
Agent Motion Planning with GAs Enhan
ed by Memory ModelsMartijn C.J. BotVrije UniversiteitFa
ulty of S
ien
eDe Boelelaan 10811081 HV Amsterdam+31 20-4447790mbot�
s.vu.nl
Neil UrquhartS
hool Of ComputingNapier University219 Colinton RoadEdinburgh+44 0131 455 4432n.urquhart�napier.a
.uk

Ken ChisholmS
hool Of ComputingNapier University219 Colinton RoadEdinburgh+44 0131 455 4216k.
hisholm�d
s.napier.a
.ukAbstra
tThe Tartarus problem may be
onsidered aben
hmark problem in the �eld of roboti
s. Aroboti
 agent is required to move a number ofblo
ks to the edge of an environment. The lo-
ation of the blo
ks and position of the robotis unknown initially. The authors presenta framework that allows the agent to learnabout its environment and plan ahead us-ing a GA to solve the problem. The authorsprove that the GA based method provides thebest published result on the Tartarus prob-lem. An exhaustive sear
h is used within theframework as a
omparison, this provides ahigher s
ore still. This paper presents thetwo best Tartarus results yet published.1 Introdu
tionThe Tartarus problem may be
onsidered a ben
hmarkproblem in the area of non-Markovian agent motionplanning. The agent is pla
ed within an environment,with no prior knowledge of the environment and lim-ited means by whi
h to gather information on theenvironment (see Figure 1). The task to be under-taken involves moving blo
ks pla
ed at random po-sitions within the environment to the outer edges ofthe environment. There is only a �nite amount of en-ergy available to the agent, thus limiting the numberof moves that
an be made.The
hallenge is therefore to devise a solution to theproblem that
an gather information on the environ-ment and solve the problem at the same time. Weenhan
e a geneti
 algorithm with a long term memorymodel for in
orporating information that was found inprevious steps. We will show that our approa
h out-performs leading algorithms on this problem.

2 Problem Des
ription2.1 An overview of the Tartarus ProblemWithin the Tartarus problem, a roboti
 agent is pla
edin an environment that
onsists of a 6x6 square grid(akin to a
he
kers board, see Figure 1). The agent o
-
upies one square, while also on the board are 6 blo
ksea
h of whi
h o

upy one square. The obje
t of the ex-er
ise is for the agent to push the blo
ks to the edge ofthe board, s
oring 1 point for ea
h blo
k moved to anedge or two points for ea
h blo
k pushed into a
orner.The maximum s
ore then is 10. Only one blo
k maybe pushed at one time. Ea
h time the agent movesforward, rotates or pushes a blo
k forward it uses oneunit of energy.The agent's sensors
an only dete
t the
ontents of the8 squares dire
tly surrounding the agent's position.The obje
tive of the agent is to maximize the averages
ore over 100 randomly generated boards.2.2 Board InitialisationThe board is initialised by pla
ing all 6 blo
ks in ran-dom squares, and then pla
ing the agent in a randomsquare fa
ing a random dire
tion. Neither the blo
ksnor the agent will be initially pla
ed adja
ent to theedge. A
on�guration of 4 blo
ks pla
ed together
an-not be moved by the agent (be
ause it
an only moveone blo
k at a time). Therefore the board is neverinitialised with four blo
ks arranged in a square.2.3 SensorsThe agents' sensors are
apable of sensing the
ontentsof the eight squares adja
ent to the agents'
urrentposition. The sensors
an dete
t whether ea
h squareis empty,
ontains a blo
k, or
onstitutes part of anedge. The agent
annot sense its orientation or its

