
Conceptual Modelling for Database User Interfaces

Richard Cooper1, Jo McKirdy1, Tony Griffiths2, Peter J. Barclay3, Norman W.
Paton2, Philip D. Gray1, Jessie Kennedy3 and Carole A. Goble 2

1Deepartment of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.

{rich, jo, pdg}@dcs.gla.ac.uk

2Department of Computer Science, University of Manchester, Oxford Road, Manchester M13
9PL, UK.
{griffitt, norman, carole}@cs.man.ac.uk

3Department of Computing Studies, Napier University, Canal Court, 42 Craiglockhart Avenue,
Edinburgh EH14 1LT, UK.

{jessie,pete}@dcs.napier.ac.uk

Abstract Model-based user interface development environments show promise
for improving the speed of production and quality of user interfaces.
Such systems usually have separate description of domain, task and
presentation structure. The Teallach system applies model based
techniques to the important area of database interfaces, which
increases the importance of domain information. This exists in the
form of a schema and can be captured in a high-level format, so that
the developer need not build a domain description arbitrarily. This
paper describes such a Domain Model, how it is captured and how it
contributes to the systematic development of a user interface.

Keywords: Model-based UIDE, Domain Model, Conceptual Modelling

1. INTRODUCTION

Database systems have long been criticised for providing inadequate
facilities for user interaction. Building a user-interface previously required
recourse to significant amounts of programming to augment the database.
Although most commercial systems now supply integrated support for
application user interface development, the support is neither systematic nor

of complete generality. Developers cannot re-use components from previous
applications, nor can they go beyond the limited scope of the interface
development environment, without returning to the need to write programs.

The model-based approach [Szekely 1996] is more systematic and
generalisable, the developer first constructing declarative specifications or
models of the various aspects of the user interface, from which the
application and user interface are produced. A Model-Based User Interface
Development Environment (MB-UIDE) permits the description of the
following aspects: a domain model which describes the structure of the data;
a task model which describes the structure of the activities; a presentation
model which describes the user interface features; a user model which
describes characteristics of various user roles; and a dialogue model which
describes the interaction between user and application. For a full account the
capabilities of such models, the reader is referred to [Griffiths 1998].

Previous MB-UIDEs have been built in the context of applications in
general and have not typically been applied to data-intensive applications.
The Teallach system [Barclay, 1999] has been constructed to explore the
possibility of using the MB-UIDE approach in the context of Java-based
Object-Oriented Database Systems (OODBS). Teallach supports the
specification of Domain, Task and Presentation Models for the application,
providing meta-models for each of these – Teallach does not, as yet, have a
User Model, while Dialogue aspects are integrated into the Presentation and
Task Models. Teallach is supplied as a single piece of software in which the
models can be developed and integrated before an application is generated.

Focussing on database applications brings the Domain Model (DM) into
a central position. In previous MB-UIDEs, the DM has played a subsidiary
role. Given database involvement, several considerations change. Firstly,
there is already a version of a Domain Meta-Model – the logical data model
of the database system. Secondly, when considering an OODBS, this model
is not consistent. Moreover, when we restrict ourselves to the need to
provide user interface development tools for existing databases, a DM
already exists (the schema) and need not be developed from scratch.

This short paper briefly describes how domain information is extracted
and used in Teallach. More details of the Teallach system can be found at
the Teallach web-site.[Teallach,1999].

2. THE DOMAIN MODEL OF A MB-UIDE

The DM of an application in a MB-UIDE describes the structure of the
data. This activity is very familiar to database programmers as it is nothing
more than conceptual schema design. In fact, the task of specifying the DM

of the application has already been carried out, since the interface is being
developed in terms of an existing database. Instead of the developer having
to specify the DM as one of the main tasks, the task is to pick up the existing
database schema and use it as the DM. To do this, Teallach connects to the
database and retrieves the schema from the meta-data, creating an internal
representation of it which is the DM. Teallach does not support (presently)
the tasks of schema design/DM specification nor the modification of these.

The DM is a conceptual model, and the Teallach DM has the goal of
describing as much of the data structure as required for describing the user
interface. The DM is therefor high level and describes the database in terms
of concepts appropriate to a user’s understanding of the application domain.

Teallach operates in the context of OODBS[Cooper, 1997] such as
POET[POET, 1999] or Objectivity [Objectivity, 1999]] and hence the DM is
object-oriented. The Teallach DM describes data in terms of classes,
methods, inheritance and so on. However, the lack of a common and agreed
OO model is a significant problem. Each OO concept (inheritance,
information hiding, etc.) has a number of divergent semantics and the
product of these individual variations gives rises to an enormous number of
meanings of the term “object-oriented data model”, many of which are
realised in OOODBS products.

