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Abstract: Offline Arabic Handwriting Recognition (OAHR) has recently become instrumental in
the areas of pattern recognition and image processing due to its application in several fields, such as
office automation and document processing. However, OAHR continues to face several challenges,
including the high variability of the Arabic script and its intrinsic characteristics such as cursiveness,
ligatures, and diacritics, the unlimited variation in human handwriting, and the lack of large public
databases. In this paper, we have introduced a novel context-aware model based on deep neural
networks to address the challenges of recognizing offline handwritten Arabic text, including isolated
digits, characters, and words. Specifically, we have proposed a supervised Convolutional Neural
Network (CNN) model that contextually extracts optimal features and employs batch normalization
and dropout regularization parameters to prevent overfitting and further enhance its generalization
performance when compared to conventional deep learning models. We employed numerous deep
stacked-convolutional layers to design the proposed Deep CNN (DCNN) architecture. The proposed
model was extensively evaluated, and it was observed to achieve excellent classification accuracy
when compared to the existing state-of-the-art OAHR approaches on a diverse set of six benchmark
databases, including MADBase (Digits), CMATERDB (Digits), HACDB (Characters), SUST-ALT
(Digits), SUST-ALT (Characters), and SUST-ALT (Names). Further comparative experiments were
conducted on the respective databases using the pre-trained VGGNet-19 and Mobile-Net models;
additionally, generalization capabilities experiments on another language database (i.e., MNIST
English Digits) were conducted, which showed the superiority of the proposed DCNN model.

Keywords: Arabic handwritten; batch normalization; DCNN; dropout; databases

1. Introduction

In the field of handwriting recognition systems (HRSs), digits, characters, and word
recognition systems are used in a wide variety of applications, including bank cheque
processing [1–8], office automation [9–12], document processing [3], document content-
based retrieval [13], signature verification [4,7], postal code recognition [1,2,4–6] and digital
character identification systems. The HRS can be done in both online and offline. In the
online applications of HRS using digital instruments [2,13], the identification of characters
is dynamically achieved in a very sequential manner [13]. The detection also considers
key factors, such as the pen pressure and velocity [8,14]. The handwriting recognition of
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scanned documents and digital images is performed offline [2,14]. The content in these
images can be easily converted into editable character codes or words using an HRS, which
makes it very useful for text processing applications [8,13,15–18]. The offline HRS is more
complicated compared to online HRS [8,14]. The benchmark databases [2,5,8,13,14] for both
online and offline HRSs, such as SUST-ALT and HACDB [19], are collected from digitized
documents that are compiled by individuals using traditional writing instruments (pen or
pencil) [5]. Other databases, such as ADAB and SUST-OLAH (characters and names) [20],
are collected from written topics on digital instruments (i.e., smartphones or tablets) [5,21].

Building a novel robust offline automated HRS for Arabic handwritten scripts remains
an open challenge mainly due to several characteristics of the Arabic language, such as its
cursive nature, ligatures, overlapping, and diacritical marks [1,3,7,22–25]. Few letters in
Arabic also have loops, and half of the letters have dots that are used to distinguish between
characters. Incorrect recognition of any of these dots can lead to a misrepresentation of the
character and, therefore, the whole word [6,26]. To account for the variation in the style,
size, and shape of characters in human handwriting [11,27–29], Figure 1 shows some of
the characteristics of writing in Arabic, including cursive writing, ligatures, overlapping,
diacritics, dots, and loops.

Figure 1. Some of the characteristics of Arabic script writing.

In contrast to the traditional classification/recognition approaches, the hierarchical
deep neural networks (DNNs) have enabled end-to-end systems for OAHR that do not
require pre-processing techniques or manual feature engineering [30]. The multilayer DNN
derivatives, such as stacked auto-encoder (SAE), deep belief network (DBN), recurrent
neural network (RNN), and convolutional neural networks (CNNs), have proven their high
performance and accuracy [10,28,31,32]. The CNN has shown that it outperforms the state-
of-the-art approaches [33] in various fields, including face recognition, object recognition,
and image classification [22,23,34–36]. The CNN architecture is a multi-layer feed-forward
neural network that adopts the back-propagation algorithm to learn and automatically
extract features from high-dimensional and complex data such as images [9,37–40]. The im-
plementation of a robust CNN model requires the sequence of layers (e.g., convolution,
pooling, non-linear transformation, fully connected layers, filters parameters, and loss
function formulation) to be defined and, more significantly, it requires the use of opti-
mization methods and parameterization [41,42] to improve efficiency. Several techniques
were proposed to address the overfitting of the DL networks training process, including
dropout and batch normalization, and this process has been used to enhance generaliza-
tion accuracy [43–45]. In the case of deep neural network architectures with a number
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of parameters, the overfitting is considered as a significant drawback [28]. In order to
supervise and control the problem of overfitting, Hinton et al. [46] introduced the training
with dropout technique where a number of neurons are dropped randomly along with
their connections during the training process, and their corresponding weights are not
updated [27,28,46–50]; this prohibits units from extreme co-adapting [49], which leads to
better generalization capability [22,48,49]. The dropout regularization technique leads to a
significant improvement in recognition accuracy on various deep neural network architec-
tures [46,48,51–53]. Ioffe and Szegedy [54] proposed the method of batch normalization
(BatchNorm) for robust optimization and regularization to enhance the model accuracy,
accelerate the training of deep networks [22,54–56], and at times, eliminate the need for
dropout techniques [57] by applying the BatchNorm to the model architecture. They stated
that through the use of this method, several powerful features will be obtained, such as
the ability to use significantly higher learning rates, being less cautious with parameter
initialization, and achieving the normalization for each training mini-batch [54,57,58].

The CNN model can be exploited in two different ways: either by designing the model
manually or automatically and then achieving the training process from scratch [59–62] or
by employing the Transfer Learning (TL) strategies to leverage features from off-the-shelf
pre-trained models on bigger databases [30,63]. There are many available state-of-the-arts
pre-trained CNN models that have been trained on the ImageNet database [64], such as
VGGNet [65], GoogLeNet [66], ResNet [67], InceptionV3 [68], Xception [69], MobileNet [70],
and DenseNet [71].The TL technique is used to transfer the acquired knowledge from one or
more tasks in the source domain to another task in the target domain [28,63,72–75] by utilizing
a pre-trained network from a source domain that has a considerable amount of training
data [74,76], and this helps in boosting the recognition accuracy or reducing training
time [74]. The two widely utilized TL strategies are the feature extraction strategy from
prior trained data and the fine-tuning strategy of the applied pre-trained network [63,77].

In this paper, we have presented a robust DCNN sequential model for solving the
OAHR problem. The contribution of this work is significant for several reasons. First, our
preliminary examinations revealed that the first efficient CNN model uses an enormous
amount of stacked layers with a high level of generalization to solve the OAHR problem.
Second, we conducted experimental studies on six offline Arabic handwritten databases
(comprising digits, characters, and words), including the new ALT-SUST databases [78,79].
Third, we used the TL-based feature extraction strategy and carried out experiments on the
exploited databases by adopting the off-the-shelf VGGNet-19 and Mobile-Net pre-trained
models for experimental comparison purposes. Fourth, we conducted a comparative study
on innovative model performance by pitting the state-of-the-art OAHR approaches against
the consumed models-based TL evaluated on the aforementioned databases. Finally, we
tested the proposed DCNN generalization on other languages, such as the MINST English
digits database.

In our study, six different databases were used to recognize digits, characters, and Ara-
bic words. However, most of the current approach was used to recognize Arabic charac-
ters only.

