Agent Motion Planning with GAs Enhanced by Memory Models

Martijn C.J. Bot
Vrije Universiteit
Faculty of Science
De Boelelaan 1081

1081 HV Amsterdam

+31 20-4447790
mbot@cs.vu.nl

Abstract

The Tartarus problem may be considered a
benchmark problem in the field of robotics. A
robotic agent is required to move a number of
blocks to the edge of an environment. The lo-
cation of the blocks and position of the robot
is unknown initially. The authors present
a framework that allows the agent to learn
about its environment and plan ahead us-
ing a GA to solve the problem. The authors
prove that the GA based method provides the
best published result on the Tartarus prob-
lem. An exhaustive search is used within the
framework as a comparison, this provides a
higher score still. This paper presents the
two best Tartarus results yet published.

1 Introduction

The Tartarus problem may be considered a benchmark
problem in the area of non-Markovian agent motion
planning. The agent is placed within an environment,
with no prior knowledge of the environment and lim-
ited means by which to gather information on the
environment (see Figure 1). The task to be under-
taken involves moving blocks placed at random po-
sitions within the environment to the outer edges of
the environment. There is only a finite amount of en-
ergy available to the agent, thus limiting the number
of moves that can be made.

The challenge is therefore to devise a solution to the
problem that can gather information on the environ-
ment and solve the problem at the same time. We
enhance a genetic algorithm with a long term memory
model for incorporating information that was found in
previous steps. We will show that our approach out-
performs leading algorithms on this problem.

Neil Urquhart
School Of Computing
Napier University
219 Colinton Road
Edinburgh
+44 0131 455 4432
n.urquhart@napier.ac.uk

Ken Chisholm
School Of Computing
Napier University
219 Colinton Road
Edinburgh
+44 0131 455 4216
k.chisholm@dcs.napier.ac.uk

2 Problem Description

2.1 An overview of the Tartarus Problem

Within the Tartarus problem, a robotic agent is placed
in an environment that consists of a 6x6 square grid
(akin to a checkers board, see Figure 1). The agent oc-
cupies one square, while also on the board are 6 blocks
each of which occupy one square. The object of the ex-
ercise is for the agent to push the blocks to the edge of
the board, scoring 1 point for each block moved to an
edge or two points for each block pushed into a corner.
The maximum score then is 10. Only one block may
be pushed at one time. Each time the agent moves
forward, rotates or pushes a block forward it uses one
unit of energy.

The agent’s sensors can only detect the contents of the
8 squares directly surrounding the agent’s position.

The objective of the agent is to maximize the average
score over 100 randomly generated boards.

2.2 Board Initialisation

The board is initialised by placing all 6 blocks in ran-
dom squares, and then placing the agent in a random
square facing a random direction. Neither the blocks
nor the agent will be initially placed adjacent to the
edge. A configuration of 4 blocks placed together can-
not be moved by the agent (because it can only move
one block at a time). Therefore the board is never
initialised with four blocks arranged in a square.

2.3 Sensors

The agents’ sensors are capable of sensing the contents
of the eight squares adjacent to the agents’ current
position. The sensors can detect whether each square
is empty, contains a block, or constitutes part of an
edge. The agent cannot sense its orientation or its

6o
6o —
Tartarus board View of the agent

Figure 1: Example Tartarus board

position on the grid.

2.4 Energy Levels

Within the Tartarus problem, there is no time limit,
but the agent has only a limited amount of energy.
The agent has an initial energy level of 80 units, each
move forward or rotation costs the agent 1 unit of en-
ergy. Once all the energy has been used, the agent can
no longer move and the attempt to solve the problem
ceases.

3 Previous Work

Previous techniques applied to the Tartarus Prob-
lem include genetic algorithms, neural networks, finite
state machines and genetic programming.

Teller[Teller, 1994] used genetic programming with in-
dexed memory to achieve an average score of 4.5.