Since one of the goals of Teallach is to be platform independent, we need
a single consistent model for our internal representation of the DM. Here we
make concrete use of the main OODBS standardising - the ODMG standard,
which comprises definitions of an object model, an object schema definition
language, an object query language and language bindings to Java, C++ and
Smalltalk. It is only the Object Model which interests us.

We would have liked to use the object schema definition language (ODL)
to derive a standard description.. However, compliance with the ODMG
standard does not extend to the use of ODL in any form. What we can
expect from ODMG-compliance is the existence of a relatively standard
form of the query language and language bindings. Schema descriptions are
not standardised, nor is the underlying data model.

We had, therefore, to determine, on a product-by-product basis, the
appropriate mechanism for retrieving the schema of a database. For
instance, the POET 5.1 Java Binding[POET, 1997], uses an associated
configuration file which names the classes to be found in the database. From
this, we can begin to create a DM based on the classes named in the file. We
then exploit the fact that we are developing our system in Java, in which case
we can now make use of Java’s introspection mechanisms. We find and
load the classes in the database using this mechanism and introspect over
them to discover the variables and methods in the classes. From this we
create a complete description of the DM. In the next section, we consider
the form that this description takes.

3. A DATABASE INDEPENDENT DOMAIN MODEL

The DM of Teallach is based strongly on the ODMG Data Model[Cattell
et al., 1997]. This was an important contribution to the success of the
project since we did not have to invent a model; and could expect a fair
degree of conformity between the “ODMG-compliant OODBMS” and this
model. Consequently, capturing metadata in this model is greatly simplified.
Here, we briefly review the ODMG model and what it supports, before we
discuss the implementation which constitutes our DM.

3.1 The ODMG Data Model

The ODMG data model provides a standard to which OODBMS products
should adhere. The model is principally for database use. Consequently, it
is intimately concerned with issues of efficiency (e.g. it avoids the need for
an object de-reference to retrieve an integer), data modelling (bi-directional
relationships are an assumed component) and database management. The
latter has meant that the ODMG model includes a view of how databases are
structured, has a specification for transactions, has standard classes for
domain types and collections, and provides for user-detectable keys.

The model comprises several parts: distinct parts which deal with objects
and with literals; support for structured (i.e. record) values; the distinction
between two kinds of class variable: relationships, which are objects with
automatically maintained inverse references; and attributes which may be
literals or objects, but which do not automatically support an inverse
reference; multiple inheritance of behaviour, but single inheritance of state;
database specific extensions including extents and keys; and exceptions.

This means that an ODMG schema constitutes a rich description of the
structure of the data and provides the Teallach system with substantial
support in building a description of the database that can be of great use in
the interface development process.

3.2 The Teallach Domain Model

The Teallach Domain Model is based heavily on the ODMG Model.
Unfortunately, since we require a concrete implementation of most of the
above aspects, we have run into several instances of a lack of precision in the
ODMG specification. At any point of ambiguity, we have had to take a
particular view in order to complete our implementation.

The Domain Meta-Model is essentially a Java package that realises each
of the ODMG concepts as a class. There is a repository class, whose
instances corresponds to database schemata. The class descriptions are

created as instances of the metadata classes in the ODMG model, such as
Operation, Parameter, Type, Exception and so on.

There have also been classes created for Databases, Transactions and
OQL Queries. Each of these has special responsibility for encapsulating
some aspect of the user’s interaction with the database. The query class is
important, since it means that the interface can exploit the querying interface
of the database and hence exploit any query optimisation techniques which
have implemented.

The principal role of the DM is to represent the underlying application,
and database connectivity and interaction. In addition, however, it models
auxiliary data types that may be required to describe transient data vital to
the runtime operation of the application and interface. Auxiliary data is also
modelled using the ODMG derived building blocks in order that the
representation of domain components is orthogonal to their source and
persistence. It is vital to have the ability to model transient data, since any
sophisticated user interface will require the ability to manipulate data which
is passed between interaction components but never stored.

In fact, given the ability to handle auxiliary data, Teallach can also
support the creation of the DM from non-database (but Java implemented)
data sources. In this case, the application can be introspected over and DM
information sought, since the DM builder essentially iterates over a Java data
structure and returns the internal description constructed from what it finds.

3.3 Creating a Teallach Domain Model

The Teallach system uses the DM component as a fixed point for
interface development. The developer fetches a schema from the database
system, which is then visualised as a hierarchical display of classes and their
components. Teallach supports the processes of capturing a DM and
describing the other models in any order. To do so it proceeds as follows:

• The list of persistence capable classes in the application is requested
from the database system. In the case of POET5.1, the configuration
file holds both the names of these classes and the application name.

• Each of the classes is then introspected in order to discover their
internal structure in terms of their fields, methods, and exceptions.