The remainder of this paper is organized as follows: Section 1 describes the funda-
mental concepts in the CNN DL training optimization. A review of some of the related
work performed in the OAHR area is provided in Section 2. Section 3 shows the general
framework of the typical OAHR model. Section 4 presents the proposed DCNN sequential
model. The details about the experimental study conducted and the discussions are pre-
sented in Section 5. Section 6 summarizes the findings and provides recommendations for
future work.

2. Related Works

A number of significant approaches have been proposed, and good recognition rates
have been reported for specific offline Arabic handwritten databases, especially in the
case of digits. However, OAHR is an active research area that always requires accuracy
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improvement, and accordingly, more generalized and enhanced recognition models are
demanded for better accuracy [80–84]. The work presented in this paper was restricted to
DL OAHR approaches, and therefore, in this literature review, we focused on reviewing
the most recent and competitive DL-related works that solved the OAHR problem.

Elleuch et al. [85] introduced an unsupervised model based on a feature learning ap-
proach. The Deep Belief Neural Network (DBNN) approach is composed of two Restricted
Boltzmann Machines (RBMs), each with 1000 hidden neurons. The DBNN approach
was tested on the HACDB offline Arabic handwritten character database, which contains
6600 shapes (5280 training images and 1320 testing images), and it was normalized to
28 × 28 pixels. The testing on this database obtained 97.9% accuracy using two hidden
layers, each with 1000 units. However, the model recognition tests’ generalization scope
was not extended to cover the isolated offline Arabic handwritten digits and words; further,
the recognition accuracy requires more enhancement.

In another work, Elleuch et al. [37] presented DBN and CNN architectures with a
greedy layer-wise unsupervised learning algorithm. Both classifiers were tested and com-
pared on the HACDB databases’ 24 and 66 class labels of character patterns. The HACDB
was normalized to 28 × 28 pixels,and its size was expanded ten times using the elastic
deformation technique. The DBN achieved an accuracy of 98.33% and 96.36%, and it
outperformed CNN, which gained an accuracy of 95% and 85.29% using the 24 and 66
class labels, respectively. However, the generalization scope of the model recognition tests
was not extended to cover the isolated offline Arabic handwritten digits and words; fur-
ther, the recognition accuracy requires more enhancement, especially for the CNN model
applied to HACDB (66) database.

A dyadic multi-resolution deep convolutional neural wavelets’ network approach
was provided by ElAdel et al. [11] for Arabic handwritten character recognition. The Deep
Convolutional Neural Wavelet Network (DCNWN) is based on the Neural Network (NN)
architecture, the Fast Wavelet Transform (FWT), and the Adaboost algorithm. The FWT was
exploited to extract features of the character based on Multi-Resolution Analysis (MRA) at
different abstraction levels.The recognition accuracy of 93.92% was obtained for different
IESKarDB database groups, including 6000 segmented characters (2/3 of the database were
used in the training phase, and the rest 1/3 in the testing phase). However, the model
recognition tests’ generalization scope was not extended to cover the isolated offline Arabic
handwritten digits and words; further, the recognition accuracy demands improvement.

Elleuch et al. [86] extended their works by introducing the Deep Belief Neural (DBN)
and the Convolutional Deep Belief Network (CDBN) approaches. The authors consid-
ered two problems: first, the character recognition (low-level dimensional data) problem
for which they used the HACDB database, which contains 6600 shapes (5280 training
images and 1320 testing images); second, the word recognition (high-level dimensional
data) problem for which they used the IFN/ENIT database of Tunisian towns’ names
(26,459 Arabic words). The DBN and the CDBN approaches scored an accuracy of 97.9%
and 98.18% on the HACDB database, respectively. The CDBN achieved an accuracy of
83.7% on the IFN/ENIT database. However, the model recognition tests’ generalization
scope was not extended to cover the isolated offline Arabic handwritten digits; further,
the recognition accuracy requires more enhancement, especially for the CDBN model
applied to the IFN/ENITwords database.

A CNN method based on a simple LeNet-5 network was implemented by El-Sawy et al. [9]
and evaluated on the MADBase Arabic digit database (60,000 training images and 10,000
testing images). The model achieved an error classification rate (ECR) of 12%. Their work’s
drawbacks were the following: they did not try to modify the current LeNet-5 model;
the generalization scope of the model recognition tests was not extended to cover the
isolated offline Arabic handwritten characters and words; further, the recognition accuracy
demands improvement.

Elleuch et al. [28] presented a Support Vector Machine (SVM)-based deep learning
model based on Deep Support Vector Machine (DSVM) to classify handwritten Arabic
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characters. The deep SVM was built using a stack of SVMs, allowing them to automatically
extract features from the raw images and recognize them. This model adopted the dropout
technique to overcome the overfitting problem. The DSVM model was tested on the
HACDB database, which contains 6600 shapes (5280 training images and 1320 testing
images), and it achieved a classification accuracy rate of 94.32%. However, the model
recognition tests’ generalization scope was not extended to cover the isolated offline Arabic
handwritten digits and words; further, the recognition accuracy demands improvement.

Elleuch et al. [27] proposed an offline Arabic handwritten character recognition system
using a CNN as a features information extractor and an SVM with Radial Basis Function
(RBF) kernel functions as a classifier. The CNN-based SVM was evaluated using the
HACDB (with a training set of 5280 images and a test set of 1320 images) and IFN/ENIT
databases. The authors utilized the database sets (a) and (b), and they performed pre-
processing, including word segmentation into characters, noise reduction, and binarization.
In the HACDB database, its training set size was spread out ten times by the elastic
deformation technique. The performance was improved when the dropout technique was
exploited. The experiments were carried on HACDB with 24 classes, HACDB with 66
classes, and IFN/ENIT with 56 classes, and the results were an ECR of 2.09%, 5.83 %,
and 7.05 %, respectively. However, the model recognition tests’ generalization scope was
not extended to cover the isolated offline Arabic handwritten digits; further, the recognition
accuracy requires more enhancement.

Loey et al. [10] provided a new unsupervised DL method with Stacked Auto-Encoder
(SAE) for Arabic digits’ classification. The model’s first and second sparse auto-encoders
employed the L2 regularization to enhance the model generalization. The authors tested
their model using raw data inputs from the MADBase database (with 60,000 training
images and 10,000 testing images), and the testing process achieved an accuracy of 98.5%.
However, the model recognition tests’ generalization scope was not extended to cover the
isolated offline Arabic handwritten characters and words; further, the recognition accuracy
requires more enhancement.

Ashiquzzaman et al. [47] suggested a novel CNN algorithm that uses the Rectified
Linear Unit (ReLU) activation function with the dropout technique as a regularization layer
to identify numerals in offline handwritten Arabic. The model utilizes many pre-processing
operations (e.g., normalized, gray-scaled, inverted to a black background, and a white
foreground). The algorithm was tested against the CMATERDB 3.3.1 Arabic handwritten
digit database (with 2000 training images and 1000 testing images) and achieved a clas-
sification accuracy of 97.4%.However, the model recognition tests’ generalization scope
was not extended to cover the isolated offline Arabic handwritten characters and words;
further, the recognition accuracy requires more enhancement.

