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Abstract 

This research presented in this thesis examines the application of feed forward neural 

networks to the performance control of a gas transmission compressor. It is estimated that a 

global saving in compressor fuel gas of 1% could save the production of 6 million tonnes of 

CO2 per year. 

Current compressor control philosophy pivots around prevention of surge or anti-surge 

control. Prevention of damage to high capital cost equipment is a key control driver but 

other factors such as environmental emissions restrictions require most efficient use of fuel. 

This requires reliable and accurate performance control. 

A steady state compressor model was developed. Actual compressor performance 

characteristics were used in the model and correlations were applied to determine the 

adiabatic head characteristics for changed process conditions. 

The techniques of neural network function approximation and pattern recognition were 

investigated. The use of neural networks can avoid the potential difficulties in specifying 

regression model coefficients. Neural networks can be readily re-trained, once a database is 

populated, to reflect changing characteristics of a compressor. 

Research into the use of neural networks to model compressor performance 

characteristics is described. A program of numerical testing was devised to assess the 

performance of neural networks. Testing was designed to evaluate training set size, signal 

noise, extrapolated data, random data and use of normalised compressor coefficient data on 

compressor speed estimates. Data sets were generated using the steady state compressor 

model. The results of the numerical testing are discussed. 

Established control paradigms are reviewed and the use of neural networks in control 

l'Iystems were identified. These were generally to be found in the areas of adaptive or model 

predictive control. Algorithms required to implement a novel compressor performance 

control scheme are described. A review of plant control hierarchies has identified how the 

Mdwme might be implemented. The performance control algorithm evaluates current 

!,!'Ocells load and suggests a new compressor speed or updates the neural network model. 

{'ornpressor speed can be predicted to approximately ± 2.5% using a neural network 

h,lt1l'd model predictive performance controller. Comparisons with previous work suggest 

l'1l1t 'IlUal global savings of 34 million tonnes of CO2 emissions per year. A generic, rotating 

lIIill'hllwl'Y performance control expert system is proposed. 
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1 Introduction 

1.1 Natural Gas Distribution in the UK 

In the UK, gas is produced from offshore oil and gas fields. The gas is 

pipelined ashore to reception terminals where it is treated to remove entrained 

liquids and corrosive elements. Once treated, the gas is dispatched to a 

distribution grid for supply to customers, both industrial and domestic. The 

machinery, pipelines and vessels used to transport the gas are referred to as the 

National Transmission System (NTS). This NTS is operated by Transco and is 

shown in Figure 1.1. 

Reception Terminals 

11 Compressor Stations 
• Storage Sites 

Figure 1.1: UK Gas Transmission System (courtesy of Transco) 
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1.2 UK Gas Transmission Statistics 

Data in this section is taken from Transco [1]. The asset value of the 

transmission and storage network is estimated at around £11.6 billion. The NTS 

has approximately 270,000 km of pipe ranging from 63 mm to 1200 mm 

diameter. The network supplies 19.5 million industrial and domestic consumers 

making up 48% of the UK energy requirements. (18,000 kilometres of this pipe is 

used for gas transmission to 13 delivery zones). The main storage facility is the 

"Rough" gas field reservoir, with a capacity of around 2.8 billion cubic metres of 

gas at 200 bar pressure. This represents around 82% of the NTS total storage 

capacity. Gas is both produced from, and injected into the reservoir. 

Two onshore subterranean salt cavities can hold 189 million cubic metres of 

gas, around 9% of the total storage capacity. Other storage facilities include 

more than 500 gas holders capable of storing 27.5 million cubic metres of gas, 

enough to supply 4 million homes for one day. There are also five Liquefied 

Natural Gas (LNG) sites, close to high population centres, each holding an 

equivalent of 25 million cubic metres of gas. 

The operating pressure of the NTS at 75 bar, dropping to 25 mbar for 

domestic consumer supply. Gas moves around the NTS at approximately 10 

m/ s. Average daily demand runs at around 200 million cubic metres (based on 

1996 estimates by Transco [I]), increasing by up to six fold in winter. Typical 

household annual gas consumption is equivalent to 46,000 kWh, a typical 

calorific value for gas being 39 megajoules per cubic metre (MJ / m3
). 

1.3 NTS Operating Strategy 

The daily production of gas from the offshore fields may be supplemented by 

drawing down on the stored supplies. Similarly, excess in supply can be put 

into storage. Supply must be closely matched to demand since only 2% of the 

total linepack, around 6 million cubic metres, can be drawn down to meet 

supply fluctuations. Hence the gas must be moved from storage facilities to 
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supply the NTS as demand requires. Demand varies with the weather and the 

time of day, and is both seasonal and demographic. The way in which demand 

is met is very much dependent on the availability of compression capacity to 

move gas to where it is required. 

Compressors are critical components in the NTS to transport gas from its 

point of production, or storage, to the consumer. They provide the energy to 

move large quantities of gas around the network to meet instantaneous demand 

and to replenish local storage. (An LNG storage facility can be drawn down in 

six days but takes sixty days to refill). 

The NTS has twenty compressor stations housing 53 gas turbine driven 

compressors. The gas turbines range in size from an RB211 delivering 25MW 

shaft power to an Orenda delivering 7MW shaft power. The equivalent of 

around 16% of the gas supplied to customers is used as compressor fuel gas, [1]. 

Operation of compressors in the UK gas transmission systems transport a 

contractual quantity (nomination) of energy or gas from a "Shipper " to its 

customer. The "Shippers" are the gas producers, their customers are gas 

consumers. The transmission system (and its compression stations) is run in 

accordance with the provisions set down in the Network Code [2]. At the very 

least a break in gas supply would be a serious inconvenience for consumers and, 

at worst, incur commercial penalties or loss of business. 

All things being equal, a compressor would be set at some compressor 

operating point (COP) and operate at constant gas flow rate (nomination) and 

constant discharge pressure (transmission system pipeline pressure). 

Unfortunately, in live plant, all things are not equal and changes in suction 

temperature and pressure or gas molecular weight change the pressure/flow 

characteristics (performance curves) of the compressor, Gresh [3]. In addition 

draw down on the NTS linepack may cause variations in the required 

compressor discharge pressure. Typically, there will be more than one set of 
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operational conditions to allow gas processing compressor plant to operate with 

flexibility. 

1.4 European Markets and Beyond 

Eurogas represents 15 member countries supplying gas within Western 

Europe. Details of the Western Europe gas supply industry are taken from 

Eurogas [4]. In 1998 gas consumption in Western Europe rose by 4% to reach a 

new high of 365 billion cubic metres. 70% of this came from within Western 

Europe with the remaining 30% imported from Eastern Europe and North 

Africa. The Western European gas transmission network amounts to 167,000 

kilometres of pipeline, delivering gas to 76 million customers. 

In the continent of North America it is estimated that the gas transmission 

network pipeline length is 119 million kilometres, [5]. In the USA, the total gas 

consumption for 1999 was 23500 petajoules (PJ), equivalent to 603 billion cubic 

metres. Total gas consumption for Canada in 1999 is estimated at 2900 PJ, or 

around 74 billion cubic metres. The Transcanada gas transmission network has 

around 76.5 million kilometres of pipeline split between three services, [6]: 

• British Columbia, which has 11 gas turbine driven 

compressors totalling 184 megawatts (MW) 

compression capacity . 

• Canadian Mainline, which has 191 compressors 

totalling 2400 MW compression capacity. Of these, 134 

units are driven by gas turbines. 

• Alberta System, which has 112 compressors, totalling 

940 MW compression capacity, of which 93 units are 

driven by gas turbine. 
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Annual global gas sales are estimated at around 79725 PI, equivalent to 2000 

billion cubic metres, [5]. Most of this gas is transported using compressors. 

Applying the Transco figure of 16% as typical of compression fuel gas 

consumption, assuming that 76% of compressors are gas turbine driven, implies 

that 240 billion cubic metres of gas is used as compressor fuel gas. 

The number of installed gas transmission compressors across the world is not 

readily available. In terms of pipeline lengths, the largest transmission network 

is in Russia, the Transcanada network is next largest and the United States 

network is the third largest. Assuming compression capacity is proportional to 

network length, it is estimated that the Russian network will have around 600 

compressors, and the United States network around 180 compressors. Using this 

method the total number of gas transmission compressors in use around the 

world is probably between 2500 and 3500 compressors. 

1.5 Controlling Gas Delivery Compressors 

Gas pipeline transportation compressor stations generally use centrifugal 

compressors operating in parallel, although some are arranged in series. Parallel 

configuration allows capacity throughput to be altered to meet demand, by 

varying the number of compressors on line. Centrifugal compressors exhibit 

small discharge pressure variations for large changes in compressor flow rate. 

This performance characteristic can accommodate swings in customer demand 

whilst maintaining relatively steady supply pressures. It is however, this 

characteristic which makes the control of parallel compressor problematic, as a 

slight difference in discharge pressure characteristic can result in compressor 

instability. 

A de-facto compressor control standard has been widely adopted in industry 

as a means of controlling high capital cost, gas transmission compressors. The 

control method was described by White [7], as ameans of anti-surge control, and 

is generally referred to as the "flow deltap" method. Staroselsky [8] and the 
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Compressor Control Corporation developed the method to implement a 

dimensionless factor used to control compressor operating point (COP) in terms 

of proximity to surge point. Further refinement of this method brought about 

the inclusion of an adaptive control element to improve surge protection. Boyce 

[9] presents several variations on anti-surge control. A review of the more 

typical variations are also described in Chapter 2. A formal justification 

underpinning the use of the "flow-deltap" method, and its variations, are based 

on invariant co-ordinate systems described by Batson [10]. Hence an anti-surge 

control technique evolved to provide implicit performance control of a 

compressor. 

The basic method of control sets a common COP in terms of compressor 

proximity to the surge limit. This is not necessarily the most fuel efficient COP 

and makes control of multiple compressor, using a common COP setpoint, 

difficult to achieve. A further complication is that the required COP for each 

compressor, in a compressor station, are inter-dependent. Optimisation of 

individual COPs could improve fuel efficiency, reduce emissions and free up 

compression capacity. Better use of compression capacity could result in fewer 

compressors being required during peak demand. 

Botros [11] identified that compressor (surge) control technology was in a 

"perfection stage". Without new invention, incremental changes in technology 

such as different computational techniques, would bring refinement of surge 

control. Relatively little published material in new computational techniques, 

such as fuzzy logic methods, relate to pipeline applications such as pipeline 

compressor control, Botros [12]. 

Two such examples of published material are based on the "smart" control 

technologies of fuzzy logic. These have brought about incremental 

improvements in compressor control. Vachtsevanos [13] described fuzzy logic 

rules in a fault prediction system based on the Dempster-Shearer possibility 
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theory. This system could predict the propensity a compressor surge event 

using incomplete information. Cordiner [14] investigated the use of fuzzy logic 

for performance control of compressors. This work describes the use of Fuzzy 

Logic as a means of advising COP to improve load sharing between for 

individual compressors used in compression stations. It was shown that 

individual compressors could be more efficiently controlled to meet compressor 

station throughput targets. 

The work suggested neural networks could be used to optimise operating 

point selected by the Fuzzy control system. The advantage seen in using neural 

networks is their ability to learn changing compressor characteristics through 

supervised training techniques. This was the starting point for the current 

research. 
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2 Compressors - Principles, Operation and Control 

2.1 Introduction to Rotary Compressors 

A large amount of literature is available which describes the action of 

compressors. Examples of sources of information in this section are: GPSA [15L 

Barman [16] and Gresh [3]. 

A compressor transfers energy, supplied through the work done by an 

external prime mover, into a compressible fluid stream. The energy transfer 

causes a flow of gas through the compressor from a lower to a higher pressure. 

Different compressor types exhibit different compression characteristics. 

Selection of a compressor type is dependent upon the application in which it is 

used. Gas transmission compressors are usually centrifugal type. The 

compressor is driven by a prime mover, which could be an electric motor or a 

gas turbine. 

Associated with both the compressor and the prime mover are discrete 

control systems. The control system for the prime mover will regulate fuel 

supply to control its speed. Compressor control is based on anti-surge control, 

flow and/or pressure control and load sharing, where multiple compressor 

operate together. Load sharing and flow/pressure control are compressor 

performance control techniques. 

2.1.1 Compressor Types 

Compressors are usually of the rotating type (either axial or centrifugal), or 

are positive displacement types. Higher pressure ratios are achieved with the 

latter whereas rotating compressors generally have higher throughput capacity. 

In pipeline applications, rotating compressors superseded positive displacement 

compressors with the advent of the gas turbine as a prime mover, and its 

associated improvement in efficiency and costs. 

Compressor characteristics can be represented as a plot of discharge pressure 
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against actual inlet volume flow rate. The compressor performance 

characteristic of discharge pressure vs. compressor inlet actual volume flow rate 

(AVF) for axial and centrifugal compressors, operating at constant speed, are 

represented in Figure 2.1. 

~ 
::J 

~ 
a... 
Q) 

~ ro 
.c 
fi 
is 

Axial Compressor Characteristic 

Centrifugal Compressor Characteristic 

AVF 

Figure 2.1 - Compressor Performance Characteristics 

A comparison of the characteristics shows that the centrifugal compressor is 

less susceptible to changes in discharge pressure due to changes in AVF or 

compressor throughput. Conversely, small changes in discharge pressure can 

significantly affect the throughput of the centrifugal compressor. This type of 

characteristic is suited to gas transmission pipeline distribution networks where 

supply pressure transients or fluctuations are undesirable, or other near 

constant discharge pressure applications. 

Axial compressor discharge pressure is markedly affected by relatively small 

changes in compressor throughput, but changes in discharge pressure 
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conditions do not significantly affect compressor throughput. This type of 

characteristic is suited to near constant volume throughput applications, where 

discharge pressure may fluctuate. 

The type of compressor considered here is specifically the centrifugal type as 

these are generally used in transmission systems. Many of the describing 

equations and general characteristics are, however, typical of both axial and 

centrifugal compressors. 

2.1.2 Types of Prime Mover 

The type of prime mover used to drive the compressor depends on the 

process into which the compressor is integrated. In a process where high-grade 

'waste' heat is a by-product, the compressor might be driven by a steam turbine. 

If the compressor is situated in a remote location, such as a Trans-continental 

pipeline transmission station, the prime mover could be a synchronous electric 

motor or a gas turbine engine. The compressor can be mechanically coupled to 

the engine, either directly or through a gearbox. 

The prime mover can consume fuel, as in the case of a gas turbine, but can 

also be a turbine that extracts energy from the process itself. In this case a high­

pressure gas stream expands through a power turbine coupled to a compressor. 

At a gas reception terminal incoming high-pressure gas may expand across a 

turbo-expander thus reducing the gas stream pressure whilst driving a process 

compressor. Alternatively, the high-pressure gas stream could be the exhaust 

gas from a gas turbine (gas generator). In this instance the exhaust stream 

expands across a turbine (gas engine) coupled to the compressor. 

2.1.3 Multiple Compressor Configurations 

Depending on the application, compressors can operate in series or parallel 

configurations. Series compressors can consist of a number of compression 

stages in the same casing or two different casings coupled in series. These can be 
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a number of compressor impellers located on the same shaft in a single 

compressor barrel. Pressure tapping or gas take-off points may be located on the 

casing between compression stages. Some applications may be met using 

discrete compressor units, with discrete prime movers, piped together in series. 

Parallel compression is achieved through the use of a number of discrete 

compressors and prime movers, which have a common suction header pipe and 

a common discharge header pipe. Series compression generates high pressures 

whilst parallel compression has high throughput or transmission capacity. 

Gas pipeline transmission compressor stations generally use centrifugal 

compressors operating in parallel. This configuration allows capacity 

throughput to be altered, to meet demand, by varying the number of 

compressors on line. 

2.1.4 Compressor Performance Characteristics 

Compressor performance can be represented variously as plots of discharge 

pressure or polytropic head against compressor inlet actual volumetric flow rate 

(A VF), for constant angular velocity. Supplemental performance data such as 

polytropic efficiency and pressure ratio can also be plotted against AVE These 

groups of plots are known as compressor performance characteristics1. A typical 

Compressor Performance Characteristics, for a variable speed compressor is 

shown in Figure 2.2. 

1 Terms used to described compressor performance are explained in Section 2.2. 
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0.55 

The characteristic shows Isentropic Head vs. A VF for lines of constant speed 

of rotation. The boundaries of operation are delineated by maximum and 

minimum speeds, Surge and Choked flow (Stonewall) boundaries. 
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2.2 Compressors - Principles of Compression 

A cutaway diagram of a centrifugal compressor is shown in Figure 2.3. 

NOTE: sp~l1Icallora gIVen in L'1ls brochure 
are sub\ectlo Change wrthout nc!r.;e. 

Figure 2.3 - Centrifugal Compressor Cutaway Diagram (courtesy of Cooper-Bessemer) 

The following mechanical features are identified: 1. - Inlet/Discharge Flanges; 

2 - Discharge Pressure fed sealing gas; 3 - High capacity tilt-pad thrust bearing; 

4 - Casing, high strength alloy steel; 5 - Casing cover with segmented shear 

rings; 6 - Impellor / gas passages; 7 - rotor. 
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The prime mover causes the compressor rotor shaft and impeller to rotate. 

Gas is drawn in through the inlet flange and accelerated across the rotating 

impeller, outwards from the impeller eye, towards the casing and diffuser 

chamber. Kinetic energy is absorbed by the gas in the form of axial and swirl or 

tangential velocity components. The diffuser chamber is an involute, curved 

passage increasing in cross sectional area as it leads towards the outlet flange. 

As the gas progresses through the diffuser chamber the tangential velocity is 

dissipated and, consistent with Bernoulli's equation [17], the dissipated kinetic 

energy is converted to pressure energy. The pressure generated by a compressor 

is dependent on the degree of swirl velocity imparted into the gas and the path 

length travelled by the gas molecules in the diffuser. The path length is the 

distance travelled from the impellor exit to the diffuser casing. The longer the 

path length, the more kinetic energy is dissipated, the greater is the head loss. A 

diffuser may be fitted with vanes to shorten the path length of the gas and so 

reduce head losses, [9] 

The degree of swirl velocity added is dependent on the angular acceleration 

induced by the rotating impeller. Angular acceleration of the gas is a function of 

the aerodynamic characteristics of the impeller. Guide (stator) vanes may be 

present on the compressor inlet. As the flowing stream impinges on the guide 

vanes a component of swirl velocity is imparted into the gas stream prior to 

acceleration across the impeller. Angle of the guide vanes adds flexibility in 

compressor design. Varying the angle can be used to control compressor 

performance. 

2.2.1 Kinematic Influence Parameters 

The theoretical head produced by a centrifugal compressor is determined by 

the velocity triangles at the inlet and exit of the impeller, shown in Fig. 2.4. 

14 



W2 a
2 ~2 

~! 
I CU2 I 
1 ... --

I 
I I Cu, I 

I.. I 

I 

Fig. 2.4 Velocity triangles for impeller of centrifugal compressor [18] 

Each triangle is composed of the absolute gas velocity, C, the rotational 

velocity, U corresponding to the impeller speed and the velocity, W of the gas 

relative to the blade passages. The rotational velocity, U is perpendicular to the 

impeller radius and the relative velocity, W is parallel to the blade passage; thus 

its direction depends on the blade angle. Total enthalpy change between the 

inlet and the exit of the impeller can be calculated from the "Euler" equation: 

111712 = 1702 - 1701 = CU 2 .u 2 - Cu1.u 1 (2.1) 
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For most gas compressors, which are manufactured with backward swept 

blades, the enthalpy change decreases when the flow rate increases. This 

behaviour can be explained by Fig. 2.5, where the increase in flow shown by W;, 
reduces CU 2 to Cu;. This reduces the head generated from equation (2.1). 

/1"\ W2' 

C'/ 
2/ C2 
/ 

/ 

",\\ . 
CU2' • 

--... . 
: CU2: 

~ 

) ) 

Fig. 2.5 Effect of increased flow rate for backward swept impeller [18] 

2.2.2 Internal losses 

The ideal head vs. flow characteristic for a centrifugal compressor is affected by 

irreversible losses that occur within the impeller blades passages and in the 

downstream diffuser (vaned or vaneless). The major source of these losses 

include: 

• Frictional losses, which increase proportionally with the flow rate, 

squared. 

• Blade loading losses where high adverse pressure gradients along the 

pressure and suction surfaces of the impeller blades produce flow 

separation. 

• Incidence angle losses attributed to an incorrect angle of attack at the 

impeller inlet or into a vaned diffuser that creates additional boundary 
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layer separation losses. 

• Secondary flow losses generated by the centrifugal and Coriolis forces 

within the rotating impeller. 

• Wake mixing losses within the blade passages and behind the blades at the 

impeller exit. 

• Separation and mixing losses within the diffuser because of incorrect 

expansion. 

• Losses associated with shock formation at the inducer inlet when the local 

M == 1 or shock formation in the diffusing volute when the impeller exit 

velocities become supersonic. 

• Disk friction and windage losses on the back face of the rotating impeller. 

The effect of these losses on actual head vs. flow characteristics of a compressor 

compared to the ideal case is illustrated in Fig. 2.6. 

o « w 
I 

FLOW 

Friction losses 

Blade loading 

losses 

Fig. 2.6 Ideal and actual head vs. flow characteristics 
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2.2.3 Compression Processes 

Figure 2.7 shows a diagrammatic representation of a compression process. 

Isentropic compression, represented by the path 1- 2s, is a work cycle that does 

not allow heat transfer into, out of or within the compression system. This is a 

reversible process, implying the compressed fluid to be an ideal gas. 

A polytropic compression process is an irreversible process more akin to real 

gas compression, shown by path 1 - 2. As the ratio of Pz to PI increases, the gas 

properties increasingly deviate from an ideal fluid. 

>­a. 
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T2s 2 
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I----~---1 

- :'~~ I ________ ~~ 
----~---------

I 
I 
I 
I 
I 
I 

S1 S2 

ENTROPY 

Fig. 2.7 Isentropic vs. actual compression process 
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An isentropic work process is defined [19] as: 

where 

P v K = constant 

P is the pressure in a system 

u is the specific volume of the fluid 

K is the isentropic exponent 2 

(2.2) 

Isentropic head, Ha is the work done in compressing a volume of gas, v from 

pressure p 1 to P 2' as follows: 

Ha = (2 vdP 
I 

(2.3) 

substituting for u from Plu K = PuK = constant 

H = (2(~/)~ 
a ~ lp VI dP (2.4) 

Integrating equation 2.4 gives: 

Ha =~P,v l[P2J(K-~ ] 
K-1 I I P. -1 

I 

(2.5) 

Then, substituting the real gas equation gives 

2 If the polytropic index were to be used the process would be a polytropic 
work process 
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H =~Z RT,[( P2J K-X -1] 
a K-l lip' 

1 

(2.6) 

By inspection, it can be seen that 2 1, R, Tl and K influence compressor 

performance, where: 

21 is gas compressibility, which is a function of gas composition, pressure 

and temperature. 2 is normally calculated from an equation of state [20], 

R is the specific gas constant defined by the isochoric and isobaric heat 

capacities of the gas, that is, R = Cp - Cv, themselves properties of the gas 

composition. R is related to the Universal Gas Constant Ro as follows: 

R =..!!.L 
MW (2.7) 

where Ro = 8.314510 J morl K-l 
, [21] and MW is the molecular mass of 

the gas which varies with gas composition. 

P/ PI is the ratio of discharge pressure to the suction pressure, also known as 

the pressure ratio, Pr' Note, PI and P2 may vary, keeping Pr constant. It is 

when PI or P2 vary independently that they affect compressor 

performance. 

Tl is the gas suction temperature. This affects compressor performance, 

principally by changing the density, or specific volume, which is a 

property of the flowing gas [20]. It should be noted that work done on 

the gas, as it is compressed, causes a temperature rise. The relationship 

between the suction and discharge temperatures of the gas (T1 and T2) 

can be derived from: 
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T2 P (K-l)/K 
__ 2 

Tl -P 
1 

(2.8) 

The limiting operating temperature of the compressor materials can restrict the 

value of T2• The polytropic exponent expression can be inferred from field trials 

[22] of the compressor from: 

( )

111 

T2 = Pz 

~ ~ (2.9) 

which gives: 

m= n-l = In(T2/~) 
n In( P2/~) (2.10) 

m is the polytropic index and can also be estimated from the isentropic 

exponent, K, and polytropic efficiency, IIp' measured during compressor 

trials. n can be estimated as follows: 

n-l K-l 
m=--=--

n K !Jp (2.11) 

K is dependent on gas composition and can be estimated using a 

procedure, to link API Technical Handbook procedures, described by 

Gent [23]. 

21 



2.2.4 Dimensional Performance Characteristics (wheel map) 

The isentropic head, Ha' with units of [kJ /kg] is often calculated from the 

following simple expression derived for an ideal gas, but modified to include 

real gas behaviour: 

H = ZavgRTl r, 
a (k-l)/k ~P2/~)(k-l)/k_l] (2.12) 

where 11 is the suction pressure in [kPa], P2 is the discharge pressure in [kPa], 

11 is the suction temperature in [K], k is the isentropic exponent, R is the gas 

constant [kJ/kg-K] and Zavg is the average compressibility factor. The difference 

between an isentropic and the actual compression process is shown in Fig. 2.7. 

Due to the irreversible losses mentioned in section 2.2.2, the actual compression 

process involves an increase in entropy in order to meet the required discharge 

pressure. Hence, the actual discharge temperature, T2 is somewhat higher than 

that corresponding to an isentropic process. The efficiency, 17 of the compressor 

is appropriately defined as the ratio between the isentropic head and the actual 

head: 

17 = f11t,2s = (12/11) (k-1)/k -1 

f1'12 (T2/~) - 1 
(2.13) 

The calculated isentropic head and efficiency from equations (2.12) and (2.13) 

are only approximate for real gases [1S]. A more accurate approach involves 

using an equation of state, such as AGA-S [20], to estimate these quantities. 

In the equation of state (EOS) approach, the static enthalpy and entropy are 

calculated both at inlet and outlet conditions from thermodynamics relations 

derived from the state equation. The actual enthalpy change, f1lt,2 is simply the 
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difference between the calculated inlet and outlet enthalpy. The isentropic 

enthalpy rise, f1~2s' however, must be determined iteratively from the known 

outlet entropy, since the inlet and outlet entropy are equal, and the outlet 

pressure. The efficiency, 1J is then computed as the ratio of the ideal to the 

actual change in enthalpy across the unit. 

2.2.5 Gas Property Influence Parameters 

Thus compressor performance is partly determined by: suction or inlet 

conditions of temperature and pressure; and gas properties: molecular weight; 

compressibility and isentropic exponent. Gas properties are dependent on gas 

composition and operating conditions. 

The effects of changes in suction pressure, temperature and gas composition 

on compressor performance can be summarised in terms of changes in gas 

operating density for a control volume. An increase in pressure or molecular 

weight or a decrease in temperature will increase gas density. Similarly a 

decrease in pressure or molecular weight or an increase in temperature will 

decrease gas density. Changes in compressor characteristics (at constant speed) 

due to changes in molecular mass are shown in Figure 2.8. 
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Figure 2.8 - Effects of Changes in Molecular Mass on Compressor Characteristics 

2.3 Compressor -Operating Characteristics 

2.3.1 Changing COP Rules 

There are a number of "rules" which can be deduced from compressor head 

map diagrams. 

1. At constant speed, reducing the flow rate through the compressor increases 

the compressor head. 

2. RedUcing the compressor head, at constant speed! increases the flow rate. 

3. Increasing flow rate, with a constant compressor head, requires an increase in 

compressor speed. 

4. Reducing the flow rate with a constant compressor head requires the compressor 

speed to decrease. 