This results in a DM represented as a collection of instances of the DM
classes. The information contained within the DM for a given application
can be used in two ways. Firstly, it can assist and inform the designer in the
generation of the other models in the Teallach system. For example, the
functionality available on a particular class can assist the designer in
developing a part of a task model, while the type of a parameter in the
signature of an operation can enable the designer to decide which

presentation widget would be the most appropriate for displaying or
obtaining that information. It can also be used by the Teallach system to
generate components of other models for the given application
automatically. The nature of the relationships between the different Teallach
models will be discussed in the next section.

4. INTEGRATING THE DOMAIN MODEL WITH THE
OTHER TEALLACH MODELS

After the DM has been captured, Teallach allows a developer to create
the rest of the interface description in any order. This section shows how the
development process proceeds from the DM. We start by describing the
design environment in general, then show how the Presentation Model is
developed, followed by the Task Model. Finally, we show how the whole
process is completed.

4.1 The Teallach Design Environment

The figure shows a screenshot of the Teallach design environment, which
consists of editors for the three models within an overall tool environment
providing project management, editing, model linking and code generation
facilities. The toolkit uses a desktop metaphor and direct manipulation
techniques for model construction.

This environment supports the following tasks:
• the capture of the Domain Model as described above;
• the creation and editting of a Task Model;
• the construction of a Presentation Model from an available toolkit;
• linking the various models; and
• generating the user interface thus described.

The Task Editor supports the specification of both the structure of user
tasks and the flow of information between the models when carrying out the
user’s tasks. A Task Model is a goal-oriented task hierarchy, with leaf nodes
representing user interaction or database tasks. Non-leaf-nodes specify the
temporal ordering of the children, e.g. indicating sequential, parallel or con-

current sub-task execution. The Task Pane allows the task hierarchy to be
edited by modifying, adding or removing tasks. Furthermore, leaf tasks can
be associated with domain or presentation components as described below.

A Presentation -Model describes the appearance and surface behaviour
of the user interface. It has both a concrete and an abstract aspect.
Concretely it is a widget set out of which components of the user interface
are built. Abstractly it partitions the space of widgets in terms of their
purpose, e.g. display, edit, choose, invoke action.. Teallach supports a
repository of widgets registered in terms of both concrete and abstract
representations. The Presentation Pane shows a tree-view of the widgets and
the ability to toggle between abstract and concrete views.

Having constructed the three models in the separate sub-windows, there
are two ways of associating elements from different models: linking and
generating. Linking creates an association between existing components in
two models, for instance linking a task to a presentation or domain action.
Generation creates new components in one model based on components in
another, for instance generating a task from a DM operation.

Linking is achieved by drawing a rubber-banded line from an element of
one model to an element of another, to associate the two. This can be seen
in the figure, which shows a link being created between the task model
Connect action task and the domain model connect operation which will
mean that if the generated application executes this task, the database
connection operation in the DM will be invoked. Teallach currently uses a
simple hyperlink metaphor to show associations between linked model
components; this allows the designer to jump to an associated component by
invoking its show linked components operation from a pop-up menu.

Generating components in one model from components in another is
achieved by drag-and-drop. The designer simply drags a component from
one model and drops it at the desired location in the target model. For

example, the designer may construct a partial task hierarchy corresponding
to some constructed presentation (or vice versa). Once the new structure has
been generated, the relationships between components are maintained
through the services provided by the Teallach store.

The final step takes the three completed and inter-connected models and
using these for the generation of Java source code to present the application
using the desired interface. The final code will consist of: calls to Swing,
calls to the DM classes and a set of calls mirroring the task structure.

4.2 Presentation and the Domain Model

As described above, there are two ways in which the DM can be used to
determine the Presentation Model: by linking DM components to existing
interaction objects; or by generating presentation objects from DM
components. The former is used if the developer has created an interface
and wants to link it to the database. The second is used if the database
structure is used to generate the interface directly.

There are several ways in which the DM components can be linked to
Presentation Model components. Among these are:

• associating an interaction object with a DM operation – e.g., a
button might be placed on the interface to summon an operation;

• associating an object type with a container e.g. a dialogue box – in
which case, dialogue box content will be subsequently added; and

• associating an atomic DM component with a primitive interaction
object –for instance, linking a string property with a text field.

There are also several ways in which DM components can be used to
generate Presentation Model components. Among these are:

• dropping an operation onto a presentation object type will generate
an instance capable of invoking the operation;

• dropping a class onto a complex presentation type will generate a
default structure; and

• dropping a primitive object type, such as a string, onto the
presentation generates a new interaction object, such as a text box.

In fact, the developer can interleave fragments of the linking and
generating processes if so required.

4.3 Tasks and the Domain Model

The DM can also be used by linking domain information to previously
defined tasks, or as a basis for generating task descriptions.

