
EXTENDING THE UNIFIED MODELLING LANGUAGE TO MODEL
COMPLEX INTERACTIVE TIMELINE-BASED SYSTEMS
Ian Smith

HCI Research Group
School of Computing

Napier University
10 Colinton Road

Edinburgh EH10 5SD
 ia.smith@napier.ac.uk

Phil Turner
HCI Research Group
School of Computing

Napier University
10 Colinton Road

Edinburgh EH10 5SD
p.turner@napier.ac.uk

Iain McGregor
HCI Research Group
School of Computing

Napier University
10 Colinton Road

Edinburgh EH10 5SD
i.mcgregor@napier.ac.uk

ABSTRACT
The increased take-up of Interactive Television, 3G
and broadband networks is effecting a growth in the
use of interactive, timeline-based media. This paper
will describe how to facilitate the design of linear
narrative systems utilising the extensibility features of
the unified modelling language (UML).

The UML provides a solution to model the integration
of such diverse media as 3D animation and still
imagery within a single design solution. Current
technologies extend well beyond their established
models, incorporating UML into the design process
will bring differing media technologies into the realm of
the software developer, facilitating a cohesive
approach to interactive systems.

Keywords
Timeline, multimedia, design, composition, UML

1. INTRODUCTION
The increased take-up of Interactive Television, 3G
and broadband networks is effecting a growth in the
usage of interactive, timeline-based media.
Interestingly while there are significant developments
in the supporting technology the same cannot be said
for the modelling or design tools. Indeed, there is a
growing gap between envisagement of the target
interactive application and its techno-centric
implementation [1].

This paper is an attempt at bridging the gap between
the current implementations of time line-based design
and a formal modelling language. We propose the use
of the Unified Modelling Language (UML) as the basis
of a method for the effective design of interactive

multimedia systems. We will demonstrate that complex
compositions of software objects can effect a method
of modelling diverse timeline-based media.

We begin by briefly introducing the elements of UML
relevant to our argument before describing the
extensions to the language in order to model timeline
based design. We conclude with an example of its
potential application.

2. UNIFIED MODELLING LANGUAGE
The UML is (or at least aspires to be) a standard
modelling language that unified the dominant object-
oriented analysis and design concepts developed in
the 1980s and 1990s. In addition to its notation
(syntax) and meta-model (diagrams) it is extensible via
a number of mechanisms not least stereotypes, which
are discussed below.

In recent years the UML has attracted the attention of
the HCI community as it offers the promise of an
integrated OO (Object Oriented) & HCI (Human
Computer Interaction) approach to the development
of interactive systems which is now reasonably well
established with a range of proposed methods
compatible with the UML [2]. Some of the pioneering
research on establishing a role of UML in HCI and
CSCW (computer supported cooperative working) has
been carried out by Sommerville and his team at
Lancaster. A perennial problem for HCI and CSCW has
been the gulf between the qualitative data gathered
using techniques drawn from the social sciences and
the formal representations of computer science.

Sommerville has tackled this problem in a number of
ways the most relevant of which to the current
discussion has been in using the UML to model
ethnographically acquired data [3]. While a full
treatment of this work is beyond the scope of this
paper it is worth noting that he successfully used
constraints, tagged values and stereotypes to model
awareness in a conference-booking centre.

More recent work in a similar vein was presented at a
UML symposium [4] jointly hosted by the British HCI
Group and the Scotland IS Usability Forum. Martin et al
[4] presented work on using the UML to communicate
ethnographic data to systems designers in a paper of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Proceedings Volume 2 of the
16th British HCI Conference

London, September 2002

© 2002 British HCI Group

the same name. Their two key findings were that
patterns proved to be an effective means in
communicating ethnographic data to designers.
Secondly, they were able to build upon lessons
learned from these studies in, for example,
standardising design artefacts. Similarly Johnson has
extended the UML to model collaborative tasks. He
and his colleagues have been able to model and
account for the behaviour of an aircrew during an
incident. To this diversity of applications of extended
UML we now contribute our own.

3. SOFTWARE OBJECTS
A software object comprises state, behaviour and
identity information. All software objects can be
described through an abstracted class, an object
being an instance of that class. The class of an object
is defined in terms of its identity, attributes, operations
and relationships. A class diagram is utilised in the
UML to describe the static structure of a system.

The values of the attributes define the state of an
object. Within the UML, state diagrams are used to
describe the dynamic behaviour of a system.

3.1 Extensibility
The UML has three key extensibility mechanisms:
constraints, tagged values and stereotypes.

A constraint is a Boolean condition used to define the
relationship between model elements. A constraint is
expressed within braces ({ }). Predefined examples
are {or} and {xor}.

A model element may have a tag defined with a related
value, which can be used to associate additional data.
These keyword-value pairs are expressed within
braces.

Stereotypes permit the creation of a new model
element derived from an existing one. A stereotype is
expressed within guillemets (<< >>).

3.2 Timeline Object
A range of multimedia authoring environments have
traditionally utilised the timeline paradigm. Objects
have associated timelines that determine the current
visibility, persistence, transition and functionality. The
key components of a timeline are layers (or channels
or tracks depending upon the medium), frames, and
the playhead. The content of a movie is determined
over time by the status of the layers and frames. A
timeline, as shown in Figure 1, can be directly
controlled or programmed through the application of
key frames, scripting and markers.

The dynamic structure of a timeline object can be
described with respect to its internal timeline. This is
composed of individual units of time called frames.

Each frame can incorporate a number of layers. A layer
can incorporate a range of objects that may alter on a
frame-by-frame basis. Consequently, the attributes
and operations of the timeline object can change. This
introduces the concept of dynamic classification [5]
where the class of the object is dependent upon the
state of the timeline.

Figure 1: Timeline

3.3 Dynamic Structure
Currently the UML describes the static structure and
dynamic behaviour of an interactive system. However,
modelling a linear narrative requires the concept of
dynamic structure that describes the relationship of
classes through time.

Dynamic classification models a change of class during
an object’s lifetime. (e.g. an academic object
instantiated as a research associate can become a
professor over time). This is appropriate when
describing a class model during the conceptual
perspective. The term dynamic classification refers to
a variation of generalisation in which an object can
change type or role. It is modelled by means of a
<<dynamic>> stereotype as shown in Figure 2.

Figure 2: Dynamic Classification

When describing a timeline object from the
implementation perspective, the apparent change of
class is defined by the current state of the timeline. A
timeline object can be considered as an encapsulated
composition of a number of objects. The accessibility
of these objects from the perspective of the system is
dependent upon the content of the individual layers
on particular frames.

Dynamic behaviour describes how an object changes
state. The values of the attributes define the state of a

software object. The state of a timeline object is
influenced by the status of the internal timeline.

4. EXTENDING UML TO MANAGE
COMPLEX COMPOSITION
A composition is a specialised form of aggregation,
within which the lifetime of the part is bound within the
lifetime of the composite class (whole). For reasons of
clarity we shall describe this as static composition.

Developing classes through composition is generally
regarded as being better practice than by inheritance,
which encourages tight coupling [6]. We propose that
with respect to timeline objects, there are three types
of composition, namely: static, timeline and dynamic.

4.1 Timeline Composition

Figure 3: Timeline stereotype

The dynamic structure of a system incorporating
timeline objects can be modelled using the
extensibility of the UML. The introduction of a timeline
stereotype, <<timeline>>, associated with a
composite aggregation would define the
permutations of compositions. Each permutation
could be labelled with a discriminator to indicate the
basis of the composition as shown in Figure 3. The
Composite Class is composed of Class A, Class B (a
composite of Class M and Class N) and Class C all of
which are destroyed if the whole is destroyed. The
apparent type of the Composite Class is dependent
on the position of the timeline.

Though a discriminator may allude to a possible state
of an object, only the dynamic structure is modelled. A
state diagram would be required to model the
transition from one state to another.

This technique was initially conceived to model Flash-
based games, but is applicable to the development of
any timeline-based form of digital media. Figure 4
shows the class model for an interactive movie that

has a timeline composed of 1 or more scenes and
zero or more commercials.

Figure 4: interactive Movie example

4.2 Dynamic Composition
The concept of dynamic composition [7] allows a
change of aggregation in an existing structure. The
notation is similar to that for a timeline aggregation,
except that the dynamic stereotype, <<dynamic>>, is
used as modelled in Figure 5.

The composite class can be a permutation of all or
some of the aggregated classes all of which are
destroyed if the whole is destroyed. With respect to
timeline objects, the apparent type of the composite
class is dependent on the content of individual layers
that can be changed during run-time.

Figure 5: Example of Dynamic Composition

This technique is particularly applicable to Interactive
Television and similar media, as demonstrated in
Figure 5. This simplified class diagram of an interactive
movie scene, models a dynamic composition of
pictures, soundtrack and audio descriptions. To
minimise bandwidth only the media required would be
streamed but the options could be revised on
demand.

5. KEY APPLICATIONS
With this innovation, interactive movies can be
modelled as a complex composition of static, timeline
and dynamic aggregates. This is illustrated in the
scenario: a user wishes to watch the original Star
Wars™ movie in its new interactive form. Their first
choice is whether to subscribe without
advertisements, or to view it for free but with

advertisements. We can think of these adverts as
being either regional or tailored to the user’s profile.

The user is then presented with a further raft of
options, just as with current DVD packaged movies,
namely, a choice of languages or sub-titling and so
forth. We can also envisage this process being
automated if they have already viewed an interactive
movie through the same service provider. The remote
server is easily made aware of the user’s hardware
configuration and scales the movie accordingly,
utilising aspect ratio and number of audio tracks, and
an advanced version of “pan and scan”.

Should the user stop the movie at any point, then
upon restart a recap is offered, based upon where the
user left off, the user can also change devices in
between. As the user views the movie, a number of
functions become apparent, these are accessed in a
similar manner to Apple’s hidden dock. But all of the
major interactive elements are accessible through
hotspots within the movie itself. All of these elements
appear within pop-up windows, which in turn can
control the underlying movie.

6. FUTURE WORK
We have currently developed a conceptual UML
model, utilising the aforementioned extensibility
features and are currently implementing a working
prototype. The intention is to evaluate the suitability of
the UML when developing media such as interactive
movies rather than test our concept for interactive
movies. The implementation should bring to light any
missing elements or contractions within the modelling,
as the interactive movie is being developed by a large
team each having different expectations and needs.

Though the UML is considered robust [8] the range of
notation and meta-models are not extensive enough
to successfully model traditional linear narrative
techniques. It is hoped that the authors’ work will
address this issue, in addition to the research
currently being pursued.

7. CONCLUSIONS
There is currently no standard method of integrating
diverse forms of media such as complex 3D games
through to simple animated GIFs. It is hoped that this

work will help to bridge the gap between traditional
media developers and interactive systems
developers.

The authors have demonstrated that through
extensibility, the UML, currently an industry standard
is able to model the dynamic structure of a timeline
object. We have also proposed that a timeline can be
considered a complex composition of static, timeline
and dynamic aggregates.

The UML is compatible with a range of integrated
OO&HCI methods that can be used in the design of
interactive time-line based applications [2]. This
approach would be ideally suited to the design of
emerging interactive media.

8. REFERENCES
[1] Chapman N. Flash 5 Interactivity and Scripting

Wiley (2001)

[2] van Harmelen M. (ed), Object Modelling and User
Interface Design. Addison-Wesley (2002)

[3] Viller S. and Sommerville I. Coherence: an
approach to representing ethnographic analyses
in systems design, HCI journal special issue on
Representations in Interactive Software
Development, vol 14, pp 9-41 (1997)

[4] ScotlandIS Usability Forum One-day Symposium:
Usability and UML Web Site
http://www.dcs.napier.ac.uk/~mm/uu2002/

[5] Fowler M., UML Distilled, Second Edition.
Addison-Wesley (2000)

[6] Stevens P., Using UML: Software Engineering
with Objects and Components. Addison-Wesley
(2001)

[7] Neumann G. and Zdun U. Towards the Usage of
Dynamic Object Aggregations as a Foundation for
Composition Proceedings 2000 ACM Symposium
on Applied Computing
http://www.acm.org/conferences/sac/sac00/Proc
eed/FinalPapers/PL-18/

[8] Ambler, S. W. Agile Model: Effective Practices for
eXtreme Programming and the Unified Process.
Wiley (2002).

