
A local search for the timetabling problem

Olivia Rossi-Doria1, Christian Blum2, Joshua Knowles2,
Michael Sampels2, Krzysztof Socha2, and Ben Paechter1

1 School of Computing, Napier University,
10 Colinton Road, Edinburgh, EH10 5DT, Scotland
{o.rossi-doria, b.paechter}@napier.ac.uk

2 IRIDIA, Université Libre de Bruxelles, CP 194/6,
Av. Franklin D. Roosevelt 50, 1050 Bruxelles, Belgium

{cblum, jknowles, msampels, krzysztof.socha}@ulb.ac.be

Abstract. This work is part of the Metaheuristic Network, a European
Commission project that seeks to empirically compare the performance of
various metaheuristics on different combinatorial optimization problems.
In this paper we define a representation, a neighbourhood structure and a
local search for a university course timetabling problem. Our motivation
is to provide a common search landscape for the metaheuristics that we
aim to compare, allowing us to make a fair and meaningful analysis of
the relative performance of these methods on a timetabling problem.

1 Introduction

The aim of the Metaheuristics Network? — a European Commission project
undertaken jointly by five European institutions — is to compare and analyse the
performance of various metaheuristics on different combinatorial optimization
problems including timetabling.

Every educational institution periodically faces the problem of producing
a timetable for its courses. A general course timetabling problem consists in
assigning a set of events (classes, lectures, tutorials, etc) into a limited number
of timeslots, so that a set of constraints are satisfied. Constraints are usually
classified in hard and soft. Hard constraints must not be violated under any
circumstances, e.g. students cannot attend two different events at the same time.
Soft constraints should preferably be satisfied, but they can be accepted with
a penalty associated to their violation, e.g. students should not attend the last
class of the day. These problems have been extensively studied over the last few
years [?,?,?].

We study here a reduction of a typical university course timetabling problem,
that has been designed by Ben Paechter to reflect aspects of the real timetabling
problem of Napier University.

The main objective of this work is to provide a common framework as part
of the definition of a controlled and unbiased experimental methodology for the

? http://www.metaheuristics.net/

comparison of five different metaheuristics. In particular we aim here to define
a common search landscape to use in the implementations of straightforward
versions of the metaheuristics that we seek to compare. We ultimately aim to
compare under similar circumstances the performance of an Evolutionary Al-
gorithm, an Ant Colony Optimization, an Iterated Local Search, a Simulated
Annealing, and a Tabu Search. The results of this comparison are given in [?].

2 The problem

The problem consists of a set of events or classes E to be scheduled in 45 timeslots
(5 days of 9 hours each), a set of rooms R in which events can take place, a set
of students S who attend the events, and a set of features F satisfied by rooms
and required by events. Each student attends a number of events and each room
has a size. A feasible timetable is one in which all events have been assigned a
timeslot and a room so that the following hard constraints are satisfied:

– no student attends more than one event at the same time;
– the room is big enough for all the attending students and satisfies all the

features required by the event;
– only one event is in each room at any timeslot.

In addition, a candidate timetable is penalised equally for each occurrence of the
following soft constraint violations:

– a student has a class in the last slot of the day;
– a student has more than two classes in a row;
– a student has a single class on a day.

Note that the soft constraint have been chosen to be representative of three
different classes: the first one can be checked with no knowledge of the rest of
the timetable; the second one can be checked while building a solution, taking
into account the events assigned to nearby timeslots; and finally the last one
can be checked only when the timetable is complete, and all events have been
assigned a timeslot.

3 The instances

A problem instance generator produces problem instances with different charac-
teristics for different values of given parameters. All instances produced have a
perfect solutions, i.e. a solutions with no constraint violations, hard or soft. The
parameters used to create each instance are: the number of events, the number
of rooms, and the number of features, the approximate average number of fea-
tures to be assigned to each room, the approximate percentage of features used
by the events, the number of students, the maximum number of events that any
student can attend in the week, the maximum number of students that can at-
tend any one event, and an integer used in the random process - using the same

integer will produce the same problem instance - a different integer will produce
a different instance with the same characteristics.

