CD34⁺ progenitors are predictive of mortality and are associated with physical activity in cardiovascular disease patients

David Muggeridge, Jennifer Dodd, Mark D. Ross

PII: S0021-9150(21)01233-8

DOI: https://doi.org/10.1016/j.atherosclerosis.2021.07.004

Reference: ATH 16682

To appear in: Atherosclerosis

Received Date: 22 January 2021

Revised Date: 17 June 2021

Accepted Date: 8 July 2021

Please cite this article as: Muggeridge D, Dodd J, Ross MD, CD34⁺ progenitors are predictive of mortality and are associated with physical activity in cardiovascular disease patients, *Atherosclerosis* (2021), doi: https://doi.org/10.1016/j.atherosclerosis.2021.07.004.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier B.V.

CD34+ progenitors are predictive of mortality and are associated with physical 1 activity in cardiovascular disease patients

David Muggeridge^{ab} (<u>D.Muggeridge@napier.ac.uk</u>), Jennifer Dodd^a (<u>J.Dodd@napier.ac.uk</u>), Mark D. Ross^a (<u>M.Ross@napier.ac.uk</u>)

Credit Author Statement

M.R conceived and designed the research. D.M, M.R and J.D undertook statistical analysis of the data. M.R and D.M interpreted results of the experiments, prepared figures and drafted the manuscript; all authors edited and revised the manuscript; all authors approved the final version of the manuscript.

- 1 CD34+ progenitors are predictive of mortality and are associated with physical
- 2 activity in cardiovascular disease patients
- 3 David Muggeridge^{ab}, Jennifer Dodd^a, Mark D. Ross^a (<u>M.Ross@napier.ac.uk</u>)
- 4
- ⁵ ^aSchool of Applied Sciences, Edinburgh Napier University, Edinburgh, United
- 6 Kingdom
- 7 ^bInstitute of Health Research & Innovation, Division of Biomedical Science,
- 8 University of the Highlands and Islands, Inverness, UK
- 9
- 10 Key Words: Endothelium, progenitor cells, physical activity, cardiovascular disease,
- 11 mortality
- 12
- 13 Corresponding Author:
- 14 Mark Ross
- 15 Edinburgh Napier University
- 16 School of Applied Sciences
- 17 Sighthill Campus
- 18 EH11 4BN
- 19 <u>M.Ross@napier.ac.uk</u>
- 20 0131 455 2487
- 21
- 22
- 23
- 24
- 25

26 Abstract

28	Background and aims: Circulating progenitor cells (CPCs) play an important role in
29	vascular repair and can influence cardiovascular (CV) health and longevity. Exercise
30	is known to modulate these cells via mobilization from the bone marrow. The primary
31	aims of this study were to evaluate the association of CPCs with mortality and explore
32	the association between physical activity (PA) and CPCs.
33	<i>Methods</i> : 1,751 individuals from the Framingham Offspring cohort (66 ± 9 years [40-
34	92 years], 54% female) were included in the study. CPCs (CD34 ^{+,} CD34 ⁺ CD133 ⁺ ,
35	CD34 ⁺ CD133 ⁺ KDR ⁺) were measured by flow cytometry. Multivariable Cox
36	regression analyses were performed to investigate relationship of CPCs with future
37	CV event and mortality. Multivariate regression analyses were performed to
38	determine the relationship between self-reported PA and CPC counts.
39	Results: Following adjustment for standard risk factors, there was an inverse
40	association between CD34 ⁺ CPCs and all-cause mortality (hazard ratio (HR) per unit
41	increase in CD34 ⁺ , 0.79; 95% CI 0.64 – 0.98, <i>p</i> =0.036). CD34 ⁺ CD133 ⁺ CPCs were
42	inversely associated with CV mortality (HR 0.63, 95% CI 0.44 – 0.91, p =0.013).
43	Associations of CD34 ⁺ and CD34 ⁺ CD133 ⁺ with mortality were strongest in
44	participants with pre-existing CVD. PA was associated with CD34 ⁺ CPCs only in
45	CVD participants (PA Index: β =0.176, <i>p</i> =0.003; moderate-to-vigorous [MVPA]:
46	$\beta=0.159$, $p=0.007$). This relationship was maintained after adjustment for
47	confounding variables.
48	Conclusions: A higher number of CD34 ⁺ and CD34 ⁺ CD133 ⁺ CPCs was inversely
49	associated with all-cause and CV mortality. These associations were strongest in

- participants with CVD. PA is independently associated with CD34⁺ CPCs in
- individuals with CVD only, suggestive of greater benefit for this population group.

1. Introduction

77	Circulating progenitor cells (CPC) are a heterogenous group of cells which have
78	tissue regenerative potential. A number of studies have shown that CD34 ⁺ CPCs and
79	several subsets of CD34 ⁺ cells (such as CD34 ⁺ CD133 ⁺ /KDR ⁺) can participate in
80	vascular repair and growth [1–3], and may be associated with vascular endothelial
81	function [4,5]. Therefore, these cells may reflect vascular integrity and have been
82	used as biomarkers of vascular repair [6]. CD34 ⁺ CPCs are a diverse group of
83	progenitors, consisting of both hematopoietic and non-hematopoietic CPCs [7], with
84	CD133 and KDR often used as more definitive antigen markers for endothelial
85	progenitor cells (EPC) [8].
86	
87	A low number of these CPCs is associated with vascular dysfunction [4,9] and
88	subsequent greater cardiovascular (CV) risk [10,11]. Observational studies have
89	shown that individuals with cardiovascular disease (CVD) exhibit lower number and
90	angiogenic function of these CPCs [12], reflecting reduced vascular repair capacity.
91	Studies have demonstrated that in individuals hospitalized with heart failure [13], or
92	with acute coronary syndromes [14], low number of CD34 ⁺ CPCs predicts earlier
93	mortality in these patients compared to patients with high numbers of CD34 ⁺ CPCs,
94	which suggests impaired vascular repair capacity in those with higher mortality risk.
95	Whilst there are no studies that have investigated the role of CD34 ⁺ CPCs and
96	associated subsets in predicting clinical endpoints in a heterogeneous human
97	population, there is evidence to suggest that these CPCs are reflective of subclinical
98	atherosclerotic risk in an apparently healthy population [12].

100	Lifestyle behaviors can significantly affect CV health. Smoking [15], physical
101	inactivity [16] and obesity [17] are associated with perturbed vascular health, leading
102	to greater risk of mortality. Physical activity, known for its effect on improving
103	vascular function [18,19] may do so in part via modulating CPC content and/or
104	function. Studies investigating acute [20–23] and chronic exercise training [24,25]
105	have demonstrated that progenitor cells can be mobilized into peripheral blood
106	compartment in humans, where they can exert their vaso-reparative functions.
107	However, the efficacy of exercise training to promote progenitor cell number has been
108	argued, with recent evidence demonstrating little or no change in CPC number in
109	humans after exercise training [6]. As yet, there is no evidence from large cohorts
110	investigating the association between physical activity and CPCs, with subsequent
111	patient subgroup (CVD vs CVD-free) analysis to determine if physical activity is
112	more strongly associated with CPCs in either population.
113	
114	The primary aim of this study was to investigate the prognostic potential of CD34 ⁺
115	CPCs on all-cause and CV mortality, with the secondary aim to investigate the
116	relationship between self-reported physical activity on CPCs in a large cohort. It was
117	hypothesized that circulating CD34 ⁺ CPCs and subpopulations would predict
118	mortality, and that these cells are associated with self-reported physical activity
119	levels.
120	

125 2. Materials and method	125	2.	Materials	and	method
-----------------------------	-----	----	-----------	-----	--------

- 126
- 127 2.1 Study sample
- 128
- 129 The Framingham Heart Study (FHS) is a longitudinal community-based cohort set up
- 130 in 1948 under the direction of the National Heart, Lung, and Blood Institute (NHLBI)
- aimed to determine factors that contribute to the onset and progression of

132 cardiovascular disease (CVD) [26]. Subsequently, an Offspring cohort was included

133 from 1971 [27]. Participants (n=3,002) in the Framingham Offspring cohort who

134 attended the 8th examination cycle (2004-2008) were eligible for our retrospective

investigation, with n=1,751 included in the study due to availability of key data

136 (circulating progenitor cells, self-report physical activity levels, follow-up data; see

137 **Figure 1**). Participant characteristics are shown in **Table 1**.