5. RedUcing the compressor head, at constant flow rate, requires the compressor 

speed to be reduced. 

6. Increasing the compressor head at constant flow rate requires the compressor 

speed to increase 
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These cases describe typical goals for selecting COP i.e. maintaining constant 

throughput or maintaining constant discharge pressure. Compressor speed can 

be set anywhere within the bounds of the head map, with consequent changes 

in both discharge pressure and throughput. 

Cases 1 and 2 cannot be achieved through varying compressor speed since 

the compressor speed is constant. To induce changes in operating point of this 

type requires a change in the process external to the compressor. In the previous 

section it was noted that changes in gas suction density resulted in changes to 

the compressor head characteristics. In practice suction or discharge pressure 

can be adjusted using a control valve. This effectively changes the compressor 

characteristic and, effectively, fixes a new operating point. Throughput can be 

adjusted by re-cycling a proportion of the compressor. These methods of 

compressor control are described in Section 2.3.3 and 2.3.4 . 

2.3.2 Choked Flow and Surge 

The compressor operating envelope is bounded by the lower and upper 

operating speeds of the compressor, the surge line and the choked flow line. 

When the gas velocity, at the impellor inlet or diffuser passages, approaches 

sonic velocity, M = I, choked flow will occur. Due to the sonic velocity of the 

gas, pressure waves are inhibited and increases in velocity (flow rate) cannot 

occur. Choked is flow is characterised by rapid decrease in discharge pressure 

for slight flow increases and reduced compressor efficiency. To recover form 

choked flow the compressor head must be increased or compressor flow rate 

reduced. 

When operating at constant speed, if flow through the compressor is reduced 

a point is reached where stable operation is not possible. This point is known as 

the surge point or surge limit of the compression system, i.e. compressor and 

associated piping system. At the point of surge aerodynamic instability existing 

within the compressor and it is unable to produce sufficient pressure to 

maintain continues flow to the downstream system, [9] During surge, flow 
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reversals and pressure fluctuations occur and, in deep surge cycle, can cause 

catastrophic failure of the compressor and piping system. Surge can also come 

about through a reduction in flow rate caused by changes in the piping system 

resistance. White [7] identified that surge could be induced in a compressor 

when operated in parallel with another, due to differences in fuel governor 

characteristics. 

Onset of surge is very rapid and incidence of surge might not be detected 

depending on the type of instrumentation associated with the control system, as 

identified by Staroselsky [8]. Loss of a compressor can result in significant 

commercial loss of revenue and market share as indicated by the Nova 

Chemical press release [24]. This is shown in Appendix A. 

2.3.3 Compressor Capacity Control Methods 

Operating practice is dependent on the type of compressor in use and the 

intended application of the compressor. This research is based on performance 

control of a compressor where throughput is critical. Other compressor 

applications include maintaining a constant pressure in a process vessel, which 

is effectively compressor suction pressure control. 

A summary of capacity control techniques, as applied to centrifugal 

compressors, is compiled from sources [3], [9], [15], [25], [26] and shown in 

Table 2.1. 
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Drive Type Principle Method Supplementary method 

Constant speed Suction throttle Guide vane angle 

Blow off or recovery 

turbine 

Variable speed Speed control Suction throttle 

Guide vane angle 

Continuous Recycle 

Table 2.1 - Summary of Capacity Control 

Throttling techniques vary the compressor pressure ratio and so vary the 

flow rate through the compressor. Throttling reduces efficiency but where 

necessary, suction throttling is preferred over discharge throttling or, in extreme 

cases, "blow-off", when the compressor discharge is vented to flare or a 

recovery turbine. Guide vanes require a more sophisticated design of 

compressor and will result in additional expenditure. Recycle of compressor 

discharge to compressor suction can be used for capacity control but is the 

principle anti-surge control method. Speed control varies the speed of the prime 

mover by manipulating a fuel governor or variable speed electric drive. 

2.3.3.1 Constant Speed Compressor Capacity Control 

Suction throttle capacity control, combined with minimum flow control is 

shown in Figure 2.9. If the vessel pressure increases above the set point the 

pressure control valve will open up, allOWing gas flow rate though the 

compressor to increase. For a constant speed compressor, as the gas flow 

increases the compressor discharge pressure must reduce. Since the pressure 

ratio is also constant the compressor suction, or vessel, pressure must reduce. 

Similarly if vessel pressure falls, the pressure control valve will tend to close. 

The consequent reduction in flow rate will cause compressor discharge pressure 
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to rise, thus raising the compressor suction, and vessel, pressure. 

Pressure 

Vessel pressure setpoint I 

Cf-----------4 

Process Vessel 

i 
i 
i 
i 

pressure control 
valve 

cOffllressor 

(Fi'\ Wanti surge 
~ valve 

, , , , 
, , , , , , , ' , ' - - _______ • __ - - - ____ _____________ __ ,I 

Figure 2.9: Suction Throttle Capacity Control 

Minimum flow anti surge control is described in section 2.3.4. 

2.3.3.2 Variable Speed Compressor Capacity Control 

gas flow 

Figure 2.10 depicts the parameters typically monitored to operate a variable 

speed compressor with flow rate and discharge pressure control. This type of 

control may be found on a gas transmission compressor. 
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Figure 2.10, "Variable-speed compressor installation" 

gas flow 

Two basic types of control are shown in the diagram, surge control and 

performance control. Performance control is implemented by changing the 

speed of the prime mover (speed control) to meet a required discharge pressure 

or flow rate. The speed controller set point is the higher error signal of the flow 

controller or the pressure controller. In either case, the COP will change. 

Changes in either controller set point will cause contention between the control 

loops. Iteration between the two controller set points will be required, as both 

controlled variables will change if either controller set point is changed. 

Increasing the flow rate would cause the discharge pressure to fall until the 

discharge pressure controller applies corrective action to raise the pressure. 

Similarly, increasing discharge pressure will cause flow rate to fall eventually 

initiating intervention by the flow controller. 
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Surge control is effected through a flow-deltap configuration described in 

section 2.3.4 

2.3.3.3 Continuous Recycle Capacity Control 

A very simple control scheme may be used where no external work is 

required to power the compressor such as in a turbo-expander. In this case the 

compressor is operated with the anti-surge valve partially open, continuously 

recycling gas, to avoid surge and to avoid over speed of the turbo-expander [27]. 

Such an arrangement is shown in Figure 2.11. The degree to which the anti­

surge valve is open is dependent on the compressor throughput. 
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Figure 2.11 - Continuous Recycle Operation 

2.3.3.4 Blow off and Recovery Turbine Capacity Control 

gas flow 

Figure 2.12 shows blow off capacity control. When the flow controller set 

point is exceeded the blow off valve opens and gas is vented from the system. 

This method of capacity control is the least efficient of the capacity control 

methods described. 
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turbine 
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Flare header, vent or 
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Figure 2.12 - Blow off Recycle Operation 

In the case of a recovery turbine the blown off gas is expanded across a turbine 

to recover work from the compressed gas. 

2.3.4 Compressor Anti Surge Control 

In addition to capacity, or process controt protective control is required for a 

compressor, usually referred to as anti-surge control. Two basic methods of 

estimating proximity of COP to surge point are: minimum flow control and 

"flow-deltap". In proximity to surge, flow through the compressor will either be 

recycled or, less commonly, blown off. Table 2.2 lists the most widely 

implemented methods of surge controt compiled from sources [3L [9L [IS], [25L 

[26]. 
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Drive Type Method 

Constant speed Minimum flow 

Power & head 

Variable speed Flow-deltap 

Table 2.2: Anti surge control methods 

2.3.4.1 Minimum Flow Anti-Surge Control 

On a constant speed compressor the surge point occurs at a constant inlet 

volume flow rate. Minimum flow surge protection requires an anti-surge control 

inlet volume flow rate limit to be set, as shown in Figure 2.13. If the flow rate 

limit is breached anti-surge controlling action is invoked, which may be gas 

recycling or bloWing off. 
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Figure 2.13: Minimum Flow Surge Safety Margin 
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Variations in suction pressure do not affect the surge point, however suction 

pressure measurement is required for actual inlet volume flow rate 

measurement, as changes in suction pressure would tend to reduce the safety 

margin. Changes in molecular mass and temperature tend to increase the safety 

margin therefore compensation for these parameters is not necessarily required. 

Large changes in these parameters can be offset in changing the minimum flow 

set point. A minimum flow control scheme for a constant speed compressor 

with suction throttling is shown in Figure 2.14. 

Suction throttle 
valve rFT\(PT\ 

~~ 
I 
I 
I 
I 
I 

turbine 
compressor 

anti surge 
valve 

1 _________ ~, 

: -'-----------------------~'~~ ------ ~V 

Figure 2.14: Minimum flow anti-surge control 

2.3.4.2 Power & head Anti-Surge Control 

gas flow 

An alternative form of constant speed compressor, anti-surge control is based 

on measurement of prime mover power and compressor discharge pressure. 

This is based on the relationships that power absorbed by the compressor is 

proportional to the weight flow of the gas and so the suction pressure, through 

suction denSity. Constant pressure ratio relates suction pressure to discharge 

pressure. This method does not require the expense of a flow meter but is also 

subject to error when changes in suction temperature and molecular mass occur. 
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This anti-surge control scheme is shown in figure 2.15. 

Suction throttle 
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Figure 2.15: Discharge pressure & head antisurge control 

2.3.4.3 lI£1ow-deltap" Anti-Surge Control 

gas flow 

The surge control scheme shown in figure 2.16 operates on the "flow-deltap" 

anti-surge control scheme and is most widely used on variable speed 

compressors. 

compressor 

prime mover 

CD , , 
: anti surge T, , , , 
: valve @ : , , 
!---------------------------- ASC --j 

Figure 2.16: "flow-deltap" antisurge control 
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A flow-deltap antisurge control can also be used, but to a lesser extent, on 

constant speed compressors. White [7] described that the pressure rise across a 

compressor was proportional to the square of the inlet volume flow rate. In 

addition, the inlet volume flow rate at which surge occurs is proportional to 

compressor speed, Boyce [9]. If the inlet volume flow rate is measured using a 

differential pressure producing meter then an equation for the surge point 

would be a straight line of the form: 

Pd -Ps = Ch (2.14) 

where C is a constant of proportionality, h is the meter differential pressure and 

Pd-Ps is the pressure rise across the compressor. The linear representation of a 

surge line on a variable speed compressor is shown in Figure 2.17. 
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Figure 2.17: Variable Speed Compressor surge line 
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Also shown is a surge control line, the construction of which is described in 

section 2.4. Differing configurations of pressure and temperature compensation 

with discharge volume flow measurement can be devised. These are dependent 

on compressor system installation and take account of piping configuration 

including, for example, elements like interstage coolers [9]. 

The advantages of flow-deltap control are that: it can be used on variable or 

constant speed compressors; it is practicable to implement; it is effective in 

controlling action and is independent of suction pressure and compressor speed. 

2.3.5 Series and Parallel Compressor Anti surge Control 

Compressor can be connected in series to increase discharge pressure or 

connected in parallel to increase flow rate. 

Series compressor can be driven for the same shaft and therefore can be 

protected by the same anti surge valve. Series compressors driven from different 

shafts, require separate anti surge valves or, more commonly, separate antisurge 

controllers operating a common antisurge valve. A typical antisurge 

arrangement., with a Single recycle valve, is shown in figure 2.18. Each 

compressor has a dedicated antisurge controller. The surge signal variable from 

each of these is input to a "low signal selector" which routes the signal nearest 

to surge to the anti surge recycle valve actuator. 
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cOIT{lressor compressor 

gas flow 

Figure 2.18: Series compressor antisurge control 

Due to the "flat" nature of the centrifugal compressor discharge pressure 

curves, slight difference between discharge pressures might be sufficient to 

induce surge in one of the compressors. Changes in load would not affect each 

to the same extent so each compressor should have a dedicated anti-surge valve 

and controller, [25]. 

2.3.6 Parallel Compressor Load Sharing 

White [7] identified the difficulty of load sharing in parallel operation 

compressor configurations attributable to dissimilar characteristics in the prime 

mover fuel governors. In addition wear over time will change compressor 

performance characteristics. To overcome these problems and associated 

propensity to surge, it is possible to balance the individual compressor suction 

flow rates as shown in figure 2.19: 
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Figure 2.19: Parallel compressor load balancing 

A proportional loading scheme, for compressors of different sizes, is shown 

in figure 2.20. This allows compressors of different sizes, but similar surge point 

characteristics to share load at an operating point "equidistant" from their 

respective surge lines. 
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Figure 2.20: Proportional load sharing 

More elaborate control systems are described, [25] which can apportion total 

load between compressors using suction volume flow control. 

2.3.7 Efficiency vs. Efficacy 

Capacity throttling is less efficient than changing speed to achieve the desired 

COP, since energy is dissipated as a pressure drop across the throttling valve. 

Suction throttling requires additional energy input to recover lost energy. 

Discharge throttling dissipates energy supplied to the gas by the compressor, 

which increases prime mover fuel consumption and exhaust emissions. Energy 

wastage increases operating fuel costs. Exhaust emissions have both a monetary 

and environmental cost. 

39 



Surge control is required to prevent damage to the compressor. For a fixed­

speed machine this is achieved by detecting a flow rate close to the surge point 

flow rate and then opening the recycle valve. When this happens, the recycle 

valve opens the compressor discharge to the compressor suction, thereby 

circumventing the initiation or continuation of the forward/reverse flow cycle. 

In a variable-speed machine, surge detection is more sophisticated, but the 

controlling action is the same, that is, operation of the re-cycle valve. 

Continuous operation with the surge control valve open, means that gas is 

recycled through the compressor, which is wasteful of energy, 

Operating with continuous recycle of gas may allow the compressor to 

operate at a thermodynamically efficient COP hence it may be described as an 

efficient operating point. A thermodynamically efficient COP means that the 

discharge temperature will be around the lowest possible for the achieved 

compression ratio. However, gas which is recycled wastes prime mover fuel so 

whilst the compressor efficiency may be high the efficacy of the compressor may 

be described as poor. At 100% efficacy no gas is re-cycled i.e. all of the 

compressed gas is absorbed by the process that the compressor feeds. The most 

efficacious operating point is where the discharge pressure is just sufficient to 

sustain the required forward flow. 

2.4 Controller Implementation of "flow-deltap" strategy 

Current compressor control technology has the flow-deltap control scheme as 

its basis. The "flow-deltap" characteristic can be depicted graphically as shown 

in figure 2.21 where the parameters of compressor pressure rise, discharge 

pressure less suction pressure (Pd-Ps) and suction orifice flow meter differential 

pressure, dp. The origin on the graph is actual inlet volume flow rate = 0 and Pd 

= Ps i.e. Pd-Ps = O. 
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The surge point is fixed whilst the operating point moves along the 

compressor speed or performance characteristic curve. As the operating point 

approaches the surge point the gradient of the lines become the same i.e. their 

ratio approaches unity. 
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Figure 2.21: Compressor "flow-deltap" diagram 

White [7] described how the compressor pressure rise or pressure ratio is 

proportional to the head of the compressor hence the gradient of the operating 

line at any single point is expressed as: 

H 
Q2 = cons tan t (2.15) 
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Staroselsky [8] developed a similar relationship for polytropic head using actual 

compressor instrumentation inputs: 

H P R;II - 1 
p s OZa m 

dp o 

(2.16) 

where Hp is the polytropic head, Q is the actual inlet volume flow rate, Ps is the 

suction pressure, Rc is the compressor pressure ratio, m is the polytropic index 

and dpo is the differential pressure across the suction flow rate meter, 

proportional to the flow rate. Staroselsky further defined that a surge criterion, S 

could be described as [28] : 

Rill -1 P _c_ 
s 

m 
dp 0 

S 
J operating po int 

Ps 
R 1/1 _ 1 l (2.17) 

c 

m 
dp 0 

surge po int 

When S = 1 the compressor operating point is coincident with the surge point 

i.e. the compressor will surge. When S < 1 the compressor is working to the right 

of right of the surge point. By specifying an S value it is possible to set the 

operating point of a compressor on a performance characteristic, be it a constant 

speed curve or universal speed curve (described in section 3), relative to the 

point of surge. In this respect setting the operating point, (performance control), 

of the compressor is implicit in surge control i.e. it is relative to the proximity of 

the surge point. 
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The S value of compressor point, for fixed compressor speed and guide vane 

angle, can be calculated as: 

p R;n - 1 
s 

Sop K j 
m 

(2.18) 
dp 0 

operating 

where KJ is the inverse gradient of the surge point line. KJ can be defined as a 

function of compressor speed, f(N), and guide vane angle, f(a). A margin of 

safety, as a function of actual inlet volume flow rate ~f(dpo) as shown in Figure 

2.22, can be added to create a surge limit line. S is redefined as; 

Rill -1 p_c 
s 

Sap = f(N)f(a) m + f(dpJ 
dpo 

(2.19) 

Now, when S = 1 the operating point lies on a displaced surge limit line at 

which point corrective controlling action can be take to prevent surge. 

43 



~ 
~ 
3f 0<: 

2! 
::> 
~ 
~ 
0. 

1;j 
~ 
0. 
E o 
() 

smge 
point 

f(dpo) 

Pd=Ps -+--......1-------------------------7'> 

Q=O Actual Inlet volume Flow rate, Q2 (dp) 

Figure 2.22: Surge Limit line 

With the advent of digital controllers, more complex surge line contours, 

associated with higher compression ratios, could be represented. In these cases 

the compressor surge line characteristic is not parabolic. The linear 

approximation described by White [7] may, therefore, not hold. Surge line 

representation by linear segmentation is shown in Figure 2.23. 

The "flow-deltap", implemented in proximity to surge point parameters, 

approach to compressor control was summarised as being current practice by 

deSa and Maalouf [29]. 
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Figure 2.23 - Surge Control Line Characterisation 

A control scheme to implement S, as the controlled variable, is shown in 

Figure 2.24. The surge controller calculates the S factor, based on field inputs, 

and passes it to a performance controller as the current operating point. (The 

field inputs could be any of those defined by Batson [10] representing a set of 

invariant co-ordinates). T~e desired operating point is the set point as advised 

by an optimisation system or the operator. Simple PID control is used to 

generate a set point for the prime mover fuel governor. 
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Whilst this control technique avoids compressor surge and its consequences, 

it does not address control in terms of fuel efficiency. This is generally left to an 

advisory optimisation routine or the control room operator. 

Control of multiple compressors, as found in a gas transmission station for 

example, is somewhat more complex using these conventional control 

techniques. This is particularly the case where compressors of dissimilar 

performance characteristics are run in parallel. Conventional performance 

control selects the highest S value operating point, i.e. the compressor most 

likely to surge. This value is then scaled for each of the prime mover ranges in 

use and then downloaded as the fuel governor set point. The compressors run at 

the same COP on their respective performance characteristics. This is termed 

"equidistant load sharing" - equidistant in that the distance between the COP 

line and the Surge control line is the same for each compressor. 

Performance control is still centred around surge prevention of the 

compressor closest to surge and does not reflect fuel efficiency considerations. 
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2.5 Conditional Stability 

Analysis of the gradient ratio control line is described with reference to 

Figure 2.25. Assume the COP is set on the nominal suction pressure curve. The 

compressor is in a dynamic equilibrium where discharge pressure and flow rate 

are balanced against the discharge pressure constraint, shown by the straight 

line. The controlled variable set point, the ratio of gradients, is shown at point 1. 
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If an increase in suction pressure occurs the compressor will try to reach a 

new dynamic equilibrium at point 2. Without a change of set point, the control 

system attempts to bring the controlled variable back to point 1, but the 

compressor now moves on the increased suction pressure characteristic. The 

equilibrium of the compressor will oscillate along the increased suction pressure 

curve, between points 1 and 2. This conditional stability will result in fuel wastage 

and increased exhaust emissions as the discharge pressure and the flow rate are 

always greater than required, relative to the original COP, point 1. 
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If a decrease in suction pressure occurs, the compressor characteristic follows 

the reduced suction pressure curve. The compressor will attempt to reach a new 

dynamic equilibrium COP, towards point 3. As before the control system will 

try to maintain the ratio gradient towards point 1. The compressor will oscillate 

between points 1 and 3 and eventually surge as the discharge pressure is backed 

up by the pressure constraint. The compressor system is now unstable. The 

dynamics of the instability are determined by the inertia of the rotating 

components. 

Unless the set point is changed to accommodate changes in suction 

conditions and gas properties, a control system based on this philosophy is only 

unconditionally stable at one point. This point is where the discharge pressure 

and flow rate are balanced against the discharge pressure constraint with 

suction conditions and gas properties fixed. 

2.6 Compressor Control Trends 

Botros & Henderson [11] identified two main (anti-surge) control trends. These 

are: 

• Designed-In. This is the integration of surge prevention mechanisms 

designed in to the compressor design. These include: variations in impeller 

blade angle and blade thickness; varying the diffuser shape; adjusting the 

inlet guide vane geometry; addition of casing slots; and so on. 

• Operational devices. This is the use of operational devices such as: 

aerodynamic techniques involVing the discharge gas re-injection with 

directional nozzles (Gysling and Greitzer, et. al. [30]); various anti­

perturbation pressure oscillations schemes described by Jungkowski et. al. 

[31]. 

They identified that surge control technology is in a 'perfection' stage and that 

control advances will come about through incremental improvements in 

existing technology and improvements in digital computer methods. 
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In the context of this research, application of fuzzy logic to conventional 

surge control was described by Cordiner [14]. Fuzzy logic was used to weight 

the significance of the anti-surge control factor. At 'LOW' values of S, away 

from the surge point, optimisation of COP was the most prevalent control factor. 

At 'HIGH' values of S, anti-surge considerations were the prevalent control 

factor and control was transferred to the anti-surge controllers. Under this 

control strategy each compressor was operated at a unique S value hence load 

sharing was "non-equidistant". Performance control could be considered from a 

fuel efficiency perspective. The difficulty then would be in selecting an 

optimised COP. Cordiner [14] further identified that "fine tuning" or 

optimisation of the fuzzy controlled variable could be attempted using neural 

networks. This control scheme represents an incremental improvement in anti­

surge control technology methodology. 

2.7 Discussion 

This chapter has built up a broad overview of the principles of, and the 

operational implications, for compression. Compressor control development has 

been researched and described. Compressor control pivots around prevention of 

surge or anti-surge controL Performance control, from a point of view of 

compressor efficacy or fuel efficiency, is a secondary consideration. Prevention 

of damage to high capital cost equipment and costly downtime of process 

critical plant is a key driver. Other factors such as environmental emissions 

restrictions and pressure on operating costs require most efficient use of fuel 

and extended plant availability. These require reliable and accurate performance 

controL 

Effective performance control needs to hold the compressor at some 

operating point where capacity throughput and/ or pressure constraints are met. 

This is likely to be achieved through the use of a steady state control scheme 

where averaging the performance control can meet longer term control 

objectives against plant transients. Performance control and anti-surge control 
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are complimentary: effective, longer-term performance control should reduce 

the propensity of the compressor to surge and effective anti-surge transient 

control improves the efficacy of the compressor. 

Henderson & Pearson [32] described a steady-state control scheme for a 

micro-hydrogenerator set. This method used the force balance equilibrium 

characteristics of the generator set and electrical load. The speed of the 

generating set was adjusted by applying or removing electrical load, based on 

defined characteristics. Transient control was implemented by other systems but 

improvements to transient response were suggested by the use of under or over 

correction of steady state loading, see Henderson & Pearson [33]. The recycle 

valve in an anti-surge control system can be thought of as load control of the 

compressor where opening the re-cycle valve reduces the "load" on the 

compressor. There are similarities too between the derivative control action 

described for the generator set [33] and a system described for a quick opening 

solenoid compressor recycle valve [26], improving surge control response. 

In a compressor system the characteristics are less well defined and affected 

by plant external to the system including process load. The compressor, 

however exhibits the same tendency to settle at a natural equilibrium operating 

point. If the compressor characteristics are well known then it would be a simple 

matter to set the compressor speed based on load constraints of capacity 

throughput and pressures. Compressor optimisation schemes are available 

which recommend COP based on process conditions or plant load. These are in 

effect, Model Predictive Control, MPC, schemes where compressor 

characteristics are predicted using mathematical modeling techniques. Such 

systems often require expert intervention and can be un-reliable. 

The work described by Cordiner [14] retains, as its basis, conventional anti­

surge control with fuzzy categorisation of the controlled variable S. This has 

allowed independent S values to be used for each compressor. His suggestion 

regarding the use of neural networks for fine tuning COP was the starting point 

for this research. 
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2.8 Conclusions 

Having reviewed principles, operation and control of compressors it is clear 

that there is a growing need for reliable performance control as environmental 

issues attract greater commercial penalties such as pollution tax and restriction 

on production due to pollution quotas. Given the similarities between 

compressor and micro-hydrogenerator operating equilibrium points there is 

merit in considering the performance control of compressors as an exercise in 

operating at natural equilibrium points determined by the process load. This 

requires knowledge of the compressor performance at various points in its 

operational envelope. This is very similar to MPC however there is an essential 

difference. This research describes a technique to use neural networks to 

approximate the compressor characteristics instead of using conventional 

modeling techniques. 

As described in chapter 5 supervised training techniques will allow a neural 

network to be trained with actual compressor data from operational plant. The 

neural network can be re-trained (or replaced) to reflect changes in compressor 

characteristics through time. The decision to update compressor characteristics 

can be left to the experience of Operations Staff and will not require intervention 

by modeling experts or mathematicians. Hence the neural network will embody 

the "knowledge" of Operations Staff, one element of a knowledge based or 

expert system, as described in chapters 6 and 7. This knowledge will represent 

goal-oriented operation of the compressor i.e. longer-term goal oriented, surge 

free operation. 

This aspect of the research is not believed to have been previously 

examined in the context of compressor control and hence gives opportunities to 

be researched. In this respect, the research described in this thesis constitutes a 

novel contribution to compressor control and, in a broader sense, to the control 

of rotating equipment. 

Whilst performance control is the primary concern here, there is the potential 

for development of a diagnostic aid to compressor performance. Several neural 
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networks might be trained throughout the compressor life either by time or by 

event using actual operating data. Compressor performance can be tracked and 

deterioration monitored to construct a Reliability Centered Maintenance, RCM, 

programme tailored to each compressor in situ. 
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3 Developing a Compressor Model 

3.1 Introduction 

Recent modelling of compressor stations under various operating conditions 

has been presented, most notably Botros et aI, [34-38]. A review of earlier 

compressor modelling is to be found in Boroomand [39]. These references 

describe various numerical solutions to dynamic simulation of compressor 

stations comprising compressor, piping elements and associated control system. 

The principle numerical solution techniques in use are Method of Characteristics 

and Finite Difference. Each of these simulations contains a compressor element 

Originally described by Greitzer [40-41] for aero-engine axial compressors. 

Greitzer's work was extended to centrifugal compressors by Hansen [42] 

A linearly distributed parameter compressor system model was described by 

Badmus [43-44] which claimed improvement over the lumped parameter model, 

first order empirical compressor lag described by Greitzer [40-41]. This model 

was again, developed for research into aero-engine control. 

This chapter discusses the basis of estimating steady state compressor 

operating point based on the application of Dimensional Analysis and Fan 

Laws. One such approach is described by Godse [45]. The principles described 

are used to generate data sets for researching neural network based compressor 

performance control. 

3.2 Dimensional Analysis 

Dimensional analysis is an invaluable tool towards understanding the 

general behavior of a turbomachine by reducing the number of pertinent 

physical variables for the unit into a smaller number of dimensionless groups. It 

has several important applications for it's process compressors: 
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• Allows direct comparison between a family of wheels from the same or 

different manufacturers based on the non-dimensional performance 

characteristics. This improves ability to select the most suitable type of 

wheel over the estimated head and flow range. 