Chen et al. [76] provided a segmentation-free method of RNN with a four-layer
bidirectional Gated Recurrent Unit (GRU) network along with a Connectionist Temporal
Classification (CTC) output layer and combined it with the dropout technique, which was
claimed to improve the system’s generalization ability. The RRN-GRU was designed to
identify words in offline handwritten Arabic. The model utilizes many pre-processing
operations (e.g., centered, normalized, inverted, re-scaled). The tests were carried out on
the IFN/ENIT database with the “abcd-e” scenario, and a classification accuracy rate of
86.49% was obtained. Post-processing was also considered in this language, as it improved
the recognition rate. However, the model recognition tests’ generalization scope was not
extended to cover the isolated offline Arabic handwritten digits and characters; further,
the recognition accuracy demands improvement.

M. Amrouch et al. [87] introduced an integrated architecture based on CNN and the
Hidden Markov Model (HMM) classifiers to solve the Arabic handwritten word recognition
problem. The CNN-based HMM model was implemented by using a CNN architecture
similar to the LeNet-5 as a salient features extractor and the HMM baseline system as a
recognizer. That permitted the extraction of relevant characteristics without pre-processing
or much emphasis on the feature extraction process. This model was validated using
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two scenarios of the IFN/ENIT database, named “abc-d” and “abcd-e”, and it gained a
recognition accuracy of 88.95% and 89.23%, respectively. However, the model recognition
tests’ generalization scope was not extended to cover the isolated offline Arabic handwritten
digits and characters; further, the recognition accuracy demands improvement.

Elbashir et al. [19] provided a CNN model for Arabic handwritten character recogni-
tion on the SUST-ALT characters database. The pre-processing stage involved normalizing
the database to fit in 20 × 20 pixels and then cantering the normalized images into scaled
images of 28 × 28 pixels; moreover, these images were inverted to a black background with
white foreground colors. The model input data was divided into 70% for training and the
reset into 30% for both testing and validation data. The obtained recognition accuracy was
93.5%. However, the model recognition tests’ generalization scope was not extended to
cover the isolated offline Arabic handwritten digits and words; further, the recognition
accuracy demands improvement.

A framework of Convolutional Deep Belief Network (CDBN) was proposed by
Elleuch et al. [88] for recognizing low/high-level dimensional data. The overfitting prob-
lem was reduced using the data augmentation and dropout regularization techniques to
improve model performance. The authors validated the CDBN architecture on two Arabic
handwritten script databases, the HACDB and IFN/ENIT. They achieved an accuracy rate
of 98.86% on the HACDB characters database (with a training set of 5280 samples and a test
set of 1320 samples). For the IFN/ENIT words database, they obtained an accuracy rate of
91.55% using protocol 1 (a, b, and d for training and e for testing) and a recognition accuracy
of 92.9% using protocol 2 (a, b, and c for training and d for testing). However, in terms
of generalization capability, each database problem was solved by different structures.
Moreover, the model recognition tests’ scope was not extended to cover the isolated Arabic
handwritten digits; further, the recognition accuracy demands improvement.

In work presented by Ashiquzzaman et al. [89], the authors proposed an amendment
to their same approach presented in [28]. This amendment included introducing data
augmentation (rotation, noise, zooming randomly, shifting horizontally and vertically,
and points outside the boundaries being filled according to the nearest point) to prevent
overfitting, thereby changing the activation from ReLU to the Exponential Linear Unit
(ELU) in order to prevent the vanishing gradient problem. The exploited database was
the CMATERDB 3.3.1 digits data type, and it was divided at a ratio of 2:1 for training
and testing purposes. The database images were pre-processed by inverting their colors.
After implementing all these changes, the proposed model obtained an accuracy of 99.4%.
However, the model recognition tests’ generalization scope was not extended to cover the
isolated offline Arabic handwritten characters and words.

Mustafa et al. [90] presented a CNN model for recognizing SUST Arabic names
(words) holistically. The authors employed the dropout and batch normalization tech-
niques from the posted model’s structure, which helped their model be more suitable for
solving the high-level dimensional problem. They pre-processed the database’s raw images
by eliminating the surrounding white spaces, applying a downscaling of 28 × 56 pixels,
and converting to a black background and white foreground. The achieved a recognition
accuracy of 99.14%. However, in terms of generalization capability, the proposed CNN
model was evaluated only on 20 classes out of 40 classes, which is considered a significant
drawback; further, experiments were not conducted to test the scope of the model recogni-
tion tests with respect to other databases’ data types, such as isolated Arabic handwritten
characters and digits.

In terms of pre-processing and accuracy, the findings and limitations of the existing
OAHR methods are summarized in Table 1.



Entropy 2021, 23, 340 7 of 27

Table 1. Summary of reviewed related works.

Literature/ Year Findings Outline

Elleuch et al. [85]/2015
The DBNN method obtained an ECR of 2.1%
and an accuracy of 97.9% on the HACDB
characters database.

Generalization was not tested for
Arabic digits and words. Accuracy
requires enhancement.

Elleuch et al. [37]/2015

The DBN method obtained an ECR of 1.67%
and 3.64% and an accuracy of 98.33% and
96.36% on the HACDB database with 24
characters and the HACDB database with 66
characters, respectively.

Generalization was not tested for
Arabic digits and words. Accuracy
requires enhancement.

Elleuch et al. [37]/2015

The CNN method obtained an ECR of 5%
and 14.71% and an accuracy of 95% and
85.29% on the HACDB database with 24
characters and the HACDB database with 66
characters, respectively.

Generalization was not tested for
Arabic digits and words. Accuracy
requires enhancement.

ElAdel et al. [11]/2015
The DCNWN method obtained an ECR of
2.1% and an accuracy of 93.92% on the
IESKarDB characters database.

Generalization was not tested for
Arabic digits and words. Accuracy
requires enhancement.

Elleuch et al. [86]/2015
The DBN method obtained an ECR of 6.08%
and an accuracy of 97.9% on the HACDB
database with 66 characters.

Generalization was not tested for
Arabic digits and words. Accuracy
requires enhancement.

Elleuch et al. [86]/2015

The CDBN method obtained an ECR of
1.82% and 16.3% and an accuracy of 98.18%
and 83.7% on the HACDB (24) characters and
the IFN/ENIT words databases, respectively.

Generalization was not tested for
Arabic digits and characters.
Accuracy requires enhancement.

El-Sawy et al. [9]/2016
The CNN method obtained an ECR of 12%
and an accuracy of 88% on the MADBase
digits database.

Generalization wa not tested for
Arabic characters and words.
Accuracy requires enhancement.

Elleuch et al. [28]/2016
The DSVM method obtained an ECR of
5.68% and an accuracy of 94.32% on the
HACDB (66) characters database.

Generalization was not tested for
Arabic digits and words. Accuracy
requires enhancement.

Elleuch et al. [27]/2016

The CNN-SVM method obtained an ECR of
2.09%, 5.83%, and 7.05% and an accuracy of
97.91%, 94.17%, and 92.95% on the HACDB
database with 24 characters, the HACDB
database with 66 characters, the IFN/ENIT
(56) words databases, respectively.

Generalization was not tested for
Arabic digits. Accuracy requires
enhancement.

Loey et al. [10]/2017
The SAE method obtained an ECR of 2.6%
and an accuracy of 98.5% on the CMATERDB
3.3.1 digits database.

Generalization was not tested for
Arabic characters and words.
Accuracy requires enhancement.

Ashiquzzaman et al. [47]/2017
The CNN method obtained an ECR of 1.5%
and an accuracy of 97.4% on the MADBase
digits database.

Generalization was not tested for
Arabic characters and words.
Accuracy requires enhancement.

Chen et al. [76]/2017
The RRN-GRU method obtained an ECR of
13.51% and an accuracy of 86.49% on the
IFN/ENIT words database.

