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1 INTRODUCTION
The parallel machines scheduling problem in which jobs have to
be assigned to machines at particular times is one of the oldest
problems of operations research with high practical relevance for
the manufacturing industry. Minimising the time it takes for a
product to pass through manufacturing not only a�ects the revenue
of the company but also improves customer satisfaction [8]. The
objective of this well known problem, is to assign jobs to machines
at particular times, such that a schedule is created which completes
all jobs if possible on time or with minimal deviation from due dates
and in full.

In this work, we address a variant of the parallel machine sched-
uling in which the goal is to �nd an optimal machine schedule
minimising an unweighted combination of earliness, tardiness and
setup times that are aggregated in a single objective function (AOF).
Tardiness is obviously a crucial aspect of planning as it leads to
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delayed delivery intrinsic in the plan, earliness is also a cause of cus-
tomer dissatisfaction, especially in times of just-in-time production.
Additionally, setup times indicate considerable e�ort in setting up
machines which is not only time consuming but also likely to cause
considerable costs. We intentionally left out weighting factors in
that sum considering the criteria as of equal importance. This can
be changed according to speci�c requirements.

In literature, production planning problems are categorised by
multiple criteria [1] such as the number of involved machines,
equality of machines, non-preemptive jobs or the relevance of setup
times. Most research in this area focuses on the minimisation of
the makespan, which is the maximum completion time of all jobs
[7, 9]. However, tardiness and earliness optimisation are covered by
some papers as well [2, 3, 10, 18]. Setup times are often neglected
in academic research [1], but the sequence of jobs may have a huge
impact on how a production schedule is developed [18]. This is why
this work deals with a non-identical parallel machine environment
regarding sequence dependant setup times, earliness and tardiness.

As the described problem is known to be NP-hard [16], we face
a typical case for applying meta-heuristics such as Evolutionary
Algorithms (EAs). This has successfully been done in the past [18],
we revisit this technique and discuss an EA implementation min-
imising for our problem setting. Local-search algorithms also have
been applied and provided good results in solving scheduling prob-
lems (e.g. [17]). We extend this strand with a new variant inspired
by game theory including a non deterministic stochastic element.
We call this approach p-Best Response Dynamic (p-BRD).

We compare both algorithms in terms of solution quality and
runtime by applying them to a series of test sets.

2 P-BRD
Best Response Dynamics is an iterative algorithm for searching
Nash equilibria in = player non-cooperative games. Agents succes-
sively change their strategy to be a best response to the strategies
of at least a subset of the other agents [15]. A combination of strate-
gies for which none of the agents can be better o� by a unilateral
change of its strategy is called a Nash equilibrium [13].

Potential games are a subset of strategic games for which the
e�ect of a change of strategy can be expressed by a single global
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function [12]. For potential games, best response dynamics always
converges to a Nash equilibrium [15].

We view the machine schedule optimisation problem as a game
called the scheduling game. Payo� is interpreted as costs and agents
therefore seek to minimise their utility. Jobs are represented as
participating agents in the scheduling game and each agent tries
to get an optimal position on a machine. The position directly
contributes to the value of AOF. This function represents the utility
for each agent and therefore our game is obviously a potential
game.

Agents interact in the search for an optimal solution by mutu-
ally changing their positions. The procedure terminates in a Nash
equilibrium, which embodies the �nal production plan that is re-
turned by the algorithm. By using a stochastic element that excepts
intermediate results even when its counter indicated by the objec-
tive function the search process can be considered to consist of an
exploration and an exploitation phases.

Input to BRD is a set of jobs to be scheduled together with
available machines and a setup matrix. Each job agent �8 has full
access to information about thematerial it produces, its due date and
themachinesM8 it can be executed on together with the production
time for each machine and their current start and end time. In an
initialisation phase job agents are �rst sorted in ascending order by
due date and maximum production times and then get assigned to
an initial position on a suitable machine.

