
1

A problem in querying recursive patterns with OQL

Cédric Raguenaud, Jessie Kennedy, Peter J. Barclay
School of Computing

Napier University
10 Colinton Road

Edinburgh EH10 5DT
United Kingdom

{c.raguenaud, j.kennedy, p.barclay}@napier.ac.uk

Abstract

This paper analyses the problem generated by recursive patterns in typed query languages such as OQL

[Cattell '97]. Recursive patterns describe hierarchical structures such as those defining classifications or part-

explosion problems. A classification is composed of hierarchies of classes that eventually classify non-class objects.

A part-explosion problem is composed of parts that contain other parts, thereby describing a complex object. They

are commonplace in database schemas and software models but make it impossible to answer some queries that

require the use of either or both attributes from classes and classified objects or attributes from different kinds of

parts. The possible approaches to solve this problem are presented and discussed, and a solution proposed. This

solution involves the creation of a simple well-defined operator that allows the expression of a type selection coupled

with casting and error handling facilities. This way, it becomes possible without type error to query sub-classes of a

particular type without writing programs.

Keywords: digital libraries, object-oriented databases, querying, OQL, patterns

1. Introduction

Recursive patterns occur often in database schemas. Such patterns represent for

example part-explosion problems, where parts may contain other parts to describe a

complex entity (e.g. car parts); classification problems, where classes may contain other

classes and classify other objects (e.g. library classifications); or composite patterns

[Gamma '94] where a generic interface is created for all the classes recursively involved

in the pattern.

Our interest is with classification problems, as found in plant taxonomy. The problem

arose in the Prometheus project [Pullan '00] because the main component of a

taxonomic database is a nested structure based on a recursive pattern. It became clear during the project that some of

the queries taxonomists would be interested in could not be resolved using a typed query language such as OQL.

Recognising that this a general problem, we have therefore developed the concept described in this paper.

Recursive structures such as those used to represent classifications are often modelled as shown in figure 1 (e.g.

Prometheus [Raguenaud '00]). Figure 1 shows the minimal pattern necessary to handle such structures (which we

Figure 1: The

classification pattern

leafclass

classification

2

will refer to as a classification pattern), where three classes are required: a class class, that will represent the classes

that appear in the classification; a leaf class that is the generic class for classified objects; and a classification class,

that subsumes the other two. A relationship between the class class and the classification class captures the recursive

aspect of the problem. This relationship can be either a general association or an aggregation, depending on the

semantics of the classification scheme (Odell [Odell '94] points out that some classifications are not member-bunch-

based models whereas we model our classifications via aggregation). Classes can contain other classes or leaves,

whereas leaves cannot contain other objects.

If such a pattern is used in a schema, one expects the query language offered by the database system to be

able to query the pattern fully. For example, if such a pattern is used to create a library classification of books, it

seems natural to expect the query language to support queries such as “extract the books published by Kennedy in

the category fiction”. However, this kind of structure generates a type problem in typed query languages like OQL

[Cattell '97] and it is impossible to query the different classes appearing in the pattern. As OQL is intended to be a

standard query language for OODBs, this is can be considered a syntactical weakness.

We first define the problem in more detail in section 2 and then we examine the solutions that can be

considered and expose their weaknesses in section 3. We then propose our solution in section 4, we show how the

problem is a generalised problem in OQL and how our solution can be applied in section 5, and we conclude in

section 6.