Generalization was not tested for
Arabic digits and characters.
Accuracy requires enhancement.
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Table 1. Cont.

Literature/ Year Findings Outline

M. Amrouch et al. [87]/2018

The CNN-based HMM method obtained an
ECR of 11.05% and 10.77% and an accuracy
of 88.95% and 89.23% on the IFN/ENIT
words database with “abd-e” protocol and
the IFN/ENIT words database with
“abcd-e”, respectively.

Generalization was not tested for
Arabic digits and characters.
Accuracy requires enhancement.

Elbashir et al. [19]/2018
The CNN method obtained an ECR of 6.5%
and an accuracy of 93.5% on the SUST-ALT
characters database.

Generalization was not tested for
Arabic digits and words. Accuracy
requires enhancement.

Elleuch et al. [88]/2019

The CDBN method obtained an ECR of
1.14%, 8.45%, and 7.1% and an accuracy of
98.86%, 91.55%, and 92.9% on HACDB
database with 66 characters, the IFN/ENIT
words database with “abd-e” protocol,
and the IFN/ENIT words database with
“abc-d” protocol, respectively.

Generalization was not tested for
Arabic digits. Accuracy requires
enhancement.

Ashiquzzaman et al. [89]/2019
The CNN method obtained an ECR of 0.6%
and an accuracy of 99.4% on the CMATERDB
3.3.1digits database.

Generalization was not tested for
Arabic characters and words.

Mustafa et al. [90]/2020
The CNN method obtained an ECR of 0.86%
and an accuracy of 99.14% on the SUST-ALT
words database.

Generalization was not tested for
Arabic digits and characters.

3. OAHR General Framework

Figure 2 illustrates the general framework of OAHR, which involves six phases,
namely data acquisition, pre-processing, segmentation, feature extraction, classification,
and post-processing. The researchers can utilize all, subset, or merged stages in their
systems [3,25]. Each phase is described as below in brief:

3.1. Data Acquisition

Image acquisition is the first phase of the Arabic handwriting recognition system.
Cameras and scanners are generally adopted for capturing or acquiring offline text im-
ages. Using the optical scanner device is the most appropriate way of obtaining text
images because it provides the ability of implementing automatic adjustment, binarization,
and enhancements such as low noise on the images, which helps to improve the system’s
recognition accuracy [7]. For research purposes, mostly the ready and publicly published
databases are used.

3.2. Pre-Processing

The quality of the input text image can influence the accuracy of the recognition
process [91]. The role of the pre-processing phase is to enhance the quality of raw text
image by clearing irrelevant information and, then, to provide a clean text image that
can be proper and efficient for the next phases [3,14,92,93]. The pre-processing task can
be achieved by applying many techniques that can deal with skew/slant detection and
correction, thinning, binarization, noise removal, thresholding, normalization [3,92,93],
resizing and compression, etc. [14,94]. One or more pre-processing techniques can be
used based on the degree of the text image quality [1,95] and according to the targeted
OAHR design.



Entropy 2021, 23, 340 9 of 27

Figure 2. Offline Arabic handwritten recognition system general framework.

3.3. Segmentation

The segmentation phase constitutes a sensitive and critical task because any fault,
such as misplaced segmentation, over-segmentation, or under segmentation, impacts the
entire recognition process [3,91]. The role of this stage is to split a text image into pixel
segments, a piece of Arabic words (PAWs), or line segments [93], and this comprises text
lines, words, sub-words, characters, and sub-characters. The segmentation operation has
three strategies, including the classical systems where character-like properties are used to
identify the segments [93], the segmentation-based systems where the word is segmented
into characters and primitives or segmented after the recognition [3], and the holistic
or segmentation free systems where the recognition process is done on the entire word
without splitting [1,3,91,93]. Numerous segmentation methods are not sufficient for offline
Arabic handwriting tasks due to its cursive nature, the presence of dots, diacritics, overlaps,
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and ligatures, which cause more difficulty during character segmentation, and accordingly,
additional researches are required in this area [3].

3.4. Feature Extraction

Feature extraction is the process of extracting the most relevant and non-redundant
attributes from the text image raw data [1,3,14,92] and then converting them into a vector
of features [9,91,95]. The different types of feature methods are classified as structural
features, statistical features, and feature space transformations [8,94,95]. Structural features
describe the geometrical and topological characteristics of a text image pattern, such as
directions, strokes, endpoints, the intersection of line segments, number of diacritical marks,
loops, types of dots, zigzag, arcs, concavities, etc. Statistical features are extracted from
the pixels’ statistical distribution, and they describe the set of characteristic measurements
of a text image pattern, such as number of loops, segments, branching and crossing
points, and diacritics and their positions [95], and they have low complexity and high
speed [1,3,8,94]. Feature space transformations convert the pixel representation to a more
compact form with less feature vector dimensionality [7,8,94] among the methods involving
principal component analysis (PCA), Walsh Hadamard Transform, Fourier Transform,
Wavelets, Hough Transform, Gabor Transform, Rapid Transform, and Karhunen Loeve
Expression and moments [1,3,8,9,94,95].

3.5. Classification

The classification phase is the decision-making process of the recognition system,
and its role relies on recognizing and allocating an input feature with a class label or mem-
bership scores for digits, characters, or words to the correct related defined classes [1,3,92],
so that the texts in images are transformed into a computer understandable form [92],
and the performance of a classifier depends on the quality of the extracted features. In the
literature, the categories of numerous recognition approaches, including template match-
ing [92] and the structural, statistical, stochastic, and hybrid approaches, are obtained by
combining multiple classifiers [95]. For Arabic handwritten recognition, many classifiers
have been used, such as k-nearest neighbors (kNN), HMM, SVM, and ANN [1,3,93–96].
In recognition systems, this phase is achieved by selecting a suitable recognition method
and then employing two processes: the training process, which uses extracted features to
train the classifier to build the appropriate models, and the testing process, which uses the
previously generated models.

3.6. Post-Processing

After the completion of the classification phase, the final post-processing phase can be
optionally added to enhance the proposed system’s accuracy and reliability by refining the
decisions taken by the previous stage and then minimizing the classifier recognition error
rate. This task can be achieved by using the Arabic linguistic knowledge level, which could
be on many levels, such as character, lexical, morphological, syntactic, higher semantic,
and discourse levels [93]. Many methods have been introduced in this context, such as
the implementations of the Damerau-Levenshtein distance methods for solving the string
correction problem and the n-gram methods used for statistical language models [95].

In light of the OAHR’s general framework demonstrated six phases and since the
targeted databases are already collected, our proposed DCNN model will utilize only three
phases, including pre-processing, feature extraction, and classification.

4. Proposed DCNN Model

In this section, we illustrate the implementation of the proposed modern deep Con-
vNets architecture that is built from blocks of alternating convolution layers, normalization
layers, max-pooling layers, and dropout, followed by some fully connected layers. CNN is
a deeply hierarchical, multi-layer neural network with trainable weights and biases [47]
trained with the back-propagation algorithm [27,37,47]; it was inspired by the information
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processing in the human brain [9]. The CNN algorithm was constructed from an automatic
feature extractor and a trainable classifier that was used to efficiently learn complex, high-
dimensional data [27,28] and high-level features from a labeled training data [23]; it was
used to build hierarchical representations from raw data [28] and then for solving image
classification problems [23] such as OAHR. In this study, the proposed DCNN sequential
model was used primarily with 34 building blocks, including one input layer, one output
layer, five stacked convolutional layers blocks, and two fully connected hidden layers for
nonlinear classification. Figure 3 shows the innovative DCNN architecture that shows the
building blocks of two main phases of the OAHR system: the feature extraction phase and
the classification phase.