In [Balakrishnan and Honavar, 1996], neural networks
have been utilised with a maximum score of only 4.5.
The highest score achieved so far has been by
[Ashlock and Joenks, 1998], whose GP-based algo-
rithm averaged
a score of 8.2. Earlier GP based work by Ashlock and
McRoberts[Ashlock and McRoberts, 1997] achieved a
score of 8.15.

The most recent research has been undertaken by
[Ashlock and Freeman, 2000] who utilised a GA to
evolve a finite state machine. The finite state machine
interprets the results of the sensors and at each change
in state can issue a command to the agent. The aver-
age final score achieved by Ashlock and Freeman was
7.11.

All of the research outlined above utilised some form
of internal state or memory within the agent to allow

the agent to learn about the environment. Solutions
that haven’t utilised some form of internal state within
the agent have not achieved an average score of greater
than 2.

By examining previous research, it may be concluded
that the agent needs to be equipped with the ability to
hold an internal state within some form of 'memory’.

4 Formulating the Solution

4.1 Human Attempts to Solve the Problem

The authors initially carried out an informal experi-
ment using human agents (i.e. a human controlling the
agent by manually issuing commands). One agent was
asked to solve the problem while only being allowed
to view the inputs from the eight sensors. The second
agent was allowed paper and pencil to draw a map
of the environment as they explored it. Each agent
attempted to solve the problem 10 times. The experi-
ment revealed that even with the processing power of
a human brain, the efficiency of the solutions increased
dramatically when the agent was allowed to collate the
information gathered through its sensors in the form
of a map. Without a map, the human agent averaged
a score of 7.2, but with the energy levels reduced to 0
in every case. By allowing the human agent to build a
map, the average score rises to 9.1 with more energy
left.

The authors’ perceived reason for the human agents
improved performance when drawing a map, was the
ability to use the information in the map to pre-plan
sequences of moves before issuing commands to the
agent. Cognitive psychologists have estimated human
short-term memory only to capable of containing 7+2
‘chunks’ of information. The human agent working
without the map may have been unable to recall the
previous values of the sensors, and build a 'memory
map’ of the area.

4.2 A Description of the Chosen Solution

4.2.1 Overview

The information contained in the agents’ sensors may
be considered equivalent to the human short-term
memory. They are both transient and of low capacity.
The informal experiment conducted in section 4.1 and
previous research reviewed in section 2 both suggested
a requirement for the agent to be given some form
of ’long-term’ memory. This long-term memory will
contain information about the environment, gathered
from the short-term memory (sensors) as the agent is
moved.

Having established the requirement for short and long-
term memories, we now require to process the infor-
mation stored in the long-term memory to allow the
agent to carry out its task. The processor function will
be carried out by a Genetic Algorithm (GA). The GA
will evolve command sequences consisting of Forward,
Left or Right moves to allow the agent to push the
blocks discovered so far to the edge of the board. Af-
ter a set number of evaluations the GA will be halted
and the command sequence contained within the best
chromosome will be executed by the agent. As soon as
the agent discovers a new feature within the landscape,
it stops executing the command sequence and the GA
is restarted to evolve a new command sequence based
on the updated information now contained within the
long-term memory.

4.2.2 The Long and Short Term Memories

As has already been described, the short-term memory
is the buffer for the eight sensors. Each time the agent
moves, the information contained within the sensors
will be replaced by values relating to the agents’ new
position.

The long-term memory is a 11x11 grid. The long-term
memory must be bigger than the board, because the
agent could initially be placed almost anywhere on the
board. The long-term memory is large enough to allow
the data sensed from the agents initial position to be
placed in the centre and then the map to be built out
from this point.

Each of the 121 locations within long-term memory
can hold one of five values;

1. Block: This square definitely contains a block
2. Empty: This square is definitely empty
3. Edge: This square is on the edge

4. Probably Empty: This square has not been ex-
plored yet, but it is assumed that it is empty

5. Something: The agent has tried to push a block
into this square, but couldn’t as it is either oc-
cupied by another block or it forms part of the
edge

As the agent progresses in solving the Tartarus prob-
lem, the map contained within long-term memory is
built-up. This map is used by the GA fitness func-
tion (see section 4.2.4) when evaluating command se-
quences.