2. The problem

Figure 2 shows a classification pattern applied to biological classifications.1

Classifications are composed of Groups that contain other Groups, and eventually

Specimens. Groups, that represent biological taxa, have a name and other attributes such

as a type and a publication, but here we use only name for simplicity. Specimens, that

represent physical biological specimens, have a location of collection and other attributes

such as a group of collectors, a barcode, a herbarium code, but only location is

represented in our example. As the analysis of the domain justifies, the relationship

between groups is represented by an aggregation relationship. Groups and Specimens are semantically two entirely

different concepts, however, when the classification pattern (or any other recursive pattern such as a part-explosion

pattern) is used, logically they may serve the same function (as things that can be classified) and therefore can be

seen as the same kind of object (a Classification) in some circumstances. When queries are used in this kind of

schema, the type consistency of the database forbids the utilisation of attributes only defined in the sub-classes when

1 The reader is referred to [Pullan '00] Martin R. Pullan, Mark F. Watson, Jessie B. Kennedy, Cedric

Raguenaud and Roger Hyam, The Prometheus Taxonomic Model: a practical approach to representing multiple

taxonomies, Taxon, 49 (1), pp 55-75, 2000 for more information on biological classifications.

Figure 2: Example

Specimen
location

Classification

Group
name

members

3

the super-class (Classification in our example) is targeted by relationships. For example, when querying sub-Groups

from a Group object point of view, only attributes defined in the Classification class can be used. Therefore, it is

impossible to query the name attribute of a sub-Group. For example in our schema, the query

select g from Group g where g.members.name = “X”

would generate a type error because name is not an attribute of Classification, only an attribute of one of its

sub-classes.

Although this is a good use of object-oriented principles (only inherited attributes can be seen when

polymorphism is used), it is a great limitation that renders impossible the utilisation of particular schemas in practical

applications. For example, in our schema, it is sometimes important to retrieve the name of a Group for constraint

checking purposes (e.g. Group names should follow certain rules), for extraction of meaningful information (e.g.

retrieving all Groups a specific Specimen identified by its location belongs to), or for simply searching the database.

Using standard query languages such as OQL, these queries are impossible, and therefore some information is

impossible to retrieve using the query language. The only solution is to write a program in a high-level language

such as Java [Sun '95] or C++ [Stroustrup '91] that simulates the execution of a query.

In object-oriented programming languages, it is possible to “cast down” objects when the type of the objects

in hand is known, and it is possible to test the type of an object when it is not known. For example, if we know in

advance that the objects we will consider are only Group objects, we can cast the retrieved objects to Group and

thereafter use the properties defined only for these objects. If we do not know in advance the type of the objects we

find (for example, if Classification is used), it is possible to test the type of each object, and discard Specimen

objects, or apply the correct operations on each of the objects retrieved. The drawbacks to this method are that

writing programs is more complicated that simply writing queries, and using the programming language instead of

the query language avoids any benefit from the optimisations a query language might offer.

Since this problem occurs frequently in querying object-oriented schemas, it would seem that an extension to

the object query language is required. Indeed, we could view it as a deficiency of the ODMG model that it can be

used to define schemas that cannot be queried. Clearly, an equivalent of the type test in programming languages (e.g.

instanceof in Java [Sun '95]) is required. However, type test operators are usually used in conjunction with an “if”

statement in programming languages, but there is no equivalent of “if” in OQL and many other query languages.

3. Towards a solution

The pattern presented in section 2 appears to be a good representation of the application domain and captures

well the available information. However as discusses, when querying such a pattern, problems arise because object-

oriented environments ascribe considerable importance to type correctness. Therefore in order to use existing object-

oriented databases with OQL, two kinds of solutions can be considered: the decomposition of the path expression

using joins and changing the schema so that queries are type correct.

4

Figure 3: First solution

3.1. Joins

A way around the problem can be found by decomposing the path expression into many smaller path

expressions and a join. It is possible to express queries such as the one presented in the example above as follows:

select g2 from Group g1, Group g2 where g1.name = “X” and g2.members = g1

which extracts Groups that contain the sub-Group called “X” at the next level in the classification.

However, this notation breaks path expressions and is unnatural, as it becomes impossible to write path

expressions to traverse a graph of objects. Moreover, when the schema uses inheritance heavily queries become hard

to write and understand. As can be seen, our extremely simple example requires the definition of two variables and a

join.