View of the agentTartarus boardFigure 1: Example Tartarus boardposition on the grid.2.4 Energy LevelsWithin the Tartarus problem, there is no time limit,but the agent has only a limited amount of energy.The agent has an initial energy level of 80 units, ea
hmove forward or rotation
osts the agent 1 unit of en-ergy. On
e all the energy has been used, the agent
anno longer move and the attempt to solve the problem
eases.3 Previous WorkPrevious te
hniques applied to the Tartarus Prob-lem in
lude geneti
 algorithms, neural networks, �nitestate ma
hines and geneti
 programming.Teller[Teller, 1994℄ used geneti
 programming with in-dexed memory to a
hieve an average s
ore of 4.5.In [Balakrishnan and Honavar, 1996℄, neural networkshave been utilised with a maximum s
ore of only 4.5.The highest s
ore a
hieved so far has been by[Ashlo
k and Joenks, 1998℄, whose GP-based algo-rithm averageda s
ore of 8.2. Earlier GP based work by Ashlo
k andM
Roberts[Ashlo
k and M
Roberts, 1997℄ a
hieved as
ore of 8.15.The most re
ent resear
h has been undertaken by[Ashlo
k and Freeman, 2000℄ who utilised a GA toevolve a �nite state ma
hine. The �nite state ma
hineinterprets the results of the sensors and at ea
h
hangein state
an issue a
ommand to the agent. The aver-age �nal s
ore a
hieved by Ashlo
k and Freeman was7.11.All of the resear
h outlined above utilised some formof internal state or memory within the agent to allow

the agent to learn about the environment. Solutionsthat haven't utilised some form of internal state withinthe agent have not a
hieved an average s
ore of greaterthan 2.By examining previous resear
h, it may be
on
ludedthat the agent needs to be equipped with the ability tohold an internal state within some form of 'memory'.4 Formulating the Solution4.1 Human Attempts to Solve the ProblemThe authors initially
arried out an informal experi-ment using human agents (i.e. a human
ontrolling theagent by manually issuing
ommands). One agent wasasked to solve the problem while only being allowedto view the inputs from the eight sensors. The se
ondagent was allowed paper and pen
il to draw a mapof the environment as they explored it. Ea
h agentattempted to solve the problem 10 times. The experi-ment revealed that even with the pro
essing power ofa human brain, the eÆ
ien
y of the solutions in
reaseddramati
ally when the agent was allowed to
ollate theinformation gathered through its sensors in the formof a map. Without a map, the human agent averageda s
ore of 7.2, but with the energy levels redu
ed to 0in every
ase. By allowing the human agent to build amap, the average s
ore rises to 9.1 with more energyleft.The authors' per
eived reason for the human agentsimproved performan
e when drawing a map, was theability to use the information in the map to pre-plansequen
es of moves before issuing
ommands to theagent. Cognitive psy
hologists have estimated humanshort-term memory only to
apable of
ontaining 7�2'
hunks' of information. The human agent workingwithout the map may have been unable to re
all theprevious values of the sensors, and build a 'memorymap' of the area.4.2 A Des
ription of the Chosen Solution4.2.1 OverviewThe information
ontained in the agents' sensors maybe
onsidered equivalent to the human short-termmemory. They are both transient and of low
apa
ity.The informal experiment
ondu
ted in se
tion 4.1 andprevious resear
h reviewed in se
tion 2 both suggesteda requirement for the agent to be given some formof 'long-term' memory. This long-term memory will
ontain information about the environment, gatheredfrom the short-term memory (sensors) as the agent ismoved.

Having established the requirement for short and long-term memories, we now require to pro
ess the infor-mation stored in the long-term memory to allow theagent to
arry out its task. The pro
essor fun
tion willbe
arried out by a Geneti
 Algorithm (GA). The GAwill evolve
ommand sequen
es
onsisting of Forward,Left or Right moves to allow the agent to push theblo
ks dis
overed so far to the edge of the board. Af-ter a set number of evaluations the GA will be haltedand the
ommand sequen
e
ontained within the best
hromosome will be exe
uted by the agent. As soon asthe agent dis
overs a new feature within the lands
ape,it stops exe
uting the
ommand sequen
e and the GAis restarted to evolve a new
ommand sequen
e basedon the updated information now
ontained within thelong-term memory.4.2.2 The Long and Short Term MemoriesAs has already been des
ribed, the short-term memoryis the bu�er for the eight sensors. Ea
h time the agentmoves, the information
ontained within the sensorswill be repla
ed by values relating to the agents' newposition.The long-term memory is a 11x11 grid. The long-termmemory must be bigger than the board, be
ause theagent
ould initially be pla
ed almost anywhere on theboard. The long-term memory is large enough to allowthe data sensed from the agents initial position to bepla
ed in the
entre and then the map to be built outfrom this point.Ea
h of the 121 lo
ations within long-term memory
an hold one of �ve values;1. Blo
k: This square de�nitely
ontains a blo
k2. Empty: This square is de�nitely empty3. Edge: This square is on the edge4. Probably Empty: This square has not been ex-plored yet, but it is assumed that it is empty5. Something: The agent has tried to push a blo
kinto this square, but
ouldn't as it is either o
-
upied by another blo
k or it forms part of theedgeAs the agent progresses in solving the Tartarus prob-lem, the map
ontained within long-term memory isbuilt-up. This map is used by the GA �tness fun
-tion (see se
tion 4.2.4) when evaluating
ommand se-quen
es.