138

139 This study complies with the Declaration of Helsinki. Ethical approval for all data

140 collection and research purposes was granted by Boston University Medical Centre,

and written informed consent was obtained for the collection and use of the data

142 available for secondary investigators. Edinburgh Napier University Research Ethics

and Integrity Committee approved the use of the secondary dataset for the purposes ofthe study.

145

146 2.2 Clinical assessment

147

148 All participants underwent a clinical and risk factor assessment including assessment

149 of blood pressure, height and body mass. Fasting blood samples were drawn for

- quantification of glucose, glycated hemoglobin (HbA1c), total cholesterol, and high
 density lipoprotein cholesterol (HDL-C), and triglycerides.
- 152

153 2.3 Quantification of circulating progenitor cells

154

155 Blood samples were collected from participants in the fasted state to quantify CPC 156 counts. Blood samples were centrifuged and the peripheral blood mononuclear cells 157 (PBMCs) were isolated for cell phenotyping as previously described [28]. PBMCs 158 were stained with anti-CD34 FITC, anti-CD133 APC and anti-KDR-PE antibodies 159 (all BD Biosciences). CD34⁺ cells were gated for subsequent expression of CD133 160 and finally KDR. Total progenitor cells are defined as CD34⁺ cells, and EPCs are 161 defined as CD34⁺CD133⁺ and CD34⁺CD133⁺KDR⁺ cells. Analysis of flow cytometry 162 files were performed using FlowJo analysis software (Treeestar, Inc.) and reviewed 163 by investigators blinded to the identity of the participants. 164 165 2.4 Endothelial cell colony forming cells (ECFC) 166 167 In 1653 participants, PBMCs were also used to assess endothelial cell colony forming

168 cells (ECFC). PBMCs were cultured on fibronectin-coated tissue culture plates (BD
169 Biosciences) and cultured for 7 days. After 7 days of culture, the number of colonies
170 in each well was counted by a single blinded individual. ECFC number was reported
171 as average number of colonies per well up to 12 wells.

- 172
- 173
- 174

175 2.5 Mortality and event incidence

176

177	Follow up (average: 9 ± 2 years; total: 15,587 person follow-up years) was conducted
178	for primary end points of all-cause and CV death. Cause of death was determined
179	through medical history, review of medical records, death certificate, interview of
180	next of kin, and review of the National Death Index. CV death was defined as death
181	attributed to ischemic cause (fatal myocardial infarction, stroke). CV event risk was
182	only assessed in individuals with no pre-existing CVD or CV event occurring before
183	exam 8 (n = 1467). CV event or incident CVD was assessed using the standard
184	Framingham Heart Study criteria and included the following: new-onset angina, fatal
185	and non-fatal MI or stroke, heart failure or intermittent claudication.
186	
187	2.6 Self-reported physical activity levels
188	
189	Self-reported sleep, sitting time, light, moderate and heavy activity were determined
190	using a physical activity questionnaire employed by the Framingham Heart Study.
191	The number of hours of certain activity per week was collected. A composite score
192	was calculated (physical activity index; PAI), for each participant by weighting a 24 h
193	activity recall. Participants were asked to report the number of hours in a typical day
194	spent sleeping (weighting factor $[WF] = 1$) and in sedentary (WF = 1.1), slight
195	(WF = 1.5), moderate (WF = 2.4), and heavy activities (WF = 5) [29]. PAI was
196	subsequently calculated by adding the products of the hours spent at each activity
197	domain and their weighting factor based on the oxygen requirements for said activity

198 [30].

199

200 2.7 Statistical analysis

202	Continuous variables were assessed for normality by assessing histograms and Q-Q
203	plots. Data for CD34 ⁺ , CD34 ⁺ CD133 ⁺ KDR ⁺ , CD34 ⁺ CD133 ⁺ and PAI were natural
204	log transformed and EFCFs were square root transformed. Appropriate data
205	transformations were applied when relevant prior to further statistical analysis.
206	Participants with missing data were excluded and thus complete-case analyses were
207	performed. All participants were categorized into tertiles for each CPC measure for
208	event and mortality risk analyses using Kaplan-Meier curve and log-rank analyses.
209	Subsequent Cox proportional hazards regression analyses were performed, utilizing
210	transformed continuous data for CPC. Cox proportional hazards regressions were
211	performed unadjusted and adjusted for age, sex, BMI, PAI, CVD and diabetes status,
212	smoking status. To investigate the effects of CVD status, the data set was split and
213	analyses repeated for those free of CVD at exam 8 ($n = 1467$) and those with a CVD
214	diagnosis prior to exam 8 ($n = 284$). Proportional hazards assumptions for each of the
215	Cox models were evaluated by plots of Schoenfeld residuals.
216	
217	To assess the influence of physical activity on CPC counts, linear regression analyses
218	were performed to assess the relationship between CPC counts and PAI. A subset of
219	physical activity, moderate + heavy activity time, was also investigated. Unadjusted
220	and adjusted analyses are displayed. Data analyses were carried out using RStudio
221	Team (2019, RStudio: Integrated Development for R. RStudio, Inc, Boston, MA:
222	http://www.rstudio.com/). p-values of <0.05 were considered statistically significant.
223	

225	3. Results
226	
227	3.1 Relationship between CPC Counts and adverse events
228	
229	3.1.1 All-cause mortality
230	Kaplan Meier curves based on tertiles of CPC counts and all-cause mortality are
231	shown in Figure 2 A-D. In unadjusted Cox proportional hazard models, increases in
232	CD34 ⁺ and CD34 ⁺ CD133 ⁺ CPCs were significantly associated with a decreased risk
233	of death ($p < 0.001$, $p = 0.001$; Table 2). Following adjustment, increases in CD34 ⁺
234	remained significantly associated with a decreased risk of death ($p=0.036$). Whilst
235	there was a trend for CD34 ⁺ CD133 ⁺ on all-cause mortality, this did not reach
236	statistical significance ($p=0.07$). No significant associations were observed for all-
237	cause mortality for CD34 ⁺ CD133 ⁺ KDR ⁺ EPCs or ECFC (all <i>p</i> >0.05; Table 2).
238	
239	3.1.2 Cardiovascular mortality
240	Kaplan Meier curves based on tertiles of CPC counts and CV mortality are shown in
241	Figure 2 E-H. In unadjusted Cox proportional hazard models, increases in CD34 ⁺
242	and CD34 ⁺ CD133 ⁺ CPCs were significantly associated with a decreased risk of CV
243	death ($p=0.008$, $p=0.006$; Table 2). Following adjustment, CD34 ⁺ CD133 ⁺ CPCs
244	were significantly associated with a decreased risk of CV death ($p=0.013$). Whilst
245	there was a trend for $CD34^+$ on CVD mortality, this did not reach statistical
246	significance (p =0.055). No other significant associations were observed for CVD
247	mortality (all <i>p</i> >0.05; Table 2).
248	