• Monitor changes in the non-dimensional performance characteristics for 

deterioration in the unit operation. This could be used for predictive 

maintenance by developing a fault signature table in order diagnose a 

specific problem area within the unit. 

• Extrapolating the non-dimensional performance curves to estimate the 

choke limit (maximum flow rate) for compressor. 

The main benefit of utilizing non-dimensional performance variables, as 

opposed to the conventional head, flow, efficiency and unit speed, is that only 

two non-dimensional curves are needed instead of numerous speed and 

efficiency lines that are included on the wheel map. This allows normalized 

operating points to be plotted and directly compared with each baseline 

performance curve. Conversely, an operating point may lie in the middle of the 

wheel map, yet it would be impossible to determine whether the unit was 

functioning properly without specifying the unit speed for the data. Further, it is 

a straightforward procedure to compare the non-dimensional performance 

characteristics of two or more units. 

Where compressor speed is specified, non-dimensional performance 

characteristics can be used to estimate, or model, compressor performance 

characteristics for various operating conditions. Dimensionless parameters are 

identified by reducing the number of dimensional variables, as described in the 

next section. 
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3.2.1 Buckingham pi theorem 

There are several methods of reducing dimensional variables into a smaller 

number of dimensionless groups. The most commonly used approach was 

proposed by Buckingham in 1914, and is appropriately named the 

"Buckingham" pi theorem [46]. The pi theorem, and all other dimensional 

analysis techniques, are based on the following assumptions: 

i.) The principle of dimensional homogeneity that states if an equation 

correctly characterizes the relationship between dimensional variables 

for a given physical process, it must be dimensionally homogeneous; 

i.e., each of its additive terms will have the same dimensions. 

ii.) All of the relevant dimensional variables for the problem must be 

included in the analysis. 

The first part of the pi theorem then states what reduction in variables is 

possible: 

• If it is known that a physical process is governed by a dimensionally 

homogeneous relation involving n dimensional variables, it can be reduced 

to a relation between only k dimensionless variables or IT's. This 

reduction, j = n - k, equals the maximum number of variables which do 

not form a pi among themselves and is always less than or equal to the 

number of fundamental dimensions involved in the dimensional variables 

[47]. 

The second part of the pi theorem explains how to find these dimensionless 

groups: 
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• After determining the reduction amount, select j variables that do not form 

a TI group among themselves. Each desired pi group will be a power 

product of these j variables plus one additional variable that is assigned 

any convenient non-zero exponent. Every pi group found in this manner 

is independent [47]. 

A simple example of estimating the total force, FT acting on a bluff body 

moving through a fluid is included to clarify these concepts. This force depends 

on the diameter of the body, D along with the velocity of the body, V and the 

fluid density, p and viscosity, j1. This relationship may be expressed as: 

FT = f (D, V,p,j1) (3.1) 

These five variables (11 = 5 ) contain the following dimensions, as shown in 

Table 3.1. 

FT D V P fl 

[M L y-2] [L] [Ly-1] [MC3
] [M c 1 T-1] ! 

Table 3.1: Force Dimension Table 

The first part of the Buckingham pi theorem states that the reduction j is less 

than or equal to the number of fundamental dimensions M, L, T contained in the 

variables. Thus, j is less than or equal to three (j::;; 3) and k = 11 - j ;::: 2 TI 's. 

Initially we assume that j = 3 and look for j variables which do not form a pi 

product. We choose D, V and p which cannot form a dimensionless group 

because only p contains mass and only V has units of time. Thus, the reduction 

j must equal three and the pi theorem guarantees for this problem that there will 

be exactly two independent dimensionless groups. 
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In the second part of the pi theorem, we combine D, V and p with one 

additional variable, in sequence, to find the two dimensionless pi groups. For 

IT l , we select the force, FT raised to the first power: 

IT1 = DaVb pep;. = (L)a(LT-1)b(MC3t(MLT-2) = MO LOTO 

Equating the exponents for each fundamental dimension: 

Length, L 

Mass, M 

Time, T 

a+b-3c-1=O 

c+1=O 

b+2=O 

(3.2) 

Solving explicitly for a = -2, b = -2 and c = -1 yields the following expression for 

IT l : 

F 
IT1 = - T 

pV2D-

and using f1 as the additional variable instead of FT' we obtain IT2 : 

IT _ pVD 
2- - =Re 

f1 

(3.3) 

(3.4) 

where Re is the Reynolds number. The pi theorem guarantees that the 

functional rela tionship between the two dimensionless groups can be expressed 

as: 
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FT = F(PVD\ 
pV2D2 -;;-) = F(Re) (3.5) 

The main benefit of using the functional relationship shown above, equation 

(3.5), instead of the original expression, equation (3.1), is that we do not have to 

vary D, V , P or f.i separately but only alter the dimensionless group, P VD / f.i. 

We can do this simply by changing the fluid velocity in, for example, a wind 

tunnel or water channel, without having to construct several different bluff 

bodies to alter D or use many different fluids to vary the fluid density and 

viscosity. Another important benefit of dimensional analysis is that it improves 

our thinking and planning for experiments, computations or theory. For 

example, it suggests dimensionless ways of writing an equation before we waste 

computer time trying to find solutions. It may also suggest which variables can 

be discarded, or groups them off to the side, where a few simple tests will show 

them to be unimportant. Finally, dimensional analysis often gives a great deal of 

insight into the form of the physical relationship we are trying to study. 

Although dimensional analysis is based on a strong physical and 

mathematical background, considerable skill and experience is needed to apply 

it effectively. The pi theorem only tells us how many dimensionless groups are 

needed and gives general rules on how to construct them. It does not tell us 

which dependent variables should be initially selected to generate the groups. 

As a result, many different IT's can be found for the same problem and 

therefore the value of the results obtained by dimensional analysis ultimately 

depends on the experience and insight of the person applying it. 

3.2.2 Derivation of ll's for compressor performance 

The performance of a centrifugal compressor is often expressed in terms of 

the isentropic enthalpy increase across the unit, !1.'12s the isentropic efficiency, 17 
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and the hydraulic power requirement, P. The functional relationship for each of 

these performance variables can be written in terms of the unit operating 

parameters, physical properties and composition of the gas: 

/),~2s = 11 (D, N, Q1' Po1' Jlo1' ao1 ' Y) (3.6) 

'7 = 12 (D, N, Q1' Po l' Jlo1' ao1 ' Y) (3.7) 

P = 13(D,N,Q1'Po1,Jlo1,ao1'Y) (3.8) 

where D is the impeller diameter, N is the unit rotational speed, and Q1 is the 

actual inlet flow rate, Po1 is the inlet gas density, Jlo1 is the inlet gas viscosity 

and ao1 is the speed of sound all based on inlet stagnation conditions, and 

finally Y is the mole fraction vector representing the gas composition. Applying 

the Buckingham pi theorem, we reduce the eight independent variables, 

containing the primary dimensions of mass, length, and time, down to five 

dimensionless groups. Although many different pi groups are possible 

depending on the selected combination of independent variables for the 

analysis, the following non-dimensional groups are the most commonly used by 

the compressor industry. 

The dimensionless isentropic or 11 adiabatic" head coefficient, If/: 

- /),~2s = F:(~' ND , P01ND2, Y) = F1(?', M, Re, y) 
If/ - N 2 D2 1 ND3 ao1 Jlo1 

(3.9) 

Similarly, the functional dependence of isentropic efficiency, '7 may be written 
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as: 

Q1 ND P01 , Y = F
2

(q$, M, Re, y) 
[ 

ND2 J n-F --3' , 
./ - 2 ND a

01 
fJ

0
1 

(3.10) 

and the power coefficient, n as: 

Q = P = F [i?L ND P01
ND2 J P01N3D5 3 ND3'--;;-' 11 ,y =F3(q$,M,Re,y) 

01 ""01 
(3.11 ) 

where q$ = Q1/ ND3 is referred to as the flow coefficient, P01ND2/ fJ01 is a form of 

Reynolds number, Re for the unit based on the tangential velocity at the 

impeller tip and NDja01 is the blade tip Mach number, M based on the impeller 

tip velocity. A unique connection exists between the n and the remaining 

groups, ( lj/ ,q$ ,1]) because the required hydraulic power must equal p01Qi),~2s/1l. 

Thus, n can be computed simply from the following expression: 

Q - q$lj/ 
1] 

(3.12) 

The other dimensionless relationships, i.e., F1 and F2 , must be determined 

either experimentally or from a detailed theoretical approach (e.g., 

computational fluid dynamics). 

3.2.3 Non-dimensional performance map 

In this section, we have modified the dimensionless performance groups 

introduced in section 3.2.2 to incorporate units for dimensional variables. The 

inlet flow coefficient, q$ is obtained by dividing the actual inlet flow rate, Q1 by 
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the hypothetical flow from passing the impeller tip velocity, U2 through the 

projected frontal area based on the impeller tip diameter, D: 

rjJ=~= 240Q1 
U2~ ;r2ND3 

(3.13) 

with units for Q1 [m3
/ s], N [rpm], and D [m]. The head coefficient, lj/ is the 

isentropic head, ;:"'~2s normalized by the hypothetical dynamic head 

corresponding to u 2 : 

;:"'/~2s 7.2 x 10
6 M~2s 

lj/ = ~u i = ;r2N2D2 
(3.14) 

with units for Llh12s [kJ /kg]. The compressor efficiency, '7 is already 

dimensionless and the power coefficient, Q is calculated by substituting the 

known values of rjJ, lj/ ,and '7 into equation (3.12). 

The non-dimensional parameters translate onto a single curve, even though 

the data may be taken at different compressor speeds. This simplified 

relationship is utilized to determine the Cheesman coefficients for the head and 

efficiency equations. These coefficients are subsequently used to generate the 

dimensional performance characteristics in section 2.2.4. To elucidate this 

relationship, assume we can approximate the function, lj/ = F,(rjJ) , by a second-

order polynomial: 

lj/ = F,(rjJ) = ao + ad + Q 2 rjJ2 (3.15) 
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Substituting equation (3.13) for rjJ and equation (3.14) for If/, keeping the 

constant terms in the polynomial coefficients, the isentropic head, Ah12s can be 

written in terms of the inlet flow rate, Q1 and compressor speed, N as follows: 

1111. (Q) (Q)2 _-_12_s = a + a _1_ + a _1_ 
N 2D2 0 1 ND3 2 ND3 

:. A~2' ~ N2D2{ao + ~ (N~3) + a, (!3J} (3.16) 

Similar algebraic manipulation provides the relationship for efficiency, 17: 

17 = b + b1( Q\) + b2 ( Q\J2 
o ND ND 

(3.17) 

where ao' a1, a2 , bo' b1 and b2 are the Cheesman coefficients which are 

determined by a least-squares fits of performance test data or digitized points 

from the manufacturer's wheel map. 

3.3 Affinity Laws 

For the same machine, D is constant so equations (3.14) and (3.15) can be 

expressed in the form: 

QaN (3.18) 

HaN 2 (3.19) 

A third equation, for power, can be added: 
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PaN 3 (3.20) 

The constants of proportionality which are not shown are the flow, head and 

power coefficients, $, \If, n. These, common, forms of the non-dimensional 

equations can be used to estimate compressor parameters away from test data 

operating points, for example: 

QI = NI 
Qz Nz 

(3.21) 

HI = N l
z 

H z NZ 
(3.22) 

z 

The effects of changing speed on flow rate or head can be estimated. 

Alternatively a speed can be estimated at which a desired flow rate or head can 

be achieved. 

3.4 Steady State Compressor Modeling 

The steady state model was implemented using the non-dimensional 

parameters described in the previous section, techniques similar to those 

described by Godse [45] and by implementing the thermodynamic eql1-ations 

described in section 2.2. 

The model was to be capable of estimating compressor speed for any flow 

rate within the range of the performance characteristic, generating any 

isentropic head value for any set of compressor suction parameters within a pre­

defined operating envelope. 

The standard tests for a neural network would require six inputs. These were 

selected at random within the predefined operating range or calculated from 

compressor characteristics or thermodynamic relationships. : 

• Suction pressure 
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• Suction temperature 

• Molecular mass 

• Differential pressure (to represent actual volume flow rate) 

• Discharge pressure 

• Discharge temperature 

For extended testing the molecular mass was replaced by gas composition of 

either ten or twenty-one components. 

An iterative procedure was followed to calculate discharge pressure and 

consequently discharge temperature. The following steps describe the 

procedure. 

1. Select suction temperature, pressure and gas composition. 

2. Calculate gas compressibility, in accordance with AGA8, at suction 

conditions using gas composition 

3. Calculate isentropic exponent at suction conditions using molecular mass 

from a regression equation. 

4. Select random dp, calculate flow rate 

5. Select speed, calculate flow coefficient 

6. Calculate isentropic head coefficient from quadratic regression equation 

7. Calculate isentropic head from the isentropic head coefficient and compressor 

speed 

8. Calculate discharge pressure and temperature. 

9. Calculate compressibility of discharge gas then the average of suction and 

discharge compressibility factors. 

10. Repeat steps 8 and 9 until successive value of discharge pressure agree to 

within a convergence criterion. 
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3.4.1 Steady State Model Basic Data 

The steady state model is an actual compressor performance characteristic at 

one, base, set of suction conditions. The performance characteristic covers eight 

operating speeds generating isentropic head of between 43 - 136 kJ /kg at flow 

rates of between 725 - 1876 acm/h. The suction conditions are 62 bar pressure, 

33.3 QC temperature and 20.1 kg/kg mol molecular mass. The performance 

characteristics data points are shown in Appendix B, Table B1. A graph of the 

performance characteristic is shown in Figure 3.1. 
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Figure 3.1 - Base Head Map 

Isentropic head is plotted against actual volume flow rate for eight lines of 

constant speed. 

The data was converted to a universal speed curve representing isentropic 

head coefficient, \jf, as a function of flow coefficient, ~, by the 4th order 

polynomial equation: 
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\f' = 6.13537 X 10-7 
- 0.057219519~ + 2726.218977~2 -1980.23 X 109 ~4 (3.23) 

The higher order regression equation yielded slightly better standard error in 

\jf over a quadratic regression equation of the form shown in equation (3.15). 

3.4.2 Selecting Suction Temperature and Suction Pressure Values 

Where "base" suction temperature and pressure values were specified, slight 

random variation was introduced to eliminate the effect described in section 

5.3.3 with respect to network architecture. The nominal values could vary 

between: Psuc = 6200 ± 0.005 kPa and Tsuc = 33.3 ± 0.00005 cc. 
Where specified, random values of suction pressure and suction temperature 

were selected from within the pre-defined ranges as shown in Table 3.2 

Parameter Maximum Minimum 

Ps 7000kPa 5000 kPa 

Ts 40°C 25°C 

Table 3.2: Suction Parameter ranges 

3.4.3 Selecting Molecular Mass and Gas Composition 

Gas composition was required to calculate thermodynamic properties for 

calculating discharge pressure from isentropic head, hence molecular mass was 

calculated from gas composition. Three gas compositions were chosen to 

represent nominal molecular masses of 18, 20 and 22 kg/kg-mole as shown in 

Table 3.3. 
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Component Nominal Nominal Nominal 

Mol. Mass. Mol. Mass. Mol. Mass. 

18 kg/kg-mole 20 kg/kg-mole 22 kg/kg-mole 

Methane 93 80.71 70 

Ethane 2 11.4 20 

Propane 0.8 3 4 

i-Butane 0.21 0.4 0.81 

n-Butane 0.21 0.6 0.81 

i-Pentane 0.15 0.2 0.42 

n-Pentane 0.15 0.2 0.42 

n-Hexane 0.1 0.1 0.15 

Nitrogen 0.39 0.39 0.39 

Carbon 3 3 3 

Dioxide 

Table 3.3: Gas Composition Corresponding to Nominal Molecular Mass 

Where the "base" value of molecular mass was specified a slight random 

variation was introduced to eliminate the effect described in section 5.3.3 with 

respect to network architecture. The nominal value could vary between: MW = 

20.086 ± 0.000005 kg/kg-mole. 

Gas molecular mass was derived from a gas composition to facilitate gas 

compressibility computation using the AGA 8 equation of state [20]. For this 

purpose the following gas components, which could typically be identified by 

an online gas chromatograph, were chosen at random from the ranges shown in 

Table 3.4: 
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Component Maximum Minimum 

Mol % Mol % 

Methane 93 70 

Ethane 20 2 

Propane 3 0.8 

i-Butane 0.27 0.21 

n-Butane 0.27 0.21 

i-Pentane 0.42 0.15 

n-Pentane 0.42 0.15 

n-Hexane 0.15 0.1 

Nitrogen =0.39 

Carbon =3 

Dioxide 

Table 3.4: "Short" Gas Analysis Component 

Additional components: n-Heptane; n-Octane; n-Nonane; n-Decane; 

hydrogen; water vapour; hydrogen sulphide; carbon monoxide; argon; helium; 

oxygen; as identified in the AGA8 equation of state, were taken to be 0 mol %. 

The composition was selected for use when the sum of all components was 

within 100 ± 1 mol % and the molecular mass was within 20 ± 2 kg/kg-mol. The 

components were then re-normalised to total 100 mole % prior to input to the 

neural network. 

3.4.4 Selecting a Differential Pressure Input and Inlet Flow Rate 

The compressor actual inlet volume flow range was mapped onto a 

differential pressure range of 22.5 - 150 mbar corresponding to a mass flow 

range of 41665 kg/hr to 107845 kg/hr at "base" suction conditions. A 

differential pressure was randomly selected using: 
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dp = 127.5 x rnd + 22.5 (3.24) 

where md is a random number between 0 and 1. This value of dp was then 

converted to actual inlet volume flow rate at the prevailing suction conditions 

using: 

dp 107845 
qv=---

150 PSIIC 

(3.25) 

where Psue is the density of the selected gas composition at selected suction 

pressure and temperature, calculated using AGA8. 

3.4.5 Calculating Discharge Pressure and Temperature 

Compressor test speed was randomly selected using: 

N = 6300 x rnd + 16000 (3.26) 

Using the actual inlet volume flow rate, qv, the flow coefficient, ~, was 

calculated using: 

rjJ = qv/3600/N (3.27) 

Compressor isentropic head coefficient was calculated using equation (3.23), 

hence isentropic head, H, could be estimated using: 

H='f'xN 2 (3.28) 
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Isentropic exponent was calculated from a regression equation using suction 

conditions as follows: 

K = 1.74166259 + 0.000136889Ps - 0.003673681Ts -0.015897153MW (3.29) 

The regression equation data is based on isentropic exponent data for pure 

methane calculated using [23]. 

At this stage discharge pressure can then be calculated using equation 2.6 and 

discharge temperature can be calculated using equation 2.8. Once calculated 

compressibility at discharge conditions can be calculated. Iteration around the 

following loop Pd -) Td -) Zd -) Zave -) Pd until Pd converges to within 0.02 %, 

yields Pd and Td. 

3.4.6 Simulating Instrument Noise 

These instrument noise levels were selected to represent typical instrument 

uncertainties as follows: ± 0.25% of span for pressure transmitters; ± 0.5% of 

span for temperature transmitters; ± 0.1% span for differential pressure 

transmitters; ± 0.25% of reading for molecular mass and ± 0.25% of reading for 

speed transmitters. 

Randomly distributed instrument uncertainty levels were generated with a 

mean of 0% and standard deviation corresponding to 95% or 2cr confidence 

levels corresponding to the uncertainty ranges stated in the previous paragraph. 

The uncertainty levels were then applied to the instrument range or spot 

reading, as appropriate, to create a noise component. The noise component was 

then added to the nominal input value to give the "noisy" input. The instrument 

ranges shown in Table 3.5 were used to calculate noise components. 
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Signal Instrument range Noise component 

Suction pressure 5000 - 7000 kPa % of 2000 kPa 

Suction temperature 0-200°C % of 200°C 

Differential pressure 0-150 mbar % of 150 mbar 

Molecular mass 18 - 22 kg/kg-mole % of reading 

Discharge pressure 7500 - 20000 kPa % of 12500 kPa 

Discharge temperature 0-200°C % of 200°C 

Compressor speed 16000 - 22300 % of reading 

Table 3.5: Instrument Noise / Uncertainty Component 

3.4.7 Generating Extrapolated Data 

The individual data-points in the limited training set are shown against 

the complete performance characteristics in Figure 3.2. 

195 

~ 175 
(11 

a. 
.lI: 
o 
~ 155 

I!! 

m 135 

~ 
Q) 

f:l115 
(11 

~ 
'6 95 

75+1--------,-------~--------,_------_,--------,_------_,--------, 

20 40 60 80 100 120 140 160 

differential pressure (mbar) 

Figure 3.2: Extrapolated Data Set 
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These points were generated by selecting arbitrary limits on flow 

coefficient for each speed as shown in Table 3.6. 

Speed Flow coefficient,~, range 

(rpm) 

22300 0.0000157704 < ~ < 0.0000221376 

22000 0.0000157704 < ~ < 0.0000219607 

21000 0.0000159743 < ~ < 0.0000219607 

20000 0.0000161242 < ~ < 0.0000219607 

19000 0.000016301 < ~ < 0.0000217839 

18000 0.0000166548 < ~ < 0.000021607 

17000 0.0000171854 < ~ < 0.000021607 

16000 0.0000173622 < ~ < 0.0000201921 

Table 3.6: Flow coefficient limits for extrapolated data 

The restricted training data points were then generated as described by 

the procedure in section 3.4.5, testing differential pressure and speed to 

ensure the limits imposed on ~ were met. 

3.4.8 Normalised Compressor Performance Data 

Some limited testing was undertaken training neural networks using flow 

and isentropic head coefficients, ~and \11, respectively. This data set was taken 

directly from the basic performance characteristics data normalised against 

compressor speed as described by equations (3.13) and (3.14). 

72 



3.5 Discussion 

The methods described, in this chapter, can be applied across the range of 

operating data bounded by the flow coefficient, ~. Isentropic head coefficient as 

a function of ~, \jf(~), yields a continuous representation of isentropic, or 

adiabatic, head. Coupled with the thermodynamic relationships for gas 

compressibility and isentropic exponent, compressor characteristics can be 

calculated for any combination of gas properties and compressor operating 

conditions. 

3.6 Conclusions 

The steady sate model uses industry standard techniques. Rotodynamic and 

thermodynamic relationships are well defined in many reference texts. The 

flexibility of the head and flow coefficient techniques are a very powerful 

modelling tool for researching compressor performance control strategies. 
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4 Neural Networks 
Clustering 

4.1 Introduction 

Function Approximation and Data 

This chapter begins with a review of artificial neuron models. Two artificial 

neuron types are identified as most significant to the research. For these types, 

neural network architectures are examined and training of these networks is 

described. A vector analogy of training is used to illustrate the function of the 

neural networks. The review is developed to summarise the types of neural 

networks commonly in use and their likely application. 

4.2 Overview of Artificial Neuron Models 

Gurney [48] summarises the most common of neuron types. These are as 

shown in Table 4.1: 

Neuron Type Activation function Application 

Threshold Logic Unit w·x Classification, function 

(TLU),semi-linear nodes interpolation 

Radial basis function Ilw-xll Classifica tion, function 

(RBF) in terpola tion 

Sigma-pi units L Wk[J xi Biological, presynaptic 
k iEI k inhibition 

Digital node SJ.!:/l=x Boolean function 

networks, RAM 

applications 
----- ---_._-- -----

Table 4.1 - Overview of Neuron Types 
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The TLU neuron model allows output representation of its input pattern as a 

binary state, (classification), or as an analogue between the states, (function 

interpolation). The activation level of the neuron is given by the scalar product 

of the input vector, x, and the weight vector, w. In the case of the semi-linear 

nodes, neurons with analogue output, the output is proportional to the scalar 

product of the vectors. 

A Radial Basis Function, (RBF), neuron represents its input pattern as the 

Euclidian distance between the input pattern vector, x, and an exemplar vector, 

w (the centre of the neuron), in vector space. Classification comes about through 

association of the input vector with a specific RBF neuron. Representing the 

input pattern in terms of a distance from a known point is equivalent to function 

approximation. In vector space modelled by n RBF neurons the input vector 

pattern is represented as an interpolation between the n - neurons. 

The sigma-pi unit is a model of an axo-axonic synapse i.e. it is a specific 

biological model in which multiple axon terminals impinge upon each other at 

the dendritic synapse. The activation of one axon can inhibit the excitatory effect 

of another axon on the synapse potential. In biological terms, this action models 

pre-synaptic inhibition, believed to be of significance in motion detection. Picton 

[49] describes how a sigma-pi network can be trained, using Hebbian learning 

techniques, to determine Rademacher-Walsh transform coefficients for an n­

input logic circuit. This implies that a single sigma-pi neuron with 2n weights 

could be trained to represent a logic function. The sigma-pi unit belongs to a 

category of higher order networks where the network function is determined as 

a weighted sum of products of inputs. 

Digital nodes are used in Boolean neural networks. These have associative 

memory applications where the neural network function is a translation 

between an input pattern (RAM address), and the Boolean pattern stored in the 

address location. 

Further examination of the characteristics of the principle neurons, a TLU 

neuron and its semi-linear variants, and an RBF neuron, is described in the 
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following sections. No further consideration is given to the sigma-pi or digital 

node neurons as these have been developed for specialised biological or 

computer memory fields of application, not approached in this research. 

4.2.1 Threshold Logic Unit 

The artificial logic unit, TLU, proposed by McCulloch & Pitts 1943 [50], is the 

basis of artificial neurons generally found in most types of neural networks. The 

TL U mimics the biological neuron in certain key aspects. 

TLUs consist of an array of inputs passing through individual weighting 

blocks arriving at a common summation block. The summation block outputs 

are then passed to a threshold "switch", which changes the output state of the 

artificial neuron. These components are shown in Figure 4.1. 
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Figure 4-1: Schematic Diagram of TLU 
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The input array, Xl'" xn ' is analogous to synapses, where: 

• Weighting block simulates post-synaptic potential, depicted as w 

in Figure 4.l. 

• A summa tor, L, accumulates neuron activation level. 

• A threshold function controls the firing level of the neuron, simulating 

the action of the axon-hillock membrane potential. 

If the neuron activation level exceeds the threshold the output from the 

neuron is one. If the activation level does not reach the threshold the output is 

zero. Hence the two state output associated with the threshold level is reflected 

in the name of the neuron, Threshold Logic Unit, (TLU). The activation level of the 

neuron, a, is written as: 

11 

a= LW;X; 
;=1 

where a is the activation level of the Neuron, 

x is an input to the Neuron. 

w is the weighting given to an input. 