4.2.3 Wall Dedu
tion Heuristi
sBe
ause the
hara
teristi
s of the environment, its size,shape and the number of blo
ks
ontained within itare known, the agent may be enhan
ed with a numberof simple heuristi
s. These heuristi
s assist the agentwhen interpreting data
ontained in short-term mem-ory and then enhan
ing the map
ontained in long-term memory.The dedu
tion of the walls may be assisted by a num-ber of simple rules. If one pie
e of wall is found, thenthe entire wall
an be dedu
ed. If a wall is found thenwe
an establish the position of the wall running par-allel to it.When a blo
k is dis
overed at lo
ation x, we
an de-du
e that the walls
an be no further than 5 squaresin any dire
tion, thus the 11x11 grid
an be redu
edin size. This heuristi
 has been named 'Smart WallDedu
tion' (SWD) by the authors. Further analysishas resulted in the enhan
ement of SWD not only touse blo
ks but assume that a wall is never more than5 squares from any explored square. The modi�edheuristi
 has been named Even-Smarter Wall Dedu
-tion (ESWD).On
e all 6 blo
ks have been found, any remainingmemory lo
ations marked as 'Something' must holdwalls, and vi
e-versa on
e the entire wall has been dis-
overed any remaining 'Something's must be blo
ks.This has been named the '6 blo
k heuristi
'.4.2.4 The Geneti
 AlgorithmThe geneti
 algorithm is used within the agent toevolve
ommand sequen
es that may be
arried outby the agent. Ea
h
hromosome
onsists of a list of
ommands in the form:MMLMMMRM....The
ommands are referred to as
ommand sequen
es,and are interpreted thus:M - Move forward 1 squareL - Rotate leftR - Rotate rightThe length of the
hromosomes was altered duringthe experiments
arried out. Initially the
hromosomelength was set to 80, this being the maximum num-ber of
ommands that may be
arried before the agentruns out of energy.

Table 1: Chromosome InitialisationPrevious Genes Possible values for
urrent geneL L MR R ML L or MR R or MTable 2: Initial �tness fun
tion rewardsCriterion RewardA blo
k has just been pushed 3A previously unknown square explored 2A blo
k has just been pushed into a wall 7The GA is initialised with semi-random strings ofgenes. The authors identi�ed a number of patternsthat may o

ur within the
hromosome that wouldresult in the agent wasting energy (e.g. by rotatingaround in a
ir
le). A simple initialisation s
heme hasbeen set up that restri
ts the
hoi
e of gene based onthe previous genes (see Table 1). This s
heme ensuresthat the initial population is free from wasteful pat-terns. Note that no repair o

urs after mutation or
rossover.The re
ombination operator used is standard two-point
rossover based on two parents
reating one
hild. The mutation operator sele
ts an individualwith probability 0.1, a gene within that individual isthen sele
ted for mutation with the probability 0.02.The mutation
onsists of altering the value of the se-le
ted gene to M, L or R randomly.A steady-state population of 500 is maintained. Sele
-tion and repla
ement of individuals will be fa
ilitatedby using a tournament sele
tion operator. A tourna-ment size of 7 was found to give reasonable results.The �tness fun
tion evaluates the
hromosome by sim-ulating the exe
ution of the
ommand sequen
e usinga
opy of the map
ontained within long-term memory.The �tness fun
tion evaluates ea
h
ommand and re-wards it based in the probable position of the agent af-ter the
ommand has been exe
uted
riterion as shownin Table 2.After
ompleting the route the �nal s
ore (blo
ksagainst a wall + blo
ks in
orners) is added to the�tness weighted by a fa
tor of 100. Be
ause the Tar-tarus problem has to be
ompleted within a �nite num-ber of moves, the �tness fun
tion only examines those
ommands that
ould be exe
uted given the remaining