250	
251	3.2 Relationship between CPC counts and adverse events- influence of CVD status
252	
253	3.2.1 All-cause mortality
254	Kaplan Meier curves based on tertiles of CPC counts and all-cause mortality for those
255	free of CVD and those with CVD at exam 8 are shown in Supplementary Figure 1 .
256	Unadjusted and adjusted Cox proportional hazard models for CPC counts are
257	displayed in Table 3 . Following adjustment, increases in CD34 ⁺ and CD34 ⁺ CD133 ⁺
258	CPCs were significantly associated with a decreased risk of death in those with CVD
259	at exam 8 ($p=0.032$, $p=0.003$). No other significant associations were observed for
260	all-cause mortality (all <i>p</i> >0.05; Table 3).
261	
262	3.2.2 Cardiovascular mortality
263	Kaplan Meier curves based on tertiles of CPC counts and CV mortality for those free
264	of CVD and those with CVD at exam 8 are shown in Supplementary Figure 1.
265	Unadjusted and adjusted Cox proportional hazard models for CPC counts and CV
266	mortality are displayed in Table 3. In unadjusted and adjusted Cox proportional
267	hazard models, increases in CD34 ⁺ and CD34 ⁺ CD133 ⁺ CPCs were significantly
268	associated with a decreased risk of CV mortality in the CVD present at exam 8 group
269	(all $p < 0.05$, Table 3). No other significant associations were observed for CV
270	mortality in either of the sub-groups (all $p>0.05$).
271	
272	3.2.3 Cardiovascular events
273	Cox proportional hazard analysis was performed in the population free of CVD for

274 incidence of future CV events. ECFCs were significantly associated with a decreased

275	risk of future	CV events (p=0.04)	5, Supplementary	Table 1).	There was no
-----	----------------	--------------------	------------------	-----------	--------------

association between CPC counts and CV event risk for all other measures (all

277 p > 0.05).

278

279 3.3 Association of physical activity with CPC counts

280

281 To assess the association between physical activity and CPC counts, both unadjusted 282 and adjusted linear regressions were performed. In unadjusted and adjusted analyses, 283 PAI and moderate + heavy activity hours were not associated with any CPC subset or 284 with ECFC units. However, in the CVD group, after adjusting for confounders, both 285 PAI and moderate + heavy activity time were positively associated with CD34⁺ CPCs and were the only significant predictors of the number of these cells (Table 4 and 286 287 Supplementary Table 2). Physical activity was not associated with CD34⁺CD133⁺, 288 CD34⁺CD133⁺KDR⁺ CPCs or ECFC counts, both in univariate and multivariate 289 analyses. Light activity time was not significantly associated with CD34⁺, 290 CD34⁺CD133⁺, CD34⁺CD133⁺KDR⁺ or ECFC counts (all *p*>0.05). 291 292 4. Discussion 293 294 Our main findings were that CD34⁺ and CD34⁺CD133⁺ CPCs were significant 295 predictors of all-cause and CV mortality in the Framingham Offspring cohort, driven 296 primarily by the strength of this association in individuals with CVD. Additionally, 297 increase in self-reported physical activity is positively associated with higher CD34⁺ 298 CPCs in our CVD cohort after adjustment for confounders, a relationship not evident 299 in our CVD-free cohort. Together, these findings suggest that the observed protection

300 of increased CD34⁺ CPCs on mortality in a diseased population is partly driven by the
301 physical activity levels of individuals.

302

Several small studies have investigated the prognostic potential of CPCs as
biomarkers of vascular repair for predicting incident risk of all-cause and/or CV
death. These studies have demonstrated that these cells can predict mortality or
clinical end-points in several disease populations, for example patients with coronary
artery disease [31], acute coronary syndromes [14], heart failure [13], or type 2
diabetes [32]. Our data support these observations, with CD34 ⁺ and CD34 ⁺ CD133 ⁺
CPCs predictive of all-cause and CV mortality. Interestingly, this association was
absent in the CVD-free population and driven mainly by a strong association with
mortality in individuals with pre-diagnosed CVD, suggestive that the prognostic
potential of these cells is much stronger in disease populations, and offers little
predictive potential, if any, in apparently healthy populations. Interestingly,
CD34 ⁺ CD133 ⁺ KDR putative EPCs and ECFCs showed no predictive ability for all-
cause or CV death in our study.
In the largest study investigating the role of CPCs on incident risk prediction in a
CVD cohort, Patel and colleagues [31] observed that, like our study, only CD34 ⁺ and
CD34 ⁺ CD133 ⁺ CPCs were predictive of mortality. In 2 cohorts, each over 400
patients (n=905 pooled), Patel et al. [31] showed that increases in both these
progenitor subsets showed a significant inverse association with all-cause and CV-
mortality, and that CD34 ⁺ CD133 ⁺ KDR ⁺ cells, like our data, showed no association
with mortality, with Werner et al. [33] also demonstrating little prognostic potential
for KDR ⁺ EPCs on all-cause death, MI and stroke, however, they did show a

325 significant association with CV mortality, which was defined as death from acute MI, 326 CAD, or congestive heart failure. It is likely that differences in definition of CV death 327 between these studies may explain the different findings. Our data in >1700328 individuals, however, specifically shows that the associations of CD34⁺ and 329 CD34⁺CD133⁺ with all-cause and CV mortality are driven by their prognostic 330 strength in individuals with CVD, and not those who are CVD-free. It is likely that 331 these cells play a more important role in CVD when the vascular system is in a state 332 of constant damage, and that a lower number of these cells in these patients reflects 333 exhaustion of the progenitor cell pool. Interestingly, our data indicated that ECFC 334 numbers were predictive of future CV event incidence in CVD-free participants, 335 potentially emphasizing the possibly more sensitive cell culture measures of vascular 336 repair as opposed to flow cytometric measures. However, ECFCs showed no other 337 association with all-cause or CV mortality in either population group. 338

339 Both CD34⁺ and CD133⁺ progenitor cells have vascular regenerative capabilities 340 [2,34–36]. These cells, reported initially to have pro-angiogenic capabilities due to the 341 potential to differentiate into endothelial cells [3], most probably work in a paracrine 342 manner, through secretion of vasoactive and proangiogenic factors, such as VEGF 343 and other pro-angiogenic cytokines [36]. Due to their potential vasculo-reparative 344 capacities, clinical studies have been undertaken to assess their efficacy as cellular 345 therapies to promote recovery of blood flow in myocardial infarction and stroke 346 studies. Clinical studies showing implantation or injection of these cell types show 347 promise in repair of damaged myocardium in animal models [1] and in some human 348 studies [37,38], however, due to the expense and research and development required

to optimize this cellular therapy, other non-pharmaceutical interventions may be moreeffective in promoting endogenous vascular repair for clinical benefit.

351

352 In addition, given the reduced number [39,40] of CPCs in individuals with CVD, and 353 the predictive association with mortality [31], it is pertinent to find therapies to 354 augment production, mobilization and function of these progenitor cells. Exercise and 355 physical activity have the potential to mobilize CD34⁺ cells into the circulation as 356 evident from acute exercise studies showing transient increases in CPCs in both 357 healthy [20,21,41,42] and diseased populations [43], although the response to acute 358 exercise is somewhat diminished in CVD patients [44]. Long-term physical exercise 359 and physical activity show promise in increasing number and/or function of these 360 CPCs [45–47], potentially through promoting bone marrow production of progenitor 361 cell subsets (although the origin of EPCs has been a topic of debate recently [48]) or 362 via reducing inflammatory or pro-apoptotic stimuli in the circulation [49], thus 363 enhancing survival of these cells in our body. Our data support the use of physical activity to promote or maintain CD34⁺ CPC number in humans. High levels of self-364 365 reported physical activity were associated with reduced risk of all-cause mortality 366 (Supplementary Tables 3 and 4), and they were associated with a higher number of 367 CD34⁺ CPCs, which were also associated with mortality, but only in individuals with 368 CVD, and not in our CVD-free group.