The output is determined by a threshold level, 9, such that: 

y= {lija~B Oija<B 

(4.1) 

(4.2) 

Hence the TLU can distinguish between two classes of input combinations, 

indicating a 1/1" or a "0" class. The TLU is a non-linear device, the output does 

not follow the input and may only assume a Boolean state. It is time­

independent and is assumed to react instantaneously to input changes. 
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4.2.1.1 Geometric Interpretation of TLU Classification 

Gurney [48] describes classification using a simple, 2 input TLU. A vector 

analogy with a simple model identifies the properties of a higher order, n­

dimensional classification function. For a two input TLU the neuron activation 

level is: 

a = W1X1 + W 2X 2 (4.3) 

re-arranging equation 4.3 with a = e gives: 

x, =-( :) +( ~J (4.4) 

This is in the form of the equation for a straight line where ~is the intercept on 
W2 

the x2 axis. Figure 4.2 shows separation of a vector space implementing an AND 

function. For a TLU to classify data the data elements must be linearly separable. 
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f) represents a decision-plane, where two possible output classifications 

separate the vector space of x1 and x2 into two regions, a > f) and a < f). The vector 

analogy considers the weighted input, Xw , which can be represented as a vector 

projection of the input vector, x on the weighting vector w, as shown in Figure 

4.3. 

x 

" q> ·W 
Xw 

Figure 4.3 - Input and weight vectors 

Xw is given by the expression: 

Ilxllllwll cos rp 
xII' = IIwll (4.5) 

This can be written in terms of the vector dot, or inner, product as follows: 

x·w xW=Ff (4.6) 

For a two dimensional vector, the inner product is given by: 

x·w = XjWj +X2W 2 (4.7) 

where Xli x2 and WjI W 2 are the Cartesian space co-ordinates for vectors x and w, 

respectively. 
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This compares directly with the activation level expression for the neuron in 

equation 4.3. Setting the activation level to the threshold gives: 

X'w=() (4.8) 

and 

() 

Xw = Ilwll (4.9) 

For two, n-dimensional vectors, x and w, activation level is written as: 

11 

x·w=~x.w. L.. I I 

i=! (4.10) 

The output condition of the TLU is determined by the threshold, (J. If x • w ~ 

e, the activation threshold has been reached and the artificial Neuron output is 

'1', similarly, if x • w < (), the threshold has not been reached and the output is 

'a'. The analogy demonstrates the extension of the TLU function to n­

dimensional vector space. A 3-input TLU acquires a decision-surface. Greater than 

three inputs, n-dimensions, is a decision hyper-plane. 

Where a pattern space consists of non-linearly separable classes, a number of 

decision planes may be fitted to a pattern space effectively to compartmentalise 

the pattern space into classes. This requires more than one layer of Neurons, as 

discussed in section 4.3. Use of several layers of neurons gave rise to the 

11 connectionist" paradigm where successive layers of neurons are interconnected 

to perform more complex classification tasks. As the pattern space becomes 

more complex two problems are exacerbated: 

• Inspection of the pattern space becomes increasingly difficult 

hence a priori classification knowledge becomes less available 

• assigning weight values becomes increasingly complex due to 

the increasingly complex network structure. 
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The linearly separable limitation of a single layer perceptron (TLU), and 

perceived difficulties in assigning weight values within highly connected, multi­

layered perceptrons (TLUs) led to conjecture that cast doubt over the 

computational capabilities of neural networks until the mid 1980s, [48]. 

It was the formulation of an error back-propagation training algorithm that 

overcame the problems, weight assignment and a priori knowledge of data sets, 

with multi-layered perceptrons (MLP). 

4.2.2 Semi-linear nodes 

Semi-linear modes are distinguished from the TLU by their output function. 

Whilst the TLU has a step function, the semi-linear nodes have a continuous, 

differentiable output function. Two most common functions in use allow 

representation of uni-polar or bi-polar output functions. These are from the 

family of logistic functions, the sigmoid and hyperbolic tangent functions 

respectively. 

The linear range of the functions, prior to any biasing and scaling, is not 

much greater than -1 to 1 so the input to the TLU is normalised against the 

maximum and minimum of the input range. The normalised input is usually 

between 0 to 1. Nominal or categorical data are usually input as "I of nil . 

Both functions exhibit sigmoidal non-linearity, however the tanh function can 

have a negative output that can be thought of as a negative, inhibitory output as 

opposed to the positive excitatory output. With a sigmoidal output function the 

TLU can provide an analogue classification, or representation, of input 

combinations. Caudill & Butler [51] describe the development of semi-linear 

neuron models e.g. ad aline, padaline, although the roots of these neurons are to 

be found in the basic TLU. 

4.2.2.1 Logistic Sigmoid Function 

The output from a TLU can be modified by changing the output step function 

of the TLU to a softer function, such as a logistic Sigmoid function: 
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1 
y = 0"( a ) =- --{ a-B )/ 

l+e /p 

(4.11) 

Figure 4.4 shows a plot of the sigmoid functions. Each exhibits a transition 

that gives an approximately linear function over a limited range of inputs. This 

transition describes the output of a semi-linear artificial neuron. The parameter p 

is used to change the slope of transition. Large values of p lengthen the 

transition region, implying large changes in activation level are required to 

change neuron output i.e. low sensitivity. Small values make the linear transition 

shorter, implying high sensitivity to changes in input. 

S, is an arbitrary threshold level analogous to the neuron activation level and 

can be used to bias neuron output. 
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4.2.202 Hyperbolic Tangent Function 

The logistic function assigns a non-symmetrical function to the neuron 

output. A hyperbolic function can be used for a bi-polar output as shown in 

Figure 4.5. Haykin [52] describes the hyperbolic tangent (tanh) function as a 

biased, re-scaled logistic function that has an equation of the form: 

-x eX -e 
Y=ex+e-x 
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Figure 4.5: Logistic Functions 

4.2.2.3 Perceptron - Basic Algorithmic Training 

(4.12) 

15 

Pre-processing of TLU inputs was identified by Rosenblatt in 1962 [53], and 

the resulting development of the TLU neuron model was called a perceptron. 

Rosenblatt's application of pre-processing was in connection with image 

recognition and the pre-processing, or "association", units identified elements in 

a grid prior to classification of the image. The difference between the TLU and 

perceptron is: 
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• The perceptron has pre-processing or scaling of inputs 

• The perceptron has an analogue or semi-linear output function in 

contrast to the TLU logical output 

A perceptron performs a classification function through the activation of a 

threshold level, which is triggered through a combination of input weighting 

and threshold setting. Thus, for a given input vector, the threshold and input 

weighting can be adjusted to cause the artificial neuron output to mimic a 

classification pattern. The perceptron is trained to give a response, tv with an 

input xk , for every k, using a training set t. The required response, tk is referred 

to as the training target. This type of training is categorised as Supervised 

Learning. 

Adjusting the weight vector is achieved through the addition of a correcting 

vector represented as a function of the input vector, as illustrated in Figure 4.6. 

x 

Figure 4.6 - Input and weight vectors 

The new weight vector, w' is given by: 

w'=w+ax (4.13) 

If an output, y, of unity is obtained for a training target, t, of 0 then the 

weighting strength must be reduced, that is, Xw is reduced to below the 

threshold level, B. This implies that cos<p is reduced, that is, the input vector, x, is 
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to be rotated away from the weight vector, w. Hence, the angle between x and w 

tends towards 90°, that is ax is negative. The converse case applies, t=l, y=O and 

Xw must be increased to above e, therefore ax is positive. 

The general training rule can be written in terms of the training target and the 

untrained output: 

w'= w+a{t- y)x (4.14) 

Of, in terms of the change in weight: 

~w = a{t- y)x (4.15) 

or, in terms of the vector components: 

~W; = a{t- y)x; (4.16) 

The parameter a is known as the learning rate. A larger learning rate will 

speed up training over a smaller learning rate, but may lead to training 

instability. A large learning rate may "overstep" the training target causing 

oscillation of the learning algorithm about the target. Adjustment of the weight 

vector, w, as described is known as the Perceptron training rule, as it was on this 

variant of TLU that this type of training was first described. The application of 

vector weight adjustments can be described with: 

repeat 

for each training vector pair (x, t) 

evaluate the output y when x is input to the TLU 

if y~ tthen 

form a new weight vector w' 

else 

do nothing 
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end if 

end for 

until y=t for all vectors 

4.2.2.4 ADALINE and Error Based Learning 

ADAptive LINear (ADALINE) elements are based on a TLU with a modified 

bipolar output, that is -1 to +1, as opposed to 0 and +1. This type of Neuron was 

trained using the delta-rule described, in 1960, by Widrow and Hoff [54]. 

The delta-rule determines the minimum of a function, in this case, the error 

between the actual output from the artificial Neuron and the training target. The 

minimum of the error function is determined using the Gradient Descent method. 

This method relies on the value of the derivative of a function approaching zero 

as the function approaches a maximum or a minimum. For a function y = y(x), it 

can be shown that a small change in y, at}, for a small change in x, is 

approximated by: 

~y::::! dy XLU 
dx 

(4.17) 

If y(x) is differentiable and d;;;x can be calculated, then ~ can be expressed: 

LU = _a
dy 
dx 

(4.18) 

For a sufficiently small to ensure Lty = at}, and substituting equation 4.18 into 

equation 4.17 gives: 

8y ::::!-a(:J (4.19) 
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Equation 4.19 can be solved by iteration until 8y = 0, at which point the value 

of x, XOI defines the minimum of the function, y = y(x). 

Similarly, for a function of more than one variable, partial derivatives can be 

used and the expression for L1x can be written as: 

fix; = -a ay 
ax; 

(4.20) 

The training error of a neuron can be described as a function of the training 

targets and actual outputs determined by the weighting vector. The minimum of 

the error function, and so the optimal weight vector, can be determined using 

the gradient descent method. An expression for the optimal weight vector 

components is written as: 

~Wi = -a aE 
aw' I 

(4.21) 

The error function, E, is defined as the mean of individual errors, eP
, for p 

training patterns: 

1 N 
E=- Ie P 

N p=l 

where N is the total number of patterns in the training set. 

To avoid cancelling of a positive and negative error, e, is defined as: 

e P =!&p - yP Y 
2 

87 

(4.22) 

(4.23) 



Depending on the threshold function, for example, Boolean or semi-linear, 

discontinuity may prevent convergence of the gradient descent. To allow 

convergence for the boolean function, the output y can be replaced by the 

activation level, a. Thus: 

ep=!~p-aPy 
2 

(4.24) 

The true minimum gradient, or error, 8E/8w;, can be approximated by the 

error for one training pattern, p: 

8e P 

bW. = -~P - a P t.P 
I )XI 

where t is the pth training pattern 

a is the pth activation level 

xt is the pth input to the ith neuron 

In terms of the optimal weight vector, the true gradient approximation is: 

LlWi = a{tP - aP ~f 

(4.25) 

(4.26) 

For a semi-linear unit, an additional term is included for the rate of change of 

activation level, dO'(a) / da = 0' '(a). This term represents the sensitivity of the 

output with respect to activity level. For a semi-linear unit: 

LlW; = aO"(a)~p - YP}xi (4.27) 

The delta-rule in this form is applicable to a single neuron only. For a single 
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layer net, where there are several neurons, the ith weight and jth neuron, 

influences the training error as: 

~ _ ,( V P p) P 
wji - a(J \ajJ.!j - Yj x ji (4.28) 

4.2.3 Non-Linearly Separable Classification 

Hinde et al [55] describes a method of extending vector space whereby an 

array of linear neurons, P ADALINES, can perform non-linear classification. 

Identifying the additional vector combinations is similar to specifying 

coefficients in polynomial regression models. This is a "variation on the theme" 

of the semi-linear nodes and has the same drawbacks of a prior knowledge for 

the vector space and weight assignment in complex vector space. 

4.2.3.1 PAD ALINE 

A Polynomial ADaptive LInear NEuron (P ADALINE) allows for the 

implementation of a non-linear decision plane. As shown in Figure 4.7, a vector 

space Fo, Fl and F2 might be separable, as a circle with centre (ClI C2) and radius 

R in the F1F2 plane. 

F2 

0 
0 o 

"" x 
x 

o X x 

Class X 
Class 0 

X o 
X 

0 
o 

o 
o 

Ft 

Figure 4.7 - Non-linearly Separable Classes 
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The equation of the circle is: 

(FI -CIY +(F2 -C2Y =R2 

The patterns can be grouped as follows: 

x if R2 +2CI FI +2C2F2 -F/ -F2
2 -C1

2 -C; >0 

o if R2 +2CIF I +2C2F2 -F12 -F2
2 -C1

2 -C; <0 

(4.29) 

(4.30) 

(4.31) 

If F12 is substituted by vector F3, and F22 by vector F4, then the coefficients of each 

vector, or neural network weights, can be written as follows: 

Wo = R Z -CI
Z -C; 

W I =2CI 

Wz = 2Cz 

W3 =-1 

w4 =-1 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

Substituting with F3 and F4 effectively extends the vector space but requires 

accurate a priori knowledge of the vectors space. 

4.2.3.2 Radial Basis Function (RBF) Neurons 

Whilst the TLU based neurons use hyper-planes to partition vector space the 

RBF neuron use hyper-spheres. Associated with each hyper-sphere is an RBF 

neuron with an assigned centre of unit radius. An input vector pattern is 

compared with the RBF centre vector. The Euclidian distance is calculated as the 

deviation of the input from the centre. When the input vector lies on the surface 

of the hyper-sphere the output from the unit is 1. If the input vector is exactly on 

the RBF centre then its output is zero. The surface of the RBF is determined as a 
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Gaussian function. The activation surface of an RBF neuron is shown in Figure 

4.8. 

Figure 4.8 - Gaussian Activation Function 

Haykin [52] gives the output of a normalised RBF neuron as: 

G~lx-tI12)= exp( - :2I1x-tIl2) (4.37) 

where x is the input vector 

t is the RBF centre vector 

d is the deviation of the RBF 

This can be likened to the standard form of a Gaussian distribution: 

y = exp( ;;:) (4.38) 

where x is the input data 

cr is the standard deviation of the input data 
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Comparing equations 4.37 and 4.38 the deviation, d, of the RBF affects the 

gradient of the slope of the Gaussian distribution. The Ilx - tll term can be thought 

of as the activation level of the neuron as shown, for an n component space 

vector, in equation 4.39: 

11 

a = -<2:(x; -tY (4.39) 
;=1 

The function of the threshold in the RBF is different to that of the threshold 

in the semi-linear nodes. The parameter, d, is chosen to provide a smoothness 

factor when interpolating between the RBF nodes in a network. The threshold is 

also dependent on the number of RBF units representing a vector space. If there 

is a large distance between RBF centres then the slopes of the RBF functions 

must be sufficiently long to allow the outputs of the RBF to "mesh". If the slope 

is not sufficiently long to mesh RBF output surfaces, "holes" will appear in the 

vector space representation. The effects of changing the RBF threshold are 

shown in Figure 4.9. 

c:==========~~ 

increasing RBF threshold 

Figure 4.9 - Changing RBF Thresholds 
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A vector space can be "filled" with RBF units, each representing a data cluster 

in the vector space. Figure 4.10 depicts how two RBF neurons, of fixed centre, 

might be made to mesh in vector space. Meshing, may increase interpolation 

error but fitting additional more RBFs neurons could overcome this. 

c=========~~ 

increasing RBF threshold 

Figure 4.10 - RBF Meshing by Changing Thresholds 

In an RBF neural network a function is mapped interpolating between RBF 

nodes. For this reason it is likely that extrapolating beyond boundary RBF nodes 

will lead to errors. 

93 



4.3 Overview of Network Architecture classification 

Summarised from Gurney [48], Table 4.2 shows network architecture types. 

Network Architecture Tasks 

Principally feed forward • Classification 

• Function interpolation 

Principally Re-current • Associative memory 

Competitive • Cluster template formation 

• Identifying topological 

rela tionships 
-- -- -'------ --

Table 4.2- Summary of Neural Network Architecture Types 

Feed forward networks have "signal" paths that do not loop back on 

themselves, i.e. there is no feedback signal within the network. The back 

propagation of error, where this method of training is used, occurs in an 

algorithm external to the neural network. This type of network requires 

supervised training. Supervised training involves training a neural network 

with the characteristics to be represented. Training data is presented to the 

neural network. An error is derived by comparing the corresponding output of 

the network with the training data value, giving rise to an error value. The 

weights of the neural network are manipulated such that this error is 

minimised. Iterative training steps are carried out until the mean error for the 

training set is minimised. Supervised training enables a network to "learn" the 

underlying relationships in training sets. If the training data presented 

represents a function, then the network is a function approximator. Similarly if the 

training set represents a decision plane then the network is a classifier. 

Re-current networks have feed back paths within the structure of the neural 

network. There is a signal path between the output, or intermediate layers, 
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neurons and input neurons. Inclusion of feedback paths simplify network 

architecture and a recursive network can be thought of as an equivalent circuit 

of a corresponding feed forward network. The network reacts to changes in 

input training patterns and changes in internal state due to feedback. This is 

similar to the way in which an asynchronous logic circuit reacts to changes in 

input and internal state. Neurons, in the network, change state until they reach a 

steady state, for the presented input pattern, is reached. This type of network 

also undergoes supervised training. The main application of this network is in 

identifying patterns in noisy data and associating that pattern with a vector such 

as a memory address. This is known as associative memory recall. 

Competitive networks do not undergo superVised training in that no training 

data is presented to the network. Rather, the network "organises" its neurons 

into clusters in pattern space to encode the data set it is presented with. Clusters 

might then be assigned "classes" egg in alphanumeric pattern recognition, 

where a class is an alphanumeric character. Therefore if a pattern contains a 

particular set of clusters it could be assigned an alphanumeric character. In 

supervised training each neuron has its weights adapted to reflect the training 

input patterns. In competitive learning only the neuron that best represents the 

input pattern has its weights adjusted. Hence the notion of competition is that 

the winning neuron receives modification in a "winner-take-all" scenario. There 

are variations on this whereby positive or negative increments to all weights 

might be implemented according to the degree to which each neuron represents 

the input pattern. This notion of positive or negative reinforcement of weights is 

analogous to Hebbian learning, [51]. 

4.3.1 Feed forward Neural Networks 

Architecture, typical of a feed forward neural network, is shown in Figure 

4.11, Typical Feed Forward Neural Network. There is no standard method of 

depicting the various types of neurons discussed in previous sections. The 

convention adopted in this thesis follows that used in the Trajan Neural 
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Network package [56]. 

input layer hidden layer output layer 

Figure 4.11 - Typical Feed forward Neural Network 

An input is shown as a triangular node, a neuron with a linear activation 

level, (equation (4.1», is shown as a square node and a neuron with a radial 

activation level, (equation (4.39» is shown as a circle. Thus the diagram shows a 

six input, fully connected feed forward neural network. The network has three 

layers, an input layer with six inputs, a hidden layer with five neurons and an 

output layer with a single output neuron. In other conventions this may be 

referred to as a two-layer network, the input layer not counting as a neuron 

layer since it performs simple input scaling. The activation function of hidden 

layer linear neurons is logistic (equation (4.11» or hyperbolic tangent (tanh, 

equation (4.12», whilst the activation function of RBF neurons are Gaussian 

(equation (4.37». Linear units in the output layer have linear activation 

functions, i.e. their output is the same as the activation level or a unity identity. 

For each connecting line there is an implied weighting unit not shown 

explicitly in the diagrams. As seen with PAD ALINEs, non-linearly separable 

classifica tion can be achieved by extending the vector space. In terms of Neural 

96 



Networks, this is equivalent to adding an intermediate or Hidden Layer 

between the Input and Output Layers. The neural network shown in Figure 4.11 

is also referred to as a multi-layer perceptron (MLP). 

An RBF neural network is shown in Figure 4.12. This shows a three layer, six 

input RBF network. The hidden layer units have radial activation levels, 

(Euclidian distance), and Gaussian activation function. The output neuron is a 

simple linear activation function. 

-0 

input layer hidden layer output layer 

Figure 4.12 - Typical RBF Network Architecture 

4.3.1.1 Network Architecture 

The number of hidden layers decides the architecture of the network and the 

number of hidden units required to solve a problem, be it function 

approximation or classification. The number of hidden layers is, in part, 

determined by the activation function of the neurons. Networks with neurons 

that have a step activation function may require two hidden layers. Neurons 

with logistic activation functions require only a single layer but may need a 

large number of hidden units. Some simple non-linear problems can be 

approximated using a simple linear network. 

Hornik [57] describes a three layer MLP with a sigmoid output neuron as a 

universal approximator that can be trained to approximate any input and 
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output mapping. Park and Sandberg [58] prove that a single hidden layer RBF 

network is capable of universal approximation. The key determinants in 

network architecture are: 

• the number of training cases available 

• the amount of "noise" in the data 

• function or classification complexity 

• training algorithm used 

Generally, more complex problems require higher numbers of hidden units, 

however it is possible to over fit or under fit the training data where the number 

of weights in the network is significantly different for the number of training 

cases. Trajan [56] advises that network design is matter of heuristic knowledge 

based on trial and error, but includes an "Intelligent Problem Solver" (IPS) for 

network design. 

Gurney[48] describes two methods of network design involving: clustering 

of the vector space and assigning neurons to each cluster; and a method that 

adds or subtracts neurons to a network during training. 

Once constructed, neural networks can be pruned to remove inputs that have 

little effect on network performance. This is similar to a sensitivity analysis 

whereby inputs are disabled and the effect of their loss of contribution to the 

network can be assessed in terms of error introduced. There are no hard and fast 

rules for network design. In this research initial attempts were made to 

construct a neural network, the results of this work are described in section 

5.2.2. Following this phase, the Trajan package was used to investigate neural 

network architectures in the context of compressor control. 

4.3.1.2 Training and Generalisation 

It was the application of an error back propagation training algorithm, first 

described by Werbos [59], by Rumelhart and McLelland [60] that overcame the 
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linear separability and a priori data knowledge limitations associated with the 

TLU. 

Back-propagation training of networks involves two-step procedure. During 

the training phase, the network is presented with training data. The inputs 

ripple forward through the network to give an output. The difference between 

the actual output and the training target, i.e. error, is propagated back through 

the network from the output layer to the hidden layer weights. The weights on 

each of the layers are then adjusted to minimise the error as it passes back 

through the net to the input layer. The change in weight expression, for the kth 

hidden Neuron becomes: 

L1 W ki = aa '( a k )5 k x{; (4.40) 

This is sometimes known as the generalised delta-rule. Back Propagation can 

be slow to train as many epochs may be required before the training set error is 

reduced to within the error criteria, if it is ever met at all. One cycle of 

presenting the complete training set to the network and calculating weight 

adjustments, for each input vector, is referred to as an epoch. The Back 

Propagation algorithm can become trapped by local minima, network training is 

trapped in a local solution and the network is unable to generalise over the 

whole input domain. This problem can be minimised using a variety of 

techniques, including adding a momentum term in the weight adjustment 

equation. The momentum term is a product of a momentum constant and the 

weight adjustment from the previous training step. As the error function 

converges on a minimum the influence of the momentum term reduces. This is 

indicative that a true minimum is being approached. 

Function optimisation schemes are also used for training such as: Quasi­

Newton, Levenberg-Marquardt and conjugate gradient descent. These schemes 

are described in Haykin [52] and Bishop [61]. Each scheme has its strengths and 

weaknesses. 
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Training using any algorithm follows the same general theme. The training 

data set is fed into the network until the error criteria for the forward pass of the 

network is met. The error criteria usually refers to the RMS error of the training 

set input vectors. 

Once trained, it is not possible to prove that the network has achieved an 

optimal solution over the input domain. This would require all possible 

solutions to be compared with the neural network output. A separate validation 

set of data, usually derived from the same pool as the training data can be used 

to check network performance. However, by withholding data from the 

network, the data model on which the network is trained is incomplete. 

The network can become over trained i.e. it is trained to recognise or 

approximate the training set but cannot generalise, or extend its performance to 

recognise or approximate outputs, from input data outwith its training set. The 

validation set error is therefore used to control the extent of training the network 

receives. If the validation error falls in line with the training error then training 

continues. If the training error continues to fall whilst the validation error does 

not training should be stopped. This circumstance is indicative of over training 

i.e. the network is being trained to approximate the training set pattern but not 

other patterns, from the same vector space, which are in the validation set. Error 

comparison between training sets and validation sets is also referred to as cross 

validation, see Cheng and Titterington [62]. 

4.3.2 Self Organising Neural Networks 

Self-organising neural networks learn features in pattern space. This type of 

network is sometimes referred to as a Self Organising Map or SOM. Unlike feed 

forward networks they do not undergo supervised training. Usually there is no 

training target for the network to emulate. The network is presented with a 

training set and competitive learning dynamics are used to assign a neuron to a 

feature or data cluster. Once a network has learned the pattern space, an input 

vector causes the most representative neuron (or exemplar vector) to have the 
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highest activation level. Classes may then be assigned to each neuron to 

associate inputs with the assigned class. 

More sophisticated self-organising networks may include classification of 

clusters. Techniques such as "k-nearest neighbours", Bishop [61], allows 

excitation, to a lesser extent, of neurons adjacent to the closest match exemplar. 

In this way a "topology" of the feature space can be constructed. A Kohonen 

self-organising map [62], uses inhibition as well as excitation, of neurons to 

improve network classification. This is implemented using Learning Vector 

Quantisation (LVQ) (also known as Adaptive Vector Quantisation, AVQ) 

techniques. 

4.3.2.1 Network Topology 

A SOM consists of an input layer and an output layer. The network inputs are 

scaled and normalised in the input layer. The output neurons are RBF type 

neuron. Each input is connected to each output neuron, as shown in Figure 4.13. 

output layer 

input layer 

a b c 

Figure 4.13 - Self-Organising Network Layers 

Figure 4.13 shows three inputs a, band c each connected to everyone of the n 

output neurons. The input connections to one output neuron are sometimes 
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referred to as the fan-in vector. To envisage the feature space topology the 

output neurons may be arranged in a matrix format. Figure 4.14 shows an array 

of output neurons, Al through E5, each with the fan in vector F. The figure 

depicts that the presented fan-in vector F, principally excites neuron C3 as 

denoted by the darker shading. Secondary levels of excitation are depicted in 

the adjacent, or neighbouring, neurons by the lighter shading. In this way 

features in a vector space can be visualised. 

1 2 3 4 5 

c II 
a f7 F 

Figure 4.14 - SOM Output Neuron Array 

As with feed forward networks, there are no hard and fast rules to determine 

the number of neurons required to represent feature space. As the complexity of 

the feature space increases so the numbers of output neurons required to map 

feature space increases. The locations of the RBF neurons in vector space are 

selected at random or at feature locations, if these are approximately known. 

4.3.2.2 Competitive Learning 

Data is presented to the SOM and the Euclidian distance, d, of the vector F to 

each of the RBF neuron centres is calculated using equation (4.41). 

dll =IIF-XIlII (4.41) 

102 



where Xn is the nth output neuron exemplar vector 

F is the input fan-in vector 

The output neuron, for which d" is a minimum, is the "winner". Only the 

winning neuron has its weights adjusted. The weights of the RBF neuron is the 

locating vector of the neuron in feature space, thus the neuron moves towards 

that input vector. This is sometimes known as "winner takes all" learning. The 

change in neuron weights, !lw, is written as; 

!lw = {a(F - X,,):" winner" 
o :"loser" 

(4.42) 

where a is a learning rate 

(F-X,) is the scalar distance for each vector component 

L VQ learning involves inhibition as well as excitation of neurons. Inhibition 

is met by moving losing neurons away from the input vector. This is 

represented in equation (4.43). 

!lw={a(F-XJ 
-a(F-X) 

" 

:"winner" 

:"loser" 
(4.43) 

Each data point is presented to the network and each winning output neuron 

has its weights adjusted until a pre-set number of epochs have been completed. 

One epoch is completed when the complete data set has been presented to the 

network. The learning rate is reduced linearly with the number of epochs 

completed, reducing the "upset" to the network as learning progresses. 
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4. 4 Data Clustering Techniques 

The application of RBF neurons requires initial placement of the neuron 

centres in vector space. Location of the centres is stored in the weight values 

which are adjusted during training. Adjusting the weights through training 

moves the RBF centre in the vector space. 

Initial placement of RBF centres can be chosen at random or by using data 

clustering techniques. Two "stand alone" data clustering techniques are 

described below. These techniques could also be used to examine vector space 

independently of applying neural networks. 

4.4.1 Hard Clustering, K-means 

The K-means clustering technique, described by Bishop [61], is used to assign 

data, in vector space, to a cluster of similar data points. The number of clusters, 

K, in the vector space is chosen arbitrarily. The algorithm assigns data points to 

each of the K clusters as disjoint subsets of the vector space. The clustering 

function, J, is written as: 

where 

K 2 

J = I Illx" - Jljll 
j = i IIESj 

K is the number of clusters 

Sj is the t data subset 

x" is the nth point in the rh data subset 

Jlj is the mean of the x" points in the t data subset 

The mean of the t data subset, Jlv is given by: 

1 
Jlj =-Ix" 

N j IIESj 
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where N is the number of points in the in the jth subset 

Data points are assigned to a cluster and the mean of the cluster is calculated. 