Three sizes of instances have been selected for testing purposes, respectively
called small, medium and large. They are generated with the sets of parameters
reported in Table ??.

Class small medium large

Num events 100 400 400
Num rooms 5 10 10
Num features 5 5 10
Approx features per room 3 3 5
Percent feature use 70 80 90
Num students 80 200 400
Max events per student 20 20 20
Max students per event 20 50 100

Table 1. Parameters used to produce the different instance classes.

4 The solution representation

The solution representation chosen is a direct representation. A solution consists
of an ordered list of length |E| where the positions correspond to the events
(position i corresponds to event i for i = 1, ..., |E|). An integer number between
1 and 45 (representing a timeslot) in position i indicates the timeslot to which
event i is assigned. For example the list

3 27 43 . . . 10

means that event 1 is assigned to timeslot 3, event 2 is assigned to timeslot 27,
and so on.

The room assignments are not part of the explicit representation; instead
we use a matching algorithm to generate them. For every timeslot there is a
list of events taking place in it, and a preprocessed list of possible rooms to
which these events can be assigned according to size and features. The matching
algorithm gives a maximum cardinality matching between these two sets using
a deterministic network flow algorithm. If there are still unplaced events left, it
takes them in label order and puts each one into the room of correct type and
size which is occupied by the fewest events. If two or more rooms are tied, it takes
the one with the smallest label. This procedure ensures that each event-timeslot
assignment corresponds uniquely to one timetable, i.e. a complete assignment of
timeslots and rooms to all the events.

Note that with this representation we are implicitely taking care and never
breaking the hard constraint that requires that an event has to be assigned
to a room suitable for it. We might however introduce a different kind of soft
constraint violations by rather allowing two events to take place in the same
room at the same time.

5 The neighbourhood structure

The solution representation described above allows us to define a neighbourhood
using simple moves involving only timeslots and events. The room assignment
are taken care of by the matching algorithm.

We considered three types of move on a timetable involving one, two and
three events respectively:

– a move of type 1 moves one event from a timeslot to a different one;
– a move of type 2 swaps two events in two different timeslots;
– a move of type 3 permutes three events in three distinct timeslots in one of

the two possible ways.

Each type of move defines a neighbourhood denoted N1, N2, N3, respectively.
The complete neighbourhood N is then defined as the union of these three
neighbourhoods: N = N1 ∪N2 ∪N3.

6 The local search

Given the size of the neighbourhood we use a first improvement local search
which works as follows. Consider in order moves of type 1, 2 and 3 for every
event involved in constraint violations. Initially ignore soft constraint violations.
Then, if the timetable reaches feasibility, consider soft constraints as well, but
never go back from a feasible to an infeasible solution. For each potential move
re-apply the matching algorithm to the affected timeslots and delta-evaluate
the result. The local search is ended if no improvement is found after trying
all possible moves on each event of the timetable. The search is stochastic as it
looks at events in a randomly generated order.

A more detailed description of the algorithm follows:

1. Ev-count ← 0;
Generate a circular randomly-ordered list of the events;
Initialize a pointer to the left of the first event in the list;

2. Move the pointer to the next event;
Ev-count ← Ev-count + 1;
if (Ev-count = |E|) {

Ev-count ← 0;
goto 3.; }

(a) if (current event NOT involved in hard constraint violation (hcv))
{ goto 2.; }

(b) if (6 ∃ an untried move for this event) { goto 2.; }
(c) Calculate next move (first in N1, then N2, then N3)?? and generate

resulting potential timetable;

?? That is, for the event being considered, potential moves are calculated in strict order.
First, we try to move the event to the next timeslot, then the next, then the next
etc. If this search through N1 fails then we move through the N2 neighbourhood, by
trying to swap the event with the next one in the list, then the next one, and so on.
The same then occurs for N3.