369

370 Together these findings suggest that the observed protection of increased CD34⁺

371 CPCs on mortality in a diseased population is partly driven by the physical activity

372 levels of individuals. These findings may be clinically relevant as they are supportive

373 of exercise-based cardiac rehabilitation and suggest an area for future interventions.

\sim	urn	Ð	re.	-n	\mathbf{r}	\cap^{1}
U.	սոո				IU	U.

374 Whilst both acute aerobic and resistance exercise can promote progenitor cell release

and improve pro-angiogenic function, long-term resistance exercise training studies

are lacking and thus warranted, specifically in a CVD cohort.

377

378 4.1 Limitations

379 The participants in this study self-reported physical activity levels, and thus, to 380 confirm our findings, studies that include accelerometer-derived physical activity 381 levels are required. This will allow researchers to more accurately assess the influence 382 of light, moderate and strenuous activity, as well as inactivity, on measures of 383 vascular repair and regeneration, key to maintenance of CV health. Additionally, 384 repeated longitudinal measures of physical activity, CPCs and other clinical markers 385 would provide more robust evidence for the relationship between physical activity 386 and these markers of vascular repair. It must be noted that these findings are 387 associative, and do not necessarily imply causality, however, there are several studies 388 demonstrating the positive impact of exercise and physical activity on CPCs [45–47]. 389 Another consideration is the quantification of rare cells by flow cytometry. CD34⁺ 390 CPCs are typically between 0.001 and 0.01% of total circulating mononuclear cells 391 [50], meaning accurate quantification can be problematic [51]. This limitation is 392 compounded when investigating subpopulations, including CD34⁺KDR⁺ CPCs, which 393 are even fewer in number, therefore the predictive strength of these cells is reduced, 394 despite evidence showing their positive impact on the vasculature. 395

396 4.2 Conclusions

397 Our study demonstrated that CD34⁺ and CD34⁺CD133⁺ CPCs are predictive of
398 mortality in a large cohort, but with more prognostic potential in individuals with

399	CVD. For the first time, we have provided data that shows physical activity is
400	associated with significantly greater CD34 ⁺ CPCs in a CVD population, with no
401	relationship in a non-CVD population. Exercise and physical activity may promote
402	vascular health and longevity in CVD patients via modulating CD34 ⁺ CPC number.
403	
404	Declaration of competing interests
405	The authors declare that they have no known competing financial interests or personal
406	relationships that could have appeared to influence the work reported in this paper.
407	
408	Authors contributions
409	M.R conceived and designed the research. D.M, M.R and J.D undertook statistical
410	analysis of the data. M.R and D.M interpreted results of the experiments, prepared
411	figures and drafted the manuscript; all authors edited and revised the manuscript; all
412	authors approved the final version of the manuscript.
413	
414	Financial support
415	This work was supported by Edinburgh Napier University's Research Excellence
416	Grant (M.R). D.M. is supported by the European Union's INTERREG VA
417	Programme, managed by the Special EU Programmes Body (SEUPB).
418	
419	
420	Acknowledgements
421	This manuscript was prepared manuscript was prepared using FRAMOFFSPRING
422	Research Materials obtained from the NHLBI Biologic Specimen and Data

423	Repository Information Coordinating Center and does not necessarily reflect the								
424	opinions or views of the FRAMCOHORT, FRAMOFFSPRING or the NHLBI.								
425									
426									
427		References							
428 429 430 431 432	[1]	S. Ananthaseshan, M.K. Grudzinska, K. Bojakowski, E. Kurzejamska, Z. Gaciong, C. Söderberg-Nauclér, P. Religa, Locally Transplanted CD34+ Bone Marrow–Derived Cells Contribute to Vascular Healing After Vascular Injury, Transplantation Proceedings. 49 (2017) 1467–1476. https://doi.org/10.1016/i.transproceed.2017.01.081.							
433 434 435 436	[2]	M. Herrmann, A. Binder, U. Menzel, S. Zeiter, M. Alini, S. Verrier, CD34/CD133 enriched bone marrow progenitor cells promote neovascularization of tissue engineered constructs in vivo, Stem Cell Research. 13 (2014) 465–477. https://doi.org/10.1016/j.scr.2014.10.005							
437 438 439 440	[3]	T. Asahara, T. Murohara, A. Sullivan, M. Silver, R. van der Zee, T. Li, B. Witzenbichler, G. Schatteman, J.M. Isner, Isolation of putative progenitor endothelial cells for angiogenesis, Science. 275 (1997) 964–967. https://doi.org/10.1126/science.275.5302.964.							
441 442 443 444 445	[4]	L. Bruyndonckx, V.Y. Hoymans, G. Frederix, A. de Guchtenaere, H. Franckx, D.K. Vissers, C.J. Vrints, J. Ramet, V.M. Conraads, Endothelial progenitor cells and endothelial microparticles are independent predictors of endothelial function, Journal of Pediatrics. 165 (2014) 300–305. https://doi.org/10.1016/i.jpeds.2014.04.015.							
446 447 448 449	[5]	N. Werner, S. Wassmann, P. Ahlers, T. Schiegl, S. Kosiol, A. Link, K. Walenta, G. Nickenig, Endothelial progenitor cells correlate with endothelial function in patients with coronary artery disease, Basic Research in Cardiology. 102 (2007) 565–571. https://doi.org/10.1007/s00395-007-0680-1.							
450 451 452 453 454 455 456	[6]	E.M. van Craenenbroeck, G. Frederix, N. Pattyn, P. Beckers, A.H. van Craenenbroeck, A. Gevaert, N. Possemiers, V. Cornelissen, K. Goetschalckx, C.J. Vrints, L. Vanhees, V.Y. Hoymans, Effects of aerobic interval training and continuous training on cellular markers of endothelial integrity in coronary artery disease: A SAINTEX-CAD substudy, American Journal of Physiology - Heart and Circulatory Physiology. 309 (2015) H1876–H1882. https://doi.org/10.1152/ajpheart.00341.2015.							
457 458 459	[7]	L.E. Sidney, M.J. Branch, S.E. Dunphy, H.S. Dua, A. Hopkinson, Concise review: Evidence for CD34 as a common marker for diverse progenitors, Stem Cells. 32 (2014) 1380–1389. https://doi.org/10.1002/stem.1661.							
460 461 462 463	[8]	M. Hristov, W. Erl, P.C. Weber, Endothelial progenitor cells: Mobilization, differentiation, and homing, Arteriosclerosis, Thrombosis, and Vascular Biology. 23 (2003) 1185–1189. https://doi.org/10.1161/01.ATV.0000073832.49290 B5							
464 465 466 467	[9]	J.M. Hill, G. Zalos, J.P.J. Halcox, W.H. Schenke, M.A. Waclawiw, A.A. Quyyumi, T. Finkel, Circulating Endothelial Progenitor Cells, Vascular Function, and Cardiovascular Risk, New England Journal of Medicine. 348 (2003) 593–600. https://doi.org/10.1056/NEJMoa022287.							