More classification levels might be required in the query, for example to extract the groups that contain

another group that contains the group called X (e.g. when the number or position of levels in classifications is

important, as it is in biological classifications). For each new level added, more variables and joins are necessary,

making the query even harder to write and understand.

For more complex queries such as recursive queries defined using extensional object-oriented languages (e.g.

[Kifer '92], [Raguenaud '00]), i.e. queries that recurse down a classification until it finds specific objects, the notation

above is not suitable as it would be impossible to specify recursive statements involving the join.

Finally, inefficiency could be an issue, as joins may be more expensive than following a path.

3.2. Changing the schema

Another solution is to change the schema so that querying becomes possible from a type point of view. Four

approaches can be considered: the move of specific attributes to super-classes, the avoidance of inheritance and the

creation of additional relationships, the use of the composite pattern, and the use of non object-oriented mechanisms.

a) Moving attributes to super-classes: one partial solution to the problem caused

by the query presented in section 2 would be to move the attributes queried to super-

classes. In figure 3, the name attribute is defined on the Classification class, thereby

implying that Specimens might have a name. As this is not true, the management of the

attribute has to forbid this association dynamically in the Specimen class. Now, the

query

select g from Group g where g.members.name = “X”

is sensible from a type point of view. But this solution requires that all the queries that will be run are known

at design time, which is unlikely. It also implies the addition of properties to all the sub-classes of the Classification

class (e.g. name) that do not necessarily make sense for some of the sub-classes. For example Specimens do not have

a name.

b) Avoiding inheritance: we could also change the schema in

order to avoid the use of the super-class when attributes need to refer to

sub-classes of the classification (figure 4). In this solution, the members

Figure 4: Second solution

Specimen

location

Classification
name

Group

members

Specimen

location

Group

name

membersGroup

membersSpecimen

5

relationship is abandoned and two new relationships are created: one between Group and itself for members

relationships that involve only a Group object, and one between Group and Specimen when the members are

Specimens. Now, it is possible to query the database and choose the relationship or the type we want. For example:

select g from Group g where g.groupMembers.name = “X”

is valid because the groupMembers relationship only involves Group objects. The type of the query is correct.

However, as can be seen, a new relationship has been created between Group and Specimen to replace the genericity

provided by inheritance. If many classes are involved in the pattern (e.g. not only Specimens are classified), new

relationships between Group and these other classes are necessary. It quickly becomes hard to manage all these

relationships and to choose how to query them.

c) Composite pattern: the schema could be changed to a composite

pattern [Gamma '94] (figure 5). The composite pattern allows the definition of

recursive structures with a single interface for the client. That way, the Client

that uses the recursive structure does not need to know whether the object

currently manipulated is a Group or a Specimen. A super-class for Groups and

Specimens is created and needs to contain the accessible interface of both

Group and Specimen objects. The following query then becomes possible:

select g from Group g where g.members.name = “X”

as all possible objects encountered would have a name property.

This solution is seductive, as the composite pattern is well known, but it has problems. It makes dubious use

of inheritance as the super-class created contains all the properties of its sub-classes, which consequently means that

all sub-classes inherit the whole interface. This may lead to nonsensical situations where objects need to respond to

messages that are meaningless for them. For example in figure 5, the composite requires that Classification contains

both properties name and location, therefore both Specimen and Group inherit these properties. However, name does

not make sense for a Specimen and the method has to return an artificial value or no value at all, and location does

not make sense for a Group.

d) Non object-oriented solution: another approach could be avoiding the use of inheritance in the pattern. In

many object-oriented systems (e.g. Java), genericity is only supported by inheritance. In other object-oriented

languages (e.g. C++, Eiffel [Meyer '92]), genericity is provided by generic classes or templates which can be

parameterised by a particular class. Therefore, we could think of another approach to genericity that would not

involve inheritance. Union types as in [Raguenaud '99] are a good candidate. Union types are types that are created

from the union of a series of existing types. For example, in our sample schema, a union type Classification could be

created by unioning Specimen and Group, thereby generating a new type that would create a logical relationship

between these types.

However, union types have the disadvantage of not integrating well in an object-oriented environment

because of their weak typing. Furthermore, querying union types involves ignoring the type of the classes that are

part of the union, and querying blindly only on the name of the attributes used. Although it does not change the

meaning of an object-oriented system or its querying, it requires making an exception in the treatment of types when

Figure 5: The composite pattern

SpecimenGroup

Classification

name
location

members
Client

6

a union type is encountered in a query. Indeed, we do not know what type we are using until we have found a

representative object. It also hinders any kind of optimisation, which might compromise the evaluation of queries.

Given that our modelling of the problem is most accurately the one presented in section 2, these four solutions

have the disadvantage of requiring the modification of the schema. They also either introduce incorrect concepts

(Groups do not have a location of collection), lose of a form of genericity (if many classes are involved in the

classification pattern, a new relationship between Group and each of these classes needs to be created to replace the

generic relationship to the super-class), or the introduction of non type safe non object-oriented mechanisms.

Moreover, in many existing applications, we do not have the liberty of altering the schema or schema evolution

[Banerjee '87] may not be possible or too expensive.

4. Proposed solution

The solutions presented in section 3 are not entirely satisfying: each of them has drawbacks, and we believe

the pattern presented in section 2 is the most suitable for classification patterns from a modelling point of view. The

only solution is therefore to avoid changing the schema and extend the query language so that it can deal with our

pattern.

It is possible to extend OQL with a simple well-defined operator that will allow the examination of sub-

classes in normal queries. The meaning of this operator needs to be “I want to use one and only one of the sub-

classes of the classification class because I want to refer to one of its attributes”. The purpose of this operator is

therefore triple: first it is a type selection operator (the object must be an instance of the chosen class/type), secondly

it is a cast operator (so that queries are type safe and attributes can be accessed), and thirdly it handles errors so that

evaluation of queries is not impaired (regular cast operators would stop query execution when an object of an

undesirable type is encountered). We have extended OQL in our implementation of POOL [Raguenaud '00] and

represent this operator as square brackets after the attribute it targets. It tests the membership of an object to a

particular class, but in addition, it only keeps objects of that class in the query.

For example:

select g from Group where g.members[Group].name = “X”

can be explained as follows: select all Group objects that have a members relationship only to other Group

objects, then check that the attribute name of these Group objects is X; (silently) discard Specimen objects.

The square brackets operator is not simply a cast operator (which already exists in OQL). A cast operator

would mean that the objects found are cast to a particular type, then used in the query. But casting objects would

create a type error if Specimen objects were used, therefore invalidating this query.

The square brackets operator acts in two parts of the query: when objects are examined (selection) and when

they are extracted (projection). It is then possible to extract only an object belonging to a particular type when they

are involved in a relationship. For example, extracting all the Specimen objects that are used in classifications

(referred to by Group objects) can be performed as follows:

select g.members[Specimen] from Group g

7

Or finding the location of collection of all Specimens placed in a Group of name “X”:

select g.members[Specimen].location from Group g where g.name = “X”

5. Generalisation

Although we describe this problem in the context of the classification pattern, it is a general problem when

sub-classes are chosen in path expressions (e.g. part-explosion problems).

The problem we have presented in this paper also occurs in ODMG bindings where parameterised

polymorphism does not exist (e.g. the ODMG Java binding). In ODMG, collections are typed objects, i.e. they

contain objects that belong to a particular type/class or to its sub-types/sub-classes. However, in the Java binding,

because collections are not parameterised objects, all objects in a collection are of type any (from the ODMG point

of view) or Object (from the Java point of view). This leads to the inability to query collections accurately. As it is

impossible to select sub-classes of the class Object, it is not possible to reach their attributes. For example, the

following query is not possible, if as above, members is a collection:

select g from Group g, g.members a where a.name = “X”

The variable a is of class Object in Java because g.members is of type collection, therefore the attribute is not

defined in its type. In our system, the following statement is valid:

select g from Group g, g.members[Group] a where a.name = “X”

6. Conclusion

This paper has presented the problems that recursive patterns such as the classification pattern, along with

other common patterns (part-explosion, composite pattern), generates in query languages. Because of its nested

structure and because of the type system of OQL, this pattern cannot be fully queried, and sometimes generates

situations where it is impossible to extract some information without writing a program to simulate the query. This

problem can be avoided using the solutions we have proposed in section 3, but their use implies change to and

redundancy in the schema, and loss of optimisation in the evaluation of the query. The problem also appears for

example in ODMG bindings where collections are queried and parameterised polymorphism is not available (e.g. the

Java binding).

Our solution involves the addition of a simple operator in OQL that allows the explicit declaration of the type

used when a composite pattern is queried, thereby providing a means of querying sub-classes of the composite whilst

keeping a query type safe. Since the use of our new operator is consistent with the type system, it does not affect the

ability of the query engine to optimise queries. As the square bracket operator enforces type, type-based

optimisations are still possible.

This extension has been incorporated in the POOL query language in the Prometheus extended object-

oriented database [Raguenaud '00] used in the domain of plant taxonomy. The new operator has been vital to

answering questions posed by taxonomists regarding their classifications.

8

7. References

[Banerjee '87] J. Banerjee, H. Chou, J. Garza, W. Kim, D. Woelk and N. Ballou, Data model issues for object-

oriented applications, ACM Transactions on Office Information Systems, 5 (1), pp pp 3-26, 1987

[Cattell '97] R. G. G. Cattell, Douglas Barry, Dirk Bartels, Mark Berler, Jeff Eastman, Sophie Gamerman, David

Jordan, Adam Springer, Henry Strickland and Drew Wade, The Object Database Standard: ODMG 2.0 , Morgan

Kaufmann Publishers, Inc., I.S.B.N. 1-55860-463-4, 1997

[Gamma '94] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns, Elements of

Reusable Object-Oriented Software, Addison-Wesley Publishing Company, I.S.B.N. 0-201-63361-2, 1994

[Kifer '92] Michael Kifer, Won Kim and Yehoshua Sagiv, Querying Object-Oriented Databases, Proceedings of the

1992 ACM SIGMOD International Conference on Management of Data, San Diego, California, pp 393-402, 1992

[Meyer '92] Bertrand Meyer, Eiffel: the language, Prentice Hall International (UK) Ltd, I.S.B.N. 0-13-247925-7,

1992

[Odell '94] James Odell, Six different kinds of composition, Journal of Object-Oriented Programming, 6 (8), pp 10-

15, 1994

[Pullan '00] Martin R. Pullan, Mark F. Watson, Jessie B. Kennedy, Cedric Raguenaud and Roger Hyam, The

Prometheus Taxonomic Model: a practical approach to representing multiple taxonomies, Taxon, 49 (1), pp 55-75,

2000

[Raguenaud '99] Cedric Raguenaud, Jessie Kennedy and Peter J. Barclay, The Prometheus Database Model, Napier

University, Edinburgh, UK, Prometheus report #2, 1999

[Raguenaud '00] Cedric Raguenaud, Jessie Kennedy and Peter J. Barclay, The Prometheus Taxonomic Database,

IEEE International Symposium on Bio-Informatics and Biomedical Engineering (BIBE 2000), Arlington Virginia,

USA, pp 63-70, 2000

[Stroustrup '91] Bjarne Stroustrup, The C++ Programming Language, Addison Wesley, I.S.B.N. 0-201-53992-6,

1991

[Sun '95] Sun, "The Java Programming Language (white paper) , Sun MicroSystems Inc, 1995

