The first solution proposed for the force sensing was to use the internal torque sensing 

feature of the servo motors, but this option was discarded due to the poor reliability of 

the torque signal. As the manufacturer points out in its online manual [61], this 

parameter is not a measured value and should be only used to predict the direction of 

the force applied to the motor. It is also not clear how the parameter is calculated. It 

was noticed that this feedback signal when the motor was in a fixed position, was 

somehow proportional to the torque that the motor was holding. However, when the 

servo is moving, this correlation is lost, and the feedback signal becomes unusable. 

The adopted solution instead was inspired by Lynxmotion, a manufacturer of robot kits 

which provides solutions for hexapod foot contact sensors [62] [63]. The first 

requirement is met by using a rubber cap to cover the metal foot, which provides a 

good grip with the surface.  

For the force sensor, a Force Sensing Resistor (FSR) is used [64]. In a first design, 

the foot was formed by a FSR placed on top a metal tube, and then covered with a 

rubber bumper and a rubber cap as shown in Figure 4-6. The metal tube then was 

attached to a 3D printed lower leg and this assembled to the servo motor. 

 

Figure 4-6 First foot design. 

After initial testing, it was observed that the sensors were too exposed and got 

damaged frequently, needing replacement. Also, the readings of the FSR were 

affected by the way each foot was assembled and the pressure exerted by the rubber 

bumper and cap, which provided inconsistent readings. To solve this problems, the 

lower leg and foot design was improved. In the new version, the FSR is placed on the 
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bottom side of servo motor, more protected. When the foot touches the ground, it acts 

as a plunger, pushing a moving cylinder that slides through the lower leg body and 

presses the sensor. As shown in Figure 4-7, a spring connecting the plunger with the 

cylinder dampens the force transmitted to the sensor. A rubber bumper is placed 

between the cylinder and the force sensor. The tests done with the second design 

have given better results so far. The sensors didn’t suffer any deterioration and the 

readings are more consistent and repeatable. The addition of the spring also provides 

some natural compliance to the legs. 

 

Figure 4-7 CAD drawing (a) and picture (b) of the second foot and lower leg design and spring 
element (c). 

4.3 Actuators 

The Dynamixel servo motors from the company Robotis have been chosen for its good 

performance and extended use among similar research projects, low cost, and 

because they offer a full product family of compatible accessories. The model used in 

this project is the Dynamixel AX-18A, which incorporates in a single package a gear 

reducer, a precision DC motor and a control circuitry with networking functionality. The 

design of the motor is robust and, despite its compact size, it can produce high torques. 

They come with an internal controller that allows for accurate position and speed 

control with a resolution of 10 bits and provides feedback for angular position, angular 

velocity and load torque. It can also measure internal temperature and voltage and 

has an alarm system to prevent damage. 
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Table 4-2 Dynamixel AX-18A general specifications [65] 

Item Specifications 

Baud Rate 7843 bps ~ 1 Mbps 

Resolution 0.29°x1024 (0300°) 

Weight 55.9g 

Dimensions (W x H x D) 32mm x 50mm x 40mm 

Stall Torque 1.8 N*m (at 12V, 2.2A) 

Input Voltage 9.0 ~ 12.0V (Recommended : 11.1V) 

Protocol Type 
Half Duplex Asynchronous Serial Communication 

(8bit, 1stop, No Parity) 

Physical Connection TTL Level Multi Drop Bus 

ID 0 ~ 253 

Feedback 
Angular position, angular velocity, load torque, 

temperature and input voltage 

Material Engineering Plastic 

The physical communication of the servos is a 3-pin TTL connection and a multidrop 

bus, so many devices can be controlled using a single bus. 

 

Figure 4-8 Dynamixel AX series connection [65] 

The servos can be daisy chained, reducing the amount of wiring required and each 

servo connected to one bus need to have a different ID value so the controller can 

select which device is operating. The communication protocol is made through half 

duplex asynchronous serial communication with 8 bit, stop bit and no parity. 

 

Figure 4-9 Multiple Dynamixel network [65] 

AX-series controllers are compatible with Matlab, Labview, VB.NET, C#, Python and 

Java and there are available many libraries and code examples. 
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4.3.1 Dynamixel Control Table 

Dynamixel AX-12/18 smart servos incorporate an internal control circuitry to control its 

operation by writing/reading data via Instruction Packets into specific addresses of the 

control table. The control table is the area of the memory that contains information on 

the status and operation of the servos. As seen in Figure 4-10, data can be stored in 

RAM or EEPROM memory and each memory address or register contains information 

relative to different parameters. 

 

Figure 4-10 Dynamixel control table [65] 

In this section, the most used parameters are explained. 

ID 

Each servo connected to the system has a unique ID number, so the microcontroller 

can send instructions to each servo individually by specifying its ID. The ID number is 
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stored in register 3 and can be in the range of 0 to 252 and, the number 254 is used 

to send an instruction to all the Dynamixels. 

Goal Position and Present Position 

This register is used to command the servo to move to a specified angular position. 

The goal position can be in the range of 0 to 1023 and it’s a 2-byte register, being 511 

the central position at 150°, and 0 and 1023, the minimum and maximum limits at 0° 

and 300° respectively. The area from 300° to 360° is a dead zone when the servo is 

in joint mode. The present position register is used to read the current angular position 

of the servo. 

 

Figure 4-11 Servo angular positions [65] 

Clockwise/Counter-clockwise (CW/CCW) Angle limit 

This registers are used to limit the operating angle range of the servo, so the goal 

position always needs to be within the range between the clockwise angle limit and 

counter-clockwise angle limit.  

Moving speed and present speed 

The moving speed register sets the angular velocity at which the actuator is moving to 

its goal position. The velocity range goes from 0 to 1023, being 1 the minimum speed 

and 1023 being 114 rpm. When set to 0, the velocity is the largest possible without 

applying any velocity control. The present speed register is used to read the current 

angular velocity of the servo. 

 

Present load 

It represents the magnitude of the load applied to the Dynamixel actuator. It’s a 10-bit 

value and its range is from 0 to 2047, being the values between 0-1023 loads applied 
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in the CCW direction and 1024-2047 loads applied in the CW direction. Thus, the 10th 

bit of the register represents the sign and the value 1024 represents a load of value 0. 

 

Figure 4-12 Load register binary representation [65] 

According to the manufacturer, the load value is an estimation, not a direct torque 

measurement. For this reason, it cannot be used to measure weight or torque, but only 

to detect in which direction the force works. 

Compliance  

The compliance defines the flexibility of the motor and how the output shaft absorbs 

shocks. Figure 4-13 shows the relationship between output torque and servo position. 

 

Figure 4-13 Dynamixel compliance setting [65] 

The compliance margin is the error allowed between the present position and the goal 

position before the motor starts applying torque. The slope defines the rate of increase 

of torque as the present position moves away from the goal position. The punch is the 

minimum current supplied to the motor during operation.  

Torque enable 

This register enables/disables the generation of torque. When set to 0, the power to 

the motor is interrupted. 

4.4 Range of Motion and Safety Considerations 

The range of motion of all joints has to be defined to be large enough to fulfil the design 

requirements of the system but also the motion has to be limited for safety 

considerations. The main task of the robotic landing gear is to adapt the position of the 

legs to the geometry of the ground to allow the system to land on uneven terrains 
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maintaining the attitude of the main body in a level position and ensuring a firm ground 

contact for all four legs. For this purpose, the motion of each leg is coordinated to 

move the feet up and down only, while maintaining the horizontal hip-foot distance 

constant, because any lateral motion by the feet could tip the helicopter. 

For a given leg configuration, the horizontal distance between the right and left feet 

will define the maximum distance that the legs can extend/retract vertically and 

therefore, the maximum slope that the system can land on. Increasing this lateral 

distance, increases the resistance of the system against lateral tilting, giving more 

stability, but reduces the maximum landing slope, and vice versa. Figure 4-14 shows 

the system with the right leg in the initial landing position. The upper leg link is in 

horizontal position to maximise the distance between the right and left feet, to give 

more lateral stability. The lower link is in vertical position to provide a good foot-ground 

interaction. 

 

Figure 4-14 Legs in landing position (right) and fully retracted and fully extended positions (left). 

The left leg shows the completely extended and completely retracted positions. If the 

horizontal hip-foot distance is kept constant at 93.5 mm and the total length of the leg 

is L = 93.5 +100 = 193.5 mm, then maximum vertical hip-foot distance can be 

calculated applying trigonometry: 

𝑧𝑚𝑎𝑥 = √𝐿2 − 𝑦2 = √193.52 − 93.52 = 169.4 𝑚𝑚 (4.1) 
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For safety reasons, the minimum vertical hip-foot distance is limited to 30 mm to avoid 

that the main body could hit the ground. Therefore the difference between a fully 

retracted leg and a fully extended one gives an available foot stroke of 139.4 mm. 

Thus the maximum landing slope will be: 

𝛼 = tan−1 (
𝑧

𝑦
) = tan−1 (

139.4

304
) = 24.6° (4.2) 

Figure 4-15 shows the landing gear with the left leg in fully retracted position and the 

right leg fully extended. Another factor to consider when landing on a big slope is the 

risk of the rotor hitting the ground on the upslope side. 

 

Figure 4-15 Fully extended/retracted leg angles and maximum landing slope. 

To avoid damage due to collisions between different moving parts of the robotic 

landing gear and the helicopter, the movement of the servo motors is restricted to the 

area between the fully retracted and fully extended leg positions. 

Figure 4-16 and Table 4-3 summarise the range of motion of all the servo motors. The 

motion on the back legs is equal to the front legs. 
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Figure 4-16 Joint servos motion range. 

Table 4-3 Joint angle limits in degrees and equivalent 10-bit value for the CW/CCW angle limit 
registers in the AX-18 control table. 

Servo 
Lower Limit 

(°) 
Lower Limit 

(AX-18 register) 
Higher Limit 

(°) 
Higher Limit 

(AX-18 register) 

LH 29 611 135 973 

LK -119 106 0 512 

RH -135 51 -29 413 

RK 0 512 119 918 

4.5 Sensors 

4.5.1 Inertial Measurement Unit 

The motion sensor MPU-9150 combines a 3-axis accelerometer, a 3-axis gyroscope 

and a 3-axis magnetometer in a single package. It contains 16-bits analog to digital 

conversion hardware for each channel and captures the x, y and z channels at the 

same time. The sensor uses the I2C-bus to interface with the controller [66]. 

 
Figure 4-17 MPU 9150 Gyro + Accelerometer + Magnetometer [66] 
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The IMU is used to obtain the attitude of the main body. According to [67], the roll (𝜃) 

and pitch (𝜑) angles can be obtained from an accelerometer using the following 

expressions. 

𝜃 = 𝑎𝑡𝑎𝑛2(𝑎𝑦, 𝑎𝑧) (4.3) 

𝜑 = 𝑎𝑡𝑎𝑛2(−𝑎𝑥, 𝑎𝑦
2 + 𝑎𝑧

2) (4.4) 

assuming that the axis of the IMU unit match the system’s axes convention. ax, ay and 

az are the readings of the accelerometer in the x, y and z directions. 

The gyroscope provides the rate of rotation of the main body and is given by: 

�̇�(°/𝑠) =
𝑔

131
 (4.5) 

where g is the signal from the gyroscope in a given axis. The raw signal is divided by 

131, as the accuracy of the gyroscope is of 131 steps per 1 °/s.  

The gyroscope signal provides accurate results in the short period but it drifts in the 

long term producing an error. By contrast, the accelerometer is noisy and imprecise in 

the short term but provides a stable signal over a long period. For this reason, a filter 

needs to be used. 

Initially, a complementary filter was designed to combine the readings from both 

sensors, but the final versions of the prototype use a Kalman filter as it provided better 

results during the tests. 

The algorithm of the Kalman filter provides an efficient way to calculate the estimate 

of the state of a system based upon measurements and predictions based on the 

statistical noise from the measurement and the process. The Kalman filter is widely 

used in many research fields and applications. For an introduction and full derivation 

of the equations of the filter refer to [68]. 

For this project, the Kalman filter Arduino library described in [69] has been used. 

4.5.2 Distance Sensor 

The VL53L0X is a Time of Flight distance sensor that uses a small laser source and 

measures how long the light has taken to bounce back to the sensor. It can handle 
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about 50 - 1200 mm of range distance. The input voltage of the breakout board is 3-

5V and communication is done over I2C [70]. 

The distance sensor is used in the project to detect when the aircraft is approaching 

to land and to start the landing operation. It is attached at the bottom side of the main 

body, pointing to the ground, and the distance measured determines if the legs 

fold/unfold switching between flight and landing modes. A low-pass filter is used to 

smooth the signal: 

𝑦𝑖 = 𝜆𝑥𝑖 + (1 − 𝜆)𝑦𝑖−1 (4.6) 

where yi is the filter output, xi is the sensor measurement, yi-1 is the previous filter 

output and λ is the filter gain. 

4.5.3 Force Sensor 

The force sensors are used to measure the force applied to each foot and to detect 

when a foot makes ground contact. The sensors used are the Interlink Electronics 

Force Sensing Resistors (FSR) 400 and they are placed one at each leg. These 

sensors contain a polymer film that exhibits a decrease in resistance with any increase 

in the force applied to the surface of the sensor [64]. Sensing range of the sensor is 

~0.2N – 20N and have a diameter of 5mm. 

To measure the output of the sensor, this is tied to a pull-down 10k resistor to form 

a voltage divider. The pin between the FSR and the fixed resistor is connected to an 

analog pin of the controller board. As with the distance sensor, a low-pass filter is used 

to smooth the signal. 

4.5.4 Angular position 

As discussed in section 4.3, the actuators provide angular position feedback with a 

10-bit resolution, that is, with a range from 0 to 1023. The mapping from the present 

position register output to the angular position in degrees was shown in Figure 4-11. 

The following function is used to map the present position register output into the 

angular position in radians with a range of  2.618 rad, being 0 rad the servo centred 

position. 

𝐴𝑛𝑔𝑙𝑒 (𝑟𝑎𝑑) = (𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑖𝑛𝑡) − 512) ∙
150°

512 𝑢𝑛𝑖𝑡𝑠
 ∙  

𝜋

180°
 (4.7) 
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4.6 Control System 

4.6.1 On-board Controller 

The on-board controller is the OpenCM9.04 A-type, an open-source microcontroller 

from ROBOTIS, compatible with the Dynamixel 3-pin TTL communication protocol 

which incorporates 3 serial ports, analog and digital pins, I2C and SPI protocols. The 

board can be programmed using the Arduino Integrated Development Environment 

(IDE). cations of the microcontroller. 

Table 4-4 summarises the most relevant specifications of the microcontroller. 

Table 4-4 OpenCM9.04C Specifications [61]. 

Item Description 

CPU STM32F103CB (ARM Cortex-M3) 

Operating Voltage 5V~16V 

I/O GPIO x 26 

Analog Input 10 (12 bit) 

Clock 72MHz 

USART 3 

SPI 2 

I2C 2 

TTL Bus 3-pin 4 

 

4.6.2 System Architecture 

Figure 4-18 shows the connections map of the system. The IMU and distance sensor 

are connected to the OpenCM9.04 through the pins D24 and D25 using one of the I2C 

channels. The FSRs are connected using 4 analog inputs. All sensors are connected 

to the 5V power supply. The microcontroller can transmit data to a PC by using a USB 

cable or through a wireless transmitter connected to one of the serial ports. The TTL 

ports are used to connect the Dynamixel AX-18 motors and to provide power to the 

board. When connected to the PC, the USB port can power the controller and the 

sensors but needs additional power for the motors. The board is connected to a power 

hub using one of the TTL ports and this is connected to a 12V DC power source using 

an adapter or an on-board Li-Po battery. 
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Figure 4-18 Control system Architecture. 

With this setup, the code developed to control the system can run at a maximum 

frequency of 20 Hz, or a 50 milliseconds cycle time. 

4.6.3 Software 

The Arduino IDE is used to write and upload code to the controller, and to interface 

with the motors and sensors. One of the main advantages of using Arduino is the 

existence of a vast collection of libraries that allow users to quickly implement 

hardware solutions. Libraries are useful because they can perform tedious tasks at 

instruction packet level compiling and sending physical bytes of data, and the 

programmer can focus on the high level programming tasks which makes 

programming easier and more intuitive [71].  

Manufacturers usually provide code libraries to interface with their hardware. Libraries 

used in this project to control sensors and motors include: 

 Dynamixel Workbench. This is a library developed by Robotis to control any 

type of Dynamixel servo motors [72]. 
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 I2C Devace Library (i2cdevlib). It’s a collection of uniform and well-documented 

classes to provide simple and intuitive interfaces to I2C devices including the 

MPU-9150 IMU [73]. 

 VL53L0X. It’s a library developed by Adafruit Industries to control the Adafruit 

VL53L0X time-of-flight sensor [74]. 

 Kalman Filter. This is a library to implement a Kalman filter in most 

microcontrollers [69]. 

4.7 Conclusions 

This chapter presented the mechanical and electrical design of the robotic landing 

gear. First an overview and general specifications of the system are described, and 

then the mechanical structure of the system is described in detail, including the leg 

and foot design and the functional and safety considerations to define the joints range 

of motion. Next, the actuators and sensors used are described, followed by the on-

board controller, control architecture and control software. Detailed description and 

specifications of every component are included.  
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5 Control System 

This chapter presents the control system for the robotic landing gear. The goal of the 

control system is to adapt the position of the legs to the geometry of the ground to 

allow the system to land on uneven terrains. This includes maintaining the attitude of 

the main body in a stable horizontal position and ensure that all four legs are in firm 

contact with the ground. The control hierarchy of the system can be divided into two 

levels: a High-level controller which uses combined foot pressure and body attitude 

information to provide position commands to each joint, and a Low-level controller 

which is in charge of converting these position commands into torque commands for 

the joint motors. For the high-level controller, a controller is designed using a PD 

feedback law.  

5.1 Control System Overview 

Figure 5-1 summarises the overall landing gear control scheme for one leg, where the 

High-level controller computes the Cartesian trajectory for each foot, The Inverse 

Kinematics produce the angle trajectories for the hip and knee joints and the Low-

Level controller computes the torque commands. In this block diagram, i stands for the 

leg number (i=1, 2, 3, 4) and j defines if the joint is either the hip or knee. The position 

vector rhf represents the hip-foot distance for feet i, while qj and qd j represent the 

current and desired values for each joint position respectively. The main body pitch 

and roll angles are represented by 𝜑 and 𝜃. fi represent the vector of contact forces at 

foot i, and 𝜏j are the joint torques. 

 
Figure 5-1 Control block-diagram 
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The blocks Single-Leg model, Leg Forward and Inverse Kinematics (FK/IK), Ground 

Contact Model and Centroidal Dynamics have already been explained in chapter 3, 

while this chapter will focus on the high and low level controllers. 

5.2 Low-Level controller 

The goal of the low level controller is to compute the joint torques needed to move the 

feet to the desired position. The desired trajectory of the feet is provided by the high 

level controller and the leg inverse kinematics model. 

In section 2.5 most common types of joint controllers were reviewed and were broadly 

classified between model-based and non-model-based techniques. Developments in 

hardware, sensor and actuator technology has led to the development of torque 

controllable robots. For example, in the case of walking robots and legged locomotion 

research, where several prototypes have been developed using model-based 

techniques like computed-torque control. Some examples are the HyQ [75], StarlEHT 

[76] and NUDT [77] robots, which use joint controllers based on inverse dynamics 

control, or RoboCat-1 [26] that uses friction and gravity compensation.  