energy level.5 Experiments5.1 Experimental setupBe
ause of the deterministi
 nature of the GA usedwithin the agent and the wide variety of starting
on-�gurations that exist for the Tartarus problem ea
hexperiment was
arried out 100 times using randomlygenerated environments.The software was initially implemented using ANSIstandard C++, running on Redhat Linux. To allowfor greater
exibility the software was subsequentlyre-written in Java. Later versions of the software wereimplemented a
ross a 128 CPU parallel pro
essing net-work.5.2 The Initial VersionThe initial version used a population size of 100 indi-viduals, a mutation rate of 0.10 and a
rossover rateof 0.10. Initially the GA was allowed to run until 1000tournaments had been
ompleted. Unless it is men-tioned, it
an be assumed that these basi
 parameterswere used. The initial version in
orporated no heuris-ti
s, and evaluated as many
ommands as the
urrentenergy level would allow. The average s
ore a
hievedover 100 boards was 4.38. The distribution of s
oreswas varied, one board s
oring 8, four s
oring 7 and theremaining 95% a
hieved s
ores of 6 or less.Analysis of boards where the agent a
hieved a lows
ore showed that a frequent problem was the agentpushes a blo
k while unknown to the agent there'sanother blo
k or a wall behind this blo
k. In this
ase, the agent knows there's something behind thisblo
k, but it does not know whether this is a blo
kor a pie
e of wall. Noting this in the long-term mem-ory map would be useful, be
ause the agent would beless likely to try and push this blo
k. In the �tnessevaluation (see Se
tion 4.2.4), no points are gained fortrying to push a blo
k while knowing this is not possi-ble. In order to be able to note down su
h informationin long-term memory, the data type 'Something' (seeSe
tion 4.2.2) was added, allowing the average s
oreover 100 boards to rise to 6.09.With the addition of the initial SWD heuristi
 (as de-s
ribed in se
tion 4.2.3) the average s
ore was furtherin
reased to 6.21.It was felt that the GA was running for too brief aperiod, and be
ause there is no time
onstraint on theTartarus problem, the authors allowed the GA to run

Table 3: Average s
ores over 100 boards using ad-van
ed edge dete
tion, the six blo
k heuristi
 and for
-ing a restart after hitting a known wallESWD 6-blo
k Restart After Wall s
ore0 0 1 7.520 0 0 7.390 1 1 7.600 1 0 7.321 0 1 7.411 0 0 7.441 1 1 7.501 1 0 7.40for 10,000 tournaments. To avoid premature
onver-gen
e the population size was in
reased to 500. Thismodi�
ation
aused the system to slow down, but theaverage s
ore in
reased to 7.95. In the
ase of twoboards the systemmanaged to solve the Tartarus prob-lem
ompletely by a
hieving the maximum s
ore pos-sible (10).5.3 Advan
ed Heuristi
sFurther analysis showed that the GA sometimes pro-du
ed a
ommand sequen
e that for
ed the agent tomove forward into a wall. In our implementation,driving the agent into a wall halts exe
ution of the
ommand sequen
e and starts a new GA to evolve anew sequen
e. It was de
ided that although this movemight appear to be illogi
al, the restarts might be un-ne
essary. The remainder of the
ommand sequen
emay
ontain
ommands to solve the problem, and al-though energy might be wasted walking into a wall,a high overall s
ore might be a
hieved. The e�e
t ofswit
hing for
ing restarts is shown in Table 3 (third
olumn).The '6 Blo
k' heuristi
 and the ESWD heuristi
s (seese
tion 4.2.3) have been implemented and the resultsobtained through their use
an be seen in Table 3.Referen
e to Table 3 allows us to draw the following
on
lusions, the best s
ore was a
hieved using the 6-blo
k heuristi
, with the use of ESWD and allowingthe GA to restart after the agent hits a wall.The �nal s
ores a
hieved by the GA with the additionof the heuristi
s
an be seen in Figure 2. The 'bump'at s
ore 4 is a

ounted for by those instan
es wherethe GA has pushed 4 blo
ks together by a

ident inthe beginning of the run. The largest distribution isat s
ore 8, with a bell-like
urve around it.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

