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Abstract 26 

 27 

Background and aims: Circulating progenitor cells (CPCs) play an important role in 28 

vascular repair and can influence cardiovascular (CV) health and longevity. Exercise 29 

is known to modulate these cells via mobilization from the bone marrow. The primary 30 

aims of this study were to evaluate the association of CPCs with mortality and explore 31 

the association between physical activity (PA) and CPCs. 32 

Methods: 1,751 individuals from the Framingham Offspring cohort (66 ± 9 years [40-33 

92 years], 54% female) were included in the study. CPCs (CD34+, CD34+CD133+, 34 

CD34+CD133+KDR+) were measured by flow cytometry. Multivariable Cox 35 

regression analyses were performed to investigate relationship of CPCs with future 36 

CV event and mortality. Multivariate regression analyses were performed to 37 

determine the relationship between self-reported PA and CPC counts.  38 

Results: Following adjustment for standard risk factors, there was an inverse 39 

association between CD34+ CPCs and all-cause mortality (hazard ratio (HR) per unit 40 

increase in CD34+, 0.79; 95% CI 0.64 – 0.98, p=0.036). CD34+CD133+ CPCs were 41 

inversely associated with CV mortality (HR 0.63, 95% CI 0.44 – 0.91, p=0.013). 42 

Associations of CD34+ and CD34+CD133+ with mortality were strongest in 43 

participants with pre-existing CVD. PA was associated with CD34+ CPCs only in 44 

CVD participants (PA Index: β=0.176, p=0.003; moderate-to-vigorous [MVPA]: 45 

β=0.159, p=0.007). This relationship was maintained after adjustment for 46 

confounding variables. 47 

Conclusions: A higher number of CD34+ and CD34+ CD133+ CPCs was inversely 48 

associated with all-cause and CV mortality. These associations were strongest in 49 
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participants with CVD. PA is independently associated with CD34+ CPCs in 50 

individuals with CVD only, suggestive of greater benefit for this population group. 51 

 52 

 53 
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1. Introduction 75 

 76 

Circulating progenitor cells (CPC) are a heterogenous group of cells which have 77 

tissue regenerative potential. A number of studies have shown that CD34+ CPCs and 78 

several subsets of CD34+ cells (such as CD34+CD133+/KDR+) can participate in 79 

vascular repair and growth [1–3], and may be associated with vascular endothelial 80 

function [4,5]. Therefore, these cells may reflect vascular integrity and have been 81 

used as biomarkers of vascular repair [6]. CD34+ CPCs are a diverse group of 82 

progenitors, consisting of both hematopoietic and non-hematopoietic CPCs [7], with 83 

CD133 and KDR often used as more definitive antigen markers for endothelial 84 

progenitor cells (EPC) [8].   85 

 86 

A low number of these CPCs is associated with vascular dysfunction [4,9] and 87 

subsequent greater cardiovascular (CV) risk [10,11]. Observational studies have 88 

shown that individuals with cardiovascular disease (CVD) exhibit lower number and 89 

angiogenic function of these CPCs [12], reflecting reduced vascular repair capacity. 90 

Studies have demonstrated that in individuals hospitalized with heart failure [13], or 91 

with acute coronary syndromes [14], low number of CD34+ CPCs predicts earlier 92 

mortality in these patients compared to patients with high numbers of CD34+ CPCs, 93 

which suggests impaired vascular repair capacity in those with higher mortality risk. 94 

Whilst there are no studies that have investigated the role of CD34+ CPCs and 95 

associated subsets in predicting clinical endpoints in a heterogeneous human 96 

population, there is evidence to suggest that these CPCs are reflective of subclinical 97 

atherosclerotic risk in an apparently healthy population [12]. 98 

 99 
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Lifestyle behaviors can significantly affect CV health. Smoking [15], physical 100 

inactivity [16] and obesity [17] are associated with perturbed vascular health, leading 101 

to greater risk of mortality. Physical activity, known for its effect on improving 102 

vascular function [18,19] may do so in part via modulating CPC content and/or 103 

function. Studies investigating acute [20–23] and chronic exercise training [24,25] 104 

have demonstrated that progenitor cells can be mobilized into peripheral blood 105 

compartment in humans, where they can exert their vaso-reparative functions. 106 

However, the efficacy of exercise training to promote progenitor cell number has been 107 

argued, with recent evidence demonstrating little or no change in CPC number in 108 

humans after exercise training [6]. As yet, there is no evidence from large cohorts 109 

investigating the association between physical activity and CPCs, with subsequent 110 

patient subgroup (CVD vs CVD-free) analysis to determine if physical activity is 111 

more strongly associated with CPCs in either population. 112 

 113 

The primary aim of this study was to investigate the prognostic potential of CD34+ 114 