(d) Apply the matching algorithm to the timeslots affected by the move and
delta-evaluate the result;

(e) if (move reduces hcvs) {
Make the move;
Ev-count ← 0;
goto to 2.;}

(f) else goto 2.(b);

3. if (∃ any hcv remaining) END LOCAL SEARCH;

4. Move the pointer to the next event;
Ev-count ← Ev-count + 1;
if (Ev-count = |E|) END LOCAL SEARCH;

(a) if (current event NOT involved in soft constraint violation (scv))
{ goto 4.; }

(b) if (6 ∃ an untried move for this event) { goto 4.; }
(c) Calculate next move (first in N1, then N2, then N3)?? and generate

resulting potential timetable;

(d) Apply the matching algorithm to the timeslots affected by the move and
delta-evaluate the result;

(e) if (move reduces scvs without introducing a hcv) {
Make the move;
Ev-count ← 0;
goto 4.; }

(f) else goto 4.(b);

7 The experimental results

The local search described above is very slow, and when used within the context
of a metaheuristic technique it is more efficient to reduce its depth and width,
allowing the metaheuristic a greater proportion of CPU time. For this purpose
we introduced four parameters on the local search, precisely: the probability of
each of the three types of move to be performed, respectively p1, p2, and p3 for
moves of type 1, 2, and 3, and a time limit t.

We tested different values of these four parameters for the local search within
a simple iterated local search. The perturbation is just a random move in the
complete neighbourhood N , and we use an “Accept if Better” acceptance cri-
terion. One representative of each class of instances, small, medium and large,
has been selected for the experiments. We run ten trials of each parameter con-
figuration on them respectively for 90, 900, and 9000 seconds on a PC with an
AMD Athlon 1100 Mhz.

The results are summarized in Figures 1, 2, 3, 4 and 5 using boxplots. A
box shows the range between the 25% and the 75% quantile of the data. The
median is indicated by a bar. The whiskers extend to the most extreme data
point which is no more than 1.5 times the interquantile range from the box.
Outliers are indicated as circles.

1 2 3 4 5 6 7 8 9 10 11 12 17 18 19 20 21 22 23 24 25 2613 14 15 16 hcv

p
3

1

1 10

t

.001

.01

Fig. 1. Hard constraint violations on the large instance for p1 = p2 = 1 and p3 6= 0.

220 260 300 340 380 420 460 500 540 580 620 660 700

p1 p2 p3 t

scv

1 1 .001

1 1 .01

1 1 1 10

1 1 1

Fig. 2. Soft constraint violations on the medium instance for p1 = p2 = 1 and p3 6= 0.

The search through neighbourhood N3 is very time consuming for all the
three instances with no good results, as shown for the large and medium instances
in Figure 1 and 2.

For p3 = 1 on the large instance not even a single run of the local search
finishes in the total time, and this is as well mostly true for the medium and small
instances, where only occasionally the algorithm managed to complete one or
two runs. More iterations are completed but performance does not improve much
when the moves of type 3 are performed with smaller probability, even when it
is as low as .001, or when the local search is cut with a time limit of 10 seconds.
Better results are achieved discarding the search through neighbourhood N3.
For this reason we tried different parameters for p1 and p2 keeping p3 = 0, and
results for these experiments are discussed in the following.

For the large instance feasibility is difficult to achieve. Only for p1 = .5,
p2 = 1 the algorithm managed to find two feasible solutions out of ten, while
for p1 = 1, p2 = 1 and p1 = 1, p2 = 0 it found feasible timetables only once.
Moreover for minimizing hard constraint violations p1 = 1, p2 = 1 and p1 = .8,
p2 = 1 seem to perform best, so that reducing a bit but not too much (results
for p1 = .2, p2 = 1 are slightly worse) the search through neighbourhood N1

but going through all neighbourhood N2 appears to be the best strategy. On the
contrary keeping p1 = 1 results are better for greater values of p2. The attempt to

0 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 2610 11 12 13 14 15 16 17 18 19
1023

1031
1088 1178

hcvscv

1 0

1 .2

1 .5

1 .8

1 1

.8 1

.5 1

.2 1

0 1

.5 .5

1 1 5

FEASIBLE

 REGION
UNFEASIBLE REGION

p p
1 2

t

Fig. 3. Solution quality on the large instance for p3 = 0.

search both neighbourhood N1 and N2 with probability 0.5 gives worse results.
Results of the experiments for the large instance are summarized in Figure 3.