4.1. Design Methodology

Determining a suitable design for deep machine learning network architecture (e.g.,
CNN) is a bit of a “black art” because each given problem (database) requires certain
adjustments; accordingly, the performance of the learning process is critically sensitive
to the chosen architecture design [61]. Therefore, the chosen CNN model’s performance
relies on setting the design structure, the data representation, and the training process con-
trolled through several hyper-parameters [60]. The structural hyper-parameters encompass
decisions that should carefully be tuned, such as depth of the network (e.g., number of
convolutional and fully-connected layers), number of filters, layer type, number of units
per layer and in fully-connected layers, stride size, pooling locations, sizes, dropout rates,
batch normalization, and learning rates [60,61]. The hyper-parameters’ number and types
increase in the deeper and complex modern models [60]. On the other hand, deciding the
appropriate combination of hyper-parameters for a specific recognition task is challenging
due to the unclarity of their interaction and their impact on model performance [61]. There
are two methodical ways of designing CNN network architecture: the hand-crafted design
and the automated design [59–62]. The CNN hand-crafted architecture’s design requires
considerable human expertise and effort in manually tuning the CNN architecture’s hyper-
parameters [61,62] in the problem domain [62]. Thus, a set of trial and error combinations
must be achieved to ensure efficient design due to the massive number of architectural
design choices, which are considered challenging and time-consuming processes [59,61].
Unlike modern CNN hand-crafted models such as Mobilenet, Squeezenet, and Shufflenet,
the hand-crafted CNN-based VGGnet, GoogLeNet, and ResNet models are consuming
a vast amount of resources and time in the training process [59]. On the other hand,
the automated design methods for finding an optimal arrangement of the network building
blocks that achieve the best performance becomes a solution for solving the problem of
needing human experts and avoiding the expert trial-and-error procedure [59,60]. The au-
tomated methods, such as grid search, random search, or formulating the selection of
appropriate hyper-parameters as an optimization problem, are employed for finding the
best combination of CNN architecture’s hyper-parameters that yields a better design [61].
Hence, we headed toward designing the DCNN model architecture from scratch using
the hand-crafted methodology for this proposed work. We started by building a simple
CNN model with one block, and then we built up the network complexity and got deeper,
as shown in Figure 3, by trying varying combinations of hyper-parameters and seeking
better performance improvement. The target contribution of providing well-generalized
(recognizing isolated Arabic digits, characters, and words) and well-performed (high and
competitive recognition accuracy and precision) added more challenge, efforts, and time to
the hyper-parameters’ manual tuning process, which led us to commit to using five blocks
of convolutionals. The results of the experiments on stacked DCNN blocks are revealed in
the “results and discussion” section.
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Figure 3. The proposed DCNN architecture for oahr.

4.2. Feature Extraction Phase

For all the convolutional layers in this model, the original input dimensions will
remain intact by adopting a padding option called “same”. The model description is
provided in the following way: block one of the convolutional features extraction started
with the first convolutional layer that possesses 32 feature maps, each with a trainable
kernel size of (3 × 3) pixels and a ReLU activation function of the neurons. It can extract
features from the input raw image whether it is Grayscale, RGB, or RGBA of size 128 × 128
or 331 × 94, depending on the database types used in the experiments. The second
layer is the batch normalization layer, which was added after the convolutional layers; it
used the mean and variance to limit their output away from the region of saturation [22].
The maximum sub-sampling or pooling layer with a pool size of 3 × 3 was used as the third
layer for reducing the dimensionality of the feature maps. The regularization or dropout
layer was used in the next layer to reduce overfitting, and it is configured to randomly
and temporarily remove 10% of the neurons. Relatively, the configuration of the following
repeated convolution layers was represented by the next four stacked blocks in order.

4.3. Classification Phase

After all of these convolutionals, we started the classification layers of the model
with a flattened layer to transform the resulting two-dimensional matrix of features into a
single vector; subsequently, it was fed into the first fully connected layer that selected 1024
neurons and the ReLU activation function. Next, the batch normalization layer was added;
a dropout of 0.5 followed it. Finally, a second full connection layer was used as the highest
level of the architecture. It was configured to the actual number of neurons corresponding
to the targeted Arabic database class labels. For this final layer, the Softmax activation
function was used to return a list of probability-like predictions between (0 and 1) for each
of the class labels.
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5. Experiments and Discussion

We conducted tests on the recognition of offline Arabic handwritten digits, charac-
ters, and words by employing standard stacked Deep ConvNets along with the batch
normalization technique and dropout technique for improved efficiency. We examined the
proposed DCNN architecture on multiple databases, including the MADBase, CMATERDB,
HACDB, SUST-ALT (digits), SUST-ALT (characters), and SUST-ALT (names). The results
are presented and discussed in the next subsection.

5.1. Details About Arabic Handwritten Databases

This section presents two categories of the databases employed in these experi-
ments; these are the commonly used benchmark databases (MADBase, CMATERDB,
and HACDB) and the newly used SUST-ALT databases for Arabic handwritten digits,
characters, and names. The MADBase digits benchmark database is a modified version
of the ADBase, which is composed of 70,000 greyscale digits images (60,000 training
images and 10,000 test images) written by 700 writers. It has the same format as the
Latin database (MNIST) [9,10]. The CMATERDB version 3.3.1 is another Arabic handwrit-
ten digits database benchmark that contains 3000 unique samples of 32 × 32 pixel RGB
bitmap images [47]. The HACDB version 2.0 characters benchmark database contains 6600
greyscale character images, which have generated two forms for 66 shapes (58 shapes of
characters and eight shapes of overlapping characters) [27,28,37,85,86,97]. The newly used
SUST ALT (Sudan University of Science and Technology – Arabic Language Technology
group) database includes several Arabic handwritten databases. The digits database and
the isolated letters database (34 classes) are created from scratch, while the source of the
names database (40 classes) is the SUST graduation certificate application forms [19,33].
Tables 2–4 present some raw samples of the experiments on databases based on their
types while covering digits, characters, and words from the Arabic handwritten databases,
respectively.

Table 2. Raw samples of digits from Arabic handwritten databases.

Number
Name

Machine
Form

MADBase
Database

CMATERDB
Database

SUST-ALT
Digits

Zero

One

Two

Three

Four

Five

Six

Seven

Eight

Nine
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Table 3. Raw samples of characters from Arabic handwritten databases.

Character
Name

Machine
Form

HACDB
Database

SUST-ALT
Characters Database

Alif

Raa

Seen

Saad

Ayn

Faa

Meem

Noon

Haa

Waw

Table 4. Raw samples of words from Arabic handwritten databases.