4.2.3 Wall Deduction Heuristics

Because the characteristics of the environment, its size,
shape and the number of blocks contained within it
are known, the agent may be enhanced with a number
of simple heuristics. These heuristics assist the agent
when interpreting data contained in short-term mem-
ory and then enhancing the map contained in long-
term memory.

The deduction of the walls may be assisted by a num-
ber of simple rules. If one piece of wall is found, then
the entire wall can be deduced. If a wall is found then
we can establish the position of the wall running par-
allel to it.

When a block is discovered at location x, we can de-
duce that the walls can be no further than 5 squares
in any direction, thus the 11x11 grid can be reduced
in size. This heuristic has been named ’Smart Wall
Deduction’ (SWD) by the authors. Further analysis
has resulted in the enhancement of SWD not only to
use blocks but assume that a wall is never more than
5 squares from any explored square. The modified
heuristic has been named Even-Smarter Wall Deduc-
tion (ESWD).

Once all 6 blocks have been found, any remaining
memory locations marked as ’Something’ must hold
walls, and vice-versa once the entire wall has been dis-
covered any remaining ‘Something’s must be blocks.
This has been named the ’6 block heuristic’.

4.2.4 The Genetic Algorithm

The genetic algorithm is used within the agent to
evolve command sequences that may be carried out
by the agent. Each chromosome consists of a list of
commands in the form:

MMLMMMRM....

The commands are referred to as command sequences,
and are interpreted thus:

M - Move forward 1 square
L - Rotate left

R - Rotate right

The length of the chromosomes was altered during
the experiments carried out. Initially the chromosome
length was set to 80, this being the maximum num-
ber of commands that may be carried before the agent
runs out of energy.

Table 1: Chromosome Initialisation

Previous Genes | Possible values for current gene
LL M

RR M

L LorM

R RorM

Table 2: Initial fitness function rewards

Criterion Reward
A block has just been pushed 3
A previously unknown square explored 2
A Dblock has just been pushed into a wall | 7

The GA is initialised with semi-random strings of
genes. The authors identified a number of patterns
that may occur within the chromosome that would
result in the agent wasting energy (e.g. by rotating
around in a circle). A simple initialisation scheme has
been set up that restricts the choice of gene based on
the previous genes (see Table 1). This scheme ensures
that the initial population is free from wasteful pat-
terns. Note that no repair occurs after mutation or
Crossover.

The recombination operator used is standard two-
point crossover based on two parents creating one
child. The mutation operator selects an individual
with probability 0.1, a gene within that individual is
then selected for mutation with the probability 0.02.
The mutation consists of altering the value of the se-
lected gene to M, L or R randomly.

A steady-state population of 500 is maintained. Selec-
tion and replacement of individuals will be facilitated
by using a tournament selection operator. A tourna-
ment size of 7 was found to give reasonable results.

The fitness function evaluates the chromosome by sim-
ulating the execution of the command sequence using
a copy of the map contained within long-term memory.
The fitness function evaluates each command and re-
wards it based in the probable position of the agent af-
ter the command has been executed criterion as shown
in Table 2.

After completing the route the final score (blocks
against a wall + blocks in corners) is added to the
fitness weighted by a factor of 100. Because the Tar-
tarus problem has to be completed within a finite num-
ber of moves, the fitness function only examines those
commands that could be executed given the remaining

energy level.

5 Experiments

5.1 Experimental setup

Because of the deterministic nature of the GA used
within the agent and the wide variety of starting con-
figurations that exist for the Tartarus problem each
experiment was carried out 100 times using randomly
generated environments.

The software was initially implemented using ANSI
standard C++, running on Redhat Linux. To allow
for greater flexibility the software was subsequently
re-written in Java. Later versions of the software were
implemented across a 128 CPU parallel processing net-
work.