The former may be used to:

• link a class to a compound task, which, for instance, edits objects of
that class; or

• link an operation with an action task which is a leaf node of the task
hierarchy.

The latter is used to:
• generate a new leaf task corresponding to an operation; or
• generate a new compound task corresponding to the editing of an

object.
These possibilities are exactly equivalent to the connections between

Domain and Presentation Models. In this case either the whole Task Model
is laid out first and elements of it are then linked to the DM, or elements of
the Task Model are generated as default activities relating the DM
components.

5. CONCLUSIONS

The paper has described a novel use for conceptual modelling which
brings together two similar technologies that have typically been kept quite
separate. On the one hand, the world of Model Based User Interface
Development Environments is concerned with providing just as much
application description as is necessary to complete a user interface
description. On the other hand, the world of conceptual data modelling
promises a similarly high-level description, but one from which an
implementation data structure can be inferred. Both kinds of model are high
level, since they provide intuitive descriptions, but are implementation-
oriented since implementations must be developed from them.

It is the high-level nature of both of these models which brings them
together as the DM of the Teallach system. In Teallach, the DM is extracted
from the schema of an existing Object-Oriented Database. The object-
orientation implies the existence of a higher level description than is found
in classical database systems. Moreover, having restricted our attention to
Java databases, we have tools for discovering database structure and
transforming it into a consistent internal structure.

Having achieved such an internal structure, we use it as the basis of
interface development, by adding two other declarative models – one for
presentation and one for the task structure. These can either be developed
completely separately and then linked to the domain description, or can be
partially developed from the domain information and subsequently enhanced
and completed.

We have turned the usual conceptual methodology around – performing a
kind of reverse engineering. Instead of generating a low-level description

from a high level model, we have created a high-level model from an
installed database and then used it as the basis of application development.
The installed database, being object-oriented, contains enough self-
description to allow a complete representation to be abstracted from it.

ACKNOWLEDGEMENTS

This research is funded by the UK Engineering and Physical Sciences
Research Council (EPSRC), whose support we are pleased to acknowledge.
We would also like to acknowledge the useful comments of Karen Renaud
on a draft of this paper.

REFERENCES

Barclay PJ, Griffiths, T., McKirdy, J., Paton, N., Cooper, R. and Kennedy, J (1999) “The
Teallach Tool: Using Models For Flexible User Interface Design, in proceedings of
CADUI'99, Louvain-la-Neuve (Belgium), 21-23 October 1999

Cattell, R.G.G. et al (1997): The Object Database Standard: 2.0, Morgan Kaufmann.
Cooper, R. (1997) “Object Databases”, International Thompson Press.
Foley, J., Kim, W. C., Kovacevic, S., & Murray, K. (1989) Defining Interfaces at a High

Level of Abstraction. IEEE Computer, 25-32.
Griffiths, T., McKirdy, J., Forrester, G., Paton, N., Kennedy, J., Barclay, P., Cooper, R.,

Goble, C.& Gray, P.D. (1998) Exploiting Model-Based Techniques for User Interfaces to
Databases, Proc VDB4, Y. Ioannidis and W. Klas (eds), Chapman&Hall.

Johnson, P., Johnson, H., & Wilson, S. (1995) Rapid Prototyping of User Interfaces Driven by
Task Models. In Scenario-Based Design, (Carroll, J. ed). John Wiley & Son, 209-246.

Mitchell, K., Kennedy, J., Barclay, P.(1996) A Framework for User Interfaces to Databases.
In Proc. AVI, ACM Press.

Objectivity (1999) www.objectivity.com
POET (1997) POET Software, “POET Java SDK Programmer’s Guide”, POET Software.
POET (1999), www.poet.com
Schlungbaum, E., Elwert, T.(1996) Automatic User Interface Generation from Declarative

Models. In Proc. CADUI, 3-18.
Szekely, P., Luo, P., & Neches, R. (1992) Facilitating the Exploration of Interface Design

Alternatives: The HUMANOID Model of Interface Design. In Proc. CHI 92. 507-515.
Szekely, P.(1996) Retrospective and Challenges for Model-Based Interface Development,

Proc. DSVIS, F. Bodart and J. Vanderdonckt (eds), 1-27, Springer-Verlag.
Teallach (1999), www.dcs.gla.ac.uk/research/teallach/

BIOGRAPHIES

Teallach is an EPSRC funded research project which has been running since October 1996. It
is a collaboration between the universities of Manchester, Glasgow, and Napier, with

industrial collaborations including IBM, ICL, British Geological Survey, and Criterion
Software. The focus of our investigation lies in the systematic and generic support for the
development of user interfaces to object-oriented database applications.
The principal aim of our research is the development of models, a software architecture, and
tools which will facilitate the rapid development of user interfaces to ODMG compliant
databases.