However, there are several limitations to the implementation of model-based 

controllers. The first one, is the availability of the torque-control capability of the 

actuators. Most low-cost servo motors don’t have this feature and can only be used in 

position-control mode. Another added limitation is the difficulty of estimating precisely 

model parameters like the body inertias, and the expense of the computer power 

needed to compute the complicated inverse dynamics control equations. All this 

reasons make that in applications where a precise trajectory-following is not required, 

model-based approaches are not used, and classical controllers are preferred as they 

are easier to implement in hardware robots. An example of a low-cost quadruped robot 

that uses a position-control system can be found in [29]. 

 In the case of the servo motors used in our physical prototype, the torque control 

capability is not available, and the motors incorporate their own internal joint 

controllers which are controlled by means of position setpoints. For the purpose of 

software simulations, only conventional joint controllers like PD and PID will be used 

for their simplicity and because of the limited range of motion of the legs doesn’t 

require precise trajectory following. 
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5.3 PD High-Level controller 

The control system of the robotic landing gear must fulfil the following requirements: 

- The system has to keep the legs in a retracted position during flight to reduce 

air drag, and be able to detect approach to ground and move the legs to landing 

position. 

- The controller has to be activated when the landing operation starts and has to 

keep the helicopter body in a level position during the whole operation. 

- To conclude the landing operation, the helicopter body has to be level and all 

legs have to be in contact with the ground. 

- Once the landing operation is concluded, the legs are locked in its current 

position at that moment.  

For the first requirement, the system uses a time-of-flight sensor to detect the distance 

to the ground. For the second and third requirements, foot force sensors (FSR) and 

an IMU are used. Encoders in the servo motors are used to obtain the servo motors 

positions. 

The design of the controller has to meet these requirements with the available sensing, 

with the additional constraints that it cannot depend on the torque control capability of 

the servo motors and it should not be computationally heavy in order to be 

implemented in our prototype and send position commands to the joint controllers. 

The proposed solution here is a whole-body posture controller with the body velocities 

as controller outputs. Just as an example, Figure 5-2 shows a 2D representation of 

the landing gear system landed in a tilted position. In order to produce a rolling moment 

that moves the main body to a level position, a pair of hip velocities can be generated 

by producing the opposite velocity at the respective foot relative to the ground. This 

velocity vector will be parallel to the z-axis of the body-fixed frame, its direction will 

depend on the direction of the body rotation, and its magnitude will be a function of 

the body attitude and feet pressure feedback. Hence, the foot velocity in the y-axis will 

be zero. 
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Figure 5-2 Posture control system. If the body is tilted to the right side, a positive velocity in the right 
hip in the direction of the z-axis, and negative in the left hip will produce a posture correction motion. 

This is done by pushing each foot against the ground with the opposite of its hip velocity. 

The feet pressure and body attitude controllers will be two separate modules of the 

high-level controller that work independently and even in the absence of the other. The 

controller is activated whenever any leg touches the ground during landing. 

The force controller computes the component of the foot velocity due to the foot 

pressure feedback, �̇�ℎ𝑓𝐹
. When the controller is activated, if a leg is in contact with the 

ground (𝑓𝑧 > 0), it will retract following a PD control law. Otherwise, if the leg is not in 

contact, it will extend at a fixed rate. Once all four legs are in contact with the ground, 

the force control is switched off. 

�̇�ℎ𝑓𝐹
{
𝑒𝐹𝑖

∙ 𝑘𝑃𝐹
+ �̇�𝐹𝑖

∙ 𝑘𝐷𝐹
             𝑖𝑓 𝑓𝑧𝑖

> 0

−𝑘𝑒𝑥𝑡                                      𝑖𝑓 𝑓𝑧𝑖
≤ 0

 (5.1) 

where the force error is the difference between the desired and measured force in the 

z direction 𝑒𝐹 = 𝑓𝑧𝑑
− 𝑓𝑧𝑖

, and 𝑘𝑃𝐹
 and 𝑘𝐷𝐹

 are the proportional and derivative gains. 

𝑘𝑒𝑥𝑡 is a fixed rate of extension. 

Figure 5-3 shows a graphical representation of the force controller. 

 
Figure 5-3 Force controller. In (a), the left leg retracts because the left foot is in ground contact, while 
the right extends until it touches the ground (b). At this moment, the force controller is switched off. 
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According to equation 5.1, if a leg in ground contact retracts too fast, it can lose contact 

momentarily and would start to extend until it makes ground contact again. When 

implementing the force controller, this situation where a leg switches continuously 

between extension and retraction has to be avoided as it would lead to abrupt changes 

in the ground reaction force introducing disturbances into the helicopter body 

orientation. For this reason, once a leg touches the ground for first time, this 

information is stored, and this leg is only allowed to retract if the controller output is 

positive, or to stop moving if it loses contact and the controller output becomes 

negative, but not to extend. If the landing operation is interrupted and the landing gear 

goes above a certain height, the state of each leg is restarted. 

The attitude controller is activated at the same time that the force controller and 

coordinates the motion of all four legs as a function of the roll and pitch angles of the 

main body. The component of the foot velocity due to the roll, �̇�ℎ𝑓𝜃
, and pitch, �̇�ℎ𝑓𝜑, it’s 

also computed using a PD control law. 

[
�̇�ℎ𝑓𝜃

�̇�ℎ𝑓𝜑
] = [

𝑘𝑃𝜃
𝑒𝜃 + 𝑘𝐷𝜃

�̇�𝜃

𝑘𝑃𝜑
𝑒𝜑 + 𝑘𝐷𝜑

�̇�𝜑
] (5.2) 

where 𝑒,  𝑘𝑃 and 𝑘𝐷 are the angle error in degrees, and proportional and derivative 

gains respectively for the roll and pitch controller. 

The output of the roll controller is added to the legs at one side of the x-axis of the 

main body and subtracted to the others depending on the sign of the roll angle to 

generate a rolling motion around the x-axis (Figure 5-4(a)). In a similar way, the output 

of the pitch controller is added to the legs on one side of the y-axis and subtracted to 

the others (Figure 5-4(b)). 

 

Figure 5-4 Attitude controller around the x-axis (a) and y-axis (b) 
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 The total rate of extension/retraction of each leg is calculated as the sum of the three 

controllers and then integrated to obtain the total adjustment of each leg. 

∆𝑧ℎ𝑓 = ∫(�̇�ℎ𝑓𝐹
± �̇�ℎ𝑓𝜃

± �̇�ℎ𝑓𝜑) (5.3) 

The desired hip-foot Cartesian coordinates are given by the equation 3.50, then the 

joint angles for the 8 motors are obtained using the inverse kinematics equations and 

the position commands are sent to the joint controllers as explained in section 3.4. 

Kinematic constraints are introduced to limit the maximum leg extension and 

retraction. 

Overall, the landing process has two stages. A first one starting at the moment that a 

ground contact is detected, where force and attitude controllers are activated, and a 

second stage, starting when all legs have already made ground contact. At this 

moment, the force controller is switched off and the attitude controller alone corrects 

the remaining tilt of the helicopter body.  The implementation of the control system in 

the hardware prototype is presented in chapter 6. Equation 5.8 represents the 

controller function in stage 1. In stage 2, the function will be the same but without the 

force controller term: 

∆𝑧ℎ𝑓 = ∫(±�̇�ℎ𝑓𝜃
± �̇�ℎ𝑓𝜑) (5.4) 

The force controller guarantees that all four legs stay in contact with the ground while 

the attitude controller forces the roll and pitch angles to converge to zero. The 

combination of both reduces the time from the moment that the first leg touches the 

ground until the landing finishes with all four legs landed and the main body in a level 

position improving stability of the system during the landing process and the overall 

performance of the controller. 

5.4 Software Simulations with the 2-legged model 

The Dynamic model and the control system of the landing gear are implemented in 

the software environment Matlab/Simulink for testing and for controller parameters 

tuning. The purpose of the simulations is twofold. In one hand it is used to validate the 

dynamic models and assess if they behave in a coherent way. On the other hand, they 

serve as a measure of the performance of the control system. As described in chapter 

3, two different models were developed: a two-legged and a four-legged version. A 
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thrust model was also developed to control the descending speed during landing, and 

different types of terrain to simulate different ground reaction forces during landing.  

In this Section, the 2-legged model is tested in two simulations on flat terrain and in a 

terrain with a step. This model is a planar model and therefore it can only move in the 

planar space (two directions in the YZ plane and one rotation about the X axis). 

5.4.1 Landing simulation on flat terrain 

In the first simulation, the two-legged model is used in a landing simulation on even 

terrain. In this experiment the high-level controller is not activated and the system is 

tested using different sets of parameters for the low-level controllers. The physical 

parameters, summarised in Table 5-1, like the mass of the system or the length of 

each link are set to match as close as possible those of the system prototype described 

in chapter 4, so the results of the simulations can be comparable with the results of 

the laboratory test. 

Spring and damper coefficients for the normal ground force model are 1500 kg/s2 and 

40 kg/s respectively. 

Table 5-1 Principal simulation parameters. 

Parameter Value 

Upper leg mass 0.1 kg 

Lower leg mass 0.15 kg 

Upper leg length 0.0935 m 

Lower leg length 0.1045 m 

Total mass (Landing gear + 
Helicopter) 

3 kg 

Motor max torque 18 kfg.cm / 1.76 Nm 

Main body dimensions 0.1x0.2 m 

During a typical landing manoeuvre, as the helicopter approaches the surface the 

skids should be level, with no forward movement and with the descent rate 

approaching to zero [1]. The landing descent rate in this simulation is set at -0.1 m/s. 

The low-level PID controllers are tuned manually by trial and error to obtain the desired 

performance. Different sets of parameters are used to see the correlation between the 

PID constants in the joint controllers and the behaviour of the system. For this test a 

more compliant PID (PID1) with lower gains is compared with one with higher gains 

(PID2) as shown in Table 5-2.  



CHAPTER 5. Control System 

83 
 

Table 5-2 Different controller’s settings 

Controller Gain PID1 PID2 

KP 5 50 

KI 7 30 

KD 0.4 4.5 

Figure 5-5 shows how the helicopter starts the descent from 0.5 m (bottom left) and 

the thrust controller stabilises the descent rate at -0.1 m/s (top). Touchdown occurs at 

3.1 s, with the position of the CoM at 0.2 m above the ground. The roll angle of the 

main body and the lateral displacement of the CoM are zero (bottom right side). The 

thrust force (second row) simulates the pilot reducing the lift force gradually after 

touchdown to provide a smooth settling down of the aircraft. The velocity graph shows 

how the system with the compliant joint controllers (PID1) settles down in a smoother 

way while the one with higher values (PID2) leads to more oscillations. 

 

Figure 5-5 Landing velocity (top), thrust force (second row), z-CoM position (left side), main body roll 
angle (top right side) and y-CoM position (bottom right side).  
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The ground reaction forces and joint torques produced during landing are shown in 

Figure 5-6. The ground reaction forces (top row), increase gradually after touchdown 

as the weight of the helicopter is transferred to the ground, and the same occurs with 

the hip torques (middle row) and knee torques (bottom row). It can be seen that with 

the PID1 settings this load transfer is smoother while the PID2 settings produce more 

fluctuations, even leading to the feet losing ground contact momentarily after 

touchdown (ground reaction force going back to zero). Joint torques are at every 

moment below the maximum motor torques (1.76 Nm) and with a large safety margin. 

 

Figure 5-6 Ground reaction forces (top row) on the left/right foot, hip torques (middle row) and knee 
torques (bottom row) on the left/right leg during landing. 

Finally, Figure 5-7 shows the joint angle deflections during landing. The previous 

figures show how the PID1 settings absorb the impact energy with the deflection of all 

four joints, while with the PID2 settings the joints are stiffer, transferring more of the 
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impact force to the helicopter body in the form of fluctuations in the settling velocity 

graph (Figure 5-5).  

 

Figure 5-7 Joint angle deflection during landing in all four joints: left hip, right hip, left knee and right 
knee. 

The transient oscillations in the impact forces and joint torques increase when the 

simulations are done with a higher landing velocity and the impact forces are better 

absorbed with the compliant joints. Figure 5-8 shows a graphical representation of the 

joints deflection during the landing process.  

 

Figure 5-8 Snapshots of system configuration at the moment of touchdown (left), maximum deflection 
(middle) and final position (right) with compliant joint controllers. Red line shows CoM height at each 

moment. 

As shown in this section, the compliant PID will respond to the disturbance created by 

the impact force by deflecting the joints angles from its target position, while the rigid 
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PID will allow less joint deflection. As a consequence, the compliant PID will absorb 

better this impact force, transmitting less forces and moments to the main body. 

The task of the controller is not to achieve an accurate trajectory tracking for each 

individual joint, but rather to maintain the body attitude at a levelled position. For this 

purpose, the compliant behaviour is preferable as the system settles down with fewer 

oscillations.  

5.4.2 Landing simulation on uneven terrain 

In this simulation, the two-legged model is used to land on uneven terrain. For this 

test, a step of variable height is introduced in the ground similar to that in Figure 5-2. 

The high-level controller is activated to try to keep the helicopter body in a level 

position during the landing operation. Because of the planar nature of the model, the 

main body can only rotate in the roll direction, thus the level controller acts only in the 

roll angle while the pitch angle is constrained to be zero. 

The controllers’ parameters for the High-level attitude and force controllers are tuned 

manually starting with small values and increasing them until the desired response is 

achieved producing smooth leg motion without oscillations on the helicopter body. The 

controllers’ parameters are indicated in the Table 5-3 below: 

Table 5-3 High and Low level controller’s settings. 

Controller Gain 
Joint 

Controllers 

High-Level 
Attitude Control 

(Roll) 

High-Level 
Force Control 

KP 5 0.05 0.15 

KI 7 -- -- 

KD 0.4 0.0001 0.001 

 

The step height is set at 8, 11 and 14 cm, which would be the equivalent of a slope of 

15°, 20° and 25° respectively. The rest of the parameters are the same as in the 

previous test. 

Figure 5-9 shows a similar behaviour to the flat landing test in terms of descending 

rate and thrust force. Due to the step, the right foot will make ground contact first. This 

will make the robot to tend to tilt sideways and the force and attitude controllers to act 

trying to correct the position of the main body. The peak inclination of the helicopter 
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body is maintained within 1.5-2° for all scenarios and there’s a final lateral CoM 

displacement after landing of 2 cm in the worst case. 

 

Figure 5-9 Landing velocity (top), thrust force (second row), z-CoM position (bottom left side), main 
body roll angle (top right side) and y-CoM position (bottom right side).  

Ground reaction forces (Figure 5-10, top row) show how the right foot makes ground 

contact first with a small impact force as this leg starts retracting. The left side makes 

ground contact later with a higher impact force as this leg has already started to extend 

and the foot velocity at touchdown is higher. The joint torques (Figure 5-10, middle 

and bottom rows) present small fluctuations at the moments where the legs start/stop 

moving and when ground contact is made. After touchdown the weight of the 

helicopter is transferred to the joints gradually and the loading is distributed equally in 

both legs. 
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Figure 5-10 Ground reaction forces (top row) on the left/right foot, hip torques (middle row) and knee 
torques (bottom row) on the left/right leg during landing. 

Figure 5-11 shows the legs’ motion during landing. Both legs start in the same position 

but after the first leg touches the ground, the right leg starts to compress and the left 

leg extends until it touches the ground. In the case of the 11 and 14 cm step, the left 

leg reaches the maximum extension before it touches the ground. From this point, it 

doesn’t extend anymore, and the rest of the step is overcome with the retraction of the 

right leg alone. 
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Figure 5-11 Vertical hip-foot distance at the left and right legs (top row). Joint angle deflection during 
landing in all four joints: Left Hip, Right Hip, Left Knee and Right Knee (middle and bottom rows). 

5.5 Software Simulations with 4-legged model 

In this Section, the simulations are done with the 4-legged model in two landing 

scenarios, a slopped terrain and an irregular terrain with surfaces at different levels. 

In contrast with the 2-legged model, the 4-legged one is a spatial model so the position 

of its CoM can move in three Cartesian directions (X-Y-Z) and can rotate in the 3-Euler 

angle direction (Roll-Pitch-Yaw). 

When performing slope landings the pilot usually orients the helicopter across the 

slope rather than with the slope, as facing the helicopter uphill or downhill could result 

in the tail or the rotor hitting the ground [1]. Figure 5-12 (left) shows the first landing 

scenario where the helicopter lands on a 20° slope and has an offset of 10° with the 

direction of the slope. Figure 5-12 (right) shows a landing scenario with an irregular 

terrain with surfaces at different levels with a maximum step height of 0.12 m. 
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Figure 5-12 Ground model for slope landing simulation (left) and multi-level surface (right) 

5.5.1 Landing simulation on a slopped surface 

In this simulation the helicopter lands on the ground surface showed in Figure 5-12 

(left). Because of the misalignment across the slope, the helicopter body will naturally 

tilt in the roll and pitch directions and the level controller will tend to level the body and 

keep both angles at zero. 

The legs and actuators properties are the same that in the previous simulations. The 

main body dimensions are 0.2x0.1x0.2m and the total mass of the system is 3.5 kg. 

Because the mass supported by each leg is smaller than in the 2-legged case, the 

ground force coefficients will also be smaller. The spring and damper normal ground 

force coefficients are set to 900 kg/s2 and 25 kg/s respectively. 

The controllers’ parameters for the joint controllers and high-level attitude and force 

controllers are indicated in the Table 5-4 below: 

Table 5-4 High and Low level controller’s settings. 

Controller 
Gain 

Joint 
Controllers 

High-Level 
Attitude Control 

(Roll) 

High-Level 
Attitude Control 

(Pitch) 

High-Level 
Force Control 

KP 10 0.03 0.03 0.15 

KI 14 -- -- -- 

KD 0.4 0.006 0.006 0.002 
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Figure 5-13 CoM angular and linear displacement for slope landing with robotic landing gear.  

Figure 5-13 shows the linear and angular displacement of the main body CoM during 

the landing operation. The z-coordinate shows how the system descends from a 

starting point of 0.5m at -0.1m/s and finishes with its CoM around 0.2m above the 

ground. The system tilts 2° around the roll axis at the moment of touchdown while the 

pitch angle is kept below 1°. Both angles recover the horizontal position quickly. The 

system turns around 1° in the yaw direction during the landing operation. There is a 

small lateral displacement of 5cm and 1cm in the X and Y directions due to the 

compliance of the joints and because the friction force model allows for a small amount 

of sliding downslope. 
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Figure 5-14 Left side from top to bottom: legs hip-foot z-distance, hip angles and knee angles. Right 
side from top to bottom: normal ground reaction forces, hip torques and knee torques. The 

nomenclature for the legs is Left Front (LF), Left Back (LB), Right Front (RF) and Right Back (RB). 

Figure 5-14 shows the adjustment of the hip-foot distance of each leg and the motion 

of the joint angles at the hips and knees (left side, top to bottom). On the right side, it 

shows the ground reaction forces, hip torques and knee torques. All legs start in the 

same position, but when the right back (RB) touches the ground first, this one starts 

to retract while all the others extend. Right front leg (RF) touches shortly after, stops 

extending and begins retracting. Both left legs touch ground a bit later almost at the 

same time and at this point the force controller is switched off and the attitude controller 

corrects the remaining tilt. After a short transient all joints reach its final position. The 

forces and torques plots show small perturbations when the legs start/stop moving 

and when they touch the ground, and also how the weight of the helicopter is 

transmitted progressively to the joints as the rotor stops creating lift. It can also be 
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seen how the diagonal legs RF-LB support more weight than the other two, but in all 

cases the weight supported by each leg is smaller than with the 2-legged landing gear. 

5.5.2 Landing simulation on irregular terrain at different levels 

In this simulation the helicopter lands on the multi-level surface showed in Figure 5-2 

(right) where the steps between the surfaces below each leg will make the helicopter 

body to tilt in both the pitch and roll directions. In this simulation, the system is tested 

at a higher descending rate (-0.5m/s) to see how this would affect to the performance 

of the controllers. 