5.2 The Initial Version

The initial version used a population size of 100 indi-
viduals, a mutation rate of 0.10 and a crossover rate
of 0.10. Initially the GA was allowed to run until 1000
tournaments had been completed. Unless it is men-
tioned, it can be assumed that these basic parameters
were used. The initial version incorporated no heuris-
tics, and evaluated as many commands as the current
energy level would allow. The average score achieved
over 100 boards was 4.38. The distribution of scores
was varied, one board scoring 8, four scoring 7 and the
remaining 95% achieved scores of 6 or less.

Analysis of boards where the agent achieved a low
score showed that a frequent problem was the agent
pushes a block while unknown to the agent there’s
another block or a wall behind this block. In this
case, the agent knows there’s something behind this
block, but it does not know whether this is a block
or a piece of wall. Noting this in the long-term mem-
ory map would be useful, because the agent would be
less likely to try and push this block. In the fitness
evaluation (see Section 4.2.4), no points are gained for
trying to push a block while knowing this is not possi-
ble. In order to be able to note down such information
in long-term memory, the data type ’Something’ (see
Section 4.2.2) was added, allowing the average score
over 100 boards to rise to 6.09.

With the addition of the initial SWD heuristic (as de-
scribed in section 4.2.3) the average score was further
increased to 6.21.

It was felt that the GA was running for too brief a
period, and because there is no time constraint on the
Tartarus problem, the authors allowed the GA to run

Table 3: Average scores over 100 boards using ad-
vanced edge detection, the six block heuristic and forc-
ing a restart after hitting a known wall

ESWD | 6-block | Restart After Wall | score
0 0 1 7.52
0 0 0 7.39
0 1 1 7.60
0 1 0 7.32
1 0 1 7.41
1 0 0 7.44
1 1 1 7.50
1 1 0 7.40

for 10,000 tournaments. To avoid premature conver-
gence the population size was increased to 500. This
modification caused the system to slow down, but the
average score increased to 7.95. In the case of two
boards the system managed to solve the Tartarus prob-
lem completely by achieving the maximum score pos-
sible (10).

5.3 Advanced Heuristics

Further analysis showed that the GA sometimes pro-
duced a command sequence that forced the agent to
move forward into a wall. In our implementation,
driving the agent into a wall halts execution of the
command sequence and starts a new GA to evolve a
new sequence. It was decided that although this move
might appear to be illogical, the restarts might be un-
necessary. The remainder of the command sequence
may contain commands to solve the problem, and al-
though energy might be wasted walking into a wall,
a high overall score might be achieved. The effect of
switching forcing restarts is shown in Table 3 (third
column).

The ’6 Block’ heuristic and the ESWD heuristics (see
section 4.2.3) have been implemented and the results
obtained through their use can be seen in Table 3.

Reference to Table 3 allows us to draw the following
conclusions, the best score was achieved using the 6-
block heuristic, with the use of ESWD and allowing
the GA to restart after the agent hits a wall.

The final scores achieved by the GA with the addition
of the heuristics can be seen in Figure 2. The 'bump’
at score 4 is accounted for by those instances where
the GA has pushed 4 blocks together by accident in
the beginning of the run. The largest distribution is
at score 8, with a bell-like curve around it.

40

30

251

20+

15+

Figure 2: Score distributions for Table 3

5.4 Combining the GA with brute-force

When there is only a small amount of energy left, it is
quicker for the system to perform an exhaustive search
using every possible command sequence, rather than
running the GA again. When the number of amount
of remaining energy drops to below a given threshold,
the system employees exhaustive search to finish the
problem.

In Section 5.5 the exact number of legal strings is cal-
culated for each length. If the number of strings ex-
amined by the GA (= #tournaments + population
size) is more than the total number of legal strings,
exhaustive search will take place.