J is then calculated for each point. A data point is assigned to the nearest cluster 

and the cluster mean recalculated. This procedure continues until no data points 

are re-assigned clusters. In assigning data points to disjoint subsets or clusters 

the data space continuum, or homogeneity, is lost. This may result in "holes" in 

the vector space if new data points are added without re-clustering taking place. 

4.4.2 Fuzzy clustering, C-means 

Fuzzy C-means (FCM) is described by Bothe [64]. It is described as an 

extension to the "crisp" clustering of the K-means technique. In FCM each 

cluster is a fuzzy set and each data point has a fuzzy set membership of each 

cluster. It is possible to preserve the homogeneity of the vector space by 

classifying data points with a degree of membership of all the clusters identified 

in the vector space. 

Two conditions apply to fuzzy set membership, for any point xk the sum of its 

fuzzy membership of N clusters is unity: 

N 

L,lijk =1 ;Vk=1toK 
j=i 

(4.46) 

the total fuzzy membership of all points, K, in N clusters does not exceed the 

number of points: 

K 

Io ::; ,li jk ::; K : Vj = 1 to N (4.47) 
k=i 

The centre of the t fuzzy cluster, cj is given by: 
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c. = Ik~jkrXk 
J I)/lljkr 

where Jljk is the fuzzy set membership of the k U1 point in the t cluster 

xk is the klh point in the vector space 

q is a "contrast" parameter given a value, ~ 1.5 

The fuzzy cluster membership of the kth point in the t cluster is given by: 

1 
(4.49) Jljk = 

f[llxk -CjIIJX_I 
1=1 Ilxk - cill 

(4.48) 

Pedrycz [65], proposed conditional fuzzy clustering where an objective 

function is introduced to preserve the homogeneity of clustering in vector space. 

This method allows the intersection of clusters to be defined as separate, distinct 

clusters. 

4. 5 Network Metrics 

Bishop [61] suggests that cross validation alone may cause over training of 

the network to the validation set and that a third set of data, test data, should be 

used for an independent comparison of the performance of networks. The 

output data from the network can be treated in the same way as regression data 

to establish a "quality" of fit. There are a number of standard statistical metrics 

which can be applied to assess the performance of a neural network. The most 

obvious of these is a correlation coefficient. This and other metrics are described 

in Trajan [56]. 
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4.6 Discussion 

There are strong similarities between statistical techniques and neural 

networks as described in [63]. Two of these areas are function interpolation and 

pattern recognition, or data clustering. Joseph et al [66], concluded that neural 

networks performed better than regression models where high non-linearities 

were present, but that both performed poorly. It was further reported that data 

partitioning improved both regression model and neural network performance. 

These techniques would be of use in representing the compressor performance 

characteristic and identifying operating clusters in the suction conditions vector 

space. An advantage of using neural techniques over statistical techniques is 

that no particular expertise would be required to retrain a neural network to 

reflect changing characteristics of a compressor with time. 

Current trends in neural network research include: 

• the use of probabilistic techniques to create graphical models and to 

reduce dimensionality in large data sets, Bishop [67]. 

• probabilistic combination of weight components to encompass many 

neural networks into one representative network, so called "product of 

experts, Hinton [68] 

• use of a "spiking" neuron model to investigate the propagation of signals 

through a neural network when presented with unknown stimuli leading 

on to rapid learning of neural networks, Gerstner [69] 
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4.7 Conclusions 

It is anticipated that a compressor performance characteristic may be 

represented using a neural network as a function approximator. The use of 

neural networks will preclude the need to identify regression coefficients and to 

continuously update their values, as compression conditions change. Function 

approximation may be met with either a multi-layer perceptron or a radial basis 

function, feed forward neural network. Neural network performance in learning 

compressor head maps is researched in Chapter 5. 
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5 Neural Networks and Compressor Performance 
Characteristics 

5.1 Introduction 

This chapter describes research into the use of neural networks for the 

modelling of compressor performance characteristics. A program of testing is 

devised to assess the performance of neural networks. The tests range from the 

ideal case of modelling an exact compressor head map to modelling a random 

set of compressor operating points. Two different sets of compressor 

performance characteristics were used to train neural networks. The first set 

used for initial testing was atypical, non-fan law data. The compressor 

performance characteristics used for empirical data closely corresponded to the 

Fan Laws. During numerical testing, data subsets were generated using the 

methods described in Chapter 3.0. No derived data was generated from the 

atypical performance characteristics. 

A brief summary of the evaluation of two neural network packages is 

undertaken and an account of the development of a neural network, using non­

specialised software, is included. The key features required of neural network 

software, for research purposes, was flexibility in usage, accessibility to the 

various network parameters and returning consistent, reproducible results. It was 

found that the greater the flexibility required, the more complicated the 

software became to use. 

The first commercial package, NCS NeuFrame [70], evaluated used an object­

oriented type Graphical User Interface, GUI, for network construction using 

standard objects. Since the software was an evaluation copy there was a 

restriction on the data set size. Following this, a neural network was 

programmed using spreadsheets and macros. Whilst this offered vast flexibility, 

changing the network architecture was time consuming and each network 
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required a dedicated spreadsheet and specific macro using specific spreadsheet 

cell references. The second commercial package evaluated was a fully featured, 

evaluation copy of Trajan [56]. This package featured feed forward, supervised 

training networks and self-organising maps. Several different training 

algorithms could be selected. In addition it included a proprietary Intelligent 

Problem Solver (IPS), which designed and tested several tens or hundreds of 

networks automatically. 

The outcomes of the structured testing results are discussed and demonstrate 

that a neural network can accurately represent compressor performance 

characteristics. A method to embody the neural network head map 

representation in a control scheme is introduced. 

5.2 Neural Network Design 

5.2.1 NCS NeuFrame 

Initial investigations into the use neural networks began with an evaluation 

copy of a commercial neural network package, NCS NeuFrame [70]. A screen 

shot of the NCS package is shown in Figure 5.1. 
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Figure 5.1: NCS NeuFrame Workspace Screen Shot 

The screen shot shows the NCS workspace with an implementation of a back 

propagation neural network. Neural network component objects are shown in 

the vertical, left hand toolbar. These include data sheets, scalers, encoders, back 

propagation neural networks, Kohonen neural networks, RBF neural networks, 

NeuFuzzy neural networks and graphing objects. 

The neural network shown consists of two data sets, Training and Query. The 

inputs to the neural network object are encoded either as categorical or 

numerical data. Several variables can be encoded in one encoder object. The 

back propagation neural network object can be trained using the Training data 

sheet. Output from the neural network is then de-scaled and written to the 

Output data sheet. Training error is passed from the neural network object to 

the graphing object, for display. Once trained, output from the data in the Query 

Data sheet inputs can read from the Query Results data sheet. Implementation 
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of custom neural networks could be done through drag n drop of the network 

objects onto the workspace, then graphically linking connections with specific 

block I/O ports, as shown in Figure 5.1. 

The evaluation version of the software was only able to take thirty data 

points, less than the number required for compressor head map training. Whilst 

enabling visualisation of neural network concepts, it was conclude that access to 

the network parameters was limited by the object approach. The NCS package 

was not used with compressor data. 

5.2.2 A Feed Forward Neural Network using a Spreadsheet and Macros 

It was decided to build a network using a spreadsheet and macro type 

approach. These tools were readily available and some work had already been 

done on spread sheets examining the calculations used in the neural networks. A 

commercial, Exce197 neural network add-in was available [71] but creating a 

custom neural network would allow full realisation of the equations used and, 

at least, one training algorithm. A neural network was designed and 

implemented using a common spreadsheet package, Exce197. 

The feed forward phase was implemented in the spreadsheet automatic re­

calculation feature. Back propagation of the error was implemented using a 

Visual Basic (VB) "macro". Training was activated and continued until a fixed 

number of epochs had passed. A screen shot of the spreadsheet is shown in 

Figure 5.2. 
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Figure 5.2: Excel97 Implementation of a Neural Network 

The screen shot shows a six input, six hidden node, (node 7 is the output 

node), feedforward neural network. Data from the basic head map array was 

written to the input cells, down column A, by the VB macro. As these values 

were written, the automatic re-calculation feature allowed the changes to 

"ripple" through the spreadsheet to the output cell, P7, on the far right. (The re­

calculation process was completed prior to execution of the next line of macro­

code. This was verified by inserting a time delay in the macro and observing 

propagation of values through the network). The input values were normalised 

in column B. Each of the normalised inputs were weighted with the appropriate 

weight in columns C, E, G, I, K, M, 0 using equation 4.1. The sum of the 

weighted values (activation) was passed to the hidden layer neuron cell, D, F, H, 
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J, L, N. Each hidden layer neuron had a logistic sigmoid activation function, as 

described in equation 4.11. Finally, the weighted sum the outputs from the 

hidden nodes was passed to the output node, column P, using equation 4.1. The 

output node was also assigned a logistic sigmoid function described by equation 

4.11. 

The training method was Gradient Descent using the Generalised Delta Rule. 

The macro read the normalised output from the network and compared it with 

the normalised target value to generate an error. The error was summated for 

the training set as shown in equation 4.22. After one complete pass of the 

training set (or one epoch) the summated error was "back propagated" through 

the network to adjust the weights. The change in network weights was 

calculated using equation 4.28. The results of training using this neural network 

are presented in section 5.6.1.1. The Exce197 model as described was relatively 

unsophisticated in that only one training algorithm, Generalised Delta Rule, was 

implemented. It was satisfactory in allowing access to the various neural 

network parameters visualising the effects of changes to them. 

Changing the network architecture could involve major manipulation of the 

spreadsheet and macro, depending on the number of hidden nodes designed in. 

This was a significant drawback in that complex training algorithms would have 

to be edited and the pOSSibility of error introduced by each edit. For this reason 

the spreadsheet neural network approach was not used for testing. 

5.2.3 Trajan Neural Network Package 

A third commercial neural network was examined, Trajan 4.0 [56], received as 

a fully featured, evaluation copy. The Trajan package allowed full access to 

network parameters and also featured a number of training algorithms such as 

Back Propagation, Conjugate Gradient Descent, Quasi Newton, Levenberg­

Marquardt amongst others. Two additional features were a Windows API 
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programming interface and an Intelligent Problem Solver (IPS) for neural 

network design. The IPS proved to be a valuable tool, able to achieve good 

optimisation of the number of nodes required in a network, and of node 

placement in vector space. Whilst these properties cannot be absolutely verified 

the network metrics indicate accurate modelling of compressor characteristics, 

as will be seen. This could indicate near optimal performance in network design. 

A screen shot of the standard Trajan screen layout, using IPS is shown in Figure 

5.3. 

Traian Neural Networks - basic_map_datav2. "'LP 6:6-6-1:1 I!lIiID 
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Figure 5.3: Trajan Screen Shot 

Trajan was used as the main research tool in representing compressor 

characteristics with neural networks. In particular the IPS produced a diverse 

range of network architectures with varying performance. 
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In the initial research phase of network design and testing, one data set and a 

single division of that data set was tested. The reason for this was to attempt to 

identify any error inherent in the design and training process, since the training 

data was the same in all networks. 

For the structured testing phase, the basic procedure with Trajan was to 

create and save a data set in Comma Separated Value (CSV) file format. The 

data set could then be opened for training and with the IPS invoked from the 

appropriate menu. The IPS would investigate a number of network designs and 

present the best performing, in terms of error standard deviation. The network 

set was then saved with the data file in Binary Data Format (BDF). The BDF file 

was saved as a unique binary file, hence the parameters of each and every 

network saved could be reinstated. This method preserved the data set split 

between Training, Test and Validation data. Training was only initiated with the 

CSV file. 

Length of training varied from fifteen minutes for a medium search of the 

basic data sets, to more than twelve hours for a thorough search of MLPs on 

random data sets. 

5.3 Initial Research 

The initial research phase involved a qualitative assessment of how neural 

networks might represent or encode compressor characteristics. In this respect 

the inputs to the neural networks would be: 

• suction temperature and pressure, Ts and Ps respectively 

• discharge temperature and pressure, Td and Pd respectively 

• differential pressure, dp, to represent actual inlet volume flow rate 

• molecular mass, MW 

Compressor speed, N, would be the target. Typically, neural network 
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architecture would appear as that shown in Figure 5.4, consisting of an input 

layer, a hidden node layer and a single output node. 

Td 

Ts 

Pd N 

Ps 

MW 

dp 

Figure 5.4: Typical Test Neural Network Architecture 

A neural network of this architecture can be demonstrated to be capable of 

closely representing a compressor performance characteristic as shown, by 

points of estimated discharge pressure plotted against lines of constant speed, in 

Figure 5.5. 
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Figure 5.5: Compressor Performance Estimation by Neural Network 

The results of the ad-hoc testing are described in this section whilst the results 

of a formal testing programme are reported in section 5.6. 

Initial research involved repeated network design for the basic data set using 

the IPS in Trajan. This phase also gave some indication regarding the 

performance of Trajan in terms of repeatability given the same split of data set 

over and over. 

A one hundred point data set, the number of points taken from the basic head 

map, was trained using the Trajan IPS with standard constraints. An "Optimal" 

search, for optimal, diverse networks with input sub-sets enabled was first run. 

This was followed with an "Extensive" search using the same BDF files. The 

results are summarised in Appendix C, Tables Cl - C3. 
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5.3.1 Optimal Architecture Search 

The "Optimal" search produced Linear, MLP and RBF networks in the 

following proportions: 43%,50% and 7%. 

The linear networks generally used a subset of inputs consisting of Ts, Td and 

dp, achieving a linear solution to an inherently non-linear process. This is 

believed to have come about through the use of constant Ps, Ts, and MW values 

in use. In addition Td was calculated using a fixed value of specific heat ratio of 

1.3, effectively linea rising the relationship between Ts and Td as Pd/Ps ' The fixed 

value of specific heat ratio was used as a starting point for the initial research. 

Intuitively, the compressor characteristics can be thought of as an "onion skin" 

type function so the marginally higher numbers of MLP networks was thought 

to be in keeping with that notion. The levels of error were one order of 

magnitude higher in the linear networks that suggests that they reflected best 

performance only in the absence of a good MLP network. Only one RBF 

function had better performance than MLP or linear networks. 

5.3.2 Extensive Architecture Search 

The "Extensive" search resulted in 93% of all neural networks having an MLP 

architecture. The average number of hidden nodes was six. Input subsets 

comprised of Pd, Td and dp. The average of the error standard deviations for the 

twenty-nine MLP networks was 24 rpm. This suggested that an MLP would be, 

at best, capable of estimating compressor speed to around 50 rpm at 95% 

confidence level using a subset of inputs comprising Pd, Td and dp with fixed 

suction conditions. An average number of 6 hidden nodes was noted in the MLP 

architecture neural networks. 
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5.3.3 RBF and MLP Neural Networks 

With fixed suction conditions and the constraint of all six inputs to be used all 

thirty networks designs were the same RBF network. This network exhibited an 

error standard deviation of 64 rpm. It was noted that the input scaling 

associated with the fixed suction parameters was set as constant by Trajan. 

When training the Excel97 neural network the fixed suction conditions had been 

expressed as a fraction of a notional input range. The data set was modified 

such that the fixed conditions would appear to be the same fraction of input 

range as the Excel97 neural network input. This was achieved by changing two 

values of the training data for each of Ps' Ts and MW to represent the minimum 

and maximum of the required input range. For the Initial Research, the values 

were changed as shown in Table 5.1. Values used during Numerical Testing are 

as advised in sections 3.4.2 and 3.4.3. 

Parameter Nominal Max. Min. Range Fraction 

Ps 6200 6200.458789 6199.838804 0.26 

Ts 33.3 33.302198 33.298867 0.34 

MW 20.086 20.086935 20.084927 0.53 

Table 5.1 : Modified suction values for range scaling 

The modified data set was then used with Trajan to train networks. In all 

cases the modified data set delivered MLP networks. This was taken as 

confirmation that the underlying relationships in compressor head map would 

probably be best represented by an MLP network. 

On average 9 hidden nodes were present in the MLP networks and an 

average error standard deviation of 24 rpm was recorded. The probability 

density function of the distribution of the error standard deviations is shown in 
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Figure 5.6, plotted against error standard deviation. The distribution of the error 

standard deviations follows a normal distribution. 
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Figure 5.6: MLP error standard deviation distribution 

Allowing changes of data set split, with all inputs forced resulted in a 

network average hidden node count of 9, with an average error standard 

deviation of 31 rpm being recorded. The performance data used for the initial 

research was subsequently found not to conform to the Fan Laws hence no 

quantitative testing was done using derived data for different suction 

conditions. 

Following initial investigations a structured test program was devised to 

generate realistic compressor operating data. 
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5.4 Numerical Testing 

Performance characteristics used for numerical testing closely conformed to 

the Fan Laws, hence derived data sets representing varying suction conditions 

were generated for empirical testing. Changes in compressor performance 

characteristics, due variations in suction conditions, were calculated using the 

flow and head coefficient techniques described in Chapter 3. 

Four data sets generated to assess neural network training performance for: 

(a) variations in training set size; 

(b) inclusion of instrumentation noise in the input/ output signals; 

(c) training on random operating points; 

(d) training on random operating points with extended input sets i.e. 

gas composition in place of molecular mass; 

(e) use of input subsets used for training; 

(f) extrapolation over the full performance characteristic range from a 

restricted range training set. 

The sets are detailed below. 

1. IIClean" Set. Nominally fixed values of molecular weight, suction 

temperature and pressure to represent the conditions at which 

the default compressor performance characteristics were created. 

Neural network inputs and outputs (simulated field signals) are 

taken to be free from noise. The compressor performance 

characteristics are exactly defined. Variation in neural network 

performance can only be due to data set split between 

training/test/verification sets, training set size and training 

algorithms used. This is a IIbest case" as far as neural network 

training is concerned hence these networks are taken to represent 
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control cases. The neural network architecture for these data sets 

would typically look like figure 5.4 

2. "Noisy" set. Data used as for the "Clean" set but with the addition 

of random instrument noise equivalent to typical instrument 

uncertainty levels. Differences in results between this set and the 

same data set size from the "clean" set would be indicative of the 

effects of neural network training performance with "noisy" inputs. The 

"noisy" set was also used for examining neural network 

performance using input sub sets. The neural network 

architecture of the input sub sets would typically look like that 

shown in Figure 5.7 

Td 
N 

Pd 

dp 

Figure 5.7: Input Subset Neural Network Typical Architecture 

3. "Random" sets. The "random" set data was created to assess the 

performance of neural networks trained on a number of random 

points across the operating envelope of the compressor in terms 

of its performance characteristics at varying suction conditions 
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and gas composition. This is probably the most onerous 

compressor performance control scenario where operating point 

can vary, largely dependent on the process plant upstream of the 

compressor. 

4. "Extrapolated" set. This fourth uses a limited training set taken 

from approximately the middle third of the flow coefficient 

range for each speed. Training with the limited data would allow 

assessment of the neural network to extrapolate across the entire 

operating range of the compressor. This may include assessment 

of how well the neural network may estimate compressor speed 

for previously un-encountered conditions. 

5. "Normalised" set. The fifth set comprises the "clean" set normalised 

against compressor speed i.e. this is a non-dimensional data set 

comprising flow and isentropic head coefficients. 

5.5 Generating Test Data 

All data sets, described in Section 5.4, were generated from the basic 

compressor performance. Set l(a) comprised of 96 original compressor 

performance data points. Sets l(b) and l(c) comprised of the original points 

with interpolated points added to give 184 and 496 point respectively. Set 2 

comprised of Set l(c) with the addition of simulated noise present on the neural 

network inputs. Set 2 was used to test input subsets for training purposes. 

Set 3(a) comprised 500 points randomly selected within the operating 

envelope of the compressor. Sets 3(b), (c) and (d) comprised of 1000 randomly 

selected points containing gas property inputs represented by: only molecular 

mass as in previous data sets; full AGA 8, 21 input component representation; 

"short", 10 input component analysis typical of OGe analysis. 
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Set 4 was comprised of 281 data points extracted from set 1(c) to represent a 

restricted training set. Set 5 comprised of the normalised flow and head 

coefficients. 

The methods and procedures used to generate the data sets are described in 

section 3.4 

5.6 Results of Testing 

The data sets described in section 5.5.1 though 5.5.4 were run through Trajan 

Intelligent Problem Solver (IPS), thirty one times. Thirty-one runs were chosen 

to bring the 95 % confidence limits down to two standard deviations. Each run 

produced a number of neural network architectures. Whilst the same data point 

set was used for each run, the split between training, test and verification sub­

sets varied between runs. The "best" performance network was taken for each 

run and the thirty-one best performing networks presented as the "results" for 

the training of each data set. It was noted that networks trained with the smaller 

data sets were prone to over training hence the % incidence of over-training for 

each data set is presented. 

The results were treated as thirty-one samples of a population of all possible 

neural networks for the given data set. The structure of the results is shown in 

Figure 5.8. 
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Nj,n 

Figure 5.8: Structure of Results 
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S denotes the training target for each data point, n = 96, 184,496,500 or 1000 

depending on the data set for which results are being calculated. N is the t 
neural network estimate of speed, 0 < j < 32, for the nth data point. The following 

statistical parameters were calculated to represent neural network performance. 

Standard statistical techniques have been employed, drawn from statistics 

reference texts, Griffiths et al [72] and Lapin [73]. 

The absolute peak positive and negative error of each data set calculated as 

the maximum and minimum values of: 

ES = IS - N. ) 
n ~ n J,fi (5.1) 

The relative peak positive and negative error calculated as a percentage of the 

training target: 

E = 100(Sn - Nj,n) 
Sn S 

n 

(5.2) 

Peak positive and negative average speed error calculated as an average of the 

thirty-one networks calculated for the nth data point: 

31 

L(Sn -Nj,J 
S = j=! n ----

31 
(5.3) 

The 95% confidence limits for the positive and negative maximum and 

minimum values of Sn as: 

Sd
n95 

= 2.042 /31LE;n - (LE Sn Y 
51 ~ 31(31-1) 
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The average absolute speed error for each network: 

~(s. -N .. ) L.J~ 1 j,1 

B Sj = i=1 

n 

The standard deviation of each network's average absolute error: 

2 

sdj = 

The average of the neural networks average absolute error: 

31 

ISd j 
j=1 

sdbar =----n-

The Pearson correlation coefficient for the t neural network calculated as: 

( 

n ) n n 
n "S. N .. -" S. " N .. L.J 1 j,1 L.J 1 L.J j,1 

i=1 i=1 i=1 

r = I nt,s~ -(t,s, )}t,Nf' -(t,Nj' n 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

The average of the 31 networks Pearson correlation coefficients calculated as: 

31 

Iri 
r=~ 

31 
(5.9) 
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The following parameters are reported to define and compare neural network 

performance: peak positive and negative values of ESn; peak positive Sn95 = Sn + 

sdn95 ; peak negative Sn95 = Sn - sdn95 ; sd bar ; r. The incidence of neural network 

over training is expressed as the number of networks exhibiting over training 

with the total number of networks trained to achieve 31 networks for analysis. 

5.6.1 Data set 1 - "Clean" Data Set Results 

Three data set sizes were used as follows: 96 data-points representing the 

actual default compressor performance points - 12 actual inlet volume / 

isentropic head data pairs for each of eight constant speed lines, (set l(a)); the 

original set supplemented with interpolated points, 184 points in total, (set1(b)) 

and the original set supplemented with interpolated points, 496 in total, 

(set1(c)). For set l(b) linear interpolation was applied to the flow coefficient such 

that original data points were bisected. For set l(c), the flow coefficient range 

was split into 61 linear intervals, giving 62 points per constant speed line. A 

summary of results is presented for the clean data sets. 

5.6.1.1 "Clean" Data Set la 

number of data points = 96 

speed point peak errors, ESn: 

peak average speed errors, Sn95: 

standard deviation of average error, sdbar: 

networks average correlation, r: 

over trained vs. total networks: 

5.6.1.2 "Clean" Data Set lb 

number of data points = 184 

speed point peak errors, ESn: 

peak average speed errors, Sn95: 

128 

+3.2% / -4.5% 

+182/ -191 rpm 

99 rpm 

0.999011 

43/74 

+1.5% / -1.9% 

+170/ -149 rpm 



standard deviation of average error, sdbar: 

networks average correlation, r: 

over trained vs. total networks: 

5.6.1.3 "Clean" Data Set le 

number of data points = 496 

speed point peak errors, Esn: 

peak average speed errors, 5n95: 

standard deviation of average error, sdbar: 

networks average correlation, r: 

over trained vs. total networks: 

5.6.2 Data set 2 - "Noisy" Data Set Results 

5.6.2.1 "Noisy" Data Set 2 - full inputs 

number of data points = 496 

speed point peak errors, ESn: 

peak average speed errors, 5n95: 

standard deviation of average error, sdbar: 

networks average correlation, r: 

over trained vs. total networks: 

5.6.2.2 "Noisy" Data Set 2 - input subsets 

number of data points = 496 

speed point peak errors, Esn: 

peak average speed errors, 5n95 : 

standard deviation of average error, sdbar: 

networks average correlation, r: 

over trained vs. total networks: 

Table 5.2, input subset combinations: 
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72 rpm 

0.999502 

11/42 

+1.3% / -1.1% 

+ 125 / -97 rpm 

41 rpm 

0.999828 

6/37 

+1.4% / -1.5% 

+160/ -161 rpm 

58 rpm 

0.999658 

2/33 

+1.1% / -1.4% 

+158/ -165 rpm 

59 rpm 

0.999621 

1/32 



Input combinations No. of networks 

d.p., Pd, Td 23 

d.p., Pd, Td, MW 4 

d.p., Pd, Td, Ps 2 

d.p., Pd, Td, Ts 1 

d.p., Pd, Td, Ps, MW 1 

Table 5.2: Input Subset Combinations 

5.6.3 Data set 3 - HRandom" Data Set Result 

Four random data sets were generated. Each of the four sets included neural 

network inputs of suction pressure and temperature; discharge pressure and 

temperature; differential pressure and a training target of compressor speed. Set 

3(a) and 3(b) contained 500 and 1000 data points respectively, and an additional 

input of molecular mass to represent gas characteristics. Set 3(c)contained 1000 

data points and an additional 21 inputs, one for each of the gas components 

identified in ACA8, to represent gas characteristics. Set 3(d) contained 1000 data 

points and an additional 10 inputs, one for each gas component typically 

identified by an on-line gas chromatograph, to represent gas characteristics. 

5.6.3.1 "Random" Data Set 3a 

number of data points = 500 

speed point peak errors, ESn: 

peak average speed errors, Sn9s: 

standard deviation of average error, sdbar: 

networks average correlation, r: 

over trained vs. total networks: 
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+2.5% / -1.9% 

+161 / -170 rpm 

49 rpm 

0.999663 

4/35 



5.6.3.2 "Random" Data Set 3b 

number of data points = 1000 

speed point peak errors, Esn: 

peak average speed errors, Sn95: 

standard deviation of average error, sdbar: 

networks average correlation, r: 

over trained vs. total networks: 

5.6.3.3 "Random" Data Set 3c 

number of data points = 1000 

speed point peak errors, ESn: 

peak average speed errors, Sn95: 

standard deviation of average error, sdbar: 

networks average correlation, r: 

over trained vs. total networks: 

5.6.3.4 "Random" Data Set 3d 

number of data points = 1000 

speed point peak errors, ESn: 

peak average speed errors, Sn95: 

standard deviation of average error, sdbar: 

networks average correlation, r: 

over trained vs. total networks: 

5.6.4 Data set 4 - "Extrapolated" Data Set Results 

5.6.4.1 "Extrapolated" Data Set 4a 

number of data points = 496 

speed point peak errors, Esn: 

peak average speed errors, Sn95: 
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+2.0% / -2.4% 

+ 194 / -218 rpm 

40 rpm 

0.999769 

1/32 

+2.0% / -2.5% 

+ 169 / -273 rpm 

51 rpm 

0.999655 

6/37 

+ 1.8% / -2.6% 

+173/ -228 rpm 

47 rpm 

0.999696 

11/42 

+ 1.6% / -4.8% 

+ 137 / -629 rpm 



standard deviation of average error, sdbar: 

networks average correlation, r: 

over trained vs. total networks: 

5.6.5 Data set 5 - NNormalised" Data Set Results 

176 rpm 

0.995927 

2/33 

Training was undertaken using only normalised flow and isentropic head 

coefficients. Only five networks were trained and the average training error 

exceeded 2000 rpm in each case, as shown in 5.6.5.1. Further training was 

undertaken with the normalised data set but the inputs were augmented with 

suction pressure, suction temperature, discharge temperature and molecular 

mass. Input subsets were enabled, similar to data set 2(b) and the results are 

reported in 5.6.5.2. Further training was undertaken with discharge pressure 

replacing head coefficient and results are reported in 5.6.5.3. 

5.6.5.1 "Normalised" Data Set 5 - normalised inputs 

Since only five networks were trained peak, mean and standard deviation of 

the network errors are tabulated. The data set contained the 96 points generated 

for data set le. The errors for normalised training data only are summarised in 

Table 5.3. 

Network Peak errors Mean error Error s.d. 

no. % % Rpm 

1 +28/-12 4.0 2187 

2 +21 / -18 2.2 2197 

3 +15/-23 1.4 2189 

4 +22/-16 0.8 2195 

5 +25/-13 2.9 2185 

Table 5.3: normalised input training errors 
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5.6.5.2 "Normalised" Data Set 5 - augmented inputs 

number of data points = 96 

speed point peak errors, ESn: 

peak average speed errors, Sn9S: 

standard deviation of average error, sdbar: 

networks average correlation, r: 

over trained vs. total networks: 

Input combinations are summarised in table 5.4: 

No. of Inputs Input combinations No. of 

networks 

6 ~, "', Td, Ts, Ps, MW 1 

5 ~, "', Td, Ps, MW 1 

5 ~, "', Td, Ps, Ts 3 

4 ~, "', Td, Ps 3 

4 ~, "', Td, Ts 1 

4 ~, "', Td, MW 2 

4 "', Td, MW, Ts 1 

3 ~, "', Td 8 

3 ""Td,Ps 1 

3 "', Td, MW 1 

2 ""Td 9 

+4.6% / -2.3% 

+426 / -324 rpm 

122 rpm 

0.998414 

9/40 

Average s.d. 

Rpm 

152 

138 

128 

113 

95 

113 

122 

109 
I 

142 
I 

137 

132 

Table 5.4: normalised data - augmented inputs subsets 
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5.6.5.3 "Normalised" Data Set 5 - flow coefficient with augmented inputs 

number of data points = 96 

speed point peak errors, Esn: 

peak average speed errors, Sn9s: 

standard deviation of average error, sdbar: 

networks average correlation, r: 

over trained vs. total networks: 

Input combinations are summarised in table 5.5: 

No. of Inputs Input combinations No. of 

networks 

6 <1>, Td, Ts, Ps, Pd MW 1 

5 <1>, Td, Ps, Pd, MW 1 

5 <1>, Ts, Td, Ps, Pd 4 

4 <1>, Td,Pd, Ps 2 

4 <1>, Pd, Td, Ts 3 

4 <1>, \If, Td, MW 1 

3 <I>,Pd,MW 1 

3 <1>, Pd, Td 17 

3 <1>, Td 1 
~---

+3.3% / -2.6% 

+164/ -262 rpm 

100 rpm 

0.998987 

17/48 

Average s.d. 

Rpm 
I 

96 

87 

77 

110 

94 

91 

139 

102 

118 

Table 5.5: normalised data - flow coefficient with augmented inputs subsets 
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5.6.5.4 "Normalised" Data Set 5 - flow coefficient, discharge pressure, discharge 

temperature input combination 

number of data points = 96 

speed point peak errors, Esn: 

peak average speed errors, 51195 : 

standard deviation of average error, sdbar: 

networks average correlation, r: 

over trained vs. total networks: 

5.7 Discussion 

5.7.1 Developed Software vs. Commercial Packages 

+2.8% / -1.9% 

+166/ -198 rpm 

75 rpm 

0.999432 

16/47 

A spreadsheet neural network was developed to investigate the mechanisms 

associated with the feed forward neural network and error back propagation 

training algorithm. In addition it was hoped that this would be a low cost, 

flexible format comparable with commercial packages. At its current level of 

development the neural network does not match the performance of proprietary 

software. Changing the spreadsheet neural network architecture would require 

significant revision for every change, hence the flexibility requirement is not 

satisfied in its current form. The complimentary copy of the Trajan software was 

adopted as the principle research tool. 

5.7.2 Basic Performance Data, fixed training set 

It is clear from the initial research into network designs that compressor 

characteristics can be modelled using an MLP or an RBF type neural network. 

By keeping the data set split, (between training, verification and test sets), 

constant throughout it has been possible to identify a "best possible" error 

standard deviation of around 24 rpm. This has been achieved training an MLP 
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with "clean" data where speed values are known without error. The errors 

recorded are assumed to be a function of the procedures involved in designing 

and training a neural network. The "residual" error is probably due to differing 

degrees of error plane convergence for a fixed number of training epochs or 

allowable training tolerance. The differing degrees of convergence are probably 

attributable to the different sets of starting weights (these set the starting point 

on the error plane), which are randomly selected. The procedure used has 

identified a peculiarity with the neural network package which occurs if data is 

not "set" in a range and which can result in a less accurate network architecture. 

The average number of hidden nodes increased from 6 to 9 when the network 

architecture was forced to six inputs from selected input subsets. This implies 

that a more complex network architecture is required to deal with higher 

dimension space through the addition of inputs. These observations are 

supported by background reading identified in Chapter 4. 

5.7.3 Basic Performance Data, variable training set 

When changing data set splits, with forced inputs remaining, was introduced 

the average hidden node count stayed at 9 but the average error standard 

deviation increased to 31 rpm. Using Root-Sum-Square (RSS) random 

uncertainty combination suggests that the uncertainty component introduced by 

changing data set split from one network to the next is around 20 rpm, almost 

double the fixed set error of 24 rpm. Increased error standard deviation is 

consistent with increased variance due to changes between training, verification 

and test subsets. Training set composition can have a Significant effect on 

network performance even when the subsets are drawn from the same data 

"pool". 
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5.7.4 Variation in training set size - accuracy and over-training 

In all cases, the training: verification: testing set split was 50% : 25% : 25%, 

the default associated with Trajan. This means that for a 200 point data set, 100 

points would be used for training, 50 points for verification and 50 points for 

neural network testing. Cross verification is used to assess neural network 

performance in terms of whether or not over training has occurred. Over 

training is characterised by a divergence of training set error and verification set 

error and can occur when training set size is small. Complex neural network 

architecture may also result in over-training. 

To record these phenomena incidence of over-training was recorded for 

each of the data sets as shown in section 5.6. A summary of incidence of over 

training in terms of training set size is shown in Table 5.6. 

The table suggests non-linear decrease in incidence of over-training as the 

training set size approximately doubles. For the same basic data set, the addition 

of simulated noise further reduces incidence of over-training. For a random data 

set, equivalent to continuously varying inputs, the results suggest that an over­

training incidence of 3 in 100 will be experienced. 
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Data set Training set Peak error Incidence of 

size (%) Over-training (%) 

(no. of points) 

Basic la 48 +3.2/-4.5 58 

Basic 1b 92 +1.5/-1.9 26 

Basic 1c 248 +1.3/-1.1 16 

Noisy 2 a 248 +1.4 / -1.5 6 

Noisy 2b 248 +1.1/-1.4 3 

Random3a 250 +2.5 / -1.9 11 

Random3b 500 +2.0/-2.4 3 

Random3c 500 +2.0/-2.5 16 

Random 3d 500 +1.8/-2.6 26 

Extrap.4 248 +1.6/-4.8 6 

Normalised 5 48 + 4.6/ -2.3 23 

(aug. inputs) 

Normalised 5 

(~ with aug. 48 +3.3 / -2.6 35 

inputs) 

Normalised 5 48 +2.8/-1.9 35 

(~, Pd, Td) 
I ----

Table 5.6: Incidence of Over training vs. Training set size 

Training set size does not appear to significantly influence accuracy of the 

neural network predictions above 250 points. As the number of inputs increase 

e.g. between sets 3(b) and 3(d) the accuracy performance is similar but the 

incidence of over-training increases. 
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5.7.5 Inclusion of simulated input noise 

In a field implementation the input signals to the neural network will be 

measured process variables. The measurement will include random noise 

largely defined by the instrumentation uncertainty levels. 

Comparing sets l(c) and 2 (full input networks), typical instrument noise 

levels appear to marginally degrade accuracy and variance levels but greatly 

reduce incidence of over training, by approximately two thirds. 

5.7.6 Training on random operating points 

Training with random data (set 3(a), within the operating envelope) degraded 

peak error performance from around ± 1.5% to around ± 2.5% but with 

improved variance performance, from 58 rpm to 49 rpm. Doubling training set 

size to 1000 data points (set 3(b)) further improved variance performance to 40 

rpm and reduced incidence of over training by around two thirds half. 

Data set 3(c) and 3(d) used an extended gas properties inputs. Increasing the 

number of inputs increased the incidence of over training and degraded 

variance performance. It should be noted that this 11 degraded performance" can 

still estimate compressor speed to around ± 2.5%. 

5.7.7 Training with Input sub sets 

Set 2 was used to investigate the use of input subsets for neural network 

training. Overall training performance was not significantly different from the 

full input training performance. There is a marked bias, 23 networks out of 31 

trained, towards an input subset of differential pressure, discharge pressure and 

discharge temperature. Discharge temperature is a function of pressure ratio 

and isentropic exponent as shown in equation 2.8. Isentropic exponent, used this 

research, is calculated as a regression function of molecular mass, suction 

pressure and suction temperature. The successful reduction of six inputs may 
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indicate that discharge temperature is sufficient to represent the gas property 

related inputs of molecular mass, suction pressure and suction temperature. It 

may be that discharge temperature could be used to represent live gas 

properties based on composition as opposed to molecular mass. 

A further example of input subsets is described in section 5.7.9 where 

normalised data is augmented with discharge temperature. 

5.7.8 Extrapolation from a restricted training set 

The constant speed at which the peak -ve and +ve errors occur are shown in 

Figure 5.9 and Figure 5.10 respectively. The constant speed line is shown as the 

solid line with the training points. The neural network compressor speed 

estimate is shown by the broken line. 
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Figure 5.9: Peak negative extrapolation error 

Peak negative error is -4.8% occurring at a training speed of 20000 rpm. 
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Peak positive error, of +1.5%, occurs at a training speed of 16000 rpm. 

Extrapolation is possible but could result in an asymmetrical, negative biased 

speed error of up to approximately 5%. 

5.7.9 Training with normalised performance data 

Training with only isentropic head and flow coefficients resulted in large 

errors in compressor speed estimates. Errors generated were one order of 

magnitude greater than neural networks when trained with absolute 

engineering units. The plot of the isentropic head vs. flow coefficient, the 

"universal speed" curve, is a multi-valued function in terms of compressor 

speed. It is possible to have several values of compressor speed at constant flow 

or isentropic head coefficient value. The universal speed curve and associated 

neural network estimated speeds are plotted for one neural network trained on 

normalised data is shown in Figure 5.11. 
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Figure 5.11: Normalised data neural network performance 

The neural network creates a separate curve for each compressor speed 

where one, universal curve is expected. The neural network can represent the 

shape of the curve but cannot locate it in vector space. Plots of compressor 

speed, estimated from normalised data augmented with discharge temperature 

are shown in Figure 5.12 and Figure 5.13. 
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Figure 5.12: Td Augmented Input, peak -ve error 
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Figure 5.13: Td Augmented Input, peak +ve error 

Normalised inputs of isentropic head and flow coefficient can be used to 

represent the universal speed curve when an augmenting input such as 

discharge temperature is added. 
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Further testing was undertaken with flow coefficient as the only normalised 

input. Compressor speed estimates were marginally improved, but frequency of 

over training increased by around 50%. More than 50% of the networks trained 

produced an input subset of flow coefficient, discharge pressure and discharge 

temperature. Training with the combination of flow coefficient, discharge 

pressure and discharge temperature was undertaken. Compressor speed 

estimates were within ± 3% with an average error standard deviation of 75 

r.p.m. Levels of over-training were consistent with reduced training set size at 

around 35%. 

5.8 Conclusion 

The results of the testing are clearly indicative that neural networks can 

"learn" compressor head characteristics. The most rigorous test case, comprising 

a random data set of operating points, suggest that compressor speed can be 

estimated to within ± 2.5% of the speed required to meet a given flow rate for a 

given discharge pressure constraint. 

The "best network" design returned the lowest training error in each of the 

thirty-one tests conducted for each data set. Performance is related to training 

algorithm employed as opposed to network architecture. Neural network 

architecture is overwhelmingly biased toward multilayer perceptron, feed 

forward networks. This was found in the Initial Research phase and during the 

numerical testing. 

• Results of testing suggest that a data set size of 500 points can train a 

neural network to estimate compressor speed to ± 2.5%, table 5.5. 

• The use of gas components as inputs in place of molecular mass fall within 

this error band, but increase incidence of over-training, possibly related to 

more complex network architectures. 
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• Extrapolation from the middle third of the flow coefficient range is 

possible but the error band increases to ± 5% and the error distribution is 

biased toward underestimating compressor speed, figures 5.9and 5.10. 

This type of error would tend to move the compressor toward surge for a 

fixed discharge pressure constraint. 

• The use of normalised flow and head coefficient data for training neural 

networks is possible but the speed curves are reversed as shown in figure 

5.11. An augmenting input is required to locate the universal performance 

curve in absolute vector space, sections 5.6.5.2 and 5.7.9. Use of head and 

flow coefficients augmented with discharge temperature, as inputs, 

accounted for 26% of neural network "best network" design. Use of h~ad 

coefficient and discharge temperature accounted for 29%, Table 5.4. Error 

levels are similar to those reported for the actual number of training points, 

48 in number. Augmented input performance is shown in figures 5.12 and 

5.13. 

• It may be possible to reduce the instrumentation associated with 

compressor control to three: flow rate measurement; discharge pressure 

and discharge temperature. Training using flow coefficient, discharge 

pressure and discharge temperature, section 5.6.5.4, indicate compressor 

speed can be estimated to within ± 3% using these measurements alone. 

The research, testing and results described in this chapter are novel and form 

the basis of a novel performance control scheme for compressors. The learning 

capability implies that changing performance characteristics can be 

accommodated without specific expert intervention. The performance control 

set point can be expressed in absolute engineering units without the need for 

translation to and from non-dimensional parameter domains. 

A novel performance control system, based on absolute operating point, is 

described in chapter 7. 
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6 Control Systems Paradigms 

6.1 Introduction 

The work described in the previous chapters is drawn together to form a 

proposal for a performance control algorithm. The algorithm might be 

implemented in a micro-controller or a higher-level Supervisory, Control and 

Data Acquisition (SCADA) system. In developing this approach, the role of 

neuro-control and conventional control schemes are outlined. Review of 

conventional control schemes is included to introduce the various "terms" used 

in describing control systems, both conventional and intelligent. 

6.2 Conventional Control Paradigms 

6.2.1 On/Off Control Action 

On/ off control is the most basic form of control. This type of control is 

generally used where the energy input/ output into the system is small in 

comparison with the system inertia [74]. An example of a system of this type is 

a domestic central heating system. The thermal inertia of the house is large in 

comparison to the heat input from the boiler. The thermostat responds to a 

falling set point crossing by switching the heating on and a rising set point 

crossing by switching the heating off. The control action is determined by the 

sense, falling or rising, of the difference between the thermostat setting and the 

actual room temperature. The control action does not respond to the magnitude 

of the difference, or error, between the two. 

6.2.2 Three Term (Mode) Control Action 

Controlling action is determined by the magnitude of the difference between 

the set point and the measured variable, also known as the error. Three types of 
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controlling action and the resulting combination of these actions are described. 

6.2.2.1 Proportional Control Action 

The basic controlling action is proportional action where the response of the 

control system is proportional to the magnitude of the error. This is expressed as 

[75]: 

100 
nl=-e+b 

p 
(6.1) 

where m is the controlling action 

e is the difference between set point (desired) value and the measured 

(actual) value of the controlled variable 

P is the proportional band 

b is the bias 

The proportional band is defined as the change in controlled variable output 

for the change in measured input variable. A 20% proportional band implies a 

full-scale change (100%) in output span for a 20% change in input span. The 

steady state gain of the system is the inverse of the proportional band fraction. 

For the example described the steady state gain is 5. The steady state gain of the 

system is constant for linear systems but may vary for non-linear system control. 

When the error is zero the output of the controller is the bias term, b. Whilst 

a system is balanced when the error is zero, there can be some difference 

between b and the live value of the controlled variable, or process load. This 

difference is termed proportional offset. Low steady state gain can result in 

unacceptable offset whilst high steady sate gain, to reduce offset, can result in 

system cycling or instability. The bias term can be adjusted to set the controller 

output to match the process load. Manual adjustment of the bias is termed 
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manual reset. Reset action can be automated as a function of error using an 

integral control action term. 

6.2.2.2 Integral Control (Reset) Action 

Integral control action is generally used in conjunction with proportional action. 

The proportional-integral, PI, control action is described by: 

100 ( 1 f ) m=p e+7 edt (6.2) 

where I is the integral (reset) time 

The addition of integral action slows the response of the proportional controller. 

Smaller values of integral time speed up the response of a PI control action 

whilst longer integral times slow the PI action. 

Integral or reset windup can occur where the error cannot be eliminated over 

a time period. This may occur in a batch process where the error exists between 

batches. The integral action attempts to reduce the error driving the controller 

output to maximum. Once the error is removed, when the batch process starts 

up, the controller error output stays at maximum for a time after the start even 

when the error has reversed sense. Different types of controller may inhibit 

integral action when a preset control action level is reached. 

6.2.2.3 Derivative Control Action 

The slowing effect of integral action can be compensated for by the addition 

of derivative action. Derivative action can also speedup the response of 

proportional action. This alone cannot be used to maintain a set point, hence it 

is added to proportional action or proportional-integral action. Proportional­

derivative, PD, control action is described by: 
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m = 100 (e + D de) 
P dt 

(6.3) 

where D is the derivative time. 

The faster the rate of change of error is, the larger the response of the 

controlling action. The higher the derivative time, the greater the controlling 

action response will be. 

6.2.2.4 Proportional, Integral & Derivative (PID) Control Action 

Combined proportional, integral and derivative action is described by: 

100 ( I f de) In=- e+- edt+D-
P I dt 

(6.4) 

PID controllers require tuning for a specific process to balance the controlling 

action components. Figure 6.1 shows the control action response to a unit step 

process upset. 
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Figure 6.1: Controlling Actions 
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The proportional response, P, displays the offset that is corrected with the 

addition of integral action, PI. The speed of response is improved with the 

addition of derivative action, PID. 

6.2.2.5 Types of Basic Control 

Most common types of controller are: Batchi Auto Selecti Ratio and Cascade. 

Batch Control 

Batch control is used in discontinuous processes where product batches can 

be run at intervals. Between batches the control system can be open loop i.e. 

batch tanks are empty so no feedback signal completes the control loop. In this 

situation, integral wind up may occur where integral action is in use. When the 

measurement is within 0-100% the controller applies standard P or PI control 

action. If the measurement goes out with these limits, i.e. the system is open 

loop and the standard control mode cannot restore measurement to the set 

point, the batch controller invokes a "batch switch" mode. In this mode, the 

integral action is inhibited to prevent controller windup. 

Autoselect control 

Autoselect control, also known as Selective control, monitors several 

variables in a process and manipulates one variable to keep all measured 

variables within safe limits. Each measured variable has a dedicated controller 

whose output goes to a selector. The selector compares the measured variable 

control signals and selects the lowest (or highest) to assume control of the 

controlled variable. A typical Autoselect control system may be found on a 

pump station. Measured variables will typically be pump suction pressure, 

motor load and discharge pressure. The control variable will be a Flow Control 

Valve (FCV) on the pump discharge. Each of the measured variable controller 

outputs are monitored. If the pump suction pressure is lowest, control of the 

FCV will pass to the pump suction pressure controller to prevent cavitation in 

the pump. If the motor load rises the controller signal will assume control of the 
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FCV to prevent the motor overheating. If the discharge pressure rises above safe 

pipeline pressure limits, the discharge pressure controller will assume control of 

the FCV. The controller outputs are compared to their own respective set points 

rather than to the value of measured variable. 

Ratio Control 

Ratio control may be used in a blending process to blend to mix fluids in 

constant proportions or to control fuel! air mixture in a combustion process. In a 

combustion process the measured variable would be the fuel flow rate, set by a 

governor or throttle, and the controlled variable would be the airflow rate. The 

ratio control would regulate the airflow to ensure stoichiometric combustion as 

the fuel flow rate varies. 

Cascade Control 

Cascade control controls a secondary or slave variable using a set point 

generated by a primary or master variable. An example of this is where the 

temperature of a heated product is controlled by varying the fuel rate to a 

heater. The primary variable is product temperature. The output of the 

temperature controller is input to a secondary controller as its set point. The 

secondary controller is a fuel flow rate controller whose output controls a fuel­

regulating valve. Thus the fuel flow is indirectly controlled by the product 

temperature. This type of control is useful where fuel supply pressure is 

unsteady or where the primary variable responds slowly but with high 

amplitude to variation in the secondary variable (fuel supply). 

6.2.3 Adaptive Control 

Advanced control techniques usually specify some objective function as the 

control system objective, rather than regulation of a system about a set point. 

Control to a set point is still a requirement of an advanced system and this may 

well be implemented using a PID controller for the controlled variable. 
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An adaptive control system automatically updates its parameters, such as 

gain, to compensate for changes in the properties of the process. The control 

system "adapts" to the process. Specifying the value of controlled variable, or 

set point, is not sufficient in itself. An "objective function" of the controlled 

variable is also specified. The objective function determines the form of adaption 

required. Adaptive systems may be categorised as dynamic adaptive, or steady 

state adaptive. In a dynamic adaptive system the objective function is designed 

to control a dynamic parameter of the system, such as damping. Similarly, in a 

steady state adaptive system the objective function is designed to control a 

steady state parameter such as steady state gain. 

A further distinction is made in terms of the adaption mechanism [75]. If the 

process to be controlled is sufficiently well defined, the adaption can be 

programmed in terms of the process variables. That is, the control system 

parameters can be estimated from the programme or model. 

Where the control system parameters are changed through changes in the 

measured value of the objective function, then adaption is effected through a 

feedback loop. This is referred to as self-adaption, or as a self- adaptive system. 

6.2.3.1 Dynamic Adaptive Control 

Dynamic loop gain, the net effect of integral and derivative time dependent 

controller gain, is generally the objective function of the controlled variable in a 

dynamic adaptive system. This parameter is most effective in maintaining the 

stability of a control loop. Changes in steady state gain are usually classified as 

system non-linearity. Non-linearity, from this source, can be compensated 

through gain scheduling, Hagglund [76]. Variable process gain is compensated 

for by introducing non-linearity in the controller. This may be done through 

inclusion of a non-linear characteristic of a control valve in the control loop. 

Shinskey [75], describes an example where setting the dynamic gain of a 

control loop (objective function) is dependent on a variable out with the control 
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loop. The adaption is programmed from knowledge of the process and the 

dynamic loop gain is set as a function of the measured variable, out with the 

control loop. Figure 6.2 shows a heat exchanger control loop that exhibits 

capacity and dead time. 

Steam 

J,S' ,1' ,$' ( TC 

Condensate 
Trap 

F. T1 

T2 

Process fluid 

Figure 6.2: Heat Exchanger loop 

The dynamic loop gain changes with the inverse of process fluid flow rate. 

Hence, a programmed adaptive control algorithm can be written as: 

In = 100 f (e + f Je dt + D de J 
P I f dt 

(6.5) 

where f is the fractional flow of F 

With a priori knowledge of the process an operator could adjust the 

proportional band, integral time and derivative time to achieve the desired 

control effect. However this can be implemented in an adaptive controller with 

an additional input of the measured variable, f. Hence the dynamic gain is 

automatically adapted to changes in flow rate , f, to improve control loop 

stability. Potential error and consequent loop instability can be avoided through 
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automation in the controller. 

6.2.3.2 Dynamic, Self Adaptive Control 

A self-adaptive controller is attributed with the capability of identifying when 

adaption is required and knowing the adapted value of controller parameters to 

use. These attributes are necessary where no a priori knowledge of the process is 

available or where the objective function is too complex to programme in a loop 

controller. 

The knowledge of loop gain and damping is termed identification in control 

terms. System identification can only be deduced during perturbations from the 

process steady state. A perturbation can be induced by the controller 

periodically changing a controller parameter to upset the system, or by a 

naturally occurring process disturbance. Identifying system parameters from a 

naturally occurring disturbance requires the disturbance to occur before 

corrective control action can be implemented. The self-adaptive controller is 

reactive to process disturbances and does not predict of disturbances. 

Self-adaptive controllers could relieve operators of the need to adjust 

controller parameters. The performance of critical control loops could be made 

independent of the skill level of the operator. Given the inherently unstable 

nature of system identification, for parameter adaption, self-adaptive control is 

used only where no satisfactory alternative is available. 

6.2.3.3 Steady State Adaptive Control 

Steady state adaptive control is concerned with finding a constant value of 

steady state gain required for process equilibrium. This implies that for a given 

process, steady state gain is variable and that a single value satisfies the process 

equilibrium. 

This can be illustrated using fuel combustion control as an example [75]. In 

combustion, ratio control is used to control the proportions of fuel to air. For a 
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given set of conditions only one fuel/ air ratio will ensure efficient combustion. 

The controlled variable is fuel efficiency, the manipulated variable is fuel! air 

ratio. Too much air results in a lean fuel mixture, too little air results in a rich 

fuel mixture. Either mixture results in inefficient, or sub-optimal, combustion. In 

the case of fuel combustion the objective function can be programmed into a 

controller by differentiating the efficiency parabolic equation and setting the 

derivative to zero. The action of an adaptive controller in seeking out the single 

value of steady state gain required is termed optimisation. Optimisation is a 

special case of steady state adaption. 

No feedback is required in the control loop since the operating point is 

mapped by a combustion efficiency equation. Combustion control of this type is 

categorised as feed forward control. 

6.2.4 Feed forward control 

Feed forward control allows a control system to adjust to process 

disturbances before a measurable set point deviation would initiate controlling 

action. A feedback controller can only respond as its parameters allow and these 

are largely governed by the dynamics of the process it tries to control. A feed 

forward controller reacts to process disturbances immediately, on the basis of a 

computed control action. The control action is computed from key measured 

process variables for a desired operating point. A manipulated variable is used 

to bring the process to the stable, predicted operating point for a given set of 

process conditions. 
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Figure 6.3 shows a schematic of a feed forward control scheme. No 

measurement of the controlled variable is taken to derive a set point error. The 

value of manipulated variable is estimated, from the process model, to give the 

desired process operating point (set point) for the prevailing, key process 

variables. Ideally the model will combine steady state characteristics with 

dynamic characteristics to cover transients between operating points. Many 

process models are made up of systems of linear differential equations. Model 

based control is also known as Model Predictive control (MPC). MPC based 

control systems are likely to require periodic "maintenance" by expert 

modellers, plant operators and instrument technicians. 

Feed forward control is theoretically capable of perfect control, however 

causes of error or other limitations include: 

• Accuracy of measurement of the key process variables. Inaccuracy 

may come about through poor specification of instruments, mis­

calibration of instruments or instrument failure. 
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• Errors in the computing components. Software bugs, inadequate 

number resolution. 

• Failure of the model to represent the characteristics of the process. 

Process characteristics changing with time, novel operating 

conditions. 

• omission of key parameters from input to the model. Incomplete 

specification of the process key parameters. 

6.3 Intelligent Control 

6.3.1 Overview 

A framework for intelligent control is suggested by Astrom & McAvoy in [77]. 

This is shown in Figure 6.4. 

Rules 

Objects 

Algorithms 

Figure 6.4: Framework for Intelligent Control 
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An intelligent control system made up from an expert system can only be 

implemented using "If-Then" type rules. As the complexity of the system 

increases the number of rules increases to the point where the system may 

become unwieldy and the software un-maintainable [78]. Identifying a number 

of control objects, each of which have a discrete set of rules, improves the 

"maintainability" of the system. The rules are confined to a discrete object and 

can be updated, added to or taken from in a controlled context. An expert 

system of this type would belong in the "rules-object" plane of the diagram. 

Adding a neural network (an algorithmic function) to the expert system 

would move the system into the 3 dimensional control space. Neural networks 

generally require objects and rules that facilitate analysis and interpretation of 

the neural network output, such as in the case of character recognition. 

An intelligent controller requires an expanded algorithmic axis to 

accommodate linear, non-linear, adaptive or model based control algorithms. 

The control space is then 6 dimensional. A control system design dilemma 

arises, is it better to have an algorithmic or heuristic control strategy? 

An algorithmic controller may be a PID controller in control space and a 

heuristic controller may be a fuzzy controller in the rule - object plane, both 

regions depicted in Figure 6.4. 

Digital controllers can be programmed with PID algorithms, fuzzy rules sets 

and computational implementations of neural networks. Modern controllers 

have these available as software library functions. Recent trends in intelligent 

controller have included a basic fuzzy controller for guidance of an unmanned 

boat [79]. A learning, fuzzy controller has been reported [80] which allows 

control adaption through changes to fuzzy membership function and rule 

modification. Techniques for intelligent controller design are reported in [81] 

and [82]. 
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6.3.2 Knowledge Based Systems 

Knowledge based systems use the entire control space shown in Figure 6.4. 

Microprocessor based instruments, such as Programmable Logic Controllers or 

Digital Controllers, contain the software to implement algorithmic control and 

heuristic control made up from logical functions. A knowledge based controller 

architecture is shown in Figure 6.5 [78]. The system shows a simple controller 

and process feedback loop. Co-ordination of each of the components is carried 

out by the knowledge-based system. Identification algorithms can test the 

process for parameter identification. Supervision algorithms monitor the 

controller performance and initiate loop tuning if required. The controller has 

the capability to implement the most appropriate control algorithm for the 

process based on supervision and identification activities. The operator has 

access to the controller through the knowledge-based system. 

Operator 
Knowledge 

Based 
system 

--- ----- .. ---- - -- ----. , , , , 
1 _____ -

Process 

Figure 6.5: A Knowledge Based Control System Architecture [78] 
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A knowledge based system will, typically, have the components identified in 

Figure 6.6 [83]. The "Intelligent Program" provides clear separation between the 

knowledge that the sytem uses and the program that uses the knowledge for 

problem solving. The "Knowledge Base" contains the knowledge gathered by 

the knowledge engineer from various sources. Knowledge information is 

interpreted by the "Inference Engine" to derive additonal data and conclusions. 

knowledge 
acquisition 

tool 

test case 
database 

delevoper's 
interface 

Intelligent Program 

knowledge 
base 

inference 
engine 

I 

Figure 6.6: Knowledge Based System Components [83] 

A development shell allows the knowledge engineer to structure, de-bug and 

modify expert knowledge. The "Knowledge Acquistion Tool" allows structuring 

of the knowledge and may be a relational database. The "Test Case Database" is 

a collection of problems which have been successfully executed on the 

knowledge system. This can be used to confirm changes to the knowledge base 

have not compromised its performance. The "Developer's Interface" is the same 

as the end user's interface but with additional development features. 
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Knowledge Based Systems are distinguished from conventional algorithmic 

and search based systems by three fundamental concepts. These are the 

separation of knowledge from how it is used; the use of highly specific domain 

knowledge and the heuristic, rather than algorithmic, nature of the knowledge. 

A hierarchical knowledge based controller, capable of generating its own 

Knowledge Base, is described in [84]. A knowledged based system for gas 

turbine maintenance diagnosis is described by Trave-Massuyes & Milne [85]. 

6.3.3 Neuro control 

Neurocontrol came to the fore in the late 1980s through improved training of 

neural networks using error backpropogation techniques. Early reviews 

included Antsaklis [86] with more recent reviews by Armitage [87]. Werbos [88], 

identifies neurocontrol as a subset of traditional control theory and neural 

network research, as shown in Figure 6.7. 

neural network 
research 

Figure 6.7: Neuro-control subset 

Three basic types of neurocontrol are identified: cloning, tracking and 

optimisation. Agarwal [89] suggests a systematic structure to neurocontrol 

classification. For the purposes of this research the simpler three-category 

taxonomy is sufficient to explain the categories of neurocontrol. 
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6.3.3.1 Cloning Control 

Neural cloning systems mimic the relationship, or mapping, between system 

inputs and outputs exhibited by human experts or automatic controllers. A 

distinction is drawn, [88], between a fuzzy' clone' control system implementing 

what experts say, through its rule base, and a neurocontroller implementing 

what experts do. Cloning control is the basis of an expert control system. 

A "truck backer upper" is described b Nguyen & Widrow [90] that learns and 

improves loci of backing up a truck from any point in a confined vector space. 

Bhat et al [91] describes a chemical process model using neural networks that 

learns non-linear process characteristics from process inputs and outputs. 

Process control using reinforcement learning of a neural network is described by 

Hoskins & Himmelblau [92]. The method of reinforcement does not use an 

objective function, instead using a critic to deem a given control action 

11 acceptable" or 11 unacceptable". This method mimics human learning by trial 

and error. Operator skill is embedded into neural models, at various levels of 

control hierarchy, of a steel plant, Bloch et al [93]. 

6.3.3.2 Tracking control 

Conventional adaptive control, described in sections 6.2.3 and 6.2.4, is 

concerned with control systems that maintain a set point or track a reference 

model (MPC). Neural adaptive control offers generalised non-linearity and the 

ability to learn adaption parameters, as opposed to programmed (or self 

adaptive) non-linearity and parameter identification. 

An early example of "backpropagation through time" is described by Bhat 

and McAvoy [94]. The subject is dynamic control of a continuously stirred tank 

reactor. In this system the inputs are a moving time window of pH and 

corresponding instantaneous values of a reactant. On each training step the time 

window is moved forward one time step. The outputs are time increments of 

mixture pH. Hence a neural network is trained to predict future values of 
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reactor pH. This network is used as a model to control the reactant flow rate to 

achieve a desired mixture pH. The future value of pH is optimised by using a 

value of reactant that minimises a pH error squared function for the first 

predicted time step. 

Chen [95] describes non-linear, self-tuning adaption control for a Single 

Input/Single Output (5150) plant simulation. Control action is generated by an 

MLP neural network. Online back propagation training, of the controller neural 

network, is turned on and off as required by an error function. The plant output 

is tracked by the controller after 105 time-steps. Willis et al [96] describes a 

Multiple Input/Multiple Output (MIMO) neural network predictive control 

scheme for a distillation column. A study of neural network based non-linear 

dynamic controllers, with respect to stability, has been presented by Hernandez 

& Arkin [97]. It is concluded that a non-linear process can be stabilised by a 

neural network model based controller model. Park et al [98] describes a design 

of optimal neurocontroller that can control the motion of a cart to keep an 

inverted pendulum balanced at an angle to the vertical. Fabri & 

Kadirkamanathan [99] presents a method of activating Gaussian RBF nodes in 

the vicinity of controlled variable operating point. The network architecture is 

thus dynamic. This allows use of an "economic" network in terms of size for 

subsets of state space. Horn [100] describes a method of feedback linearisation 

using neural process models with significant improvements over conventional 

controllers. 

6.3.3.3 Optimisation Control 

The learning ability of neural networks is suited to optimisation of an 

objective or utility function over time. the technique of "back propagation 

through time" [101] is suited to optimisation type control. Neurocontrol 

techniques are also used to enhance conventional optimisation techniques such 

as calculus of variations, model predictive control and approximate dynamic 
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programming. 

A description of an optimising controller has been described by Joubert et al 

[102]. The controller is implemented on a SCADA computer system and uses 

two neural networks. One network is trained continuously on-line and the other 

is used as a plant model (active network) for predicting controlled variable set 

point. If the prediction causes> 2% error in the desired operating point the 

training network replaces the active network. The controller optimises for 

maximum revenue, in terms of product spectrum, or maximise principle 

product yield from available input streams. EI-Sayed [103] proposed a similar 

system of on line training for steam power electricity generation. Kleymenovet 

al [104] describes temperature compensation for humidity measurement device 

calibration using a neural network trained using genetic algorithms. 

6.3.4 Expert Systems 

An expert system is programmed with mathematical and heuristic 

knowledge from an expert in a particular field. The type of knowledge 

represented is experts "know how" [105]. An expert system does not attempt to 

reason, as a knowledge-based system may, but is limited to the domain of the 

particular expertise encapsulated in the system. The system may adapt within 

these constraints, [78]. An expert system for pipeline scheduling is described by 

Seskin, [106]. Early process control expert system architecture is described in 

Moore et aI, [107]. An expert system for multiphase flow rate measurement has 

been developed by Toral, [108]. 

6.4 Discussion 

This chapter has reviewed principle control paradigms at a level that allows 

identification of control scheme from a characterisation of each. A search of 

control engineering sources has identified past and recent trends in 

neurocontrol. The search has by no means been exhaustive such is the scope of 
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control engineering. Knowledge based and Expert systems have been included 

as neural networks are often found in this type of control system. 

Very little was found regarding the control of simple rotating machinery. This 

is believed to be due to the lack of advanced control application where 

conventional control is suffice vis. section 6.2.2.5 and the" Autoselect" control of 

a pump station. A similar point is made in [106] where attitudes toward control, 

in manufacturing industries, tend to favour the traditional approach, which 

does "well enough". "Autoselect" control for example, whilst considering 

equipment protection, does not consider optimising prime mover energy 

consumption or associated exhaust emissions. 

6.5 Conclusions 

There are established control paradigms for the use of neural networks in 

control systems. These are generally in the area of adaptive or model predictive 

control. A more obscure application is in the use of neural networks for 

feedback linearisation for example. Neural modelling is increasingly used in 

complex measurement devices demonstrating the accuracy possible when good 

training data is available, [108]. 

It has been demonstrated, in Chapter 5, that neural networks can accurately 

represent compressor characteristics. Using a neural network in a model based 

controller forms the basis of the compressor performance controller described in 

the next chapter. 

165 



7 Compressor Performance Control Scheme 

7.1 Review of Existing Compressor Control Actions 

As described in Chapter 2, the 11 state of the art" compressor control, 

considered as a whole, fits into the programmed, adaptive control category. The 

surge line characteristic is programmed into a controller. Manipulation of the 

controlled variable is based on several measured process parameters. The 

objective function is to prevent the compressor from entering the surge region of 

operation. 

On closer scrutiny there are several types of controlling action, described in 

Chapter 6, in the overall control function. The controlling element, usually a 

progressive action anti-surge valve, is controlled using a PID control algorithm. 

A rapid opening valve may be fitted in parallel with the progressive action anti­

surge valve. Where this is the case the rapid action valve is operated with an on­

off or open-close action. When load sharing the worst case, or 11 closest to surge", 

controlled variable is selected as the primary controlling variable, a feature of 

auto-select control. 

7.2 Novel Compressor Performance Control 

7.2.1 Re-statement of Principle Research Objective 

In gas distribution systems, control of compressor throughput is critical in 

ensuring that contracted gas quantities, known as nominations, are delivered. 

Failure to meet contractual obligations in delivered gas quantities can result in 

commercial loss and penalties. Optimising compressor operating point, to 

ensure required throughput will result in contract fulfilment, can be operator 

intensive or require expensive optimising, modelling packages. 
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The principle objective of performance control, for this research, is to use 

neural networks to optimise compressor operating point (COP). In doing this it 

is necessary for individual compressors to operate at different points relative to 

their surge line and to deliver a desired through put for any given set of process 

condition. 

This can be achieved through adjustment of compressor speed, in absolute 

vector space, thus setting COP. Chapter 5 has shown that neural networks can 

model compressor characteristics for changes in conditions of suction pressure, 

suction temperature and gas composition (molecular mass). The model can be 

"interrogated" to give a required compressor speed (controlled variable) for a 

desired flow rate given a discharge pressure constraint. Chapter 6 describes 

adaptive systems based on reference models and feed forward control. 

7.2.2 Steady State Adaptive Control 

Steady state gain can have many values for prevailing process parameters 

suction & discharge. The steady state gain of the system is compressor flow rate 

for the given speed i.e. acmh/rpml. For prevailing suction conditions, molecular 

weight and discharge pressure constraint only one compressor speed will satisfy 

the flow rate requirement. The proposed control scheme selects compressor 

speed or optimises steady state gain to achieve the objective function i.e. 

compressor flow rate. 

Inputs to the systems are shown in Figure 7.1. The set point is the required 

flow rate. The following parameters are used to train the neural network: 

• measured flow rate 

• measured discharge pressure 

• measured suction pressure 

1 (actual cubic metres per hour) per (revolutions per minute) 
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• measured discharge temperature 

• measured suction temperature 

• molecular mass 

Measured flow rate is also used to generate a flow rate discrepancy event. The 

neural network model outputs a recommended compressor speed to achieve the 

required flow rate for the given process load. The compressor speed can be 

translated into a speed set point for the prime mover or left as an advisory 

setting for opera tor acceptance and downloading 

flow rate 
discharge pressure 

suction pressure 
discharge temperature 

suction temperature 
molecular mass 

~ 

... 

Compressor Neural ""'"-
Network 

compressor 
speed 

Compressor 

Figure 7.1: Compressor Performance Control Schematic 
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7.2.3 Self optimisation 

Addition of a feedback loop for the flow rate will facilitate error generation or 

flow rate discrepancy. When the flow rate error exceeds a desired level an 

interrupt can initiate correcting action or optimisation. Self optimisation is 

achieved through periodic events, such as cumulative flow checks, as well as 

event driven adjustment of speed. The feedback loop is shown in Figure 7.2. 

plant data 1\ 

~'\ COP database 
~ network 

V r----v training 

/"" i \ 
Compressor Neural 

required flow rate 

I 

I Network 

\/ 

compressor --,. performance rules 

speed error 

i 
Compressor event driven 

interrupt 
process flow rate 

--

Figure 7.2: Feedback loop for Self optimisation 

7.2.3.1 Performance Rules 

The performance rules block is shown in Figure 7.3 and applies to individual 

compressors. Initiation of the performance related tasks will be by routine 

interrupt or by exception interrupt. 

The performance rules will be part of a control hierarchy. The significance of 

the performance rules [14] will be low compared to plant safety considerations 
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and prime mover protection. If the advised speed impinges on either of these 

constraints the prime mover speed set point should be ignored. This will impact 

on the delivery performance of the compressor and performance control 

package. 

Yes No 

Disagree 

Agree 

Figure 7.3: Performance Related Tasks 

The routine interrupt is "Meet_Noms" which checks that the compressor 

throughput is as required to meet its apportionment of nominations, (in the case 

of a gas transmission compressor). A difference between the desired flow rate 

(set point) and the actual flow rate will raise an error interrupt, 

"Flow _Rate_Error". 
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7.2.3.1.1"Meet Noms" Algorithm 

"Meet_Noms" is the default algOrithm and is the only algorithm likely to be 

run when the compression process is in a steady state. A check on the 

cumulative and remaining period projected throughput, actual cumulative 

Act_Cum, is carried out and compared with the required cumulative, Req_Cum, 

satisfy nomination apportionment. The projected nomination apportionment is 

calculated from: 

Pr oj _ Nom = Act _ Cum + Mez _ Inst x Per _ Out (7.1) 

where Proj_Nom is the projected nomination apportionment at period end 

AcCCum is the current period flow total 

Mez_Inst is the current compressor flow rate 

Per _Out is the remaining time in the nomination period 

If AcCCum and Req_Cum meet Cum_Satisfactonj criterion then "Meet_Nom" 

goes to sleep for an Interval before being run again. If the Cum_Satisfactory 

criterion is not met then it is deemed that the nomination apportionment will 

not be met and corrective action is initiated through the "Check_COPs" 

algorithm. 

Nomination apportionment, Req_Cum, is decided for each compressor at the 

beginning of a nominations period. The plant operator taking consideration of 

any plant constraints or scheduled downtime and equipment availability must 

plan the apportionment. The Cum_Satisfactory criterion and Interval period is 

determined in consultation with the plant operator with due regard to spare 

compression capacity and plant steadiness. 

"Meet_Noms" is intended to have an "integral" type control action, reducing 

any nominations offset averaged over the nomination period. 
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7.2.3.1.2"Flow Rate Err" Algorithm 

"Flow _Rate_Err" is run when an excessive discrepancy flag, Exc_Inst, is 

generated between the measured instantaneous compressor throughput, 

Mez_Inst, and the desired instantaneous compressor throughput, Dez_Inst. 

Corrective action is initiated through "Check_COPS". Exclnst is set at a level 

that reflects allowable variation in the plant steady state and could be 

determined as a rolling average. When Exclnst is set a Bad_Data flag is set in 

the COP database. 

7.2.3.1.3"Check COPs" Algorithm 

This algorithm is initiated from either "Meet_Noms" or "Flow_Rate_Err". If 

Exclnst is set, further error testing occurs through the "Test_ANN_Model" 

algorithm. If Exc_Inst is not set then the "Change_COP" algorithm is run. 

7.2.3.1.4"Select COP" Algorithm 

At this point the compressor will not meet its nomination apportionment and 

there is no significant variation between the measured flow rate, Mez_Inst, and 

the last flow rate estimate required to meet nominations, Dez_Inst. A new 

Dez_Inst is calculated to meet nomination apportionment over the remainder of 

the nomination period. This is calculated as: 

Dez _ Inst = Re q - Cum - Act Cum 
Per _Out 

where Dez_Inst is the required flow rate 

Req_Cum is the nomination apportionment 

AcCCum is the current period cumulative flow total 

Per _Out is the remaining time in the nomination period 

(7.2) 

The new value of Dez_Inst is input to the ANN model along with the process 

inputs and a new value of compressor speed is downloaded a change in set 

point to the compressor prime mover speed governor. After a period of time, 
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Wait designed to allow the compressor to reach steady state at its changed COP, 

"Meet_Noms" is run. Following the COP change "Meet_Noms" should follow 

the default path and sleep for an Interval. 

Wait should be selected as a minimum of five time constants based on the 

rotating set inertia [109]. Following successful COP change a Good_Data flag is 

set in the COP database. 

7.2.3.l.S"Test ANN Model" Algorithm 

Entering this algorithm, the circumstances are that nominations will not be 

met and that there is a discrepancy between Mez_Inst and Dez_Inst. This could 

be due to failure of field equipment or failure / corruption of the ANN model. 

At this point the Bad_Data flag is set in the COP database. 

A test set of data, which is a subset of the training data used to train the 

network used in the model, is run and the residuals of the compressor speed 

estimates are compared with the training set residuals. If the two are 

significantly different then the active network is considered to have been 

corrupted and the "Download_ANN" algorithm is run. 

If there is no Significant difference between the residuals of the two datasets 

the algorithm "Compare_ANNs" is run. 

7.2.3.1.6"Download ANN" Algorithm 

Running this algorithm downloads the most recently trained ANN to become 

the active reference model ANN. Following download, the algorithm 

"Check_COPs" is immediately run. 

7.2.3.1.7"Compare ANNsfl Algorithm 

The test set data is run on the active ANN and most recently trained ANN. If 

comparison of the residuals reveals a significant difference then the 

"Download_ANN" algOrithm is run. The difference will have come about 

through a change in the relationship between the input vectors and the 

compressor speed. This action will be indicative of a change in compressor 
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characteristics and is expected to be an infrequent course of action. 

"Check_COPs" is run immediately following download. 

If there is no significant difference between the residuals then the ANN 

model performance is considered to have been proven and the discrepancy in 

flow rates is due to a process/instrument fault. The "Process_Alarm" algorithm 

is run. 

7.2.3.1.8"Process Alarm" Algorithm 

"Process_Alarm" will at least involve some sort of fault annunciation, 

following which program flow reverts to the "Meet_Noms" /"Sleep" cycle. If the 

process fault is not cleared the program flow will result in "Process_Alarm" on 

the next "Meet_Noms" cycle or "Flow _Rate_Error" cycle. 

7.2.3.2 Network Training 

Training the networks should serve a threefold purpose: 

• to have prepared an alternative compressor ANN model 

• to accommodate changes in compressor characteristics 

• to represent as wide an operating envelope as the data will allow 

Joubert [102], describes the application of neural network control to an unsteady 

process: 

1. New data is accepted only if 80% of the inputs have changed in the 

preceding five minutes 

2. The input values to the network are calculated from 20 minute moving 

averages to approximate steady state conditions. 

3. Training can only take place when 60 time based data sets are available 

4. Half of the data sets deemed to be "old" are discarded to reflect 

changing plant dynamics 
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Point 1 is designed to identify inputs that have failed and are "frozen" at their 

last" good" value. This is a characteristic of some SCADA software in use, but 

validation of training data values is required before they are committed to the 

COP database. Point 2 is unlikely to be required in a quasi-steady state process 

such as compression since the input values should be slow changing under 

normal operating conditions. Point 3 identifies a minimum amount of data 

required for training. This was noted in chapter 5 where smaller training sets led 

to increased residual estimate error. Point 4 identifies the need to have the 

neural network trained on data representative of the process. 

As a starting point, assuming a populated COP database, the following 

training strategy would be implemented: 

• Subject to scan times, new data points are created each minute, if any of 

the inputs have changed in the preceding five minutes. This will create 

1440 data points per day per compressor in the COP, sufficient to train a 

day specific neural network 

• Since the process is quasi-steady state no averaging is required. 

• A "standby" network is trained on day data at the end of a nomination 

period. A "full" network is trained on a rolling, thirty (operating) day 

data set at the nomination period end, providing no changes to 

compressor hardware have been made which will change the 

characteristics. 

• Active networks would only be updated as described under the 

Performance Rules. 

At start-up, either at commissioning, or following compressor wheel change 

out or seal replacement the model will start with manufacturers or plant trials 

head maps. As each day of operation is completed, the COP is updated, 
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gradually building up a training set to the full, thirty day set. At this point the 

31'1 day data set is discarded. The operator can override selection of the "full" 

network to use the "day" network, although this represents the previous 

chronological day of compressor performance. 

7.2.3.3 COP Database 

A limited database management function is required to structure COP data. 

The management function will include compilation of COP data point from the 

various data sources. Neural network weight data will also be held in the 

database. The COP will have an archive facility that will allow characterisation 

of compressor performance through its lifetime. 

7.2.3.3.lInput Data Point Fields 

Input data point fields will include appending Surge and Good_Data or Bad_Data 

flags to the data point. Data points with Surge or Bad_Data flags set are not used 

for training purposes. A data point fields structure is shown in Figure 7.4. 

I surge I data I id I date I time I Ps Ts 

I MW I a Q I N I Pcjl-Td I TeSt] 

Figure 7.4: COP Data Point Format 

Each data point has: 

• surge field, set if the surge valve control signal was active 

• data flag field, set if the data is classified as Bad 

• id field, a compressor identifier 

• date field 

• time field 
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• Ps field, suction pressure input value 

• Ts field, suction temperature input value 

• MW field, gas molecular mass value 

• field, guide vane angle value 

• Q field, compressor flow rate value 

• N field, compressor speed value 

• Pd field, discharge pressure value (discharge pressure constraint) 

• Td field, discharge temperature value 

• Test field, set if used as ANN test data 

7.2.3.3.2Neural Network Weight Data 

The neural network neuron weight and input scaling values are stored by the 

day. These will include scale and zero values for six or seven inputs, (suction 

and discharge pressure, suction and discharge temperature, flow rate, molecular 

mass and guide vane angle). Indications are that data for between three and up 

to thirty hidden nodes and one output node will be stored. All active network 

data will be kept on the database for one year or until the compressor is serviced 

at which point the data is archived. 

7.3 Compressor Performance Controller Integration 

7.3.1 Discrete Controller 

It would be possible to program a discrete controller with a neural network 

architecture and to accept the download of weight values from a supervisory 

computer. A potential drawback with this is that the network architecture could 

probably not be changed without operator intervention to re-program the 

controller. 

The performance control scheme is designed to assist plant operators in 

managing throughput requirements on the compressor plant, with minimum 

177 



intervention. It is likely that a plant of this level would have a supervisory 

computer control system. Since the function of the performance controller is to 

schedule/plan compressor throughput the most likely "home" for the 

performance controller is in a hierarchical control system. Given the level of 

computing power required for neural network training and database memory 

capacity it is unlikely that the controller could be implemented in a stand alone 

discrete controller. 

7.3.2 Hierarchical Control Systems 

A hierarchical control system will typically consist of 5 levels. The five levels 

are further divided into high, intermediate and low level tasks. These are 

summarised in Figure 7.5. Each of these levels are interdependent, failure of a 

low level data acquisition task can result in incomplete information available for 

decision making at higher levels, see Pearson [110]. 
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Higher level tasks: 
Scheduling, planning, plant-wide 
optimisation and strategic decision 
making 

Intermediate level tasks: 
Unit optimisation, production 
monitoring, fault diagnostics, and 
supervisory and sequence control 

Lower level tasks: 
Data acquisition, interlocking, 
instrumentation and basic regulatory 
control (PlO) 

Figure 7.5: Generic Plant Hierarchy 
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Irwin [111] outlines the development of controllers from micro controllers 

through to distributed control systems (DCS) and supervisory control and data 

acquisition (SCADA). DCS and SCADA computers are generally found in 

intermediate to higher level tasks category. Low level tasks and data acquisition 

are carried out by programmable logic controllers (PLC), with data being 

communicated upwards to DCS and/ or SCADA. 

Relatively sophisticated functions, previously associated with higher level 

computers, such as DCS systems, are now built in to lower level controllers such 

as PLCs. These functions include PID algorithms or fuzzy logic functions. PLC 

programming was previously confined to a ladder logic approach but recent 

standard, IEC 1131-3 Programmable Controllers, now define the use of higher 

level languages for PLC programming [112]. Typical SCADA architecture [113], 

as shown in Figure 7.6, reflects the three level task hierarchy. 

Plant Network 

Control Networks 

1/0 Controller 

Corporate Network 
Intranet/Internet 

Serial links 

Field Instruments 

DCS#1 

TCP/IP 

WAN 

~ PlantB 

Plant A 

Ethernet 

DCS#2 

Figure 7.6: Typical SCADA Architecture 
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The system shown in Figure 7.6 shows discrete wiring from individual field 

instruments, such as transmitters of valve positioners, which are collated in an 

input/output (I/O) controller. Data is passed from the control network, usually 

proprietary to the SCADA manufacturer, on to the Plant Network. Higher level 

control is implemented on the Plant Network using information from other DCS 

loops. Access to the Plant ethernet provides management information for 

strategic decision making. Very latest, and future, architectures are likely to be 

based on Fieldbus technology, [114], using high speed deterministic networks 

shown in Figure 7.7. 