468	[10]	C. Schmidt-Lucke, L. Rössig, S. Fichtlscherer, M. Vasa, M. Britten, U.
469		Kämper, S. Dimmeler, A.M. Zeiher, Reduced number of circulating endothelial
470		progenitor cells predicts future cardiovascular events: Proof of concept for the
471		clinical importance of endogenous vascular repair, Circulation. 111 (2005)
472		2981-2987. https://doi.org/10.1161/CIRCULATIONAHA.104.504340.
473	[11]	A. Mehta, A.S. Tahhan, C. Liu, D.S. Dhindsa, A. Nayak, A. Hooda, K.
474		Moazzami, S.J. Islam, S.C. Rogers, Z. Almuwaqqat, A. Mokhtari, I. Hesaroieh,
475		Y.A. Ko, E.K. Waller, A.A. Quyyumi, Circulating Progenitor Cells in Patients
476		With Coronary Artery Disease and Renal Insufficiency, JACC: Basic to
477		Translational Science. 5 (2020) 770–782.
478		https://doi.org/10.1016/j.jacbts.2020.06.006.
479	[12]	G.P. Fadini, A. Coracina, I. Baesso, C. Agostini, A. Tiengo, A. Avogaro, S.V.
480		de Kreutzenberg, Peripheral blood CD34+KDR+ endothelial progenitor cells
481		are determinants of subclinical atherosclerosis in a middle-aged general
482		population. Stroke. 37 (2006) 2277–2282.
483		https://doi.org/10.1161/01.STR.0000236064.19293.79.
484	[13]	A. Samman Tahhan, M. Hammadah, P.B. Sandesara, S.S. Havek, A.P.
485	L - J	Kalogeropoulos, A. Alkhoder, H. Mohamed Kelli, M. Topel, N. Ghasemzadeh.
486		K. Chivukula, Y.A. Ko, H. Aida, I. Hesaroieh, E. Mahar, J.H. Kim, P. Wilson,
487		L. Shaw, V. Vaccarino, E.K. Waller, A.A. Ouvyumi, Progenitor Cells and
488		Clinical Outcomes in Patients with Heart Failure. Circulation: Heart Failure. 10
489		(2017), https://doi.org/10.1161/CIRCHEARTFAILURE.117.004106.
490	[14]	A.S. Tahhan, M. Hammadah, M. Raad, Z. Almuwaqqat, A. Alkhoder, P.B.
491	[]	Sandesara, H. Mohamed-Kelli, S.S. Havek, J.H. Kim, W.T. O'Neal, M.L.
492		Topel A J Grant N Sabbak R E Heinl M M Gafeer M Obideen B
493		Kaseer, N. Abdelhadi, Y.A. Ko, C. Liu, I. Hesarojeh, E.A. Mahar, V.
494		Vaccarino, E.K. Waller, A.A. Ouvyumi, Progenitor Cells and Clinical
495		Outcomes in Patients with Acute Coronary Syndromes, Circulation Research
496		122 (2018) 1565–1575 https://doi.org/10.1161/CIRCRESAHA.118.312821
497	[15]	A Burke G A FitzGerald Oxidative stress and smoking-induced vascular
498	[10]	injury Progress in Cardiovascular Diseases 46 (2003) 79–90
499		https://doi.org/10.1016/S0033-0620(03)00076-8
500	[16]	U Laufs S Wassmann T Czech T Münzel M Eisenhauer M Böhm G
501	[10]	Nickenig Physical inactivity increases oxidative stress endothelial
502		dysfunction and atherosclerosis Arteriosclerosis Thrombosis and Vascular
502		Biology 25 (2005) 809–814
504		https://doi.org/10.1161/01.ATV.0000158311.24443.af
505	[17]	O I MacEneaney F I Kushner G P van Guilder I I Greiner B I. Stauffer
506	[1/]	C A DeSouza Endothelial progenitor cell number and colony-forming
507		canacity in overweight and obese adults. International Journal of Obesity 33
508		(2009) 219–225 https://doi.org/10.1038/ijo.2008.262
500	[18]	D R Seals F F Nagy K I Moreau Aerobic exercise training and vascular
510	[10]	function with ageing in healthy men and women Journal of Physiology 597
510		(2019) 4901 - 4914 https://doi.org/10.1113/IP277764
512	[19]	A Campbell E Grace I Ritchie A Reaumont N Sculthorne Long-term
512		aerobic exercise improves vascular function into old age: A systematic review
517		meta-analysis and meta regression of observational and interventional studies
515		Frontiers in Physiology 10 (2010) https://doi.org/10.3380/fphys.2010.00031
516	[20]	M D Ross AI Wekesa IP Phelan M Harrison Resistance evercise
517	[20]	increases endothelial progenitor cells and angiogenic factors. Medicine and
JT/		mercases endomenal progenitor cens and angiogenic factors, medicine and

518		Science in Sports and Exercise. 46 (2014) 16–23.
519		https://doi.org/10.1249/MSS.0b013e3182a142da.
520	[21]	N.H. Agha, F.L. Baker, H.E. Kunz, R. Graff, R. Azadan, C. Dolan, M.S.
521		Laughlin, C. Hosing, M.M. Markofski, R.A. Bond, C.M. Bollard, R.J.
522		Simpson, Vigorous exercise mobilizes CD34+ hematopoietic stem cells to
523		peripheral blood via the β 2 -adrenergic receptor, Brain, Behavior, and
524		Immunity. 68 (2018) 66–75. https://doi.org/10.1016/j.bbi.2017.10.001.
525	[22]	M. Sandri, E.B. Beck, V. Adams, S. Gielen, K. Lenk, R. Höllriegel, N.
526		Mangner, A. Linke, S. Erbs, S. Möbius-Winkler, D. Scheinert, R. Hambrecht,
527		G. Schuler, Maximal exercise, limb ischemia, and endothelial progenitor cells,
528		European Journal of Preventive Cardiology. 18 (2011) 55–64.
529		https://doi.org/10.1097/HJR.0b013e32833ba654.
530	[23]	E.M. van Craenenbroeck, L. Bruyndonckx, C. van Berckelaer, V.Y. Hoymans,
531		C.J. Vrints, V.M. Conraads, The effect of acute exercise on endothelial
532		progenitor cells is attenuated in chronic heart failure, European Journal of
533		Applied Physiology. 111 (2011) 2375–2379. https://doi.org/10.1007/s00421-
534		011-1843-1.
535	[24]	S. Steiner, A. Niessner, S. Ziegler, B. Richter, D. Seidinger, J. Pleiner, M.
536		Penka, M. Wolzt, K. Huber, J. Wojta, E. Minar, C.W. Kopp, Endurance
537		training increases the number of endothelial progenitor cells in patients with
538		cardiovascular risk and coronary artery disease, Atherosclerosis. 181 (2005)
539		305-310. https://doi.org/10.1016/j.atherosclerosis.2005.01.006.
540	[25]	M. Brehm, F. Picard, P. Ebner, G. Turan, E. Bölke, M. Köstering, P. Schüller,
541		T. Fleissner, D. Ilousis, K. Augusta, M. Peiper, C. Schannwell, B.E. Strauer,
542		Effects of exercise training on mobilization and functional activity of blood-
543		derived progenitor cells in patients with acute myocardial infarction, European
544		Journal of Medical Research. 14 (2009) 393-405. https://doi.org/10.1186/2047-
545		783x-14-9-393.
546	[26]	W.B. Kannel, T. Gordon, Evaluation of cardiovascular risk in the elderly: The
547		Framingham study, Bulletin of the New York Academy of Medicine: Journal
548		of Urban Health. 54 (1978) 573–591.
549		https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1807497/ (accessed May 3,
550		2021).
551	[27]	W. Kannel, M. Feinleib, P. McNamara, R. Garrison, W. Castelli, An
552		investigation of coronary heart disease in families, American Journal of
553		Epidemiology. 110 (1979) 281–290.
554		https://doi.org/10.1093/oxfordjournals.aje.a112813.
555	[28]	S. Cheng, N. Wang, M.G. Larson, J.N. Palmisano, G.F. Mitchell, E.J.
556		Benjamin, R.S. Vasan, D. Levy, E.L. McCabe, J.A. Vita, T.J. Wang, S.Y.
557		Shaw, K.S. Cohen, N.M. Hamburg, Circulating angiogenic cell populations,
558		vascular function, and arterial stiffness, Atherosclerosis. 220 (2012) 145–150.
559		https://doi.org/10.1016/j.atherosclerosis.2011.10.015.
560	[29]	W.B. Kannel, P. Sorlie, Some Health Benefits of Physical Activity: The
561		Framingham Study, Archives of Internal Medicine. 139 (1979) 857–861.
562		https://doi.org/10.1001/archinte.1979.03630450011006.
563	[30]	P.W.F. Wilson, R.S. Paffenbarger, J.N. Morris, R.J. Havlik, Assessment
564		methods for physical activity and physical fitness in population studies: Report
565		of a NHLBI workshop, American Heart Journal. 111 (1986) 1177–1192.
566		https://doi.org/10.1016/0002-8703(86)90022-0.