Name in English Machine Form SUST-ALT Names Database

Ahmed

Ali

Ebraheem

Taha

Soliman

Eman

Fatema

Rian

Marwa

Samah
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5.2. Experimental Setup and Pre-Processing

The computer for the experimental setup had the following: a Windows 10 operating
system and Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz, 16 GB RAM, Nvidia Geforce
(GTX 1050 Ti) with a 4 GB RAM Graphics card that supported the parallel computing
platform – Compute Unified Device Architecture (CUDA) version 7.1.4 with Graphics
Processing Unit (GPU) enabled. The experimental model was implemented with Google’s
TensorFlow, an open-sourced framework that uses Keras’s higher-level API framework
built on top of the TensorFlow for machine learning models’ implementation and de-
ployment as well as the Python open-sourced DL library for programming. The model
compilation is an efficiency step that is required after defining the model. We specified the
parameters tailored to train the established networks, which were selected as follows: for
optimizing network training, the experiments proved that the RMSprop algorithm had
performed better in this model; for evaluating the network, the (Categorical_Crossentropy)
multi-class logarithmic loss reduction function was used along with the metric function
(accuracy) that was used to judge the performance of the model. The model training, for all
the experiments, was accomplished by assigning training function parameters with the
following values: epochs number was 200 and batch size was 128. The (ReduceLROn-
Plateau) function was used to reduce the learning rate during the training process with
the following customized argument values: monitor was val_acc, patience was 1, verbose
was 1, factor was 0.5, and learning rate was 0.00001. The model was constantly fed with
a database that needed to be split into parts, including validation, testing, and training;
the latter one was configured to be 80% of the overall size of the training database. In
regard to the pre-processing of data, better recognition was achieved by applying the
augmentation and resizing processes automatically to the input database images without
any handcraft. It was observed that the model interface loads the raw images as it is
for the SUST-ALT names database with 331 × 94 pixel size, unlike the digits (MADBase,
CMATERDB, SUST-ALT numbers) and characters (HACDB, SUST-ALT letters) databases
that are resized to 128 × 128 pixels. The augmentation of the image data process makes
the model more robust by creating more data from the existing ones by applying only a
slight transformation using the shift/range property for each image with width and height
values of 0.15.

5.3. Results and Discussion

The following sub-sections discuss the employed classification evaluation criteria,
performance of the proposed hand-crafted DCNN model on the targeted Arabic databases,
its generalization on a non-Arabic database (i.e., English handwritten digits), and finally,
a comparative study of its performance with the pre-trained VGGNet-19 and MobileNet
models as well as the state-of-the-art DL approaches in the field.

5.3.1. Evaluation Criteria

The quantitative evaluation of the supervised classification learning approach’s perfor-
mance linked to its prediction capability of unseen and independent data is fundamental in
estimating the quality of learning approaches and learning models in machine learning [98].
Obtaining an optimal generative classifier is subject to selecting a suitable evaluation metric
during the classification training for measuring its quality [98]. Thus, there may be many
typical evaluation metrics for measuring new classifiers’ performances, accuracy, and clas-
sification error [98,99], which have been noticed through related works in the previous
section. However, the accuracy and error rate are considered to be less distinctive, less
informative, strongly biased to favor the majority class data (i.e., the imbalance problem),
Ref. [98,99] and sensitive to class skews; accordingly, in such cases, other metrics such as
recall, precision, and F-measure are more appropriate as benchmark measurements [98].
Therefore, different evaluation metrics can evaluate different classifiers’ characteristics
for specific classification algorithms [99]. Five evaluation metrics based on the confusion
matrix for multi-class prediction were exploited for measuring the proposed model, and the
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pre-trained model performances were accuracy, error rate, recall, precision, and F-measure.
Accuracy measured the ratio between the correct predictions and the total number of
predictions made [99]. Misclassification error or error classification rate (ECR) measured
the ratio between incorrect predictions and the total number of predictions [99]. Recall
or sensitivity: measured the ratio between correctly the classified positive patterns and
the total positive patterns [99,100]. Precision measured the ratio between the correctly
predicted positive patterns and the total predicted positive patterns [99,100]. F-Measure or
F-score represented the harmonic mean of recall and precision [99]. The following formulas
(1-5) showed the definitions of ECR, accuracy, recall, precision, and F-measure, respectively:

ECR =
FP + FN

TP + TN + FP + FN
(1)

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Recall =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

F − measure = 2 × Precision × Recall
Precision + Recall

(5)

where: TP = True Positive or correct positive prediction; TN = True Negative or correct
negative prediction; FP = False Positive or incorrect positive prediction; FN = False Negative
or incorrect negative prediction.

5.3.2. Incremental Approach to Proposed Model Design

In this work, we sought to improve the OAHR model’s capabilities and performance
in the field of DL by providing a more generalized model that can recognize many types
of offline Arabic handwriting databases, including isolated numbers, letters, and words.
The following experiments’ details showed the block-wise evolvement of the design of the
proposed hand-crafted DCNN model. The three performance measurements, i.e., accuracy,
precision, and training time, considered the main factors of assessing the process of stacking
architecture blocks for each database individually and all databases as a whole. Table 5 shows
that the accuracy and precision metrics of the MADBase digits database were improved for
each stacked block, and their values were relatively close. Thus, the model’s architecture with
five stacked blocks performed better than other architectures with fewer stacked blocks in
terms of accuracy, precision, and training time. It should be noted that the three performance
metrics of precision, recall, and F-measure for each experiment for this database as well as the
followed databases’ experiments revealed identical values, and this could be attributed to the
equality of the obtained FN and FP numbers.

Table 5. The block-wise performance metrics of the proposed DCNN model on the MADBase digits database.

Stacked Blocks Count Training Time (in Minutes) Precision Recall F-Measure Accuracy

One 586 0.991 0.991 0.991 0.9982

Two 628 0.994 0.994 0.994 0.9988

Three 654 0.9945 0.9945 0.9945 0.9989

Four 717 0.9951 0.9951 0.9951 0.99902

Five (Final Model) 548 0.9953 0.9953 0.9953 0.99906

Similarly, Table 6 shows that the performance metrics of accuracy and precision of the
CMATERDB digits database were ameliorated for each stacked block, but their values were
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divergent. Accuracy value can be high but precision value low as in the case stated here,
which meant that the model performed well, but the obtained results were spread [13].
Our target was to achieve both high accuracy and high precision. Again, during this
experimental phase, the model’s architecture with five stacked blocks performed better than
the other ones with fewer stacked blocks in terms of accuracy, precision, and training time.

Table 6. The block-wise performance metrics of the proposed DCNN model on the CMATERDB digits database.

Stacked Blocks Count Training Time (in Minutes) Precision Recall F-Measure Accuracy

One 24 0.96833 0.96833 0.96833 0.99367

Two 25 0.975 0.975 0.975 0.99

Three 26 0.97 0.97 0.97 0.994

Four 27 0.98542 0.98542 0.98542 0.99708

Five (Final Model) 22 0.98608 0.98608 0.98608 0.99722

The accuracy and precision metrics in Table 7 were incrementally improved for each
stacked block, and their values were relatively close for those architectures with three, four,
and five blocks. The model architecture of four blocks had better accuracy and precision
than the model with five blocks, but on the other hand, it was too slow. The model with
five blocks was faster than all other models for the SUST-ALT digits database.

Table 7. The block-wise performance metrics of the proposed DCNN model on the SUST-ALT digits database.

Stacked Blocks Count Training Time (in Minutes) Precision Recall F-Measure Accuracy

One 288 0.96061 0.96061 0.96061 0.99212

Two 350 0.9885 0.9885 0.9885 0.9977

Three 491 0.99283 0.99283 0.99283 0.99857

Four 343 0.99391 0.99391 0.99391 0.99878

Five (Final Model) 282 0.99107 0.99107 0.99107 0.99821

Table 8 shows that the models with four and five blocks had the best accuracy and
precision metrics on the HACDB characters database, but their values were divergent,
and the precision was low. Although the four-block model had better performance metrics,
it was slower than the five-block model.

Table 8. The block-wise performance metrics of the proposed DCNN model on the HACDB characters database.