The GA has always been allowed, so far to produce
command strings that if fully executed would use up
all the agents’ remaining energy. It was felt that some
improvement might be forthcoming if the GA was only
allowed to produce small strings. This will not only
concentrates the evolution into a smaller search space,
but also reduces that amount of energy lost.

Table 4 shows the results when examining chromosome
lengths between 7 and 20. The GA in figure 12 is also
using the brute force method for calculating the final
strings.

By only looking ahead a small number of moves (about
12) the scores rise up to 8.77. The reason for this im-
provement may be attributed to the fact that the GA
almost never executes the last moves in the command
sequence, while they do count in the fitness calulation.

Whilst starting to solve the problem, new information
concerning the landscape will be frequently be found,

Table 4: Results for reducing the number of moves for
the GA to look ahead. In column three, the average
number of times the GA is run per board is shown.
The average number of evaluations per board is the
number of strings considered per board (= #runs *
(populationsize + #tournaments)). The average num-
ber of actions per board is the number of actions
(M,L,R) considered by the agent (=#evals * chromo-
somelength).

Len of | Avg. | #runs | evals/ | actions/
chromo | score | of GA | board | board

7| 8.42 20.60 30900 | 216300

8 | 8.69 19.14 28710 | 229680

9 | 8.67 18.48 27720 | 249480
10 | 8.66 18.41 27615 | 276150
11 | 8.63 18.04 27016 | 297176
12 | 8.77 17.33 25995 | 320040
13 | 8.67 17.32 25980 | 337740
14 | 8.73 16.64 24960 | 359100
15 | 8.60 17.23 25845 | 387675
20 | 8.67 16.63 24945 | 498900

after only a few commands have been executed. It is
wasteful and even misleading to include the later steps
in the fitness function.

There should be an optimum number of moves to look
ahead when evolving a command sequence. Too few
moves will prevent the GA evolving a meaningful se-
quence, but too many moves are misleading.

The execution time of a board is typically between 3
and 5 minutes. Note that our system was not opti-
mized for speed, that it was written in Java and ran
on a fairly slow processor (Pentium 200 MHz).

5.5 Method for Calculating the Exact
Number of Allowed Strings for a Given
Length

There is a large number of inefficient command se-
quences, such as an LR sequence where the R reverses
the effect of the L without any side-effect. All strings
with LR, RL, LLL or RR in it (RR is equivalent to LI,
thus redundant) are therefore not considered when do-
ing an exhaustive search.

The number of ’legal’ strings can be calculated as fol-
lows. After an M, what can follow is M, LLM, LM or
RM. The rewrite rules are given in Figure 3.

La(z), Lb(z), R(z) and M(x), i.e. the number of Las,
Lbs, Rs and Ms at level x in the tree are calculated as

M

M
M La La lb—~=M R—=M
S
R
Figure 3: Legal strings
follows:
La(z) = M(z—-1)
Lb(z) = M(z—1)
R(z) = M(z-1)
M(z) = M(x—1)+ La(z—1) +
+Lb(x — 1)+ R(z — 1)

with M (0) = 1;La(0) = Lb(0) = R(0) = 0. Level
x = 0 is artificial, but with this initial setting all legal
strings of length 1 and higher are correct.

5.6 A comparison to a non-evolutionary
heuristic

Given the success of the exhaustive search in enhanc-
ing the GA, a full comparison of solving the Tartarus
problem by replacing the GA with exhaustive search
has been carried out. All the heuristics used to pro-
duce the data shown in Table 4 are still in use. The
only difference is that instead of using an GA to evolve
the command sequence using mutation and crossover,
every possible command sequence generated using the
rules in Section 5.5 is evaluated and the best taken
as the command sequence. The maximum score pre-
sented in Table 5 (8.81) is slightly greater than that
presented in Table 4 (8.77). An exhaustive search
will usually always outperform an Genetic Algorithm,
given the non-deterministic nature of the GA. Note
though that for shorter lengths, the GA outperforms
the exhaustive search, which is most likely due to the
greater number of restarts of the GA. What is signifi-
cant is the number of evaluations required per board,
the exhaustive search evaluates 70% more command
sequences for an overall gain of 0.5%. A compari-
son of the exhaustive search (look ahead length 14)
and the GA (look ahaead length 12) may be seen in
Figure 4. The exhaustive search method is especially
good at scoring the maximum 10 points, while the GA
score distribution peaks between 8 and 9. This would
suggest that the exhaustive search is better at find-
ing solutions to complete the problem that the GA,
due to the exhaustive search always finding the opti-
mal partial solution for the current board state. The
exhaustive search heuristic performs best with a look