567 R.S. Patel, Q. Li, N. Ghasemzadeh, D.J. Eapen, L.D. Moss, A.U. Janjua, P. [31] 568 Manocha, H. al Kassem, E. Veledar, H. Samady, W.R. Taylor, A.M. Zafari, L. 569 Sperling, V. Vaccarino, E.K. Waller, A.A. Quyyumi, Circulating CD34+ 570 progenitor cells and risk of mortality in a population with coronary artery 571 disease, Circulation Research. 116 (2015) 289-297. 572 https://doi.org/10.1161/CIRCRESAHA.116.304187. 573 C.G. Egan, C. Fondelli, E. Pierantozzi, G. Tripepi, F. Dotta, V. Sorrentino, [32] 574 Putative endothelial progenitor cells predict long-term mortality in type-2 575 diabetes, Endocrine. 62 (2018) 263-266. https://doi.org/10.1007/s12020-018-576 1695-0. 577 N. Werner, S. Kosiol, T. Schiegl, P. Ahlers, K. Walenta, A. Link, M. Böhm, G. [33] 578 Nickenig, Circulating Endothelial Progenitor Cells and Cardiovascular 579 Outcomes, New England Journal of Medicine. 353 (2005) 999–1007. https://doi.org/10.1056/nejmoa043814. 580 581 M. Peichev, A.J. Naiver, D. Pereira, Z. Zhu, W.J. Lane, M. Williams, M.C. Oz, [34] 582 D.J. Hicklin, L. Witte, M.A.S. Moore, S. Rafii, Expression of VEGFR-2 and 583 AC133 by circulating human CD34+ cells identifies a population of functional 584 endothelial precursors, Blood. 95 (2000) 952–958. 585 https://doi.org/10.1182/blood.v95.3.952.003k27 952 958. 586 E.B. Friedrich, K. Walenta, J. Scharlau, G. Nickenig, N. Werner, CD34-[35] 587 /CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent 588 vasoregenerative capacities, Circulation Research. 98 (2006). 589 https://doi.org/10.1161/01.RES.0000205765.28940.93. 590 J. Hur, C.H. Yoon, H.S. Kim, J.H. Choi, H.J. Kang, K.K. Hwang, B.H. Oh, [36] 591 M.M. Lee, Y.B. Park, Characterization of Two Types of Endothelial Progenitor 592 Cells and Their Different Contributions to Neovasculogenesis, Arteriosclerosis, 593 Thrombosis, and Vascular Biology. 24 (2004) 288–293. 594 https://doi.org/10.1161/01.ATV.0000114236.77009.06. 595 [37] B.A. Nasseri, W. Ebell, M. Dandel, M. Kukucka, R. Gebker, A. Doltra, C. 596 Knosalla, Y.H. Choi, R. Hetzer, C. Stamm, Autologous CD133+ bone marrow 597 cells and bypass grafting for regeneration of ischaemic myocardium: The 598 Cardio133 trial, European Heart Journal. 35 (2014) 1263–1274. 599 https://doi.org/10.1093/eurheartj/ehu007. 600 [38] A.A. Quyyumi, A. Vasquez, D.J. Kereiakes, M. Klapholz, G.L. Schaer, A. 601 Abdel-Latif, S. Frohwein, T.D. Henry, R.A. Schatz, N. DIb, C. Toma, C.J. 602 Davidson, G.W. Barsness, D.M. Shavelle, M. Cohen, J. Poole, T. Moss, P. 603 Hyde, A.M. Kanakaraj, V. Druker, A. Chung, C. Junge, R.A. Preti, R.L. Smith, 604 D.J. Mazzo, A. Pecora, D.W. Losordo, PreSERVE-AMI: A Randomized, 605 Double-Blind, Placebo-Controlled Clinical Trial of Intracoronary 606 Administration of Autologous CD34+ Cells in Patients with Left Ventricular Dvsfunction Post STEMI, Circulation Research. 120 (2017) 324-331. 607 608 https://doi.org/10.1161/CIRCRESAHA.115.308165. 609 [39] M.C. Barsotti, T. Santoni, M.E.L. Picoi, N. Mancini, F. Massaro, C. 610 Grigoratos, U. Bortolotti, P. Collecchi, M. Menicagli, C. Scatena, F. Felice, G. 611 Bevilacqua, A.G. Naccarato, R. di Stefano, A. Balbarini, Endothelial 612 progenitor cell homing in human myocardium in patients with coronary artery disease, International Journal of Cardiology. 172 (2014) 516-517. 613 614 https://doi.org/10.1016/j.ijcard.2014.01.042. Y.F. Liao, Y. Feng, L.L. Chen, T.S. Zeng, F. Yu, L.J. Hu, Coronary heart 615 [40] 616 disease risk equivalence in diabetes and arterial diseases characterized by