Through this initialisation phase, doubly linked lists ;" of job
agents are constructed for each machine" 2 M. At �rst, arti�cial
INIT agents are placed on the machines that become head of the
lists. They do not participate in the scheduling game, their end
de�nes the �rst availability of the machine de�ning the start of
the planning horizon. Start and end date of jobs placed in the list
de�ne time spans in which the machine is available. For each job
agent and each machine it can be processed on gaps in the linked
list su�ciently large for production and setup time are located. The
job agent chooses the gap in which it can be placed as close to its
due date as possible. Therefore, each job � 9 seeks the predecessor
�: for which ?A43 (�: , � 9 ) de�ned as the value |2 9 �3D4 9 | when � 9 is
inserted as successor of �: is minimal while respecting setup times
and shifting j as close to is due date as possible.

p-BRD now starts with the same list of jobs as the initialisation
phase with each job having an initial position on a machine. Each
job agent 0 has a set of options to change its strategy, i.e. its position
in the schedule in each round. It can either swap its position with
another agent 00 if machines match (they are compatible (see Algo-
rithm 1) and production times allow the change without interfering
with start and end dates of other agents or - in case that 00 cannot
run on the machine 0 is assigned to - change its position by moving
behind 00 if 00 has no successor. A swap is performed if it improves
the AOF. However, rejecting options too early entails the threat to
be stuck in a local minimum too early. Therefore, non improving
swaps increasing AOF are accepted with probability ? . This prob-
ability decays by multiplying it with a damping factor 3 in each
iteration thus successively moving the process from exploration to
exploitation. BRD stops as soon as no more swaps occur and the
game has reached a Nash equilibrium. Details of handling setup
times determined by the products of the jobs are straightforward
and left out for the sake of brevity. The best solution found during

exploration is always preserved, so in case an inferior solution is
accepted due to ? , the best solution found is still accessible and will
be returned at termination.

Algorithm 1: p-BRD
Data: � list of job agents each with initial positions on

machine; probability p; damping factor d
Result: B4@ optimised assignment of jobs
repeat

for � 9 in � do
for �: in � \ {� 9 } do

if machines of � 9 and �: are compatible then
if (swap(� 9 , �: ) improves AOF) or (rand<p)
then

BF0? (� 9 , �: );
1A40: ;

end
end
else if � 9 can run on machine of �: and �: has no
successor then

if moving � 9 after �: improves AOF then
move � 9 after �: ;

end
end

end
end
? = ? · 3 ;

until no more swaps;

In this implementation agents take the �rst opportunity that
improves AOF without checking further alternatives. Figure 1 il-
lustrates the mechanism of swapping. Let �3 be the agent currently
in action. �3 could swap with �2 (on the same machine) or - if ma-
chines allow for it - with �1. Alternative option is placing it behind
�1. Note that �# �)�64=C1 and �# �)�64=C2 are only available as
predecessors if they are alone on their respective machine.

Figure 1: p-BRD search process

3 EVOLUTIONARY ALGORITHM
A vanilla Evolutionary Algorithm using the typical operators to
evolve the population – e.g. tournament selection, single point
crossover, swap mutation, and tournament replacement – is com-
pared against p-BRD. The �tness of an individual is determined by
its phenotype, i.e. AOF of the production schedule that is generated
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by the decoder. The decoding of the GA is adapted according to the
given problem.

4 DATA SETS
For the �rst test case we create three data sets to imitate real world
production setups. Our method for creating test cases is derived
from the approach proposed by Bagheri and Zandieh (2011) [4],
Vilcot and Billaut (2008) [19] and Demirkol et al. (1998) [6]. The
structure of a test set can be controlled by a number of input param-
eters that generate a diversity analogous to problems encountered
in real world data.

We generate three test sets representing di�erent scenarios. Data
set U������ contains a considerable amount of jobs but only a few
machines. In addition, the jobs are due early provoking a high delay
and a high importance of setup times. In contrast Data set S�����
contains jobs that vary strongly in their due dates and aims for
an optimal sequence according to the deviation of the jobs from
their due dates. Data set L���� focuses on the scalability of the
algorithms in terms of runtime using a large number of jobs. The
datasets can be obtained URL.

For the second test case the published Oliver 30 benchmark for
the travelling salesmen problem (TSP) [14] is reformulated as a
scheduling problem for which solutions can be assessed by AOF.
The TSP is de�ned for 30 locations with the distance for the shortest
round trip (i.e. a tour visiting each location once, starting and ending
at the same location) being 419 [11].

5 RESULTS
Evolutionary Algorithms and p-BRD depend on parameter settings
that have a strong in�uence on the performance. Therefore, we
applied Tree-structured Parzen Estimators [5] – which is a form of
Bayesian optimisation – to �ne tune the parameter settings. The
obtained parameters can be found URL.

The p-BRD algorithm as such produced poorer results on the
O�����30 data set (see Figure 2) using AOF. This is explained by the
fact that the algorithm aims to minimise AOF instead of the tour
length which not only includes setup times in the sequence of jobs
but also the setup time between the last and the �rst job. However,
the algorithm can easily be adapted to this e�ect by adjusting the
objective function. The object oriented implementation allows for
this with a simple subclass. With the modi�ed objective function
p-BRD nearly always reached a tour length near to 424with a mean
value of 424.39 and a standard deviation of 0.39. The Evolutionary
Algorithm scatters rather widely between 423 and 565, while the
mean is signi�cantly larger than that of p-BRD (see Table 1)

For data set L���� (see Figure 3), p-BRD performs better than
the GA with a smaller standard deviation (see Table 1). Potentially
the Evolutionary Algorithm has not yet converged ultimately after
the de�ned number of generations for the large scheduling prob-
lem. However, increasing the number of maximal iterations might
improve its performance but would further deteriorate runtime.

On the data set U������ the di�erences are clearly less pro-
nounced in terms of the mean but show a distinction in terms of
standard deviation in favour of p-BRD.

Figure 2: Setup time component of AOF on O�����30 data
set optimised for AOF.

Figure 3: Comparison of AOF on data set �����.

The distribution for the data set S����� of p-BRD has a low stan-
dard deviation, due to the very low probability to accept temporar-
ily worse solutions that was found during parameter optimisation
(? = 0.0012). The standard deviation of the Evolutionary Algorithm
is larger, but the algorithm often �nds a better result than p-BRD.
The observed behaviour may be explained by the fact that the ini-
tialisation strategy for p-BRD that is currently implemented (see
Section 2) is well suited to solve the problem for the spread data
set and exploration of the search space is less necessary.

In conclusion p-BRD produces better results regarding AOF on
two of the data sets and comparable ones on the third, while being
signi�cantly faster in each case.

6 CONCLUSION AND FUTUREWORK
As there are no publicly accessible benchmark tests available for
presented machine scheduling problem, we created new test sets of
data for our comparison. In the experiments, p-BRD showed good
results with better runtime behaviour than the Evolutionary Algo-
rithm. Therefore, p-BRD can be considered as an algorithm feasible
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Table 1: Statistical measures for the experiments

GA p-BRD

Data set Mean STD Runtime Mean STD Runtime

U������ 7587.8 224.6 9776ms 7467.01 156.8 4397ms
S����� 3803.2 178.2 7075ms 3868.6 135.4 100ms
L���� 26999.2 820.1 35519ms 22700.2 500.1 5955ms
O�����30 464.91 26.09 6217ms 443.23 27.72 3984ms

for real world application. The vanilla EA should be replaced by a
state of the art algorithm to further validate this impression. Addi-
tional research on p-BRD may investigate more elaborate swapping
strategies and analyse the e�ect on result and runtime. Applica-
bility on further problems will be in focus as well an extension of
the heuristics that closes gaps in the timeline of the production
schedule.
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