45 T T
- GA) N
40F -=- Exhaustive search /’ N
N
) N
1
351 ' 4
1
1
30 i B
!
I
%3 1
@25 T
2 I
I !
5
153 1
S 20f I 1
1
1
15 I 4
1
!
10 ! 4
.
-
5F .7 B
/\ .
p
0 L L L == T L L L

6 7 8 9 10
Score

Figure 4: Score distributions for the GA with chro-
mosome length 12 and the exhaustive heuristic with
chromosome length 14

ahead of 14. This may be partly due to the fact that we
have 80 energy points. If we assume that the algorithm
produces stings of length / and restarts n times. The
best performance will be recieved in situations where
n %[is equal to the energy level (ie all the moves in
the final string can be executed). If we examine the nl
relationship below we can deduce that a length of 14
with 6 restarts allows 10 out of 14 moves in the final
string to be evaluated. Looking forward to the results
in Table 5, we can see that indeed | = 15 performs
worse than both [= 16 and [= 14.

6x12 = 72 T7%12 = 84
6%x13 = 78 T7%13 = 91
bx14 = 70 6%14 = 84
515 = 75 6%15 = 90
4x16 = 64 5%16 = 80

Further research is needed to determine the exact re-
lationship between chromosome length and the final
result. A major problem is the unpredictablity of the
number of runs of the GA. The number of runs is de-
termined by the nature of the landscape that the agent
is operating in.

5.7 Upscaling properties

In this section we will investigate how well our ap-
proach scales up to larger boards with more blocks.
Following [Teller, 1994] we will use the following for-
mulas for the number of pieces and the initial amount

Table 5: Results for reducing the number of moves for
the exhaustive heuristic to look ahead. The number
of valid command sequences is calculated as in Sec-
tion 5.5. The last two columns are similar to those in

Table 4.

Len | Avg. # | #valid evals/ | actions/
score | runs | com seq board board
1 0.84 80 3 240 240
2| 0.96 40 6 240 480
3| 3.44 27 13 352 1056
4| 6.98 20 28 560 2240
5| 7.39 16 60 960 4800
6| 7.01 14 129 1806 10836
7] 8.19 12 277 3324 23268
8| 8.64 10 595 5950 47600
9| 840 9 1278 11502 103518
10 | 8.65 8 2745 21960 219600
11| 8.79 8 5896 47168 518848
12 | 8.81 7 12664 88684 1064208
13 | 8.76 7 27201 190407 2475291
14 | 8091 6 58425 350550 4907700
15 | 8.57 6 125491 752946 | 11294190
16 | 8.78 5| 269542 | 1437710 | 23003360
of energy:
Pieces = 1/3% (N —2)?
Energy = 2(N?*+2N —-3)—-10

N is the width (and height) of the board. The —10
in the latter formula is somewhat artificial, but for
reasons of comparability we will use it.

The results with chromosome length 12 are given in
Table 6. Clearly the scores do not scale up terribly
well. The reason for this is the (very) limited amount
of initial energy, which makes initial exploration infea-

sible.

If we allow an initial energy of N®, as argued
in [Balakrishnan and Honavar, 1996], and make two
more modifications, results are much better (see Ta-
ble 7). Note that with larger boards, initial situations
may occur that are partly unsolvable, e.g.

XX
XX
XX

The modifications are:

e Make explorePoints a decreasing function of time.