Figure 2: S
ore distributions for Table 35.4 Combining the GA with brute-for
eWhen there is only a small amount of energy left, it isqui
ker for the system to perform an exhaustive sear
husing every possible
ommand sequen
e, rather thanrunning the GA again. When the number of amountof remaining energy drops to below a given threshold,the system employees exhaustive sear
h to �nish theproblem.In Se
tion 5.5 the exa
t number of legal strings is
al-
ulated for ea
h length. If the number of strings ex-amined by the GA (= #tournaments + populationsize) is more than the total number of legal strings,exhaustive sear
h will take pla
e.The GA has always been allowed, so far to produ
e
ommand strings that if fully exe
uted would use upall the agents' remaining energy. It was felt that someimprovement might be forth
oming if the GA was onlyallowed to produ
e small strings. This will not only
on
entrates the evolution into a smaller sear
h spa
e,but also redu
es that amount of energy lost.Table 4 shows the results when examining
hromosomelengths between 7 and 20. The GA in �gure 12 is alsousing the brute for
e method for
al
ulating the �nalstrings.By only looking ahead a small number of moves (about12) the s
ores rise up to 8.77. The reason for this im-provement may be attributed to the fa
t that the GAalmost never exe
utes the last moves in the
ommandsequen
e, while they do
ount in the �tness
alulation.Whilst starting to solve the problem, new information
on
erning the lands
ape will be frequently be found,

Table 4: Results for redu
ing the number of moves forthe GA to look ahead. In
olumn three, the averagenumber of times the GA is run per board is shown.The average number of evaluations per board is thenumber of strings
onsidered per board (= #runs *(populationsize + #tournaments)). The average num-ber of a
tions per board is the number of a
tions(M,L,R)
onsidered by the agent (=#evals *
hromo-somelength).Len of Avg. #runs evals/ a
tions/
hromo s
ore of GA board board7 8.42 20.60 30900 2163008 8.69 19.14 28710 2296809 8.67 18.48 27720 24948010 8.66 18.41 27615 27615011 8.63 18.04 27016 29717612 8.77 17.33 25995 32004013 8.67 17.32 25980 33774014 8.73 16.64 24960 35910015 8.60 17.23 25845 38767520 8.67 16.63 24945 498900after only a few
ommands have been exe
uted. It iswasteful and even misleading to in
lude the later stepsin the �tness fun
tion.There should be an optimum number of moves to lookahead when evolving a
ommand sequen
e. Too fewmoves will prevent the GA evolving a meaningful se-quen
e, but too many moves are misleading.The exe
ution time of a board is typi
ally between 3and 5 minutes. Note that our system was not opti-mized for speed, that it was written in Java and ranon a fairly slow pro
essor (Pentium 200 MHz).5.5 Method for Cal
ulating the Exa
tNumber of Allowed Strings for a GivenLengthThere is a large number of ineÆ
ient
ommand se-quen
es, su
h as an LR sequen
e where the R reversesthe e�e
t of the L without any side-e�e
t. All stringswith LR, RL, LLL or RR in it (RR is equivalent to LL,thus redundant) are therefore not
onsidered when do-ing an exhaustive sear
h.The number of 'legal' strings
an be
al
ulated as fol-lows. After an M, what
an follow is M, LLM, LM orRM. The rewrite rules are given in Figure 3.La(x), Lb(x), R(x) and M(x), i.e. the number of Las,Lbs, Rs and Ms at level x in the tree are
al
ulated as

M

La

R
Lb

M
La Lb RM MM Figure 3: Legal stringsfollows: La(x) = M(x� 1)Lb(x) = M(x� 1)R(x) = M(x� 1)M(x) = M(x� 1) + La(x� 1) ++Lb(x� 1) +R(x� 1)with M(0) = 1;La(0) = Lb(0) = R(0) = 0. Levelx = 0 is arti�
ial, but with this initial setting all legalstrings of length 1 and higher are
orre
t.5.6 A
omparison to a non-evolutionaryheuristi
Given the su