For the medium instance when p3 is zero the best results are once again
reached for p2 = 1 but, with it fixed, values for p1 go the other way around
than in the hard instance and smaller is better. The search through the two
neighbourhoods N1 and N2 with equal probability 0.5 is this time better than
the full search through N1, where smaller values for p2 are again better than
greater ones. Experiments for the medium instance are summarized in Figure 4.

For the small instance, the use of N3 still gives not very good results but
performance is increasingly better as p3 gets smaller. Little difference is notice-
able for different values of p1 and p2 when p3 is zero, performance being slightly
better for p1 = 1, p2 = .8, for p1 = .8, p2 = 1 and for p1 = .5, p2 = 1. The
complete search through neighbourhood N1 only gives comparable results for
this smaller instance where evidently there is no much need of a bigger neigh-
bourhood. Results for the small instance are summarized in Figure 5.

The search through only neighbourhood N2 gives the worst results across all
three instances, even when a probability as small as .2 for p2 gives reasonable
results. This is of course not really surprising, since neighbourhood N2 is not
connected.

We have presented here a neighbourhood structure and a parametrized lo-
cal search designed as common search landscape for the comparison of different
metaheuristic techniques. This work was part of a first phase of a study on the
timetabling problem carried out for the Metaheuristics Network.

140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

.5 .5

0 1

.2 1

.5 1

.8 1

1 1

1 .8

1 .5

1 .2

1 0

p1 p2 t

1 1 .5

scv

Fig. 4. Soft constraint violations for p3 = 0 on the medium instance.

17161514131211109876543210

1 0 0

1 .2 0

1 .5 0

1 .8 0

1 1 0

.8 1 0

.5 1 0

.2 1 0

0 1 0

.5 .5 0

1 1 .01

scv

p1 p2 p3 t

1 1 1

1 1 .001

1 1 0 .1

1 1 1 10

Fig. 5. Soft constraint violations for the small instance.

Acknowledgments: This work was supported by the Metaheuristics Network, a
Research Training Network funded by the Improving Human Potential program
of the CEC, grant HPRN-CT-1999-00106. The information provided is the sole
responsibility of the authors and does not reflect the Community’s opinion. The
Community is not responsible for any use that might be made of data appearing
in this publication.

References

1. M. W. Carter, G. Laporte. Recent developments in practical course timetabling.
In [?], 3–19, 1997.

2. E. K. Burke, M. Carter (eds.) The Practice and Theory of Automated Timetabling:
Selected Papers from the Second International Conference. Lecture Notes in Com-
puter Science 1408, Springer-Verlag, Berlin, 1997.

3. B. Paechter, R. C. Rankin, A. Cumming, T. C. Fogarty. Timetabling the classes
of an entire university with an evolutionary algorithm. Parallel Problem Solving
from Nature (PPSN) V. Lectures Notes in Computer Science 1498, Springer-Verlag,
Berlin, 865–874, 1998.

4. O. Rossi-Doria, M. Sampels, M. Birattari, M. Chiarandini, M. Dorigo, L. M. Gam-
bardella, J. Knowles, M. Manfrin, M. Mastrolilli, B. Paechter, L. Paquete,
T. Stützle. A comparison of the performance of different metaheuristics on the
timetabling problem. In Proceedings of the 4th international conference on the
Practice And Theory of Automated Timetabling (PATAT 2002), Gent, Belgium,
115–123, 2002.

5. A. Schaerf. A survey of Automated Timetabling. Artificial Intelligence Review,
13:87–127, 1999.