CPCs on all-cause and CV mortality, with the secondary aim to investigate the 115 

relationship between self-reported physical activity on CPCs in a large cohort. It was 116 

hypothesized that circulating CD34+ CPCs and subpopulations would predict 117 

mortality, and that these cells are associated with self-reported physical activity 118 

levels. 119 

 120 

 121 

 122 

 123 

 124 
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2. Materials and methods 125 

 126 

2.1 Study sample 127 

 128 

The Framingham Heart Study (FHS) is a longitudinal community-based cohort set up 129 

in 1948 under the direction of the National Heart, Lung, and Blood Institute (NHLBI) 130 

aimed to determine factors that contribute to the onset and progression of 131 

cardiovascular disease (CVD) [26]. Subsequently, an Offspring cohort was included 132 

from 1971 [27]. Participants (n=3,002) in the Framingham Offspring cohort who 133 

attended the 8th examination cycle (2004-2008) were eligible for our retrospective 134 

investigation, with n=1,751 included in the study due to availability of key data 135 

(circulating progenitor cells, self-report physical activity levels, follow-up data; see 136 

Figure 1). Participant characteristics are shown in Table 1. 137 

 138 

This study complies with the Declaration of Helsinki. Ethical approval for all data 139 

collection and research purposes was granted by Boston University Medical Centre, 140 

and written informed consent was obtained for the collection and use of the data 141 

available for secondary investigators. Edinburgh Napier University Research Ethics 142 

and Integrity Committee approved the use of the secondary dataset for the purposes of 143 

the study.  144 

 145 

2.2 Clinical assessment 146 

 147 

All participants underwent a clinical and risk factor assessment including assessment 148 

of blood pressure, height and body mass. Fasting blood samples were drawn for 149 
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quantification of glucose, glycated hemoglobin (HbA1c), total cholesterol, and high 150 

density lipoprotein cholesterol (HDL-C), and triglycerides.  151 

 152 

2.3 Quantification of circulating progenitor cells 153 

 154 

Blood samples were collected from participants in the fasted state to quantify CPC 155 

counts. Blood samples were centrifuged and the peripheral blood mononuclear cells 156 

(PBMCs) were isolated for cell phenotyping as previously described [28]. PBMCs 157 

were stained with anti-CD34 FITC, anti-CD133 APC and anti-KDR-PE antibodies 158 

(all BD Biosciences). CD34+ cells were gated for subsequent expression of CD133 159 

and finally KDR. Total progenitor cells are defined as CD34+ cells, and EPCs are 160 

defined as CD34+CD133+ and CD34+CD133+KDR+ cells. Analysis of flow cytometry 161 

files were performed using FlowJo analysis software (Treeestar, Inc.) and reviewed 162 

by investigators blinded to the identity of the participants. 163 

 164 

2.4 Endothelial cell colony forming cells (ECFC) 165 

 166 

In 1653 participants, PBMCs were also used to assess endothelial cell colony forming 167 

cells (ECFC). PBMCs were cultured on fibronectin-coated tissue culture plates (BD 168 

Biosciences) and cultured for 7 days. After 7 days of culture, the number of colonies 169 

in each well was counted by a single blinded individual. ECFC number was reported 170 

as average number of colonies per well up to 12 wells.  171 

 172 

 173 

 174 
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2.5 Mortality and event incidence 175 

 176 

Follow up (average: 9 ± 2 years; total: 15,587 person follow-up years) was conducted 177 

for primary end points of all-cause and CV death. Cause of death was determined 178 

through medical history, review of medical records, death certificate, interview of 179 

next of kin, and review of the National Death Index. CV death was defined as death 180 

attributed to ischemic cause (fatal myocardial infarction, stroke). CV event risk was 181 

only assessed in individuals with no pre-existing CVD or CV event occurring before 182 

exam 8 (n = 1467). CV event or incident CVD was assessed using the standard 183 

Framingham Heart Study criteria and included the following: new-onset angina, fatal 184 

and non-fatal MI or stroke, heart failure or intermittent claudication. 185 

 186 

2.6 Self-reported physical activity levels  187 

 188 

Self-reported sleep, sitting time, light, moderate and heavy activity were determined 189 

using a physical activity questionnaire employed by the Framingham Heart Study. 190 