WAN 

Fast MMS bus 

Fieldbus Multidrop 

Field Instruments 

Corporate Network 
IntraneVlnternet 

DCS#1 

TCP/IP 

DCS#2 

Figure 7.7: Fieldbus Based SCADA Architecture 

Plant Level 

Cell Level 

Field Level 

Fieldbus technology uses SMART instruments communicating on a fast 

Multiple Master Slave bus. Network cycle time is typically less than 100 ms at 
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Field and Cell Levels, and less than 1 second at Plant Level [114]. 

7.3.3 Performance Controller Implementation 

The performance controller package could be implemented on a PC type 

computer connected at plant network level. Data would then be collected from 

a real time server using a Real Time - Application Programme Interface (RT­

API), or from a process database using a "standard" tool such as Microsoft 

ODBC, Bodington [115]. In more modern systems data could be embedded 

using OLE object technology. The performance controller is event driven, 

generating events such as flow rate discrepancies or projected nominations 

shortfalls. Yazdi [116] has described event driven supervision and control in a 

formal context. 

7.4 Discussion 

The performance rule logic in the controller is such that minimal intervention 

should be required. An advantage of using a neural network model is that no 

update of constants associated with compressor equation based models is 

needed. As the compressor characteristics change with time, no re-modelling is 

required for altered characteristics as neural networks can be retrained to reflect 

new performance characteristics. 

Initial set up of the controller will need site-specific steady state flow 

tolerances and wait periods to be "tuned". The database of operating points is 

automatically maintained. No surge point can be used for training therefore the 

likelihood of a surge incidence should be reduced. Uncertainty in neural 

network speed estimate, see chapter 5, requires a surge system to be in place. 

Speed of response in a hierarchical system is slow therefore performance control 

is supplemental and transparent to surge control system. ANN model speed 

estimate should be more accurate than operator estimate. Better speed estimates 

combined with continuous monitoring should facilitate smoother operation of 
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the compressor plant. This, in turn, should extend maintenance intervals for the 

compressor . 

Despite an increased level of automation, the plant operator must schedule 

compressor usage. Once the compressor throughput is determined, the neural 

network model will estimate compressor speed and recommend a set point for 

the fuel governor. The set point could be downloaded direct, given confidence 

in the system. 

Implementation in a discrete controller is pOSSible, but would require further 

research. Improved response times in the discrete controller would allow 

implementation of a surge prediction scheme using time step propagation 

techniques. The controller would then embody surge control and performance 

control characteristics. 

7.5 Conclusions 

This chapter has defined the algorithms required to implement a novel 

compressor performance control scheme. A review of plant control hierarchies 

has identified the scheme would be likely to be implemented at plant network 

level. System response time at this level is not sufficiently short to allow surge 

control. 

Coupled with uncertainty in speed estimates, the performance system is 

complementary to the surge control system. The proposed system could be 

developed for a discrete controller if constraints on neural network architecture 

are acceptable, in terms of compressor speed accuracy. As a discrete controller, 

with shorter system response time scales, a surge control algorithm, based on 

neural network time step prediction could be researched. 
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8 Conclusions 

8.1 Summary 

Natural Gas transmission requires the operation of a large and high cost 

infrastructure of transmission and distribution pipelines, as summarised in 

Chapter 1. Central to the movement of gas, from production source to 

consumer, are gas transmission compressors. It is estimated that approximately 

1400 million tonnes of gas is sold each year with an annual growth of 4% [5]. 

Compressor fuel gas is estimated to be 16% of this figure or 224 million tonnes 

[1]. This corresponds to an annual CO2 production of 616 million tonnes. A 

saving in compressor fuel gas of 1 % could save the production 6 million tonnes 

of CO2 per year. 

Current compressor control philosophy pivots around prevention of surge or 

anti-surge control [8]. Prevention of damage to high capital cost equipment is a 

key control driver but other factors such as environmental emissions restrictions 

and pressure on operating costs require most efficient use of fuel and extended 

plant availability. These require reliable and accurate performance control. 

Previous work on performance control had been described [14] and suggested a 

starting point for this research. The principles and operation of compressors are 

described in Chapter 2. 

To investigate performance control a steady state compressor model was 

developed based on flow and adiabatic head coefficients. This method is 

broadly similar to that described in [45], and is regarded as state of the art, 

industry standard technique. Actual compressor head data was used in the 

model and correlations were applied to change the characteristics for changed 

process conditions. The basis of the model and its development is described in 

Chapter 3. 

The techniques of neural network function approximation and pattern 
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recognition were investigated in Chapter 4. Strong similarities between neural 

network function approximation and statistical regression techniques were 

noted. Using neural networks avoid the potential difficulties in specifying 

regression model coefficients. Neural networks can be readily re-trained, once a 

database is populated, to reflect changing characteristics of the input/output 

relationship thus precluding costly re-modelling by an expert. 

Research into how well neural networks might be used to model compressor 

head map characteristics was described, in Chapter 5. A limited description of 

two neural network packages was undertaken and an account of the 

development of a neural network, using standard 11 office" software, is included. 

A program of testing was devised to assess the performance of neural networks. 

The tests range from the ideal case of modelling an exact compressor head map 

to modelling a random set of compressor operating points. Data sets were 

generated using the steady state compressor model. The results are discussed 

and a method to embody the neural network compressor performance 

characteristics representation in a control scheme is introduced. 

Chapter 6 reviewed established control paradigms and the use of neural 

networks in control systems were identified. These were generally to be found 

in the areas of adaptive or model predictive control. The advantage of using 

neural networks for model predictive control (MPC) is that they can be trained 

periodically, to reflect changing conditions in plant. This is applicable to 

compressors and the performance deterioration observed due to bearing wear, 

degradation of aerodynamic properties and degradation of impellor/casing 

seals. The decision to update the neural network model can be left to plant 

operations staff. They are in the best position to observe changes in plant and to 

decide when action needs to be taken to preserve, or improve, plant efficiencies. 

Algorithms required to implement a novel compressor performance control 

scheme were described in Chapter 7. A review of plant control hierarchies has 
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identified how the scheme might be implemented. A performance control 

algorithm would be implemented on a PC connected at plant network level. The 

performance controller depends on model predictive control, based on a neural 

network model of current compressor characteristics. Performance control 

objectives are to monitor on going compressor throughput against a delivery 

period target. If it is predicted that the target will not be met an event is 

generated. The algorithm evaluates current process load and suggests a new 

compressor speed or updates the neural network model to reflect current 

compressor characteristics. A throughput variation event can also initiate 

performance controller corrective action. Thus, the algorithm would be invoked 

periodically or through event generation. 

8.2 Conclusions 

8.2.1 The justification for a dedicated Performance Controller 

It is clear that there is an increasing requirement to improve compressor 

performance in terms of fuel consumption and gas delivery, without repeated 

operator intervention. Improved performance can partially abate increasing 

pressures to meet increasingly stringent environmental emissions restrictions. It 

is likely that, as Climate Change mechanisms are brought into place, direct 

financial penalties will result as a consequence of failure to curb emissions. 

Improved fuel efficiency can result in reductions in fuel gas costs, improving 

margins in increasingly competitive markets. Indications are that significant 

economies of scale are to be made with a performance controller that can 

achieve even a modest reduction in fuel gas consumption. There is a definite 

requirement for a flexible performance controller that can be integrated within 

both new, and existing compressor control installations. 
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8.2.2 Research into Neural Networks and Compressor Characteristics 

The results of the testing are clearly indicative that neural networks can 

"learn" compressor head characteristics. The most rigorous test case, comprising 

a random data set of operating points, suggest that compressor speed may be 

estimated to within ± 2.5% of the speed required to meet a given flow rate for a 

given discharge pressure constraint, see section 5.6. Since the neural network 

trains on actual operating data no assumptions regarding invariant parameters 

are required. In a similar vein, the method can be applied to any combination of 

inputs associated with invariant parameter based compressor control e.g. 

suction throttling or reduced parameter control. 

The compressor head map characteristic is clearly shown to be best 

represented by MLP type feed forward networks. Results for RBF networks 

indicate a comparable average error level but exhibit larger instantaneous errors 

in speed. These are believed to be associated with speed extrapolation outside 

the RBF trained domain, see sections 5.6.7.2 and 5.7.5. 

The research into the use of neural networks to represent compressor 

characteristics, as described in this thesis, is believed to be novel. 

8.2.3 Operational advantages of Neural Network based MPC 

The use of supervised training techniques will allow a neural network to be 

trained with actual compressor data from live plant. The neural network can be 

re-trained (or replaced) to reflect changes in compressor characteristics with 

time. The decision to update compressor characteristics can be left to the 

experience of Operations Staff and will not require intervention by modeling 

experts or mathematicians. Hence the neural network will embody the 

"knowledge" of Operations Staff, one element of a knowledge based or expert 

system. This knowledge will facilitate goal-oriented operation of the 

compressor i.e. longer-term goal oriented, surge free operation. Automated 
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performance control can free up compression capacity and avoid human errors 

induced by operator intervention. 

The compressor performance control system, based on "learning" neural 

networks, is believed to be novel. The control system can be adapted to 

represent changed compressor characteristics through re-training the neural 

networks model(s). No mathematical or modeling expert intervention is 

required. This flexibility surpasses existing state of the art performance control 

systems. 

8.2.4 Implementation and Implications of Performance Control 

The neural network head map model can be incorporated in a model 

predictive control scheme to estimate compressor speed. Using critical process 

parameters as inputs, the speed estimate can be used for controlling compressor 

throughput with compressor speed as the controlled variable. The controlled 

variable set point can be specified in absolute units in vector space. This aspect 

of the research is believed to be previously untried in the context of compressor 

control and hence constitutes original research. 

The use of an absolute variable, compressor speed, as opposed to a relative 

variable, ratio of COP line to surge line gradient, is believed to be novel in the 

field of compressor control. In these respects, the research described in this 

thesis constitutes a novel contribution to compressor control. 

Aside from the potential emissions and cost savings there are control benefits 

from the performance controller as described in section 7.2. Implicit in the 

performance control is improved anti-surge control since the neural network 

will not embody surge data - the neural network model will not learn how to 

surge. A conditional stability has been described in section 2.4.4 that, identifies 

that there is only one unconditionally stable point of operation for fixed process 

conditions. This point is where the compressor is in dynamic equilibrium with 
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the process when the throughput and discharge pressure are balanced. It is this 

compressor speed for this point which is identified by the neural network 

model. In effect the performance controller will attempt to drive the compressor 

into a dynamic balance with the process load. 

8.2.5 Generic Expert System 

The idea of dynamic balance and equilibrium operating point was described 

in section 2.6, relating to control issues with a micro-hydrogenerator. Given the 

similarities between compressor and micro-hydrogenerator operating 

equilibrium points there is merit in considering the performance control of 

compressors as an exercise in operating at natural equilibrium points 

determined by the process "load". Most rotating machinery equipment is 

designed to deliver a throughput or a head for a given set of conditions and 

constraints. As described the performance controller could be applied to any 

rotating equipment system. Identification of the critical process variables and 

description of an adequate rule set would be required for each system. As such 

the performance controller is generic model of an expert system for the 

performance control of rotating machinery. 

8.2.6 Comparisons with conventional MPC performance controllers 

Cordiner [14], reported simulated fuel gas savings, of 5% between 

conventional load sharing (equidistant) and the fuzzy logic based (non­

equidistant) load-sharing controllers. It was further stated that the fuzzy 

optimiser would predict compressor speed to approximately 5%1. 

1 Verbal statement by S. Cordiner. 
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Applying those figures to the neural network performance controller would 

indicate that incremental fuel gas savings of approximately 8% are possible on 

the basis that the compressor speed is estimated to within 2.5%. 

On the global consumption estimates [1] this equates to a saving of 34 million 

tonnes of C02 per year and an energy saving of 205PJ (lPJ = 1015J). 

8.3 Suggestions for Further Work 

8.3.1 Reduced Field Inputs to Measure Compressor Performance 

The research into normalised flow and head coefficients suggests that three, or 

even two, parameters are required to train a neural network to represent 

compressor performance characteristics. Further research could be undertaken 

to confirm the validity of these findings and to extend them into a new control 

technique using fewer field inputs. Coupled with research into surge control, 

based on neural network technology, this could revolutionise, and greatly 

simplify, compressor control philosophy. 

8.3.2 Surge Prediction 

The proposed system could be developed for a discrete controller if 

constraints on neural network architecture are acceptable, in terms of 

compressor speed accuracy. As a discrete controller, with shorter system 

response time scales, a surge control algorithm, based on neural network time 

step prediction could be researched. With reference to Greitzers dynamic model 

equations, see section 3.1, two the compressor parameters, namely mass flow 

rate and compressor pressure rise can be represented by measured values. These 

are the measured flow meter differential pressure and suction and discharge 

pressures. The rates of change of these parameters represent dynamic 

compressor behaviour and could be used as inputs to train a neural network to 
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predict compressor surge. It is recognised that a patent [117] for surge 

prediction, based on rates of approach to surge, exists, but it is believed that this 

is not implemented with neural networks. The surge prediction scheme could be 

similar to a continuously stirred tank reactor (CSTR) control scheme described 

by Bhat [91]. This scheme features a neural network reagent predictor that has a 

time step look ahead capability. Suggested inputs and outputs could be as 

shown in Figure 8.1. 

P discharge .. 

>1 dPdischarg e 

dt 
Surge Predictor 
Neural Network 

Surge flag 
~I ~P 

:> d~P 

dt 

Figure 8.1 - Surge Prediction Scheme 

The absolute discharge pressure and flow meter differential provide 

"location" information in the compressor performance map. The differential 

terms provide information regarding the next likely value of parameter and so 

head map location. Large values of dilP accompanied by small values of dP are 
~ ~ 

indicative of surge line proximity. The training target could be the compressor 

surge condition in n-time steps. The output could be a digital state of 'surge' or 

'no surge'. As an alternative the output could be an analogue of "propensity to 

surge", decided by a fuzzy rule base. 
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8.3.3 Fuel consumption optimiser 

In the proposed performance control scheme, the operator on the basis of a 

merit order would plan the required flow rate for each compressor. The merit 

order can be represented as a ranking, or digit. This information could be 

represented in a scheduling neural network such that the operator need only 

enter the compressor station throughput. The scheduler neural network would 

then output individual compressor flow rates and the performance controller 

for each would track monitor throughput. A schematic of the scheduler neural 

network inputs and outputs is shown in Figure 8.2 

Station throughput 

Compressor I rank 

Compressor 2 rank 

Compressor 3 rank 

Compressor 4 rank 

Scheduler neural 
network 

Compressor I flow rate 

Compressor 2 flow rate 

Compressor 3 flow rate 

Compressor 4 flow rate 

Figure 8.2 - Compressor Scheduler Neural Network 

8.3.4 Reliability Centred Maintenance (RCM) Aid 

Whilst performance control is the primary concern here, there is potential to 

develop a diagnostic aid to assess compressor performance. Several neural 

networks might be trained throughout the compressor life either by time or by 

event using actual operating data. Compressor performance can be tracked and 

deterioration monitored to construct a Reliability Centred Maintenance, RC M, 
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programme tailored to each compressor in situ. This could lead to reduced 

compressor downtime and reduced maintenance costs. An indication of drift in 

compressor performance could be determined from the frequency at which the 

compressor performance map neural network was being updated. 
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NOVA Chemicals' News 
Thursday, October 14, 1999 

Temporary shutdown of NOVA Chemicals' Corunna, Ontario 
olefins facility: 

Estimated three-week outage for repairs to charge gas compressor 

FOR IMMEDIATE RELEASE 
SARNIA, Canada - NOVA Chemicals Corporation (NOVA Chemicals) announced 
today that it is shutting down its Corunna, Ontario olefins facility for approximately 
th ree weeks to repair the charge gas compressor. The outage is required due to 
higher-than-normal vibrations occurring in the compressor. The repairs are 
necessary to ensu re the compressor operates safely and reliably in the winter 
months and beyond. 
NOVA Chemicals has the necessary replacement parts on site and the outage and 
repairs will begin immediately. The financial impact of the outage - including lost 
sales, costs of the repairs and increased logistics costs - is currently estimated at 
U.S. $10 million (after tax). The company expects that the financial impact will be 
recorded in the fourth quarter of this year. 
NOVA Chemicals has advised its ethylene, propylene and chemical and energy 
products customers that the company will be allocating supply of these products 
during the outage. 
NOVA Chemicals is working to minimize the impact of this shut down on 
polyethylene customers by drawing down inventories and coordinating customer 
needs. It is expected that NOVA Chemicals' two polyethylene plant sites in the 
Sarnia region (Moore and St. Clair) will undergo temporary outages over the next 
three weeks as ethylene inventories decline. 
Ethylene is also used as a feedstock at NOVA Chemicals' styrene plant at Sarnia. 
The styrene plant will operate at reduced capacities. The company is working with 
its styrene monomer and polystyrene customers to minimize the impact of the 
outage. 
The Corunna facility (in the Sarnia, Ontario region) produces ethylene, propylene, 
and chemical and energy products, with the following annual production capacities: 

• 1.6 billion pounds of ethylene; 
• 750 to 875 million pounds of propylene; and 
• 3,250 to 3,750 million pounds of chemical and energy products. 

NOVA Chemicals Corporation produces styrenics and olefins/polyolefins at 18 
facilities in the U.S., Canada, France and the United Kingdom. NOVA Chemicals 
Corporation also has two equity investments: Methanex Corporation (27% owned), 
the world's largest and lowest cost producer of methanol; and Dynegy Inc. (25% 
owned), a major North American energy services provider. NOVA Chemicals 
Corporation shares trade on the New York, Toronto, Montreal and Alberta 
exchanges under the trading symbol NCX. 
Visit NOVA Chemicals on the Internet at www.novachem.com 
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21000rpm 22000rpm 22300rpm 20000rpm 19000rpm 18000rpm 17000rpm 16000rpm 

Qa-m3/s Ha-kJ/kg Qa-m3/s Ha-kJ/kg Qa-m3/s Ha-kJ/kg Qa-m3/s Ha-kJ/kg Qa-m3/s Ha-kJ/kg Qa-m3/s Ha-kJ/kg Qa-m3/s Ha-kJ/kg Qa-m3/s Ha-kJ/kg 

0.264325 121.0643 0.276912 132.8688 0.280689 136.5172 0.251739 109.8089 0.239152 99.10255 0.226565 88.94522 0.213978 79.33694 0.201391 70.27771 

0.283206 120.1698 0.296692 131.887 0.300738 135.5084 0.26972 108.9975 0.256234 98.37026 0.242748 88.28799 0.229262 78.75071 0.215776 69.75841 

0.311526 119.2752 0.326361 130.9052 0.330811 134.4997 0.296692 108.1861 0.281857 97.63798 0.267023 87.63076 0.252188 78.16447 0.237354 69.23912 

0.330407 117.7843 0.346141 129.2689 0.350861 132.8184 0.314673 106.8338 0.29894 96.4175 0.283206 86.53537 0.267472 77.18742 0.251739 68.37363 

0.358727 116.2933 0.37581 127.6326 0.380934 131.1372 0.341645 105.4815 0.324563 95.19703 0.307481 85.43999 0.290398 76.21036 0.273316 67.50814 

0.377608 113.3711 0.395589 124.4254 0.400984 127.842 0.359627 102.8309 0.341645 92.8049 0.323664 83.29304 0.305683 74.29533 0.287701 65.81178 

0.396488 111.5223 0.415369 122.3964 0.421033 125.7572 0.377608 101.154 0.358727 91.29151 0.339847 81.93476 0.320967 73.08378 0.302086 64.73858 

0.424809 105.2604 0.445038 115.5238 0.451107 118.696 0.40458 95.47425 0.384351 86.16551 0.364122 77.33414 0.343893 68.98015 0.323664 61.10352 

0.443689 99.59479 0.464817 109.3058 0.471156 112.3072 0.422561 90.33541 0.401433 81.52771 0.380305 73.17168 0.359177 65.26734 0.338049 57.81466 

0.46257 93.92922 0.484597 103.0879 0.491205 105.9185 0.440542 85.19657 0.418515 76.88991 0.396488 69.00922 0.374461 61.55452 0.352434 54.52581 

0.48145 84.98358 0.504376 93.26996 0.511254 95.83103 0.458524 77.08261 0.435598 69.56706 0.412671 62.43692 0.389745 55.69219 0.366819 49.33287 

0.49089 74.547 0.514266 81.81576 0.521279 84.06231 0.467514 67.61633 0.444139 61.02373 0.420763 54.76922 0.397387 48.8528 0.374012 43.27445 

Volumetric flow rate, Qa (m3/s) is shown in the left most column for each compressor speed (rpm) shown in the top row. All other values are compressor isentropic head, Ha 
(ld/kg) arranged in corresponding columns of speed. The row of highest flow rates is the choked flow boundary. The row of lowest flow rates is the surge boundary. 
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"Optimal" Search, input sub sets "Extensive" Search, input subsets 

Net. Type Inputs Hidden Error Type Inputs Hidden Error l 
1 L Ts, Td, dp - 395 MLP Pd,Td,dp 3 25 

2 L Ts, Td, dp - 395 MLP Td,dp 6 26 

3 MLP Pd,dp 6 52 MLP Pd, Td, dp 7 32 

4 L Ts, Td, dp - 395 MLP Pd, Td, dp 6 36 

5 MLP Pd,dp 5 59 MLP Pd,Td,dp 4 28 

6 MLP Pd,Td,dp 4 44 MLP Pd,Td,dp 5 29 

7 MLP Pd,dp 6 59 MLP Pd,Td,dp 9 30 

8 L Ts, Td, dp - 395 MLP Pd,Td,dp 5 38 

9 L Ts, Td, dp - 395 MLP Td,dp 6 31 

10 MLP Pd, Td,dp 6 51 MLP Pd,Td,dp 5 28 

11 MLP Pd, Td,dp 6 33 MLP Pd,Td,dp 11 29 

12 L Ts, Td, dp - 395 MLP Pd,Td,dp 9 37 

13 MLP Td,dp 2 351 MLP Td,dp 6 25 

14 MLP Td,dp 4 52 MLP Pd,Td,dp 5 24 

15 MLP Pd,dp 2 342 MLP Pd,Td,dp 5 37 

16 L Ts, Td, dp - 395 MLP Td,dp 9 31 

17 L Ts, Td, dp - 395 MLP Pd, Td, dp 6 35 

18 MLP Td,dp 5 361 RBF Pd,Td,dp 7 43 

19 L Pd,Td,dp - 395 MLP Td,dp 6 44 

20 MLP Pd,Td,dp 3 49 MLP Pd,Td,dp 7 40 

21 MLP Pd,pd 4 60 MLP Pd,Td,dp 7 40 

22 L Pd, Ts, Td, dp - 484 MLP Pd,Td,dp 5 38 

23 L Ts, Td,dp - 433 MLP Pd,Td,dp 4 34 

24 MLP Pd, Td, dp 7 48 MLP Td,dp 7 37 

25 RBF Pd,dp 4 242 MLP Td,dp 9 40 

26 L Pd, Ts, Td, dp - 397 MLP Pd,Td,dp 6 37 

27 MLP Pd,Td,dp 7 37 MLP Pd,dp 5 34 

28 L Pd, Ts, Td, dp - 475 MLP Td,dp 9 38 

29 RBF Pd,Td,dp 2 1309 MLP Pd,Td,dp 6 35 

30 MLP Pd,Td,dp 6 41 MLP Td,dp 3 40 

Table C1: Data Set 11 Initial Networks Searches 
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"Extensive" Search, input subsets "Extensive" Search, forced inputs 

Net. Type Inputs Hidden Error Type Inputs Hidden Error 

1 MLP Pd,Td,dp 3 25 MLP All 9 23 

2 MLP Td,dp 6 26 MLP All 10 27 

3 MLP Pd,Td,dp 7 32 MLP All 7 25 

4 MLP Pd,Td,dp 6 36 MLP All 5 23 

5 MLP Pd,Td,dp 4 28 MLP All 12 28 

6 MLP Pd,Td,dp 5 29 MLP All 13 20 

7 MLP Pd,Td,dp 9 30 MLP All 10 26 

8 MLP Pd,Td,dp 5 38 MLP All 11 22 

9 MLP Td,dp 6 31 MLP All 17 23 

10 MLP Pd,Td,dp 5 28 MLP All 15 24 

11 MLP Pd,Td,dp 11 29 MLP All 10 19 

12 MLP Pd,Td,dp 9 37 MLP All 4 24 

13 MLP Td,dp 6 25 MLP All 8 23 

14 MLP Pd,Td,dp 5 24 MLP All 8 23 

15 MLP Pd,Td,dp 5 37 MLP All 10 26 

16 MLP Td,dp 9 31 MLP All 6 24 

17 MLP Pd,Td,dp 6 35 MLP All 6 24 

18 RBF Pd,Td,dp 7 43 MLP All 4 22 

19 MLP Td,dp 6 44 MLP All 6 26 

20 MLP Pd,Td,dp 7 40 MLP All 4 27 

21 MLP Pd,Td,dp 7 40 MLP All 13 26 

22 MLP Pd,Td,dp 5 38 MLP All 8 26 

23 MLP Pd, Td,dp 4 34 MLP All 8 25 

24 MLP Td,dp 7 37 MLP All 8 26 

25 MLP Td,dp 9 40 MLP All 5 23 

26 MLP Pd,Td,dp 6 37 MLP All 10 25 

27 MLP Pd,dp 5 34 MLP All 12 27 

28 MLP Td,dp 9 38 MLP All 13 19 

29 MLP Pd,Td,dp 6 35 MLP All 6 24 

30 MLP Td,dp 3 40 MLP All 14 22 

Table C2: Extensive Architecture Searches 
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"Extensive" Search, forced inputs "Extensive" Search, new splits 

Net. Type Inputs Hidden Error Type Inputs Hidden Error 

1 MLP All 9 23 MLP All 6 26 

2 MLP All 10 27 MLP All 9 26 
, 

3 MLP All 7 25 MLP All 14 18 

4 MLP All 5 23 MLP All 6 35 

5 MLP All 12 28 MLP All 17 30 

6 MLP All 13 20 MLP All 7 27 

7 MLP All 10 26 MLP All 8 22 

8 MLP All 11 22 MLP All 5 38 

9 MLP All 17 23 MLP All 9 31 

10 MLP All 15 24 MLP All 5 28 

11 MLP All 10 19 MLP All 17 31 

12 MLP All 4 24 MLP All 8 47 

13 MLP All 8 23 MLP All 10 35 

14 MLP All 8 23 MLP All 11 33 

15 MLP All 10 26 MLP All 6 30 

16 MLP All 6 24 MLP All 9 32 

17 MLP All 6 24 MLP All 3 36 

18 RBF All 4 22 MLP All 7 32 

19 MLP All 6 26 MLP All 6 52 

20 MLP All 4 27 MLP All 16 25 

21 MLP All 13 26 MLP All 4 34 

22 MLP All 8 26 MLP All 8 34 

23 MLP All 8 25 RBF All 19 33 

24 MLP All 8 26 MLP All 13 40 

25 MLP All 5 23 MLP All 3 24 

26 MLP All 10 25 MLP All 3 30 

27 MLP All 12 27 MLP All 19 34 

28 MLP All 13 19 MLP All 8 26 

29 MLP All 6 24 MLP All 5 29 

30 MLP All 14 22 MLP All 8 33 
,~ ~- ~--

Table C3: Forced Input Sets 
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