Stacked Blocks Count Training Time (in Minutes) Precision Recall F-Measure Accuracy

One 52 0.70833 0.70833 0.70833 0.99116

Two 53 0.93561 0.93561 0.93561 0.99805

Three 59 0.95909 0.95909 0.95909 0.99876

Four 60 0.97197 0.97197 0.97197 0.99915

Five (Final Model) 53 0.96967 0.96967 0.96967 0.99908

The accuracy and precision metrics of the conducted experiments on the SUST-ALT
digits database were divergent; on the other hand, they were incrementally boosted as
shown in Table 9, and their scored values were relatively close to those architectures
with three, four, and five blocks. In this case, the four-block model had better accuracy
and precision than the five-block model, but on the other hand, it was too slow. Again,
the five-block model was faster than all the other models with fewer stacked blocks.
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Table 9. The block-wise performance metrics of the proposed DCNN model on the SUST-ALT characters database.

Stacked Blocks Count Training Time (in Minutes) Precision Recall F-Measure Accuracy

One 393 0.82687 0.82687 0.82687 0.98982

Two 573 0.95338 0.95338 0.95338 0.99726

Three 400 0.9733 0.9733 0.9733 0.99843

Four 611 0.97799 0.97799 0.97799 0.99871

Five (Final Model) 344 0.97591 0.97591 0.97591 0.99858

Finally, the experiments on the SUST-ALT words database showed systematic growth
of the precision and accuracy through all architectures as illustrated in Table 10, and in
this case, the five-block model scored the best performance metric values. Although the
precision was high, it was still considered relatively low when compared to the obtained
accuracy. In terms of training time, it was slower than the three- and four-block models. It
is worth mentioning that the used environment’s GPU was resistant to the training batch
size in this category of experiments due to the big size of the actual input word’s image
size. The models’ architectures with one, two, three, four, and five blocks exploited batch
sizes of 16, 32, 64, 96, and 128, respectively, which indicated that the five-block model
keeps the batch size unchanged, which ensures the unification of the final DCNN model’s
hyper-parameters remains intact.

Table 10. The block-wise performance metrics of the proposed DCNN Model on the SUST-ALT Words (Names) Database.

Stacked Blocks Count Training Time (in Minutes) Precision Recall F-Measure Accuracy

One 1079 0.67788 0.67788 0.67788 0.98389

Two 1345 0.96213 0.96213 0.96213 0.99811

Three 504 0.98725 0.98725 0.98725 0.99936

Four 508 0.9895 0.9895 0.9895 0.99948

Five (Final Model) 534 0.99038 0.99038 0.99038 0.99952

Since the four-block and five-block models showed outstanding performances in
comparison with the models with fewer blocks and as these obtained performance mea-
surement values were relatively close, we summarized the assessment factors, as shown
in Table 11, to determine the best model for OAHR problems. From this summary, it is
clear that there was a relative balance between the four-block model and the five-block
model in terms of best accuracy and best precision, and the conclusive measurement factor
between them was the training time in which the five-block model had the least training
time. Besides that, it was observed that the five-block model can support working with
large samples’ sizes without affecting the model’s hyper-parameters (i.e., training batch
size). For these reasons, we approved using the DCNN model with five blocks.
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Table 11. Summary of the performance measurement factors of the four-block model and the five-block model.

Database/Type
Four Blocks Five Blocks

Best Accuracy Best Precision Less Training
Time Best Accuracy Best Precision Less Training

Time

MADBase (Digits) No No No Yes Yes Yes

CMATERDB (Digits) No No No Yes Yes Yes

SUST-ALT (Digits) Yes Yes No No No Yes

HACDB (Characters) Yes Yes No No No Yes

SUST-ALT (Characters) Yes Yes No No No Yes

SUST-ALT (Words) No No Yes Yes Yes No

From the automatic statistical readings, mainly from the generated experiments’
confusion-matrix, it was evident that our powerful novel model achieveed high accuracy
with reasonable training time; Table 12 shows the details of the final DCNN model’s
experiments, which were categorized based on the database type.

Table 12. Results of the proposed DCNN model’s experiments on different offline handwritten Arabic databases.

Database
Name/Type

Training Time
(Minutes)

Training
Loss (%)

Training
Accuracy (%)

Validation
Loss (%)

Validation
Accuracy (%)

ECR
(%)

Accuracy
(%)

MADBase/Digits 548 0.46 99.88 1.41 99.73 0.09 99.91

CMATERDB/
Digits 22 3.43 98.85 6.66 98.96 0.28 99.72

SUST-ALT/
Digits 282 1.15 99.65 3.24 99.34 0.18 99.82

HACDB/
Characters 53 6.84 97.49 9.25 96.97 0.09 99.91

SUST-ALT/
Characters 344 3.71 98.73 9.18 97.97 0.14 99.86

SUST-ALT/
Words 534 1.86 99.48 3.97 99.13 0.05 99.95

For the digits category experiments, the CMATERDB, SUST-ALT digits, and MADBase
scored a high accuracy rate of 98.85%, 99.65%, and 99.88%, respectively, for training, a vali-
dation accuracy rate of 98.96%, 99.34% and 99.73%, resectively, and a testing/prediction
accuracy rate of 99.72%, 99.82%, and 99.91% in the given order. The recognition of the
MADBase outperformed the other databases in this category in terms of training, valida-
tion, and testing accuracy rates. For the characters’ category experiments, the HACDB
database gained a training accuracy rate of 97.87%, a validation accuracy rate of 97.65%,
and a high testing/prediction accuracy rate of 99.91%. The SUST-ALT characters database
achieved a training accuracy rate of 98.73%, a validation accuracy rate of 97.97%, and a test-
ing/prediction accuracy rate of 99.86%. HACDBhas also outperformed the other databases
in this category in terms of training, validation, and testing accuracy rates. For the category
of the words’ high-level dimensional data, the model proved that it could work significantly
better compared to other low-level dimensional databases (digits and characters) along
with the words’ holistic recognition; in this respect, it scored a high accuracy rate of 99.48%
for the training, a validation accuracy rate of 99.13%, and a testing accuracy rate of 99.95%.
The summary of the proposed model’s quantitative recognition performance metrics and
other databases on this benchmark, including precision, recall, F-measure, and accuracy,
are shown in Table 13.
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Table 13. Proposed DCNN model’s performances metrics with respect to different offline Arabic
handwritten databases.

DatabaseName DatabaseType Precision Recall F-Measure Accuracy

MADBase Digits 0.9953 0.9953 0.9953 0.99906

CMATERDB Digits 0.98608 0.98608 0.98608 0.99722

SUST-ALT Digits 0.99107 0.99107 0.99107 0.99821

HACDB Characters 0.96967 0.96967 0.96967 0.99908

SUST-ALT Characters 0.97591 0.97591 0.97591 0.99858

SUST-ALT Words 0.99038 0.99038 0.99038 0.99952

5.3.3. Comparative Study

In this sub-section, we achieved two types of comparative study: experimental and
analytical. The comparison factors that were employed were training time, precision,
and accuracy.