ess of the exhaustive sear
h in enhan
-ing the GA, a full
omparison of solving the Tartarusproblem by repla
ing the GA with exhaustive sear
hhas been
arried out. All the heuristi
s used to pro-du
e the data shown in Table 4 are still in use. Theonly di�eren
e is that instead of using an GA to evolvethe
ommand sequen
e using mutation and
rossover,every possible
ommand sequen
e generated using therules in Se
tion 5.5 is evaluated and the best takenas the
ommand sequen
e. The maximum s
ore pre-sented in Table 5 (8.81) is slightly greater than thatpresented in Table 4 (8.77). An exhaustive sear
hwill usually always outperform an Geneti
 Algorithm,given the non-deterministi
 nature of the GA. Notethough that for shorter lengths, the GA outperformsthe exhaustive sear
h, whi
h is most likely due to thegreater number of restarts of the GA. What is signi�-
ant is the number of evaluations required per board,the exhaustive sear
h evaluates 70% more
ommandsequen
es for an overall gain of 0.5%. A
ompari-son of the exhaustive sear
h (look ahead length 14)and the GA (look ahaead length 12) may be seen inFigure 4. The exhaustive sear
h method is espe
iallygood at s
oring the maximum 10 points, while the GAs
ore distribution peaks between 8 and 9. This wouldsuggest that the exhaustive sear
h is better at �nd-ing solutions to
omplete the problem that the GA,due to the exhaustive sear
h always �nding the opti-mal partial solution for the
urrent board state. Theexhaustive sear
h heuristi
 performs best with a look

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

Score

O
cc

ur
an

ce
s

GA
Exhaustive search

Figure 4: S
ore distributions for the GA with
hro-mosome length 12 and the exhaustive heuristi
 with
hromosome length 14ahead of 14. This may be partly due to the fa
t that wehave 80 energy points. If we assume that the algorithmprodu
es stings of length l and restarts n times. Thebest performan
e will be re
ieved in situations wheren � l is equal to the energy level (ie all the moves inthe �nal string
an be exe
uted). If we examine the nlrelationship below we
an dedu
e that a length of 14with 6 restarts allows 10 out of 14 moves in the �nalstring to be evaluated. Looking forward to the resultsin Table 5, we
an see that indeed l = 15 performsworse than both l = 16 and l = 14.6*12 = 72 7*12 = 846*13 = 78 7*13 = 915*14 = 70 6*14 = 845*15 = 75 6*15 = 904*16 = 64 5*16 = 80Further resear
h is needed to determine the exa
t re-lationship between
hromosome length and the �nalresult. A major problem is the unpredi
tablity of thenumber of runs of the GA. The number of runs is de-termined by the nature of the lands
ape that the agentis operating in.5.7 Ups
aling propertiesIn this se
tion we will investigate how well our ap-proa
h s
ales up to larger boards with more blo
ks.Following [Teller, 1994℄ we will use the following for-mulas for the number of pie
es and the initial amount

Table 5: Results for redu
ing the number of moves forthe exhaustive heuristi
 to look ahead. The numberof valid
ommand sequen
es is
al
ulated as in Se
-tion 5.5. The last two
olumns are similar to those inTable 4.Len Avg. # #valid evals/ a
tions/s
ore runs
om seq board board1 0.84 80 3 240 2402 0.96 40 6 240 4803 3.44 27 13 352 10564 6.98 20 28 560 22405 7.39 16 60 960 48006 7.01 14 129 1806 108367 8.19 12 277 3324 232688 8.64 10 595 5950 476009 8.40 9 1278 11502 10351810 8.65 8 2745 21960 21960011 8.79 8 5896 47168 51884812 8.81 7 12664 88684 106420813 8.76 7 27201 190407 247529114 8.91 6 58425 350550 490770015 8.57 6 125491 752946 1129419016 8.78 5 269542 1437710 23003360of energy:Pie
es = 1=3 � (N � 2)2Energy = 2(N2 + 2N � 3)� 10N is the width (and height) of the board. The �10in the latter formula is somewhat arti�
ial, but forreasons of
omparability we will use it.The results with
hromosome length 12 are given inTable 6. Clearly the s
ores do not s
ale up terriblywell. The reason for this is the (very) limited amountof initial energy, whi
h makes initial exploration infea-sible.If we allow an initial energy of N3, as arguedin [Balakrishnan and Honavar, 1996℄, and make twomore modi�
ations, results are mu
h better (see Ta-ble 7). Note that with larger boards, initial situationsmay o

ur that are partly unsolvable, e.g.XXX XXXThe modi�
ations are:� Make explorePoints a de
reasing fun
tion of time.