 

Figure 5-15 CoM angular and linear displacement.  

Figure 5-15 shows how maximum inclination of the helicopter body is kept at similar 

levels than in previous simulations but the transient response is shorter as the time 

between the touchdown of the first and last leg decreases. 
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Figure 5-16 Left side from top to bottom: legs hip-foot z-distance, hip angles and knee angles. Right 
side from top to bottom: normal ground reaction forces, hip torques and knee torques.  

A similar pattern can be observed in the forces and torques (Figure 5-16) where the 

transient response is shorter, although the first impact force peaks are higher as the 

descending velocity is higher. 

5.6 SMC landing gear control 

In addition to the control scheme presented in the previous sections, an alternative 

controller using Sliding Mode Control technique has been proposed to compare the 

system performance. In this section the High-level attitude controller is replaced with 

a number of sliding mode control (SMC) algorithms. Simulations are done in similar 

environments and terrains as in the previous scenarios. 

The implementation of the SMC in our system is done by replacing the PD attitude 

controller by one of the algorithms presented in Section 2.6. Two algorithms are tested, 
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one with conventional SMC with boundary layer, and the HOSM Super-Twisting 

controller. 

Because the goal of the controller is to keep the roll and pitch angles at zero, the 

switching function, s, is selected to be the difference between the measured angle and 

the desired one for the roll, θ , and for the pitch, φ. 

𝑠𝜃 = �̃� = 𝜃𝑑 − 𝜃 (5.5) 

𝑠𝜑 = �̃� = 𝜑𝑑 − 𝜑 (5.6) 

where θd and φd are the desired angle values. 

The output of the attitude controller generates a pair of hip velocities, and therefore it 

regulates the rate of change of the angular position of the helicopter body 

𝑢𝜃 = 𝑓(�̇�) (5.7) 

𝑢𝜑 = 𝑓(�̇�) (5.8) 

Hence, the system is relative degree one since the control input appears in the first 

derivative of s. Moreover, this controller doesn’t require to calculate the time derivative 

of s or to measure the rate of change of the error. 

5.7 Slope landing simulation with boundary layer SMC 

In this section, a SMC is applied into our control system, by modifying the high-level 

attitude controller, and replacing the PD algorithm with a SMC algorithm with boundary 

layer control. This controller is implemented in the 4-legged dynamic model and is 

tested in the same scenario as in section 5.5.1., simulating a landing at a 20° slope 

with a deviation of 10° with respect to the direction of the slope to compare the results. 

The SMC is not implemented into the force controller as it only acts during the short 

time between the first and the last leg touching the ground. 

The control signal of the boundary layer controller is given by: 

𝑢 = 𝐾𝐷𝑠𝑎𝑡(𝑠, 𝛿) (5.9) 

where KD is the controller gain and the function 𝑠𝑎𝑡(𝑠, 𝛿) is given by the equation 2.31. 

The parameters of the controller are tuned manually by trial and error. In boundary 

layer Sliding Mode, the parameter selection is rather intuitive. The controller gain 

represents the maximum absolute value of the leg velocity due to the attitude controller 
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and it’s selected at KD=0.06 m/s, while the boundary layer thickness is selected to 

keep the sliding variable within δ=0.08 rad. These parameters are tuned manually.  

Figure 5-17 shows the control signal u, of the boundary layer controller for different 

values of the sliding surface, s (Similar to Figure 2-16(c)). It can be seen how the 

output of the controller is equal to the maximum output value for large values of s, and 

it decreases linearly as s approaches to zero. The smoothing of the output near the 

zero error zone, prevents the controller to “push” the system too hard and avoids or 

reduces the chattering effect. The slope of the output value is controlled by the 

appropriate selection of KD and δ. 

 

Figure 5-17 SMC output as a function of s. 

The parameters for the pitch controller are KD=0.02 m/s and δ=0.08 rad. The rest of 

the simulation parameters are the same as in section 5.5.1. 

Error! Reference source not found. shows the results of the simulations. The top 

row shows the orientation of the main body (roll, pitch and yaw angles) where the 

inclination peaks at 3.5° in the roll direction. Both the pitch and yaw angles are kept 

within less than 1°. The left side of the graph shows the evolution of the legs position 

(hip-foot distance in the z-direction and joint angles) after touchdown and until the end 

of the landing operation. The right side shows the ground reaction forces and joint 

torques. 

The motion of the legs is smooth and the inclination of the main body presents slightly 

higher peak values but with similar performance with respect to the PD algorithm. 

The joint controllers used for this simulation are the same that the ones in the previous 

section with the same PID parameters indicated in Table 5-4 (P:10, I:14, D:0.4). Here 
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we can see that the joint torques present a more discontinuous behaviour with high-

frequency oscillations.  

 

 

 

Figure 5-18 Top row shows main body’s Roll-Pitch-Yaw angles. Next rows on the left side from top to 
bottom: legs hip-foot z-distance, hip angles and knee angles. Right side from top to bottom: normal 

ground reaction forces, hip torques and knee torques.  

Figure 5-19 shows the result of another simulations with lower PID parameters (P:5, 

I:7, D:0.4). In this case, the discontinuities are eliminated from the joint torques, but 

the performance of the control system degrades and oscillations in the main body 

orientation and legs motion start to appear. 
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Figure 5-19 Top row shows main body’s Roll-Pitch-Yaw angles. Next rows on the left side from top to 
bottom: legs hip-foot z-distance, hip angles and knee angles. Right side from top to bottom: normal 

ground reaction forces, hip torques and knee torques. 

In the control system of the landing gear, the interaction with the ground is dealt at two 

levels. The high-level controller reacts to the changes in body orientation and feet 

pressure and sends appropriate commands to the joint controllers. A possible cause 

for the lower performance is that the SMC controller might not have the same 

robustness that the PD controller to respond to these changes, and because of this, 

more efforts are transmitted to the joint controllers which leads to the appearance of 

the high-frequency oscillations. 
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5.8 Slope landing simulation with super-twisting SMC 

In this section, the system is tested with a higher order sliding mode. As in the previous 

section, the high-level attitude controller is replaced this time with a Super-Twisting 

algorithm. The landing gear is tested in the same conditions than the previous tests to 

analyse and compare the performance of the controller. 

The tuning of the controller is done using the simplified version of the Super-Twisting 

algorithm, considering that there is no bound in the control or any boundary layer. The 

single-parameter tuning methods proposed in [45] and [48] are used for simplicity. 

Figure 5-20 plots the value of W versus λ, using Method 1 (𝜆 = 1.5√𝐶) and Method 2 

(𝜆 = √𝐶) for different values of C. 

 

Figure 5-20 Super-Twisting parameters W versus λ using tuning method 1 ( [48]) and 2 ( [45]). 

The results of the slope landing simulation with the 4-legged model are shown in 

Figure 5-21. Here, the roll controller is tuned using a value of λ=0.1, and W1=0.005 

(Method 1), and W2=0.011 (Method 2). The parameters for the pitch controller are 

λ=0.025, and W1=0.0003, and W2=0.0006. Method 1 (left side) has a higher peak 

inclination than Method 2. In both cases chattering starts to appear near the sliding 

surface. Increasing any of the parameters degrades the performance of the controller, 

while reducing them also decreases the chattering but increases the peak inclination. 
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Figure 5-21 Main body’s Roll-Pitch-Yaw angles (top) and legs’ hip-foot z-distance (bottom) using 
tuning Method 1 ( [48]) and 2 ( [45]). 

5.9 Simulations with the 2-legged model 

To further analyse the performance of the SMC with boundary layer and Super-

Twisting algorithms, these controllers are also implemented in the 2-legged planar 

model of the landing gear and are tested on the same conditions: with a descending 

rate of -0.1 m/s and terrain slope of 20°. Figure 5-22 shows that both controllers 

perform better in this case than with the 4-legged model. In this simulations, the 

controller parameters could be set to higher values without resulting in increased 

chattering, thus, reducing the peak inclination during the landing. The parameters 

selected were KD=0.3 m/s and δ=0.08 rad for the boundary layer algorithm and λ=0.5, 

and W=0.1 for the Super-Twisting.  
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Figure 5-22 Roll angle and legs hip-foot distance (right and left leg) using the boundary layer and 
Super-Twisting SMC in slope landing. 

5.10 Conclusions 

This chapter presented the control system of the robotic landing gear, composed of 

the low-level joint controllers and the high-level attitude and force controller. When 

landing on uneven terrain, the high-level controller adjusts the position of the legs to 

adapt them to the ground conditions and keeping the helicopter levelled. Proportional-

Derivative controllers have been designed that use foot pressure and body attitude 

feedback to calculate the appropriate feet positions. Feet positions are then converted 

from Cartesian coordinates into joint position commands using inverse kinematics 

equations. Low-level joint controllers use this joint position commands to calculate the 

appropriate joint torques to produce the desired motion. Two alternative controllers to 

the PD attitude controller have been proposed and implemented using a boundary 

layer SMC and Super-Twisting algorithms.  

The performance of the control system has been tested in software simulations using 

the mathematical models presented in Chapter 3. The 2-legged and 4-legged models 

have been used to perform landing simulations on flat terrain, slopped grounds and 

multi-level surfaces, using different controller configurations and simulation 

parameters. The controller showed good capability to absorb impact forces produced 
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during landing and to keep the helicopter body within acceptable inclination levels. The 

simulation results in this chapter represent a source of information to evaluate the 

validity of the mathematical models and assess the performance of the controllers. 

On the modelling side, the 2-legged model was obtained using a full-rigid-body 

approach, applying Newton-Euler to every link of the system, while the 4-legged one 

was obtained by using a model decomposition. Here, the motion of the main body and 

the ground reaction forces are calculated using a centroidal dynamics model and the 

joint torques and leg motion are calculated using four single-leg models. The full-rigid-

body approach fully-describes the relationship of the torques and forces acting on the 

system and the corresponding motion of each link, thus, it is reasonable to say that is 

more accurate, but it is also more complex and difficult to obtain. The model 

decomposition, introduces a series of assumptions and simplifications to reduce the 

complexity of the model, but it can lead to a loss of some degree of accuracy. The 2-

legged model is a planar model and, thus, it has limitations and its motion is more 

constrained, while the 4-legged model allows motion in the 3 dimensional space and 

is more representative of the reality. 

Both models work well in the environments where they were tested, and all the control 

algorithms were successfully implemented, however, the 4-legged model proved to be 

more sensible to model parameters variations, while the 2-legged model is less 

affected by them. 

Regarding the algorithms that have been used for the attitude controller, the PD and 

the SMC with boundary layer produced similar results in terms of body orientation. The 

SMC produces slightly higher peak inclinations at the moment of touchdown, but the 

motion of the legs is more linear with less oscillations than the PD. Both controllers 

are easy to tune and require little sensory information, but the PD requires to calculate 

the derivative of the error, which can generate problems in the case of measurement 

noise. The SMC however, transmits more high-frequency oscillations to the low-level 

controllers. In the case of the Super-Twisting algorithm, the peak angles obtained were 

higher and the controller showed difficulty the settle down, oscillating around the level 

position, in some scenarios. The results of the PD controller are more consistent 

through all simulations done with both models and with all different joint controllers’ 

configurations. 
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6 Laboratory Experiments 

In previous chapters, mathematical models and simulations were carried out to test 

the proposed control architecture. This chapter uses the prototype system presented 

in chapter 4 to validate the simulation results on a hardware platform.  

First the experiment setup is explained, then the controller digital implementation on 

the robot is described, and finally the results obtained from the hardware tests are 

shown and analysed. 

6.1 Experiment setup 

The robotic landing gear prototype explained in chapter 4 has been designed to fit on 

the model helicopter Align T-Rex 500L Dominator which has been used for the 

laboratory tests. The main dimensions and weight are specified in the Table 6-1 and 

Figure 6-1 below: 

Table 6-1T-REX 500L Dominator specifications [78] 

Property Value 

Length 863 mm 

Height 285 mm 

Main Rotor Diameter 978 mm 

Weight (without battery) Approx. 1500 g 

 

 

Figure 6-1 T-REX 500L Dominator main dimensions [78] 
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The robotic landing gear is attached to the helicopter replacing the original skid-type 

landing gear as shown in Figure 4-1(b). The total weight of the model helicopter, with 

the battery and the robotic landing gear is about 3 kg. The helicopter and the landing 

gear use separate batteries as the first one operates at 24V while the servo motors on 

the landing gear need a 12V power supply. 

During the course of this project, the model helicopter was assembled, set-up and 

calibrated for flight, although flying tests haven’t been performed due to the lack of 

access to large and un-transited outdoor space where this can be done. Unlike modern 

drones, model helicopters are more unstable and difficult to control and it is not safe 

to fly them indoors. For this reasons, the laboratory tests have been carried out using 

a pulley system with a descending rate controlled by a servo motor which allow test 

data to be collected. 

The uneven terrain recreation is made up of wooden pieces and boxes of different 

heights. A wooden platform tilted at different angles of inclination is used to simulate 

a slope landing. Tests are done using several configurations of these obstacles on the 

ground. 

 

Figure 6-2 Elements used to recreate uneven terrain 

6.2 Limitations of laboratory experiments and deviations 

from simulations 

There exist a number of differences between simulating a landing with a pulley and 

doing it in a real flight. During a real flight, the orientation of the helicopter in space 

during the descent is totally controlled by the forces produced by the main and tail 

rotors, but with the pulley descent, only the descent rate is controlled, while the 



CHAPTER 6. Laboratory Experiments 

105 
 

orientation of the body will oscillate freely due to the irregular mass distribution of the 

rotorcraft. With the pulley system, the descent rate is constant from the beginning until 

the rotorcraft has completely landed, but in a real flight the pilot normally has the 

control authority to increase or reduce the speed according to the situation, i.e., it can 

reduce the landing speed if the rotorcraft body tilts too much. The pilot can also correct 

the body orientation with the helicopter controls. These elements give a better 

controllability of the situation with a real flight compared to the laboratory pulley test, 

however, the main rotor operation during real flight can introduce vibration and noise 

that might affect to the performance of the landing gear sensors. The effects of the 

noise can be attenuated by increasing the filtering of the sensor signals and, even that 

this can introduce delays, it shouldn’t affect the performance of the system given that 

the descent rates are relatively small. An attempt to simulate a real “controlled” flight 

was done using a vertical slider with a horizontal rod attached to the helicopter (as 

shown in Figure 6-3), however this solution was discarded as it constrained too much 

the motion of the system and amplified the vibration produced by the rotor. 

 

Figure 6-3 Landing experiment with vertical slider 

With respect to the simulations, one of the main differences is that it’s not possible to 

implement the joint controllers from the simulations into the physical prototype, as the 

servo motors incorporate its own built-in controllers. The internal motor controllers are 

position-based and don’t allow for the implementation of PID control, thus, the goal of 

the experimental tests is to validate the performance of the high-level controller, and 

show that it can be implemented in different systems independently of the joint 

controllers. Some of the parameters used in the simulations like the body inertias, are 
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difficult to estimate due to the irregular mass distribution and the placement of the 

components in the model helicopter. In the simulations the inertia of the helicopter 

body is calculated as if it was a rectangular box. This will affect the performance of the 

roll and pitch controllers which will need to be fine-tuned, especially the pitch controller, 

due to the presence of the tail in the longitudinal axis of the helicopter. 

Other sources of divergences will be the control frequency which was set at 1 kHz in 

the simulations, but in the laboratory tests it is limited to 20 Hz due to hardware 

limitations and code size. This is expected to affect the reaction time of the controller. 

Physical properties limitations can also have an impact like the maximum motor speed 

or position resolution, and filters used in the IMU and FSR signals can be also 

contribute to the overall delay.  

6.3 Controller Implementation 

As previously explained in chapter 4, the control system of the robotic landing gear is 

implemented into the on-board microcontroller using the Arduino IDE. This includes 

the definition of the logic that will drive the control flow of the program and the digital 

implementation of the control algorithms defined in chapter 5. 

Figure 6-4  and Figure 6-5 show the control flow diagram of the logic implemented for 

the landing simulation experiments. The program starts with the legs retracted for flight 

mode while the distance sensor measures the distance to the ground. When the 

system descends to landing-initiation distance, the legs extend to landing position and 

the foot pressure sensors start to check for ground contact. If a sensor detects an 

increase in the measured pressure that reaches a set threshold, it activates the control 

system. At this moment, both the force and attitude controllers are activated, and the 

legs that are in contact with the ground retract and the ones not in contact extend, 

while at the same time the attitude controller will adapt the legs if the system is tilting 

in any direction. Once all four feet are in contact with the ground, the force controller 

is deactivated, and the attitude controller continues to be in action until the system is 

stabilized at a level position. A counter is started at this time. If, during one second, 

the angles are kept within a range of ±0.01 rad around the setpoint and all legs are 

making ground contact, the system locks the position of the servo motors. As the 

flowchart shows, if the landing operation is interrupted at any point, the control system 

can go back to the initial conditions. 
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Figure 6-4 Landing decision flowchart 

 

Figure 6-5 Sequence of stages during normal landing operation 

During the landing operation, the control system executes the force and attitude 

controllers. These consist of three PD controllers that use force feedback from the 

FSR sensors, and the roll and pitch angles form the IMU as defined in chapter 5 

(equation 5.3). The output of each PD, controls the velocity at which each foot extends 

or retracts 

�̇�ℎ𝑓 = 𝑘𝑃𝑒 + 𝑘𝐷�̇� (7.1) 

This output is then integrated in order to send it to the joint controller as a foot position 

command. 

∆𝑧ℎ𝑓 = ∫ �̇�ℎ𝑓 = ∫(𝑘𝑃𝑒 + 𝑘𝐷�̇�) (7.2) 
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The high-level controller output is the sum of the three controllers’ outputs. To convert 

these continuous-time algorithms into discrete-time form for computer digital 

implementation the z-transform is used. 

For each of the controllers, first we consider the Laplace transform of equation 7.2  

𝑈(𝑠)

𝐸(𝑠)
= (𝑘𝑝 + 𝑘𝑑 ∙ 𝑠)

1

𝑠
 (7.3) 

where U is the controller output and E is the input error. kp and kd are the controller 

parameters. 

And then the s-transform function is converted into a z-transfer function using the 

substitution [79] 

𝑠 →
1 − 𝑧−1

𝑇𝑆
 (7.4) 

where TS is the sample time. 

Resulting in 

𝑈(𝑠)

𝐸(𝑠)
= (𝐾𝑃 + 𝐾𝐷𝑠)

1

𝑠
 →  

𝑈(𝑍)

𝐸(𝑍)
= (𝐾𝑃 + 𝐾𝐷

1 − 𝑧−1

𝑇𝑆
)

𝑇𝑆

1 − 𝑧−1
 

 

(7.5) 

𝑈𝑧 = 𝑈𝑧−1 + [𝐾𝑃𝑒𝑧𝑇𝑆 + 𝐾𝐷(𝑒𝑧 − 𝑒𝑧−1)] (7.6) 

where Uz is the current controller output and Uz-1 is the previous output. 

Looking at equation 7.6, it can be observed that the PD controller after the integration 

becomes a PI controller. 

Regarding the low-level controllers, each servo motor has a built-in controller, hence, 

for the practical tests, only the high-level controller is implemented while the motors 

internal controllers have been used as joint controllers. 

Table 6-2 Domain Transforms. 