(A) Experimental Comparative Study

Two new sequential models were designed to achieve the desired TL experiments with
top classification layers, which were the same as the proposed DCNN model’s classification
layers (see Figure 3). The very deep VGG-19 pre-trained model was attached to the first
sequential model without its top layers, and all of its trainable layers were frozen to
make it act as a features extractor during the training process. The same design was
applied to the second model using the light-weighted MobileNet pre-trained model. The
experiments’ environment was typical to the environment setup, databases’ pre-processing,
and architecture’s hyper-parameters as illustrated in Section 5.2 except for the SUST-ALT
(words) database. In the VGGNet-19 model experiment using SUST-ALT (words), the batch
size was downgraded to 64 due to the GPU limitations with respect to the pre-trained
model’s structure. On the other hand, in the MobileNet model experiment, resizing the
SUST-ALT (words) database’s samples to square dimensions was required by the model,
and in this case, we used the preferred image size of 128 × 128. The training processes
were carried out using the TL-based feature extraction training strategy where the source
task was either the VGGNet-19 or MobileNet pre-trained model and the target tasks were
the six databases (one database at a time for each experiment). Table 14 illustrates the
obtained results of the VGGNet-19 pre-trained model on all the six Arabic databases
that were used. This very deep pre-trained model showed considerable accuracy, but it
was relatively below the accuracy achieved by the proposed DCNN model. In terms of
the preciseness, the precision metric scored low values compared to the proposed model,
especially for the HACDB, SUST-ALT (characters), and SUST-ALT (words) databases, which
emphasized the spreading of the results. In contrast to the proposed model, the VGGNet-
19 consumed enormous training time. As a result, the DCNN model was more accurate,
precise, and faster than the VGGNet-19 model.

Table 15 shows the results of the MobileNet pre-trained model’s experiments on all the
six Arabic databases used. Compared to the proposed DCNN model, this light-weighted
pre-trained model scored very low recognition accuracy and displayed the worst precise-
ness. The precision metric achieved minimal values for the consumed databases expected
for the MADBase and SUST-ALT (words) databases, which were relatively reasonable;
thus, these results were considered widespread. In contrast to the proposed model, the Mo-
bileNet consumed less training time; however, the MADBase database equalled the DCNN
model’s training time. As a result, the proposed DCNN model was much accurate and
precise than the MobileNet model, and on the other hand, it was slower.
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Table 14. VGGNet-19 model’s performance metrics of different offline Arabic handwritten databases.

Database Name Database Type Training Time
(in Minutes) Precision Recall F-Measure Accuracy

MADBase Digits 964 0.9921 0.9921 0.9921 0.99842

CMATERDB Digits 32 0.97667 0.97667 0.97667 0.99533

SUST-ALT Digits 423 0.98755 0.98755 0.98755 0.99751

HACDB Characters 70 0.91439 0.91439 0.91439 0.99741

SUST-ALT Characters 606 0.93002 0.93002 0.93002 0.99588

SUST-ALT Words 892 0.866 0.866 0.866 0.9933

Table 15. MobileNet model’s performance metrics with respect to different offline Arabic handwritten databases.

Database Name Database Type Training Time
(in Minutes) Precision Recall F-Measure Accuracy

MADBase Digits 548 0.8221 0.8221 0.8221 0.96442

CMATERDB Digits 19 0.41167 0.41167 0.41167 0.88233

SUST-ALT Digits 263 0.29088 0.29088 0.29088 0.85818

HACDB Characters 42 0.19697 0.19697 0.19697 0.97567

SUST-ALT Characters 330 0.1456 0.1456 0.1456 0.94974

SUST-ALT Words 275 0.915 0.915 0.915 0.95458

(B) Analytical Comparative Study

Table 16 illustrates the proposed system’s comparative analytical study against other
state-of-the-art DL approaches by utilizing the experiments’ offline handwritten Arabic
benchmark database. Our obtained results were sufficiently more significant for all ex-
ploited databases than the other DL methods that use the CNN technique or other different
classification techniques. In this comparative study, we used only the accuracy metric
due to the absence of the other classification performance metrics (e.g., recall, precision,
and f-measure) and the training time required by the authors’ approaches.

5.3.4. Generalization Tests on Offline English Handwritten Digits

Moreover, in the context of measuring the applicability of our model’s generalization
in recognizing other languages’ isolated scripts, we conducted the tests on the MNIST
English digits database (with 60,000 training images and 10,000 testing images) using the
proposed DCNN model. The experiment required 295 minutes for the training process,
and the outstanding accuracy of 99.94 % that was obtained revealed the model’s remark-
able potential. On the other hand, the obtained quantitative recognition performance
metrics’ precision, recall, and F-measure on this benchmark had the same value of 0.9968%.
These results surpassed that of many recent dedicated state-of-the-arts methods [101–104]
evaluated on this database.
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Table 16. Performance comparisons with other state-of-the-art approaches.

Literature Method Name Database Name
(Classes) Database Type ECR/

WER Accuracy

Elleuch et al. [85] DBNN HACDB (66) Characters 2.10% 97.90%

Elleuch et al. [86] DBN HACDB (66) Characters 2.10% 97.90%

Elleuchet al. [86] CDBN HACDB (66) Characters 1.82% 98.18%

Elleuch et al. [37] CNN HACDB (66) Characters 14.71 85.29%

Elleuch et al. [37] DBN HACDB (66) Characters 3.64% 96.36%

Elleuch et al. [27] CNN based-SVM HACDB (66) Characters 5.83% 94.17%

Elleuch et al. [28] DSVM HACDB (66) Characters 5.68% 94.32%

Elleuch et al. [88] CDBN HACDB (66) Characters 1.14% 98.86%

Present Work DCNN HACDB (66) Characters 0.09% 99.91%

El-Sawy et al. [9] CNN MADBase (10) Digits 12% 88%

Loey et al. [10] SAE MADBase (10) Digits 1.50% 98.50%

Present Work DCNN MADBase (10) Digits 0.09% 99.91%

Ashiquzzaman et al. [47] CNN CMATERDB (10) Digits 2.60% 97.40%

Ashiquzzaman et al. [89] CNN CMATERDB (10) Digits 0.60% 99.40%

Present Work DCNN CMATERDB (10) Digits 0.28% 99.72%

Elbashir et al. [19] CNN SUST-ALT (40) Words 6.50% 93.50%

Mustafa et al. [90] CNN SUST-ALT (20) Words 0.86% 99.14%

Present Work DCNN SUST-ALT (40) Words 0.05% 99.95%

6. Conclusions and Future Work

This paper demonstrated the effectiveness of exploiting a powerful DCNN system
to address challenging OAHR tasks applied to different types of benchmark databases.
The proposed model was combined with several standard stacked deep ConvNets along
with pooling, dropout, batch normalization, and fully connected layers. The dropout and
the batch normalization and regularization layers were shown to improve the performance
of the model and significantly minimize the error rate. We demonstrated that the proposed
approach can efficiently deal with high-dimensional data by automatically and contextually
extracting the best features. Comparative experimental outcomes were seen to be promising
with a testing accuracy of 99.91%, 99.72%, 99.91%, 99.82%, 99.86%, and 99.95% using
MADBase, CMATERDB, HACDB, and three types of SUST-ALT databases, including digits,
characters, and words, respectively.

Besides the comparative analytical study, a comparative experimental study was
condcted on the exploited Arabic databases by adopting the TL-based feature extraction
strategy using the VGGNet-19 and MobileNet pre-trained models, which showed the
superiority of the proposed model. Hence, the proposed model’s generalization was
proved on the MNIST English isolated digits database with an outstanding accuracy of
99.94% and a precision of 99.68%.

Future research will attempt to improve the generalization capability and, mostly,
the precision metric value of the proposed model, especially for real databases with an
insufficient number of training samples, such as HACDB, by employing deeper models
with more than five building blocks, novel semi-supervised learning (e.g., [105]), depen-
dency rules-based deep learning (e.g., [106]) and transfer/multi-task learning techniques
(e.g., [107]. Other state-of-the-art deep and reinforcement learning models (e.g., [108] will
also be exploited and comparatively evaluated on a range of real world databases.
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