The number of hours of certain activity per week was collected. A composite score 191 

was calculated (physical activity index; PAI), for each participant by weighting a 24 h 192 

activity recall. Participants were asked to report the number of hours in a typical day 193 

spent sleeping (weighting factor [WF] = 1) and in sedentary (WF = 1.1), slight 194 

(WF = 1.5), moderate (WF = 2.4), and heavy activities (WF = 5) [29]. PAI was 195 

subsequently calculated by adding the products of the hours spent at each activity 196 

domain and their weighting factor based on the oxygen requirements for said activity 197 

[30]. 198 

 199 
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2.7 Statistical analysis 200 

 201 

Continuous variables were assessed for normality by assessing histograms and Q-Q 202 

plots. Data for CD34+, CD34+CD133+KDR+, CD34+CD133+ and PAI were natural 203 

log transformed and EFCFs were square root transformed. Appropriate data 204 

transformations were applied when relevant prior to further statistical analysis. 205 

Participants with missing data were excluded and thus complete-case analyses were 206 

performed. All participants were categorized into tertiles for each CPC measure for 207 

event and mortality risk analyses using Kaplan-Meier curve and log-rank analyses. 208 

Subsequent Cox proportional hazards regression analyses were performed, utilizing 209 

transformed continuous data for CPC. Cox proportional hazards regressions were 210 

performed unadjusted and adjusted for age, sex, BMI, PAI, CVD and diabetes status, 211 

smoking status. To investigate the effects of CVD status, the data set was split and 212 

analyses repeated for those free of CVD at exam 8 (n = 1467) and those with a CVD 213 

diagnosis prior to exam 8 (n = 284). Proportional hazards assumptions for each of the 214 

Cox models were evaluated by plots of Schoenfeld residuals. 215 

 216 

To assess the influence of physical activity on CPC counts, linear regression analyses 217 

were performed to assess the relationship between CPC counts and PAI. A subset of 218 

physical activity, moderate + heavy activity time, was also investigated. Unadjusted 219 

and adjusted analyses are displayed. Data analyses were carried out using RStudio 220 

Team (2019, RStudio: Integrated Development for R. RStudio, Inc, Boston, MA: 221 

http://www.rstudio.com/). p-values of <0.05 were considered statistically significant.  222 

 223 

 224 
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3. Results 225 

 226 

3.1 Relationship between CPC Counts and adverse events 227 

 228 

3.1.1 All-cause mortality 229 

Kaplan Meier curves based on tertiles of CPC counts and all-cause mortality are 230 

shown in Figure 2 A-D. In unadjusted Cox proportional hazard models, increases in 231 

CD34+ and CD34+CD133+ CPCs were significantly associated with a decreased risk 232 

of death (p<0.001, p=0.001; Table 2). Following adjustment, increases in CD34+ 233 

remained significantly associated with a decreased risk of death (p=0.036). Whilst 234 

there was a trend for CD34+CD133+ on all-cause mortality, this did not reach 235 

statistical significance (p=0.07). No significant associations were observed for all-236 

cause mortality for CD34+CD133+KDR+ EPCs or ECFC (all p>0.05; Table 2). 237 

 238 

3.1.2 Cardiovascular mortality 239 

Kaplan Meier curves based on tertiles of CPC counts and CV mortality are shown in 240 

Figure 2 E-H. In unadjusted Cox proportional hazard models, increases in CD34+ 241 

and CD34+CD133+ CPCs were significantly associated with a decreased risk of CV 242 

death (p=0.008, p=0.006; Table 2). Following adjustment, CD34+CD133+ CPCs 243 

were significantly associated with a decreased risk of CV death (p=0.013). Whilst 244 

there was a trend for CD34+ on CVD mortality, this did not reach statistical 245 

significance (p=0.055). No other significant associations were observed for CVD 246 

mortality (all p>0.05; Table 2). 247 

 248 

 249 
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 250 

3.2 Relationship between CPC counts and adverse events- influence of CVD status 251 

 252 

3.2.1 All-cause mortality 253 

Kaplan Meier curves based on tertiles of CPC counts and all-cause mortality for those 254 

free of CVD and those with CVD at exam 8 are shown in Supplementary Figure 1. 255 

Unadjusted and adjusted Cox proportional hazard models for CPC counts are 256 

displayed in Table 3. Following adjustment, increases in CD34+ and CD34+CD133+ 257 

CPCs were significantly associated with a decreased risk of death in those with CVD 258 

at exam 8 (p=0.032, p =0.003). No other significant associations were observed for 259 

all-cause mortality (all p>0.05; Table 3). 260 

 261 

3.2.2 Cardiovascular mortality 262 

Kaplan Meier curves based on tertiles of CPC counts and CV mortality for those free 263 

of CVD and those with CVD at exam 8 are shown in Supplementary Figure 1. 264 

Unadjusted and adjusted Cox proportional hazard models for CPC counts and CV 265 

mortality are displayed in Table 3. In unadjusted and adjusted Cox proportional 266 

hazard models, increases in CD34+ and CD34+CD133+ CPCs were significantly 267 

associated with a decreased risk of CV mortality in the CVD present at exam 8 group 268 

(all p<0.05, Table 3). No other significant associations were observed for CV 269 

mortality in either of the sub-groups (all p>0.05). 270 

 271 

3.2.3 Cardiovascular events 272 

Cox proportional hazard analysis was performed in the population free of CVD for 273 

incidence of future CV events. ECFCs were significantly associated with a decreased 274 
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risk of future CV events (p=0.046, Supplementary Table 1). There was no 275 

association between CPC counts and CV event risk for all other measures (all 276 

p>0.05). 277 

 278 

3.3 Association of physical activity with CPC counts  279 

 280 

To assess the association between physical activity and CPC counts, both unadjusted 281 

and adjusted linear regressions were performed. In unadjusted and adjusted analyses, 282 

PAI and moderate + heavy activity hours were not associated with any CPC subset or 283 

with ECFC units. However, in the CVD group, after adjusting for confounders, both 284 

PAI and moderate + heavy activity time were positively associated with CD34+ CPCs 285 

and were the only significant predictors of the number of these cells (Table 4 and 286 

Supplementary Table 2). Physical activity was not associated with CD34+CD133+, 287 

CD34+CD133+KDR+ CPCs or ECFC counts, both in univariate and multivariate 288 

analyses. Light activity time was not significantly associated with CD34+, 289 

CD34+CD133+, CD34+CD133+KDR+ or ECFC counts (all p>0.05). 290 

 291 

4. Discussion 292 

 293 

Our main findings were that CD34+ and CD34+CD133+ CPCs were significant 294 

predictors of all-cause and CV mortality in the Framingham Offspring cohort, driven 295 

primarily by the strength of this association in individuals with CVD. Additionally, 296 

increase in self-reported physical activity is positively associated with higher CD34+ 297 

CPCs in our CVD cohort after adjustment for confounders, a relationship not evident 298 

in our CVD-free cohort. Together, these findings suggest that the observed protection 299 
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of increased CD34+ CPCs on mortality in a diseased population is partly driven by the 300 

physical activity levels of individuals. 301 

 302 

Several small studies have investigated the prognostic potential of CPCs as 303 

biomarkers of vascular repair for predicting incident risk of all-cause and/or CV 304 

death. These studies have demonstrated that these cells can predict mortality or 305 

clinical end-points in several disease populations, for example patients with coronary 306 

artery disease [31], acute coronary syndromes [14], heart failure [13], or type 2 307 

diabetes [32]. Our data support these observations, with CD34+ and CD34+CD133+ 308 

CPCs predictive of all-cause and CV mortality. Interestingly, this association was 309 

absent in the CVD-free population and driven mainly by a strong association with 310 

mortality in individuals with pre-diagnosed CVD, suggestive that the prognostic 311 

potential of these cells is much stronger in disease populations, and offers little 312 

predictive potential, if any, in apparently healthy populations. Interestingly, 313 

CD34+CD133+KDR putative EPCs and ECFCs showed no predictive ability for all-314 

cause or CV death in our study.  315 

 316 

In the largest study investigating the role of CPCs on incident risk prediction in a 317 

CVD cohort, Patel and colleagues [31] observed that, like our study, only CD34+ and 318 

CD34+CD133+ CPCs were predictive of mortality. In 2 cohorts, each over 400 319 

patients (n=905 pooled), Patel et al. [31] showed that increases in both these 320 

progenitor subsets showed a significant inverse association with all-cause and CV-321 

mortality, and that CD34+CD133+KDR+ cells, like our data, showed no association 322 

with mortality, with Werner et al. [33] also demonstrating little prognostic potential 323 

for KDR+ EPCs on all-cause death, MI and stroke, however, they did show a 324 
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significant association with CV mortality, which was defined as death from acute MI, 325 

CAD, or congestive heart failure. It is likely that differences in definition of CV death 326 

between these studies may explain the different findings. Our data in >1700 327 

individuals, however, specifically shows that the associations of CD34+ and 328 

CD34+CD133+ with all-cause and CV mortality are driven by their prognostic 329 

strength in individuals with CVD, and not those who are CVD-free. It is likely that 330 

these cells play a more important role in CVD when the vascular system is in a state 331 

of constant damage, and that a lower number of these cells in these patients reflects 332 

exhaustion of the progenitor cell pool. Interestingly, our data indicated that ECFC 333 

numbers were predictive of future CV event incidence in CVD-free participants, 334 

potentially emphasizing the possibly more sensitive cell culture measures of vascular 335 

repair as opposed to flow cytometric measures. However, ECFCs showed no other 336 

association with all-cause or CV mortality in either population group. 337 

 338 

Both CD34+ and CD133+ progenitor cells have vascular regenerative capabilities 339 

[2,34–36]. These cells, reported initially to have pro-angiogenic capabilities due to the 340 

potential to differentiate into endothelial cells [3], most probably work in a paracrine 341 

manner, through secretion of vasoactive and proangiogenic factors, such as VEGF 342 

and other pro-angiogenic cytokines [36]. Due to their potential vasculo-reparative 343 

capacities, clinical studies have been undertaken to assess their efficacy as cellular 344 

therapies to promote recovery of blood flow in myocardial infarction and stroke 345 

studies. Clinical studies showing implantation or injection of these cell types show 346 

promise in repair of damaged myocardium in animal models [1] and in some human 347 

studies [37,38], however, due to the expense and research and development required 348 
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to optimize this cellular therapy, other non-pharmaceutical interventions may be more 349 

effective in promoting endogenous vascular repair for clinical benefit.  350 

 351 

In addition, given the reduced number [39,40] of CPCs in individuals with CVD, and 352 

the predictive association with mortality [31], it is pertinent to find therapies to 353 

augment production, mobilization and function of these progenitor cells. Exercise and 354 

physical activity have the potential to mobilize CD34+ cells into the circulation as 355 

evident from acute exercise studies showing transient increases in CPCs in both 356 

healthy [20,21,41,42]and diseased populations [43], although the response to acute 357 

exercise is somewhat diminished in CVD patients [44]. Long-term physical exercise 358 

and physical activity show promise in increasing number and/or function of these 359 

CPCs [45–47], potentially through promoting bone marrow production of progenitor 360 

cell subsets (although the origin of EPCs has been a topic of debate recently [48]) or 361 

via reducing inflammatory or pro-apoptotic stimuli in the circulation [49], thus 362 

enhancing survival of these cells in our body. Our data support the use of physical 363 

activity to promote or maintain CD34+ CPC number in humans. High levels of self-364 

reported physical activity were associated with reduced risk of all-cause mortality 365 

(Supplementary Tables 3 and 4), and they were associated with a higher number of 366 

CD34+ CPCs, which were also associated with mortality, but only in individuals with 367 

CVD, and not in our CVD-free group.  368 

 369 

Together these findings suggest that the observed protection of increased CD34+ 370 

CPCs on mortality in a diseased population is partly driven by the physical activity 371 

levels of individuals. These findings may be clinically relevant as they are supportive 372 

of exercise-based cardiac rehabilitation and suggest an area for future interventions. 373 
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Whilst both acute aerobic and resistance exercise can promote progenitor cell release 374 

and improve pro-angiogenic function, long-term resistance exercise training studies 375 

are lacking and thus warranted, specifically in a CVD cohort. 376 

 377 

4.1 Limitations  378 

The participants in this study self-reported physical activity levels, and thus, to 379 

confirm our findings, studies that include accelerometer-derived physical activity 380 

levels are required. This will allow researchers to more accurately assess the influence 381 

of light, moderate and strenuous activity, as well as inactivity, on measures of 382 

vascular repair and regeneration, key to maintenance of CV health. Additionally, 383 

repeated longitudinal measures of physical activity, CPCs and other clinical markers 384 

would provide more robust evidence for the relationship between physical activity 385 

and these markers of vascular repair. It must be noted that these findings are 386 

associative, and do not necessarily imply causality, however, there are several studies 387 

demonstrating the positive impact of exercise and physical activity on CPCs [45–47].  388 

Another consideration is the quantification of rare cells by flow cytometry. CD34+ 389 

CPCs are typically between 0.001 and 0.01% of total circulating mononuclear cells 390 

[50], meaning accurate quantification can be problematic [51]. This limitation is 391 

compounded when investigating subpopulations, including CD34+KDR+ CPCs, which 392 

are even fewer in number, therefore the predictive strength of these cells is reduced, 393 

despite evidence showing their positive impact on the vasculature.  394 

 395 

4.2 Conclusions 396 

Our study demonstrated that CD34+ and CD34+CD133+ CPCs are predictive of 397 

mortality in a large cohort, but with more prognostic potential in individuals with 398 
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CVD. For the first time, we have provided data that shows physical activity is 399 

associated with significantly greater CD34+ CPCs in a CVD population, with no 400 

relationship in a non-CVD population. Exercise and physical activity may promote 401 

vascular health and longevity in CVD patients via modulating CD34+ CPC number.  402 
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Figure legends 681 

 682 

Figure 1. Flow chart of the Framingham Offspring Cohort and the participants included 683 

in this study.  684 

MI- myocardial infarction, HF- heart failure, IC- intermittent claudication. 685 

 686 

Figure 2. Kaplan Meier survival curve’s for the relationship between CPC tertile group 687 

(CD34+ n=1751, CD34+CD133+ n=1630, CD34+CD133+KDR+ n=1751, ECFC 688 

n=1649) and all-cause mortality (A-D) and cardiovascular mortality (E-H) (Tertile 1 = 689 

Low count, Tertile 2 = Moderate count, Tertile 3 = High count).  690 

Statistical significance was set at p <0.05 derived from Cox proportional hazard 691 

regressions. 692 
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 715 

Tables 716 

Table 1. Participant characteristics 717 

 All  

(n=1751) 

CVD-free 

(n=1467, 84%) 

CVD  

(n=284, 16%) 

p-value 

 

Age (years) 66 ± 9  

[40-92] 

65 ± 9  

[40-90] 

72 ± 9 

[51-92] 

<0.001 

Female (n, %) 940, 53.7% 822, 56% 118, 41.5% - 

BMI  

(kg·m2) 

28.4 ± 5.3 

[13.8-54.2] 

28.2 ± 5.3  

[13.8-54.2] 

29.2 ± 5.2  

[18.4-45.1] 

0.007 

Systolic blood 

Pressure (mmHg) 

129 ± 18  

[76-204] 

129 ± 18 

[76-204] 

131 ± 19  

[90-198] 

0.070 

Diastolic blood 

Pressure (mmHg) 

74 ± 11  

[34-122] 

75 ± 10  

[34-122] 

70 ± 11  

[40-108] 

<0.001*** 

Fasting glucose 

(mg/dL) 

107.0 ± 24.1  

[36-327] 

106 ± 23  

[58-327] 

113 ± 28  

[36-292] 

<0.001*** 

Total cholesterol 

(mg/dL) 

186.0 ± 37.5  

[71-322] 

190 ± 35.6  

[96-322] 

164 ± 39.4  

[71-289] 

<0.001*** 

HDL-cholesterol 

(mg/dL) 

57.4 ± 18.2  

[21-147] 

58.8 ± 18.3  

[21-152] 

50.3 ± 15.8  

[23-130] 

<0.001*** 

Triglycerides 

(mg/dL) 

118.0 ± 70.6  

[30-976] 

115 ± 67.2  

[30-976] 

133 ± 84.4  

[40-583] 

<0.001 

Smokers (n, %) 206, 11.8% 170, 12% 36, 13%  

Hypertensive (n, %) 989, 56.5% 831, 57% 158, 56% - 

CD34+ CPCs  

(% MNCs) 

0.0873 ± 0.0492  

[0.011-0.490] 

0.0875 ± 0.0483  

[0.0110-0.490] 

0.0860 ± 0.0538  

[0.0160-0.370] 

0.201 

CD34+CD133+ CPCs 

(% MNCs)  

0.0402 ± 0.0366 

[0.0020-0.6090] 

(n=1630, 55% Female) 

0.0407 ± 0.0380  

[0.0020-0.6090] 

(n=1356, 58% Female) 

0.0375 ± 0.0286  

[0.0040-0.2420] 

(n=274, 41% Female) 

0.290 
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CD34+CD133+KDR+ 

(% MNCs) 

0.0040 ± 0.0037  

[0.0001-0.0470] 

0.0040 ± 0.0037  

[0.0001-0.0470] 

0.0041 ± 0.0039  

[0.0002-0.0261] 

0.648 

ECFC (number of 

colonies)  

43 ± 31  

[0-196] 

(n=1649, 53% female) 

43 ± 31  

[0-196] 

(n=1387, 56% female) 

42 ± 32  

[0-178] 

(n=262, 41% female) 

0.470 

Data are mean ± SD [range].  CD34+CD133+ (in 1630 participants). 718 

 ECFC- endothelial colony forming cells (in 1649 participants). * p <0.05, *** p 719 

<0.001, independent samples T-test. 720 

 721 
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Table 2. CPC Counts and mortality risk 722 

HR – hazard ratio, CI – confidence intervals. 723 

aModel adjusted for age, sex, BMI, PAI, smoking status, diabetes status, hypertension 724 

and previous CVD diagnosis. 725 

*** p < 0.001, ** p < 0.01, * p < 0.05 derived from Cox proportional hazard regressions726 

CPC subset Outcome Model No. of 

events/ No. 

at risk 

HR  HR 95% 

CI 

p value 

CD34+ CPCs 

All-cause mortality 

Unadjusted 326/1751 0.64 0.52 - 0.79 <0.001*** 

Adjusteda 326/1751 0.79 0.64 - 0.98 0.036* 

CVD mortality 

Unadjusted 71/1751 0.54 0.35 - 0.85 0.008** 

Adjusteda 71/1751 0.64 0.41 - 1.01 0.055 

CD34+CD133+KDR+ 

EPCs 

All-cause mortality 

Unadjusted 326/1751 0.88 0.76 - 1.01 0.066 

Adjusteda 326/1751 0.93 0.80 - 1.07 0.300 

CVD mortality 

Unadjusted 71/1751 1.02 0.76 - 1.38 0.888 

Adjusteda 71/1751 1.09 0.81 - 1.47 0.579 

CD34+CD133+ CPCs 

All-cause mortality 

Unadjusted 303/1630 0.76 0.65 - 0.90 0.001** 

Adjusteda 303/1630 0.86 0.72 - 1.01 0.07 

CVD mortality 

Unadjusted 65/1630 0.61 0.43 - 0.87 0.006** 

Adjusteda 65/1630 0.63 0.44 - 0.91 0.013* 

ECFC 

All-cause mortality 

Unadjusted 321/1649 0.96 0.92 – 1.04 0.11 

Adjusteda 321/1649 0.98 0.94 – 1.03 0.393 

CVD mortality 

Unadjusted 71/1649 0.97 0.88 – 1.07 0.505 

Adjusteda 71/1649 0.99 0.90 – 1.10 0.893 
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Table 3. CPC Counts and risk of death for all participants split by CVD diagnosis at exam 8 727 

CPC Subset Outcome Model CVD free at exam 8 CVD diagnosis by exam 8 

      

No. of events/ No. 

at risk 

HR  HR 95% CI P value No. of events/ 

No. at risk 

HR  HR 95% CI P value 

CD34+ CPCs All-cause mortality Unadjusted 211/1467 0.70 0.54 - 0.91 0.008** 115/284 0.57 0.41 - 0.81 0.002** 

Adjusteda 211/1467 0.89 0.67 - 1.18 0.424 115/284 0.68 0.48 - 0.97 0.032* 

 
CVD mortality Unadjusted 34/1467 0.65 0.34 - 1.26 0.203 37/284 0.49 0.26 - 0.91 0.023* 

Adjusteda 34/1467 0.84 0.41 - 1.70 0.619 37/284 0.53 0.28 - 0.99 0.048* 

CD34+CD133+KDR+ 

EPCs 

All-cause mortality Unadjusted 211/1467 0.90 0.76 - 1.08 0.258 115/284 0.85 0.68 - 1.06 0.149 

Adjusteda 211/1467 0.92 0.76 - 1.11 0.385 115/284 0.94 0.75 - 1.18 0.586 

 
CVD mortality Unadjusted 34/1467 0.86 0.56 - 1.33 0.492 37/284 1.17 0.79 - 1.72 0.442 

Adjusteda 34/1467 0.80 0.49 - 1.28 0.350 37/284 1.28 0.86 - 1.90 0.229 

CD34+CD133+ CPCs All-cause mortality Unadjusted 196/1364 0.85 0.69 - 1.04 0.11 107/266 0.61 0.46 - 0.82 0.001** 

Adjusteda 196/1364 0.99 0.80 - 1.23 0.943 107/266 0.64 0.48 - 0.86 0.003** 

 
CVD mortality Unadjusted 31/1364 0.78 0.47 - 1.30 0.344 34/266 0.45 0.27 - 0.76 0.003** 

Adjusteda 31/1364 0.86 0.50 - 1.49 0.588 34/266 0.42 0.24 - 0.72 0.002** 

ECFC All-cause mortality Unadjusted 205/1391 0.96 0.91 – 1.02 0.179 116/262 0.99 0.92 – 1.07 0.782 

Adjusteda 205/1391 0.97 0.92 – 1.02 0.261 116/262 1.01 0.93 – 1.09 0.828 

 

CVD mortality Unadjusted 34/1391 1.03 0.90 – 1.19 0.655 37/262 0.93 0.82 – 1.07 0.317 

Adjusteda 34/1391 1.03 0.90 – 1.19 0.633 37/262 0.95 0.82 – 1.09 0.437 

HR- hazard ratio, CI- confidence intervals. 728 
aModel adjusted for age, sex, BMI, PAI, smoking status, diabetes status, hypertension. *** p < 0.001, ** p < 0.01, * p< 0.05 729 
derived from Cox proportional hazard regressions.730 
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Table 4. Association between physical activity index and CPC Counts  731 

CPC subset Outcome All CVD-free CVD 

  ß, T-value, p-value ß, T-value, p-value ß, T-value, p-value  

CD34+ Unadjusted 

 

Adjusteda 

0.023, 0.967, 0.334 

 

0.008, 0.322, 0.748 

-0.013, -0.486, 0.627 

 

-0.021, -0.813, 0.416 

0.176, 3.009, 0.003** 

 

0.153, 2.461, 0.014* 

 

CD34+CD133+ Unadjusted 

 

Adjusteda 

-0.014, -0.567, 0.571 

 

-0.022, -0.872, 0.383 

-0.04, -1.495, 0.135 

 

-0.042, -1.574, 0.116 

0.115, 1.893, 0.059 

 

0.107, 1.616, 0.107 

 

CD34+CD133+KDR+ Unadjusted 

 

Adjusteda 

0.022, 0.901, 0.368 

 

0.019, 0.775, 0.439 

0.002, 0.086, 0.932 

 

0.005, 0.194, 0.846 

0.108, 1.817, 0.07 

 

0.080, 1.269, 0.205 

 

ECFC Unadjusted 

 

Adjusteda 

0.005, 0.197, 0.844 

 

-0.006, -0.241, 0.809 

-0.005, -0.201, 0.841 

 

-0.015, -0.535, 0.592 

0.049, 0.785, 0.433 

 

0.036, 0.537, 0.592 

aModel adjusted for age, sex, BMI, smoking status, diabetes status and hypertension. 732 

For “All” adjustment also includes previous CVD diagnosis 733 

ECFC- endothelial colony forming cells. 734 

*** p < 0.001, ** p < 0.01, * p < 0.05 derived from Cox proportional hazard 735 

regressions. 736 
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CD34+ progenitors are predictive of mortality and are associated with physical activity 

in cardiovascular disease patients 
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Highlights: 

 Circulating CD34+ progenitor cells are biomarkers of endothelial regenerative capacity 

 Lower levels of these cells are predictive of cardiovascular and all-cause mortality, 

specifically in those with underlying or pre-diagnosed cardiovascular disease 

 Self-reported physical activity is positively associated with these CD34+ progenitor 

cells independent of other known risk factors, but only in individuals with pre-existing 

cardiovascular disease which may help to explain the role of physical activity in 

reducing future event risk 
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