Table 6: Results with
hromosome length 12 for largerboardsN Pie
es Energy Max s
ore Average s
ore6 6 80 10 8.777 9 110 13 10.968 12 144 16 13.019 17 182 21 15.7810 22 224 26 17.82Table 7: Results with
hromosome length 12 for largerboards with energy=N3 and square penaltyN Pie
es Energy Max. S
ore Energys
ore used6 6 216 10 9.23 113.387 9 343 13 12.17 146.208 12 512 16 14.95 206.529 17 729 21 19.55 290.7510 22 1000 26 23.06 419.26After some tuning we used the following formula:ep = 2 + 10 � e�4� initialEnergy�energyinitialEnergy� Introdu
e a penalty for pushing a blo
k into aknown four blo
k square. We used a very strongone: �tness = 0 if this happens.6 Con
lusions and future resear
hThe authors have presented a novel approa
h to theTartarus Problem. We have a
hieved the highest s
orein literature for the Tartarus Problem. An averages
ore of 8.91 has been a
hieved by the exhaustivesear
h heuristi
 with the �tness fun
tion introdu
edin this work.The use of GA
ombined with the long-term mem-ory gave an average result of 4.5, equivalent to thata
hieved using parse trees[Teller, 1994℄ and neuralnetworks[Balakrishnan and Honavar, 1996℄. The ad-dition of heuristi
s to assist with the building of thelong-term memory map su
h as smart wall dedu
tionand the 6-blo
k heuristi
 improved results. The mostsigni�
ant improvement, s
oring 8.77, was a
hieved bythe redu
tion in the length of the
ommand sequen
e(
hromosome).Given the relative ineÆ
ien
y of the exhaustive sear
h,the hybrid GA approa
h developed by the authorswould appear to be the most e�e
tive solution to theTartarus problem yet published.

When allowed more initial energy, the agent s
ores
lose to optimal on all boards, even of larger sizes.The basi
 agent developed here is now
ompetent atsolving the Tartarus problem. Future resear
h maylook at the possibilities of
arrying out more
omplextasks in similar environments. Although the �tnessfun
tion and some of the heuristi
s used are spe
i�
to this problem, it remains to be seen whether theapproa
h taken
an be reapplied elsewhere.A
knowledgementsWe would like to thank Ernesto Costa and JasonMaassen for their helpful
ontributions to our work.This work was based on an problem set at the CoILSummer S
hool 2000. We would like to thank AdrianTrenaman for setting the problem.Referen
es[Ashlo
k and Freeman, 2000℄ Dan Ashlo
k and Jen-nifer Freeman. A pure �nite state baseline for tar-tarus. In CEC 2000, volume 2, pages 1223{1230,2000.[Ashlo
k and Joenks, 1998℄ Dan Ashlo
k and MarkJoenks. ISA
 lists, A di�erent representationfor program indu
tion. In John R. Koza, Wolf-gang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb,Mar
o Dorigo, David B. Fogel, Max H. Garzon,David E. Goldberg, Hitoshi Iba, and Ri
k Riolo, edi-tors, Geneti
 Programming 1998: Pro
eedings of theThird Annual Conferen
e, pages 3{10, University ofWis
onsin, Madison, Wis
onsin, USA, 22-25 July1998. Morgan Kaufmann.[Ashlo
k and M
Roberts, 1997℄ Dan Ashlo
k andM
Roberts. A gp-automata reprise of astro teller'sbulldozer experiment. Te
hni
al Report AM97-17,ISU Mathemati
s, 1997.[Balakrishnan and Honavar, 1996℄ Karthik Balakrish-nan and Vasant Honavar. On sensor evolution inroboti
s. In John R. Koza, David E. Goldberg,David B. Fogel, and Ri
k L. Riolo, editors, Ge-neti
 Programming 1996: Pro
eedings of the FirstAnnual Conferen
e, pages 455{460, Stanford Uni-versity, CA, USA, 28{31 July 1996. MIT Press.[Teller, 1994℄ Astro Teller. The evolution of mentalmodels. In Kenneth E. Kinnear, Jr., editor, Ad-van
es in Geneti
 Programming,
hapter 9, pages199{219. MIT Press, 1994.