Table 6: Results with chromosome length 12 for larger
boards

N | Pieces | Energy | Max score | Average score
6 6 80 10 8.77
7 9 110 13 10.96
8 12 144 16 13.01
9 17 182 21 15.78

10 22 224 26 17.82

Table 7: Results with chromosome length 12 for larger
boards with energy=N? and square penalty

N | Pieces | Energy | Max. | Score | Energy
score used

6 6 216 10 | 9.23 | 113.38

7 9 343 13 | 12.17 | 146.20

8 12 512 16 | 14.95 | 206.52

9 17 729 21 | 19.55 | 290.75

10 22 1000 26 | 23.06 | 419.26

After some tuning we used the following formula:

initial Energy—energy

* initial Energy

ep:2-+—10-(f4

e Introduce a penalty for pushing a block into a
known four block square. We used a very strong
one: fitness = 0 if this happens.

6 Conclusions and future research

The authors have presented a novel approach to the
Tartarus Problem. We have achieved the highest score
in literature for the Tartarus Problem. An average
score of 8.91 has been achieved by the exhaustive
search heuristic with the fitness function introduced
in this work.

The use of GA combined with the long-term mem-
ory gave an average result of 4.5, equivalent to that
achieved using parse trees[Teller, 1994] and neural
networks[Balakrishnan and Honavar, 1996]. The ad-
dition of heuristics to assist with the building of the
long-term memory map such as smart wall deduction
and the 6-block heuristic improved results. The most
significant improvement, scoring 8.77, was achieved by
the reduction in the length of the command sequence
(chromosome).

Given the relative inefficiency of the exhaustive search,
the hybrid GA approach developed by the authors
would appear to be the most effective solution to the
Tartarus problem yet published.

When allowed more initial energy, the agent scores
close to optimal on all boards, even of larger sizes.

The basic agent developed here is now competent at
solving the Tartarus problem. Future research may
look at the possibilities of carrying out more complex
tasks in similar environments. Although the fitness
function and some of the heuristics used are specific
to this problem, it remains to be seen whether the
approach taken can be reapplied elsewhere.

Acknowledgements

We would like to thank Ernesto Costa and Jason
Maassen for their helpful contributions to our work.
This work was based on an problem set at the ColL
Summer School 2000. We would like to thank Adrian
Trenaman for setting the problem.

References

[Ashlock and Freeman, 2000] Dan Ashlock and Jen-
nifer Freeman. A pure finite state baseline for tar-
tarus. In CEC 2000, volume 2, pages 1223 1230,
2000.

[Ashlock and Joenks, 1998] Dan Ashlock and Mark
Joenks. ISAc lists, A different representation
for program induction. In John R. Koza, Wolf-
gang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb,
Marco Dorigo, David B. Fogel, Max H. Garzon,
David E. Goldberg, Hitoshi Iba, and Rick Riolo, edi-
tors, Genetic Programming 1998: Proceedings of the
Third Annual Conference, pages 3—10, University of
Wisconsin, Madison, Wisconsin, USA, 22-25 July
1998. Morgan Kaufmann.

[Ashlock and McRoberts, 1997] Dan Ashlock and
McRoberts. A gp-automata reprise of astro teller’s
bulldozer experiment. Technical Report AM97-17,
ISU Mathematics, 1997.

[Balakrishnan and Honavar, 1996] Karthik Balakrish-
nan and Vasant Honavar. On sensor evolution in
robotics. In John R. Koza, David E. Goldberg,
David B. Fogel, and Rick L. Riolo, editors, Ge-
netic Programming 1996: Proceedings of the First
Annual Conference, pages 455 460, Stanford Uni-
versity, CA, USA, 28-31 July 1996. MIT Press.

[Teller, 1994] Astro Teller. The evolution of mental
models. In Kenneth E. Kinnear, Jr., editor, Ad-

vances in Genetic Programming, chapter 9, pages
199 219. MIT Press, 1994.