Time-Domain s-Domain z-Domain 

𝑢(𝑡) = ∫(𝑒 ∙ 𝑘𝑝 + �̇� ∙ 𝑘𝑑) 𝑑𝑡 
𝑈(𝑠)

𝐸(𝑠)
= (𝑘𝑝 + 𝑘𝑑 ∙ 𝑠)

1

𝑠
 𝑈𝑧 = 𝑈𝑧−1 + [𝐾𝑃𝑒𝑧𝑇𝑆 + 𝐾𝐷(𝑒𝑧 − 𝑒𝑧−1)] 

 

The same procedure applies for the sliding mode control algorithms. 
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6.4 Experiments with PD controller 

Extensive laboratory experiments have been done with the landing gear prototype to 

validate the simulation results and to assist tuning the controllers. The tests are carried 

out following the experimental setup described in the previous section using the pulley 

system and the uneven terrain recreation. In this section, the results of three different 

tests are shown, where the system lands on a flat surface, a slopped terrain at 20°, 

and an uneven terrain with obstacles of up to 12 cm height. 

6.4.1 Controller Tuning 

During the initial experiments the gains of the force and attitude controllers were tuned 

separately (see Figure 6-6). The force controller was tuned implementing it in an 

individual leg and placing an obstacle under that leg. The landing gear was descended 

manually at different speeds and the controller gains were tuned (starting from low 

values and increasing) so that when the leg touched the obstacle it produced a smooth 

leg retraction, moving with the ground to don’t lose contact, and without exerting too 

much force against it, that could disturb the helicopter attitude. The rate of extension 

of the other legs was easy to tune as it is a constant. 

The attitude controller was tuned placing the landing gear on a slope. First the roll 

controller was tuned placing the longitudinal axis of the helicopter across the slope 

and increasing the controller gains until the legs motion would drive the roll angle to 

zero fast enough but not too aggressively to produce oscillations. The same procedure 

was followed for the pitch angle, placing the transversal axis of the helicopter across 

the slope. The ideal performance of the pitch controller was obtained with much 

smaller gains than those for the roll controller. This was expected, because of the 

inertia added by the mass of the tail far from the CoM, which would create instability if 

the moment created by the legs’ motion is too high. 

Once all the controllers are tuned individually, they are added together and fine-tuned. 

The values used for the simulations in this chapter are kp =0.00025, kd =0.000025 for 

the force controllers. For the attitude controllers, two sets of values are used. In the 

initial stage between the first and the last leg touchdown (Stage 1 in Figure 6-5), the 

values are kp =0. 25, kd =0. 025 for the roll controller and kp =0. 0375, kd =0. 00375 for 

the pitch controller. From this point until the end of the landing operation (Stage 2 in 

Figure 6-5) the values are kp =0. 5, kd =0. 05 for the roll controller and kp =0. 075, kd 
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=0. 0075 for the pitch controller. This way, during the first stage, the output of the 

attitude controller is decreased to give more importance to the force controllers. During 

the second stage the force controller is switched off and the control action is executed 

by the attitude controller alone. 

 

Figure 6-6 Landing gear during tuning of the force (left), roll (middle) and pitch (right) controllers. 

6.4.2 Flat landing test 

In this test, the helicopter with the landing gear is descended at -0.1 m/s onto a flat 

surface. The goal of the experiment is to check how the sensors and the control system 

react in this kind of terrain. The first graph in Figure 6-7 shows the reading of the 

distance sensor, where the distance from the bottom of the landing gear to the ground 

starts at around 850 mm, descends at a constant rate and finishes at 80 mm from the 

ground. The second graph shows the computation of the roll and pitch angles from the 

Inertial Measurement Unit and the kalman filter, and the evolution of the helicopter 

inclination during the landing. Before the descent, the roll and pitch angles are at a 

constant value. At 3 seconds after the start of the test, the servo motor starts to actuate 

the pulley system and the helicopter starts to descend, with the roll and pith angles 

oscillating around the zero value, especially the pitch due to the effect of the tail. The 

three vertical marks in the graph represent respectively the moments where the first 

leg touches the ground, when the last leg touches the ground and when the landing 

operation finishes and the position of the legs is locked. The time difference between 

the first and second mark is very little as almost all legs touch the ground at the same 

instant. After touchdown, both angles are quickly driven to their respective setpoints, 

which are 0° for the roll angle and 1° for the pitch. The selection of the pitch setpoint 

aims to tilt the helicopter slightly forwards to compensate for the tail weight.  
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Figure 6-7 Flat landing plots. From top to bottom: Distance sensor, helicopter attitude and level 
controllers trigger, foot pressure readings and hip-foot z-distance  

The third graph shows the readings from the feet Force Sensing Resistors which are 

passed through a low-pass filter. Here, the raw measurements are used and no 

conversion to force units is done as it is not needed for the operation of the control 

system. The sensor readings go from zero to its final value with almost no transient. 

The last of the graphs shows the computation of the hip-foot z-distance on each leg 

based on the angular position reading from the servo motors encoders. The graph 

starts with the legs in the retracted position until the sensor distance measuring 

reaches the target of 500 mm. At this point, the legs extend to landing position. After 

touchdown very little adjustment is done as the landing surface is flat. 

6.4.3 Slope terrain test  

Another scenario tested on the simulations has been a slope landing of 20° with a 

misalignment of the helicopter’s longitudinal axis across the slope. This situation is 

also recreated in the laboratory experiments for comparison and validation with the 

simulations. Figure 6-8 shows the results of the slope landing test. The helicopter 
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starts descending as in the previous experiment and makes the first ground contact at 

time 7s with the right back leg and right front leg almost at the same time, which start 

to retract. Left legs start to extend until time 8 s where they make ground contact. At 

this point the force controller is switched off. The peak roll and pitch inclination is about 

3° at this point, when the attitude controller drives both angles to their respective 

setpoints. Force sensors show a transient between the first and last leg ground contact 

and then settle down at similar levels. After all legs made ground contact, it takes 

around 3 seconds to drive the pitch angle within the desired range and then trigger the 

locking signal for the legs. 

 

Figure 6-8 Slope landing plots. From top to bottom: Distance sensor, helicopter attitude and level 
controllers trigger, foot pressure readings and hip-foot z-distance  
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Figure 6-9 Robotic landing gear during slope landing  

6.4.4 Uneven terrain 

In this experiment, an uneven ground is recreated placing obstacles on the ground 

(Figure 6-10) with a maximum step height of 12 cm. As seen in Figure 6-11, the right 

front leg is the first to make ground contact followed by the right back, left back and 

left front. The time between the first and last leg ground contact is around 1 s and 

during this time each leg extends or retracts according to its state. The roll angle 

reaches a peak inclination of less than 3° and the pitch oscillates between 2.5° and -

2° before being driven to its setpoint. As in the previous test, the roll angle is driven 

quickly near the 0° setpoint, while the pitch takes longer to reach the 1° target. This 

delays the trigger for the signal to lock the legs. 

 

Figure 6-10 Robotic landing gear during uneven terrain landing  
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Figure 6-11 Uneven terrain landing plots. From top to bottom: Distance sensor, helicopter attitude and 
level controllers trigger, foot pressure readings and hip-foot z-distance  

6.5 Experiments with SMC controllers 

In Chapter 5, two SMC algorithms have been proposed to be implemented in the 

landing gear control system in substitution of the PD attitude controller. In this section 

the results of implementing these controllers in the physical platform are presented. 

The controllers implemented are the conventional SMC with boundary layer, and 

HOSM Super-Twisting algorithm. The tuning procedure is done manually, starting with 

similar values to the ones from the software simulations, and increasing/decreasing 

the gains depending on the performance. For the conventional SMC controller, the 

values used in these experiments are, KD=0.1 and δ=0.2 for the roll angle, and 

KD=0.035 and δ=0.2 for the pitch angle. For the Super-Twisting SMC, the values are, 

λ=0.1 and W=0.005 for the roll and λ=0.025 and W=0.0003 for the pitch. 
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6.5.1 SMC with boundary layer 

Figure 6-12 shows the results of a slope landing test at 20° using the conventional 

SMC controller. The inclination of the helicopter peaks at 3° after touchdown and is 

quickly driven to zero. The performance of the controller is very similar to the PD 

controller in the same scenario. In this case, the pitch angle reaches its target faster 

than the roll angle. The signal to lock the legs is triggered 3 seconds after the last leg 

makes ground contact. 

 

Figure 6-12 Slope landing plots with conventional SMC. From top to bottom: Distance sensor, 
helicopter attitude and level controllers trigger, foot pressure readings and hip-foot z-distance  

6.5.2 Super Twisting HOSM 

Figure 6-13 shows the Super-Twisting controller in the same landing scenario. In this 

case, the inclination of the aircraft peaks at 4° and it is driven to zero. The controller, 

however, produces more oscillations around the target position before the signal to 

lock the legs is triggered. 
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Figure 6-13 Slope landing plots with Super-Twisting SMC. From top to bottom: Distance sensor, 
helicopter attitude and level controllers trigger, foot pressure readings and hip-foot z-distance  

To test the capability of the three controllers to keep the body attitude within the 

accepted range for a longer period, additional tests were done increasing the time 

before the system locks the legs’ position. In this case, the controller would have to 

drive the system to the target angles and keep it for 3 seconds before the system 

would lock. As shown in Figure 6-14, the PD and conventional SMC controllers were 

able to accomplish this goal. However, the Super-Twisting controller had problems to 

make the system settle down, and the aircraft would start to oscillate around the target 

angles and become unstable. Because the controller is unable to keep the angles 

within the desired range for 3 seconds, the signal to lock the legs is not triggered. 

Additionally, the peak inclination with this controller is higher than with the other two. 

The controller that triggers the signal in less time is the conventional SMC. 
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Figure 6-14 Slope landing plots of the roll and pitch using PD (top), conventional SMC (middle) and 
Super-Twisting (bottom) controllers.  

6.6 Conclusions 

This chapter presented the implementation of the control system into the hardware 

prototype and the laboratory experiments conducted. For the experiments, the landing 

gear is attached to a model helicopter with a total weight of 3 kg. The system has its 

own battery and all the computation is done in an on-board microcontroller. The 

experiments consisted in using a pulley system to descend the prototype into a 

recreation of an uneven surface to simulate the landing conditions on rough terrains. 

The descent velocity used in all the experiments has been -0.1 m/s and the tests 

included landing on a flat area, on a 20° slope, and on a surface with different height 

levels with a maximum step size of 12 cm.  

The implementation of the controller into the prototype only covers the high-level 

controller, as the servo motors used in the landing gear, have their own built-in 

controllers. Thus, the experiments only evaluate the performance of the high-level 

control system. The controller tuning procedure is also explained. 
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Three different algorithms have been implemented and tested for the attitude controller 

including a proportional-derivative, a conventional sliding mode controller with 

boundary layer, and super-twisting higher order sliding mode controller. The results of 

the experiments show the versatility of the system being able to land in different kinds 

of terrains, keeping the attitude of the helicopter within safe margins at every moment, 

reducing the risk of entering dynamic rollover. 

The comparison of the three controllers shows that the peak inclination of the 

helicopter in all the environments tested is within the range of 3-4°. However, the 

Super-Twisting controller has more difficulty to settle down the system, and oscillates 

around the target angles. PD and conventional SMC controller show similar 

performance, however, in the presence of sensor noise, the simplicity of the SMC can 

be an advantage as it doesn’t need to calculate the derivative of the error. 

From the mechanical design point of view, the leg springs loading/unloading add 

natural compliance to the legs and helps smoothing out the readings from the foot 

pressure sensors, improving the performance of the force controllers. 

The results from the practical tests show a close correlation with the results from the 

software simulations. 
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7 Discussion 

The work carried out during this project can be categorized into three different areas, 

the development of mathematical models for use in software simulations, the design 

of a control system, and the building and testing of a hardware prototype. 

7.1.1 Modelling 

The mathematical modelling has been an important part of this research work, and 

during this project, several methodologies and approaches have been applied to 

obtain the equations of motion of the legged robotic landing gear. Here, the two main 

methodologies, namely the Newton-Euler and Lagrange formulations, together with 

different approaches to robotic systems modelling, like full-rigid-body approach and 

the Centroidal dynamics and model decomposition, have been used. 

The first model developed was a planar model of a landing gear with 2 legs. This model 

was obtained using a full-rigid-body model approach, applying Newton-Euler 

equations to every link of the system. The equations of motion obtained with this 

approach fully-describe the relationship of the torques and forces acting on the system 

and the corresponding motion. The interaction forces between the connected joints 

appear explicitly in the model equations and there are dependencies between the 

states of all generalised coordinates. This model is very accurate, but, because of its 

planar nature, it can only describe the motion of the system in a 2-dimensional space. 

The planar model was used for initial controller implementation where only the roll 

angle was controlled, and to asses landing on simple geometries like a single-axis 

slope or a terrain with a step. 

The second model developed consisted in a spatial model of the landing gear with four 

legs. Here, the degrees of freedom of the main body are increased from 3 to 6, and 4 

more DoF are added with the increase from 2 to 4 legs. Apart from that, the Newton-

Euler equations are applied in its full spatial from. Thus, the complexity of the full-rigid-

body approach in this case was too high, and a Centroidal dynamics approach has 
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been adopted, by decomposing the model into the main body model and four single-

leg models. 

In doing this, various assumptions and simplifications were made. The first one is that 

the inertia of the Centroidal body is calculated as the sum of the inertia of all the system 

links in its initial position. Thus, when the legs move from its initial position the real 

inertia of the system will be slightly different that the one used in the model. This 

assumption is acceptable if the weight of the main body is much higher than the mass 

of the legs, or if these move at a slow velocity and stay near the initial position, so the 

full-body inertia remains similar to the one in nominal joint position at any time.  

The second assumption is a result of the model decomposition. The Centroidal model 

uses a full-body kinematic model to determine the position of the feet with respect to 

the CoM, and the points where the ground contact forces are applied. These allows to 

calculate the moments and forces produced in the CoM and the motion of the main 

body. The joint torques at each leg are calculated separately, using a single-leg model. 

This model consists in a fixed-frame 2 DoF planar robotic leg. Because of this model 

decomposition, the interaction forces between the main body and the legs at the hips 

are not explicitly present in the equations of motion, and the dynamic model of the 

single-leg ignores the effects of the whole system motion. These effects are not 

significant during flight phase as the system simply descends at a constant rate without 

relative motion between the base and the legs, and there are no external forces. 

During the landing phase, however, the motion of the CoM will affect the feet position, 

the foot-ground interaction forces, and therefore the joint torques. These ground 

reaction forces, which are directly related with the motion of the CoM, are introduced 

as external forces into the fixed-frame leg model, thus, the effects of the whole system 

motion is reflected in the joint torques calculation in the form of external forces. 

However, legged robots are floating-base systems, which means that the reference 

frame of its legs is not attached to a fixed point, but to the main body, and its position 

and orientation change over time. In this system, if the helicopter body tilts in any 

direction, the position of the legs with respect to the world coordinate frame will also 

change. Then, the torques calculated with the leg dynamic model won’t correspond 

exactly with the torques needed in reality. 
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This is possible to correct in the roll direction, as the leg motion is contained within the 

YZ plane. Thus, if the main body rotates around its X axis, the reference frame of the 

leg model can be rotated, in order to calculate the joint torques with the right joint 

angles. If the body tilts on the pitch direction however, this correction is not possible 

as the single-leg model cannot move outside the YZ plane, and there will be a 

mismatch between the calculated torques, and the torques corresponding to that body 

position. Thus, this model is valid when the main body attitude is around the level 

position. 

 

Figure 7-1 Change in the single-leg coordinate system to match body positon. 

This model it’s a representation of the motion of the system in a 3-dimensional space, 

and allowed to implement the attitude controllers to control the roll and pitch angles, 

and to perform landing simulations in more complex terrains, like 2-axis slopes or 

multi-level surfaces. 

7.1.2 Control system 

The developing of mathematical models allowed to use software simulations to design 

a control system, implement it and test it before building a hardware prototype.  

The main concepts of the high-level control system were inspired by looking at balance 

controllers for legged robots and floating-base systems, were this systems control the 

position and attitude of its base by controlling the interaction forces between the legs 

and the ground. 

The first approach to the controller design was to use the planar model to control just 

1 DoF (the roll angle of the helicopter body) through the adjustment of the legs 

positions. When landing on uneven surfaces, if a leg makes ground contact before the 
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other, the system will start to tilt. At this moment, the controller starts to retract the leg 

in ground contact and extend the other as a function of the angle error. To control the 

leg motion in a more intuitive way, the leg kinematics were applied, so the position 

commands were given in terms of the coordinates of the end effector, instead of joint 

angles. This system, thus, uses a position-based control approach. 

The next step was to use the 4-legged spatial model to apply control of the pitch and 

roll angle by combining the output of both controllers. When testing this system on 

landings on more complex terrains, like surfaces with 4 different ground levels, it was 

realized that the attitude controller alone was not enough to assure a stable landing. 

As there was not foot pressure feedback, the attitude controller couldn’t guarantee that 

the landing would conclude with all four legs on the ground, and in some cases, the 

landing gear would end in a position of “marginal-stability” with only three supporting 

legs. This situation was avoided by adding a force controller that would measure the 

foot pressure and would retract the legs that were in ground contact and extend the 

ones that were not. The force controller ensures that all four legs make ground contact, 

giving more stability to the helicopter. 

As only the legs that are in contact with the ground can generate ground forces to 

control the base attitude, it is important to land all the legs with the minimum time 

possible without generating disturbing impact forces. Thus, the force controller, also 

improves the performance of the attitude controller by reducing the time until all four 

legs have landed. The combination of the force and attitude controllers reduce both, 

the landing time and the peak body inclinations during the landing process, and 

because it’s a position-based controller, it can be implemented more easily into 

hardware robots. 

At the low-level, conventional PID controllers have been used for simulations instead 

of model-based controllers. Model-based techniques allow to design controllers with 

lower gains, adding compliance to the joints, without compromising tracking 

performance. However, the goal of the control system is not to achieve an accurate 

trajectory tracking for the motion of each individual joint, but rather to maintain the 

body attitude at a levelled position, with the coordination of all joints’ action. Thus, the 

position tracking performance at the individual joint level is not crucial for the overall 

system performance. On the other hand, model-based techniques require computing 

complex dynamics equations. They are also more difficult to implement in hardware 
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systems as they increase the need of computational power and require motors with 

torque-control capability. 

7.1.3 Hardware prototype 

The hardware prototype was built to test and validate the results obtained with 

software simulations. It was designed using off-the-shelf and 3D printed parts to 

integrate all the components needed including servo motors, on-board processor and 

sensors. After mechanical and electrical integration, the code was developed to 

communicate with system components and to implement the control system using C 

programming language. In this part of the project, only the high-level control is used, 

as the servo motors already have built-in controllers. 

The laboratory experiments confirmed a good performance and effective landing 

control of the proposed control architecture. It is easy to implement, using low-cost 

actuators and sensors, and with low computational power. Due to hardware limitations, 

the control frequency was reduced from 1 kHz in the simulations to 20 Hz in the 

prototype, without affecting significantly to the overall performance. The tests also 

showed that the high-level force and attitude controllers can effectively be combined 

with different low-level controllers, like the PID joint controllers in the simulations or 

the built-in motor controllers in the practical tests.  

In quadruped robots, compliance is a highly desired property in order to avoid high 

impact forces that can disturb the equilibrium of the robot [80] [81]. Compliant 

behaviour can be achieved either passively, by adding elastic elements in the joints or 

leg structure, or actively, through the controller design like using model-based or force 

control techniques. In the landing gear system, the force controller adds active 

compliance to the leg by controlling the force at the foot, but the motors cannot react 

immediately to an external impact force. The addition of the leg springs, provides the 

system with passive compliance that can react faster to external disturbances. 

The FSR sensors offer obvious advantages like their compact dimensions and they 

are easy to integrate into the system, however they have lower accuracy than other 

types of sensors [82]. The position of the spring between the foot and the force sensor, 

also improves the performance of the force controllers as it acts as a natural filter, 

smoothing out the readings from the sensors. Despite the relatively low accuracy of 

the FSR, the system doesn’t rely too much on the sensitivity of the sensors. This is 
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done by filtering the signal and preventing the leg to switch between extension and 

retraction mode. Once a leg has made ground contact, the output of the force controller 

can only make the leg retract or to stop moving, but not extend. 

7.1.4 Maximum landing slope 

The two main factors that are considered to limit the maximum landing slope are the 

geometry of the legs and the friction with the terrain. The geometry of the legs is 

determined by the length of the leg segments and the lateral distance between the 

feet. By increasing the length of the leg segments, higher slopes can be overcome but 

additional weight is added to the structure. For the same length of the leg segments, 

higher available foot stroke can be achieved by reducing the lateral foot distance, and 

thus higher achievable slopes. However, this reduces the support area between the 

feet, and increases the risk of lateral tilt. The foot design is another important factor, 

as it needs to provide sufficient friction to avoid slippage on large slopes. During the 

laboratory tests, the feet were covered with a rubber cap that provided sufficient friction 

on landing tests at slopes higher than 20°. However, for different kind of terrains 

different foot materials and designs can be used to optimise the friction between 

surfaces. 

The optimal system design needs to find a balance between all these parameters. The 

landing gear has to be able to land on sufficiently large slopes to meet the system 

requirements, but without adding to much weight to the system and without 

compromising stability and safety. 
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8 Conclusions and Future Works 

8.1 Conclusions 

Although rotorcrafts are highly manoeuvrable machines, they are limited when it 

comes to landing on unprepared sites on rough terrains. This limitation is mainly due 

to the use of conventional landing gear like skids or wheels.  

Adaptive landing gear for helicopters it’s a new field, and only very recently a few 

prototypes have been designed and developed. These systems offer many potential 

benefits including extended operational range of current vehicles and increased safety 

on rough terrain landings. Adaptive landing gear can be used to assist pilots to land 

on different situations like search-and-rescue missions, landing on ships or sea 

platforms, or in mountain environments. Additionally, the growth in the use of 

unmanned vehicles, like UAV or drones, increases the demand for automated landing 

systems. Its main barriers for commercial applications are the increase in the weight 

of the system and its complexity compared to conventional landing gear systems.  

Other proposed systems found in literature review are in early development stage or 

don’t offer much technical information regarding the control system. Only the Darpa 

adaptive landing gear has several publications. However, these published works are 

all based on the results of software simulations, not on hardware implementation 

results. Different controllers are proposed for this system involving some kind of 

torque-control at the joint level. 

In this thesis, a new design and control system for a robotic landing gear has been 

developed. The solution presented consisted in a legged system that can sense and 

adapt the legs’ positions to the ground conditions, providing a safe landing as the 

attitude of the vehicle is maintained in a level position during the whole operation. Such 

a system increases the landing capacities of rotorcraft vehicles allowing them to land 

on higher slopes and uneven terrains with obstacles or steps. 
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The control solution proposed in this thesis offers the advantage of being position-

controlled, so it is easier to implement it in hardware systems using low-cost 

components. However, position-controlled systems are usually stiffer. The solution 

proposed incorporates foot pressure sensors, which fulfil a double purpose. First, they 

are used to detect ground contact and to activate the landing control. Second, they 

are used to add compliant behaviour to the system by regulating the contact force at 

each foot. The leg design also incorporates a compliant element in the form of a spring 

to provide instant compliance, protect the force sensors and smooth the foot pressure 

reading from the sensors. 

The force and attitude controller complement each other by producing the necessary 

motion to correct the rotorcraft inclination, adapt the feet to the terrain, and reduce the 

time until all four legs have landed. Thus the system benefits from the simplicity and 

easy implementation of a position-controlled system that regulates the attitude of the 

helicopter body and a force controller and leg design that incorporate active and 

passive compliance to the system for better handling of the ground reaction forces. 

This thesis also presented the development of mathematical models for testing the 

system in software simulations using Matlab/Simulnk. These models include the 

dynamic model of the multi-body system, the ground contact model, and the control 

algorithms. Extensive simulations have been carried out and presented in this thesis 

to validate the mathematical models and to develop control algorithms. 

The prototype system designed in this project served as a platform to test the control 

algorithms previously developed in the simulations. The prototype design included a 

mechanical and electrical design and manufacture, the sensor placement and 

integration and the development of code for the digital implementation of the 

controllers. The tests results presented in this thesis also provide evidence of the 

performance of the system by measuring important system parameters like the feet 

pressure and body attitude. Slope landings of 20° and landings with obstacles up to 

12 cm were performed with peak body inclinations within 3-4°. 

The main objective of this project was to contribute on the development of a control 

architecture and system design to adapt the position of the legs to the ground 
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conditions, in a manner that allows a safe and stable landing on uneven terrains. In 

summary, the research contributions of this thesis includes: 

 The development of mathematical models for its implementation and testing in 

software simulations in Matlab/Simulink 

 The development of a control strategy based on position and force control to 

adapt the legs position to the terrain and to add compliance to the system 

 The design, building and testing of a physical prototype to validate the findings 

and the performance of the control algorithms. 

 The development of the Arduino code to implement the control strategy in the 

prototype robot. 

 The publications mentioned in section 1.5. 

8.2 Future work 

During this project, a prototype of the robotic landing gear has been designed and 

built. This first version has been tested in laboratory experiments, collecting data and 

improving the design. However, there are many areas in which the system can be 

developed further. 

 The software simulations and laboratory pulley tests have allowed to implement 

several control techniques on the landing gear, to collect data in order to 

analyse the system performance, and improve the sensor integration and leg 

design. During these tests, the system was plugged to the mains and to a lab 

PC, although it is equipped with on-board batteries and wireless system to 

transmit data. The next logic step would be to test the system in a real outdoors 

flight. The most crucial factor here is safety, as the system needs to be able to 

land even in the event of a power failure on the landing gear. There are 

examples of experimental setups to do so in a small-medium size model 

helicopter using an auxiliary structure for safety like in [22] (see Figure 2-9) or 

[83]. Flight tests can provide important information on how the control system 

and the sensors perform in the presence of vibration introduced by the rotor of 

the helicopter. 

 On the practical side, a necessary feature that needs to be implemented for 

further development of the project, is a safety mechanism that allows the 
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helicopter to land safely even in the case of a power failure in the robotic landing 

gear. This can be implemented by adding a mechanical blocking mechanism of 

brake system to the legs design. This brake system would also allow to cut the 

power of the servo motors, and maintain the position after landing finishes. 

 Very recently, several systems have appeared with a leg design that uses a 

four-bar linkage [22] [21].  By modifying the leg design to mechanically constrain 

the motion in the vertical direction, the number of motors in the system could 

be reduced to one per leg, potentially reducing the weight of the system, its, 

complexity, and the probability of electrical failure.  

 During a flight, it is not always easy for the pilot to assess the inclination or 

possible obstacles on the terrain. As an additional feature, a slope detection 

system could be implemented using range sensors, without increasing 

significantly the complexity and cost of the system. By using an array of 4 

distance sensors, one on each leg, instead of one, the distance to the ground 

and the slope can be known before landing. This would allow to pre-adjust the 

legs before landing, or to inform the pilot if the slope is too high. The feet can 

also be replaced by wheels to increase the ground handling capability of the 

system. 

 On the modelling side, the effort was placed on developing the mathematical 

model of the legged system, while the helicopter model was reduced to a thrust 

force model to control the descent rate. An area of improvement can be the 

development of more realistic helicopter models that better describe the 

dynamics and behaviour of the system, and combine them with the landing gear 

model. Although some examples were found in the literature review like in [84] 

[83], these area was left out of the scope of this project. 

 On the control side, it would be interesting to try a different actuator technology 

on future versions of the prototype. This would allow to implement different 

control approaches like model-based control or virtual model control, and to 

compare the results with the actual control system. 
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Appendix A Planar Model 

As described in section 3.1., the full-body planar model of the system is obtained by 

applying Newton-Euler equations to each individual link. There are three equations of 

motion for each of the five links: summation of horizontal forces, summation of vertical 

forces, and summation of torques about the centre of mass. By eliminating the internal 

reaction forces the system can be reduced to seven equations. 

Equations 3.3-3.5, 3.12-3.17 and 3.22-3.27, describe the dynamics of each link on 

each degree of freedom. Equations 3.8-3.11, 3.18-3.21, and 3.28-3.31, describe the 

kinematic relations between the accelerations of the links and the generalised 

coordinates. By introducing the kinematic equations into the dynamic equations, the 

equations of motion can be expressed in terms of the generalised coordinates only. 

This allows to calculate the joint torques if the external forces and robot’s kinematics 

are known. 

The equations are expressed in matrix form as 

𝐌(𝐪)�̈� + 𝐂(𝐪, �̇�)�̇� + 𝐆(𝐪) =  𝛕 + 𝐉𝐓(𝐪)𝐟 (A.1) 

where q is the generalised coordinates vector, 𝐪 = [𝑦𝐵, 𝑧𝐵, 𝜃, 𝑞1, 𝑞2, 𝑞3, 𝑞4]
𝑇, M is the 

inertia matrix, C is the matrix of centrifugal and Coriolis terms, G is the vector of gravity 

terms, 𝛕 = [0, 0, 0, 𝜏1, 𝜏2, 𝜏3, 𝜏4]
𝑇 is the vector of joint actuator torques, JT is the 

transpose of the Jacobian matrix, and f is the vector of external forces. The sub-indices 

Hr, Kr, Hl, and Kl, used in the equations in chapter 3 have been substituted in the 

appendix for 1, 2, 3, and 4 respectively for more clarity of the equations.  

The fully extended equations are given below: 
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Equation 1: angular acceleration of the main body 

[2(𝑚𝑈 + 𝑚𝐿)𝐷𝑧𝑐𝜃 − 𝑚𝑙𝐶𝑈
(𝑠𝛽1 + 𝑠𝛽3) − 𝑚𝐿𝑙𝐶𝐿

(𝑠𝛽2 + 𝑠𝛽4)]�̈�𝐵

+ [2(𝑚𝑈 + 𝑚𝐿)𝐷𝑧𝑠𝜃 + 𝑚𝑙𝐶𝑈
(𝑐𝛽1 + 𝑐𝛽3) + 𝑚𝐿𝑙𝐶𝐿

(𝑐𝛽2 + 𝑐𝛽4)]�̈�𝐵

+ [𝐼𝐵 + 2𝐼𝑈 + 2𝐼𝐿 + (𝑚𝑈 + 𝑚𝐿)(2𝐷𝑧
2 + 2𝐷𝑦

2)

+ 2𝑚𝐿 (𝑙𝑈
2 + 𝑙𝐶𝐿

2 + 𝑙𝑈𝑙𝐶𝐿
(𝑐𝑞2 + 𝑐𝑞4)) + 2𝑚𝑈𝑙𝐶𝑈

2

+ 𝑚𝐿𝑙𝐿(𝐷𝑧(𝑠(𝜃 − 𝛽2) + 𝑠(𝜃 − 𝛽4)) + 𝐷𝑦(𝑐(𝜃 − 𝛽2) − 𝑐(𝜃 − 𝛽4)))

+ 𝑚𝑙𝑢(𝐷𝑦(𝑐𝑞1 − 𝑐𝑞3) − 𝐷𝑧(𝑠𝑞1 + 𝑠𝑞3))] �̈�

+ [𝐼𝑈 + 𝐼𝐿 + 𝑚𝑈𝑙𝐶𝑈

2 + 𝑚𝐿(𝑙𝑈
2 + 𝑙𝐶𝐿

2 + 2𝑙𝑈𝑙𝐶𝐿
𝑐𝑞2)

+ 𝑚𝑙𝐶𝑈
(𝑅1𝑐𝛽1 − 𝑅2𝑠𝛽1) + 𝑚𝐿𝑙𝐶𝐿

(𝑅1𝑐𝛽2 − 𝑅2𝑠𝛽2)]�̈�1

+ [𝐼𝐿 + 𝑚𝐿(𝑙𝐶𝐿

2 + 𝑙𝑈𝑙𝐶𝐿
𝑐𝑞2) + 𝑚𝐿𝑙𝐶𝐿

(𝑅1𝑐𝛽2 − 𝑅2𝑠𝛽2)]�̈�2

+ [𝐼𝑈 + 𝐼𝐿 + 𝑚𝑈𝑙𝐶𝑈

2 + 𝑚𝐿(𝑙𝑈
2 + 𝑙𝐶𝐿

2 + 2𝑙𝑈𝑙𝐶𝐿
𝑐𝑞4)

+ 𝑚𝑙𝐶𝑈
(𝑅3𝑐𝛽3 − 𝑅4𝑠𝛽3) + 𝑚𝐿𝑙𝐶𝐿

(𝑅3𝑐𝛽4 − 𝑅4𝑠𝛽4)]�̈�3

+ [𝐼𝐿 + 𝑚𝐿(𝑙𝐶𝐿

2 + 𝑙𝑈𝑙𝐶𝐿
𝑐𝑞4) + 𝑚𝐿𝑙𝐶𝐿

(𝑅3𝑐𝛽4 − 𝑅4𝑠𝛽4)]�̈�4

− [𝑚𝑙𝑢(𝑅1𝑠𝛽1 + 𝑅2𝑐𝛽1)�̇�1 + 𝑚𝐿𝑙𝐿(𝑅1𝑠𝛽2 + 𝑅2𝑐𝛽2)(�̇�1 + �̇�2)

+ 𝑚𝐿𝑙𝑈𝑙𝐿𝑠𝛽2�̇�2 + 𝑚𝑙𝑢(𝑅3𝑠𝛽3 + 𝑅4𝑐𝛽3)�̇�3

+ 𝑚𝐿𝑙𝐿(𝑅3𝑠𝛽4 + 𝑅4𝑐𝛽4)(�̇�3 + �̇�4) + 𝑚𝐿𝑙𝑈𝑙𝐿𝑠𝛽4�̇�4]�̇�

− [𝑚𝑙𝐶𝑈
(𝑅1𝑠𝛽1 + 𝑅2𝑐𝛽1) + 𝑚𝐿𝑙𝐶𝐿

(𝑅1𝑠𝛽2 + 𝑅2𝑐𝛽2)]�̇�1
2

− [𝑚𝐿𝑙𝐶𝐿
(𝑙𝑢𝑠𝑞2 + 𝑅1𝑠𝛽2 + 𝑅2𝑐𝛽2)](2�̇�1 + �̇�2)�̇�2

− [𝑚𝑙𝐶𝑈
(𝑅3𝑠𝛽3 + 𝑅4𝑐𝛽3) + 𝑚𝐿𝑙𝐶𝐿

(𝑅3𝑠𝛽4 + 𝑅4𝑐𝛽4)]�̇�3
2

− [𝑚𝐿𝑙𝐶𝐿
(𝑙𝑢𝑠𝑞4 + 𝑅3𝑠𝛽4 + 𝑅4𝑐𝛽4)](2�̇�3 + �̇�4)�̇�4 + 2(𝑚𝑈 + 𝑚𝐿)𝑔𝐷𝑧𝑠𝜃

+ 𝑚𝑔𝑙𝐶𝑈
(𝑐𝑞1 + 𝑐𝑞3) + 𝑚𝐿𝑔𝑙𝐶𝐿

(𝑐𝑞2 + 𝑐𝑞4)

= (𝐷𝑧𝑐𝜃 − 𝐷𝑦𝑠𝜃 − 𝑙𝑈𝑠𝛽1 − 𝑙𝐿𝑠𝛽2)𝐹𝑥𝑅
+ (𝐷𝑧𝑐𝜃 + 𝐷𝑦𝑠𝜃 − 𝑙𝑈𝑠𝛽3

− 𝑙𝐿𝑠𝛽4)𝐹𝑥𝐿
+ (𝐷𝑧𝑠𝜃 + 𝐷𝑦𝑐𝜃 + 𝑙𝑈𝑐𝛽1 + 𝑙𝐿𝑐𝛽2)𝐹𝑦𝑅

+ (𝐷𝑧𝑠𝜃 − 𝐷𝑦𝑐𝜃

+ 𝑙𝑈𝑐𝛽3 + 𝑙𝐿𝑐𝛽4)𝐹𝑦𝐿
 (A.2) 

where 

𝑅1 = 𝐷𝑧𝑠𝜃 + 𝐷𝑦𝑐𝜃  ;  𝑅2 = 𝐷𝑧𝑐𝜃 − 𝐷𝑦𝑠𝜃  ;  𝑅3 = 𝐷𝑧𝑠𝜃 − 𝐷𝑦𝑐𝜃  ;  𝑅4 = 𝐷𝑧𝑐𝜃 + 𝐷𝑦𝑠𝜃 
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Equation 2: horizontal linear acceleration of the main body 

[𝑚𝐵 + 2𝑚𝑈 + 2𝑚𝐿]�̈�𝐵

+ [2(𝑚𝑈 + 𝑚𝐿)𝐷𝑧𝑐𝜃 + 𝑚𝑙𝐶𝑈
(𝑠𝛽1 + 𝑠𝛽3) + 𝑚𝐿𝑙𝐶𝐿

(𝑠𝛽2 + 𝑠𝛽4)]�̈�

− [𝑚𝑙𝐶𝑈
𝑠𝛽1 + 𝑚𝐿𝑙𝐶𝐿

𝑠𝛽2]�̈�1 − 𝑚𝐿𝑙𝐶𝐿
𝑠𝛽2�̈�2 − [𝑚𝑙𝐶𝑈

𝑠𝛽3 + 𝑚𝐿𝑙𝐶𝐿
𝑠𝛽4]�̈�3

− 𝑚𝐿𝑙𝐶𝐿
𝑠𝛽4�̈�4

+ [2(𝑚𝑈 + 𝑚𝐿)𝐷𝑧𝑠𝛼�̇� − 𝑚𝐿𝑙𝐿𝑐𝛽2�̇�2

− (𝑚𝑙𝐶𝑈
𝑐𝛽1 + 𝑚𝐿𝑙𝐶𝐿

𝑐𝛽2)(�̇� + 2�̇�1) − 𝑚𝐿𝑙𝐿𝑐𝛽4�̇�4

− (𝑚𝑙𝐶𝑈
𝑐𝛽3 + 𝑚𝐿𝑙𝐶𝐿

𝑐𝛽4)(�̇� + 2�̇�3)]�̇� − [𝑚𝑙𝐶𝑈
𝑐𝛽1 + 𝑚𝐿𝑙𝐶𝐿

𝑐𝛽2]�̇�1
2

− 𝑚𝐿𝑙𝐶𝐿
𝑐𝛽2(�̇�2 + 2�̇�1)�̇�2 − [𝑚𝑙𝐶𝑈

𝑐𝛽3 + 𝑚𝐿𝑙𝐶𝐿
𝑐𝛽4]�̇�3

2

− 𝑚𝐿𝑙𝐶𝐿
𝑐𝛽4(�̇�4 + 2�̇�3)�̇�4 = 𝐹𝑥𝑅

+ 𝐹𝑥𝐿
 (A.3) 

 

Equation 3: vertical linear acceleration of the main body 

[𝑚𝐵 + 2𝑚𝑈 + 2𝑚𝐿]�̈�𝐵

+ [2(𝑚𝑈 + 𝑚𝐿)𝐷𝑧𝑠𝜃 + 𝑚𝑙𝐶𝑈
(𝑐𝛽1 + 𝑐𝛽3) + 𝑚𝐿𝑙𝐶𝐿

(𝑐𝛽2 + 𝑐𝛽4)]�̈�

+ [𝑚𝑙𝐶𝑈
𝑐𝛽1 + 𝑚𝐿𝑙𝐶𝐿

𝑐𝛽2]�̈�1 + 𝑚𝐿𝑙𝐶𝐿
𝑐𝛽2�̈�2 + [𝑚𝑙𝐶𝑈

𝑐𝛽3 + 𝑚𝐿𝑙𝐶𝐿
𝑐𝛽4]�̈�3

+ 𝑚𝐿𝑙𝐶𝐿
𝑐𝛽4�̈�4

+ [2(𝑚𝑈 + 𝑚𝐿)𝐷𝑧𝑐𝜃�̇� − 𝑚𝐿𝑙𝐿𝑠𝛽2�̇�2

− (𝑚𝑙𝐶𝑈
𝑠𝛽1 + 𝑚𝐿𝑙𝐶𝐿

𝑠𝛽2)(�̇� + 2�̇�1) − 𝑚𝐿𝑙𝐿𝑠𝛽4�̇�4

− (𝑚𝑙𝐶𝑈
𝑠𝛽3 + 𝑚𝐿𝑙𝐶𝐿

𝑠𝛽4)(�̇� + 2�̇�3)]�̇� − [𝑚𝑙𝐶𝑈
𝑠𝛽1 + 𝑚𝐿𝑙𝐶𝐿

𝑠𝛽2]�̇�1
2

− 𝑚𝐿𝑙𝐶𝐿
𝑠𝛽2(�̇�2 + 2�̇�1)�̇�2 − [𝑚𝑙𝐶𝑈

𝑠𝛽3 + 𝑚𝐿𝑙𝐶𝐿
𝑠𝛽4]�̇�3

2 − 𝑚𝐿𝑙𝐶𝐿
𝑠𝛽4(�̇�4

+ 2�̇�3)�̇�4 + (𝑚𝐵 + 2𝑚𝑈 + 2𝑚𝐿)𝑔 = 𝐹𝑦𝑅
+ 𝐹𝑦𝐿

+ 𝐹𝑡ℎ (A.4) 
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Equation 4: right hip joint angle 

−[𝑚𝑙𝐶𝑈
𝑠𝛽1 + 𝑚𝐿𝑙𝐶𝐿

𝑠𝛽2]�̈�𝐵 + [𝑚𝑙𝐶𝑈
𝑐𝛽1 + 𝑚𝐿𝑙𝐶𝐿

𝑐𝛽2]�̈�𝐵

+ [𝐼𝑈 + 𝐼𝐿 + 𝑚𝐿(𝑙𝑈
2 + 𝑙𝐶𝐿

2 + 2𝑙𝑈𝑙𝐶𝐿
𝑐𝑞2) + 𝑚𝑈𝑙𝐶𝑈

2

+ 𝑚𝑙𝐶𝑈
(𝐷𝑦𝑐𝑞1 − 𝐷𝑧𝑠𝑞1) + 𝑚𝐿𝑙𝐶𝐿

(𝐷𝑧𝑠(𝜃 − 𝛽2) + 𝐷𝑦𝑐(𝜃 − 𝛽2))]�̈�

+ [𝐼𝑈 + 𝐼𝐿 + 𝑚𝐿(𝑙𝑈
2 + 𝑙𝐶𝐿

2 + 2𝑙𝑈𝑙𝐶𝐿
𝑐𝑞2) + 𝑚𝑈𝑙𝐶𝑈

2 ]�̈�1

+ [𝐼𝐿 + 𝑚𝐿(𝑙𝐶𝐿

2 + 𝑙𝑈𝑙𝐶𝐿
𝑐𝑞2)]�̈�2

+ [[𝑚𝐿𝑙𝐶𝐿
(𝐷𝑧𝑐(𝜃 − 𝛽2) − 𝐷𝑦𝑠(𝜃 − 𝛽2)) +  𝑚𝑙𝐶𝑈

(𝐷𝑧𝑐𝑞1 + 𝐷𝑦𝑠𝑞1)]�̇�

+ 𝑚𝐿𝑙𝑈𝑙𝐿𝑠𝑞2�̇�2]�̇� − 𝑚𝐿𝑙𝑈𝑙𝐶𝐿
𝑠𝑞2(2�̇�1 + �̇�2)�̇�2 + 𝑚𝑔𝑙𝑈𝑐𝛽1

+ 𝑚𝐿𝑔𝑙𝐶𝐿
𝑐𝛽2 = 𝜏1 − (𝑙𝑈𝑠𝛽1 + 𝑙𝐿𝑠𝛽2)𝐹𝑥𝑅

+ (𝑙𝑈𝑐𝛽1 + 𝑙𝐿𝑐𝛽2)𝐹𝑦𝑅
 (A.5) 

 

 

 

Equation 5: right knee joint angle 

−𝑚𝐿𝑙𝐶𝐿
𝑠𝛽2�̈�𝐵 + 𝑚𝐿𝑙𝐶𝐿

𝑐𝛽2�̈�𝐵

+ [𝐼𝐿 + 𝑚𝐿𝑙𝐶𝐿
(𝐷𝑧𝑠(𝜃 − 𝛽2) + 𝐷𝑦𝑐(𝜃 − 𝛽2) + 𝑙𝑈𝑐𝑞2 + 𝑙𝐶𝐿

)]�̈�

+ [𝐼𝐿 + 𝑚𝐿(𝑙𝐶𝐿

2 + 𝑙𝐶𝐿
𝑙𝑈𝑐𝑞2)]�̈�1 + [𝐼𝐿 + 𝑚𝐿𝑙𝐶𝐿

2 ]�̈�2

+ [[𝑚𝐿𝑙𝐶𝐿
(𝐷𝑧𝑐(𝜃 − 𝛽2) − 𝐷𝑦𝑠(𝜃 − 𝛽2))]�̇� + 𝑚𝐿𝑙𝐶𝐿

𝑙𝐿𝑠𝑞2(�̇� + 2�̇�1)] �̇�

+ 𝑚𝐿𝑙𝑈𝑙𝐶𝐿
𝑠𝑞2�̇�1

2 + 𝑚𝐿𝑔𝑙𝐶𝐿
𝑐𝛽2 = 𝜏2 − 𝑙𝐿𝑠𝛽2𝐹𝑥𝑅

+ 𝑙𝐿𝑐𝛽2𝐹𝑦𝑅
 (A.6) 

 

Equation 6: left hip joint angle 

−[𝑚𝑙𝐶𝑈
𝑠𝛽3 + 𝑚𝐿𝑙𝐶𝐿

𝑠𝛽4]�̈�𝐵 + [𝑚𝑙𝐶𝑈
𝑐𝛽3 + 𝑚𝐿𝑙𝐶𝐿

𝑐𝛽4]�̈�𝐵

+ [𝐼𝑈 + 𝐼𝐿 + 𝑚𝐿(𝑙𝑈
2 + 𝑙𝐶𝐿

2 + 2𝑙𝑈𝑙𝐶𝐿
𝑐𝑞4) + 𝑚𝑈𝑙𝐶𝑈

2

+ 𝑚𝑙𝐶𝑈
(𝐷𝑦𝑐𝑞3 − 𝐷𝑧𝑠𝑞3) + 𝑚𝐿𝑙𝐶𝐿

(𝐷𝑧𝑠(𝜃 − 𝛽4) − 𝐷𝑦𝑐(𝜃 − 𝛽4))]�̈�

+ [𝐼𝑈 + 𝐼𝐿 + 𝑚𝐿(𝑙𝑈
2 + 𝑙𝐶𝐿

2 + 2𝑙𝑈𝑙𝐶𝐿
𝑐𝑞4) + 2𝑚𝑈𝑙𝐶𝑈

2 ]�̈�3

+ [𝐼𝐿 + 𝑚𝐿(𝑙𝐶𝐿

2 + 𝑙𝑈𝑙𝐶𝐿
𝑐𝑞4)]�̈�4

+ [[𝑚𝐿𝑙𝐶𝐿
(𝐷𝑧𝑐(𝜃 − 𝛽4) + 𝐷𝑦𝑠(𝜃 − 𝛽4)) +  𝑚𝑙𝐶𝑈

(𝐷𝑧𝑐𝑞3 − 𝐷𝑦𝑠𝑞3)]�̇�

+ 𝑚𝐿𝑙𝑈𝑙𝐿𝑠𝜃4�̇�4]�̇� − 𝑚𝐿𝑙𝑈𝑙𝐶𝐿
𝑠𝑞4(2�̇�3 + �̇�4)�̇�4 + 𝑚𝑔𝑙𝑈𝑐𝛽3

+ 𝑚𝐿𝑔𝑙𝐶𝐿
𝑐𝛽4 = 𝜏3 − (𝑙𝑈𝑠𝛽3 + 𝑙𝐿𝑠𝛽4)𝐹𝑥𝑅

+ (𝑙𝑈𝑐𝛽3 + 𝑙𝐿𝑐𝛽4)𝐹𝑦𝑅
 (A.7) 
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Equation 7: left knee joint angle 

−𝑚𝐿𝑙𝐶𝐿
𝑠𝛽4�̈�𝐵 + 𝑚𝐿𝑙𝐶𝐿

𝑐𝛽4�̈�𝐵

+ [𝐼𝐿 + 𝑚𝐿𝑙𝐶𝐿
(𝐷𝑧𝑠(𝜃 − 𝛽4) − 𝐷𝑦𝑐(𝜃 − 𝛽4) + 𝑙𝑈𝑐𝑞4 + 𝑙𝐶𝐿

)]�̈�

+ [𝐼𝐿 + 𝑚𝐿(𝑙𝐶𝐿

2 + 𝑙𝐶𝐿
𝑙𝑈𝑐𝑞4)]�̈�3 + [𝐼𝐿 + 𝑚𝐿𝑙𝐶𝐿

2 ]�̈�4

+ [[𝑚𝐿𝑙𝐶𝐿
(𝐷𝑧𝑐(𝜃 − 𝛽4) + 𝐷𝑦𝑠(𝜃 − 𝛽4))]�̇� + 𝑚𝐿𝑙𝐶𝐿

𝑙𝐿𝑠𝑞4(�̇� + 2�̇�3)] �̇�

+ 𝑚𝐿𝑙𝑈𝑙𝐶𝐿
𝑠𝑞4�̇�3

2 + 𝑚𝐿𝑔𝑙𝐶𝐿
𝑐𝛽4 = 𝜏4 − 𝑙𝐿𝑠𝛽4𝐹𝑥𝑅

+ 𝑙𝐿𝑐𝛽4𝐹𝑦𝑅
 (A.8) 
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Appendix B Centroidal Momentum Matrix 

This Appendix includes the Matlab script used to calculate the Centroidal Momentum 

Matrix that maps the inertia of each individual link into the system’s CoM. First, the 

location of the CoM in the z-axis is computed. Then, the inertia tensor of the whole 

system is calculated by aligning the principal moments of inertia of each link with the 

axes of the main body fixed frame, and then applying the parallel axis theorem to 

express the moments of inertia around the CoM. 

 

%% PRELIMINARIES 

%This section defines the main system parameters 
% Main body dimensions (m) 
Dx=100/1000; %x dimension 
Dy=50/1000;  %y dimension 
Dz=100/1000; %z dimension! 
% Links length (m) 
l_u=0.0935; 
l_l=0.1045; 

% Masses (kg) 
mb=2.5; %main body (base) 
mu=0.1; %upper link 
ml=0.15; %lower link 
thick=0.03; %Links thickness 
%Main rotor parameters 
%https://www.align-trex.co.uk/425-carbon-fiber-blades-hd420f.html 
m_mr=0.12; %mass of rotor blades (120g/set) 
r_mr=0.489; %main rotor radius (diameter of Trex500L=978mm) 
%Total system mass 
m=mb+4*mu+4*ml+m_mr; 
%Joint angles for different legs positions 
%Landing position 
th_u_L=-pi; 
th_l_L=-pi/2; 
th_u_R=0; 
th_l_R=-pi/2; 
 

%Left retracted - Right extended 
% th_u_L=-3.979; 
% th_l_L=-1.867; 
% th_u_R=-0.75; 
% th_l_R=-1.326; 
%Right retracted - Left extended 
% th_u_L=-2.39; 
% th_l_L=-1.815; 
% th_u_R=0.837; 
% th_l_R=-1.274; 
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%%------------------------ CoM LOCATION------------------------------------ 
%This section computes the location of the system CoM in the z-direction 

taking as a reference the CoM of the base link 

 
z_b=0;% z-ccordinate of the base link 
z_mr=Dz;% z-ccordinate of the main rotor 

z_u_R=-Dz+(l_u/2)*sin(th_u_R); % z-coordinate of the upper link(Right Side) 
z_u_L=-Dz+(l_u/2)*sin(th_u_L); % z-coordinate of the upper link(Left Side) 
z_l_L=-Dz+l_u*sin(th_u_L)+(l_l/2)*sin(th_l_L); % z-coordinate of the lower 

link(Left Side) 

z_l_R=-Dz+l_u*sin(th_u_R)+(l_l/2)*sin(th_l_R);  % z-coordinate of the lower 

link(Right Side) 

 

%Distance from the base link CoM to the system’s CoM 

d=-(mb*z_b+m_mr*z_mr+mu*(2*z_u_R+2*z_u_L)+ml*(2*z_l_L+2*z_l_R))/m; 

 
%% ----------------INERTIA MOMENTS OF THE MAIN BODY------------------------ 
%Inertia wrt principal axes  

Ixx_b=mb*((2*Dy)^2 + (2*Dz)^2)/12; 
Iyy_b=mb*((2*Dz)^2 + (2*Dx)^2)/12; 
Izz_b=mb*((2*Dy)^2 + (2*Dx)^2)/12; 
% Distance base-CoM 
xg_b=0; 
yg_b=0; 
zg_b=d; 
% Moments of Inertia referred to the base CoM 
Ixxg_b=Ixx_b + mb*(xg_b^2 + zg_b^2); 
Iyyg_b=Iyy_b + mb*(zg_b^2 + yg_b^2); 
Izzg_b=Izz_b + mb*(xg_b^2 + yg_b^2); 
% Inertia Tensor 
I_b=[Ixxg_b 0 0;0 Iyyg_b 0;0 0 Izzg_b]; 

 
%% ----------------INERTIA MOMENTS OF THE MAIN ROTOR----------------------- 
%Inertia wrt principal axes  

Ixx_mr=Izz_mr/2; 
Iyy_mr=Izz_mr/2; 
Izz_mr=(m_mr*r_mr^2)/3; 
% Distance mr-CoM 
xg_mr=0; 
yg_mr=0; 
zg_mr=Dz+d; 
% Moments of Inertia referred to the base CoM 
Ixxg_mr=Ixx_mr + m_mr*(yg_mr^2 + zg_mr^2); 
Iyyg_mr=Iyy_mr + m_mr*(xg_mr^2 + zg_mr^2); 
Izzg_mr=Izz_mr + m_mr*(xg_mr^2 + yg_mr^2); 
% Inertia Tensor 
I_mr=[Ixxg_mr 0 0;0 Iyyg_mr 0;0 0 Izzg_mr]; 

 
%%-------------INERTIA MOMENTS OF THE UPPER LEG SEGMENTS------------------- 
%Inertia wrt principal axes  

Ixx_u=mu*((thick)^2 + (l_u)^2)/12; 
Iyy_u=mu*((thick)^2 + (thick)^2)/12; 
Izz_u=mu*((thick)^2 + (l_u)^2)/12; 

 
% Distance u_R-CoM (Right Side) 
xg_u_RF=Dx; % Right front leg 
xg_u_RB=-Dx;% Right back leg 
yg_u_R=Dy+(l_u/2)*cos(th_u_R); 
zg_u_R=-(Dz-d)+(l_u/2)*sin(th_u_R); 
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% Distance u_L-CoM (Left Side) 
xg_u_LF=Dx; 
xg_u_LB=-Dx; 
yg_u_L=Dy+(l_u/2)*cos(th_u_L); 
zg_u_L=-(Dz-d)+(l_u/2)*sin(th_u_L); 

 
% Rotated Moments of Inertia (Right Side) 
Ixx_Ru=Ixx_u; 
Iyy_Ru=Iyy_u*cos(th_u_R)^2+Izz_u*sin(th_u_R)^2; 
Izz_Ru=Iyy_u*sin(th_u_R)^2+Izz_u*cos(th_u_R)^2; 
Iyz_Ru=(Iyy_u-Izz_u)*cos(th_u_R)*sin(th_u_R); 
Izy_Ru=Iyz_Ru; 

% Rotated Moments of Inertia (Left Side) 
Ixx_Lu=Ixx_u; 
Iyy_Lu=Iyy_u*cos(th_u_L)^2+Izz_u*sin(th_u_L)^2; 
Izz_Lu=Iyy_u*sin(th_u_L)^2+Izz_u*cos(th_u_L)^2; 
Iyz_Lu=(Iyy_u-Izz_u)*cos(th_u_L)*sin(th_u_L); 
Izy_Lu=Iyz_Lu; 

 
% Moments of Inertia referred to the CoM (Right Front Leg) 
Ixxg_RFu=Ixx_Ru + mu*(yg_u_R^2 + zg_u_R^2); 
Iyyg_RFu=Iyy_Ru + mu*(xg_u_RF^2 + zg_u_R^2); 
Izzg_RFu=Izz_Ru + mu*(xg_u_RF^2 + yg_u_R^2); 
Ixyg_RFu=-mu*xg_u_RF*yg_u_R; 
Iyxg_RFu=Ixyg_RFu; 
Ixzg_RFu=-mu*xg_u_RF*zg_u_R; 
Izxg_RFu=Ixzg_RFu; 
Iyzg_RFu=Iyz_Ru- mu*yg_u_R*zg_u_R; 
Izyg_RFu=Iyzg_RFu; 
% Inertia Tensor 
I_RFu=[Ixxg_RFu Ixyg_RFu Ixzg_RFu;Iyxg_RFu Iyyg_RFu Iyzg_RFu;Izxg_RFu 

Izyg_RFu Izzg_RFu]; 

  
% Moments of Inertia referred to the CoM (Right Back Leg) 
Ixxg_RBu=Ixx_Ru + mu*(yg_u_R^2 + zg_u_R^2); 
Iyyg_RBu=Iyy_Ru + mu*(xg_u_RB^2 + zg_u_R^2); 
Izzg_RBu=Izz_Ru + mu*(xg_u_RB^2 + yg_u_R^2); 
Ixyg_RBu=-mu*xg_u_RB*yg_u_R; 
Iyxg_RBu=Ixyg_RBu; 
Ixzg_RBu=-mu*xg_u_RB*zg_u_R; 
Izxg_RBu=Ixzg_RBu; 
Iyzg_RBu=Iyz_Ru- mu*yg_u_R*zg_u_R; 
Izyg_RBu=Iyzg_RBu; 
% Inertia Tensor 
I_RBu=[Ixxg_RBu Ixyg_RBu Ixzg_RBu;Iyxg_RBu Iyyg_RBu Iyzg_RBu;Izxg_RBu 

Izyg_RBu Izzg_RBu]; 

  
% Moments of Inertia referred to the base CoM (Left Front Leg) 
Ixxg_LFu=Ixx_Lu + mu*(yg_u_L^2 + zg_u_L^2); 
Iyyg_LFu=Iyy_Lu + mu*(xg_u_LF^2 + zg_u_L^2); 
Izzg_LFu=Izz_Lu + mu*(xg_u_LF^2 + yg_u_L^2); 
Ixyg_LFu=-mu*xg_u_LF*yg_u_L; 
Iyxg_LFu=Ixyg_LFu; 
Ixzg_LFu=-mu*xg_u_LF*zg_u_L; 
Izxg_LFu=Ixzg_LFu; 
Iyzg_LFu=Iyz_Lu- mu*yg_u_L*zg_u_L; 
Izyg_LFu=Iyzg_LFu; 
% Inertia Tensor 
I_LFu=[Ixxg_LFu Ixyg_LFu Ixzg_LFu;Iyxg_LFu Iyyg_LFu Iyzg_LFu;Izxg_LFu 

Izyg_LFu Izzg_LFu]; 
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% Moments of Inertia referred to the base CoM (Left Back Leg) 
Ixxg_LBu=Ixx_Lu + mu*(yg_u_L^2 + zg_u_L^2); 
Iyyg_LBu=Iyy_Lu + mu*(xg_u_LB^2 + zg_u_L^2); 
Izzg_LBu=Izz_Lu + mu*(xg_u_LB^2 + yg_u_L^2); 
Ixyg_LBu=-mu*xg_u_LB*yg_u_L; 
Iyxg_LBu=Ixyg_LBu; 
Ixzg_LBu=-mu*xg_u_LB*zg_u_L; 
Izxg_LBu=Ixzg_LBu; 
Iyzg_LBu=Iyz_Lu- mu*yg_u_L*zg_u_L; 
Izyg_LBu=Iyzg_LBu; 
% Inertia Tensor 
I_LBu=[Ixxg_LBu Ixyg_LBu Ixzg_LBu;Iyxg_LBu Iyyg_LBu Iyzg_LBu;Izxg_LBu 

Izyg_LBu Izzg_LBu]; 

  
%% ------------INERTIA MOMENTS OF THE LOWER LEG SEGMENTS------------------- 

%Inertia wrt principal axes  

Ixx_l=ml*((thick)^2 + (l_l)^2)/12; 
Iyy_l=ml*((thick)^2 + (thick)^2)/12; 
Izz_l=ml*((thick)^2 + (l_l)^2)/12; 

 
% Distance u_R-CoM (Right Side) 
xg_l_RF=Dx; 
xg_l_RB=-Dx; 
yg_l_R=Dy+(l_l/2)*cos(th_l_R); 
zg_l_R=-(Dz-d)+(l_l/2)*sin(th_l_R); 

% Distance l_L-CoM (Left Side) 
xg_l_LF=Dx; 
xg_l_LB=-Dx; 
yg_l_L=Dy+(l_l/2)*cos(th_l_L); 
zg_l_L=-(Dz-d)+(l_l/2)*sin(th_l_L); 

 
% Rotated Moments of Inertia (Right Side) 
Ixx_Rl=Ixx_l; 
Iyy_Rl=Iyy_l*cos(th_l_R)^2+Izz_l*sin(th_l_R)^2; 
Izz_Rl=Iyy_l*sin(th_l_R)^2+Izz_l*cos(th_l_R)^2; 
Iyz_Rl=(Iyy_l-Izz_l)*cos(th_l_R)*sin(th_l_R); 
Izy_Rl=Iyz_Rl; 

% Rotated Moments of Inertia (Left Side) 
Ixx_Ll=Ixx_l; 
Iyy_Ll=Iyy_l*cos(th_l_L)^2+Izz_l*sin(th_l_L)^2; 
Izz_Ll=Iyy_l*sin(th_l_L)^2+Izz_l*cos(th_l_L)^2; 
Iyz_Ll=(Iyy_l-Izz_l)*cos(th_l_L)*sin(th_l_L); 
Izy_Ll=Iyz_Ll; 

 

  
% Moments of Inertia referred to the base CoM (Right Front Leg) 
Ixxg_RFl=Ixx_Rl + ml*(yg_l_R^2 + zg_l_R^2); 
Iyyg_RFl=Iyy_Rl + ml*(xg_l_RF^2 + zg_l_R^2); 
Izzg_RFl=Izz_Rl + ml*(xg_l_RF^2 + yg_l_R^2); 
Ixyg_RFl=-ml*xg_l_RF*yg_l_R; 
Iyxg_RFl=Ixyg_RFl; 
Ixzg_RFl=-ml*xg_l_RF*zg_l_R; 
Izxg_RFl=Ixzg_RFl; 
Iyzg_RFl=Iyz_Rl- ml*yg_l_R*zg_l_R; 
Izyg_RFl=Iyzg_RFl; 
% Inertia Tensor 
I_RFl=[Ixxg_RFl Ixyg_RFl Ixzg_RFl;Iyxg_RFl Iyyg_RFl Iyzg_RFl;Izxg_RFl 

Izyg_RFl Izzg_RFl]; 
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% Moments of Inertia referred to the base CoM (Right Back Leg) 
Ixxg_RBl=Ixx_Rl + ml*(yg_l_R^2 + zg_l_R^2); 
Iyyg_RBl=Iyy_Rl + ml*(xg_l_RB^2 + zg_l_R^2); 
Izzg_RBl=Izz_Rl + ml*(xg_l_RB^2 + yg_l_R^2); 
Ixyg_RBl=-ml*xg_l_RB*yg_l_R; 
Iyxg_RBl=Ixyg_RBl; 
Ixzg_RBl=-ml*xg_l_RB*zg_l_R; 
Izxg_RBl=Ixzg_RBl; 
Iyzg_RBl=Iyz_Rl- ml*yg_l_R*zg_l_R; 
Izyg_RBl=Iyzg_RBl; 
% Inertia Tensor 
I_RBl=[Ixxg_RBl Ixyg_RBl Ixzg_RBl;Iyxg_RBl Iyyg_RBl Iyzg_RBl;Izxg_RBl 

Izyg_RBl Izzg_RBl]; 

  
% Moments of Inertia referred to the base CoM (Left Front Leg) 
Ixxg_LFl=Ixx_Ll + ml*(yg_l_L^2 + zg_l_L^2); 
Iyyg_LFl=Iyy_Ll + ml*(xg_l_LF^2 + zg_l_L^2); 
Izzg_LFl=Izz_Ll + ml*(xg_l_LF^2 + yg_l_L^2); 
Ixyg_LFl=-ml*xg_l_LF*yg_l_L; 
Iyxg_LFl=Ixyg_LFl; 
Ixzg_LFl=-ml*xg_l_LF*zg_l_L; 
Izxg_LFl=Ixzg_LFl; 
Iyzg_LFl=Iyz_Ll- ml*yg_l_L*zg_l_L; 
Izyg_LFl=Iyzg_LFl; 
% Inertia Tensor 
I_LFl=[Ixxg_LFl Ixyg_LFl Ixzg_LFl;Iyxg_LFl Iyyg_LFl Iyzg_LFl;Izxg_LFl 

Izyg_LFl Izzg_LFl]; 

  
% Moments of Inertia referred to the base CoM (Left Back Leg) 
Ixxg_LBl=Ixx_Ll + ml*(yg_l_L^2 + zg_l_L^2); 
Iyyg_LBl=Iyy_Ll + ml*(xg_l_LB^2 + zg_l_L^2); 
Izzg_LBl=Izz_Ll + ml*(xg_l_LB^2 + yg_l_L^2); 
Ixyg_LBl=-ml*xg_l_LB*yg_l_L; 
Iyxg_LBl=Ixyg_LBl; 
Ixzg_LBl=-ml*xg_l_LB*zg_l_L; 
Izxg_LBl=Ixzg_LBl; 
Iyzg_LBl=Iyz_Ll- ml*yg_l_L*zg_l_L; 
Izyg_LBl=Iyzg_LBl; 
% Inertia Tensor 
I_LBl=[Ixxg_LBl Ixyg_LBl Ixzg_LBl;Iyxg_LBl Iyyg_LBl Iyzg_LBl;Izxg_LBl 

Izyg_LBl Izzg_LBl]; 

  
%%--------------------TOTAL MOMENT OF INERTIA------------------------------ 

  
Ir=I_b+I_mr+I_RFu+I_RBu+I_LFu+I_LBu+I_RFl+I_RBl+I_LFl+I_LBl; 
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Appendix C Arduino Code 

This Appendix includes the full code used in the prototype during the tests. The code 

is divided in four sections. In the first one, the library files are included and the variables 

are defined. The second one includes the code for initialization of the serial port, 

sensors and servo motors. The third section consists in the main program, which 

includes the program logic and decision flowchart. The last section includes all the 

functions that have been created and used in the main program.  

 

/*INCLUDE LIBRARIES AND VARIABLES DEFINITION*/ 

 

 

//Include library files 

#include <Wire.h> 

#include <VL53L0X.h> 

#include "I2Cdev.h" 

#include "MPU6050.h" 

#include "Kalman.h" 

 

//Define timers and time variables 

uint32_t start, finish, timer1, currMillis, prevMillis=0; 

double duration, t_delay, Ts=0.05; 

 

//Distance sensor variables 

VL53L0X sensor; 

uint16_t sensorRange; 

double filter, prevFilter, gain=0.25; 

boolean approach=0; 

 

//Force sensors and force controller variables 

int sensorPinLF=1, sensorPinLB=7, sensorPinRF=2, sensorPinRB=6, tot, 

sensorValueLF = 0, sensorValueLB = 0, sensorValueRF = 0, sensorValueRB = 0;  

double e_f, e1_lf, e1_rf, e1_lb, e1_rb, f_pd, incr=0.002, incr2=0.0002; 

double kp_lf=0.00025, kd_lf=0.000025, kp_rf=0.00025, kd_rf=0.000025, 

kp_lb=0.00025, kd_lb=0.000025, kp_rb=0.00025, kd_rb=0.000025, alpha1=0.75; 

boolean contactLF, contactLB, contactRF, contactRB, touchedLF, touchedLB, 

touchedRF, touchedRB; 

 

//PID variables 

double e1_roll, delta_u_roll=0, e1_pitch, delta_u_pitch=0, e_roll, sp_r=0, 

e_pitch, sp_p=0.02; 

//SMC variables 

double s_r, s_p, psi_r=0.2, psi_p=0.2, sat_s, u_sat=0, u_vel_r=0, 

u_vel_p=0, Kd_r=0.1, Kd_p=0.035; 

double c2r=0, c1r=0.2, c2p=0, c1p=0.05, wr, wp, u_st; 

//Attitude controller Output 

double vz_lf, vz_rf, vz_lb, vz_rb; 
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//Inertial Measurement Unit 

MPU6050 imu; //Define sensor 

int16_t ax, ay, az; 

int16_t gx, gy, gz; 

Kalman kalmanX, kalmanY; //Define Kalman object 

double gyroXrate, gyroYrate, gyroX, gyroY, roll, pitch, roll2, pitch2; 

double accX, accY, accZ, alpha=0.5, dt; 

 

//Angles Initial Positions 

float th_LFh_0=-3.14/2 + 1.571, th_LFk_0=-1.571, th_RFh_0=-3.14/2 + 1.571, 

th_RFk_0=-1.571; 

float th_LBh_0=-3.14/2 + 1.571, th_LBk_0=-1.571, th_RBh_0=-3.14/2 + 1.571, 

th_RBk_0=-1.571; 

double th_LFh, th_LFk, th_RFh, th_RFk, th_LBh, th_LBk, th_RBh, th_RBk; 

double th_LFh1, th_LFk1, th_RFh1, th_RFk1, th_LBh1, th_LBk1, th_RBh1, 

th_RBk1; 

//Legs Initial Position 

double Y_max=-0.16, Y_min=-0.035, L1=0.093, L2=0.096; 

double x_lf_0=-(L1*cos(th_LFh_0)+L2*cos(th_LFh_0+th_LFk_0)), 

y_lf_0=L1*sin(th_LFh_0)+L2*sin(th_LFh_0+th_LFk_0), x_lf=x_lf_0, 

y_lf=y_lf_0; 

double x_rf_0=L1*cos(th_RFh_0)+L2*cos(th_RFh_0+th_RFk_0), 

y_rf_0=L1*sin(th_RFh_0)+L2*sin(th_RFh_0+th_RFk_0), x_rf=x_rf_0, 

y_rf=y_rf_0; 

double x_lb_0=-(L1*cos(th_LBh_0)+L2*cos(th_LBh_0+th_LBk_0)), 

y_lb_0=L1*sin(th_LBh_0)+L2*sin(th_LBh_0+th_LBk_0), x_lb=x_lb_0, 

y_lb=y_lb_0; 

double x_rb_0=L1*cos(th_RBh_0)+L2*cos(th_RBh_0+th_RBk_0), 

y_rb_0=L1*sin(th_RBh_0)+L2*sin(th_RBh_0+th_RBk_0), x_rb=x_rb_0, 

y_rb=y_rb_0; 

 

//Encoders positions 

int enc_LFh, enc_LFk, enc_LBh, enc_LBk, enc_RFh, enc_RFk, enc_RBh, enc_RBk; 

 

boolean landed, ledState=0, appr=0; 

double incrLF, incrRF, incrLB, incrRB; 

int balanced, led_pin = 14, i=20; 

 

//Define dynamixel motors variables 

#include <DynamixelWorkbench.h> 

#define DXL_BUS_SERIAL1 "1"    //Dynamixel on Serial1(USART1)  <-OpenCM9.04 

#define BAUDRATE  1000000 

#define GOAL_SPEED1    150 

#define GOAL_SPEED2    300 

//Motors ID's 

#define LF_h 1 

#define LF_k 2 

#define LB_h 5 

#define LB_k 6 

#define RF_h 3 

#define RF_k 4 

#define RB_h 7 

#define RB_k 8 

 

DynamixelWorkbench dxl_wb; 

 

 

 

 

 

/*INITIALIZATION*/ 
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void setup() { 

  // Initialize serial port, sensors and motors 

  Serial.begin(BAUDRATE); 

  //Serial2.begin(115200); //(Wireless) 

  Wire.begin(); 

  imu.initialize(); 

 

  sensor.init();  //Distance sensor 

  sensor.setTimeout(500); 

  sensor.startContinuous();   

   

  dxl_wb.begin(DXL_BUS_SERIAL1, BAUDRATE);  //Servo motors 

  servosInit();        //Initialize motors 

  servosSpeed(GOAL_SPEED1); //Set motors operational speed 

  servosLimits();  //Set motors position limits 

} 

 

/*MAIN PROGRAM*/ 

 

void loop() { 

 

  start=millis(); // read start time 

 

  distanceSensor(); // Execute sensors sub-routines 

  footSensors(); 

  KalmanAngle(); 

 

  // If distance>500mm put legs in flying position 

  if (filter>500){ 

    flightPose(); 

    goalAngles(); 

    setPosition();     

    resetvalues();      

  } 

  // Below 500mm move legs to landing position 

  else if (filter<500 && filter>300){   

    landingPose(); 

    goalAngles(); 

    setPosition();     

    if (appr==1){ 

      servosSpeed(GOAL_SPEED1); //Set motors speed 

      appr=0; 

    }        

  } 

  // If distance>300mm initialize landing procedure 

  else if (filter<300){ 

    if (appr==0){ 

      appr=1; 

      servosSpeed(GOAL_SPEED2); //Set motors speed 

    } 

    //Check how many legs are in ground contact? 

    if (tot<4){ 

      tot=touchedLF + touchedLB + touchedRF + touchedRB; 

    } 

    //Check body attitude. Is it balanced? 

    if (roll>-0.01 && roll<0.01 && pitch>0.01 && pitch<0.03){ 

      balanced=balanced + 1; //Increase counter if it’s balanced 

    } 

    else {balanced=0;} //Restart counter if not 

    //Landing started. Execute controllers. Stage 1 
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    if (tot>=1 && tot<4 && landed==0){ 

     led_blink(); //LED blinking indicates landing started 

     levelcontroller1(); //PD attitude controller 

     //SMC(); //SMC controller 

     //STSMC(); //Super-Twisting controller 

     landing();     

    } 

    else if (tot==4 && landed==0){ 

        if (balanced>=i){ //If all condition met --> landing finished 

          fixPosition(); //fix legs to the current position 

          landed=1; 

          led_on(); //LED on indicates landing finished 

          servosSpeed(GOAL_SPEED1); 

        } 

        else if (balanced<i){ //keep executing level controller. Stage 2 

          led_blink(); 

          levelcontroller2();//PD attitude controller 

          //SMC(); //SMC controller 

          //STSMC(); //Super-Twisting controller 

          landing2(); 

        } 

      } 

      else if (filter>250){ 

      landingPose(); 

      resetvalues(); 

      led_off(); 

      } 

      if (landed==0){ //while landing is not finished 

       goalFeetXY(); //execute leg kinematics 

       goalAngles(); 

       setPosition(); //and convert to motors position commands 

 

  } 

  readmotors(); //read motors positions 

 

  finish=millis(); // read finish time 

  //Calculate cycle time duration 

  duration=(double)finish - (double)start; 

  /*To obtain a fixed sample time, the cycle time duration is subtracted    

  from the sample time, and the difference is added to the code as a delay*/ 

  t_delay=Ts*1000-duration; 

  if (t_delay>0){delay(t_delay);} 

} 

 

/*FUNCTIONS*/ 

 

//This function provides the feet Cartesian coordinates for flight position 

void flightPose(){ 

 

  y_lf=Y_min; 

  y_rf=Y_min; 

  y_lb=Y_min; 

  y_rb=Y_min; 

  x_lf=-0.067; 

  x_rf=0.067; 

  x_lb=-0.067; 

  x_rb=0.067; 

      

} 

 

//This function provides feet Cartesian coordinates for landing position 
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void landingPose(){ 

 

  y_lf=y_lf_0; 

  y_rf=y_rf_0; 

  y_lb=y_lb_0; 

  y_rb=y_rb_0; 

  x_lf=x_lf_0; 

  x_rf=x_rf_0; 

  x_lb=x_lb_0; 

  x_rb=x_rb_0;  

} 

//This function initialises the 8 servo motors 

void servosInit(){   

  dxl_wb.ping(LF_h); 

  dxl_wb.ping(LF_k); 

  dxl_wb.ping(RF_h); 

  dxl_wb.ping(RF_k); 

  dxl_wb.ping(LB_h); 

  dxl_wb.ping(LB_k); 

  dxl_wb.ping(RB_h); 

  dxl_wb.ping(RB_k); 

     

  dxl_wb.jointMode(LF_h); 

  dxl_wb.jointMode(LF_k); 

  dxl_wb.jointMode(RF_h); 

  dxl_wb.jointMode(RF_k); 

  dxl_wb.jointMode(LB_h); 

  dxl_wb.jointMode(LB_k); 

  dxl_wb.jointMode(RB_h); 

  dxl_wb.jointMode(RB_k);  

} 

/*This function reads the encoder of the 8 servo motors and returns the 

angular position in radians*/ 

void readmotors(){ 

  

  th_LFh1=enc2angl(dxl_wb.itemRead(LF_h, "Present_Position")); 

  th_LFk1=enc2angl(dxl_wb.itemRead(LF_k, "Present_Position")); 

  th_LBh1=enc2angl(dxl_wb.itemRead(LB_h, "Present_Position")); 

  th_LBk1=enc2angl(dxl_wb.itemRead(LB_k, "Present_Position")); 

  th_RFh1=enc2angl(dxl_wb.itemRead(RF_h, "Present_Position")); 

  th_RFk1=enc2angl(dxl_wb.itemRead(RF_k, "Present_Position")); 

  th_RBh1=enc2angl(dxl_wb.itemRead(RB_h, "Present_Position")); 

  th_RBk1=enc2angl(dxl_wb.itemRead(RB_k, "Present_Position")); 

       

} 

/*This function sets the moving speed to the 8 servo motors*/ 

void servosSpeed(int vel){ 

  dxl_wb.itemWrite(LF_h, "Moving_Speed", vel); 

  dxl_wb.itemWrite(LF_k, "Moving_Speed", vel); 

  dxl_wb.itemWrite(RF_h, "Moving_Speed", vel); 

  dxl_wb.itemWrite(RF_k, "Moving_Speed", vel); 

  dxl_wb.itemWrite(LB_h, "Moving_Speed", vel); 

  dxl_wb.itemWrite(LB_k, "Moving_Speed", vel); 

  dxl_wb.itemWrite(RB_h, "Moving_Speed", vel); 

  dxl_wb.itemWrite(RB_k, "Moving_Speed", vel);       

} 

 

 

 

/*This function sets the upper and lower position limits of the 8 servo 

motors*/ 
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void servosLimits(){ 

  //check EXCEL file: MX_AX_AngleLimits.xlsx 

  dxl_wb.itemWrite(LF_h, "CW_Angle_Limit", 611); 

  dxl_wb.itemWrite(LF_h, "CCW_Angle_Limit", 963); 

  dxl_wb.itemWrite(LF_k, "CW_Angle_Limit", 51); 

  dxl_wb.itemWrite(LF_k, "CCW_Angle_Limit", 512); 

  dxl_wb.itemWrite(RF_h, "CW_Angle_Limit", 61); 

  dxl_wb.itemWrite(RF_h, "CCW_Angle_Limit", 413); 

  dxl_wb.itemWrite(RF_k, "CW_Angle_Limit", 512); 

  dxl_wb.itemWrite(RF_k, "CCW_Angle_Limit", 973); 

       

  dxl_wb.itemWrite(LB_h, "CW_Angle_Limit", 611); 

  dxl_wb.itemWrite(LB_h, "CCW_Angle_Limit", 963);  

  dxl_wb.itemWrite(LB_k, "CW_Angle_Limit", 51); 

  dxl_wb.itemWrite(LB_k, "CCW_Angle_Limit", 512);   

  dxl_wb.itemWrite(RB_h, "CW_Angle_Limit", 61); 

  dxl_wb.itemWrite(RB_h, "CCW_Angle_Limit", 413);    

  dxl_wb.itemWrite(RB_k, "CW_Angle_Limit", 512); 

  dxl_wb.itemWrite(RB_k, "CCW_Angle_Limit", 973);   

} 

 

/*This function reads the pressure from the force sensors and determines the 

state of each foot. 

For each foot, the “touched” flag is set to high if at any moment during the 

landing the pressure at this foot reaches the threshold value. 

The “contact” flag indicates wether at the present moment, a leg is on contact 

or not.*/ 

void footSensors(){ 

 

  sensorValueLF = analogRead(sensorPinLF)*alpha1+sensorValueLF*(1-alpha1); 

    if (touchedLF==0){if (sensorValueLF>300){touchedLF=1;}} 

    else if (touchedLF==1){ 

      if (contactLF==0){if (sensorValueLF>300){contactLF=1;}} 

      else {if (sensorValueLF<300){contactLF=0; e1_lf=0;}} 

    } 

    

  sensorValueRB = analogRead(sensorPinRB)*alpha1+sensorValueRB*(1-alpha1); 

    if (touchedRB==0){if (sensorValueRB>300){touchedRB=1;}} 

    else if (touchedRB==1){ 

      if (contactRB==0){if (sensorValueRB>300){contactRB=1;}} 

      else {if (sensorValueRB<300){contactRB=0; e1_rb=0;}} 

    } 

 

  sensorValueLB = analogRead(sensorPinLB)*alpha1+sensorValueLB*(1-alpha1); 

    if (touchedLB==0){if (sensorValueLB>300){touchedLB=1;}} 

    else if (touchedLB==1){ 

      if (contactLB==0){if (sensorValueLB>300){contactLB=1;}} 

      else {if (sensorValueLB<300){contactLB=0; e1_lb=0;}} 

    } 

     

  sensorValueRF = analogRead(sensorPinRF)*alpha1+sensorValueRF*(1-alpha1); 

    if (touchedRF==0){if (sensorValueRF>300){touchedRF=1;}} 

    else if (touchedRF==1){ 

      if (contactRF==0){if (sensorValueRF>300){contactRF=1;}} 

      else {if (sensorValueRF<300){contactRF=0; e1_rf=0;}} 

    }     

} 

 

 

/*This function is the digital implementation of the PD force controller*/ 
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double PD_FS(int fs_value, int setpoint, double &e_prev, double kp, double 

kd){ //&-->call by reference 

   e_f=setpoint-fs_value; 

   f_pd=kp*e_f+kd*(e_f-e_prev)/Ts; 

   e_prev=e_f; 

   return f_pd; 

} 

 

/*This function is the digital implementation of the PD attitude controller 

during Stage 1*/ 

void levelcontroller1(){ 

  //Roll controller 

  e_roll=sp_r-roll; //Roll error 

  delta_u_roll=0.25*e_roll+0.025*(e_roll-e1_roll)/Ts; //PD output 

  e1_roll=e_roll; //Previous error update 

  //Pitch controller 

  e_pitch=sp_p-pitch;  

  delta_u_pitch=0.07*e_pitch+0.00375*(e_pitch-e1_pitch)/Ts; 

  e1_pitch=e_pitch; 

  //Feet velocity due to attitude controller 

  vz_lf=delta_u_roll+delta_u_pitch;  

  vz_rf=-delta_u_roll+delta_u_pitch; 

  vz_lb=delta_u_roll-delta_u_pitch; 

  vz_rb=-delta_u_roll-delta_u_pitch; 

 

} 

/*This function is the digital implementation of the PD attitude controller 

during Stage 2*/ 

void levelcontroller2(){ 

  //Roll controller 

  e_roll=sp_r-roll;  

  delta_u_roll=0.5*e_roll+0.05*(e_roll-e1_roll)/Ts; 

  e1_roll=e_roll; 

  //Pitch controller 

  e_pitch=sp_p-pitch;  

  delta_u_pitch=0.075*e_pitch+0.0075*(e_pitch-e1_pitch)/Ts; 

  e1_pitch=e_pitch; 

  //Feet velocity due to attitude controller 

  vz_lf=delta_u_roll+delta_u_pitch; 

  vz_rf=-delta_u_roll+delta_u_pitch; 

  vz_lb=delta_u_roll-delta_u_pitch; 

  vz_rb=-delta_u_roll-delta_u_pitch; 

 

} 

 

/*This function is the digital implementation of the SMC attitude controller 

with boundary layer*/ 

void SMC(){ 

  //Roll controller 

  s_r=sp_r-roll; //Roll error 

  if (abs(s_r)>psi_r) {sat_s=s_r/abs(s_r);} //sat function 

  else {sat_s=s_r/psi_r;} 

  u_vel_r =-Kd_r*sat_s; //SMC output 

  e1_roll=e_roll;  //Previous error update 

  //Pitch controller 

  s_p=sp_p-pitch; //Pitch error 

  if (abs(s_p)>psi_p) {sat_s=s_p/abs(s_p);} 

  else {sat_s=s_p/psi_p;} 

  u_vel_p =-Kd_p*sat_s; 

  e1_pitch=e_pitch; 

  //Feet velocity due to attitude controller 
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  vz_lf=-u_vel_r-u_vel_p; 

  vz_rf=u_vel_r-u_vel_p; 

  vz_lb=-u_vel_r+u_vel_p; 

  vz_rb=u_vel_r+u_vel_p; 

} 

 

/*This function is the digital implementation of the Super-Twisting SMC 

attitude controller*/ 

void STSMC(){ 

  //Roll controller 

  s_r=sp_r-roll; 

  wr=wr+(-c2r*s_r/abs(s_r))*Ts; 

  //u_st=-c1r*sqrt(abs(s_r))*(s_r/abs(s_r))+wr; 

  u_st=-c1r*pow(abs(s_r),0.75)*(s_r/abs(s_r))+wr; 

  u_vel_r=u_st; 

  e1_roll=e_roll; 

  //Pitch controller 

  s_p=sp_p-pitch; 

  wp=wp+(-c2p*s_p/abs(s_p))*Ts; 

  //u_st=-c1p*sqrt(abs(s_p))*(s_p/abs(s_p))+wp; 

  u_st=-c1p*pow(abs(s_p),0.75)*(s_p/abs(s_p))+wp; 

  u_vel_p=u_st; 

  e1_pitch=e_pitch; 

  //Feet velocity due to attitude controller 

  vz_lf=-u_vel_r-u_vel_p; 

  vz_rf=u_vel_r-u_vel_p; 

  vz_lb=-u_vel_r+u_vel_p; 

  vz_rb=u_vel_r+u_vel_p; 

} 

 

 

/*This function defines the increase of leg length during landing Stage 1. 

If a leg hasn’t touched the the ground it will retract at a fixed rate. 

If it has already touched the ground, and it’s in contact at the moment it 

will retract according to the controller output.  

Otherwise it will stay as it is.*/ 

void landing(){ 

  if (touchedLF==0){ 

    incrLF=incrLF - incr; if (incrLF <= Y_max) {incrLF=Y_max;}} 

  else { 

    if (contactLF==1){ 

      incrLF=incrLF-PD_FS(sensorValueLF,400,e1_lf,kp_lf,kd_lf)*Ts+ 

      vz_lf*Ts; 

      if (incrLF >= 0.065) {incrLF=0.065;}} 

    else {incrLF=incrLF;} 

  } 

 

  if (touchedLB==0){ 

    incrLB=incrLB - incr; if (incrLB <= Y_max) {incrLB=Y_max;}} 

  else { 

    if (contactLB==1){ 

      incrLB=incrLB-PD_FS(sensorValueLB,400,e1_lb,kp_lb,kd_lb)*Ts+ 

      vz_lb*Ts; 

      if (incrLB >= 0.065) {incrLB=0.065;}} 

    else {incrLB=incrLB;} 

  } 

   

  if (touchedRF==0){ 

    incrRF=incrRF - incr; if (incrRF <= Y_max) {incrRF=Y_max;}} 

  else { 

    if (contactRF==1){ 
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      incrRF=incrRF-PD_FS(sensorValueRF,400,e1_rf,kp_rf,kd_rf)*Ts+ 

      vz_rf*Ts; 

      if (incrRF >= 0.065) {incrRF=0.065;}} 

    else {incrRF=incrRF;} 

  } 

 

  if (touchedRB==0){ 

    incrRB=incrRB - incr; if (incrRB <= Y_max) {incrRB=Y_max;}} 

  else { 

    if (contactRB==1){ 

      incrRB=incrRB-PD_FS(sensorValueRB,400,e1_rb,kp_rb,kd_rb)*Ts+ 

      vz_rb*Ts; 

      if (incrRB >= 0.065) {incrRB=0.065;}} 

    else {incrRB=incrRB;} 

  }  

} 

 

 

/*This function defines the increase of leg length during landing Stage 2 

when all legs have touched the ground. If a leg is in contact it will adjust 

according to the attitude controller only*/ 

void landing2(){ 

  if (contactLF==0) 

    {incrLF=incrLF-incr2+vz_lf*Ts; if (incrLF <= Y_max) {incrLF=Y_max;}} 

  else {incrLF=incrLF + vz_lf*Ts;}   

 

  if (contactRF==0) 

    {incrRF=incrRF-incr2+vz_rf*Ts; if (incrRF <= Y_max) {incrRF=Y_max;}} 

  else {incrRF=incrRF + vz_rf*Ts;}   

 

  if (contactLB==0) 

    {incrLB=incrLB-incr2+vz_lb*Ts; if (incrLB <= Y_max) {incrLB=Y_max;}} 

  else {incrLB=incrLB + vz_lb*Ts;}   

 

  if (contactRB==0) 

    {incrRB=incrRB-incr2+vz_rb*Ts; if (incrRB <= Y_max) {incrRB=Y_max;}} 

  else {incrRB=incrRB + vz_rb*Ts;}                                 

} 

 

/*This function reads and filters the output from the distance sensor*/ 

void distanceSensor(){ 

 

  sensorRange=sensor.readRangeContinuousMillimeters(); 

  filter=prevFilter+gain*(sensorRange-prevFilter); 

  prevFilter=filter; 

} 

 

/*This function reads the output from the IMU. It combines the output of the 

3-axis accelerometer and 3-axis gyroscope using a Kalman filter*/ 

void KalmanAngle(){ 

  //Take accelerometor and gyroscope readings in x, y, and z axis 

  imu.getMotion6(&ax, &ay, &az, &gx, &gy, &gz); //Read sensor 

  //Compute roll and pitch angles from accelerometer 

  accX=ax*alpha + (accX*(1-alpha)); //Pre-filter 

  accY=ay*alpha + (accY*(1-alpha)); 

  accZ=az*alpha + (accZ*(1-alpha)); 

  roll2=atan2(accX, sqrt(accZ*accZ + accY*accY))+0.17; //Roll 

  pitch2=atan2(accY, accZ); //Pitch 

  //Compute roll and pitch angles from gyroscope 

  gyroX=gy*alpha + (gyroX*(1-alpha)); //Pre-filter 

  gyroY=gx*alpha + (gyroY*(1-alpha)); 
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  gyroXrate=-(gyroX/131.0*DEG_TO_RAD); //x angular velocity 

  gyroYrate=(gyroY/131.0*DEG_TO_RAD);  //y angular velocity 

  dt=(millis()-timer1)*0.001; 

  //Use Kalman filter to combine readings from both sensors 

  roll = kalmanX.getAngle(roll2, gyroXrate, dt); 

  pitch = kalmanY.getAngle(pitch2, gyroYrate, dt); 

  timer1=millis();   

} 

 

/*This function restarts all system states or accumulative values (integrals) 

if after or during the landing a height threshold is reached, so the gear is 

set at initial state.*/ 

void resetvalues(){ 

  landed=0; 

  incrLF=0; 

  incrLB=0; 

  incrRF=0; 

  incrRB=0; 

  wr=0; 

  wp=0; 

  u_vel_r=0; 

  u_vel_p=0; 

  e1_roll=0; 

  touchedLF=0; 

  touchedRF=0; 

  touchedLB=0; 

  touchedRB=0; 

  contactLF=0; 

  contactRF=0; 

  contactLB=0; 

  contactRB=0; 

  tot=0; 

} 

 

/*This function defines the LED blinking during the landing operation*/ 

void led_blink() { 

  currMillis = millis(); 

  if (currMillis - prevMillis >= 150) { 

    // save the last time you blinked the LED 

    prevMillis = currMillis; 

    // if the LED is off turn it on and vice-versa: 

    if (ledState == LOW) {ledState = HIGH;}  

    else {ledState = LOW;} 

    // set the LED with the ledState of the variable: 

    digitalWrite(led_pin, ledState); 

  } 

} 

 

/*This function turns the LED off*/ 

void led_off() { 

  digitalWrite(led_pin, HIGH);  // set to as HIGH LED is turn-off 

} 

 

/*This function turns the LED on*/ 

void led_on() { 

  digitalWrite(led_pin, LOW);   // set to as LOW LED is turn-on 

} 

 

/*This function provides the desired feet position in Cartesian coordinates. 

The y-coordinate is a function of the controller output. Kinematic limits 

are imposed.*/ 
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void goalFeetXY(){ 

  y_lf=y_lf_0 + incrLF; 

    if (y_lf < Y_max) {y_lf=Y_max;} 

    else if (y_lf > Y_min) {y_lf=Y_min;} 

  y_rf=y_rf_0 + incrRF; 

    if (y_rf < Y_max) {y_rf=Y_max;} 

    else if (y_rf > Y_min) {y_rf=Y_min;} 

  y_lb=y_lb_0 + incrLB; 

    if (y_lb < Y_max) {y_lb=Y_max;} 

    else if (y_lb > Y_min) {y_lb=Y_min;} 

  y_rb=y_rb_0 + incrRB; 

    if (y_rb < Y_max) {y_rb=Y_max;} 

    else if (y_rb > Y_min) {y_rb=Y_min;}     

} 

 

/*This function calcualates the hip and knee angles for each foot as a 

function of the Cartesian coordinates (Inverse Kinematics). Then it converts 

the angles into encoder values for the motors*/ 

void goalAngles(){ 

// Left front leg  

  th_LFh = acos((-sq(L2)+sq(L1)+sq(x_lf)+sq(y_lf))/(2*L1*sqrt(sq(x_lf)+  

    sq(y_lf)))) + atan(x_lf/y_lf); 

  th_LFk = acos((-sq(x_lf)-sq(y_lf)+sq(L1)+sq(L2))/(2*L1*L2)) - 3.1416;     

  enc_LFh = angl2enc (th_LFh); 

  enc_LFk = angl2enc (th_LFk); 

// Left back leg  

  th_LBh = acos((-sq(L2)+sq(L1)+sq(x_lb)+sq(y_lb))/(2*L1*sqrt(sq(x_lb)+  

    sq(y_lb)))) + atan(x_lb/y_lb); 

  th_LBk = acos((-sq(x_lb)-sq(y_lb)+sq(L1)+sq(L2))/(2*L1*L2)) - 3.1416;    

  enc_LBh = angl2enc (th_LBh); 

  enc_LBk = angl2enc (th_LBk); 

// Right front leg  

  th_RFh = - acos((-sq(L2)+sq(L1)+sq(x_rf)+sq(y_rf))/(2*L1*sqrt(sq(x_rf)+  

    sq(y_rf)))) + atan(x_rf/y_rf); 

  th_RFk = - acos((-sq(x_rf)-sq(y_rf)+sq(L1)+sq(L2))/(2*L1*L2)) + 3.1416;  

  enc_RFh = angl2enc (th_RFh); 

  enc_RFk = angl2enc (th_RFk); 

// Right back leg  

  th_RBh = - acos((-sq(L2)+sq(L1)+sq(x_rb)+sq(y_rb))/(2*L1*sqrt(sq(x_rb)+  

    sq(y_rb)))) + atan(x_rb/y_rb); 

  th_RBk = - acos((-sq(x_rb)-sq(y_rb)+sq(L1)+sq(L2))/(2*L1*L2)) + 3.1416;   

  enc_RBh = angl2enc (th_RBh); 

  enc_RBk = angl2enc (th_RBk); 

} 

 

/*Function enc2angl converts encoder values returned by the servo motor into 

readable angular positions in radians*/ 

double enc2angl (double enc){ 

  double angle = (enc-512)/512*150/180*3.1416; 

  return angle; 

} 

/*Function angl2enc converts angular positions in radians into encoder values 

that can be interpreted by the servo motors*/ 

int angl2enc (double angl){ 

  double enc = angl/3.1416*180/150*512+512; 

  return (int) enc; 

} 

 

/*This function provides position commands to all motors. The input is the 

encoder value for the desired angular position*/ 

void setPosition(){ 
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  dxl_wb.itemWrite(LF_h, "Goal_Position", enc_LFh); 

  dxl_wb.itemWrite(LF_k, "Goal_Position", enc_LFk); 

  dxl_wb.itemWrite(RF_h, "Goal_Position", enc_RFh); 

  dxl_wb.itemWrite(RF_k, "Goal_Position", enc_RFk); 

  dxl_wb.itemWrite(LB_h, "Goal_Position", enc_LBh); 

  dxl_wb.itemWrite(LB_k, "Goal_Position", enc_LBk); 

  dxl_wb.itemWrite(RB_h, "Goal_Position", enc_RBh); 

  dxl_wb.itemWrite(RB_k, "Goal_Position", enc_RBk); 

} 

 

/*This function fixes the legs in its current position by reading the current 

position and command it as the goal position*/ 

void fixPosition(){ 

  dxl_wb.itemWrite(LF_h, "Goal_Position",      

     dxl_wb.itemRead(LF_h,"Present_Position")); 

  dxl_wb.itemWrite(LF_k, "Goal_Position",  

     dxl_wb.itemRead(LF_k,"Present_Position")); 

  dxl_wb.itemWrite(RF_h, "Goal_Position",  

     dxl_wb.itemRead(RF_h,"Present_Position")); 

  dxl_wb.itemWrite(RF_k, "Goal_Position",  

     dxl_wb.itemRead(RF_k,"Present_Position")); 

  dxl_wb.itemWrite(LB_h, "Goal_Position",  

     dxl_wb.itemRead(LB_h,"Present_Position")); 

  dxl_wb.itemWrite(LB_k, "Goal_Position",  

     dxl_wb.itemRead(LB_k,"Present_Position")); 

  dxl_wb.itemWrite(RB_h, "Goal_Position",  

     dxl_wb.itemRead(RB_h,"Present_Position")); 

  dxl_wb.itemWrite(RB_k, "Goal_Position",  

     dxl_wb.itemRead(RB_k,"Present_Position")); 

} 
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