617		endothelial function and endothelial progenitor cell, Journal of Diabetes and Its
618		Complications. 28 (2014) 214–218.
619		https://doi.org/10.1016/j.jdiacomp.2013.09.009.
620	[41]	J.P. Nederveen, J. Baker, G. Ibrahim, V. Ivankovic, M.E. Percival, G. Parise,
621		Hematopoietic Stem and Progenitor Cell (HSPC) Mobilization Responses to
622		Different Exercise Intensities in Young and Older Adults, Journal of Science in
623		Sport and Exercise. 2 (2020) 47–58. https://doi.org/10.1007/s42978-019-
624		00050-4.
625	[42]	E.M.F. van Craenenbroeck, C.J. Vrints, S.E. Haine, K. Vermeulen, I.
626		Goovaerts, V.F.I. van Tendeloo, V.Y. Hoymans, V.M.A. Conraads, A maximal
627		exercise bout increases the number of circulating CD34+/KDR+ endothelial
628		progenitor cells in healthy subjects. Relation with lipid profile, Journal of
629		Applied Physiology. 104 (2008) 1006–1013.
630		https://doi.org/10.1152/japplphysiol.01210.2007.
631	[43]	V. Adams, K. Lenk, A. Linke, D. Lenz, S. Erbs, M. Sandri, A. Tarnok, S.
632		Gielen, F. Emmrich, G. Schuler, R. Hambrecht, Increase of Circulating
633		Endothelial Progenitor Cells in Patients with Coronary Artery Disease after
634		Exercise-Induced Ischemia, Arteriosclerosis, Thrombosis, and Vascular
635		Biology. 24 (2004) 684–690.
636		https://doi.org/10.1161/01.ATV.0000124104.23702.a0.
637	[44]	K. Moazzami, B.B. Lima, M. Hammadah, R. Ramadan, I. al Mheid, J.H. Kim,
638		A. Alkhoder, M. Obideen, O. Levantsevych, A. Shah, C. Liu, J.D. Bremner, M.
639		Kutner, Y. v. Sun, E.K. Waller, I.G. Hesaroieh, P. Raggi, V. Vaccarino, A.A.
640		Quyyumi, Association between Change in Circulating Progenitor Cells during
641		Exercise Stress and Risk of Adverse Cardiovascular Events in Patients with
642		Coronary Artery Disease, JAMA Cardiology. 5 (2020) 147–155.
643		https://doi.org/10.1001/jamacardio.2019.4528.
644	[45]	S.L. Cavalcante, S. Lopes, L. Bohn, I. Cavero-Redondo, C. Álvarez-Bueno, S.
645		Viamonte, M. Santos, J. Oliveira, F. Ribeiro, Effects of exercise on endothelial
646		progenitor cells in patients with cardiovascular disease: A systematic review
647		and meta-analysis of randomized controlled trials, Revista Portuguesa de
648		Cardiologia. 38 (2019) 817-827. https://doi.org/10.1016/j.repc.2019.02.016.
649	[46]	L. Bruyndonckx, V.Y. Hoymans, A. de Guchtenaere, M. van Helvoirt, E.M.
650		van Craenenbroeck, G. Frederix, K. Lemmens, D.K. Vissers, C.J. Vrints, J.
651		Ramet, V.M. Conraads, Diet, exercise, and endothelial function in obese
652		adolescents, Pediatrics. 135 (2015) e653-e661.
653		https://doi.org/10.1542/peds.2014-1577.
654	[47]	Y. Guo, R.A. Ledesma, R. Peng, Q. Liu, D. Xu, The Beneficial Effects of
655		Cardiac Rehabilitation on the Function and Levels of Endothelial Progenitor
656		Cells, Heart Lung and Circulation. 26 (2017) 10–17.
657		https://doi.org/10.1016/j.hlc.2016.06.1210.
658	[48]	T. Fujisawa, O. Tura-Ceide, A. Hunter, A. Mitchell, A. Vesey, C. Medine, S.
659		Gallogly, P.W.F. Hadoke, C. Keith, A. Sproul, H. Roddie, G. McQuaker, I.
660		Wilmut, N.L. Mills, M. Brittan, Endothelial Progenitor Cells Do Not Originate
661		From the Bone Marrow, Circulation. 140 (2019) 1524–1526.
662		https://doi.org/10.1161/CIRCULATIONAHA.119.042351.
663	[49]	F. Cesari, R. Marcucci, A.M. Gori, C. Burgisser, S. Francini, F. Sofi, G.F.
664		Gensini, R. Abbate, F. Fattirolli, Impact of a cardiac rehabilitation program and
665		inflammatory state on endothelial progenitor cells in acute coronary syndrome

666		patients, International Journal of Cardiology. 167 (2013) 1854–1859.
007		https://doi.org/10.1010/j.j.geard.2012.04.157.
668	[50]	J. Case, L.E. Mead, W.K. Bessler, D. Prater, H.A. White, M.R. Saadatzadeh,
669		J.R. Bhavsar, M.C. Yoder, L.S. Haneline, D.A. Ingram, Human
670		CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but
671		distinct, primitive hematopoietic progenitors, Experimental Hematology. 35
672		(2007) 1109–1118. https://doi.org/10.1016/j.exphem.2007.04.002.
673	[51]	E.M. van Craenenbroeck, A.H. van Craenenbroeck, S. van Ierssel, L.
674		Bruyndonckx, V.Y. Hoymans, C.J. Vrints, V.M. Conraads, Quantification of
675		circulating CD34+/KDR+/CD45 dim endothelial progenitor cells: Analytical
676		considerations, International Journal of Cardiology. 167 (2013) 1688–1695.
677		https://doi.org/10.1016/j.ijcard.2012.10.047.
678		

681 Figure legends

Figure 1. Flow chart of the Framingham Offspring Cohort and the participants includedin this study.

685 MI- myocardial infarction, HF- heart failure, IC- intermittent claudication.

Figure 2. Kaplan Meier survival curve's for the relationship between CPC tertile group

 $688 \qquad (CD34^+ \ n=1751, \ CD34^+CD133^+ \ n=1630, \ CD34^+CD133^+KDR^+ \ n=1751, \ ECFC$

n=1649) and all-cause mortality (A-D) and cardiovascular mortality (E-H) (Tertile 1 =

690 Low count, Tertile 2 = Moderate count, Tertile 3 = High count).

691 Statistical significance was set at p < 0.05 derived from Cox proportional hazard 692 regressions.

716 Tables

Table 1. Participant characteristics

	All	CVD-free	CVD	<i>p</i> -value	
	(n=1751)	(n=1467, 84%)	(n=284, 16%)		
Age (years)	66 ± 9	65 ± 9	72 ± 9	< 0.001	
	[40-92]	[40-90]	[51-92]		
Female (n, %)	940, 53.7%	822, 56%	118, 41.5%	-	
BMI	28.4 ± 5.3	28.2 ± 5.3	29.2 ± 5.2	0.007	
$(kg \cdot m^2)$	[13.8-54.2]	[13.8-54.2]	[18.4-45.1]		
Systolic blood	129 ± 18	129 ± 18	131 ± 19	0.070	
Pressure (mmHg)	[76-204]	[76-204]	[90-198]		
Diastolic blood	74 ± 11	75 ± 10	70 ± 11	<0.001***	
Pressure (mmHg)	[34-122]	[34-122]	[40-108]		
Fasting glucose	107.0 ± 24.1	106 ± 23	113 ± 28	<0.001***	
(mg/dL)	[36-327]	[58-327]	[36-292]		
Total cholesterol	186.0 ± 37.5	190 ± 35.6	164 ± 39.4	<0.001***	
(mg/dL)	[71-322]	[96-322]	[71-289]		
HDL-cholesterol	57.4 ± 18.2	58.8 ± 18.3	50.3 ± 15.8	<0.001***	
(mg/dL)	[21-147]	[21-152]	[23-130]		
Triglycerides	118.0 ± 70.6	115 ± 67.2	133 ± 84.4	< 0.001	
(mg/dL)	[30-976]	[30-976]	[40-583]		
Smokers (n, %)	206, 11.8%	170, 12%	36, 13%		
Hypertensive (n, %)	989, 56.5%	831, 57%	158, 56%	-	
CD34+ CPCs	0.0873 ± 0.0492	0.0875 ± 0.0483	0.0860 ± 0.0538	0.201	
(% MNCs)	[0.011-0.490]	[0.0110-0.490]	[0.0160-0.370]		
CD34+CD133+ CPCs	0.0402 ± 0.0366	0.0407 ± 0.0380	0.0375 ± 0.0286	0.290	
(% MNCs)	[0.0020-0.6090]	[0.0020-0.6090]	[0.0040-0.2420]		
	(n=1630, 55% Female)	(n=1356, 58% Female)	(n=274, 41% Female)		

CD34+CD133+KDR+	0.0040 ± 0.0037	0.0040 ± 0.0037	0.0041 ± 0.0039	0.648
(% MNCs)	[0.0001-0.0470]	[0.0001-0.0470]	[0.0002-0.0261]	
ECFC (number of	43 ± 31	43 ± 31	42 ± 32	0.470
colonies)	[0-196]	[0-196]	[0-178]	
	(n=1649, 53% female)	(n=1387, 56% female)	(n=262, 41% female)	

Data are mean \pm SD [range]. CD34⁺CD133⁺ (in 1630 participants).

- ECFC- endothelial colony forming cells (in 1649 participants). * p <0.05, *** p
- <0.001, independent samples T-test.

CPC subset	Outcome	Model	No. of	HR	HR 95%	p value
			events/ No.		CI	
			at risk			
CD34 ⁺ CPCs	All course montality	Unadjusted	326/1751	0.64	0.52 - 0.79	< 0.001***
	All-cause monanty	Adjusted ^a	326/1751	0.79	0.64 - 0.98	0.036*
	CVD montality	Unadjusted	71/1751	0.54	0.35 - 0.85	0.008**
	C VD monanty	Adjusted ^a	71/1751	0.64	0.41 - 1.01	0.055
CD34+CD133+KDR+	All aquea mortality	Unadjusted	326/1751	0.88	0.76 - 1.01	0.066
EPCs	An-cause mortanty	Adjusted ^a	326/1751	0.93	0.80 - 1.07	0.300
		Unadjusted	71/1751	1.02	0.76 - 1.38	0.888
	CVD mortality	Adjusted ^a	71/1751	1.09	0.81 - 1.47	0.579
CD34+CD133+ CPCs	All aques montality	Unadjusted	303/1630	0.76	0.65 - 0.90	0.001**
	All-cause mortality	Adjusted ^a	303/1630	0.86	0.72 - 1.01	0.07
		Unadjusted	65/1630	0.61	0.43 - 0.87	0.006**
	CVD mortality	Adjusted ^a	65/1630	0.63	0.44 - 0.91	0.013*
ECFC	A11 / 12	Unadjusted	321/1649	0.96	0.92 - 1.04	0.11
	All-cause mortality	Adjusted ^a	321/1649	0.98	0.94 - 1.03	0.393
	CVD montality	Unadjusted	71/1649	0.97	0.88 - 1.07	0.505
	C v D monanty	Adjusted ^a	71/1649	0.99	0.90 - 1.10	0.893

722 **Table 2.** CPC Counts and mortality risk

- 723 HR hazard ratio, CI confidence intervals.
- ^aModel adjusted for age, sex, BMI, PAI, smoking status, diabetes status, hypertension
- and previous CVD diagnosis.
- 726 *** p < 0.001, ** p < 0.01, * p < 0.05 derived from Cox proportional hazard regressions

CPC Subset	Outcome	Model	CVD free at exam 8			CVD diagnosis by exam 8				
			No. of events/ No.	HR	HR 95% CI	P value	No. of events/	HR	HR 95% CI	P value
			at risk				No. at risk			
CD34 ⁺ CPCs	All-cause mortality	Unadjusted	211/1467	0.70	0.54 - 0.91	0.008**	115/284	0.57	0.41 - 0.81	0.002**
		Adjusted ^a	211/1467	0.89	0.67 - 1.18	0.424	115/284	0.68	0.48 - 0.97	0.032*
	CVD mortality	Unadjusted	34/1467	0.65	0.34 - 1.26	0.203	37/284	0.49	0.26 - 0.91	0.023*
		Adjusted ^a	34/1467	0.84	0.41 - 1.70	0.619	37/284	0.53	0.28 - 0.99	0.048*
CD34 ⁺ CD133 ⁺ KDR ⁺	All-cause mortality	Unadjusted	211/1467	0.90	0.76 - 1.08	0.258	115/284	0.85	0.68 - 1.06	0.149
EPCs		Adjusted ^a	211/1467	0.92	0.76 - 1.11	0.385	115/284	0.94	0.75 - 1.18	0.586
	CVD mortality	Unadjusted	34/1467	0.86	0.56 - 1.33	0.492	37/284	1.17	0.79 - 1.72	0.442
		Adjusted ^a	34/1467	0.80	0.49 - 1.28	0.350	37/284	1.28	0.86 - 1.90	0.229
CD34 ⁺ CD133 ⁺ CPCs	All-cause mortality	Unadjusted	196/1364	0.85	0.69 - 1.04	0.11	107/266	0.61	0.46 - 0.82	0.001**
		Adjusted ^a	196/1364	0.99	0.80 - 1.23	0.943	107/266	0.64	0.48 - 0.86	0.003**
	CVD mortality	Unadjusted	31/1364	0.78	0.47 - 1.30	0.344	34/266	0.45	0.27 - 0.76	0.003**
		Adjusted ^a	31/1364	0.86	0.50 - 1.49	0.588	34/266	0.42	0.24 - 0.72	0.002**
ECFC	All-cause mortality	Unadjusted	205/1391	0.96	0.91 - 1.02	0.179	116/262	0.99	0.92 - 1.07	0.782
		Adjusted ^a	205/1391	0.97	0.92 - 1.02	0.261	116/262	1.01	0.93 - 1.09	0.828
	CVD mortality	Unadjusted	34/1391	1.03	0.90 - 1.19	0.655	37/262	0.93	0.82 - 1.07	0.317
		Adjusted ^a	34/1391	1.03	0.90 - 1.19	0.633	37/262	0.95	0.82 - 1.09	0.437

727 **Table 3.** CPC Counts and risk of death for all participants split by CVD diagnosis at exam 8

728 HR- hazard ratio, CI- confidence intervals.

^aModel adjusted for age, sex, BMI, PAI, smoking status, diabetes status, hypertension. *** p < 0.001, ** p < 0.01, * p < 0.05

730 derived from Cox proportional hazard regressions.

CPC subset	Outcome All		CVD-free	CVD
		ß, <i>T</i> -value, <i>p</i> -value	ß, <i>T</i> -value, <i>p</i> -value	ß, <i>T</i> -value, <i>p</i> -value
CD34+	Unadjusted	0.023, 0.967, 0.334	-0.013, -0.486, 0.627	0.176, 3.009, 0.003**
	Adjusted ^a	0.008, 0.322, 0.748	-0.021, -0.813, 0.416	0.153, 2.461, 0.014*
CD34+CD133+	Unadjusted	-0.014, -0.567, 0.571	-0.04, -1.495, 0.135	0.115, 1.893, 0.059
	Adjusted ^a	-0.022, -0.872, 0.383	-0.042, -1.574, 0.116	0.107, 1.616, 0.107
CD34 ⁺ CD133 ⁺ KDR ⁺	Unadjusted	0.022, 0.901, 0.368	0.002, 0.086, 0.932	0.108, 1.817, 0.07
	Adjusted ^a	0.019, 0.775, 0.439	0.005, 0.194, 0.846	0.080, 1.269, 0.205
ECFC	Unadjusted	0.005, 0.197, 0.844	-0.005, -0.201, 0.841	0.049, 0.785, 0.433
	Adjusted ^a	-0.006, -0.241, 0.809	-0.015, -0.535, 0.592	0.036, 0.537, 0.592

731 Table 4. Association between physical activity index and CPC Co	ounts
---	-------

732 ^{*a*}Model adjusted for age, sex, BMI, smoking status, diabetes status and hypertension.

733 For "All" adjustment also includes previous CVD diagnosis

734 ECFC- endothelial colony forming cells.

735 *** p < 0.001, ** p < 0.01, * p < 0.05 derived from Cox proportional hazard 736 regressions.

CD34+ progenitors are predictive of mortality and are associated with physical activity in cardiovascular disease patients

David Muggeridge^{ab} (<u>D.Muggeridge@napier.ac.uk</u>), Jennifer Dodd^a (<u>J.Dodd@napier.ac.uk</u>), Mark D. Ross^a (<u>M.Ross@napier.ac.uk</u>)

^aSchool of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom ^bInstitute of Health Research & Innovation, Division of Biomedical Science, University of the Highlands and Islands, Inverness, UK

Highlights:

- Circulating CD34+ progenitor cells are biomarkers of endothelial regenerative capacity
- Lower levels of these cells are predictive of cardiovascular and all-cause mortality, specifically in those with underlying or pre-diagnosed cardiovascular disease
- Self-reported physical activity is positively associated with these CD34+ progenitor cells independent of other known risk factors, but only in individuals with pre-existing cardiovascular disease which may help to explain the role of physical activity in reducing future event risk

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: