

Proceedings of
Software Product Lines:
Economics, Architectures, and Implications

Workshop #15 at 22nd International Conference on Software
Engineering (ICSE), Limerick, Ireland, June 10th 2000

Editors:
Peter Knauber
Giancarlo Succi

IESE-Report No. 070.00/E
Version 1.0
June 2000

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the
Fraunhofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists com-
panies in building software competencies
customized to their needs, and helps them
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6
D-67661 Kaiserslautern

Copyright © Fraunhofer IESE 2000 5

Program Committee Members

Luigi Benedicenti, University of Regina, Canada
Jorge Diaz-Herrera, Southern Polytechnic State University, USA
Loris Gaio, Università di Trento, Italy
Peter Knauber, Fraunhofer IESE, Germany
Masao J. Matsumoto, University of Tsukuba, Japan
Frank Maurer, University of Calgary, Canada
Maurizio Morisio, University of Maryland, College Park, USA
Giancarlo Succi, University of Alberta, Canada
Tullio Vernazza, Università di Genova, Italy
Enrico Zaninotto, Università di Trento, Italy

Copyright © Fraunhofer IESE 2000 7

Table of Contents

Perspectives on Software Product Lines:
Report on First International Workshop on Software Product Lines: Economics,
Architectures, and Implications .. 11
Peter Knauber, Giancarlo Succi

Economic and organizational aspects of product line development

A Customer Value-Driven Approach to Product-Line Engineering1
David M. Raffo, Stuart Faulk and Robert R. Harmon

Multi-Staged Scoping for Software Product Lines ... 19
Klaus Schmid

Product-line Analysis: Do we go ahead?... 23
Goiuria Sagarduy, Sergio Bandinelli, Ramón Lerchundi

Quantifying Software Product Line Ageing ... 27
Susanne Johnsson, Jan Bosch

Case studies, experiments, reports from industrial projects

A Comparative Analysis of Domain Engineering Methods: A Controlled Case Study .. 33
Ali Mili, Sherif M. Yacoub

Performance Issues of Variability Design for Embedded System Product Lines............ 45
Oliver Lewis, Mike Mannion, William Buchanan

Athena: A Software Product Line Architecture for Meter Data Processing and
Control ... 49
Daniel J. Paulish, Michael L. Greenberg

Applied technology for designing a PL architecture of a pilot training system 55
W. El Kaim, S. Cherki, P. Josset, F. Paris, J.-C. Ollagnon

A product line experience in the domain of fund management................................. 65
Tullio Vernazza, Stefano De Panfilis, Paolo Predonzani, Giancarlo Succi

Domain analysis and product-line scoping: a Thomson-CSF product line case............ 73
S. Cherki, W. El Kaim, P. Josset, F. Paris

Moving toward software product lines in a small software firm: a case study 83
Tullio Vernazza, Paolo Galfione, Andrea Valerio, Giancarlo Succi, Paolo Predonzani

1 Paper is not provided because the author failed to submit a signed copyright agreement.

Copyright © Fraunhofer IESE 2000 8

New product line approaches

A product line process for the production of platform software at Bosch91
John MacGregor

A Framework for Software Product Line Practice .. 101
Paul C. Clements, Linda M. Northrop

Product Line Process Framework: The Wheels process .. 109
Michel Coriat, Frédéric Waeber

Analysis of the Essential Requirements for a Domain Analysis Tool 119
Giancarlo Succi, Jason Yip, Eric Liu

Embedded Systems Product Lines... 129
Jorge L. Diaz-Herrera, Vijay K. Madisetti

Helping Small and Medium-Sized Enterprises in Moving Towards Software Product
Lines ... 137
Dirk Muthig, Joachim Bayer

Product Line Viewpoint and Validation Models ... 141
Nader Nada, L. Luqi, Khaled Jaber, David Rine

An XML-based Approach to Product Line Engineering .. 149
Fred Waskiewicz, Douglas Stuart

Reusable Architectures for Software Product Lines.. 159
H. Gomaa, G. A. Farrukh

A bumon Methodology for Product Line Conceptual Modeling............................... 163
Masao J. Matsumoto, Masahiko Kamata, Kaoru Umezawa

ESAPS - Engineering Software Architectures, Processes and Platforms for System
Families ... 173
Frank van der Linden

Copyright © Fraunhofer IESE 2000 9

Perspectives on Software Product Lines:
Report on First International Workshop on Software Product Lines:
Economics, Architectures, and Implications

Copyright © Fraunhofer IESE 2000 10

Perspectives on Software Product Lines
Report on First International Workshop on Software Product Lines:

Economics, Architectures, and Implications
Workshop #15 at 22nd International Conference on Software Engineering (ICSE)

 Peter Knauber Giancarlo Succi
 Fraunhofer Institute for Department of Electrical and Computer Engineering
Experimental Software Engineering (IESE) The University of Alberta
 Sauerwiesen 6 238 Civil / Electrical Building
 D-67661 Kaiserslautern, Germany Edmonton, Alberta, Canada, T6G 2G7
 (+49) 6301 – 707 242 (780) 492-7228
 Peter.Knauber@iese.fhg.de Giancarlo.Succi@ee.ualberta.ca

1 INTRODUCTION
Product line engineering is a concept that has emerged in
the 80’s in the business schools and is now among the
hottest topics in software engineering.

Software product lines aim at achieving scope economies
through synergetic development of software products.
Diverse benefits like cost reduction, decreased time-to-
market, and quality improvement can be expected from
reuse of domain-specific software assets. But also non-
technical benefits can be expected as result of network
externalities, product branding, and sharing organizational
costs.

Product lines introduce additional complexity. In a sense
they go against the common adage of “divide and conquer.”
Planning and/or developing of more than one product at a
time have to be managed technically and organizationally.

However, the rate of innovation of the technology and the
intrinsic nature of software products do not let alternatives
to developers: users like to jump into the bandwagon of
new products, and old products often drive preferences to
new products.

Research has been conducted in software product lines for
the past few years. Some of it has focused on
demonstrating that existing systems and approaches were
indeed instrumental for product line development, such as
generative techniques, domain analysis and engineering

and software components. Another portion of the research
effort has tried to determine how it is possible to create a
comprehensive methodology and an associated tool for
product lines, starting from the business idea of line of
products down to the development of a product and trying
to exploit all the possible synergies existing at each phase,
from network externalities to component reuse.

2 WORKSHOP STRUCTURE
The workshop was structured into the following parts:

o Two invited talks were starting point and introduction
into the morning and the afternoon sessions. The first
one was given by Stefano De Panfilis who reported
about his experience using a product line approach in
the domain of fund management. In the second talk the
largest European project addressing software families,
ESAPS, was presented by its project leader, Frank van
der Linden.
More details on these talks are given in section 3.

o Three technical sessions gave room to present
theoretical and practical issues concerning product
lines and their use in practice. The first session
addressed economic and organizational aspects of
product line engineering. In the second session,
experience from using product line methods in case
studies, experiments, or industrial projects was
reported. Several new product line approaches and
their specifics were presented in the third technical
session. At the end of each session, some time was
reserved for discussion.
The most important topics of each session are briefly
summarized on section 4.

o A final panel discussion concluded the workshop. Six
panelists answered questions from the audience and
discussed with each other. Unfortunately, there was too
little time to resolve many open issues.

ILovato
P. Knauber, G. Succi (2001), “Review of the Workshop on Software Product Lines: Economics, Architectures, and Implications”, ACM Software Engineering Notes, 26(2)

More information about the panel and the topics
discussed there is given in section 5.

3 THE INVITED TALKS

Experience in the domain of fund management
Stefano De Panfilis reported about the application of
product line in banking systems, and their specific fund
management systems. There is a large common core of
functionality among the products that are then customized
to the customer’s needs. De Panfilis pointed out that this
fact is one out of two inevitable prerequisites for successful
product line application. According to him, the second
prerequisite is, that the customization of products offers a
competitive advantage.

The ESAPS project
ESAPS (Engineering Software Architectures, Processes
and Platforms for System Families) is Europe’s largest
research project, coordinating the work of 21 companies
and research institutions across Europe. The project
manager, Frank van der Linden, reported on the goals as
well as the history of ESAPS: some of the project partners
have already worked together in two previous projects,
ARES and PRAISE. Overall goal of ESAPS is the
achievement of significant higher levels of reuse and
improved system quality through better engineering of
architectures, processes, and platforms for system families.
The first phase of ESAPS will concentrate on the
development of the approach and laboratory scale
validation of the individual technologies and technology
integration framework. The second phase will focus on the
integration of the individually validated technologies,
automation of the approach and industrial scale validation
in various domains.

4 THE SESSIONS

Session 1: Economic and organizational aspects of
product line development
In this session, the economic aspects of software product
lines were addressed: when and where it is worth to
introduce a product line approach in an organization, how
the benefits and risks involved can be quantified, how the
product line can be focused best to match customers’ needs,
and how the ageing of a product line can be determined in
order to decide about its retirement.

The four papers presented here tried to answer these
questions and the discussion showed strong interest of the
audience.

o The approach presented by Goiuria Sagarduy tries to
qualtify the potential benefits and risks involved in the
decision to go towards a product line development in
order to give company owners and managers a good
idea about the economic impacts of such a decision.

o In his talk, Stuart Faulk presented a new software
development process including Customer Value
Analysis to link relevant software design decisions to
tactical and strategic business objectives. Customer
Value Analysis here is used to denote a product’s
perceived oberall benefit.

o Klaus Schmid structured his product line scoping
approach in three steps: the first one (product line
mapping) produces a high-level dscription of the
product line in terms of domains; the second one
(domain-based scoping) does basically an assessment
of reuse potential and viability of these domains; this
information is then used to select the most promising
ones. The third step (feature-based scoping) produces
the quantitative benefit of implementing certain
features in a generic way, that is, reusable. These three
talks were about product line introducing and running
them most effectively.

o In the last talk, Susanne Johnsson discussed the
evolution of product lines, how the costs of
maintenance increase over time and the relative
division of effects resulting from maintenance tasks.
These considerations are the basis of a model for
identifying architecture erosion which can be used in
the decision processes surrounding the reorganization
and retirement of software product lines.

Session 2: Case studies, experiments, reports from
industrial projects
In this session, industrial projects, experiments, and case
studies together with the respective approaches used, their
results, as well as lessons learned were presented. The
intention was to help other organizations that intend to
invest in product line development to get a feeling for the
main risk factors and the critical issues to consider. The
very lively discussion after this session was continued in
the final panel discussion.

o Ali Mili reported about a classroom experiment, where
four domain engineering methodologies (FODA,
JODA, Synthesis, Reuse Business Methodology) were
analyzed and compared. Criteria for the comparison
were mainly the support for the domain engineering
lifecycle, the rationale for domain definition, the
support for legacy assets, the guidelines for domain
architecture development, the domain engineering
deliverables, the reusable assets, the technology and
language dependency, and the effort for domain and
application engineering.

o Oliver Lewis proposed a set of experiments that would
help to quantify the space and time overhead due to
variability in a product line implementation versus a
single system implementation. The resulting data can
inform embedded systems engineers about the

behaviour of overhead they might expect in a single
system solution built from a product line model.

o In his talk, Dan Paulish described his experience with
applying the technique of global analysis to plan
software projects better by designing product line
architectures that anticipate change. The purpose of
global analysis is to analyze the factors that influence
the architecture and to develop strategies for
accommodating these factors in the architecture
design. The technique was applied to the design of a
meter data processing and control central station
platform. The resulting high-level design proved to be
very flexible and expandable.

o William El Kaim reported on product line experience
from an experiment concerning systems used in the
simulation for ground vehicle pilot training. Strong
emphasis was on the modeling of the architecture from
different perspectives (or views), each perspective
corresponding to the concern of a stakeholder. The
experiment, which was performed in the PRAISE
Esprit project, showed also the importance of
traceability among assets and the need to convince the
people involved to explicitly describe and reuse assets.
Tools, even though considered very important, are very
expensive while not yet providing the support needed
for product line development.

o In his talk, Paolo Predonzani described a case study
regarding the introduction of domain analysis and
object-oriented frameworks in a small software firm
with the purpose to set up a development environment
based on product lines. Goal of this project was to
evaluate the impact and the benefits of the introduction
of a domain engineering approach in a specific
domain, laying the groundwork for the definition of a
corporate reuse program toward the introduction of a
product line. The experiment showed satisfactory
results in general, the new concepts had positive
effects on the software process.

Session 3: New product line approaches
In this session, new concepts for the development of
product lines and the management of their evolution over
time are presented. These include addressing single aspects
or the complete product line life cycle. Specific attention
has also been posed in tools to support product lines,
government initiatives and small and medium size
companies, which constitute a large and significant part of
the software market.

o Paul Clements detailed a framework for the
establishment of software product line practices. He
identified the following key areas to target before the
introduction of software product lines: domain
understanding, asset mining, architecture exploration
and definition, architecture evaluation, COTS

utilization, software systems integration, data
collection, metrics, and practices, product line
scooping, configuration management, technical risk
management. In addition he emphasized the
importance of a suitable launch of the product line
initiative in a company.

o William El Kaim presented a work of Michel Coriat
and Frédéric Waeber. He introduced Wheels, a process
framework to introduce and institutionalize product
line practices. Three are the tenets of Wheels: (a) the
use of UML for its metamodeling; this is intended to
increase the understandability of the metamodel; (b)
the adoption of a matrix approach in defining those
practices that are required in a company to implement
a product line approach; (c) the definition of a written
handbook to detail the process patterns of the
company. Wheels is being experimented in real
projects by Alcatel and Thomson-CSF.

o Giancarlo Succi discussed the essential requirements
for the establishment of a tool to support product lines.
The key problem is the need to track and integrate the
multiple activities that are required for the sound
design of a product line. There is also the need to
support domain specific advice. In brief, these
requirements are: (a) link consistency management, to
ensure that link traces make sense; (b) queries on
dependency links: filtering, sorting, and other
relationships; (c) change consistency management
between different activities, to ensure that all changes
are propagated correctly; (d) management of multiple
users working concurrently; (e) data integration with
COTS tools: to allow COTS tools to communicate
with the framework; (f) semantic domain specific
assistance. He also detailed the relevance of a design
critiquing system.

o Jorge Díaz-Herrera presented a methodology for
establishing product lines in the domain of embedded
systems, a part of the Yamacraw Embedded Systems
(YES) program, funded by the Georgia government. A
detailed description of the project can be found in its
web site: http://www.yamacraw.org. The idea is to
exploit a synergistic design of multiple embedded
systems together. Reuse is expected to play a major
role, and a major promoter of reuse is the definition of
standardized interfaces for the different pieces of
hardware devices. The overall product line effort is
divided in two groups of activities: (1) Modeling
activities, including (1.1) requirement engineering for
embedded systems, and (1.2) smart compilers for
embedded systems; and (2) Engineering activities,
including (2.1) personal embedded computing
environments, (2.2) networked and enterprise
embedded applications, and (2.3) home computing
applications.

o Joachim Bayer raised the problem of how to help small
and medium size companies to implement software
product lines. He suggested that a product line
methodology for such kind of companies should be
able to (a) cope with immaturity of the development
environment; (b) introduce techniques and concepts
step by step, to evidence clearly the progress; (c)
continue the work-in-progress, to avoid any disruption
of the development, which would not be bearable in a
small environment; (d) focus on the evolution of the
products and not the variants, since SMEs are more
likely to have new releases of products, rather than
different versions of the same product; (e) rely on
existing techniques and tools, for which there might be
already expertise in the company: SMEs are not likely
to take risks associated with new ideas. He introduced
KobrA, a product line methodology specifically
targeted to SMEs.

o David Rine evidenced that in a product line there are
three major stakeholders: a management, system
developers, and a reuse team. They all need to have
coherent views of the product line, however, such
views may be significantly different. Typical views for
software product lines are the “product line overview,”
the “product line architecture,” the “products,” the
“product release architecture,” the “components.” Each
view is characterized by its own attributes. These
views can be provided for the major steps involved in
developing a product line: (a) deciding on the adoption
of a product line strategy; (b) planning the product
line; (c) utilization and management of a product line;
(d) expansion of a product line.

5 THE PANEL
A panel concluded the workshop. The panelists were J.
Bayer, P. Clements, J. Díaz-Herrera, D. Rine, and W. El
Kaim.

The panelists and the workshop participants discussed
several topics. Here below there is a review of the
discussion. We have organized it by few major topics: the
costs to establish a product line, the CMM, problems
related to small companies, the role of management in a
product line initiative, the importance of domain analysis
and variability analysis in a product line effort, staging
models for introducing a product line, how product lines
support competitive biddings for large government
contracts, and the relationships between product line efforts
and lightweight methodologies. Clearly, there are
significant overlaps among these topics.

Costs. Clearly, the overall cost to develop a product line
depends on the size, the kind, the peculiarities etc of the
target domain. Everything depends on how the costs are
defined and measured, and this is not a trivial task.

Whenever a domain is scoped for a product line initiative
there is an economic rationale of optimality. This then
results in all the subsequent decisions, including the
tradeoffs between generality and specific implementation.
Studying such optimality is key in determining the overall
cost/benefit analysis of the product line effort. This is not
purely an economic analysis but also involves other issues
related to management. For instances, there are problems
related to legal aspects. Small businesses often have to
conform to additional legal requirements to receive targeted
business supports.

Simple numeric answers based on immediate cash flow
have been proposed in the past for the CelsiusTech and the
Boeing experience; the old adage has been repeated: “the
cost of doing a product line is 2 to 2.5 the cost of doing one
product the old way.”

A non-monetary cost is represented by the time to market.
For the introduction of a product of a brand new line, a
product line approach may result is longer time-to-market,
with risk of failure of the marketing effort. However, once
the product line is institutionalized, it is faster to come up
with new products in the line. An approach consists of
starting small, incrementally, possibly growing from
existing products.

A further approach to reduce the time to market is to create
a statewide infrastructure, like what the state of Georgia is
doing with the Yamacraw project.

There are also circumstances when time to market is not the
key consideration. There are companies who take a break
from production to grow in size. In these cases, a product
line strategy is a way to provide a reasoned growth, with a
clear definition of the core of the company and all the
additions.

CMM. There is no one-syllabus answer on the
relationships between the maturity in the CMM scale and
the feasibility of a product line development. It seems that
maturity helps but it is not a prerequisite. A speaker
suggested that the CMM level 3 should be required for the
business unit.

Anyway, it is evident that product lines practices and
process improvement –in whatever scale it is measured, go
hand-in-hand. This is especially true dealing with
frameworks-based product lines.

The situation is particularly critical for small companies.
Small companies represent a large part of the software
development market; for instance, 80% of the companies in
the Washington DC area are small companies.

There are indeed differences on how large and small
companies can approach a product line initiative. A survey
by Rine and Nada, to be published shortly, will detail these
differences.

One of the problems is getting to the point where small
companies leave a service oriented approach and start to
see a substantial profit from a line of products, perhaps in
synergy with other small companies. Also, the focus of
product lines is not just reusing components, but to share
knowledge across products, which may be even a more
critical issue, since turnover in personnel is harder to
manage in small companies.

Small companies alone often cannot afford to undertake
certifications, such as the CMM certification. However,
often in small companies the amount of variability for new
requirements is usually narrow and they relay on a single
product. Once the product is shipped, then it is possible to
look at further requirements and expand the market.

As previously mentioned, Fraunhofer IESE has developed
KobrA, a methodology to introduce product lines in small
and medium size companies.

Management. The role of management in a product line
effort is essential, especially when there are common
assets, shared across departments.

In small companies this is not usually an issue. The
management group is often part of the development as well,
so there is not an “independent, non-technical
management” to convince.

In large companies, the situation is different. For an
effective product line strategy, everyone in the command
line needs to be involved, and everyone in the command
line, from the top down to the bottom, makes key decision.

This is a difficult issue, because there are several units to
involve. A possible approach is to focus on the technology
viability of the product line initiative first and then, if
proven suitable, a limited pilot can be launched. If the pilot
is proven successful, then the scope of the product line
initiative is broadened. This is iterated to involve always
larger parts of the company, till everything suitable is
inside a product line.

The SEI framework requires a heavy management support:
2/3 of it is management oriented. Management has to fund,
take the risks, put incentives. In addition, management has
to participate to issues related to aging of software systems
and controlling the evolution of the product line, since such
issues are critical for the business successes and costs of the
line.

It is also important to notice that customers may be exposed
to tradeoffs of product lines and decide accordingly. The
future of the company owning the product lines can be
prosperous, since they have a baseline to compete on the
market. Product lines can be considered a way to build the
future.

Domain analysis and variability analysis. It is not yet
clear whether an upfront effort in domain analysis is the

requirement for a successful introduction of a line of
software products. This is especially important for small
companies, which often to don’t have the resources for
such initial commitment.

Variability analysis is an important part of the
establishment of a product line. Variability analysis is
scattered across multiple phases of the process of
developing a product line. First, variability is studied while
understanding the relevant domain for the line of products
and while scoping the domain. Variability also lives in
architectures.

Two critical issues deal with the situation of embedded
systems, when variability is to be solved also with
hardware components, and with instilling the knowledge of
variability in the corporate knowledge base.

Anyway, a very comprehensive marketing analysis is a
crucial prerequisite for a successful analysis of variability.

Standard staging models for introducing a product
lines. At the Software Engineering Institute there is
ongoing research on staging the introduction of product
lines. The idea is to start where most of the benefits occur.
A risk assessment is performed at the beginning and then a
set of steps is identified, with ample room for
improvements and modification.

Competitive bidding for large government contracts.
Competitive biddings occur very early in the software
lifecycle, when very limited information on the target
system is available. Product lines are a big advantage in
these situations. Business people can make decisions with
more information: (a) they can reuse previous instances of
the line –analogy can be performed to a much larger extent,
and (b) they have already byproducts that can be used in
the final system.

Lightweight methodologies. Lightweight methodologies
are not antithetic to a product line. There are parts of the
product line strategy that live well with, say, extreme
programming. An example is domain scoping. The
development methodology depends on the situation, the
business environment, the company skills, etc.

6 LESSON LEARNT AND LINES FOR FUTURE
RESEARCH

The workshop has consolidates some aspects of the state of
the art on software product lines.
• Methodologies have been classified, reviewed, and

experimented.
• The pivotal role of staging approaches and of

champions for the introduction of product lines has
been reaffirmed.

Several new ideas have been presented, that set the lines for
future research in the field.

• There is a need of understanding better how to shape
software product lines for small software companies.
Research has already been performed. Hoiwever, there
is not a well established understanding of the issues.
More models and more experiments are required, as
the ongoing effort at Fraunhofer IESE on the KobrA
methodology.

• The importance of a product line approach beyond the
simple reuse of software components should be more
clearly stated and defined. Suitable supporting tools
should be developed.

• The role of government agencies and initiatives could
be critical in establishing state- or country-wide
framework that could support product line initiative of
local companies or even product lines that span
multiple local companies, as is the case for the state of
Georgia.

• Clear taxonomies and experimentations of economic
models for product lines should be developed, to
provide companies more precise figures of what they
can expect from product lines and what should be their
upfront investments.

• Relationships between product lines, corporate
environments, and other methodologies, process
improvement frameworks, and tools should be
clarified, to better understand when and how it is
appropriate to start a product line. This is in particular
important for the ISO and the CMM certifications and
for extreme programming and other lightweight
methodologies, given their relevance in the software
industry.

7 CONCLUSION
Altogether, the workshop has been a very large success,
due to the quality of the submitted papers, the level of
participation of the audience, and the profile of the panelist.
Several positive feedbacks have been received; for this
reason, we have decided to publish the papers as a
collection in [1].

At ICSE 2001 in Toronto the “Second International
Workshop on Software Product Lines: Economics,
Architectures, and Implications” will be held. We look
forward a lot of papers and participants, to discuss the
advancement in the discipline brought by the Y2K and to
exchange our experience.

REFERENCES
[1] Software Product Lines: Economics, Architectures, and

Implications, Peter Knauber, Giancarlo Succi (Editors),
Proceedings of Workshop #15 at 22nd International
Conference on Software Engineering (ICSE), Limerick,
2000, Fraunhofer IESE Report No. 070.00/E, 2000

Copyright © Fraunhofer IESE 2000 17

Economic and organizational aspects of
product line development

Copyright © Fraunhofer IESE 2000 18

Multi-Staged Scoping for Software Product Lines

Fraunhofer Institute for
Experimental Software Engineering (IESE)

Sauerwiesen 6
D-67661 Kaiserslautern, Germany

+49 (0) 6301 707 158
Klaus.Schmid@iese.fhg.de

 Klaus Schmid
In
and
p-

hat

e-

ed

tor
se.
d
far
t
in

en
op-
uct
his

n
e
ob-

w
of

ts
n

p-
ABSTRACT1

Scoping is a core planning activity in product line develop-
ment. It is central to determining and optimizing the eco-
nomical benefits of product line development. In this
position paper we discuss the requirements on a sound and
practically useful product line development approach and
will propose a specific approach which fulfills these require-
ments.

Keywords
Product line scoping, economic evaluation, feasibility anal-
ysis, scoping requirements, PuLSE-approach

1 INTRODUCTION
In this paper, we discuss the scoping problem in software
product line development and propose an effective approach
to solving this problem.

Software product line development centers around system-
atic and planned software reuse. This is to be contrasted
with traditional reuse approaches, which are often referred
to asopportunistic reuse. From an operational point of view
the key difference of product line engineering (and domain
engineering) to opportunistic reuse is that the former explic-
itly relies ondevelopment for reuseas opposed to assuming
that any kind of software may be developed and later reused
in an ad hoc fashion. This explicit development of assets for
reuse is usually referred to asdomain engineering. The
characterization of product line development assystematic
and planned relates to making the distinction between
generic and application-specific software development
explicit and repeatable. This distinction is at the core of
scoping product line development.

However, as product line engineering is a form of domain-
specific software reuse, the notion of a domain needs to be
included in the evaluation. In particular, many aspects that
impact the viability of software reuse need to be evaluated
on a per-domain basis, as they are inherently linked to the
concept of a domain, e.g., the maturity of the domain or the
interference with organizational constraints.

In practical situations several technical domains are usually
relevant to the systems in the product line. At the same time
not all of the aspects of a domain will be relevant to the sys-

tems. This is depicted in a simplified manner in Figure 1.
the approach we propose, the linkage between systems
domains is made explicit via a step called product line ma
ping (cf. Section 3.2).

As a consequence of the above discussion we believe t
scoping needs to be performed on two levels:

• Determining the (sub-)domains that are particularly rel
vant to software reuse.

• Determining the specific assets that should be develop
for reuse.

Performing reuse in a planned manner is a key differentia
between product line development and other forms of reu
Thus, it is extremely surprising that hardly any discipline
product line scoping approach has been published so
[5]. While without such planning product line developmen
may still succeed (as any software development effort can
principle succeed without adequate planning), this is th
more or less by chance. Scoping is the step in the devel
ment process where the economic foundation of the prod
line effort is analyzed and where one seeks to maximize t
benefit.

The importance of adequate scoping is actually well know
in literature [6]. The problem is that, both having a too larg
scope, as well as having a too small scope has very pr
lematic implications:

• If the scope is too large, the project may fail, as too fe
resources are available for a successful completion
the project. Additionally, this adds complexity and cos
to the project, which results in added risks and a delutio
of the overall benefits.

• If the scope is too small, the project may fail as the su

1. This work has been funded by the ESAPS project (Eureka
S! 2023 Programme, ITEA project 99005). Figure 1. Relationship between domains and systems

domains

systems
1

n
d
ar-

r a

el-
lly

all
ed
nt
—
4])
ny
t

t it
of
n
sess
er-

ni-
s.
d in
ive
at
ic
do
-

for
e
he

g
the
or
e

ent
e
a
n a

d
or
po-
cor-

.

port for the overall product family may be too limited
and repeatedly problems will arise during product
instance development.

There is actually a third type of failure mode: you may
choose a domain which looks promising, but which has
problems embedded that are hard to detect up-front and will
severely limit the return on the invested resources. This
actually happened to us in an industrial transfer study based
on [1] and triggered the introduction of the domain-based
evaluation into our original approach (cf. Section 3.2).

2 SCOPING REQUIREMENTS
There are many aspects that we found insufficient with
existing scoping approaches and also with earlier versions
of our approach (cf. [1]). We want to detail these aspects
here, by discussing the requirements we found relevant for
practical scoping approaches.

The motivation behind software reuse in general and prod-
uct line development in particular is primarily economical
as the systems that are developed will basically fulfill the
same requirements independent of whether they are based
on product line development or not. Thus, it is a key
requirement on scoping that it provides a detailed economic
argument for the proposed scope [2]. In particular, an evalu-
ation of the overall, to be expected benefits of product line
development should be given and the various kinds of bene-
fits (reduced time-to-market, improved quality, reduced
risks of software development, etc.) should be possible to
assess independently.

Further, it should be expected that scoping — as it is prima-
rily a planning activity — addresses the risks of product line
development and supplies a well-founded analysis of the
risks of performing product line development with a certain
scope. As we discussed above, we regard the risks as inher-
ently linked to the characteristics of a domain and thus our
approach addresses them on this level (cf. Section 3.2).

As a result of scoping it should be clearly possible that the
scope is empty, i.e., that the scoping effort results in the
proposition not to perform product line based software
development at all, while we don’t assume this to happen
very often, we regard this as an important requirement on a
sound scoping approach.

Further, as scoping is mainly a planning and controlling
activity to product line development, this activity may only
consume a very low amount of resources. This should be
particularly true in cases where due to an inappropriateness
of the domain or due to other reasons (e.g., resource or orga-
nizational constraints) the result is that product line devel-
opment should not be pursued.

These requirements are not fulfilled by most existing scop-
ing approaches, as they usually provide no way to give a
sound economic basis to the scopes they propose (cf. [5]).
Further, the few approaches that are around that actually
address the issue of economic return (e.g., [8, 1]) do not
provide a sound way for analyzing the overall feasibility of
the product line and they have no way for staging the
resources they consume, so that an assessment of the princi-

pal feasibility and benefits of product line development ca
be performed with relatively little effort. On the other han
there are approaches around which provide this at least p
tially (cf. [3, 4]). They in turn lack the ability to be linked to
an approach that provides a clear economic argument fo
scope.

Further, there are some additional requirements we find r
evant to a scoping approach in order to make it practica
useful. These are:

• A scoping approach should be integrated with an over
product line development approach, so that it is ensur
that the results are directly useful to the developme
approach and so that no work is duplicated. As so far
except for some domain scoping approaches (i.e., [3,
— all scoping approaches are not integrated with a
domain engineering or product line developmen
approach, this is a rather strong requirement.

• The approach should provide detailed guidance so tha
is also applicable by somebody else but the developer
the method. This is actually a major requirement i
order to make the approach repeatable and thus to as
the usefulness of the approach independent of the exp
tise of the method performer.

• The approach needs to be tailorable, as different orga
zations embark on product line for different reason
These reasons or business goals need to be reflecte
the scope selection process, as otherwise one will arr
at a scope which optimizes the wrong goals and thus
an inappropriate scope. This is particularly problemat
with most existing scoping approaches, as they either
not give explicit criteria at all or embed a fixed set of cri
teria.

3 SOLUTION APPROACH

3.1 An Overview
In the preceding sections we discussed the requirements
a disciplined scoping approach. Here, we will outline th
solution we propose and describe how it relates to t
requirements we identified.

Note, that we identified two main levels of scoping: scopin
a domain and analyzing whether we can expect to get
benefits we expect to gain from developing software f
reuse in this area of functionality. On the other hand w
want to be able to develop a concrete economic argum
for this product line. In particular, we want to answer th
question which functionality should be developed in
generic manner and which ones should be developed o
per-system-basis based on an economic argument.

Both of these “types” of scoping are complementary an
seem to have little to do with each other on first sight. F
this purpose we decided to have two main process com
nents, each of which addresses one of the issues. These
respond to the boxes labeledDomain-based scopingand
Feature-based scopingin Figure 2. Another way to distin-
guish these two steps is to label them asqualitative and
quantitive scopingdue to their different focus on evaluation
2

or
ey

al
s,
e
h
it

nt
ual
ain
his
a-
o
es.
ted

rst
l-
r
ith

gh
ct

-
o

nd
ith
se
nt,

us
is
in

-

to
ia
f-
n
t.
g
.

n-
es
by
he
. In
ort
However, in both cases, in order to arrive at a repeatable and
understandable form of evaluation, there needs to be a com-
mon understanding of what the different domains and fea-
tures actually mean. This actually was a problem with a
previous approach we developed and reported on in [1],
making the basis for the evaluation rather problematic.

In order to avoid this kind of problems with our revised
approach, we added a main process component which aims
at analyzing and deriving a high-level descripition of the
product line and the domains relevant to it. We termed this
componentproduct line mapping(cf. Figure 2). This com-
ponent addresses the need to establish a reference model
which provides a sound basis to the evaluation, so that the
different stakeholders share a common understanding of
what is the exact extent of the identified features.

3.2 The Solution Components
The product line scoping approach we propose consists of
three components:

• Product line mapping

• Domain-based scoping

• Feature-based scoping

An overview of the interaction of these steps is given in
Figure 2. Below we will discuss each of these components
in detail.

Product Line Mapping
The purpose of theproduct line mappingstep is to develop
a reference framework for the further steps of the scoping
approach. In this step a description of the product line is
developed. This happens on two levels: first a description of
the product line is developed by describing the various sys-

tems that are part of the product line in terms of the maj
functionalities they provide, the market segments th
address, etc.

Second, based on this product plan, along with addition
input (e.g., expert input, existing software architecture
organizational structure) a structuring of the product lin
functionality in terms of domains is developed. Eac
domain is in turn described in terms of the functionalities
provides, the data it handles, etc.

With this approach a high-level description of the releva
functionalities and domains is developed. Besides the us
benefits associated with such a description (cmp. dom
analysis), we are in particular interested in the aspect of t
method providing a well-founded basis for the communic
tion with the stakeholders, which is later on relevant t
develop sound evaluations of the domains and featur
Without such a basis the same term is sometimes associa
with different interpretations at different points in time by
the stakeholder, leading to situations where for example fi
simply the user interface is associated with this functiona
ity, while later the whole implementation from the use
interface level down to the database level is associated w
the term, leading to inconsistent evaluations.

This approach can also be applied to simply develop hi
level domain descriptions or develop more concrete produ
line plans.

In addition this step elicits the main objectives for introduc
ing product line development. This is used in the next tw
steps for tailoring of the approaches.

Domain-based scoping
In this step the domains that have been identified a
described during product line mapping are evaluated w
respect to their potential for successfully fielding a reu
approach. This takes basically the form of an assessme
i.e., the experts are interviewed with respect to the vario
dimensions of evaluation and the resulting information
aggregated to arrive at the final evaluation. Two ma
dimensions of evaluation are used:

viability dimensions– can a reuse approach be suc
cessfully fielded in this context?

benefit dimensions– what benefits can be expected
from introducing reuse in this domain?

Each of these main dimensions are further sub-divided in
subdimensions which describe specific types of criter
(e.g., effort saving, domain maturity, etc.). Obviously, a su
ficient score along the viability dimensions is a preconditio
for recommending a domain for product line developmen
If the viability evaluation is sufficient, then the scores alon
the benefit dimension can be used for selecting domains

The approach provides a framework of evaluation dime
sions, which can be tailored based on the specific objectiv
that are relevant to an organization. This can happen both
selecting only a subset of the evaluation dimensions for t
assessment as well as by weighting the evaluation results
particular, the former approach reduces the amount of eff

Product Line
Mapping

Domain-Based
Scoping

Feature-Based
Scoping

High-Level Description of
the product line (in terms of

domains)

assessment of reuse potential and
viability of domains;

Domain Selection

Quantative benefit of generic
feature implementations;

Feature-based scope

Figure 2. Solution Components

Existing Systems
Product plans;

Expert knowledge;
Organizational Structure
3

-

ore
no
se

an
ous
ent
en
r.

lity

),

e

s,

-
er-
.

s

re

.
-
-

or
g

needed for the evaluation.

As the viability dimensions can be evaluated independently
of the other dimensions, in cases where the domain is inap-
propriate for product line development the evaluation effort
is kept to a bare minimum. In this case any effort can be
abandoned after the focused interviews on the viability
dimensions.

Feature-based scoping
Our approach to feature-based scoping builds on the results
of the previous two steps and deepens them. The basic con-
cept of this approach has already been described in [1]. Dur-
ing this step the individual features are evaluated and it is
determined which benefits can be expected from developing
generic assets for implementing them. While in the previous
steps standardized (but adaptable) questionnaires were used
for evaluation, in this step the evaluation criteria are further
refined and more organization-specific aspects are elicited
in a GQM-based fashion. Based on the information thus
elicited, models are developed that describe for each objec-
tive identified by the company the benefit that can be
expected from reuse [2].

Based on this characterization for each feature the benefit of
having reusable assets that implement it can be determined.
This provides a sound economical forecast that can be used
to arrive at a scope that optimizes the objectives of the com-
pany.

Integration of the approach
As we described above, the integration of a scoping
approach with a complete product line development
approach is very important to avoid rework and to ensure
that the information is appropriately used in later stages.
The approach we described is tightly integrated with the
PuLSETM product line approach [7]. In particular the fol-
lowing relationships exist:

• The high level domain descriptions that are produced
provide a basis for the later detailed domain analysis.
Additionally this effort is bounded by the derived scope.

• Similarly, the scope helps to bound the architecting
effort. Additionally, the specific approach used in
PuLSE for architecting builds on the benefit evaluations
for deriving an optimally adapted reference architecture.

• The scope and product development plans serve as an

important input to the PuLSE-EM product line manage
ment component.

4 CONCLUSION AND FUTURE WORK
In this paper, we discussed what we regard as the c
requirements to a scoping approach. As there is currently
scoping approach available which addresses all the
requirements, we described our concept for such
approach and discussed how it addresses the vari
requirements. This approach is currently under developm
at the Fraunhofer IESE. The basic components have be
developed and partially applied with a validation partne
Further work is needed to refine the method and the qua
model which is used for evaluation.

References
[1] J.-M. DeBaud and K. Schmid.A Systematic Approach

to Derive the Scope of Software Product Lines.Interna-
tional Conference on Software Engineering (ICSE’21
Los Angeles, CA, USA, pp. 34–43, 1999.

[2] K. Schmid.An Economic Perspective on Product Lin
Software Development.First Workshop on Economics-
Driven Software Engineering Research, Los Angele
1999.

[3] Software Productivity Consortium Services Corpora
tion. Reuse-Driven Software Processes Guidebook, V
sion 02.00.03, Technical Report SPC-92019-CMC
November 1993.

[4] Software Technology for Adaptable, Reliable System
(STARS). Organization Domain Modeling (ODM)
Guidebook, Version 2.0.Technical Report STARS-VC-
A025/001/00. June 1996.

[5] Klaus Schmid.Scoping Software Product Lines —An
Analysis of an Emerging Technology. First Software
Product Line Conference (SPLC1), 2000. To appear.

[6] H. Mili, F. Mili, and A. Mili. Reusing Software: Issues
and Research Directions. Transactions on Softwa
Engineering. Vol. 21, No. 6, 1995.

[7] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K
Schmid, T. Widen, and J.-M. DeBaud. PuLSE: A Meth
odology to Develop Software Product Lines. Sympo
sium on Software Reusability, Los Angeles, CA, USA
(SSR’99), pp. 122–131, 1999..

[8] J. Withey. Investment analysis of software assets f
product lines. Technical report, Software Engineerin
Institute, Carnegie Mellon University, 1996.
4

3URGXFW�OLQH�$QDO\VLV��'R�ZH�JR�DKHDG"

*RLXULD�6DJDUGX\ 6HUJLR�%DQGLQHOOL 5DPyQ�/HUFKXQGL
European Software Institute European Software Institute European Software Institute

Parque Tecnológico de Zamudio, 204
Zamudio, Bizkaia

Spain
+34 944209519

goiuria.sagarduy@esi.es sergio.bandinelli@esi.es ramon.lerchundi@esi.es

$%675$&7
We have often heard that the product-line approach is a
very good idea. However what we find when we try to
introduce this concept into an organisation is a kind of
reluctance to take this step forward. In general, company
owners and executive managers ask for a report in
economical terms of the risks or impact of implementing
such an approach. This paper presents a practical way to
quantify the benefits, and to relate them to the risks
involved of embracing product-line. This approach has
been taken during the execution of the PRAISE [1] project.

.H\ZRUGV
Assessment, Reuse economics, Reuse benefits, Risk
analysis

�� 027,9$7,21
Product-lines represent a natural step in the evolution of
software development to an industrial practice. A product-
line approach intrinsically leads to systematic reuse and
reuse is supposed to have a positive impact in business
terms: saving development and maintenance costs, time to
market reduction, quality improvement, more predictable
project execution, etc.

In an industrial context, the decision of adopting a product-
line approach must take into account a wide range of
factors. Technology is, of course, one of these factors, but it
is not necessarily the most important one and, certainly, it
is not the “driving factor”. The drivers for introducing a
product-line approach are generally related to the general
company strategy, taking into account market
considerations. The product-line technology should be
evaluated and used in this business context.

However, this previous analysis is not always performed
and there is a tendency to jump directly into the technical
implementation of a product-line: architecture,
components, middleware technology etc. Firstly one must
reason, with discipline, on what domain (or sub-domain) is
the most appropriate and on whether the selected domain
has the potential to justify the effort.

Not all domains are equally appropriate to be approached

as a product line. A successful adoption of product-line
approach requires some conditions such as potential
demand for similar products, in-house knowledge and
experience, existing regulations and standards, etc. A
domain potential analysis evaluates the degree to which
these conditions exist and serves as a reference for:

• Defining a product-line adoption strategy, and setting
realistic goals for it.

• Deciding on the most appropriate domains or sub-
domains for a product-line approach.

• Reaching consensus on a shared vision for the domain.

• Evaluating progress in product-line adoption.

Some models are documented to assist in performing this
kind of analysis. Most of them are economic models and
base the analysis on economic figures (cost vs. savings) to
determine the benefits at different levels of reuse
granularity: single component, project or whole domain.
Other models include some analysis of the level of
preparation of the organisation. (See [2] and [3] for a
survey of all these models).

The domain potential analysis [4] presented here uses these
models as a basis for the analysis of reuse benefits and
combines this with a risk analysis. The two combined
dimensions, benefits and risks, give an overall picture of
the potential of a domain. The combined picture provides a
clear indication on whether it is convenient to approach a
domain as a product-line in absolute terms and by
comparing different domains. In addition, the analysis may
be adapted to be used with the available data in the
organisation.

�� $�6,03/(�$1$/<6,6�2)�7+(�352'8&7�/,1(
327(17,$/�,1�$�'20$,1

The product-line potential in a domain provides an
indication of the opportunities that derive from adopting a
product-line approach to develop applications in a domain
and the ability of the organisation to exploit these
opportunities to obtain benefits from them.

The concept of domain that we use is a very broad one. It
includes

• the technical description of the domain in terms of the
existing and potential applications that share some
common features (technology, functionality, etc.),

• the market of the domain (customers, competitors,
regulations, etc.)

• the organisational structures that participate in the
business.

When identifying a domain all these elements must be
taken into account, since all of them are part of the
analysis.

The potential analysis is similar to taking an investment
decision. This is why both benefits and risks must be taken
into account:

1. The benefits are the ones that the organisation expects
from the product-line approach.

2. The risks are the ones associated with the introduction
of product-line practices in the organisation.

The combined analysis benefits vs. risk gives the complete
picture to take an investment decision.

�� 1/<6,1*�7+(�%(1(),76
The right context for an analyses of benefits is the set of
goals established by the organisation for embarking in a
product-line. The organisation, depending on these goals,
can give more or less importance to one potential benefit
over the others.

The list of these benefits can be very long, for example:

• Higher productivity
• Better quality
• Higher Reliability
• Faster time to market
• Better bid estimation
• Better life-cycle estimates
• More on-time delivery
• Cost improvements and savings
• Improved maintenance

This long list can be generally shortened to the classical
better, faster, cheaper:
• Quality Improvement
• Time to Market reduction
• Cost reduction

Ultimately, all the benefits should result (in the short term
or in the long term) in economical benefits for the
organisation. Some of the benefits, such as cost reduction,
can be directly translated into economic results. Other
benefits, such as quality improvement and time to market

reduction, have an indirect impact on economic results. To
simplify, we consider that quality improvement and
reduced time to market have an impact as a reduction of
maintenance costs and as an increment on the number of
requests that may be satisfied in the same period (more
production capacity translated into more units sold).

With these hypothese, there are three main elements which
are included in an economic benefits analysis:

• ,19(670(176� �,�: which result from the activities of
establishment and development of the product-line
infrastructure;

• (;3(16(6� �(�: which result from the activities of
maintainence of the product-line infrastructure during
its life cycle;

• 6$9,1*6� �6�: savings achieved as a result of the
development of applications using the domain assets,
comparing the development costs with and without
reuse.

The depth of the analysis in terms of investments, expenses
and savings can vary according to the data available in the
organisation. In general, the process model can be a guide
in the breakdown of the activities so that the effort
associated with each of the activities can be evaluated
separately and the results aggregated.

The economical analysis may be as simple as considering
RoI (Return On Investment) in terms of savings against
investments and expenses. It could also involve an
additional analysis taking into account the time at which
investments and expenses are made and savings are
obtained. In this case, we are calculating time sensitive
indicators such as the NPV (Net Present Value) or (PI)
Profitability index.

�� 1/<6,1*�7+(�5,6.6
The objective of the risk analysis is to understand and
quantify the major sources of risk when introducing
product-line practices in a domain. The analysis is
supported by a risk model. This model identifies a set of
risk attributes organised into four risk factors (see Figure
below):

• 25*$1,6$7,21, with attention given to the adequacy
of the organisational structures for adopting reuse

• 3(56211(/, with attention given to staff experience
and preparation

• 352&(66, looking at the presence of supporting
processes for reuse

• 352'8&76, looking at the existence of beneficial reuse
characteristics in domain products

The risk analysis is performed by rating each of the risk
attributes and by giving an impact weight for each attribute.
The model provides a set of guidelines to interpret each of
the attributes consistently [5]. The results of the risk
analysis are a risk profile and an aggregated risk level that
represent the overall risk for the domain.

�� 7<,1*�,7�$//�72*(7+(5
The potential analysis is completed with the evaluation of
the organisation’s attitude toward risk. This is determined
through a questionnaire in which the respondent must
choose between a set of possibilities regarding investments
in a given situation. Three main attitudes are identified [6]:

� 5LVN�7DNHU� This kind of organisations gives preference
to obtaining more benefits at the expense of taking
much higher risks.

� 5LVN� LQGLIIHUHQW�� A risk indifferent organisation is
ready to take some more risk decisions only if there is
a proportional increase in the benefits that may be
obtained.

� 5LVN�DGYHUVH� For a risk adverse organisation, the main
objective is to reduce risks. The organisation does not
look for increments in benefits if this implies taking
more risk. A more positive result is adequate.

Most organisations fall in the risk adverse category.

The benefits analysis, the risk analysis and the attitude
towards risk are combined in a single graph that
summarises the situation for one or more domains. The
graph looks like the one in the figure below, in which the x-
axis represents the risk level and the y-axis represents the
economic return.

The risk attitude is represented by a curve that divides the

area of the graph into two parts. The area above the curve
represents the zone for which the organisation considers
that the domain potential is sufficiently high for an
investment on a product-line approach. Below that curve,
the risk is considered too high for the expected benefits and
therefore the domain should be rejected as a candidate for

product-line investment.

�� &21&/86,21
The paper describes a simple, concise and effective way of
determining the potential of a domain for introducing a
product-line approach. The main contribution of this
analysis model is that it summaries a lot of information in
one single picture:

1. Support for an investment decision based on benefits
vs risk dimensions.

2. Comparative analysis of several candidate domains
and sub-domains to help the organisation to
concentrate on the initial efforts in those domains
which have a higher potential (i.e., achieve more
benefits with fewer risks).

3. Indication in absolute terms of the convenience of
investing in a domain taking into account the
organisation’s attitude toward risk.

The analysis has been successfully applied in several
European organisations, including small and big software
development teams from diverse domains, including
utilities, banking, control systems, etc.

The analysis is usually performed in a one-day workshop
with the participation of representatives from all the
departments involved in the domain. It is especially
important to involve not only the software development
department, but also systems and marketing/sales
departments to bring a customer perspective to the analysis.

These workshop-type meetings have proved to be
extremely effective for reaching consensus among the
different departments of stakeholders of a domain in a
given organisation. When consensus is not reached, the
differences among the participants are also recorded and
shown in the graph. The area associated with the domain is
a representation of these differences and provides an
indication of the uncertainty of the information collected.

The domain potential analysis is presented as a tool to
facilitate the inclusion of a economic perspective in setting
a product-line strategy. It has been conceived with the idea
of being simple enough to be usable, without requiring
much effort or data that is not available in the organisations
and, at the same time, complete enough to ensure a
disciplined and repeatable analysis.

5()(5(1&(6�
1. PRAISE (Product-line Realisation and Assessment in

Industrial Settings) is pursued by Thomson-CSF
(France), Robert Bosch GMRH (Germany), and the
European Software Institute (Spain) under ESPRIT

5HWXUQ�YV��5LVN

0

200

400

600

800

1000

1200

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

5LVN�OHYHO

5
H
WX
U
Q

5LVN�DWWLWXGH

'RPDLQV

Project 28651.
(http://www.esi.es/Projects/Reuse/Praise)

2. Wayne C. Lim, 0DQDJLQJ� 6RIWZDUH� 5HXVH, Prentice
Hall, 1998.

3. Jeffrey S. Poulin, 0HDVXULQJ�6RIWZDUH�5HXVH, Addison
Wesley Longman, Inc., 1997.

4. PRAISE Consortium, Benefits Assessment model,
P28651-D1.2, 1999

5. Barry W. Boehm, 6RIWZDUH� 5LVN� 0DQDJHPHQW, IEEE
Computer Society Press Press, 1989.

6. Richard Pike and Bill Neale, &RUSRUDWH�)LQDQFH� DQG
LQYHVWPHQW� Prentice Hall, 1996.

Quantifying Software Product Line Ageing

 Susanne Johnsson & Jan Bosch
 Department of Software Engineering and Computer Science
 University of Karlskrona/Ronneby
 Soft Center
 S-372 25 Ronneby, Sweden
 +46 457 385 800
 [susanne.johnsson|jan.bosch]@ipd.hk-r.se

ABSTRACT
It is a generally accepted fact that software ages over time.
This requires software products to be replaced once their
ageing inhibits the goals of the organization owning the
product. However, few techniques are available for
quantifying the negative effects of ageing software. In this
extended abstract, we present an approach to quantifying
the ageing of a software architecture. The approach can,
among others, be used to decide upon the retirement of a
software product line. Validation of the approach is in
progress, but not reported upon in this extended abstract.

Keywords
Software product lines, architecture replacement, software
erosion.

1 INTRODUCTION
Software evolves over time in response to new
requirements. Due to this, the structure of the software
typically degrades over time, i.e. the software ages.
Consequences of the structural degradation process include,
among others, decreased understandability and increased
maintenance cost. At some point, it is no longer
economically viable to continue to maintain the software
product and the product should be retired and replaced with
a newly developed software product.

In the domain of software product lines, the problem of
identifying ageing and deciding when a software product
line should be replaced is even more relevant. This is
because several products and a larger part of the
organization is depending on the software product line. In
addition, the reusable assets of the software product line,
i.e. the product-line architecture and the reusable
components, are more exposed to evolution because these
assets must satisfy the requirements of multiple products.

One can identify two extreme approaches to replacing a
software product line. First, the software product line is
used until it simply is not possible to use it any more,
because it has eroded completely. On the other extreme,
whenever it is possible to define a more optimal
architecture, the software product line is replaced with a
new. Neither approach is economically feasible, thus the
optimal solution is somewhere in between. The decision of
replacing a software product line is, in the end, an
economical one. Consequently, it should be based on
economical calculations.

Erosion of software product line assets can be caused by
several types of changes. For instance: the incorporation of
new features in the set of existing products; the
incorporation of new technology; and the incorporation of
new products.

Two types of maintenance tasks may cause architectural
erosion. First, the change to one or more software products
causes the product line to expand beyond its initial intent
and scope. This frequently demands a decomposition of the
product line architecture that is different from the one
originally chosen. However, since the product line assets
have been developed based on the initial decomposition,
the required change will most likely be integrated in a less
than optimal way in the architecture and the components.
Second, due to time and resource constraints, a change
may be implemented by a so-called quick-fix. That is, the
functionality is added to the product line such that least
effort is required now, but without any consideration of the
future. Although erosion happens in both types of
maintenance tasks, erosion will be relatively rapid in the
latter case. In this extended abstract, we focus on
maintenance-related erosion.

In this extended abstract, we present an approach,
identifying and quantifying software ageing, that is based
on the effort associated with maintenance tasks. This
approach can be used to support the decision process
concerning the replacement of a software product line, but
also for deciding on major reorganizations of the software
assets in a product line. Since validation of the approach
has started, but we lack concrete results at this point, the

intention of this extended abstract is to present the
approach to the research community and to obtain feedback
from other researchers before continuing with validation.

The remainder of this extended abstract is organized as
follows. In the next section, we categorize the effects of a
maintenance task on a software system in three categories.
In section 3, we discuss two models for identifying
software ageing. In section 4, we discuss the application of
the models to decision processes surrounding
reorganization and retirement of a software product line.
Finally, in section 5 we briefly discuss some related work
and conclude the extended abstract.

2 MAINTENANCE TASKS
As discussed in the introduction, maintenance tasks affect
the architecture and the components of the software product
line. Maintenance activities may affect these assets in three
different ways, i.e. new components may be added to the
software product line, existing components can be extended
with new units of functionality and, finally, functionality
present in existing components may need to be changed.
Below these types of maintenance effects are discussed in
more detail.

First, new components may be added to the architecture.
When adding a new component in a product line, this may
be a product-specific component that is used as the
implementation of an architectural component. A second
type of new component may affect the product line
architecture by its presence due to the rearrangement of
component relations where the component is added. The
productivity of this type of maintenance is likely to be
similar to that of new development since the dependencies
on the existing system are minimal and only present
through interfaces.

The second type of effect of a software maintenance task is
the extension of an existing component with new
functionality. For instance, a product line component is
extended at one of its configuration points with a software
module containing extended functionality. The range of
possible extensions is generally very wide, depending on
the type of component. For instance, a white-box object-
oriented framework will generally require considerable
amounts of extension code both during instantiation and
when incorporating new requirements. On the other hand, a
communication protocol component will generally allow
for very limited extension and will have relatively few
configuration points. The productivity associated with this
type of maintenance is lower than the type first discussed
since the relation between the extension code and the
existing component is more intimate. However, since it
avoids changing the component internals, productivity will
be considerably higher than traditional maintenance.

The final type of effect on the software assets of a product
line is traditional maintenance, i.e. changes to the code in

existing components. Changes to existing components may
just affect the component internals, or also affect the
interface of the component. In the latter case, this type of
maintenance may cause ripple effects in the product line
because components referring to the changed component
may be affected as well. This type of maintenance has
typically very low productivity. In some publications [1],
productivity measures as low as 1.7 lines of code per day
and per software engineer are reported.

In the remainder of this extended abstract, the effects of
maintenance tasks will be referred to as N (New), NE (New
in Existing), and CE (Change within Existing) respectively.

The effect of software ageing (or erosion), we believe to be
twofold. First, over time the cost of implementing changes
in the software product line will increase, due to, among
others, the less than optimal structure and component
implementations.

Second, the division of effects of maintenance tasks
changes over time. Early in the life of a software product
line, most requests for maintenance will lead to effects in
the N category, i.e. adding new components. Some effects
will be in the NE category, whereas relatively few effects
will be of the CE category. One reason is that the initial
design of the product line architecture is performed based
on an implicit or explicit assumption of likely future
changes to the architecture. Assuming that the actual
maintenance tasks match reasonably well with the
assumptions, these tasks will be relatively easy to perform.

�����������
�����������

��������
��������
�������������������

�����������
�����������

��������
��������

time

co
st

���
N���
NE
CE

Figure 1 – Maintenance of different categories

Once the software product line has aged and has been
maintained for some time, a gradual shift in the division of
effects will occur towards an increased frequency of CE
effects. The current scope of products and features may no
longer be the same as the initial scope, which leads to a
need to change the existing components in order for them
to fit with the new requirements. A number of maintenance
tasks may have been performed through quick fixes, which
tend to seriously erode the product line in most cases
because little thought is spent concerning the long term
effects on the software product line. Thus, the relatively
occurrence of N effects will decrease, whereas CE effects

will become much more frequent.

As discussed earlier in this section, traditional maintenance
of the CE category has an associated productivity that is
around an order of magnitude lower than N type
maintenance. Thus, sufficient arguments are available for
minimizing maintenance activities that erode the software
product line, such as quick fixes; and for justifying
structure-improving reorganizations of the product line
when unacceptable levels of erosion have been detected.

3 QUANTIFYING SOFTWARE AGEING
Software ageing, as discussed earlier in this extended
abstract, expresses itself in two ways. First, the average
cost per maintenance task increases over time. Second, the
relative division of effort for each maintenance task moves
from the development of new components (N) to changing
code in existing components (CE). In the sections below,
we discuss approaches to measuring these indicators of
software maintenance.

Average Maintenance Task Cost
The first measure we use to identify erosion of a software
product line is the average cost per maintenance task. More
and more changes to the product will have architectural
impact; due to quick fixes and due to the ‘drift’ of the scope
of the product line that causes the product line architecture
to not fit the products now included in the product line.
Thus, the maintenance cost will most likely increase as the
architecture grows older.

Based on the average cost per change request and the
change in the change request frequency over time, the cost
of not reorganizing or replacing the current product line can
be calculated. The cost of developing a new architecture
together with the, historically derived, lower cost of future
changes following the new replacing architecture, the cost
of replacing the product line architecture can be calculated.
The cost of developing a new architecture is based on the
cost of developing the previous architecture.

time

co
st

New architecture Old architecture

Figure 2 – Development and maintenance effort

Figure 2 is an example where the cost of using the
architecture is shown over time. The graph is a

simplification and the proportions may not match an actual
industrial case. The cost for a set period of time is the area
under the graph, within that time period, and the big bumps
are the development cost of the entire architecture. From
this example, we can conclude that it is important to start
the development of a new product line before the cost of
maintaining the existing product line becomes totally
unacceptable. It takes considerable time to develop a new
software product line, and in the meantime the cost per
change in the existing product line, which needs to be
maintained until it is retired, will continue to increase.

So far, we have not taken into account that the type of
maintenance needed changes over the life time of the
software product line. In the next section, we discuss the
relative division of effort for maintenance tasks.

Relative Division of Effort
Since the cost of each change is related to the type of
change needed, i.e. N, NE, or CE, the use of the overall
average cost when calculating future cost of maintenance
does not provide a completely accurate perspective. Using
the overall average cost of changes leads to estimations
where the cost of maintenance are overestimated in the
beginning of the life of the product line and, consequently,
underestimated later in the lifecycle.

When, on the other hand, taking into account in the
calculations the cost variation of maintenance, the results
will be more accurate. We can collect the average cost, or
effort, per maintenance task for each category. Analyzing
this allows us is to determine the trend of the relative
division between the different categories. As long as the
major part of the maintenance is of category N, the
architecture should not have suffered much from erosion.
Eventually, an increasing part of the maintenance will shift
towards the CE type. Maintenance then gets significantly
costlier. The analysis of the figures is done in nearly the
same way as described earlier, except that the different
costs of the different type of maintenance is also
considered. Here too it is the area under the graph that is
interesting, i.e. the cost for a given period of time, the
graph is slightly more complex though since there are
additional factors to take into consideration, i.e. the sum of
average costs of N, NE, and CE. The graph will be flatter in
the beginning and steeper later on than if the simple
approach was used.

Discussion
Calculating average maintenance task cost does, in most
cases, not require planning ahead of its use, but can be
performed afterwards. Typically, all the needed figures can
be retrieved from the administration surrounding software
maintenance projects and activities. If this information is
not available for each maintenance activity, it may be
possible to collect the total maintenance costs for the entire
lifetime of the architecture. Using the total cost and the
period, an overall average cost for maintenance can be

calculated. This figure can be used to predict future
maintenance costs, but the increase of maintenance cost
over time has to be considered for achieving fair
predictions. The decision concerning reorganization and
replacement of the software product line should aim at
minimizing the total lifecycle cost.

The relative division of effort for maintenance tasks does
require either upfront planning or detailed documentation
of the actual changes and extensions made during each
maintenance tasks. If this information can be retrieved, this
can be used to calculate the trend of the average cost per
maintenance task over time.

4 SOFTWARE PRODUCT LINE EVOLUTION
Although the approach discussed in the previous section
support the decision process concerning reorganization and
retirements of software product lines, other aspects should
influence the decision process as well. The two main
factors that should be considered as well, are the
occurrence of major changes with architectural impact and
the evolution of the scope of the software product line.

Major changes with architectural impact can be caused by
e.g. availability of new technology; a major change of the
context in which the product line members are used. In the
case of a major shift in technology it can be decided
whether a replacement is needed depending on the overall
impact on the software product line. In cases where it is not
obvious, an assessment should be performed to analyze the
possibility of incorporating the new requirements into the
current software product line. This estimation can be
compared with the effort needed to replace it.

The second influencing factor is the evolution of the scope
of the software product line. The scope of a software
product line typically expands over time, but one can
identify three types of scope evolution. The different types
are shown in the figure below.

Figure 3

The examples in figure 3 illustrate the different types. The
domain of alarm systems is used in the demonstration; the
original scope (the small circle) is fire alarm systems for
individual buildings in all three examples.

a) The scope is extended to fire alarm systems for
multiple buildings; the core of the scope remains as
the core.

b) The scope is extended to also include intruder alarm
systems and systems for passage control; the core
slightly shifts.

c) The initial use of the fire alarm has shifted from
warning when there is a fire burning, to indicate when
someone smokes cigarettes in a no smoking area.
Thus, the purpose of the system has shifted.

The old architecture can be appropriate to keep and extend
if the case is as in ‘a’, in the case of ‘b’ and ‘c’, it is most
likely that it should be replaced.

In the case of a major change with architectural impact or
evolution of the scope of the product line, the approach
presented in section 3 can be used to support the decision
process. The presented approach can be used to quantify
the erosion of the software product line. With this as an
evaluation base, analysis can be done concluding whether
to replace the existing software product line or to perform a
reorganization of it. In this analysis consideration of the
eroding impact of the extensions to the product line must be
taken into account.

5 CONCLUSION
In this extended abstract we have discussed the evolution of
software product lines, how the cost of maintenance tasks
increases over time and the relative division of effects
resulting from maintenance tasks. The types of effects that
we identified are (1) adding components to the product line,
(2) adding extensions to existing components and (3)
changing code in existing components. The main
contribution of this extended abstract is the identification of
the relation between different types of effects and the
ageing or erosion of a software product line. We claim, and
plan to validate this in the near future, that over time the
relative division between these effects moves from the first
to the last category.

The discussed model for identifying architecture erosion
can be used in the decision processes surrounding the
reorganization and retirement of software product lines.

Finally, since this is an extended abstract, rather than a full
paper, not all appropriate references and text has been
included. Our main objective is to discuss the presented
ideas here with the workshop participants and to obtain
feedback while preparing a full paper.

REFERENCES
1. Henry, J. E., Cain, J. P., “A Quantitative Comparison

of Perfective and Corrective Software Maintenance”,
Journal of Software Maintenance: Research and
Practice, John Wiley & Sons, Vol 9, pp. 281-297,
1997.

2. Mikael Svahnberg, Jan Bosch, ’Evolution in Software
Product Lines: Two Cases’, Journal of Software
Maintenance, Vol. 11, No. 6, pp. 391-422, 1999.

Copyright © Fraunhofer IESE 2000 31

Case studies, experiments, reports from
industrial projects

Copyright © Fraunhofer IESE 2000 32

1

A Comparative Analysis of Domain Engineering Methods:
A Controlled Case Study

Abstract

The deployment of product line engineering requires a
profound understanding of domain engineering as an
essential phase in a product line lifecycle. A domain
engineering method defines domain activities which
include: domain definition, domain analysis, derivation of
generic domain architectures, identification of
commonalties and variabilities in product families, and
identification and specification of domain-wide software
assets. To gain insight on how to do domain engineering
in a product line context, we need to analyze and compare
existing domain engineering methods using controlled
experiments and case studies.

This paper reports on a classroom experiment in which
we analyze and compare a sampling of domain
engineering methods. We discuss the details of the
experiment and the lessons which we draw from it, then
we discuss some preliminary conclusions about the
experiment.

Keywords: Domain engineering, domain analysis,
software reuse, FODA, JODA, Synthesis, Reuse
Business.

1. Domain Engineering Methodologies
There is an increasing recognition nowadays that

specialized forms of software reuse, such as product line
engineering, component based software engineering, and
COTS-based software engineering, offer the greatest
promise in software reuse practice. The much promised
but seldom observed gains in productivity, quality, and
time to market, have not generally materialized outside
the confines of systematic software reuse initiatives, such
as those advocated by these specialized paradigms of
software reuse. Sound domain engineering is one of the
common features that these paradigms rely on: there is an
increasing recognition that reusable assets are best
developed as part of a carefully planned, soundly
executed, thoroughly validated, domain engineering effort
[2].

In this paper we discuss a controlled classroom
experiment in which we have student teams use different
domain engineering methodologies to tackle a domain
engineering/ application engineering term project. The
methods that student teams chose are: Feature-Oriented

Domain Analysis (FODA) by the Software Engineering
Institute [3,4], the Joint Object-Oriented Domain Analysis
(JODA) by the Joint Integrated Avionics Working Group
(JIAWG) reuse subcommittee [5], Synthesis by the
Software Productivity Consortium [6], and Reuse
Business by Jacobson et.al. [7]. The purpose of the
experiment is to analyze and compare the candidate
domain engineering methods with respect to the following
criteria.

• Rationale for Domain Definition. In [1], we have
observed that a domain definition must be driven by an
economy of scale rationale, and that there are three
alternative rationales:

− Common Expertise. This criterion identifies a field of
domain expertise and attempts to cater to it through
specialized development of software assets that span
the range of applications of the expertise at hand.
This criterion is producer-focused, and could be a
natural criterion for a domain expert.

− Common Design. This criterion identifies a problem
solving pattern that is embodied in some generic
software assets and attempts to cater to it through the
development of generic assets that can be specialized
for specific needs. This criterion is product-focused,
and could be a natural criterion for a programming
expert.

− Common Market. This criterion identifies a segment
of the software market and attempts to cater to it
through specialized development of software assets
that cover the range of needs of the market; its
rationale is to be a one-stop shop for the selected
market segment. This criterion is consumer-focused,
and could be a natural criterion for a (marketing)
manager.

Of course these criteria are not mutually exclusive: an
ideal domain is one that satisfies all three criteria, a
poor domain definition is one that satisfies neither. The
question we have is whether a domain engineering
methodology promotes one criterion or another in
attempting to define a domain, be it perhaps implicitly.

• Processes for Domain Definition. A domain may be
defined in one of two ways:

Ali Mili and Sherif M. Yacoub
CSEE Department,

West Virginia University
Morgantown, WV26506

{amili, yacoub}@csee.wvu.edu
Tel: +1 304 293 0405 x {2548,2537}

2

− By Increasing Commonality. We start from a
comprehensive definition, which includes a wide
range of (possibily heterogeneous) applications, and
we reduce this set in a stepwise manner, until we are
satisfied with the level of commonality of the
applications that remain. This process can also be
referred to as stepwise exclusion.

− By Increasing Variability. We start from a small set
of applications, which have presumably a great deal
of commonality, and we expand the set until we are
satisfied that the domain is fairly large, while still
maintaining adequate commonality. This process can
also be referred to as stepwise inclusion.

We are interested to know, for each method, whether
the method advocates a specific process. Also, for
methods that advocate domain definition by increasing
variability, we are interested to know whether the
method requires that we know ahead of time the list of
applications in the domain.

• Domain Engineering Lifecycle. We are interested in
analyzing the lifecycle advocated by each method, and
assessing to what extent the lifecycle gives concrete
guidelines in producing the deliverables of domain
engineering.

• Support for Legacy Assets. Some domain engineering
methods make provisions for integrating legacy assets
in the domain analysis activity. We are interested to
analyze which methods make such provisions, and how
legacy assets affect the domain analysis process.

• Guidelines for Domain Architecture. We are interested
to know, for each method, whether the method
advocates a specific architectural style (e.g. layered,
client/server, or pipes-and-filters architectures), and
whether it provides constructive guidelines for how the
architecture is derived. In particular, does the method
provide guidelines for mapping commonalities and
variabilities into architectural features. Are the
architecture guidelines product-based, i.e. describe
what the architecture is and how it is represented or
process-based, i.e. describe how to create the
architecture.

• Domain Engineering Deliverables. Each domain
analysis method produces a set of deliverables, which
include domain definition, assumptions, analysis
models, etc. We are interested in analyzing the
deliverables of each method, and assessing to what
extent these deliverables capture information about the
domain of the applications family.

• Reusable Assets. We are interested in cataloging the set
of reusable assets that are produced for this application
domain. An analysis of this set for each method and a

comparison across methods should give us some
insights into design features of each method.

• Technology Dependency. Some domain engineering
methods advocate a specific technology, and can only
be applied within that technology.

• Language Dependency. Some domain engineering
methods advocate a specific set of languages (for
specification, architecture description, design,
implementation, etc), and can only be applied using
these languages.

• Domain Engineering Effort. How much effort was
needed to conduct the domain engineering phase? how
was this effort distributed on the various activities/
phases? The cost of domain engineering cannot be
used in isolation to assess a domain engineering
method: a method may cost more than another, but
may also produce better reusable assets, thereby
reducing application engineering costs. Hence we
consider that it is the sum of domain engineering costs
and application engineering costs that reflects on the
cost effectiveness of a domain engineering method.

2. A Controlled Case Study
Course CS 477, Software Reuse, is offered in the

CSEE Department at West Virginia University. As part
of their evaluation, students are required to work on term
projects which include a domain engineering task and an
application engineering task. Section 2.1 describes the
domain engineering task, and section 2.2 presents a
selection of sample applications in the selected domain.
Students are organized in teams; each team turns in a
collective domain engineering deliverable, and each
student subsequently turns in a selected application
developed using the team's domain engineering
deliverables. We notify the students that the applications
given in section 2.2 are only a sample, and that the
proposed domain contains all queue simulation
applications, as defined by the range of variability
discussed in section 2.1. Also, the assignment of
specification applications to students is not carried done
until after domain engineering is complete, and is done by
the instructor. So that when students perform domain
engineering, they do not know which application they will
end up developing; this ensures that they make their
assets as generic as possible. Student teams select a
domain engineering methodology among a set of six
candidates; generally, they have no prior knowledge of
these methodologies. For the purposes of this study,
student teams are asked to fill out questionnaires. The
conclusions provided in this paper stem from their replies,
as well as our own analysis.

3

2.1 Domain Engineering

In this section, we present the application domain of
interest by presenting in turn our perception of the
commonalities and variabilities of the proposed domain.
Individual groups, guided by their respective
methodologies, may alter these definitions of
commonalities and variabilities by refining them or
otherwise reformulating them.

2.1.1 Commonalities

We want to develop a set of reusable components for
the purpose of producing applications that simulate the
behavior of waiting queues. Examples of application
include: simulating the traffic of processes through a CPU
dispatcher; simulating the traffic of passengers through
check-in counters; simulating the traffic of customers at a
post office, etc. Among the commonalities between all
the applications of our domain, we cite the following:

• System Topology. All the applications include service
stations, service users, and queues of service users.

• Simulation Events. Users appear in the system at
random intervals of time, and have time requirements
that are drawn at random upon their arrival.

• Statistical Measurements. All the applications collect
statistical information about the quality of service that
users have received (waiting time) or the quantity of
service that the system has delivered (throughput).

2.1.2 Variabilities

Individual applications vary in a number of ways,
including:

• Topology of service stations. The number of service
stations may be fixed or variable (in time); we may
have one service station or more than one; if more than
one service station, the service stations may be
interchangeable (they deliver the same service) or not
(e.g. check out counters for 10 items or less; check out
counters for more than 10 items).

• Service time. The service time may be constant or
variable; if it is variable, it may be determined by the
customer or by the service station or by both (e.g.
customer determines amount of service needed, and
service station prorates that with its own productivity
factor); also, if it is variable, it may be subject to a
maximum service value (as is the case in CPU
dispatching algorithms); when the maximum is
reached, the customer may be thrown out, queued at the
end of the queue where it was, or considered as a new
arrival.

• Topology of queues. A single queue; multiple
interchangable queues; multiple queues with different

service categories (each customer may line up at queues
of a given category).

• Types of queues. First In First Out queues; Last In
First Out queues; priority queues; limited size queues.

• Arrival distribution. Markovian distribution; Poisson
distribution; clustered distribution (if the service
stations are immigration posts at an airport, then
passenger arrivals are clustered around/after flight
arrivals).

• Dispatching policy. Customers are assigned to queues
at random, and may not change queues after the first
assignment; customers are assigned to the shortest
queue upon arrival and may not change queues
subsequently; customers assigned to the shortest queue
upon arrival and switch queues to take the shortest
subsequently, until they are served.

• Measurements. Average waiting time; standard
deviation of waiting time (as a measure of fairness);
maximum waiting time; throughput.

The object of this domain engineering exercise is to
develop a set of generic software components that can be
easily combined to produce any queue simulation we may
want; samples of such simulations are discussed in the
next section.

2.2 Application Engineering

In order to exercise the domain engineering activity
that is carried out according to the requirements discussed
above, we propose a testbed of software applications,
which are all instances of queue simulations.

1. CPU Dispatching. We want to simulate the behaviour
of a CPU dispatching mechanism. We are interested in
measuring fairness and throughput. There is a single
priority queue, with maximum service time (quantum
service, Q); once a process has exhausted its service
time, it is queued back, with an increased priority.

2. Self-Serve Carwash. We have a set of self-serve
interchangeable carwash stations. Arriving cars line up
at the shortest queue (queues of equal length are
interchangeable) and do not change queues
subsequently; queues are FIFO, of course. Service is
limited to a maximum value (but may take less time),
and cars are expected to clear the station once the
maximum time has expired. Arrival distribution is
Markovian. We are interested in monitoring maximum
waiting time (we do not want anybody to leave before
being served) and throughput (we want to serve as
many people as possible).

3. Check-Out Counters. We have a number of check out
counters at a supermarket, some of which are reserved
for shoppers with 10 items or less. Shoppers with 10

4

items or less line up in the shortest express check-out
queue; others line in the shortest queue reserved for
them. Once they are lined up in some queue, shoppers
do not leave the queue until it is their turn. Service
time is determined by the shopper (size of his/her cart)
and by the productivity of the cash register attendant (a
factor p between, say n and h, where 0<n ≤1 ≤ h <2).
Arrival rate is Markovian distribution. The number of
stations increases whenever the longest queue exceeds a
threshold value L and decreases by one whenever the
number of stations of each category is greater than one
and the length of the queue is zero. Whenever a new
cash register is open, shoppers at the end of the queue
rush to line up at the station (talk of fairness!) until the
length of the queue equals the shortest current queue of
the same type (express checkout, regular checkout). We
are interested in average waiting time and fairness.

4. Immigration Posts. We have a number of immigration
stations at an airport, some of which are reserved for
nationals, the others are for foreign citizens. There are
two queues: one for nationals, the other for foreigners;
each queue feeds into the corresponding set of stations,
and there is no transfer between queues. The number of
stations that handle nationals increases by one
whenever the length of the nationals' queue exceeds
some value, say L; and the number of stations that
handle foreigners increases by one whenever the length
of the foreigners' queue exceeds some other (larger?)
value, say M. The arrival rate is a clustered distribution,
as passengers come by planeloads. Service time for
nationals is constant, and service time for foreigners is
determined by the passenger and by the productivity of
the immigration agent attendant (a factor p between,
say n and h, where 0<n ≤1 ≤ h <2). We are interested in
monitoring throughput.

5. Check In Counters. We have two FIFO queues for
passengers at an airline checkin station: a queue for first
class and a queue for coach. We have two categories of
service stations: first class and coach; the number of
stations does not change for the length of the
experiment. The duration of the service is the same for
all passengers and all stations of the same class, but
differs from first class to coach. The arrival rate is
Markovian distribution; passengers lines up at their
designated queue and do not leave it until they are
served. Whenever one queue is empty, the
corresponding service stations may serve passengers of
the other queue (typically: first class stations serve
coach passengers when no first class passengers are
waiting). We are interested in monitoring the average
waiting time and the maximum waiting time for each
class of passengers.

6. Round Robin Dispatching. Same as example 1, but
with a FIFO queue; processes that exceed their time
quantum are inserted at the back of the queue.

7. Self-Serve Carwash, arbitrary service time. Same as
example 2, but without limit on the service time.

8. Fair Check-Out Counters. Same as example 3, but
whenever a new counter is open, it is filled by shoppers
at the front of the longest queues (although in practice
they are least motivated to go through the trouble, their
queue swapping will probably minimize average
waiting time and maximize fairness).

9. Multiqueue Immigration Posts. Same as example 4,
but with one queue for each post; use the policy of
example 3 for queue swapping when a new post is
created. Assume also that passengers go from queue to
queue whenever their position in the current queue is
farther (from the head) than the length of another
queue.

10. Fair Multiqueue Immigration Posts. Same as
example 9 with the policy of example 8 for queue
swapping when a new post is created.

2.3 Candidate Methodologies

The class includes four teams; each team has chosen a
domain engineering methodology among a set of six
candidates. The four that were selected are: FODA,
JODA, Synthesis, and Reuse Business methods. We
review them briefly below. Henceforth, we refer to the
team by the name of the methodology they have chosen.

2.3.1 Feature-Oriented Domain Analysis, FODA

Feature-Oriented Domain Analysis (FODA) method is
developed at the Software Engineering Institute (SEI),
Carnegie Mellon University [3,4]. FODA focuses on
identifying features that characterize a domain and hence
gives the approach its name. Products in a domain
provide several capabilities. These capabilities are
modeled in FODA as features. To model these features,
FODA defines a process for domain analysis that is based
on three activities (discussed later in Section 3.1): context
analysis, domain modeling, and architecture modeling.

2.3.2 Joint Object-Oriented Domain Analysis, JODA

The JODA domain analysis method advocates the idea
that software objects are more understandable and
customizable than traditional functions and subroutines.
JODA is developed by the Joint Integrated Avionics
Working Group (JIAWG) reuse subcommittee [5]. JODA
defines domain models using Coad/Yourdon Object-
Oriented Analysis technique. These domain models are
then used to define the domain architecture. Domain
models are developed using the Coad/Yourdon whole-
part and inheritance diagrams.

5

JODA is the domain analysis part of the reuse-based
software development approach defined by JIAWG. This
approach also includes business and methodological
planning. Business planning identifies the high level
domain that the analysis approach will be applied to. This
definition of the domain usually includes the domain
scope, technology dependencies, and whether domain
expertise is available. The methodological planning
defines the domain engineering activities, application-
engineering activities, and how they integrate. The JODA
domain analysis method defines the domain structure and
requirements, and captures them in domain models. These
domain models are implemented and stored as a
repository of reusable software objects.

2.3.3 The Synthesis Domain Analysis Methodology

Domain analysis is part of the Reuse-Driven Software
Process (the Synthesis approach) that is developed by the
Software Productivity Consortium [6]. As a part of both
the opportunistic and the leveraged approach, domain
analysis activity is defined as the scoping and
specification of a domain based on the analysis of the
needs of a targeted project in an organization. The
activities of domain analysis include: domain definition,
specification, and verification.

2.3.4 Reuse Business Methodology

The Reuse-driven Software Engineering Business is a
framework developed by Ivar Jacobson et.al.[7] to define
a set of guidelines and models that help ensure success
with large-scale object-oriented reuse. The framework is
referred to as Reuse Business. It deals systematically with
business, process, architecture, and organization issues in
a product line. The Reuse Business processes are
categorized under three main categories: Component
System Engineering, Application Family Engineering,
and Application System Engineering. Component System
Engineering is responsible for creating component
systems. Each component system is a set of customizable
configurable software components where a component is
a type, class, or any work-product that has been specially
engineered to be reusable. Application Family
Engineering creates the overall system architecture and
identifies the component systems that will be used with
the architecture to develop applications that belong to the
same domain. Application System Engineering is the
process of creating a specific application that belongs to
the domain by selecting, specializing, and assembling
components from component systems. Reuse Business
does not have an explicit domain engineering process, but
distributes the main domain engineering processes
between Application Family Engineering and Component
System Engineering.

3. Analytical Observations
In this section, we review the questions that we had

raised in section 1 and attempt to answer them for each of
the four selected methods.

3.1 Domain Engineering Lifecycle

We give a summary of the activities that each team has
experienced when applying the domain analysis method
that they selected. This synopsis of the domain
engineering lifecycle gives insight into the activities
defined by each method and helps in rationalizing the
comparison made in subsequent sections. The
deliverables of these activities as applied to our case study
are discussed in Section 3.8

3.1.1 FODA

FODA advocates a three-phase domain analysis
lifecycle:

• Context Analysis. The purpose of context analysis is to
scope the domain. It consists of two steps: the
derivation of structure diagrams and context diagrams.

• Domain Modeling. Domain modeling identifies
commonalities and differences that characterize
applications in the domain. It has three sub-activities:
feature analysis, information analysis, and operation
analysis. Feature analysis captures the capabilities of
applications in the domain. Information analysis
captures domain knowledge in terms of entities and
their relationships. Operation analysis captures the
functions that applications in the domain perform.

• Architecture modeling. Architecture modeling captures
the high-level structure of applications in the domain.

3.1.2 Synthesis

The Synthesis domain analysis method has three main
activities:

• Domain definition. The Synthesis team developed a set
of domain definitions in terms of glossary, domain
synopsis, assumptions, and domain status as discussed
later.

• Domain specification. The domain specification
process is concerned with:

− Defining decision models that define what is inside
and what is outside the domain.

− Identifying product requirements that define the
domain concept, context, content, and constraints.

− Identifying the process that defines how to create
applications that belong to the family.

6

− Defining the product design process that develops the
architecture, and designs reusable components.

• Domain verification. The domain verification process
verifies the domain definitions, domain specifications,
and implementations.

Synthesis is an iterative process; continuous feedback
is provided from domain implementation and application
engineering to the analysis processes.

3.1.3 JODA

JODA reuse lifecycle has four main activities: business
planning, methodology planning, domain engineering,
and application engineering. The domain engineering
phase has an analysis process, an implementation process,
and a process for constructing a component repository.
The domain analysis activity defines three main
processes:

• Domain preparation. This process consists of:

− Interviewing domain experts, and analyzing existing
legacy systems.

− Identifying future trends. The JODA team considered
future extensions to the domain by considering
applications that simulate queuing networks. These
applications have links connecting servers, sinks, and
sources. Different sources generate customers that
can possibly request services from multiple cascaded
service stations. The team perceived that queuing
networks is a future extension that is worth
investigation in their domain analysis phase. The
focus on future trends is viewed as a way to depart
from the specific set of applications that are
envisioned at domain engineering time.

− Identifying the stability and maturity of technology in
the domain. OO models are becoming more stable
due to the unification of OO models in one modeling
language, the Unified Modeling Language [8].

• Domain definition and scoping. The process consists
of:

− Defining domain glossary and services.

− Developing a subject diagram. The subject diagram
shows the subject of interest, a process, and an output
in the form of a block diagram.

− Developing a whole-part diagram that shows
relationships between a subject at its constituents.

− Developing inheritance diagrams that show how
common concepts are captured as abstractions and
concrete components provide different
implementations.

• Domain modeling. Domain modeling packages reusable
objects and defines reusable scenarios, object life
history, and state-event-response diagrams.

3.1.4 Reuse Business

The domain engineering phase of the Reuse Business
lifecycle has two main activities: the Application Family
Engineering that is concerned with developing the domain
architecture, and the Component System Engineering that
is concerned with the development of reusable
components. The main activities that the Reuse Business
team experienced in Application Family Engineering are:

• Capturing requirements. Reuse Business captures
requirements using OO use case models. Each way an
actor (a system user) uses that system is a distinct use
case. Each use case is further analyzed using a set of
interactions within the system, i.e. scenarios.

• Performing robustness analysis. Robustness analysis is
concerned with identifying analysis types and then
clustering them into subsystems that represent
candidate components. For example, use cases and
business models that are highly related to each other are
grouped into analysis models.

• Designing the layered architecture. The Reuse
Business team defined the architecture for our case
study into two layers: the application system layer and
the component subsystem layer. The component
subsystem layer contained a number of components
that are general for the domain, e.g. Source, Service
Facility, Queue Facility, Sink, and Measurements.

Reuse Business is an iterative process.

3.2 Rationale for Domain Definition

FODA defines the domain by instantiating a structure
diagram and a context diagram. The common
characteristic among all applications in a domain is the
aggregate of a structure diagram and a context diagram.
The structure diagram maps events and concepts, and the
context diagram shows the data flow between service
stations, customer queues, and the simulation program.
Clearly, FODA's rationale for domain definition is
Common Design.

The Synthesis domain analysis team found that
Synthesis domain analysis emphasizes the Common
Market characterization of a domain definition, because
Synthesis emphasizes a business reuse level solution. As
part of the domain definition, Synthesis documents the
domain status, which includes an endorsement that the
domain synopsis and assumptions define a viable domain.
It also defines the confidence and risks associated with
the endorsement. To meet the common market rationale
defined by the Synthesis process, the team considered

7

themselves a company targeting the market with this
product-line and analyzed their background and
experiences in the field. The team considered the other
teams as market competitors and analyzed the market
from that perspective.

The JODA domain analysis method is a part of a larger
reuse lifecycle that is composed of: business planning,
methodology planning, domain engineering, and
application engineering. JODA identifies the domain as
part of its business planning phase. The criteria for
identifying a domain are as follows: is the domain well
understood, is the technology predictable, and is the
domain expertise available to support domain
engineering? These criteria are mostly related to our
Common Expertise classification. Though the JODA team
did not have the specific domain expertise in our case
study, the team managed to relate the project to their
previous experience in simulation of queuing networks.

Reuse Business defines an application family as a set
of applications with common features. These set of
applications work together to help some users accomplish
their work, such as Microsoft Office (Word, Access,
Powerpoint, etc.). Reuse Business also considers the same
application systems that need to be reconfigured,
packaged, and installed differently for different users as a
family. In addition, a family is a set of fairly independent
application systems that are built from the same lower
level reusable components and the same architecture.
Therefore, we consider this method a Common Design.

Observations. Table 1 summarizes the observations
made by the teams. Domain analysis methods differ in the
criteria by which they characterize and define a domain.
The teams were able to use the classification of Common
Design, Common Expertise, and Common Market to
characterize the domain of our case study differently
according to the analysis method they each team used.

FODA Synthesis JODA Reuse
Business

Common
Design

Common
Market

Common
Expertise

Common
Design

Table 1 Rationale for domain definition

3.3 Processes for Domain Definition

FODA advocates to define the domain by collecting
relevant information, based on the study of existing
systems and their development histories. Hence its
approach to domain definition appears to be driven by
increasing variability.

The Synthesis team pursued a bottom-up approach
based on sample applications and increasing variability.
However, the Synthesis method itself does not imply an
increasing commonality or increasing variability process.

The team reported that because the domain in our case
study is limited, they pursued the increasing variability
approach. They also tried to increase variabilities by
adding other applications to the domain such as train unit
dispatchers and telephone waiting queues.

The JODA method heavily relies on domain expertise
and interviewing and reengineering existing systems. We
tend to classify this as an increasing commonality
approach because the method collects a wide amount of
information and uses this information to narrow down the
domain.

The Reuse Business team found that the process is
better described as increasing variability. They point out
that the main feature of the method is modeling with use
cases. They started with the set of common applications,
given in section 2, from which they identified use cases.

Observations. We note that the teams found it hard to
characterize the domain analysis process as increasing
variability or increasing commonality. They were
inclined to use the increasing variability approach. This
may reflect more on the way the domain was described
than on meaningful differences between methods.

FODA Synthesis JODA Reuse Business

increasing
variability

Both increasing
commonality

increasing
variability

Table 2 Process for defining a domain

3.4 Support for Legacy Assets

FODA supports reengineering because the process
studies existing systems, their development histories, and
knowledge captured from domain experts[3]. Synthesis
supports reengineering legacy systems as part of its
domain analysis activities. JODA is heavily based on
reengineering existing systems and interviewing domain
experts. Reengineering is the first process in the domain
preparation phase of JODA. Reengineering of legacy
systems is also encouraged in Reuse Business. Each
legacy component or subsystem can be wrapped using
one or more OO wrappers.

Observations. The teams found that reengineering
legacy systems is an important activity in all domain
analysis methods. Source code (developed in an object-
oriented language) from an earlier project [9] was
available, however, we restricted the teams from using
this code. We found that since reengineering is supported
by all methods, the experiment would not benefit from
providing legacy code and models, and on a worst case
could cause unbalance in the comparison of domain
analysis methods especially in favor of methods that are
based on OO technology.

8

3.5 Guidelines for Domain Architecture

3.5.1 FODA

The guidelines provided by the FODA team about the
domain architecture are product-based. The architecture
is defined in terms of component interfaces, model
execution (scenarios), and nature of interconnections
(specifications of architecture connectors). The FODA
team developed a layered architecture style for the
domain such that reuse can occur at the layer appropriate
for a given application. In general, FODA advocates a
layered architecture that has four layers:

• the domain architecture layer, which is a set of
processes and their interactions,

• the module structure chart layer, which shows the
packaging of functions, features, and data into modules
that are common to applications in the domain,

• the common utilities layer, which defines utilities that
are general across several domains, and

• the subsystem layer, which defines operating system,
languages, etc.

The FODA team also identified some guidelines for
creating the architecture which include defining
concurrent processes, defining common modules, and
then mapping features, functions, and data to these
processes and modules.

3.5.2 Synthesis

The Synthesis team developed the architectures as a
consequence of activities for defining commonalities and
variabilities. The Synthesis team described a process-
based guideline for creating architectures. An interesting
result that the Synthesis team found is that they can map
commonalities into components and variabilities into
parameters to these components. The Synthesis method is
flexible on representation and definition of the
architecture style. The team used UML.

3.5.3 JODA

The JODA team found that the guidelines for creating
architectures are mostly process-based. The team used
scenarios for developing subject diagrams, whole-part
diagrams and further refined these diagrams by analyzing
detailed scenarios of each part. There are no restrictions
on how JODA represents the domain. The team
emphasized the role of scenarios in deriving the domain
architecture and identifying components.

3.5.4 Reuse Business

The Reuse Business team found that the architecture
guidelines are product-based. In an OO context, the team
described the architecture as a set of subsystems, their

interfaces, and nodes on which these subsystems are
executing. The Reuse Business domain analysis method
produces a layered architecture where a layer is defined as
a set of subsystems with the same degree of generality.
Upper layers are application specific and lower layers are
generic. Thus the representation of the architecture is
more emphasized than the process of developing it.

Observations. Table 3 illustrates the observations
made by the teams on the architecture guidelines that they
inferred from their selected domain analysis methods. The
table shows whether the guidelines are process-based or
product-based. It also shows the main characteristic of the
architecture style or the main guideline for the creation
process.

FODA Synthesis JODA Reuse
Business

Product-
based

Layered Layered

Process-
based

Mapping
commonalities

and
variabilities to
components

Scenarios

Table 3 Guidelines for domain architecture

3.6 Domain Engineering Deliverables

In this section we analyze the deliverables of each
domain analysis method as applied to our case study.

3.6.1 FODA

The FODA team developed the following domain
models and artifacts:

• Context diagrams. FODA uses Structured Analysis and
Design (SA/SD) context diagrams to show data flows
and relationships between the domain under
consideration and the environment, i.e other entities
and abstractions that are outside the scope of the
domain.

• Structure diagrams. Structure diagrams are block
diagrams that describe the domain under consideration
and all other domains in a layered form. The target
domain is placed in the structure diagram relative to
higher, lower, and peer level domains. All other
domains that interface with our domain are placed in
the structure diagrams.

• Feature models. Feature models are arrow-and-box
diagrams that capture the capabilities of applications in
the domain. They are the attributes of applications that
directly affect the end users. These features include
services provided by applications in the domain,
performance, hardware platform required for the

9

domain, etc. For instance, in our case study, the FODA
team documented some alternative features such as a
queue can be a FIFO or LIFO, and other mandatory
features such as an event should have a type and time.
They also reported on some operational features such as
service operations (selecting a server, dispatching, and
scheduling events).

• Information models. Information models are
represented as entity relationship diagrams. These
models are a representation of domain data and
knowledge. In our domain, a client, a queue, and a
server are examples of domain entities.

• Operational or functional models. These models
capture functions and behaviors. Functions are captured
as control and data flow diagrams, which describe
inputs, outputs, activities, internal data, and data flow
relationships. Behaviors are captured using state
machines that capture events, states, state transitions,
and outputs. The FODA team produced a functional
model for the system; however, behavior models were
found of less significance and were not recorded.

• Domain architecture. Architecture models are defined
in terms of process interaction models and module
structure charts. The team decided to use a single
processing node and hence they were more concerned
with developing structure charts.

3.6.2 Synthesis

The Synthesis team produced outputs for each of the
phases defined in Synthesis:

The outputs of the domain definitions process are:

• Domain synopsis. An informal statement describing the
domain. The Synthesis team named the project Waiting
Queue behavior Simulation (WQBS). They used the
description provided in Section 2 and added possible
applications such as rail/train dispatches, telephone
waiting queues, and certain layout of manufacturing
production flow.

• Domain glossary and references. These are definitions
of standard terms and references to external sources.
For the case study, some of the terms that the Synthesis
team defined include: Arrival, Channel, Counter,
Productivity, Queue, Queue Discipline, Task, Service
Station, LIFO, FIFO, etc. As for external references,
the team referenced the class note material, the reuse-
driven development environment from the ASSET web
site [10], and a book on theoretical concepts of waiting
lines and queuing theory.

• Domain assumptions. The Synthesis team documented
assumptions and their rationale. The assumptions
include commonalities, variabilities and exclusionary

assumptions. The Synthesis team did not only consider
the commonality and variability assumptions given in
Section 2, but they also developed more assumptions as
they went into the definition of the domain. The team
added assumptions regarding minimum set of
components involved in a scenario, the minimum set of
components in a product, the assumption about
customers staying in the queue until served, etc. The
team elaborated on the variabilities defined in Section 2
and added new assumptions as related to the domain.
Among variability assumptions that the team added we
mention: assumption about assigning customers to the
queue at random or to the shortest queue, customers
having attributes that restrict them to specific queues,
assumptions about the user interface and the display,
etc. Exclusionary assumptions deal with things that are
excluded from the domain. For instance, the team
assumed that the domain does not handle the situation
in which customers leave the system because of long
service times.

• Domain Status. Domain status is an assessment of the
maturity and viability of the domain. The team has
done some feasibility study and analysis of project risk
as if they are a company with market competitors (other
teams).

• Legacy products. A list of any legacy products that may
provide information or material for developing the
domain. For our case study, none was created.

The outputs of the domain specification process are:

• Decision models. Decision models capture the set of
variability assumptions and the alternatives that
application engineers will later choose from. These
decisions were grouped into conceptual components.
Constraints about these conceptual components are also
added. The team identified the following conceptual
components: Customer, Simulator, Scheduler, Queue,
Server, Controller, and Metric Collector.

• Product requirements. The product requirements
define: the concept, the purpose and objectives of the
domain; the context, the relationship to the
environment; and the information content and
constraints, i.e. the architectural components. The team
restated the concept from the domain definition. They
also identified some external environmental elements
such as keyboard for entering simulation parameters
and platform on which the product runs (the team
intended to develop Java components to make the
product platform independent). The team then
combined decision models with the context and concept
definitions to define architectural components. The
architectural components were one-to-one map with
conceptual components with the addition of input and
output components.

10

• Process Requirements and Product Design. Synthesis
domain analysis specifies the process that will be later
used by application engineers to develop applications.
The Synthesis team is currently working on this phase.

3.6.3 JODA

The JODA team produced outputs for each of the
domain method processes:

The outputs of the domain preparation process are:

• Domain expert information.

• Future trends in technology and domain stability. In
analyzing the technology on which JODA is based, the
team found that OO models used in JODA have been
updated by new models as defined in UML. However,
the study of OO modeling trends show that UML is
becoming a stable modeling language that many
designers and analysts in OO world confidently use.

The outputs of the domain definition process are:

• Subject diagrams. The team reported a subject diagram
for our case study that includes: Client as the main
subject, the Waiting Queue System as the process
block, and the Report as the output block.

• Top-level whole part diagram. This diagram defines the
domain as part of a big system and parts of the domain.
The team used scenarios to identify parts of the system.
For instance the scenario of a customer (first part)
coming for service identified the Source (second part)
where the customer is generated, the server (third part)
where it will be served, and finally the sink (fourth
part) where the client exits the system. Another
scenario of two clients competing for a server identified
the queue (the sixth part) where one of the client should
wait.

• Top-level generalization-specialization diagram. This
diagram models the variations in each part of the whole
part diagrams. The team developed a generalization-
specialization diagram showing the general application
and its specialized instance as applications that belong
to the domain of our case study.

The outputs of the domain modeling process are:

• Lower level subject diagrams. The high level subject
and whole-part diagrams are used with aid of scenarios
to further develop a lower level subject diagrams. The
team developed a second level subject diagram that is
composed of Source, Sink, Service Facility, Queue
Facility, Queue, Event, Queue Event, Client, and
Report.

• Lower level generalization-specialization diagrams.
These diagrams model the variations for each
individual subject of the subject diagrams. Variations

are modeled as special types of the general object with
names, attributes, and operations that are specific for
the application.

• Object diagrams. These diagrams capture the
abstraction among different types of objects into class
diagrams. For example, the team developed a Queue
object diagram showing different types of queues as a
specialization of the common Queue interface.
Similarly, the team abstracted every element in the
simulation as a Node (Source, Sink, and Service
Facility are all inherited from Node).

3.6.4 Reuse Business

The domain analysis products defined by the Reuse
Business team consisted of:

• Architecture diagrams showing how the architecture
was composed of subsystems and how subsystems were
layered. The team used UML package diagrams for this
purpose.

• Use case diagrams that were used in analyzing the
domain and developing the architecture model.

3.7 Reusable Assets

This section summarizes the reusable assets that each
team produced. Each team will reuse these components
together with the reference architecture to develop one or
more applications that we randomly assign. Though these
assets are fully understood in the reference architecture
context, we mention them here for comparison purposes.

3.7.1 FODA

The FODA team reported the following set of
components: a Simulation Controller that runs the
simulation procedure; a Source component that generates
inter arrival of customers; a Queue component; an
Eventlist component that holds all simulation events; and
a Server component.

3.7.2 Synthesis

The Synthesis team reported the following set of
reusable components: a Simulator component that creates
a new Customer and sends it to the Scheduler; a
Scheduler component that schedules placing customers in
the appropriate queue; a Controller component that
monitors, creates, and deletes Queues and Servers; a
Queue component; a Server component that dequeues and
provides services to a customer; a Customer component; a
Metric Collector component that monitors customers
events; and an Input and an Output components to read
simulation parameters from the user and print simulation
results.

11

3.7.3 JODA

The JODA team reported the following set of reusable
components: a Node component which is an abstraction
of all model elements that are used in the simulation; a
Source component that generates customers; a
ServiceFacility component; a Sink component; a Link
component that connects nodes; a Queue component; a
Client component; and an Event component.

3.7.4 Reuse Business

The Reuse Business team reported the following
components: Source; Service Facility; Queue Facility;
Sink; Measurements; and Event List.

Observations. Whereas different teams developed
different components, we can conceptually recognize
components that have similar functionalities. The
following table compares reusable components produced
by each team. The table shows that some conceptual
components are similar and some are not.

FODA Synthesis JODA Reuse Business

Source Simulator Source Source

Queue Queue,
Scheduler

Queue Queue Facility

Server Server Service
Facility, Sink

Service Facility,
Sink

Node, Link

EventList EventQueue EventList

Simulation
Controller

Controller

Customer Client

Metric Collector Measurements

Input

Output

Table 4 Reusable assets produced from different domain
analysis methods

We attribute the differences in the set of reusable
assets to either: the approach that each team used, the
analysis domain method itself, or the skills of the team
members. We attribute some of the above differences to
the approach that a team pursued. For example the
Synthesis team did not use an event list to handle events
instead they continuously check events by incrementing
simulation time. Other teams used an event list. We
attribute some differences to the analysis method itself;
for example the JODA method heavily emphasizes
domain experiences and hence the team produced the
Node and Link components based on their experience in
simulation of queuing networks. Other differences are
attributed to the skills of the analysts. For example the
Synthesis team developed an Input and an Output

component to handle inputs and outputs of the simulator
respectively. Also, the FODA and Reuse Business teams
did not develop a Customer component though obviously
needed by all applications.

3.8 Technology and Language Dependency

The FODA team reported that the method is heavily
based on structure analysis and design (SA/SD). The
domain models that the team produced are based on
context diagrams, data and control flow graphs, structured
charts for module designs, and function and operation
models. Therefore we can consider FODA
technologically dependent on structured design and
programming. FODA does not advocate a specific
implementation language. The Synthesis team reported
that the method does not advocate a particular technology
nor a specific implementation language. JODA is based
on the assumption that objects are more understandable
and customizable than traditional functions and
subroutines. Therefore, the method is heavily based on
the object-oriented technology. The notations and models
used are the Coad/Yourdon models. These models are
now integrated into the UML models. Reuse Business has
an object-oriented domain analysis method therefore it is
heavily based on OO analysis and design models such as
use cases and scenarios. The implementation language is
only restricted to be object-oriented.

Observations. The following table summarizes the
dependency of the domain analysis methods on
technology and programming languages.

FODA Synthesis JODA Reuse
Business

Technology
Dependency

Yes No Yes Yes

Language
Dependency

No No No No

Table 5 Dependency of domain analysis methods on technology
and programming languages

None of the domain analysis methods involved in our
case study is programming language dependent though
most are technology dependent (object-oriented or
structured). Synthesis is the only method that is neither
technology nor language dependent; the team selected
object-oriented models and languages as well.

3.9 Domain and Application Engineering
Effort1

The following table summarizes the cost that each
team reported in domain analysis, domain implementation

1 The data collection is currently undergoing and will be completed

by end of March 2000.

12

and testing, and application engineering in terms of
person hour. The table shows how the cost of domain
analysis and domain implementation pays off in
application engineering phase. Some teams have also
reported a reuse ration of 70% of the components in the
library.

FODA Synth
esis

JODA Reuse
Business

Domain
Analysis and
Design

98 131 43 21

Domain
Implementation
and Testing

96 97

Application
Engineering

~3hrs/
appl.

~4hrs/
appl.

~ 2.5/
appl.

Table 6 Cost of domain analysis and domain implementation in
person-hour

4. Summary and Prospects
In this paper we have discussed some preliminary

results pertaining to the deployment of four different
domain engineering methodologies. We compared the
four methodologies using a product line case study for
simulating the behavior of waiting queues.

Even though our study is still preliminary, we can
discern some distinct trends in the way the different
methods approach a given problem. Some methods focus
on processes while others focus on products and
deliverables; some methods focus on business
considerations whereas others focus on technical
considerations; some methods propose guidelines whereas
others impose standards; also some methods require more
detailed deliverables, and it remains to be seen whether
more detail is synonymous with better quality or merely
with bigger overhead. Interestingly, these differences
have a profound influence on the deployment of each
method and these differences permeate the whole
lifecycle and the deliverables. The comparisons we make
between the methodologies must be qualified with three
premises:

• First, many of the features we observe on the
deployment of the four distinct methodologies on a

common application domain stem, not from the
methodologies, but from the domain.

• Second, some of the variances we observe between the
methodologies stem, not from the different
methodologies, but from the different skill levels and
interest levels of the student teams.

• Third, some of the features that we observe are dictated
solely by the methodology, and do not depend on the
example on which the methodology is applied.

5. References
[1] A. Mili, S. Yacoub, E. Addy, and H. Mili, "Towards an
Engineering Discipline of Software Reuse," IEEE Software,
16(5):22-31, September/October 1999.

[2] W. Tracz, "Confessions of a Used Program Salesperson,"
Addison Wesley, Reading, MA, 1995.

[3] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson,
"Feature-Oriented Domain Analysis (FODA) Feasibility Study,"
CMU/SEI-90-TR-021. Software Engineering Institute, Carnegie
Mellon University www.sei.cmu.edu/publications/documents
/90. reports/ 90.tr.021.html

[4] Feature Oriented Domain Analysis (FODA) Bibliography,
Software Engineering Institute, Carnegie Mellon University,
http://www.sei.cmu.edu/domain-engineering/FODA_bib_ref.
html.

[5] R. Holibaugh, "Joint Integrated Avionics Working Group
(JIAWG) Object-Oriented Domain Analysis Method (JODA),"
Software Engineering Institute, Carnegie Mellon University,
CMU/SEI-92-SR-003.

[6] Software Productivity Consortium, "Reuse-driven Software
Processes Guidebook, Version: 2.0.3", December 1993.

[7] I. Jacobson, M. Griss, and P. Jonsson, "Software Reuse :
Architecture, Process, and Organization for Business Success,"
Addison Wesley Longman, 1997.

[8] G. Booch, J. Rumbaugh, and I. Jacobson, "The Unified
Modeling Language User Guide," ISBN: 0-201-57168-4,
Addison Wesley, 1999.

[9] E. Addy, A. Mili, and S. Yacoub, "A Case Study in Software
Reuse", accepted for Software Quality Journal, to appear in
2000.

[10] RSP Domain Engineering Guidebook, Reuse-Driven
Development Environment (RDE) Product Line Project, June
1996, available at http://source.asset.com/Boeing/rde/rsp/
RSPtoc.htm

22nd International Conference on Software Engineering, ICSE 2000, Limerick, Ireland - Extended Abstract

- 1 -

Performance Issues of Variability Design for
Embedded System Product Lines

Oliver Lewis1, Mike Mannion2, William Buchanan1

Extended Abstract

1 School of Computing
Napier University
219 Colinton Road

Edinburgh, UK, EH14 1DJ.
+44 131 455 4432

Lewis@dcs.napier.ac.uk
b.buchanan@dcs.napier.ac.uk

2 Dept of Computing
Glasgow Caledonian University

Cowcaddens Road
Glasgow, UK, G4 0BA

+44 141 331 3279
m.a.g.mannion@gcal.ac.uk

1 INTRODUCTION

In a software development process model (Figure 1)
that is underpinned by reuse new products emerge from the
integration of two separate activities:

• domain engineering to create reusable assets.

• systems engineering to build systems using those
assets.

In this paper, these two activities are known as product
line engineering. Figure 1 shows the relationship between
domain engineering and systems engineering.

Figure 1. Product Line Engineering Process Model

During domain engineering first identify requirements
from the combined requirements of existing systems and
from domain expertise. These requirements form the input
to domain analysis in which you generate a domain model.
The domain model identifies the commonality and
variability of existing and future systems. Use the domain
model to generate a domain design i.e. a domain
architecture and design components. The commonality
and variability in the domain model must be reflected in
the domain design. During domain implementation the
architecture and components are built in the chosen
implementation language.

During systems engineering, the analysis and design
for a new system are generated from the domain

workproducts by filtering out requirements and design
solutions that do not trace to the system requirements.
Each output from each systems engineering phase may be
extended after filtering to include items for which a
conscious decision has been made not to include at the
domain level. For example, a system requirement that
exists as a domain requirement and that was modelled
during domain analysis, and designed during domain
design, may not have been implemented during domain
implementation for commercial reasons.

The feedback arrows in Figure 1 represent decisions to
modify the domain workproducts as a result of systems
engineering activities.

The degree of difficulty in generating a new system
from domain workproducts is dependent on the amount of
variability that is built into domain workproducts and the
ease with which the workproducts can be customised to
meet the needs of the new system. For embedded systems
engineers there is an additional concern that the variability
built into domain code components, is often achieved at
the expense of performance and memory constraints.
However, there is little empirical evidence to justify these
claims.

Our hypothesis is that: when building a single system
from a domain design, there will be a correlation between
the number of points of variability in a domain code
component which are included in the single system and the
space and time overhead that single system will incur.

The focus of our research is to quantify the space and
time overhead incurred by a domain code component
containing variability mechanisms by comparing its
performance to a code component that implements the
same functionality but does not contain variability
mechanisms.

2 EXPERIMENTAL DESIGN

We are evaluating our hypothesis by comparing the
performances of systems having one-off designs with no
variability and the same systems having product line
designs with variability. Experiments to this effect are

22nd International Conference on Software Engineering, ICSE 2000, Limerick, Ireland - Extended Abstract

- 2 -

currently in progress and results will be available for the
workshop.

We have selected six common interface techniques
based on the components of six popular architectural
styles1 (Shaw et al [1]). For each architectural style we
have selected a case-study product line that would
typically be designed using that style. For example the
pipe and filter style will be used for a product line of
feedback control and sampling systems for liquid-level
regulators.

To attain the measurement for the space and time
overhead for a particular architectural style, we must
implement two systems. Each system pair will consist of
two functionally identical systems. One system is built
using a traditional single system development approach not
incorporating variability and common interface constructs;
the other is engineered from a product line and does
incorporate variability. We will compare the performance
of the two systems to attain a measurement of overhead.

For each case-study product line we have chosen
approximately ten points of variability. For example, in a
product line of liquid-level regulators the points of
variability include different types of control loops, and
different types of input and output devices.

To discover if there is a correlation between space and
time overhead and the number of points of variability
selected into a single system, we must compare the space
and time overhead of systems drawn from a product line
with different numbers of points of variability to their
single system counterparts.

We propose that the following measurements be taken
for each architectural style:

• one measurement of space overhead between a system
implementing the minimum amount of variability
(usually 1 point of variability) and its one-off
counterpart.

• one measurement of space overhead between a system
implementing the maximum amount of variability
(~10 points of variability) and its one-off counterpart.

• at least two random intermediate readings of space
overhead between minimum and maximum number of
points of variability.

• at least one duplicate measurement of space overhead
containing the same number of points of variability as
an existing measurement but implementing different
functionality.

• one measurement of time overhead between a system
implementing the minimum amount of variability
(usually 1 point of variability) and its one-off
counterpart.

1 Architectural Styles: Pipes and Filters, Implicit
Invocation, Layered Systems, Repositories, Distributed
Processes, Main/Subroutine Organisations, Object-
Oriented Organisation.

• one measurement of time overhead between a system
implementing the maximum amount of variability
(~10 points of variability) and its one-off counterpart.

• at least two random intermediate readings of time
overhead between minimum and maximum number of
points of variability.

• at least one duplicate measurement of time overhead
containing the same number of points of variability as
an existing measurement but implementing different
functionality.

This set of 10 experiments is then repeated for each of
the six architectural styles providing 60 measured results.
The format of expected results is shown in Table 1.

Pipe & Filter
Time Overhead

Pipe & Filter
Space

Overhead

… OO Style
Space

Overhead
Minimum T11 ms S11 Bytes … S61 Bytes
Intermediate1 T12 ms S12 Bytes … S62 Bytes
Intermediate2 T13 ms S13 Bytes … S63 Bytes
Duplicate T14 ms S14 Bytes … S64 Bytes
Maximum T15 ms S15 Bytes … S65 Bytes

Table 1. Format of Results

To help evaluate the space and time overhead, each
pair of systems shall be run from within a test harness.
The test harness shall invoke a system, emulate its I/O,
time its execution and measure its memory usage.

The system clock shall be used to measure the
execution time. To eliminate any inaccuracies due to the
differences in resolution of the unit of measurement and
the system clock, we must run a number of cumulative
experiment cycles. For example, the unit of measurement
of the clock may be 1/100 second. A typical cycle time
may be of the order of 1/1000 second. Sufficient
measurement cycles must be taken to eliminate
inaccuracies (10000 cycles was more than enough in our
experiments in [2]).

In many real-time experiments that measure execution
time, there will be slight differences in the absolute values
recorded. These can be attributed to background tasks
being performed by the operating system. To reduce the
effect of these differences an average value from multiple
test-runs shall be taken (e.g. 100 test runs of 10000 cycles).

Once our experiments are complete, we can analyse the
values of the data in Table 1 to discover any correlation
between the overhead and the number of implemented
points of variability. Plotting graphs of space and then time
overhead against the number of points of variability can
show the gradient of correlation. Figure 2 shows the
format of the graph for the time overhead for different
numbers of points of variability for the Pipe and Filter
architectural style.

22nd International Conference on Software Engineering, ICSE 2000, Limerick, Ireland - Extended Abstract

- 3 -

Figure 2. Example Graph for Time Overhead of Pipe &
Filter Style

To confirm a correlation we can first estimate the best-
fitting equation for the measured points. In circumstances
where the plot shows some linearity, a linear regression
can be used for the estimation. Situations where the results
do not correlate approximately linearly, may require
further analysis may including taking a log of the values to
make them more linear, bootstrapping or even taking more
measurements.

Consider fitting N data points (xi, yi) to a straight-line
y = a + bx. In our case N corresponds to the number of
measurements for overhead, xi is the number of points of
variability and yi is the measured overhead. Equation 1 and
Equation 2 show how we can calculate the coefficients (a
and b) for the best fitting straight-line equation using a
linear regression (taken from Burden et al [3]).

2

11

2

1111

2

−

−

=

∑∑

∑∑∑∑

==

====

N

i
i

N

i
i

N

i
ii

N

i
i

N

i
i

N

i
i

xxN

yxxyx

a

Equation 1. Finding coefficient a

2

11

2

111

−

−

=

∑∑

∑∑∑

==

===

N

i
i

N

i
i

N

i
i

N

i
i

N

i
ii

xxN

yxyxN

b

Equation 2. Finding coefficient b

To establish more confidence in the gradient a of the
straight-line equation as an indication of the degree of
correlation between any overhead and the number of
implemented points of variability, we can calculate a
residual error.

()

N

yx

xyx

R

N

i i

ii∑
=

 −

= 1

2

2)(

Equation 3. Residual error

The smaller the residual error is, the greater the
likelihood that our measured data lie on the estimated
straight-line equation. If we can show with a degree of
confidence, that our measured points can be modelled
using the equation, then we can use the gradient of that

equation to indicate the trend of the overhead. A positive
value for the gradient a will indicate (to the certainty of the
residual error) that a correlation exists between space and
time overhead and the number of implemented points of
variability. A residual error of less than 0.05 is accepted as
an indication that an equation correlates exactly to the
points it was derived from (James [4]). As we are just
trying to indicate a trend, rather than find an exact
equation, a residual error that is less than 0.2 is acceptable.
Equation 3 shows how to calculate the residual R2.

3 CONCLUSIONS

The aim of our research is to quantify the space and
time overhead that may be introduced when variability is
incorporated into a single system. In this paper we have
described a set of experiments which we believe will
contribute to that problem. This data can inform
embedded systems engineers about the behaviour of
overhead they might expect in a single system solution
built from a product line model.

REFERENCES

[1] M.Shaw, D. Garlan. Software Architecture, Perspectives on an
Emerging Discipline. Prentice Hall, Upper Saddle River, New
Jersey, USA, 1996, ISBN 0-13-182957-2.

[2] O. Lewis, M. Mannion, B. Keepence. Performance Concerns of
Polymorphism in Modelling Domain Variability in Real-time
Systems. IEEE Symposium on Engineering of Computer-Based
Systems. Nashville, Tennessee, USA, Pages 240-246, March 1999.

[3] R. L. Burden, J. D. Faires. Numerical Analysis. Fifth Edition. PWS
Publishing Company, 20 Park Plaza, Boston, USA, 1993, ISBN 0-
534-93219-3.

[4] G. James. Modern Engineering Mathematics. Addison-Wesley,
Reading, Massachusetts, USA, 1992, ISBN 0-201-18054-5.

Athena: A Software Product Line Architecture for Meter Data
Processing and Control

Daniel J. Paulish
Michael L. Greenberg

Siemens Corporate Research, Inc.
755 College Road East

Princeton, NJ 08540 USA
+1 609 734 6579

dpaulish@scr.siemens.com

ABSTRACT
One of the few known certainties when embarking upon the
design of a new software system product line architecture is
that the design and its implementation will likely change
over time as market requirements, technologies, hardware,
and business factors change. Some of these influencing
factors impact the entire system, and some directly
contradict other factors. In order to avoid major potential
rework, these factors must be addressed from the beginning
of high-level design. This paper describes our experience
with applying the technique of global analysis to plan better
software projects by designing product line architectures
that anticipate change. The purpose of global analysis is to
analyze the factors that influence the architecture and to
develop strategies for accommodating these factors in the
architecture design. These influencing factors fall within
three categories: organizational, technological, and product.
The paper describes our experience with applying global
analysis to the design of a meter data processing and
control central station platform.

Keywords
Software architecture, high-level design, web-based GUI,
Internet, product line architecture.

1 BACKGROUND
In 1999, we were asked to contribute to the design of a
software architecture (code-named Athena) platform for
meter data acquisition and processing central stations. A
platform-based product line architecture was required since

multiple application packages were envisioned in order to
support the future business needs. In addition, existing
product architectures were being evaluated for supporting
the envisioned application packages.

Historically, these existing product platforms were often
modified and tailored towards customer specific
requirements within project engineering centers located
throughout the world. As a result, proliferation of
platforms and products was occurring so that it was
difficult to bring new features back into the baseline
product. Furthermore, there was a strong trend towards
power distribution industry deregulation that was believed
would cause requirements discontinuities as well as new
business opportunities.

A meter data processing central station collects meter data
via telephone lines from electric, gas, and water meters.
The meter data is stored and processed. The type of
processing depends on the type of consumer using the
resource and its contractual agreement with the supplier of
the resource. Thus, many different types of application
software must run on the Athena platform. For example,
the processing software for commercial consumers using
electricity would be much different than residential water
consumers. Furthermore, control functions are provided,
for example, commands are sent out to high power
utilization equipment when load must be shed during high
demand periods. Tariff agreements are specified between
energy consumers and providers such that the price of
energy varies depending on the time of day, week, and
year. Athena performs calculations on the meter data
collected that is typically processed and sent to a utility's
billing system.

Five initial application packages were planned for eventual
implementation on the Athena platform. These ranged
from meter data acquisition through billing determinant
calculation to load management control and payment
systems implementation. The application requirements
were quite diverse and imposed a high degree of flexibility

2

upon the product line architecture design. The first two
applications were directly supported by the architecture
since their development was initiated shortly after the
architecture was designed and reviewed. At the time of the
architecture design, marketing requirements specifications
existed for the first two applications but not for the other
three applications.

A high-level design team was formed consisting of five
engineers with a mixture of domain and architecture design
expertise. A chief architect was appointed and the team
began the architecture design with analyzing the marketing
requirements, developing the conceptual architecture,
investigating applicable development technologies, and
some simple prototyping.

2 GLOBAL ANALYSIS
Early on during the high-level design, a global analysis [1]
was completed for Athena. The global analysis considered
factors that would influence the design grouped into
categories of organizational, technological, and product
influences. Analysis of the influencing factors resulted in a
set of design strategies that have been used to guide both
the product line architecture design and implementation of
the application packages.

Organizational Influencing Factors
Organizational factors such as schedule and budget apply
only to the product currently being designed. Other
organizational factors such as organizational attitudes,
culture, development site(s) location, and software
development process can impact every product developed
by an organization.

An example of an organizational influencing factor for
Athena was that the technical skills necessary to implement
the application packages were in short supply since prior
products had been Unix-based with local user interfaces
and marketing required new products to be Windows-based
with web-based user interfaces. The resulting strategy to
address this influence was to bootstrap and exploit
expertise located at multiple development sites and to
invest in training courses early in the development. Also, a
second level of design specification documentation was
developed at a lower level than the high-level design. This
system design specification concentrated on describing the
interfaces between major subsystems of the architecture, so
that it was easier to parcel out a subsystem development to
a remote software engineering site.

Another organizational factor was that company
management wanted to get the product to the market as
quickly as possible. Since the market was rapidly
changing, it was viewed as critical to quickly get some
limited features of the product to potential users so that
their feedback could be solicited. Our strategy to address
this factor was to develop the product incrementally such
that scheduled release dates were met even if some features

were missing from the release. Thus for Athena, project
schedule took priority over functionality. A build plan was
developed for each engineering release identifying the
sequence for adding functionality. The project
functionality and schedule were baselined after each
engineering release. We found that a 6-8 week
development cycle for each engineering release worked
well for the development team to provide a reasonable set
of features that could be tested and evaluated.

Technological Influencing Factors
Technological factors limit design choices by the hardware,
software, architecture technology, and standards that are
currently available. But technology changes over time and
products must adapt, so the architecture should be designed
with flexibility in mind.

An example of a technological influencing factor was that a
distributed object broker was necessary for meeting the
scalability and availability requirements within a
distributed hardware configuration. The strategy selected
to address this factor was to use Microsoft COM
throughout the system development.

Another technological factor was that we knew that our
database system would change over time. Marketing
specified that Oracle 8 be used for Athena. But, we knew
that new database versions would become available and
that certain customers would likely prefer vendors other
than Oracle. Thus, we designed a layer in the architecture
so that we could isolate and encapsulate the database for
anticipating that these requirements would change in the
future.

Product Influencing Factors
Product factors include features of a product as well as
qualities like performance, dependability, security, and
cost. These factors may be different in future versions of
the product, so the architecture should be designed to
support the anticipated changes.

An example of a product influencing factor was that to
support a product line architecture, the Athena GUI must be
able to accommodate many different types of users for
different applications. The strategy selected to address this
factor was to implement the GUI as a web-based GUI, so
that additional flexibility could be achieved as new
applications are added and location independence could be
achieved for the various user populations.

Another factor was the anticipated performance of the
system. Athena was intended for industrial and
commercial applications where thousands of meters would
be handled. It was never specified to address market
requirements where meter data for millions of consumers
would be required. However, we knew that a scalable
distributed platform would be necessary to meet these
potential unknown market performance requirements.
Furthermore, the primary purpose of Athena is to perform

3

the calculations on meter data before they are sent to a
billing system. Again, we anticipated that a scalable
distributed platform was necessary to meet unknown
calculation time requirements.

As is the case for any product line architecture, but
especially one that will be sold into a changing market
resulting from deregulation, a high degree of flexibility is
necessary as an overall design goal in order to have a
chance at anticipating meeting new unspecified
requirements. Unfortunately, this means that the
architecture may be considered "overdesigned" for the
simpler nearer term applications, but the flexibility will be
necessary to extend the life of the product line. Within an
organization with limited software development resources,
application packages will be mainly developed sequentially
and thus the product line architecture will necessarily be
required to live for many years.

3 PRODUCT LINE DESIGN STRATEGIES
Design strategies determine the priorities and constraints of
the architecture and help identify potential risks associated
with the implementation of the software system. As a
result of the Athena global analysis, 24 design strategies
were identified that we believed could address the
influencing factors. From these 24 design strategies, six
major conclusions were derived and used as guiding
principles for the Athena architecture design and resulting
development.

These summary product line design strategies are:

• Reuse the current data acquisition system. The
architecture design shows the new data processing
system loosely coupled to the existing acquisition system
with well-defined interfaces and separate data storage
(Figure 1). This saves development time, since code for
handling communication protocols and meter setup need
not be redeveloped or ported. Basic system utilities such
as the message/alarming system are used by all
subsystems.

• Reuse 3rd party software wherever possible. A design
strategy was followed to attempt to use 3rd party tools
whenever possible. Furthermore, most of these tools
came from Microsoft that helped reduce tool selection
decision and training time. An innovative approach was
implemented to use Excel as a computation engine.

• Replace the functionality of the current product with the
new product. The current product's functionality was
used to determine the basic requirements and features of
the new product. This helped simplify requirements
definition and testing. Innovative new features were
added to the new product to distinguish it from the
current product.

• Design Athena as a software product. New software
technologies and business models were evolving at the
time we started designing Athena. By developing a

purely software product, newly emerging business
models (e.g., ecommerce, application service providers)
could be investigated and potentially offered as solutions
to a deregulated market with new requirements.

• Web-based GUI. All interactions with Athena are
designed to be performed using a web-based GUI. This
has been implemented within a three-tiered architecture.
GUI development effort and the process of incremental
releases are simplified. From a marketing point of view,
the web-based GUI enables location independent access
to the system and a high degree of flexibility to network
and scale the system using intranets or the Internet. The
three-tiered architecture provides a structure for adding
future applications as business objects.

• Multisite development. The lack of sufficient technical
skills within a single location was an influencing factor
that was addressed by setting up a multisite development
at four sites within three countries. This put constraints
on the design so that components could be more easily
distributed for development at multiple locations, and the
development environment and tooling was set up for
multiple locations.

Web-based GUI

Data Acquisition

Data Base

Billing System

Data Processing
& Control

Meters

Figure 1. Athena conceptual architecture.

4 RESULTING ARCHITECTURE
The Athena high-level software architecture was designed
using our four views approach - conceptual, module,
execution, and code [1]. This design approach decreases
the complexity of the implementation and improves
understanding, reuse, and reconfiguration (Figure 2). The
architecture was reviewed using the Architecture Tradeoff
Analysis Method (ATAM) [2] which is a structured
analysis technique that evaluates a software architecture
with respect to multiple desired qualities (e.g.,
survivability, modifiability, performance, security),
developed at the Software Engineering Institute (SEI).

We have also analyzed the architecture to provide inputs to
the project's development cost and schedule estimation [3].

4

With our architecture-centered software project planning
approach (ACSPP) (Figure 3), the software architecture
design document is a primary input to the top-down and
bottom-up project schedule and effort planning processes.
From this an incremental development build plan is
generated such that the product functionality is built up
feature by feature within engineering releases that are
system tested until the functionality and quality are
adequate for beta testing with prospective customers.

Conceptual

Module

Code

Source Code

E
x
e
c
u
t
i
o
n

H
a
r
d
w
a
r
e

Figure 2. Four views of software architecture.

High-
Level

Design

Bottom-
Up

Estimate

Top-
Down

Schedule

Release
Planning

Project
Schedule

Software
Development

Plan

Personal
Schedules

Figure 3. Architecture-centered software project planning.

The software architecture of Athena is based on a three-
tiered model (user interface tier, business logic tier, and
database tier), such that new metering applications can be
easily added in the future at the middle or business logic
tier (Figure 4). The user interface tier consists of a set of
web pages, a web server, and a web browser for interaction
with the user. The business logic tier is a group of
subsystems that defines the business logic. The database
tier contains the database interface, database tables, and
database procedures. The business logic subsystems use the
database interface or call database procedures to obtain and

manipulate data in the database tables.

Customer accounts are managed through the consumer tree
subsystem design, where the relationships among master
accounts, accounts, contracts, and consumers are described
within a tree structure (Figure 5). Each node in the tree
contains active elements such as meter proxies,
calculations, reports, and tariff agreements. Scheduled
events are maintained at each node such that a daily
schedule is automatically generated and loaded to the meter
data acquisition subsystem from the consumer tree
subsystem.

Web Browser

Web Server, Web Pages

DB Interface

S
u
b
s
y
s
t
e
m

Acquisition

Intranet or Internet

Internal network

Private
Tables

Shared
Tables

Database

Processing

Business Logic

} User Interface

}
Private
Tables

Figure 4. Three-tiered architecture.

Top N ode

M as ter
Account

M as ter
Account

C onsum er
W orkse t

R eport1
...

C onsum er

W orkse t

R eport
Socke t

C on trac t

C on trac t

W orkse t

R eport1
R eport2
C om puta tion
Schedu led Even t

W orkse t

R eport1
...

Figure 5. Consumer tree.

5

The web-based GUI (top tier) provides marketing,
implementation, and cost advantages. User capability is
simplified and empowered through the use of templates.
Operators of Athena can manage the system (depending on
their security profile) from a web browser on any client
computer connected to the Internet or their intranet. The
architecture is designed for scalability since multiple users
can access the system simultaneously, with customer data
segmentation and checkin/checkout capabilities for
avoiding conflicts.

Microsoft's Excel is used as a general-purpose load profile
computation engine. This provides both power and ease of
use since most users are already experienced with using
Excel spreadsheets for calculations. The relationships
among meter proxies, calculations, tariff agreements, and
reports are managed using a mapping description notation
that allows simple to complex calculation schemes for
generating load profiles and billing determinants.

5 LESSONS LEARNED
At the current point of development, we are positive about
our experience with implementing the first two application
packages using the Athena software product line
architecture. The development of a system design
specification was viewed by some team members as an
unnecessary step that delayed the start of the application
packages implementation. However, new development
team members working on both the current and new
application packages have successfully used this
specification. The system design specification has been
modified and updated as detailed designs were completed
and requirements evolved. It has been critical for
partitioning work packages across the four development
sites located within Europe and the U.S. We have observed
that integration of the various subsystems has gone
remarkably smoothly when the subsystem leaders are
brought together in one location.

We've had good experiences with our approach to
incremental development. By publishing the URL for the
test system, all team members and their management can
watch the progress of the development as new features are
continually added. This was a big morale boost for the
team, since everyone was aware of the rapid progress that
was being made after the high-level design phase was
completed and development began. The first engineering
release was an implementation of a vertical slice through
the architecture. This helped validate the architecture and
gave the development team the confidence and
understanding of the architecture to be able to implement
the future engineering releases.

Since we put priority on meeting scheduled release dates
and traded off functionality and quality as necessary, the
development team successfully achieved every release date.
This helped build up the credibility of the development
team with management, since they knew that a new set of

functionality would be ready for validation testing by the
dates that were planned and committed to at the beginning
of the baselined engineering release cycle. Fortunately, our
quality remained relatively high throughout the
development, so the tradeoff between meeting schedule and
quality was never seriously challenged.

In the beginning, project meetings were held monthly
rotating among the development sites. Currently meetings
are held mainly for major subsystem integrations or when
training and/or detailed design work is necessary to get
someone started on a new development task. We have
weekly teleconference meetings to track schedule status
and to bring up common problems that the developers
should be aware of. In addition to subsystem leaders, we
have a chief architect responsible for overall technical
decisions.

Despite our best efforts at communicating among the four
development sites and our emphasis on design
documentation with well-defined interfaces, multisite
development is clearly more difficult than single site
development. This is a result of occasional
miscommunications that are caused by different vacations
and holidays in the three countries, time zone differences,
and occasional network or computer outages. For example,
if questions arise for colleagues in Europe during their
evening hours while the U.S.-based teams are working,
they likely will need to wait until the next day before they
can be resolved. To compensate for the unexpected, team
members often use the home telephone numbers of their
colleagues in the other countries, and the system is rebuilt
almost every day in multiple locations using the latest
checked in source code. We have also invested in team
building and multicultural training for the development
team members.

The Athena software product line architecture is designed
to be very flexible and expandable to handle a wide variety
of applications. This is a primary design requirement, since
the power distribution industry is rapidly changing as a
result of worldwide deregulation.

ACKNOWLEDGEMENTS
We wish to acknowledge the contribution of the other
members of the Athena high-level design team, namely Bill
Sherman, Paul Bruschi, Henk LaRoi, and Sascha Lukic and
the support of our management team, namely Uli Syre,
Peter Hess, Michael Sommer, Tom Murphy, and Ali Inan.

REFERENCES
1. Hofmeister, C., Nord, R., and Soni, D., Applied

Software Architecture, Addison-Wesley, 2000.

2. Kazman, R., Barbacci, M., Klein, M., Carriere, S., and
Woods, S., "Experience with Performing Architecture
Tradeoff Analysis", Proceedings of the 21st

International Conference on Software Engineering,
New York, ACM Press, 1999, 54-63.

6

3. Paulish, D., Nord, R., and Soni, D., "Experience with
Architecture-Centered Software Project Planning",
Proceedings of the Second International Software
Architecture Workshop (ISAW-2), New York, ACM
Press, 1996, 126-129.

Applied technology for designing a
PL architecture of a pilot training sytem

 W. El Kaim, S. Cherki P. Josset, F. Paris, J.-C. Ollagnon
 LCAT LCAT
 Thomson-CSF/LCR Thomson-CSF/TT&S
 Domaine de Corbeville 1, rue du Général de Gaulle
 91404 Orsay cedex, France ZA Les Beaux Soleils - BP 226 Osny
 {elkaim,cherki}@lcr.thomson-csf.com 95523 Cergy Pontoise cedex, France
 {josset,paris,ollagnon}@tts.thomson-csf.com

ABSTRACT
This paper reports on the product-line experiment leaded by
Thomson-CSF in the scope of the ongoing PRAISE Esprit
project. It focuses on the design and representation of a
product-line architecture with UML. The product-line
experiment addresses the simulation for ground vehicle
pilot training domain. Lessons learned are drawn from this
experiment on process, modeling techniques, and UML
notation to represent product-line architectures.

Keywords
Product-line approach, software architecture, product-line
architecture, UML.

1 INTRODUCTION
Domain-specific and architecture-centric product-line is
now recognized as a promising approach to deal with
software intensive systems development and evolution [7].
However, industrial companies lack today methodological
framework and supporting tools to make a software
development product-line approach realizable in industrial
settings. The ongoing European PRAISE project1 is
therefore pursued by Thomson-CSF, Robert Bosch GmbH,
Ericsson, and the European Software Institute to provide an
integrated and validated methodological support to product-
line approach [20].

1 PRAISE project is partly founded by the European
Commission under ESPRIT project 28651.

PRAISE project is divided into five work packages (see
Figure 1). Work packages 1 and 2 are dedicated to the
definition of the baseline technology and have resulted in
process, benefit assessment model, and requirements
traceability and architecture methods. In the scope of work
package 3, Robert Bosch GmbH and Thomson-CSF are
currently leading real large-scale industrial experiments in
a coordinate way to validate and consolidate previous
technology.

Phase 1: 6 months Phase 2: 12 months

WP1: Product-line practices WP3: Experiments

WP4: Product-line packageWP2: Domain-specific Arch.

WP5: Exploitation and dissemination

WP0: Management

Setting the process and
assessment model

Experiments on three
real-scale applications

Validation, packaging
and tool board

Architecture in the process
and techniques for design

Figure 1: PRAISE project in work packages.

More precisely, the focus is made on domain engineering
[4] in both experiments and the same models have been
selected from the baseline technology for experimentation.
Moreover, a different domain is investigated in each
company to get more sound and credible lessons learned.
The domain addressed in Robert Bosch GmbH experiment
is car periphery supervision whereas the one addressed by
Thomson-CSF experiment is simulation for ground
vehicles pilot training. Considering that domain data are
present in quite different forms in each domain, technology
is customized accordingly in each experiment, thus
providing results covering a broader area of problems. This
paper reports specifically on the product-line experiment

leaded by Thomson-CSF.

In practice, technology related to product-line architecture
design and representation has been already proposed [15]
and is currently being experimented. It has included
identification of architectural styles and views relevant to
the product-line domain, the domain architecture modeling,
the specification of patterns and the establishment of
traceability between the domain architecture model and the
domain requirements model. Lessons learned can thus be
provided in terms of process, modeling, notation and tools
used to perform these activities following a product-line
approach. This will be the focus of this paper.

This paper is divided into five sections. In section 2, we
describe the Thomson-CSF team organization put in place
for handling this experiment. In section 3, we present the
domain chosen for the experimentation, the ground vehicle
pilot training system. In section 4, the process of the
product-line architecture building experiment is described.
In sections 4 and 5, experiments leaded on software
architecture reengineering and product-line architecture
modeling, are respectively described in terms of their
process, modeling results and lessons learned. And finally,
the last section gathers the whole lessons learned and gives
the experiment perspectives envisaged in the future.

2 THOMSON-CSF EXPERIMENT
ORGANISATION

PRAISE project is running inside the LCAT, a common
research laboratory of Alcatel and Thomson-CSF [7].
LCAT unit working on product-line technology is divided
into one technical team and several domain experiment
teams. One domain experiment team is composed of
experts and engineers from an industrial business unit of
Thomson-CSF or Alcatel and an experiment leader from
LCAT. This latter organizes experiment work and relates
the business unit needs and results to LCAT technical team
technology. Thomson Training and Simulation (TT&S) is
the business unit involved in the PRAISE project.

TT&S is a pilot business unit in Thomson-CSF regarding
software engineering practices and has reached level 3 of
the CMM [3]. In order to start up the LCAT project, a
preliminary product-line experiment has been leaded by
Thomson-CSF/LCR in collaboration with TT&S. It has
involved two persons at full time and one TT&S expert at
20% for one year. Following a full bottom-up approach of
domain engineering, it has allowed us to get domain data
and evaluate human and time resources needed in LCAT
project domain experiments.

3 DOMAIN DESCRIPTION
The domain description was realized during the product-
line scoping phase, as described in [23]. As input of this
phase, we have considered the ground vehicle pilot
training domain.

In practice, the product-line domain has been first delimited
in terms of:

• a short informal description of the domain
addressed,

• a list of systems included,

• and a list of coarse-grained variability.

The related activity has been realized fast and merely with
coarse-grained selections performed by business unit
experts, not requiring any analysis of the domain.

The selections performed on this input domain to define the
product-line domain are mainly motivated by making the
product-line domain fit TT&S organization with regards to
market needs and development teams. For example, focus
has been made on some ground vehicles both civilian and
military, thus allowing TT&S both to extend its business to
a civilian market and to leave some domain features no
more required in military market. Also, TT&S development
teams being built according to specific competencies, focus
was made on real-time simulation and environment
simulation competencies.

Sound System

Motion System

Cabin Instructor Station

Simulation Station

Instructor Station competence

Real Time Simulation competence

Environment simulation Competence

GSI
Visual Simulation competence

Figure 2: TT&S competencies related to ground
vehicles pilot training domain

Figure 2 illustrates the main hardware elements of a ground
vehicle pilot training system, with arrows denoting
communications between these elements and ovals
denoting TT&S software teams organized by competencies.
In TT&S systems, real-time simulation and environment
simulation competencies correspond to a software
component (designated later with SIM) of the system;
previous selections defining the product-line domain
therefore leaded us to consider not a whole system as the
product, but rather SIM software component of the system.

Several systems have been then selected by TT&S expert
as relevant to the product-line domain thus delimited: three

legacy ones and two future ones to be developed.

Finally, a list of coarse-grained variability has been
selected by TT&S expert, considering coarse-grained
evolution of existing systems and anticipating future
systems one: this list includes variability related to trainee
vehicle model which may be a tank model or a truck model,
and variability as optional ability to test the availability of
SIM devices at run-time.

These selections have allowed TT&S to favor product-line
process adoption, getting rid as much as possible of its
market opportunities and its business competencies. They
have also allowed product-line experiment practitioners to
deal with a “reasonable” number of domain data and
variation points during product-line experiment and to
access easily domain data.

4 PRODUCT-LINE ARCHITECTURE DESIGN
PROCESS

According to [4], a domain engineering process phase
named domain design includes the product-line architecture
design (see Figure 3). In this paper, a product-line
architecture is “a generic architecture that applies to a set
of products grouped into a product-line and from which the
software architecture of each product can be derived” and
a software architecture is “a collection of subsystems and
the relationships between them. These subsystems are built
using various stakeholders' points of view and must be
related to stakeholders' requirements expressing
rationales”. The latter definition is inspired from [2], [9],
[19], and [22].

Existing
Systems

Domain
Expertise

Domain Engineering

Application Engineering

Domain
Analysis

Domain
Design

Domain
Implementation

Application
Requirements

Application
Design

Application
Implementation

New
System

New
Requirements

Product line requirements

Domain Requirements Model

Product line architecture

Domain Architectural Model

Product line components

Domain Reusable
Components & Generators

Requirements
traceability

Components
traceability

Evolution/adaptation
Reverse Architecting

Figure 3: Product-line process extracted from [4].

The product-line architecture design process has been
defined in terms of activities and tasks, represented in
Figure 4 activities are modeled as rectangles with round
corners, tasks as items, data flows as arrows, activity
practitioners as faces, and activities inputs as databases.

Software architecture reengineering

Product-line architecture modeling

1. UML modeling of the nominal software
architecture
2. Specification of architectural patterns

1. Identification of architectural variability
2. Exhibition of variability in UML model
3. Specification of variability patterns

Domain expertise
Coarse-grained domain

selections outputs
Products scoping outputs

Software architecture
meta-model
TT&S domain experts

Experiment coordinator

TT&S domain experts

LCAT requirements expert

LCAT UML expert

Experiment coordinator

iteration

iteration

LCAT UML expert
LCAT architecture expert

Domain expertise
Product-line architecture

meta-model
Domain scoping outputs

LCAT architecture expert

iteration

Figure 4: Product-line architecture design process in
Thomson-CSF experiment.

Some of the activities inputs (represented on databases in
Figure 4), as coarse-grained domain selections outputs,
products scoping outputs, and domain scoping outputs,
have been produced during a previous phase of our
product-line experiment called product-line scoping.
Product-line scoping phase is part of domain analysis phase
in the product-line process (see Figure 3). Product-line
scoping activities are:

- Coarse-grained domain selections. It produces an
informal definition of the domain in terms of a
textual description of the domain delimited, a list of
legacy and future products to integrate in the
product-line and a list of coarse-grained variability
to handle within the product-line.

- Products scoping. It produces tables matching
characteristics of the products integrated in the
product-line, including development referential,
requirements, legacy architectures, technology and
terminology.

- Domain scoping. It produces a domain context
model, a domain requirements model and their
traceability.

In the following section, we describe each task of the
software architecture reengineering and the lessons learned.
The same is done for product line architecture modeling
activity in section 5.

5 SOFTWARE ARCHITECTURE
REENGINEERING

Software architecture reengineering consists in organizing

domain data related to software architecture in order to
favor architectural commonality and variability extraction.
Indeed, domain data are organized according to a kind of V
cycle development in legacy products using a data model.
We strongly believe that object technology can be used to
design software architectures [17], and furthermore
product-line architectures [13], [15], [16]. Reengineering
existing domain data with object technology has been
therefore a natural step before dealing with architectural
variability.

Tasks performed during software architecture
reengineering are UML modeling of the nominal software
architecture, and specification of architectural patterns.
They are presented in the following subsections.

5.1 UML Modeling of the Nominal Software
Architecture

This task has two main goals:

1. Formalize an object model of the nominal software
architecture. A nominal software architecture is the
software architecture of the most representative
product in the product-line domain.

2. Test the adequacy of UML with regards to software
architecture representation in the product-line
approach.

Indeed, a product-line project previously leaded on the
same domain has pointed out that the software architecture
is actually expressed in a specific textual form. It is thus
not easily understandable by a non TT&S business
expert and almost impossible to be managed
automatically in a reuse approach since it is only
documentation. Moreover, an important objective of
PRAISE project is to pay special attention to the validation
of UML as standard notation to represent software
architecture and furthermore product-line architecture.

In practice, architectural components and their relationships
have been first selected from existing products to identify
the nominal software architecture. Then, they have been
modeled with UML in Rationale Rose™ 4.0. The UML
diagrams produced have allowed to highlight the services
provided by architectural components to each others. It has
been however necessary to structure them because they
contain many domain data coming from different levels
of the product life-cycle. To do it, we have defined a
model of architectural views, after having looked at those
proposed in the literature.

5.1.1 Related work on architectural views
Works have been done in software architectural views and
the way to relate them. ITU-T with the Open Distributed
Processing initiative defined several viewpoints [12]. ODP
viewpoints are not offering coherency between views, and
are difficult to use because the views are too abstract.

The "4+1" view model from [14] is a little bit too
conceptual and sometimes difficult to apply at the
architectural level. Nevertheless, it proposes a very
attractive contribution: relating views using a coherency
mechanism based on scenarios.

Gacek [9] proposes a model with several views, tempting to
further separate concerns in function of stakeholders'
identified needs. The drawback of this model relies on the
fact that assets are described at different abstraction levels
in the chosen views.

Siemens [11] proposes views based on descriptions which
are much code oriented and describe assets at a low level of
abstraction.

5.1.2 Thomson-CSF selected architectural views
Matching the nominal software architecture of our domain
to the advantages and liabilities of each architectural views
model previously described, we have defined our own
model of architectural views [6]. It is composed of:

1. Business view. Real world business entities and their
relationships. The real world business entities are
grouped by subject area which relationships are
collaborations. This view extends and refines, if
necessary, the information model obtained at the end
of the analysis phase. This view includes business
collaborations, business context, and business patterns.

2. Subsystem view. Design entities and their
relationships. The upper design entities are grouped by
subsystem which relationships are collaborations. This
view includes subsystem collaborations, process,
interfaces, information, and subsystem patterns.

3. Technology view. Deployment entities and their
relationships. This view includes deployment on the
infrastructure of the application and technology
context.

This architectural views model has been represented with
UML notation and implemented in Rational Rose™ 98i. It
has been used then to structure the nominal software
architecture of our product-line.

UML notation supports well this views model through
the use of UML extension mechanisms like stereotypes.
The number and semantics of stereotypes additionally
defined by a UML user is not constrained in UML. This
can lead to the definition of too many new stereotypes not
clearly documented, which makes a UML model no more
readable and sometimes no more coherent. It is therefore
important to control the definition of new stereotypes to
keep coherency and readability of the UML model.

Rational Rose™ 98i supports globally the
implementation of our views model. It has however
several liabilities: it is model oriented and not view

oriented (it imposes the use of “4+1” view model from
[14]), it does not fully comply with the UML standard
1.3 (UML collaborations and subsystems are not
implemented) and it is workstation oriented (for example,
sharing Rose scripts requires local initialization file
modifications).

5.1.3 Thomson-CSF selected architectural views
examples

In the ground vehicles pilot training domain, several pilot
training systems have already been developed or are to be
developed in TT&S. These systems are composed of
hardware and software elements. The product of our
product-line is then a software element named SIM of the
whole pilot training system.

To describe locally important architectural elements we
have systematized the use of architectural
collaborations . In an architectural collaboration, each
architectural element plays a specific role in the
collaboration. For example, Figure 5 illustrates a UML
collaboration pertaining to the business view of the SIM
nominal architecture. The Exercise subject area plays the
role of exercise execution manager and calculator,
including subject areas like trainee pilot automatic
assessment and trainee guidance. The Simulation subject
area plays the role of trainee environment parameters
calculator, including subject areas like trainee vehicle
dynamics and trainee vehicle movement. The System
management subject area plays the role of system
components communication manager, including subject
areas like motion hardware platform interface.

SIM pilot training session

Simulation
<<subject_area>>

Exercise
<<subject_area>>

System
management

<<subject_area>>

trainee environment parameters calculator
exercise execution manager and calculator

system component communication manager

Figure 5: UML model of a business collaboration in the
product-line domain.

The systematic use of collaborations has contributed to
better understand and represent the nominal software
architecture.

5.2 Specification of Architectural Patterns
This task has two main goals:

1. Capitalize important design solutions and their
rationale to favor their use and reuse.

2. Emphasize some important design solutions
encapsulated in the software architecture UML model,
giving a deeper description of them.

In the business unit, many important design solutions
and their rationale are implicit and difficult to get,
although valuable; it is therefore worth writing patterns
since patterns allow to collect design knowledge from
experience [10].

In practice, we have first defined a textual pattern template,
extending some of those defined in the literature [1], [5],
[10], [21] (see Figure 6). The pattern template has been
implemented in Microsoft Word™ 97 and used to specify
several architectural patterns in the subsystem view
(currently 5).

Identification of patterns as recurring solutions in the
domain has been facilitated by the domain expertise
actually present in the TT&S business unit (TT&S has
reached level 3 of CMM [3]). Moreover, products scoping
done during domain analysis phase has allowed to highlight
the architectural style of each product-line product.
Writing patterns has been a more difficult task. Indeed,
it has required to abstract solutions from code to
architectural level, using several iterations. Therefore, it has
been impossible for non TT&S business experts to write
the patterns because of their deficiency on domain
knowledge. On the other hand, as business units experts
are not used to write patterns, it has been difficult for
them to select the relevant information to fill the pattern
template.

We have also exhibited patterns as frameworks in the UML
model of the nominal software architecture. The Word files
containing patterns specification have then been
respectively connected to the pattern related frameworks in
the Rose™ model. In practice, we have defined the
stereotype “framework” to characterize a UML package
containing a pattern related framework model.

In Figure 7, the UML diagram represents a part of the
subsystem view. In this diagram, the collaboration Motion
execution has two entities connected to it: the subsystem
Simulation_LifeCycle plays the roles of Task and
EventTask , and the subsystem Motion plays the roles of
Strategy and EventStrategy. This collaboration is realized
by the framework TaskEvent, reported in Figure 8.

Proposed Template Alexander GOF PLOP AGCS

Reference [Alexander 77] [Gamma & al. 95] [Coplien & al. 95] [Rising 99]
General Section
Name X X X X
Author X
Date X
Source
Anti-pattern
Intent X Abstract
Also know as X X X
Keywords X
Example Section
Problem X X X X
Solution X X X X
Problem Section
Problem Description X X X X
Context of applicability X X X X
Forces X X X
Solution Section
Resulting Context X X X
Description X X
Participants X X X
Collaborations X X X Sketch
Rationale X
Consequences X X
Known Uses X X X
Variations
See Also X X X
Technical Section
Implementation X X
Code and Usage X
COTS
External Documentation
References X X
Glossary

Figure 6: Comparison of patterns templates.

Exhibition of patterns as frameworks in the UML
model of the nominal software architecture lets us
envisage automatic refinement of collaborations using
UML framework models. This has already been done in
the Catalysis approach [8]. However, we have identified
some limitations due to UML tool. Indeed, a subsystem
inherits from a class and a package, as described in UML
1.3 metamodel. So a subsystem could be connected to a
collaboration using a realization link. But UML subsystem
and collaboration are not implemented in Rational Rose™
98i. So stereotyped UML packages are used to represent
them and then dependency is used instead of realization
link (see Figure 7). To achieve automatic refinement of
collaboration using its related framework, Rose™ scripts
should be developed.

Simulation_LifeCy
cle

<<subsystem>>
Motion

<<subsystem>>

Motion Execution

Strategy = motionStrategy; EventStrategy = motionEventStrategy
Task = simStandardTask; EventTask = simTimerTask

TaskEvent
<<framework>>

is realized by

Figure 7: Motion execution subsystem collaboration.

EventStrategy
_event : Event

suspend()

EventTask

suspend()

Task
(from TaskStandard)

name

init()
suspend()
stop()
execute()

Strategy
(from TaskStandard)

execute()
suspend()
insert()
getChild()
readSimulationSharedRepository()
writeSimulationSharedRepository()

1..1 1..11..1 1..1

Figure 8: The TaskEvent framework in UML.

6 PRODUCT-LINE ARCHITECTURE
MODELING

Product-line architecture modeling consists in adding the
domain variability in the nominal software architecture and
the decision related to this variability for architecture
derivation. Tasks performed during product-line
architecture modeling are identification of architectural
variability, exhibition of variability in UML model, and
specification of variability patterns. They are presented in
the following subsections.

6.1 Identification of Architectural Variability
This task has two main goals:

1. Identify the projection of requirements variability on
the nominal software architecture. Requirements
variability is an output of the domain scoping activity
done during domain analysis phase.

2. Identify the projection of products architectural
variability on the nominal software architecture.
Products architectural variability is an output of the
products scoping activity done during domain analysis
phase.

The projection of requirements variability on the
nominal software architecture has been difficult to
perform. Indeed, the impact of an evolution of
requirement on architecture is not easily delimited.
Therefore, we have only considered variability related to
high level requirements in a first iteration of this task.
Then, we have worked to refine variability expressed in the
more detailed requirements in order to delimit more
precisely all the impacts on the product-line architecture.
This task is still considered by us as an open issue.

6.2 Exhibition of Variability in UML Model
The main goal of this task is to represent the variability
identified in the previous task (see section 6.1) in the UML
model. Within each architectural view, we have represented
the variability following Praise generic solutions described

in [15] and LCAT recent work on variability management
and representation in UML described in [6].

Product-line variability management is mainly done at the
architectural level using collaborations, frameworks and
variant realizations between them. The UML notation used
is illustrated in Figure 9.

Motion execution

TaskEvent
<<framework>>

TaskStandard
<<framework>>

variant

condition(s) condition(s)

variant

Figure 9: Representing variability in the UML model

Collaborations associated to variants are tagged "variation
point", so that they can be easily retrieved by scripts. Each
framework representing a realization of a variant is related
to a collaboration class using a UML dependency
relationships stereotyped <<variant>>.

Notes can be associated to dependency link to describe
conditions for framework selection. We intend to write
framework selection conditions using the UML constraint
language called OCL instead of notes.

This description is sometimes inappropriate for two main
reasons:

1. Variability representation is not enough visible
in the model.

2. The variability is buried in frameworks and
patterns. This leads to merge the description of
variability and the way of handling it. If the way
of handling variability is not clearly described,
application engineers may adapt or alter the assets
in such a way that it has not been anticipated; it
then leads to product-line erosion, as stated in
[18].

That's why, we have decided to use more recent work [6] in
order to treat the variability issue in separating these three
concerns:

1. Expression of what can vary in the product-line
architecture and how it can vary.

2. Explicit display of places in the UML model
where variation can occur, called variation point
and represented by hotspot.

3. The decision to take when facing variants
selection, called the decision model and related to
the variation point.

Figure 10 gives an example of using hot spots to exhibit
variability in the UML model.

Motion execution

Motion execution
decision

<<hot spot>>

TaskEvent
<<framework>>

TaskStandard
<<framework>>

variant variant

Figure 10: Managing variability with UML hot spots.

6.3 Specification of Variability Patterns
The main goal of this task is to document the variability
management in the product-line architecture.

Sometimes, additional architectural parts mu st be
incorporated in the product line architecture in order to
guide the derivation of the final product architecture. These
additional architectural parts are modeled using patterns,
and are called variability patterns. These patterns are used
when the variation leads to adaptation of the architectural
entities implied in a complex collaboration.

For example, due to economic context, companies use more
and more COTS from subcontractors. These subcontractors
have their own development policies and the COTS do not
match completely the interfaces required by the in house
company. The challenge is to use in house software and
subcontractor software in an application with respect to the
in house application design. In the vehicle simulation
domain, it happens that vehicle behavior models are
developed by subcontractors. That occurs in case of too
specific behavior models (e.g. aquatic vehicle model) or in
case of cooperation projects. The specific vehicle behavior
model has its own internal states which are different from
simulation states. Some functionalities may be lacking. As
code is not available, it is not possible to modify the model
software. Nevertheless, it is necessary to adapt the whole
application to integrate this model without modifying all
the application.

Figure 11: Variability framework realizing the model
interaction collaboration.

So, in order to manage this major variability feature among
products, we have used a Strategy Adapter framework (see
Figure 11) and its related StrategyAdapter pattern. The
variability pattern StrategyAdapter documents the solution
systematically implemented when adapting locally the
specific model interfaces to standard model interfaces.

The major drawback of variability patterns is that the
rationale and the way of resolving variability questions
are hidden in the variability pattern. No clear
presentation of the decision model is made.

7 CONCLUSION AND OPEN PROBLEMS
We have proposed in this document a non exhaustive
description of the lessons learned in the product-line
experiment leaded by Thomson-CSF in the scope of the
ongoing PRAISE Esprit project. We have also described
the empirical process we have used, and the modeling
techniques and notations we have created in order to
represent a product-line architecture.

7.1 Architectural views
The three architectural views defined (business, subsystem
and technology) are sufficient to represent the product-line
architecture in the domain addressed. Developing an
organization-specific architecture, it is very likely that
some of the existing architectural views will be useful with
adaptation(s) or combination(s). Although these
architectural views should be considered as an exhaustive
set, they can also be considered as a start ing point to extend
the proposed set of views in the model.

In this way, considering the Praise project results, we have

introduced the architectural perspective notion in the LCAT
laboratory [6]. An architectural perspective defines new
assets from architectural views assets, related to specific
stakeholders needs. Each perspective demonstrates the
concern of a stakeholder. Adding architectural perspectives
to the basic architectural views model can be seen as a
generalization of the "+1" view of [14].

7.2 Requirement and architecture traceability:
Bottom-up vs. top-down approach

Building a product-line can be done in two ways:

1. Using a top-down approach: The product line is
built from scratch. Domain engineering assets are
created and then reused in application engineering.

2. Using a bottom-up approach: The product line is
based on legacy products. Domain engineering
assets are built from existing application assets.

These approaches are not exclusive, but using both of them
to build the product-line can lead to assets having different
granularity levels. When trying to relate them, some major
difficulties arise. This is then a major problem since the
product-line approach is enforcing the traceability between
assets. So how to enforce the same level of granularity
between assets during product-line construction?

7.3 Peopleware
Engineers must be aware of the objectives of product line
architecture. Systematic reuse and explicit description and
documentation of each asset is sometimes difficult to
understand for people developing one shot products.
Extensive use of guidelines and examples are needed to
improve engineers learning curve.

Software engineers are sometimes very disturbed by the
separation of concerns. "Why creating several diagrams, if I
can put all the information in just one. It's better with one
drawing, it's more synthesized". But, UML seems to be a
good way of sharing a mental vision of the system.

The term variability is also very confusing if badly used.
Each application manages variability, due to the application
logic. It must be stated clearly that we are only interested in
the product line variability, i.e. the variability needed to
decline specific products from a product family. That's also
a reason, why, it's sometimes difficult to make people do
commonality description first and then variability. They are
used to manipulate both at the same time in their day to day
work.

Finally, engineers are used to generate code. It is then
difficult to make them understand that after the architecture
phase, people have to work in order to build components
and then generate code.

7.4 Tools
Rational Rose™, does not fully support the current official
norm (UML 1.3) and that situation leads to:

- Use extensively UML extensibility mechanisms
(stereotypes, constraints and tagged values).

- Use extensively scripting in order to implement our
process.

Rose™ must be used in the product-line context as a
dynamic browser and not only as static diagrams drawer.
Engineers are not used to navigate in such tools.
Formation on tools is therefore necessary to acquire the
good way of using them.

Interoperability between tools is not easy, and we are now
very committed to Doors™ / Rose™ couple. We have also
to emphasize the fact that the platform price/seat is very
expensive and costs more than 20 000$ per user ! This is to
be put in relation with the fact that actual tools are not
delivering all expected features needed. So, how to promote
product-line technology in our business units if actual tools
are not mature enough and do not fully support it?

ACKNOWLEDGEMENTS
We would like to thank for the technical discussions all of
our LCAT colleagues and PRAISE project partners.

REFERENCES

[1] Alexander, C. The timeless way of building. New
York: Oxford University Press, 1979.

[2] Bass, L., Clements, P., and Kazman, R. Software
Architecture in Practice. Addison Wesley, 1998.

[3] Bate, R., and al. A Systems Engineering Capability
Maturity Model. Technical Report CMU/SEI -95-
MM-003, Software Engineering Institute, Pittsburgh,
PA 15213, November 1995.

[4] Bristow, D., Bulat, B., and Burton, R. Product-line
process development. STARS (Software Technology
for Adaptable, Reliable Systems) project, 1995. On-
line at <http://www.asset.com/stars>.

[5] Coplien, J., Advanced C++ programming styles and
idioms. Addison Wesley, 1992.

[6] Coriat, M., and El Kaim, W. Software System
Product Line Architecture: the Daisy model.
Submitted to First Software Product-Line
Conference, Denver, Colorado, August 2000.

[7] Donnan, G., and Jourdan, J. Software architectures,
product-lines and frameworks. Alcatel
Telecommunications Review, 1st Quarter 1999.

[8] D'Souza, D. and Wills, W., "Objects, Components

and Framework with UML: The Catalysis Approach",
Addison-Wesley, 1999.

[9] Gacek, C., Abd-Allah, A., Clark, B., and Boehm, B.
On the Definition of Software System Architecture.
In ICSE 17th, First International Workshop on
Architectures for Software Systems , Seattle, Wa,
April 1995.

[10] Gamma, E., Johnson, R., Helm, R., and Vlissides, J.
Design Patterns: Elements of reusable object-oriented
software. Addison Wesley, 1995.

[11] Hofmeister, C., Nord, R., and Soni, D. Applied
Software Architecture. Addison Wesley, 1999.

[12] Information Technology. Open Distributed
Processing. ITU-T Recommendations X. 902 and X.
903, ISO IEC 10746-2:1996 and 10746-3:1996.

[13] Jourdan, J., Lalanda, Ph.. "Product-line and object-
oriented technology ?". In third SEI Product Line
Practice Workshop , December ‘98, Pittsburgh, USA.

[14] Kruchten, P. The 4+1 View Model of Architecture.
IEEE Software, 12(6):42—50, November 1995.

[15] Lalanda, P. Product-line software architecture .
PRAISE project deliverable number 2.2, March 1999.
On-line at <http://www.esi.es/Projects/Reuse/Praise>.

[16] Lalanda, P., and al. First International Workshop on
Object technology for Product-Line Architectures. In
ECOOP’99 Workshop Reader, LNCS 1743, 1999.

[17] Lalanda, P., and Cherki, S. Object Oriented Methods
and Software Architecture. In ECOOP’98, Workshop
on Object Oriented Software Architecture, Brussels,
Belgium, July 1998.

[18] Leishman, D.A. Solution Customization. IBM
Systems Journal, Vol. 38 (1), pp. 76-97, 1999.

[19] Perry, D., and Wolf, A. Foundations for the study of
Software Architecture. Software Engineering Notes,
17(4):40—52, 1992.

[20] PRAISE. Product-line Realization and Assessment in
Industrial SEttings. Workplan, 1998. On-line at
<http://www.esi.es/Projects/Reuse/Praise>.

[21] Rising, L. Pattern Mining. Handbook of Object
Technology, Chap. 38. Ed. Saaba Zamir, CRC Press,
1999. On-line at <http://www.agcs.com/patterns>

[22] Shaw, M., and Garlan, D. Software Architecture:
Perspective on an Emerging Discipline. Prentice Hall,
1996.

[23] Vinga-Martins, R. and Süßlin, S. Requirements
traceability. PRAISE project deliverable number 2.3,
March 1999.

Page 1/8

A product line experience in the domain of fund
management

Tullio Vernazza§, Stefano De Panfilis¥, Paolo Predonzani§, Giancarlo Succi£

§ Dipartimento di Informatica, Sistemistica e Telematica, Università di Genova, Genova,
Italy.
¥ Engineering Ingegneria Informatica S.p.A., Roma, Italy.
£ Department of Electrical and Computer Engineering, The University of Alberta, Edmonton,
Canada.

ABSTRACT
Product lines offer significant business and technical advantages to software companies that produce a range of
similar products customized for different users. These advantages derive from the strict relationships between the
products. Product line development can benefit from domain analysis and engineering techniques. The paper
reports the experience of product line development in the domain of fund management, an important part of the
domain of banking systems.

1 INTRODUCTION
Fund management is becoming a strategic part of banking systems. Recent changes in the law and regulations
has greatly increased the relevance and opportunities of fund management. Many banks are approaching this
business and are willing to offer a fund management service. The production of a product line in this domain has
become a compelling need for many IT producers. The paper describes DOMINARE, a project aimed at the
production of a fund management product line with Domain Analysis and Engineering techniques.

The need for product lines often arises when there is a possibility to deploy similar systems in different
environments. The similarity of the systems offers great potentiality for reuse across the product line, with a
consequent reduction in development cost and time. It also allows a better exploitation of the synergies and
compatibility between the products.

DOMINARE’s approach to product lines is based on Domain Analysis and Engineering (DA&E). DOMINARE
has performed DA&E on the domain of fund management. The test-bed for the discussed techniques has been
the GLOBAL FUND product line. The product line comprises a package product, reflecting all the major
characteristics of the domain, and several installations tailored on specific customer’s needs.

The identification of the common parts across the product line has been the starting point of the work.
Commonalities evidence the cohesion of the product line and highlight the potentiality of reuse. However, the
products of the product line also differ for several features. The differences are due to the peculiarities of the
customer requirement and of the deployment environment. The management of variability, i.e., of the differences
between products, has shown to be a major issue of product lines and a critical requirement in the development
of GLOBAL FUND.

DOMINARE is a European ESSI Project. It has been undertaken by Engineering Ingegneria Informatica S.p.A.,
a major Italian software company. The underlying DA&E methodology, named Sherlock, has been developed by
DIST Università di Genova. The CASE tool used for DA&E is a customized version of System Architect 2001
by Popkin Software Inc.

The paper is structured as follows: section 2 presents previous work in product lines and DA&E; section 3
presents the project’s approach to product lines; section 4 describes the product line’s commonality; section 5
provides insight in the product line’s variability; finally section 6 draws the conclusions.

Page 2/8

2 STATE OF THE ART
A product line is a set of products produced by one company according to a coherent strategic line. Several
authors have addressed the benefits and problems that derive from this definition.

Bass et al. highlight the potentiality of reuse across a product line [2]. Reuse pervades all development assets,
including architectures, experience, solutions, and code. They consider the organizational implications of
product lines, discussing the need for separate groups for managing core assets (the product line’s
commonalities) and products. They also advocate a component-based approach to product line development.

Product lines are often associated to domain analysis [5, 7]. Several approaches to domain analysis exist. Arango
gives an overview of several domain analysis methodologies and provides a common process, which summarizes
the commonalities of the methodologies [1].

Baumol et al. analyze product line production from an economic perspective [3]. Their focus is on economies of
scale and scope, as well as on the equilibrium in markets. They consider different cases of monopoly, oligopoly,
and competition and analyze under which conditions and with what consequences new firms can enter the
market.

In parallel with the interest in the common aspects of product lines, there is also a effort to analyze and formalize
variability. The Proteus project puts a strong emphasis on variability in domains, as a means to support an
evolutionary development of software [4].

The differentiation between the product line’s products can result from variability in the environment where the
products are deployed. Predonzani et al. analyze the implications of variability in business processes and its
effects of software systems [6].

3 A DOMAIN-BASED APPROACH TO PRODUCT LINES
Fund management is an increasingly important part of the domain of banking systems. Engineering Ingegneria
Informatica has undertaken the development of a product line to address the demand of fund management
products. The product line is named GLOBAL FUND and builds upon the long experience of Engineering
Ingegneria Informatica in the domain of banking systems. The product line is made of a package product and a
series of customized products.

The installed base of the product line consists entirely of the customized products. This evidences that the need
for customization is fundamental in the considered market. The reason is that the combination of customer
requirements and deployment environments makes each product practically unique.

Despite the dominance of the customized products, the role of the package product in the product line is
fundamental. The package product is meant to support the effective and efficient development of new
customized products. The package product represents a generalization of the domain and comprises the major
functionalities of the product line.

The DOMINARE project has enforced the relationship between the package product and the customizations. The
package product has been made more flexible to accommodate the variety of situations that may occur. This has
been achieved using DA&E techniques. More specifically, the approach has been based on the identification of
commonality and variability in the domain, and on the embedding of such concepts in the product line’s
products. The rationale has been the following:

• The identification of commonality is relevant as it highlights the cohesion of the product line. The very idea
of reuse of experience and code is based on the assumption that a common part exists between the products.
The explicit identification of such part is a factorization and classification process that most DA&E
approaches comprise.

• The identification of the variability highlights the differences between the products. Differences are, in
many cases, the most characterizing aspects of products. As such, they should not be considered as less
relevant than commonalities. This aspect is a fundamental feature of Sherlock, while it is frequently
overlooked by other DA&E techniques.

The identification of commonality and variability has been based on the analysis of past, present and future
products. For past and present products, requirements, design documents, documentation, etc. have been
available for the analysis. For future product, the development plans, the study of market and technology trends,
and the contribution of domain experts have been an input for the analysis.

The connection between commonality and variability has been ensured by Sherlock’s concept of “variation
point”. A variation point is a common feature of the product line that is (or can possibly be) implemented in

Page 3/8

different ways in different products. A variation point belongs to the commonalities – as all product share it – but
its implementation is product-dependent. Variation points can reflect business or technical variability. A variant
is a specific implementation of a variation point. Variants belong to the differences. The relationship between
variation points and variants is depicted in Figure 1.

Product A Product B Product C

Commonalities Commonalities

Variant 1

Variant 2

Variant 3

Variation point

Figure 1: Variation points and variants

Commonality and variability (with a particular focus on the latter) have proven crucial for the management of
the product line. The advantages they have provided are the following:

• Commonality allows reuse of knowledge and code. Reuse reduces the development effort and time.
Variability points out where the code most needs to be flexible.

• Knowledge is shared better across the developers of the product line. The formalization of commonality and
variability evidences the relationships between the several products and points out where synergies can be
exploited.

• Alternatives (the variants) can be identified and evaluated at the beginning of a project. The cost of a
thorough, up-front identification of variability is usually bearable and small. This allows to make feasible
plans about the variability to implement in the products.

The following two sections provide insight on the specific product line’s commonality and variability
encountered in the project.

4 PRODUCT LINE COMMONALITY
The problem of product line commonalities has been addressed, at the level of requirements, through the
adoption of use cases. Use cases are adequate to represent the requirements of a product. In DOMINARE, they
have been used to represent also the requirements of the domain, considered as a collection of products. The
term “domain use case” has been used to indicate a use case that is a generalization of several “product use
cases” (Figure 2). From a different perspective, product use cases are extensions – or specializations – of the
domain use cases.

Domain
use case

Product B
use case

Product A
use case

Product C
use case

<<extends>>
<<extends>><<extends>>

Figure 2: Domain use case as generalization of product use cases

Page 4/8

Before discussing the captured domain use cases, for a better understanding of the product line, a set of
frequently used terms needs to be introduced:

• Fund. A fund can be a pension fund (intended to provide a retirement income to, generally, the employees of
a firm) or investment funds (intended to be a generic investment).

• Fund administrator. The fund administrator owns and manages the fund. It’s main task is to determine the
fund’s portfolio composition.

• Subscriber. The subscriber signs a subscription to a fund.

• Bank. The bank manages the subscribers and the subscriptions for a group of funds.

• System owner. The system owner runs the information system for the support of fund management
activities.

The sources of information for the identification of the use cases have been many: requirement and analysis
documents, product documentation, market surveys, etc. The domain use cases that are presented here are a
small selection of the identified ones. They represent the core of the product line’s common part (Figure 3,
Figure 4).

Page 5/8

System owner

Fund administrator

Management of fund
administrators and

banks.

The system owner defines the
fund administrators and the
banks managed by the
system. It is possible to
browse, add, update, and
remove any of such entities.

Configuration of
funds

The system owner defines
and manages the funds, by
entering the identity and the
structure of the funds. This
work is done in conjunction
with the fund administrator,
who defines the portfolio
composition and the policies
that need to be applied in the
management of funds.

Management of
patrimonial assets

The fund administrator
obtains information on the
fund’s patrimonial assets.
The functionality may
involve both transaction
processing and batch
operations. The monetary
quantification of the assets is
based on the prices and
exchange rate at the proper
dates of computation.

Fund control

The bank and fund
administrator, according to
their role, set-up and run
control procedures on the
fund composition and
operations. The control is
both formal and factual, and
is needed to ensure
consistency and compliance
to regulation. If anomalies are
found, the actors can
intervene to correct them.
Control procedures can be
executed automatically.

Bank

Figure 3: Domain use cases (1)

Page 6/8

Analysis of
operations

The fund administrator
performs an analysis of the
operations while transaction
processing is running. The
analysis allows viewing the
fund’s details by navigating
the fund’s structure. This can
also highlight possible
problems before other forms
of control are run.

Fund administrator

 Management of
taxation duties

The fund administrator and
the bank can require a
generation of the
documentation needed to
fulfill the formal taxation
duties. The form of
documentation produced is
differentiated according to
the type of user (fund
administrator/bank).

Bank

Management of
subscribers

The bank manages the
identity of the subscribers
and the object of their
subscriptions. The bank
defines also the connection to
other systems that may be
required to perform
operations for subscribers.

Fund subscriber

Figure 4: Domain use cases (1)

5 PRODUCT LINE VARIABILITY
The sources of variability in the product line are manifold. Many of them reflect the influence of external factors,
such as the differences in the deployment environment or in the adopted regulations. The formalization of
variability is based on variation points and variants. So far, 85 variation points have been identified in the
product line. Here, a selection of variation points provides a high-level understanding of the product line’s
variability. A first group of variation points gives a characterization of the funds (Table 1).

Table 1

VP1: type of fund

• V1,1: Open pension fund

• V1,2: Closed pension fund

• V1,3: Open common investment fund

• V1,4: Closed common investment fund

VP2: Financial composition of fund’s portfolio:

• About 20 variants have been identified, including shares, bonds, funds, and other types of investment. Any
of these variants can coexists, as long as this is compatible with the regulation.

Page 7/8

VP3: Fund structures:

• V3,1: Simple (unstructured)

• V3,2: Multi-division: structured in simpler funds

A second group shows the dimensions in which the system can grow to accommodate multiple actor instances
(fund administrator and banks) and multiple computation dates (Table 2).

Table 2

VP4: Number of fund administrators supported by the system:

• V4,1: Single administrator

• V4,2: Multiple administrators (with separate rules, constraints, and preferences possible for each
administrator)

VP5: Relationship between funds and reference computation dates:

• V5,1: Single date for all funds

• V5,2: Multiple dates for different funds.

VP6: Number of institutions (banks) concurrently managed by the system:

• V6,1: Single bank (possibly having the system on the bank’s site)

• V6,2: Multiple banks (each accessing the system as a service on a shared site)

A third group deals with regulation and currency issues (Table 3).

Table 3

VP7: Conformity to regulation (Variants reported as categories):

• V7,1: Legislation

• V7,2: Supervision institutions

• V7,3: Treasury’s decrees

VP8: Currency for transactions, records and computations:

• V8,1: Euro

• V8,2: National currency

• V8,3: Other currencies

VP9: Management of the transition period for the Euro currency (this variation point is subordinated to the
implementation of V8,1)

• V9,1: Gradual approach

• V9,1: Big-bang approach

The last group, comprising one variation point, defines an important aspect of data consistency between the fund
management system and external systems (Table 4).

Page 8/8

Table 4

VP10: Computation of derived data

• V10,1: Internal computation

• V10,2: Import from external systems

At the current state of development, most of the product line’s variants have been implemented. Some of the
variation points are coming to a stable point, in the sense that no new variants are discovered. This is especially
true for variation points that express variability in functionality (second and fourth group).

Other variation points are still undergoing adjustments and changes. This is the case, e.g., of VP7 (Conformity to
regulation). For these variation points, special attention has been devoted to provide the maximum flexibility in
the product line. For instance, for the mentioned variation point VP7, a specific module has been designed to
encapsulate the variability of changing regulations.

6 CONCLUSIONS
The paper has analyzed an application of product lines to the domain of fund management. The approach has
been based on DA&E techniques, focussing on the exploitation of the product line’s commonality and
variability. The project has demonstrated the applicability of product lines in domains where two factors are met:

(a) A core of functionalities is common to the whole domain. This is a prerequisite for reuse across the
product line.

(b) The individual products are customized on the customer’s needs. Customization of products is a
competitive advantage but can also be a development challenge for the variability it introduces.

The analysis has evidenced that both factors need to be properly managed through a thorough analysis of
commonality and variability. More specifically, the management of variability appears to be a fundamental
factor that determines how much a product line can grow and accommodate diverse requirements.

REFERENCES
[1] Arango, G., “Domain Analysis Methods” in Software Reusability, editors: W. Schaefer, R. Prieto-Diaz,

and M. Matsumoto, Ellis Horwood, New York, 1994.

[2] Bass, L., P. Clements, R. Kazman, Software Architectures in Practice, Addison Wesley, MA, 1998.

[3] Baumol, W.J., J.C. Panzar, and R.D. Willig, Contestable Markets and The Theory of Industrial
Structure, Harcourt Brace Jovanovich, Inc., 1982.

[4] CAP SSP, CAP Gemini Innovation, CAP Sesa Telecom, Hewlett Packard, Intecs, Matra Marconi
Space, Sintef, University of Lancaster, "Domain Analysis Method," Deliverable D3.2B, PROTEUS
ESPRIT project 6086, 1994.

[5] Poulin, J.S., “Software Architectures, Product Lines, and DSSAs: Choosing the Appropriate Level of
Abstraction”, 8th Workshop on Institutionalizing Software Reuse, Columbus, Ohio, 1997.

[6] Predonzani, P., G. Succi, T. Vernazza, “Reflecting Business Process Variability in Information
Systems”, in Proceedings of CAiSE’99 workshop Software Architectures for Business Process
Management (SABPM’99), Heidelberg, Germany, June 14-15, 1999.

[7] Simos, M.A., “Lateral Domains: Beyond Product-Line Thinking”, 8th Workshop on Institutionalizing
Software Reuse, Columbus, Ohio, 1997.

Domain analysis and product-line scoping:
a Thomson-CSF product-line case study

 S. Cherki & W. El Kaim, P. Josset & F. Paris
 LCAT LCAT

 Thomson-CSF/LCR Thomson-CSF/TT&S

 Domaine de Corbeville 1, rue du Général de Gaulle

 91404 Orsay cedex, France ZA Les Beaux Soleils - BP 226 Osny

 {elkaim,cherki}@lcr.thomson-csf.com 95523 Cergy Pontoise cedex, France

 {josset,paris }@tts.thomson-csf.com

ABSTRACT
This paper reports on the product-line experiment leaded by

Thomson-CSF in the scope of the ongoing European

project PRAISE, focusing on experimental results

regarding the domain analysis phase of the product-line

process. The experiment product-line addresses a real

domain which is simulation for ground vehicle pilot

training.

Keywords
Product-line approach, domain analysis, product-line

requirement, UML.

1 INTRODUCTION
Domain-specific and architecture-centric product-line is

now recognized as a promising approach to deal with

software intensive systems development and evolution [2].

However, industrial companies lack today methodological

framework and supporting tools to make a software

development product-line approach realizable in industrial

settings. The ongoing European PRAISE project
1
 is

therefore pursued by Thomson-CSF, Robert Bosch GmbH,

Ericsson, and the European Software Institute to provide an

integrated and validated methodological support to product-

line approach [7].

1
 PRAISE project is partly founded by the European

Commission under ESPRIT project 28651.

PRAISE project is divided into five work packages (see

Figure 1). Work packages 1 and 2 are dedicated to the

definition of the baseline technology and have resulted in

process, benefit assessment model, and requirements

traceability and architecture methods. In the scope of work

package 3, Robert Bosch GmbH and Thomson-CSF are

currently leading real large-scale industrial experiments in

a coordinate way to validate and consolidate previous

technology.

Phase 1: 6 months Phase 2: 12 months

WP1: Product-line practices WP3: Experiments

WP4: Product-line packageWP2: Domain-specific Arch.

WP5: Exploitation and dissemination

WP0: Management

Setting the process and
assessment model

Experiments on three
real-scale applications

Validation, packaging
and tool board

Architecture in the process
and techniques for design

Figure 1: PRAISE project in work packages.

More precisely, the focus is made on domain engineering

Error! Reference source not found. in both experiments

and the same models have been selected from the baseline

technology for experimentation. Moreover, a different

domain is investigated in each company to get more sound

and credible lessons learned. The domain addressed in

Robert Bosch GmbH experiment is car periphery

supervision whereas the one addressed by Thomson-CSF

experiment is simulation for ground vehicles pilot training.

Considering that domain data are present in quite different

forms in each domain, technology is customized

accordingly in each experiment, thus providing results

covering a broader area of problems. This paper reports

specifically on the product-line experiment leaded by

Thomson-CSF.

In practice, technology related to domain analysis phase [8]

and product-line scoping phase [9] has been already

experimented. It has included products scoping, domain

context modeling, domain requirements modeling, domain

features modeling, and domain traceability modeling.

Lessons learned can thus be provided in terms of process,

modeling, notation and tools used to perform these

activities following a product-line approach. This will be

the focus of this paper.

This paper is divided into seven sections. The first one is

dedicated to the presentation of Thomson-CSF organization

allowing to understand team work and coordination. In the

second one, the experiment process is described relating

product-line scoping to domain analysis phase. In sections

3, 4, 5, and 6, experiments leaded on domain definition,

products scoping, domain scoping and fe atures modeling

are respectively described in terms of their process,

modeling results and lessons learned. And finally, last

section gathers the whole lessons learned and gives the

experiment perspectives envisaged in the future.

2 THOMSON-CSF BACKGROUND
PRAISE project is running inside the LCAT, a common

research laboratory of Alcatel and Thomson-CSF [2].

LCR/LCAT unit working on product-line technology is

divided into one technical team and several domain

experiment teams. One domain experiment team is

composed of experts and engineers from an industrial

business unit of Thomson-CSF and an experiment leader.

This latter organizes experiment work and relates the

business unit needs and results and LCAT technical team

technology. Team involved in Thomson-CSF experiment of

PRAISE project is TT&S domain experiment team.

TT&S is a pilot business unit in Thomson-CSF regarding

software engineering practices and has reached level 3 of

the CMM [1] In order to start up the LCAT project, a

preliminary product-line experiment has been leaded by

Thomson-CSF/LCR in collaboration with TT&S and

TT&M. It has involved two persons at full time and one

TT&S expert at 20% for one year. It has allowed us to get

domain data and evaluate human and time resources needed

in LCAT project domain experiments.

3 DOMAIN ANALYSIS AND PRODUCT-LINE
SCOPING PROCESS

In this paper, a domain is understood as “an area of process
or knowledge driven by business requirements and
characterized by a set of concepts and terminology
understood by stakeholders in that area”.

According to [8], domain analysis is “the domain
engineering activity in which domain knowledge is studied

and formalized as a domain definition and a domain
specification”. Domain definition is then defined as “an
informal description of the scope, extent, and justification
for a domain” and domain specification as “a specification
of a standardized application engineering process and
product family for a domain”.

Figure 2: Product line process extracted from [8].

At the beginning of this experiment, it has been necessary

to position product-line scoping within the product-line

process, and more particularly with regards to domain

analysis phase of this process.

In term of process, a first step of product-line scoping can

be matched to domain definition step of domain analysis. A

second step can be considered as part of domain

specification step of domain analysis.

Coarse-grained selection

Products scoping

Domain scoping

1. Coarse-grained domain selection

2. Legacy and future systems selection

3. Coarse-grained variability selection

1. Products referential analysis

2. Products requirements analysis

3. Legacy products architecture analysis

4. Technology analysis

5. Terminology dictionary production

1. Domain context modeling

2. Domain requirements modeling

3. Domain context-requirements

traceability modeling

Features modeling
1. Domain features modeling

2. Domain features-requirements

traceability modeling

Product-line

scoping

Domain expertise

Domain expertise

Systems documentation

Legacy systems code

Domain expertise

Information model

TT&S domain experts

TT&S domain experts

Experiment coordinator

TT&S domain experts

LCAT requirements expert

TT&S domain experts

LCAT UML expert

Experiment coordinator

Experiment coordinator

LCAT requirements expert

Domain

definition

Domain

specification

iteration

iteration

Experiment coordinator

Figure 3: Domain analysis process part in Thomson-
CSF experiment.

Our experiment part of domain analysis phase reported in

this paper can be describ ed in terms of activities and tasks,

as reported in Figure 3. In this figure, activities are modeled

as rectangles with round corners, tasks as items, data flows

as arrows, activity practitioners as faces, and domain

analysis inputs as databases.

In the remainder of this paper, we will describe each

activity.

4 COARSE-GRAINED SELECTIONS FOR
DOMAIN DEFINITION

The main objective of the product-line scoping phase is to

delimit the product-line domain [9]. As input of this phase,

we have considered ground vehicle pilot training domain.

In practice, the product-line domain has been first delimited

in terms of:

- a short informal description of the domain

addressed,

- a list of systems included,

- and a list of coarse-grained variability.

The related activity has been realized fast and merely with

coarse-grained selections performed by business unit

experts, not requiring any analysis of the domain.

The selections performed on this input domain to define the

product-line domain are mainly motivated by making the
product-line domain fit TT&S organization with
regards to market needs and development teams. For

example, focus has been made on some ground vehicles

both civilian and military, thus allowing TT&S both to

extend its business to a civilian market and to leave some

domain features no more required in military market. Also,

TT&S development teams being built according to specific

competencies, focus was made on real-time simulation and

environment simulation competencies.

Sound System

Motion System

Cabin Instructor Station

Simulation Station

Instructor Station competence

Real Time Simulation competence

Environment simulation Competence

GSI

Visual Simulation competence

Figure 4: TT&S competencies related to ground
vehicles pilot training domain

Figure 4 illustrates the main hardware elements of a ground

vehicle pilot training system, with arrows denoting

communications between these elements and ovals

denoting TT&S software teams organized by competencies.

In TT&S systems, real-time simulation and environment

simulation competencies correspond to a software

component (designated later with SIM) of the system;

previous selections defining the product-line domain

therefore leaded us to consider not a whole system as the

product, but rather SIM software component of the system.

Several systems have been then selected by TT&S expert

as relevant to the product-line domain thus delimited: three

legacy ones and two future ones to be developed.

Finally, a list of coarse-grained variability has been

selected by TT&S expert, considering coarse-grained

evolution of existing systems and anticipating future

systems one: this list includes variability related to trainee

vehicle model which may be a tank model or a truck model,

and variability as optional ability to test the availability of

SIM devices at run-time.

These selections have allowed TT&S to favor product-
line process adoption, getting rid as much as possible of
its market opportunities and its business competencies .

They have also allowed product-line experiment

practitioners to deal with a “reasonable” number of
domain data and variation points during product-line
experiment and to access easily domain data.

Results obtained with the first step of product-line scoping

has allowed us to start up domain analysis. However, they
were not enough explicit to give a meaningful view of
the product-line domain to people who are non business
unit experts.

Then, the second step of product-line scoping has been

performed to get a more detailed and formal scope. It

means that the product-line domain has been further

delimited with more detailed and formal models, like

domain context model and domain requirements model

proposed in [9]. The related activities have been realized

with longer analysis and specification phases involving

product-line experts and business unit experts.

The second step of product-line scoping is divided into two

activities: products scoping and domain scoping. Products

scoping aims at matching products characteristics,

exhibiting variability between products. Then, domain

scoping objective is to build a domain context model and a

domain requirements model and their traceability as stated

in [9]. In practice, we have performed products scoping and

domain scoping successively by iteration. Experiment

related to them is described in the following sections 5 and

6.

5 PRODUCTS SCOPING
Inputs are domain expertise on TT&S business and systems

documentation and code.

Outputs are information tables matching different kind of

products features and exhibiting their variability.

Techniques used mainly consist in:

- Reading of legacy systems documentation (and

punctually systems code) by experiment

coordinator to acquire domain data.

- Filling of information tables by experiment

coordinator to store different kinds of domain data

and the rationale of their variability between

systems.

- Interviewing domain experts to validate domain

data previously acquired and to get both future

systems prospective data and implicit rationale.

Tasks performed during products scoping are products

referential analysis, products requirements analysis, legacy

products architecture analysis, technology analysis, and

terminology dictionary production. They are presented in

the following subsections.

5.1 Products referential analysis
This task has two main goals:

1. Mining the type of decomposition used during systems

development and the different categories of product

requirements and product architecture elements.

2. Comparing categories between different systems.

Mining development referential used in legacy systems, we

have found that TT&S uses a customization of DOD-STD-

2167A standard [10] and Thomson-CSF MIST

methodology, which may be viewed as a combination of

functional decomposition and V development cycle. We

have also found that the way of using this referential can

differ between different systems. For example, Figure 5

shows that subsystem level is or is not present in a system.

In this figure, CSCI, HWCI and CSC are acronyms

designating respectively Computer Software Configuration

Item, Hardware Configuration Item, and Computer

Software Component.

SIM-SYS1
<<subsystem>>

Pilot training-SYS1
<<system>>

XXX-SYS1
<<subsystem>>

YYY-SYS1
<<CSCI>>

PROP-SYS1
<<CSC>>

MOD-SYS1
<<CSCI>>

ZZZ-SYS1
<<CSC>>

Pilot training -SYS3
<<system>>

XXX-SYS3
<<CSCI>>

YYY-SYS3
<<CSC>>

SIM-SYS3
<<CSCI>>

PROP-SYS3
<<CSC>>

MOD-SYS3
<<CSC>>

ZZZ-SYS3
<<CSC>>

Figure 5: Comparison of referential use between
systems

We have then used previous information to identify the

different categories of product requirements and product

architecture elements in systems documentation.

For example, the categories of SYS1 requirements have

been extracted from SIM-SYS1 SSS document: it includes

states/modes
2
 and system capabilities. Also, the categories

of SYS3 requirements have been extracted from SIM-SYS3

SRS document: it includes states/modes
2
, software

capabilities and their related detailed requirements, and

requirements on external interfaces. Comparing these

categories between different systems, we have defined a

correspondence between them and selected some of them

as inputs to products requirements analysis. Thus, system

capabilities of system SYS1 and software capabilities of

system SYS3 have been matched to constitute a category

called capability.

Likewise, the categories of SYS1 architecture elements

have been extracted from SIM -SYS1 SSDD document: it

includes CSCI, HWCI and interfaces. Also, the categories

of SYS3 architecture elements have been extracted from

SIM-SYS3 SDD document: it includes CSC and CSC

interfaces. Comparing these categories between different

systems, we have defined a correspondence between them

and selected some of them as inputs to legacy products

architecture analysis. Thus, CSCI of system SYS1 and CSC

of system SYS3 have been matched to constitute a category

called product components.

2
 In Thomson-CSF system engineering methodology MIST,

“states” are elements which specify geographical and

operational environment in which system is brought into

play (e.g. ground, sea, war, peace, operation, storage,

maintenance, …), and “modes” are elements which specify

system exploitation type in a given state (e.g. assessment

mode, nominal mode).

5.2 Products requirements analysis
This task has two main goals:

1. Mining product requirements which have been

specified in existing systems and those which must be

met in future systems.

2. Matching product requirements between different

products, and exhibiting their variability.

Product requirements have been mined according to

categories selected previously (see section 5.1). In practice,

it consists in collecting requirements in SIM requirements

documentation of each existing or future system and

organizing them into predefined tables. These tables have

been built in such a way to match SIM requirements of

each system, adding a column with a term renaming them

in a common way, a column with variability description

and a column with variability rationale. One table is related

to one requirements category.

5.3 Legacy products architecture analysis
This task has two main goals:

1. Mining product architectures which have been

specified in existing systems.

2. Matching product architectures between different

products, and exhibiting their variability.

Product architectures have been mined according to

categories selected previously (see section 5.1). The same

process as for requirements has been followed to mine

architectural elements (see section 5.2).

Another category selected (see section 5.1) is interfaces
between product components. Considering that these

interfaces are used to exchange data types (i.e. they are

described in a data model form), matching interfaces has

been a very laborious work, requiring to collect and match

almost 500 data types.

Finally, global data communication mechanisms on the one

hand, and global control communication mechanisms on

the other hand, have been matched between different

products. It leaded to identify an architectural style

commonly used in every product. This architectural style is

named shared repository pattern . It has been described

under an architectural pattern form [2].

5.4 Technology analysis
This task has two main goals:

1. Mining technology used in existing and future

systems.

2. Matching technology between different products,

and exhibiting their variability.

Technology used has been identified with analysis of

existing systems documents and interviews of TT&S

experts. Thus, technology impacting SIM in existing or

future systems has been organized in a predefined table.

This technology is both related to SIM infrastructure,

including for example operational system and hardware

units, and to system infrastructure, including for example

hardware connections of SIM with other system

components. Technology table has been built in such a way

to match technology of each system, adding a column with

a term renaming them in a common way, a column with

variability description, and a column with variability

rationale.

5.5 Terminology dictionary production
The goal of this task is to get and store the meaning of

terms and acronyms used by practitioners of the domain.

Terminology mining has first consisted in collecting terms

definitions in text corpus of existing systems documents,

and acronyms definitions in glossaries of existing systems

documents. Then two tables have been built with data

collected for each existing system. First one is for terms

and second one for acronyms.

It is important to notice that an acronym may be used to

designate several entities according to its context of using,

its context being for example defined by a specific life

cycle step. In this case, we associated every entity

designated by acronym clarifying its own context with the

keyword context and splitting two entities by “|” symbol.

Figure 6 gives an example of this case.

Acronym Description

IS Instructor Station software component

context system architecture specification |

Instructor Station and auto instruction

station interface context SIM software

architecture specification

Figure 6: Acronym designating several entities
according to context of using.

Matching terminology between different systems to get the

domain terminology can lead to add system identifier in

context when it is necessary.

5.6 Products scoping lessons learned
Products scoping is a very laborious activity but necessary

for product-line practitioners to get domain data. In

practice, it has required a real TT&S domain expert

involvement in domain expertise transfer (10% of one man

year) and a real other practitioner involvement in getting

domain data (20% of one man year).

At the beginning of the experiment, two scenarios were a

priori envisaged to perform products scoping:

- Make TT&S domain expert perform products

scoping.

- Make TT&S domain expert transfer domain

expertise towards one (or several) other product-

line experiment practitioner who does not know the

domain and make this other practitioner perform

products scoping.

Second scenario has been selected because it has entailed

more interactions between TT&S domain experts and

LCAT technical experts, which has favored knowledge
transfer between them: TT&S domain experts have got a

deeper overview of the product-line technology, and LCAT

technical experts have got a deeper overview of the

domain.

Notation used to perform products scoping is mainly

constituted of informal text and matching tables. In the

scope of experiment, it appears sufficient to be used as

inputs for domain scoping. However, tra ceability issues

between products models and domain models can be

already predicted because of different notation used.

Moreover, products models have to be enhanced with

regards to their completeness and their structure in order to

fit in a real product-line configuration.

It is important to notice that thanks to CMM level of

TT&S, the quality and liability of systems documentation

and people expertise was sufficient in such a way that we

did not need to go deeper into code analysis.

Products scoping activity comes before domain scoping

one. It may be performed exhaustively but then it is a very

long activity which outputs may not be exhaustively used

by domain scoping. Therefore, it is important to perform
both activities by several iterations to focus on products
scoping outputs which are useful for domain scoping.

6 DOMAIN SCOPING
Inputs are domain expertise on TT&S business, products

scoping outputs.

Outputs are domain context model, domain requirements

model and domain context -requirements traceability model.

Techniques used mainly consist in PRAISE techniques

proposed in [9], that is the templates of domain context

model, domain requirements model and domain context -

requirements traceability model and UML notation

associated to them. These techniques have been however

customized in some cases.

Tasks performed during domain scoping are domain

context modeling, domain requirements modeling, and

domain context -requirements traceability modeling. They

are presented in the following subsections.

6.1 Domain context modeling
The goal of this task is to define the product-line

boundaries.

In practice, we have built:

- a structure diagram to locate product-line domain

with regards to domains encompassing it

- a context diagram to model relationships between

product-line domain and peer domains.

UML notation has been used to represent these diagrams,

and Rational Rose version 98i has been used to implement

them.

As first step of product-line scoping (see section 4) has

leaded to focus on SIM software component rather than on

the whole system, we have merged domain (problems) and

product SIM (solutions) to locate the product-line domain

in the structure and the context diagrams.

In the structure diagram, UML packages have been used to

represent domains; UML package hierarchy has been used

to represent encompassing hierarchy among domains; and

UML dependencies have been used to represent peer

domain relationships. In practice, UML notation and its
implementation in Rose were adequate to model the
structure diagram.

In the context diagram, UML class have been used to

denote the product-line domain; UML actors to denote peer

domains; UML interfaces, UML associations and UML

dependencies to denote relationships between the product-

line domain and peer domains; and UML class diagrams to

denote context diagram and actors diagram. This UML
notation and its implementation in Rose were adequate
to model the context diagram, not considering its
variability. UML interfaces allow to model peer domains

connections in a such a way that it is possible to extend

current domain context diagram with scenarios between the

product-line domain and peer domains using a combination

of UML use cases diagrams and UML sequence diagrams

as notation. The first results shows that due to the size and
complexity, it is not possible to produce exhaustively all
the scenarios .

As variability notation, we have used efficiently UML
cardinality “0..1” to denote an optional peer domain as

external actor of SIM. We have also used UML inheritance

between actors with the non standard UML convention

(coming from [2]) of rolling up several inheritance to one

triangle and “{mandatory}” mark to denote a peer domain

exclusive alternatives, exactly one of them having to be

selected for a specific product SIM. This notation is

efficient but not standard. Finally, we have used UML

inheritance between interfaces to denote some optional

services in an interface. However, some variability like

exclusive alternative enrichment of two interfaces has
not been modeled with UML in a satisfactory way. It is

of course possible to use OCL, but this language is not

interpreted in Rose.

Figure 7 shows a UML class diagram denoting a simplified

part of the context diagram produced. It includes the two

first variability notations mentioned above. First one is

used to denote that motion hardware component is optional

as external actor because motion simulation may not be

required by the client. Second one is used to denote that

motion hardware is either a MVT1 or a MVT2 motion

hardware system.

MVT1

(from Motion hardware)

MVT2

(from Motion hardware)

MVT

(from Motion hardware)

{mandatory}

IMVTP

updateMotionState()

(from Provided Interfaces)

0..1

SIM
(from Simulation calculator)

IMVTR

updateMotionCommand()

(from Required Interfaces)

0..10..10..1

Figure 7: Part of the context diagram.

Identification and specification of UML actors and

interfaces take products scoping outputs as input with a

focus on categories system components and external
interfaces requirements. Identification of UML actors

consists in considering other system components than SIM,

including software components and hardware components.

Identification of UML interfaces does not only consist in

collecting matching external interfaces of SIM component.

Indeed, in the domain studied, interfaces between

components are specified under data types exchanges and

there is no object model of it. To match UML interfaces

with existing interfaces, a group of data types provided by

SIM to an external component has been therefore

reengineered into a service required by SIM and

conversely, a group of data types provided by an external

component to SIM has been reengineered into a service

provided by SIM.

Two UML interfaces are distinguished for required and

provided services regarding one peer domain. 13 UML

actors and 22 UML interfaces have thus been specified in

context diagrams. The diagram obtained is business

oriented. We have then completed it with technology

information in a separate view.

6.2 Domain requirements modeling
The goal of this task is to represent the product-line

detailed requirements: identification, variability and

traceability.

In practice, we have built a domain requirements template

taking into account several pre requisites:

- It must support several activities which are design,

representation, visualization, storage, traceability,

evolution of product-line detailed requirements.

- It must be implemented in existing and available

tool.

- It must be used to take in existing sources from the

domain.

A tabular template stands for a good candidate. Indeed, it

actually constitutes a support for pre vious activities and it

is moreover implemented in several existing tools as

Microsoft Excel 97 and QSS Doors 4.1.

Each line of this tabular template was dedicated to one

product-line detailed requirement, and each column to one

product-line detailed requirement attribute. Some attributes

were mainly defined for requirements identification

(identifier, wording, atomic level
3
), other for requirements

traceability (related HLR
4
, impacted requirements), other

for requirements variability (variability type, variability

overview, related coarse-grained variability), and other for

traceability to products requirements (presence in product

1, presence in product 2,…).

Microsoft Excel 97 has been first selected to implement

this template because of its easiness of use, its availability

at the beginning of the experiment, and its compatibility

with other documentation tools allowing to recover

automatically existing data. However, Excel showed itself

mainly inadequate with regards to traceability visualization

and evolution of the product-line detailed requirements. It

is moreover true if traceability involves elements

implemented in other tools like Rational Rose version 98i.

To summarize, Excel is the best candidate to take in and
edit domain existing sources but is not sufficient

3 Atomic means that the requirement cannot be further

decomposed into other ones.

4
 HLR is an acronym designating high level requirement. It

is defined to structure the product-line detailed

requirements, grouping several of them to a more abstract

one. For example, trainee vehicle model and testability are

high level requirements (HLR) within our domain.

regarding requirements traceability. Therefore, the

domain requirements template has been also implemented

in QSS Doors 4.1 which was supposed to offer traceability

services lacking in Excel.

Product-line detailed requirements have been designed and

represented within the product-line domain using the

previous template. More than 500 detailed requirements

have thus been represented and structured by nearly 30

high level requirements (HLR). This task was first reduced

to collect matching capabilities and their related detailed

requirements from products scoping. However, the

following issues were raised:

- Only attributes “requirement identifier”,

“requirement wording” and “related HLR” could be

directly extracted from these data: other

requirements attributes were implicit. Each missing

attribute has been therefore produced by TT&S

domain expert. To explicit variability attributes, the

list of coarse-grained variability obtained with first

step of product-line scoping (see section 4) has

been used.

- Also, these attributes are product-specific: it means

that one requirement may have different

requirement identifier, requirement wording and

one high level requirement (HLR) may have

different high level requirement identifier in each

product addressing it. Each product-specific

requirement identifier has been therefore renamed

in a generic one, which is independent from

products. Likewise, each product-specific

requirement wording has been reformulated into a

generic one corresponding to the most meaningful

informal formulation.

- Moreover, the set of requirements extracted from

products scoping is incomplete: it means that many

requirements remained implicit, especially non

functional ones. New requirements have been

therefore designed by TT&S domain expert.

Production of new detailed requirements has been

performed by high level requirement (HLR).

With regards to variability, detailed requirements have been

first divided into common ones and variable ones. Common

means that no variability is encapsulated in the requirement

and that the requirement is met by every product. Among

variable requirements, two kinds were identified as being

optional and having alternatives. Being optional means that

the requirement does not encapsulate variability and is not

met by every product. For example, the requirement

“Command visualization of tanks from traffic environment”

is optional since it is met by tanks simulators but not by

trucks simulators. Having alternatives means that

variability is encapsulated within the requirement. For

example, the requirement “Fill cabin equipment repetition
page of instructor station” has alternatives since the list of

equipment is different according to trainee vehicle model

coarse-grained variability. To characterize a requirement

with regards to variability, value “common”, “optional”, or

“variable” has been first assigned as variability type

attribute. Then, to characterize a requirement having

alternatives, its variability parameter has been described as

variability description attribute. Figure 8 illustrates a part of

variability attributes related to the detailed requirements.

Figure 8: Variability attributes of the detailed
requirements

As stated before, the domain requirements model was first

implemented in Excel. Then, this model was automatically

imported from Excel to Doors, thanks to the Doors

importation service. In the Doors formal module thus

created, three views were created, focusing on requirements

traceability attributes (see Figure 9), requirements

variability attributes and products traceability attributes.

Doors is efficient to import Excel domain requirements
model and to provide a more manageable visualization
of domain requirements with its views services.

Figure 9: Doors “requirements traceability” view of
domain requirements model.

In the Doors formal module, traceability within product-

line requirements is implemented using textual attributes. It

cannot be actually managed. To solve this problem, a

Doors script has been implemented; it uses traceability

attributes values from Doors formal module to create a

Doors link module. The Doors link module thus created

implements traceability in a more manageable way.

Doors is efficient to get a more manageable traceability
between domain requirements with its dedicated link
modules and its script language DXL. The lack of some

links visualization and search services requires Doors

customization including DXL script development. On the
one hand it is therefore possible to have these services.
On the other hand, it induces additional costs.

6.3 Domain context-requirements traceability
modeling

The goal of this task is to represent relationships between

domain context model and domain requirements model.

In practice, we have established links between detailed

requirements from domain requirements model and SIM

interfaces from domain context model: for example, the

detailed requirements which wordings are “Fill assessment

page”, “exercise final mark”, “passed duration” and “for

every criteria, mistakes number and mark” have been

linked to the operation “updateAssessmentResults()” of

SIM required interface regarding instructor station actor.

In term of representation and implementation of these links,

we encountered difficulties, including that domain

requirements model is implemented in Doors whereas

domain context model is implemented in Rose. We then

used tool DOORS Rose Link version 2.0 to create a Doors

view of Rose domain context model. DOORS Rose Link
is efficient with regards to domain context model
importation with the objective of establishing context -

requirements traceability. However, it is not flexible
enough with regards to selection of elements to import:
elements not involved in traceability are also imported from

Rose to Doors. This must be managed within Doors using

Doors filtering services. Moreover, importation of UML

connectors, including aggregation, inheritance and

dependency, are not supported. This is a major drawback

when establishing requirements -architecture traceability.

Links between domain detailed requirements and SIM

interfaces could be represented and implemented following

two methods.

1. The first one consists in using link creation services of

Doors.

2. The second one consists in adding context traceability

columns in Excel tab containing domain requirements

model and importing it in Doors as ever done for

requirements traceability.

Both methods have been experimented. Links creation is

feasible and easy to perform in Doors (often a mere drag

and drop or use of contextual menu). However, links are
not constrained enough in Doors with regards to
modification: object which is only involved in links as a

target (Doors links are oriented) can be deleted without

impacting the link itself or at least indicating the deletion.

7 FEATURES MODELING
Inputs are domain expertise on TT&S business, domain

scoping outputs and technology defined in [9].

Outputs are domain features model and domain features-

requirements traceability model.

Techniques used mainly consist in PRAISE techniques

proposed in [9], that is the templates of domain features

model and domain features-requirements traceability

model. UML notation proposed in [9] has been however

replaced by a Doors one.

Tasks performed during features modeling are domain

features modeling, and domain features-requirements

traceability modeling. They are presented in the following

subsections.

7.1 Domain features modeling
The goal of this task is to structure the product-line

requirements variability in such a way to assist decision

during application requirements phase of application

engineering (see Figure 3).

In practice, we have built a domain features template and

used it to represent product-line requirements variability as

a tree according to FODA technology [4] (see Figure 10).

Feature_1.1
<<Optional>>

Feature_1.2
<<Mandatory>>

Feature_1
<<Mandatory>>

0..1

Feature_1.3
<<Mandatory>>

Feature_1.3.1
<<Alternative>>

Feature_1.3.2
<<Alternative>>

{mandatory}

composition
hierarchy

alternative
hierarchy

0..1

Figure 10: Features attributes and relationships
according to FODA.

FODA notations have been used to repres ent this tree and

QSS Doors version 4.1 has been used to implement it. The

selection of Doors was made to favor further traceability to

domain requirements model which was implemented in this

tool.

Domain features have been designed with detailed

requirements variability as input. More precisely, a focus

was made on domain detailed requirements which

variability type attribute has value “variable” or “optional”.

Domain features obtained have been then structured

according to a coarse-grained information model. More

than 120 domain features have thus been designed,

represented and implemented within the product-line

domain using the template previously implemented in

Doors.

To establish traceability between domain features, we have

transformed the domain features tree previously designed

into a domain features graph, thus representing variability

collaborations. FODA notations have been used to

represent this graph: it means that we have put inclusive

and exclusive links between features, as specified in [9] and

[4]. Contrary to domain requirements traceability, the links

are not already represented under the form of Doors

attributes. Therefore, links between domain features must

be made by hand.

FODA notations implemented in Doors showed itself

adequate for domain features design, representation
and visualization. More time should be spent to

experiment more parameterization in features to conclude

about notation and tool adequacy about it.

However, visualization of domain features traceability is
not enough supported up to now since Doors does not

allow to have a global overview of these links. This is

damageable since domain features model must be used
as input for application requirements derivation. More

work must then be done to explore Doors customization

required for application requirements derivation.

7.2 Domain features-requirements traceability
modeling

The goal of this task is to represent relationships between

domain features model and domain requirements model.

In practice, we have established links between detailed

requirements from domain requirements model and some

features from domain features model.

The same statements regarding traceability as those

previously done can be repeated here.

8 CONCLUSION AND PERSPECTIVES
A first lesson learned from this experiment is that working

with emerging technologies as input required to follow a

pragmatic approach. Indeed, emerging technology is not

easily accessible and has not covered every technical

problem yet. It must therefore be overcome by pragmatism.

Moreover, emerging technology is not always broadly

supported by existing notations and tools. Some non

standard notation conventions and tools customizations

must therefore be developed. This requires a lot of time and

cannot be done exhaustively. As solution, PRAISE project

involved a tools providers board, providing them with

requirements for tools supporting product-line technology.

With regards to our industrial partner, introducing new

technology as product-line is facilitated by the fact that it

implies reuse of business knowledge ever acquired by

industrials. On the other hand, it is ambitious because it

requires a real and durable investment from industrial

partner since product-line technology shows itself effective

after a long time.

REFERENCES
[1] R. Bate and al.. A Systems Engineering Capability

Maturity Model. Technical Report CMU/SEI -95-

MM-003, Software Engineering Institute, Pittsburgh,

PA 15213, November 1995

[2] G. Donnan and J. Jourdan. Software architectures,

product-lines and frameworks. Alcatel

Telecommunications Review, 1
st

 Quarter 1999.

[3] M. Fowler and K. Scott. UML distilled. Applying the

standard object modeling language. Addison-Wesley,

1997.

[4] K. Kang and S. Cohen and J. Hess and W. Novak and

A. Peterson. Features-Oriented Domain Analysis

(FODA) Feasibility Study. Technical report

CMU/SEI-90-TR-21, ESD-90-TR-222. Software

Engineering Institute, November 1990.

[5] P. Lalanda. Shared repository pattern . In Proc. 5th
Annual Conference on the Pattern Languages of
Programs, Monticello, USA, August 1998.

[6] P. Lalanda. Product-line software architecture .
PRAISE project deliverable number 2.2, March 1999.

See http://www.esi.es/Projects/Reuse/Praise.

[7] PRAISE. Product-line Realization and Assessment in

Industrial SEttings. IT RTD PROJECT. Project

Program, 1998. See

http://www.esi.es/Projects/Reuse/Praise.

[8] Software Productivity Consortium (SPC). Reuse-

driven Software Processes Guidebook. Technical

report SPC-92019-CMC v.02.00.03, Software

Productivity Consortium Services Corporation,

November 1993.

[9] R. Vinga-Martins and S. Süßlin. Requirements

traceability. PRAISE project deliverable number 2.3,

March 1999. See

http://www.esi.es/Projects/Reuse/Praise.

[10] U.S. Department of Defense. Military Standard:
Defense System Software Development. DOD-STD-

2167A. Washington, D.C., February 1988.

Moving toward software product lines in a small software firm:

a case study

Tullio Vernazza Paolo Galfione Andrea Valerio
Università di Genova RE.SI.CO. COCLEA

Via Opera Pia 13 Via F. S. Orologio 6 via Magazol 32
16145 Genova, Italia 35129 Padova, Italia 38068 Rovereto, Italia

+39 010 3532793 +39 049 774566… +39 0464 490201
tullio@dist.unige.it paolo@ospiti.it Andrea.Valerio@coclea.it

Giancarlo Succi Paolo Predonzani
University of Alberta Università di Genova

Edmonton, AB via Opera Pia 13
Canada T6G 2G7 16145 Genova, Italia
+1 780 492 7228 +39 010 3532793

Giancarlo.Succi@ee.ualberta.ca predo@dist.unige.it

ABSTRACT
Product line engineering aims to take to the software
development process the benefits of manufacturing
processes where reuse and standardization lead to reduced
costs, decreased time-to-market and improved product
quality. The challenge is to capture, formalise and reuse
past and present expertise in new projects, improving the
software process and the products delivered to the
customer.

This paper present a case study regarding the introduction
of domain analysis and object-oriented frameworks in a
small software firm with the purpose to set-up a
development environment based on product lines. The goal
of the DOOM project was to evaluate the impact and the
benefits of the introduction of a domain engineering
approach in a specific domain, laying the groundwork for
the definition of a corporate reuse program toward the
introduction of a product line. In this paper we present the
results achieved with the experiment and the lessons learnt.

Keywords
Domain analysis, reuse, software process improvement

1 INTRODUCTION
Information technologies are continuously and rapidly
evolving; software firms are facing the chance to develop
products and services that meet new customer requests.
These products embed an ever growing knowledge,
presenting complex functionalities with simple and
intuitive user interfaces. Firms are specializing their
production into application domains where they are capable
to exploit their internal knowledge following the rapid
organizational, technical and market changes.

Software firms are facing the challenge to move from a

project-by-project approach to a knowledge-centric
environment where new projects reuse and exploit past and
present expertise. The underlying idea is to structure the
software process into product lines, exploiting the reuse
potential of components and architectures. Domain
engineering aims to foster this new way of organizing the
software process. Domain analysis, a core aspect of domain
engineering, is a methodology that support the
identification, collection and organization of the artifacts
used in software development in a particular domain so to
make them available for the development of other products
in the same or in different domains. The considered
artifacts are not necessarily the traditional deliverables of
the software development process, such as code. They are
all the products and the by-products generated during
software development, including requirements, designs,
code, test cases, pictures and even scratch ideas, comments,
notes, and so on.

Domains are areas of core product expertise for which
economies of scope can be realized. Economies of scope
occur when building a reusable resource and then re-using
it in several products yield more income than recreating the
resource ‘from scratch’ in each product. The economy
stems from leveraging expertise and reducing learning -
major cost drivers in product development. It is dependent
on a strategy that pursues market share and product
differentiation, while working on stable and reusable
product architectures. Flexibility and customization is
obtained through variations.

Domain analysis can be defined as: “a process by which
information used in developing software systems is
identified, captured and organized with the purpose of
making it reusable when creating new systems” [5]. During
software development, different information is produced,

2

and the delivered software products are only part of this
heap of data. Domain analysis elaborates all these
information aiming to exploit and reuse most of them in
present and future software development projects.
Following this view, domain analysis fosters software reuse
in the sense that it supports the identification and definition
of information and components that can be reused in
applications and in contexts different from the ones for
which they were originally conceived.

The emphasis in domain analysis has moved in the years
from the analysis of code to the analysis of every kind of
information produced in the software process. The goal is
to identify and define high level reusable artifacts, such as
frameworks and architectures, with the goal to maximize
the benefits coming from reuse. In this view, the domain
analysis process became a fundamental part of a global
software engineering process. The purpose is to produce
new application reusing past components, frameworks and
information and aggregating them following the model
proposed by general domain architecture [5], laying the
foundations for the introduction of product lines in the
software development process.

Real benefits directly linked to the introduction of domain
analysis and its methods are rather difficult to measure
because domain analysis is a (support) cross-process that
affects all the production process. Moreover, these benefits
can be revealed mostly in the medium-long term, not really
upon successful completion of the experimentation, but
when more projects will be completed adopting it. In these
last years, these concepts have been exploited and different
methodologies for domain analysis have been proposed [1].

Software engineering stimulates the software firms to
structure their development environment following sound
principles, achieving the control over the process and
exploiting the benefits other firms have from industrial
development, such as in the hardware sector. Domain
analysis is the first necessary step required for starting this
process.

In this article we present an experiment aimed to introduce
domain analysis in a software firm in order to evaluate the
effects that it has on the development process. Domain
analysis takes to the identification of the enterprise
knowledge while its formalization is done with object-
oriented techniques. Frameworks and reusable components
are developed to feed the new projects, laying the
groundwork for the introduction of a corporate reuse
program.

Chapter two presents the starting scenario for the
experiment and the motivations that led to it. The
experiment phases and the technical aspects are described
in chapter three. Chapter four investigates the results
achieved and the lessons learnt, while chapter five presents
the conclusions and the future work.

2 STARTING SCENARIO FOR THE
EXPERIMENT
RESICO is a software firm located in Italy; its core

business is the development of software applications in the
sector of public services, in particular concerning the
management of rest houses. The software process is based
on the Microsoft development environment and
technologies; since it was born, a strategic goal of RESICO
has been to ‘stay on the technology edge’, adopting the
most modern technologies that the market offers.

The conceivement of the DOOM process improvement
experiment (PIE) was originated by the analysis of the
status of the development process of RESICO. This internal
assessment put into evidence several weaknesses that were
mostly due to the lack of a real formalisation of the process
itself. Among these aspects, the introduction of a well-
defined development process and operative procedures
which best exploit the commonalities among RESICO’s
applications could have a high pay-off. Moreover,
experience made in past projects is not formalised and all
the acquired know-how is hard to reuse.

This was one of the leading motivations that originated
the DOOM project: the company considered the
introduction of domain analysis a necessary step to improve
its internal organization and productivity. DOOM was an
experiment for understanding the impact of a product line
based approach instead of the traditional acting on a
project-by-project basis. We expected in the medium term a
contribution to reduce the time-to-market and development
costs, due to the deployment of reusable components and
architectures, and the grown ability to efficiently cope with
rapid market evolution and changed customer requests.
From a technical point of view, the goals of DOOM were:
• to gain a deeper knowledge of the application domain

concerning software products developed by RESICO
(in particular for the control management domain);

• to increment the effectiveness and the efficiency of
software reuse practices;

• to improve the analysis and design of software
products;

• to improve the quality of the software development
process (leading to improved product quality such as
robustness, reliability, usability, modularity, structure);

• to improve interoperability and maintainability of
software applications.
The commercial strategy that guided the definition of

the DOOM experiment considered the increase of the
company prestige behind its clients (leaded by the
publicising of the adoptions of extremely modern
techniques such as domain analysis). Moreover, it aimed to
enlarge the market share and to set-up the basis for a
durable expansion program, built on a core control
management application customised for several customers
(exploiting the network externalities effects generated).

The DOOM experiment was launched and strongly
committed by the top management that saw in the project
an important step in the company improvement plan. The

3

personnel were aware of the purpose of DOOM and it
shared the decision of the management.
3 THE DOOM PROCESS IMPROVEMENT

EXPERIMENT
The main goal of this experiment was to introduce a

method for formalising the knowledge owned by the
organization in the control management domain. The
specific improvement action regarded the introduction of
domain analysis and object-oriented frameworks. This
should result in better structuring present and future
applications in the domain, laying the groundwork for the
effective introduction of a reuse-centred software process.
The DOOM PIE originated from the need to tackle with the
weak aspects that come out from an internal assessment of
RESICO’s software development practices.

The baseline we chose for the experiment was the
production of a software application that supports control
and quality management in goods and services production.
This baseline was well suited for the experimentation of
domain analysis: it was a typical project in the control
management domain and a real case to experiment and
evaluate how the domain knowledge, once formalised and
structured in the form of reusable components and
architecture, could be exploited in the development of new
applications.

Domain analysis has been considered in the DOOM
project from a wide perspective: all artifacts generated in
the software life cycle have been in the focus of the project.
The artifacts considered were not the traditional
deliverables of the software development process, such as
code. They were all the products and the by-products
generated during software development, including
requirements, designs, code, test cases, pictures and even
scratch ideas, comments, notes, etc.
The phases of the experiment

DOOM was organized into four main phases:
1. Domain analysis study, selection and adaptation: in

this first phase we dealt with the identification of a
suitable domain analysis methodology to apply in
RESICO, its customisation for the integration in the
current development environment and the
identification of an adequate tool supporting the
domain analysis methodology chosen. We analysed
different methodologies, considering their main
characteristics and the compatibility with the DOOM
goals and the RESICO development environment [1].
We decided to move along the indications of
PROTEUS [2] and FODA [3], following the main lines
of SHERLOCK [4]. We found that FODA has an
interesting approach based on user-visible features,
while PROTEUS has a robust object-oriented
approach. The two approaches complement each other:
FODA simplified the analysis of applications and of
the domain, in particular regarding user needs and
requirements, while PROTEUS enabled the design and
implementation of architectures and components
following a natural way of working basing on objects.
This allowed building up a coherent methodology that
well integrates in the RESICO environment. Then we

searched for a tool supporting the domain analysis
activities and the production of object oriented
components. We did not found in the market tools
whose declared purpose was to support domain
analysis. We decided to take a different approach and
we considered our specific requirement, i.e. to support
modelling and design of components, and the
constraints imposed by the current environment in
RESICO. These considerations led us to purchase and
adopt a modelling tool in the Visual Studio package,
Visual Modeler, that well integrates in the Microsoft
environment. It allows to produce and document
object-oriented models, it supports UML notation
(with the exception of Use Cases) and it helps in the
coding phase.

2. Domain analysis application: this phase included the
formulation of the domain models and the
development of the object-oriented frameworks. The
first step was the collection of the knowledge (present
and future requirements, too) about the ’control
management’ domain. This information was classified
according to the importance and the type of data.
Afterwards, the analysis of the information conducted
to the production of the domain models. In the second
step, the reusable object-oriented frameworks were
designed. They were derived from the domain models
defined in the previous step, and they captured the
generic features and functionalities in the domain in
consideration. Besides, they have variability points
where variants will be hooked. During the project the
personnel had the important opportunity to abstract
from the daily stress caused by direct production and
deadlines and they were allowed to focus the attention
on the technical aspects of the experiment. The PIE
team agrees in considering this a very stimulating and
motivating experience.

3. Framework specialization and application in the
baseline: in this phase the frameworks were specialized
and applied to the baseline, i.e. implemented
considering the specific context of the baseline project.
The adaptation was based on the specialization and/or
derivation of the frameworks produced at the previous
step filling out variability points, exploiting object-
oriented techniques.

4. Analysis of the experiment and final evaluation: this
phase aimed to evaluate the results achieved with the
PIE, allowing RESICO management to understand if
the adoption of domain analysis was effectively
advantageous. In order to evaluate the effectiveness
and the real improvement of the domain analysis in the
development process, a measurement program has
been planned and performed. Two types of metrics
have been identified: process metrics, i.e. quantitative
measures of effort related to the experiment activities,
and product metrics, such the number of errors. A
qualitative assessment of the impact and benefits
obtained with the introduction of domain analysis
completed the evaluation phase.

4

A dissemination activity was performed during the
whole project execution with the goal to communicate to
the personnel the relevant information about DOOM and to
internally transfer the experience grown by the PIE team.
Besides, external dissemination activities aimed to present
DOOM results and lessons learnt to the wider community.
4 RESULTS ACHIEVED AND LESSONS LEARNT
At the end of the experiment we reported a general
satisfaction for the achieved results; the personnel directly
involved in the PIE have shown a great interest and
appreciation for the DOOM project.

From the software engineering point of view, the most
significant results of the DOOM project have been:

• the personnel gained a deeper understanding of the
‘control management’ domain, due to the greater level
of formalisation of user requirements that was necessary
in the first steps of the domain analysis activity in order
to characterise the domain and define its boundaries; the
formalisation of the knowledge and experience
concerning the applications led to the identification of
the common features characterising them, and to an
initial categorisation of the many variation points and
variants that distinguish the different control
management applications;

• focusing the attention in the definition of domain
models contributed to shift most of the life cycle effort
to the analysis, design and planning activities; this led
to a robust and modular skeleton of the application
produced in the baseline project and a clear definition of
the components interfaces;

• the quality of the software process has increased
because the reuse-centred development promoted by
domain analysis and based on the aggregation and
specialization of well tested components, effectively
resulted in a higher quality of the products.

Figure 1: Effort distribution during the experiment

We measured the effort the personnel directly involved
in the experiment spent in every activity of the project [see
figure 1], but this information are not directly comparable

with past data regarding single project due to the different
work break-down structure and organisation introduced by
domain analysis.
We revealed that domain analysis is an effort-consuming
activity if compared to the traditional analysis activity
because a domain (a family of applications) rather than a
single application is analyzed. Return on the investments
are expected only in the medium term and over multiple
projects [see figure 2].

Some weak points also arise, mainly concerning the
difficulties in a complete and clear evaluation of results
connected, in particular considering business impact and in
measuring significant and useful metrics for comparing
DOOM with past experiences.

An important lesson we learnt is that the introduction of a
new technique or method in the software development
process has to be carefully planned and the impact should
be accurately estimated in order to minimize it. This lesson
is probably well known to all the organizations, but rather
often in the information technology field it is difficult to
precisely evaluate the trade-off between the need to
introduce new technologies and methods and the need to
have a stable and productive software process. Domain
analysis introduces uncertainty, a kind of ‘we do need
more’ syndrome, with the risk to introduce too many
changes in the software process at the same time. It is
necessary to focus, bound and plan well domain analysis
introduction, moving small steps towards the target and
maintaining the control over the changes made.

Figure 2: The effect of domain analysis

Domain analysis impacts the entire software process, i.e.
the whole organization. It spreads its influence from
requirement management and engineering to product
design and implementation, introducing a way of looking at
the software life cycle focused on product families and
domains. We revealed that, while the initial investments are
quite relevant, the potential return and benefits will come
only in the medium-long period (in the same way as for
reuse).

Another lesson we learnt regards the specific domain
analysis methodology we chose to adopt. We based it on
object-oriented analysis and modeling because in our

1 2 3 4 5 6 7 8 9 10 11 12
13

14
15

16

WP1

T &E

WP2
WP3

WP4
WP5
T otal effort

0

5

10

15

20

25

30

35

P
er

so
n

ad
ay

s

Months

Effort distribution durig the experiment

 t

Effort

A D C T

 t

Effort

A D C T

‘Traditional’ software projects

Domain Analysis

 t

Effort

A D C T

Software project with reuse

A = analysis
D = design
C = coding
T = test

+

5

opinion object-orientation lays the groundwork for an
effective analysis of software applications and for the
definition of reusable components and domain
architectures. However, every organization has to chose the
best methodology from the different ones that are available
in the market considering its internal structure,
development environment and technoloy.

5 CONCLUSIONS AND FUTURE WORK
This paper presented the experience made in the DOOM
project, a process improvement experiment made in a
software firm and concerning the introduction of domain
analysis.

The experiment showed satisfactory results in general; the
introduction of domain analysis and object-oriented models
and frameworks had positive effects on the software
process.

Domain analysis requires a change in the way people
usually work, shifting the focus from single applications to
an application domain. We noticed some difficulties in
carrying out the activities of domain analysis and modeling,
but it is difficult to understand if this is due to the novelty
of the technique or to its complexity. The adoption of a
modeling tool was lead by an analysis of the tools available
in the market, considering the specific context and needs of
RESICO. We faced two issues related to the tool:

firstly, Visual Modeler does not support the collection of
user requirements with Use Cases, and this is a serious
limit in the first phases of the software life cycle (if we
want to adopt the Use Cases model), when we must capture
and formalize user requirements and the functionalities of
past and present software applications. We experimented
the development of Use Cases both with drawing tools and
modeling tools; the main drawback is that these models
were not linked to the successive phases of the
development process, and they required to be maintained
‘by-hands’.

Secondly, the tools currently in the market do not support
the evolution and maintenance of the artifacts produced.
Considering Visual Modeler, the analysis of the software
system produces a design diagram based on object oriented
methodologies (in the same way as reality is abstracted into
ER-diagrams when working with relational databases).
Through a semi-automatic mechanism, the design diagrams
can be translated into Visual Basic code that can then be
compiled and executed. When the diagram has to be
changed (due to evolution, maintenance or correction
issues) there is not a mechanism for tracing these
modifications and, perhaps more important, it is impossible
to reflect them into the code in a semi-automatic way. It
could be very useful, in particular for maintenance
purposes, to have the story of the changes done and the
decisions that led to the current solutions. Working at a
higher level of abstraction than code, this requires tracing
and documenting the evolution of the design rather than the
modification to the pure code itself. We have to remember
that among the goals of using object orientation and

domain analysis there are also the capability to transfer into
flexible object-component architectures the variability (see
below for more details), encapsulating component behavior
through interface standardization. These are particularly
true in a software process that considers interation and
cycles, not the traditional waterfall model. Reusable assets
are the result of several refinement steps and evolution and
then they are subject to evolution and maintenance.

These aspects will be deepened inside RESICO in order to
study possible alternative solutions, also in consideration of
the increased experience in object orientation and domain
analysis.

Considering the business objectives we planned to reach at
the beginning of the experiment, we can say from a
qualitatively point of view that we reached them and we
reported a positive feedback from all the people involved in
the experiment (from top management, too).

We found it difficult to quantitatively judge the success of
the experiment because of the difficulties in measuring and
comparing data with past projects and considering that
domain analysis is a cross-process activity that is very
tightly coupled with the software development process and
it affects all the projects of the organization. Product lines
and reuse introduce additional complexity in the software
process: we revealed that the impact that domain analysis
has on the software process and the organization as a whole
is quite relevant and a successful introduction requires
accurate planning and a general training and organizational
support. Domain analysis can alone lead to measurable
benefits (in the medium and long term), but it is best
viewed as a step in an improvement movement toward the
concept of software factory exploiting reuse and production
through composition of assets.

Considering the satisfactory results achieved, we are
integrating domain analysis in the standard software
development process and in the quality procedures (as
required by the ISO 9001 certification). In the future,
RESICO intends to go on with the improvement program
and to promote further process improvement actions,
experimenting innovative technologies and software
engineering methods to pursue a reduction of the time-to-
market and development costs and to be able to efficiently
cope with rapid market evolution and changed customer
requests. The next steps will be targeted to the introduction
of a complete reuse policy, exploiting the experience we
made in the DOOM project toward a software process
centered around a compositional model based on software
reuse.

6 REFERENCES
[1] Guillermo Arango, Domain Analysis Methods, in Software
Reusability, ed. W. Schaeffer, R. Prieto-Diaz and M. Matsumoto,
Ellis Horwood, New York, 1993.
[2] Hewlett Packard, Matra Marconi Space and CAP Gemini
Innovation, Domain Analysis Method, Deliverable D3.2B,
PROTEUS ESPRIT project 6086, 1994.
[3] J. Hess, S. Cohen, K. Kang, S. Peterson, W. Novak, Feature-
Oriented Domain Analysis (FODA) Feasibility Study, Technical

6

Report CU/SEI-90-TR-21, Software Engineering Institute,
November 1990.
[4] A. Valerio, Assembling successful software products through
domain engineering and market driven varints, PhD thesis,
University of Genova, 1998.
[5] R. Prieto-Diaz, Domain Analysis: an Introduction, in ACM
SIGSOFT - Software Engineering Notes, vol. 15, no. 2 (47-54),
April 1990.

Copyright © Fraunhofer IESE 2000 89

New product line approaches

Copyright © Fraunhofer IESE 2000 90

A Product Line Process for the Production of Platform Software
at Bosch

John MacGregor
Corporate Research and Development

Robert Bosch GmbH
Theodor Heuss Allee 70

60486 Frankfurt, Germany
+49 69 7909 532

john.macgregor@bosch.com

ABSTRACT
Product development based on the Product-Line Approach
promises substantial improvement in productivity through
architecture-based reuse. Robert Bosch GmbH, along with
Thomson-CSF (France) and the European Software
Institute (Spain) is participating in a joint research project
funded by the European Union to validate the approach in
industrial settings. The industrial partners; Bosch and
Thomson, sought out suitable development areas within
their companies and started to apply the approach
experimentally. Among the topics examined were product
line scoping, domain analysis, feature modelling and
product line architecture.

The focus of this paper, however, is on the processes
necessary to operate and maintain the product line.

The product examined was a platform, which in turn, part
of other, quite unrelated product lines. The fact the
applications could execute individually or simultaneously
on the platform significantly affected both the architecture
and development process of the target product line as well
as the production processes of its internal customers.

KEYWORDS
Product Line Process, Organization

1 INTRODUCTION
Technical
This paper focuses on a domain called Car Periphery
Systems (CPS), which combines all products which use, or
could use, radar or ultra-sonic sensors to detect objects in
the immediate vicinity of or approaching a vehicle.

There are many conceivable applications of this
technology, but for expository purposes only 3 applications
will be mentioned here:

Stop and Go (S&G): maintains a predetermined minimum
distance to vehicles to the front by accelerating and
decelerating appropriately. This is a specialization of
automatic cruise control (ACC) for low-speed situations
such as traffic jams.

Parking Assistance (PA): displays the distance to the
nearest obstacle to the front, back or to the side (either side)
when the vehicle is driving slowly and sounds an alarm
when a predetermined minimum distance is reached. It is
directed at areas that are normally obscured to the driver.

Pre-Crash (PC): scans objects that intrude certain distance
and direction envelopes while the car is underway. The
relative velocity of the object is calculated after it
penetrates the outer envelope. When the object penetrates
the inner envelope, the sensitivity of the airbag acceleration
sensors (which release the airbag) are adjusted to react to
impacts that would normally be ignored as normal driving
impacts. This allows the airbag to release earlier, which in
turn allows a softer activation of the airbag.

As can be seen in Table 1, these 3 applications vary
significantly in their information requirements with respect
to range, direction and characteristics of the objects
monitored.. They also differ with respect to the number of
objects to be monitored, sample frequency and sensitivity.
There are corresponding differences in their requirements
with respect to the number, type and location of the
sensors.

Note also that these applications are sometimes mutually

exclusive. Stop and Go, for example, is irrelevant during a
parking maneuver.

There is one simple major constraint. There is a limit on
the number of sensors that can be mounted on the vehicle.
All applications that could conceivably be installed on a
vehicle cannot have their own set of sensors. Over and
above that, it is simply sensible and economic to share the
sensors.

This consideration led to the definition of a sensor
platform, that would deliver peripheral object distance /
direction / speed / acceleration information to client
applications as needed.

Organizational
The sensor products mentioned are usually developed by
separate development units. Although these products are
usually developed using proven methodologies, each
product conceivably represents a separate product line.
The development of a common sensor platform is
currently, at most, the subject of research or prototypical
development. This platform also represents a product line,
entirely with internal customers, though.

As such, there could be a series of sensor product lines; one
for each end application domain. Given that, even though
the requirements on the platform all have thematic
similarities, signal processing capacity constraints dictate
that the services supplied by the sensor platform be tailored
to each application. The sensor platform +will therefore be
end-product-specific as long as only one end-application is
operating in the vehicle.

The sensor products are sold to automotive manufacturers
and in the following sense, these customers are also the
platform’s customers, albeit once removed. In the medium-
to-long term, it is certainly possible, when not likely, that
they may want to install multiple applications in one
vehicle type.

Each domain, the applications and the platform, has its own
base of expertise. It takes a long time to acquire the
technical knowledge, the context knowledge (regulatory
constraints around the world, for example) and the skills
necessary to develop the applications. Duplicating this
knowledge in a company would not only be protracted,
when possible considering the labor market, it is expensive
and inefficient.

Because each development unit is organized to focus on its
end-product spectrum it is neither practicable nor sensible
for a single development unit to undertake all platform
development or conversely for platform development to
undertake the development of all applications.

At this point in time it is not clear whether the automotive
manufacturers will coordinate their requests for integrated
CPS systems internally or whether they will prefer to
continue dealing with the individual development units.
Internally, the customer requests must be distributed to the
individual development units in order to assess the impact
of each end application and the end applications’
requirements on the platform must be gathered again to be
assessed by the platform group.

Praise –validation of product line based reuse in an
industrial setting
The product line approach is being applied experimentally
in industrial settings in the EU project PRAISE. The
project consists of three phases. In the first phase, the base
methodology was defined. In the second phase this base
methodology was applied to realistic development projects
by the industrial partners. In this case, it was applied to the
sensor platform development. In the third phase, the
validated base technology will be packaged in a form
suitable for use by practitioners.

To date, the local experiment has derived important
platform requirements from the end application
requirements, produced a feature model and a first
architectural outline for the platform.

The production process definition began at the same time
as the architecture was being developed. This paper
documents the considerations made and the findings so far.

Terminology
It is important to differentiate between the terms that will
be used in this report as situation it describes has a plethora
of applications.

In the context of PRODUCTS: The Platform Application
manages the sensors and provides distance information.
The End Applications involve feature sets that are seen by
the end customer. Stop and Go, Parking Assistance and
Pre-Crash are all end applications. The End System, or
System is the integrated package comprising the platform
and end applications that are installed in a single vehicle.
The system software may all run on one controller, or may

InformationRange

Distance /
Displacement

Speed /
Direction

Acceleration

S&G Front
.2m –

7m

Y/Y Y/N N

PA Front,
Back &

Side
.25m –

2m

Y/Y N/N N

PC Front
.6m –
1.5m

Y/Y Y/Y Y

Table 1: Demand Comparison for Selected
Applications

be distributed.

In the context of PRODUCT LINE: There are the Domain
and Application Processes which produce reusable assets
and commercial products respectively. All of the products
above have domain and application processes. (The end
system does not have a domain process because it is merely
the integration of the other products and its form is dictated
by the platform). For example, the platform domain process
develops platform assets. The system application process
develops sensor product packages that are installed in
vehicles.

From the Platform Group perspective, the internal
customers are the development units that produce the end
applications and integrate the system. The customers are
direct customers that install the sensor systems in their
vehicles.

2 SCOPE
Product Line Process for a Sensor Platform
The original goal was to define the platform processes and
the initial assumption was that only one end application
would run on a platform. The requirements for the
platform had to be derived from the existing products’
requirements. This, in turn, led to the consideration of how
the platform would evolve and to the realization that the
architecture and processes of the end applications had to be
understood and considered as well, especially when
multiple end applications were involved.

Focus: End System and Platform
In order to properly understand the platform processes and
its delimitation, the system application process (for systems
with multiple end applications), actually an external
process, had to be examined in detail.

Focus: System, not Hardware-Software-System
Development
Although a deeper level of abstraction will be addressed
later, the current study addressed only the process for
developing the whole system. Actually, perhaps in contrast
to other software domains, there are 3 separate aspects to
the development: hardware, software and algorithm. A
significant part of the development effort is related to
analyzing the physics underlying the applications and
developing appropriate measurement and interpretation
strategies.

Focus: Steps, not Methods
At the level of detail reached during our project, it was

sufficient to describe what was to be done and in which
order, not the how.

Similarly, at this level, roles and entry/exit criteria were
also unnecessary.

3 APPROACH
The study defined the Platform product line process. It
synthesized the constraints inherent in the technological
and organizational environment with standard company
development processes to produce a process suitable for
architecture-based reuse according to the product line
approach.

Based on Company Standards and Best Practices
As far as possible, the processes defined should resemble
processes that are being used in the development units.

There are company-wide standards for process planning
and monitoring and for quality assurance. It was a goal,
insofar as they were relevant to the processes under
consideration, to incorporate the best practices already
established in the development units

Operational, not Strategic or Tactical
There is no lack of processes in this undertaking. Product
line encompasses organizational processes (product
planning and marketing, for example), development,
maintenance and technical processes to define an
architecture and develop assets.

Although there is a tendency to think of product line top-
down, the organizational impact, and the operational
feasibility, (bottom-up from the produce line perspective,)
had to be established at an early stage in order to define the
domain context.

The focus of this paper is on the processes necessary to
operate and maintain a product line. That is, there is a
process to define the architecture and develop the assets:
domain scoping, requirements analysis, feature modeling,
architecture design, and so forth. It results in a product line
infrastructure and there is only one cycle in the lifetime of a
product line. This process is only a process in the sense
that it is repeated over many product lines. There is the
process of producing products using the assets. This
process cycles once per product, that is, many times in the
lifetime of a product line. This paper addresses this latter
process.

Steady-State
It is conceivable first, that in the short term, multiple
applications would not be installed on the platform.

Secondly, it is also conceivable that the infrastructure may
not be complete as the architecture is first used.

Be that as it may, the study assumed a mature infrastructure
and multiple applications in order to define the process for
the long-term. Should intermediate states exist during the
implementation of the process, then the definition should
serve as a template and a target which allows a quicker
transition to the steady state of the process.

Framework, Not Kit
Packaging to the internal customers was also a major
consideration. On the one hand, it was possible to lay the
structure and interfaces of the platform bare. With this
scenario, the end-applications would have been free to
customize the platform according to their needs, inheriting
predefined classes or overloading methods as necessary; in
effect using the platform as a toolkit.

On the other hand, it was possible to offer the platform as a
fixed set of functionality, that covered a certain application
sphere. The platform would not be modifiable, and with
severely limited parameterability (i.e. limited to dropping
functionality)

Some applications require information in addition to the
sensor information, such as the state of the gear selector (in
reverse for parking assistance) or the absolute vehicle speed

(relative to the ground, not to surrounding objects that
might also be moving). The idea of expanding the
definition of the platform to include this additional
information was considered, but rejected.

In the end, it was decided that the platform would be
offered as a closed system, not as a toolkit, after it became
clear that multiple applications would run on the platform.
The potential that modifications undertaken by one
application group would adversely affect other applications
could not be eliminated or controlled.

4 END SYSTEM PROCESS
The nature of the platform is that one end customer, and
possibly a number of intermediate customers (development
units) share a single platform. This makes itself evident
through a more elaborate process to coordinate and
arbitrate the requirements for the platform. Ultimately, all
requirements from all stakeholders must be clear before
work can begin on the platform, and therefore, somewhat
contradictorily, on any of the end applications.

This constellation dictates an iterative process requirements
/ product-concept process and in turn appropriate
formalization. In effect, the planning processes of the
platform’s direct customers are formally drawn into the
platform’s planning process to a greater extent than for a
typical producer/consumer relationship.

Figure 1. illustrates the end system process. The viewpoint
taken here is that of the platform process. That is,

Customer
Request

Product
Req’ts

Design /
Dev / Test

Design /
Dev / Test

Design /
Dev / Test

Platform
Req’ts

Platform
Arbitration

Design /
Dev / Test

Integration

Field Test

Release /
Maint

Product
Req’ts

Product
Req’ts

Platform

Sys Spec
& Test Plan

Coordination

Figure 1: End System Process

extraneous details in the end-application processes have
been omitted. As long as the end applications respect the
interfaces and synchronization points defined with respect
to the platform, the actual nature of their processes is not
particularly relevant.

3.1 System Process
The process diagram is idealized in that its presentation
suggests that the parallel steps execute in parallel. In
reality, it is neither possible to require the customer to state
his complete intentions with respect to sensor applications
simultaneously, let alone deliver the complete requirements
for each application nor to expect that all participating end
application development units would take the same amount
of time to process those requirements. This means that all
requirements on the platform will not be ready at the same
time.

Given the distributed nature of the end applications, and the
fact that specialists are required to develop each of them, it
is only sensible to develop the end applications in the
corresponding development units. The customer requests
must be coordinated and the end applications must be
integrated after they are developed. The coordination
activities were therefore simply assigned to a coordinating
group for expository purposes.

Customer Request
A new product request may come from a specific customer
or may be generated internally. The request, when it
affects more than one end-application, may be coordinated
by the customer and delivered separately to the different
development units or coordinated by an internal
organization.

The nature of the initial request may be open-ended or
specific, incomplete or complete. When the request is
deemed to be complete, it is reviewed by all participating
development units for completeness and feasibility. After
approval, the system requirements are split for / tailored to
the respective development units and distributed.

End Product Requirements Analysis
The end applications determine the features necessary to
fulfill the requirements and develop the concepts for their
individual products.

Each concept consists of a specification of the (product-
level) algorithm to be used to fulfill the product
requirements, the choice of sensor profile and information
over special operating conditions.. When complete, the
sensor-related parts of the end application concept are
bundled and sent to the platform group.

Platform Requirements Analysis
The platform group gathers all sensor platform
requirements for a particular undertaking and analyses
them when they are complete.

Similarly to the end application groups, the platform group

must synthesize an overall concept for the instance of the
platform being considered. Again, this involves developing
the appropriate algorithms to accomplish the sensing task,
but it also includes identifying conflicting and overlapping
requirements from the various applications.

This step produces a list of conflicts between the
applications that must be resolved.

Platform Arbitration
In the case where conflicts occur, alternative schemes and
trade-offs must be found so that the platform requirements
are feasible. Since this cannot be done in a vacuum, all
stakeholders in the initiative must actively participate in the
arbitration process.

Regardless of whether the problems are solved by
negotiation or edict, this step produces systems and sensor
platform concepts that are accepted by all participants.

The overall platform concept must then be tailored to the
requirements of the individual end applications. In the end,
the platform group delivers “made to measure” solutions to
each end application.

Final System Specification & Test Plan
After the system concept has been finalized, the
corresponding system specification must be prepared and
presented to the customer.

The system specification can then be used to develop an
integration plan, an integration test plan and field test plan.

Design / Development / Test
At the overview level, the design, development and test
phases are similar between the application developers and
the platform developers. Each develops a design and a test
plan for its application area, develops the development and
test environments, develops the its application and tests it
until a satisfactory quality has been established.

The platform group may have the additional task of
providing prototype platforms for use as the basis for
application development.

The process mechanisms will be discussed in detail in a
subsequent section.

Integration
The functionality of the platform is verified independently
using the platform’s test environment. End applications are
added to the platform and are tested for basic functionality
in the integration test environment until all applications are
present. The test suite based on the system specification is
performed under artificial, but demanding, conditions.

Field Test
The system is installed in a vehicle and tested as defined
previously.

Release / Maintenance
The system subjected to an acceptance test by the customer,

released for series production. Maintenance occurs as
necessary.

5 PLATFORM PROCESS
The considerations of production and maintenance are
critical to understanding the nature and extent of the
processes in a running product-line.

Assets are not created, or at least not adapted for generality
in time-critical situations such as production or customer
projects. rather in special projects that are isolated from
normal production activities: hence the domain process.
The converse of this is that while the product-line
application process is running, assets already exist and the
domain development process is in maintenance mode. That
is, the activities in the domain process during this time are
generally limited to fixing bugs in the assets, adding
functionality to the assets or adding assets related to
domain evolution.

A special consideration comes from the fact the domain
under consideration is electronic control units. Typically,
once the control units are in the field or in series production
at a customer installation, the possibilities to fix bugs are
very limited and expensive. Therefore, practically all bugs
are identified and fixed during the integration, field test and
customer acceptance testing phases. This means especially
in the case of the platform, product maintenance occurs
practically only until the end system, has been accepted by
the customer. In other words, the maintenance phase is
subordinate to the development process of the overriding
product.

In summary, while a platform product-line is in its
operative phase, domain asset development is vestigial,
domain asset maintenance is predominant among domain
activities and application maintenance only occurs
practically while the end applications are developed,
integrated and tested.

 Platform Process Overview
Figure 2 illustrates the basic processing elements and
information flows in the Platform Process. Note that both
the domain and application aspects are, perhaps, typical for
a product-line process.

The platform application process, outside of maintenance,
illustrated in the lower half of Figure 2 is contained in the
box labeled “Design/Dev/Test” in Figure 1. That is, after
the system process has determined all the tradeoffs between
the end-applications, developed a concept for the entire
system and derived the requirements on the platform, the
preconditions necessary to develop an instantiation of the
platform product line have been achieved.

The illustration presents an operative, rather than a logical,
view of the process. The two tiers therefore have
management and productive aspects which will be
described in greater detail in subsequent sections.

It is perhaps easier to start with the application process, as
everything in the domain-engineering process should just
exists to support it.

 The Platform Application Process
The logical relationships between the Application Process
activities are illustrated in Figure 3. It is expected that the
hardware basis of the platform will remain stable, or at
least, will not be developed as part of the (customer
project) application process. At this level of abstraction,
each step contains both algorithmic and software
development portions. Their sequencing is neglected.

Platform Application Management Process
The Platform Application Management Process is
concerned with the planning and control of the tasks
necessary to produce the platform. Planning involves the
definition, estimation, risk analysis and scheduling of the
tasks. Control involves continually assessing the risk of
projects that are running and monitoring their progress with
respect to the forecast schedule, expenditures and quality.

Assessment
After the arbitration process has decided the functional
characteristics of the platform, the asset repository is
searched for similar platforms. The candidates are
identified based on the scheme the end-applications use to

Pla tfo rm s / C om p o ne n ts / F ixe s

Re q u ire m e n ts
Bu g s

Re q u ire m e n ts /
Bu g s

C ontro lDefine/Plan

As se ts

Pro je c ts

Pro je c ts

Re searc h

Figure 2: The Platform Process

specify their requirements; that is
displacement/velocity/acceleration, sensitivity, timeliness
and sequencing.

The amount of rework necessary for the candidates is
compared to find the best basis for development project
being considered. The amount of work necessary to
produce a new platform from scratch is also calculated, if
needed.

Scheduling
A project manager is assigned to the project. Depending on
the size of the project, the project manager or a project
team plans the project with respect to:

• Task Structure
The nature and extent of the steps necessary for
software and algorithm development are defined..
The nature and extent of intermediate products,
their versioning and storage are defined. Finally,
the personnel and resources necessary for the
performance of the tasks are defined

• Capacity
The personnel and resource availability is
compared to the task structure.

• Milestones
The sequence of the tasks, accounting for possible
resource constraints, are defined.

• Risk Identification
Risks are identified and plans for their recognition
and redress are defined. At least the following
aspects are considered:
➘ New Development
➘ Product or process changes
➘ Conformance to safety standards / requirements
➘ Changes in / enhancements to customer
requirements

The project plan defines checkpoints and expected values
to control the progress of the project with respect to
expenditures, quality, and task completion.

The resources available are compared with the resources
needed and the priority of the task. The resources are

assigned to the project for a particular timeframe.

Control
The control phase lasts as long as the project runs. A
control committee composed of the platform project leader,
representatives of the end application projects and the
upper management of the platform group meet regularly to
review the project progress.

The predicted expenditures, quality and task completion
dates are compared to the actual values. The list of
potential risks is reviewed to see if any of the foreseen
events have occurred and the current situation is assessed to
ascertain if any unforeseen risks have appeared.

Should the situation warrant, the possible response
alternatives are investigated by a team led by the project
leader and their impacts are assessed. Measures with larger
impacts are approved by the control committee.

Post-Mortem
In the post-mortem phase, the performance of the project is
assessed and critical factors (to the success or failure) of the
project are identified.

The appropriate requirements, design and test documents
are archived along with the source code, components,
development and test environments.

Should the product, its components or any part of the
associated records have a remarkable character or should
the project’s course have deviated significantly from the
predicted course, the facts are gathered and a report is sent
to the domain group.

Platform Application Production Process
At the current level of abstraction, the application
production process contains a set of steps that are largely
logically independent of another. It is not necessary that all
end application development platforms be finished before
work can start on the final platform, if indeed, they are
necessary at all in the project under scrutiny.

Similarly, there is an implicit parallelism at the next deeper
level of abstraction. That is, each step contains
algorithmic, software, and possibly hardware, aspects. The
algorithm must be defined before the software can be
completely developed, but which must be started first is a
scheduling matter.

All components are defined in UML and the software is
written in code frames that are generated from the UML.

All development phases have a design phase, a coding
phase and a test phase.

In the design phase, the concrete implementation of the
platform in question is planned. Alternatives within the
defined system concept are explored. The phase ends after
a successful review among the platform architects and any
affected end application architects. The design the review

Assessm ent Scheduling

End App
Test Platform
Dev’t

Fina l
Platform
Dev’t

Test

M anagem ent

Post-
Mortem

C ontro l

Test
Env
Dev’t

Figure 3: Platform Application Process

minutes and supporting documents are archived.

The test plan is developed in the design phase and is again
reviewed, as necessary, by the platform architects and any
affected platform architects

The coding phase contains code reviews. It ends when the
programmer delivers his code for independent testing.

Testing is performed independently of the development
group. There is a change management system with a
change control board to oversee the error management
process.

End Application Test Platform Development
When required, platforms are developed or adapted to
allow individual end applications to develop without
having to wait for the development of a platform that
satisfies the requirements of all applications. In contrast to
the final platform, these platforms are customized or
pruned to the requirements of the specific end-application
being developed.

Final Platform Development
The integrated platform needed to support all end-
applications simultaneously is developed in this phase.

Final Platform Test Environment Development
Appropriate measures are taken to build a test bed if it is
needed to simulate the demands and load of the various end
applications to be supported by the platform.

Test
The tests planned in the design stage are performed on the
product using the test bed developed for that purpose. The
test results are archived to provide audit trails required by
some customers and by some safety standards or safety
laws.

Platform Application Maintenance Process
As mentioned previously, the maintenance phase of the
platform application occurs mainly while the system is
being integrated and tested. As such, it would be the
change management process of the system integration and
release process performed by the coordination group which
is illustrated in Figure 1.

From the platform product-line perspective, the only aspect
of interest is that the error reports provide some indication
of the reliability of the assets. As these errors are found
after the release of the corresponding platform, they are the
quality indicators of the platform application development

process and therefore part of its control process.

The errors are therefore classified by asset and platform
and the results are integrated into the asset base.

The following steps are involved in identifying and fixing a
system defect:

Investigation
The initial problem report is investigated and the
descriptions of the conditions under which the problem
occurs and the nature of the problem are checked for
completeness.

Estimation
Alternatives are identified to solve the problem. The steps
required to implement the best alternative are defined and
the corresponding expenditures, impacts and risks are
estimated.

Scheduling
At this point at the latest, the criticality of the problem is
specified. Irrelevant problems are rejected and relevant
problems are assigned a priority. Depending on the priority
of the problem, it is scheduled either to be fixed in the
current release or in the corresponding asset.

Depending on the size and priority of the problem, when
the problem is designated to be fixed in the current release,
it is either fixed immediately or grouped with other similar
problems and fixed in batch.

A project manager is assigned and the task is planned with
respect to activities, capacity, milestones, risks, and
expected progress as defined in the production scheduling
description above.

Development, Test, Release
The problem is fixed. The platform is tested in its test
environment. Each of the end applications is tested through
repeating the integration test, except where the problem is
unambiguously trivial.

The Platform Domain Process
After the product-line process is fully introduced, the asset
base must merely be maintained. The activities in the
domain process during this time are generally limited to
fixing bugs in the assets, adding functionality to the assets
or adding assets related to domain evolution.

In comparison to the major structure of the application
section, the production process has been dropped, the
maintenance process has been kept and the control process
is dedicated to controlling the maintenance activities.

The overall platform domain process is illustrated in Figure
4

Platform Domain Management Process
Research
Research is responsible for investigating the need for
change in the assets. As such, it is mainly a marketing

Re s e a rc h D e fin itio n

D e v ’t Te s t

Sc h e d u lin g

M anagem ent

Re le a seC o n tro l

Figure 4: Platform Domain Process

activity. There are two basic modes: pro-active and
reactive.

The proactive activities involve searching for trends in
areas extraneous to the platform group. These include
monitoring:

• Technological Trends
These include improvement in hardware
components, algorithmic improvements and
improvements in software technology.

• Requirements Trends
This done through interviewing the end
applications’ planning department and conducting
interviews with external customers.

The reactive activities involve assessing the information
flowing back from the application process. The sources of
this information include:

• Platform Bug Reports (from the end applications
or from the field)

• Problem Reports from the platform application
development group

• Project Post-Mortems
In this respect the research group is responsible for
identifying and promoting the best development
practices from the platform development projects.

Research is responsible for analyzing the information,
identifying similarities and trends, defining the
requirements, considering the profitability aspects of the
enhancement and assigning a priority to it.

Definition
After a need for a change in the asset base has been
established, the alternatives for achieving this change are
identified. The best alternative is selected and a task
definition is prepared that specifies the steps necessary.

Scheduling
A project manager is assigned and the task is planned with
respect to activities, capacity, milestones, risks, and
expected progress as defined in the application production
scheduling description above.

Control
The progress of the project and the state of the environment
is monitored for risks as described in the application
production control description above.

Release
The enhancement is placed in the asset base, along with the
appropriate documentation. If appropriate, the platform
application group is notified of its existence.

Platform Domain Maintenance Process
Development
The task is performed and the asset is enhanced or a new

asset is created.

Test
The platform is tested in its test environment. Each of the
end applications is tested through repeating the integration
test, except where the problem is unambiguously trivial.

6 SUMMARY AND CONCLUSIONS
After making suitable restrictions and the relevant factors
we have modeled the production process for our product
line in the following steps:

• Investigate current practice in development unit
• Assume steady state
• As a first cut, concentrate on the steps involved at

the system level rather than hardware or software
process.

• Define the target process’s relationships to its
overriding process.

• Define the application process
• Define the domain process

In general, production process definition is intimately
related to the products and organizations involved. Aspects
that may differentiate our approach from others include:

• Consideration of the project management aspects
• Consideration of the influence and subsequent

modeling of the development processes of the
target product line’s customers

• Consideration of the asset maintenance aspects.

Insights gained from this exercise include:
• The assets are primarily in the maintenance phase

during production
• The algorithmic feasibility aspects force an

arbitration mechanism when multiple applications
run on a platform

7 INFORMATION AND QUESTIONS
For more information, contact the author John MacGregor
(john.macgregor@bosch.com).

ACKNOWLEDGEMENTS
I would like to thank my colleagues, the EU and my
colleagues at PRAISE .for their support and help.

REFERENCES
[Clements, 1999] Clements, Paul A Framework for

Software Product Line Practice SEI
Technical Report, 2 (Winter 1992)..

[Jacobson, 1997] Jacobson, I., Griss, M., and Jonsson, P.:
Software Reuse – Architecture, Process
and Organization for Business Success.
Addison Wesley Longman, 1997. ISBN
0-201-92476-5.

[Karlsson, 1995] Karlsson, Evan-André, Software Reuse
– A Holistic Approach. Wiley, 1995,
ISBN 0-471-95819-0

[Weiss, 1999] Weiss, David, Lai, Chi Tau Robert,
Software Product-Line Engineering: A

Family-Based Software Development
Process. Addison Wesley Longman,
1999, ISBN 0-201-69438-7

A Framework for Software Product Line Practice

Paul C. Clements Linda M. Northrop
Software Engineering Institute Software Engineering Institute

Carnegie Mellon University Carnegie Mellon University
4500 Fifth Avenue 4500 Fifth Avenue

Pittsburgh, PA 15213 Pittsburgh, PA 15213
+1 512 453 1471 +1 412 268 7638

clements@sei.cmu.edu lmn@sei.cmu.edu

ABSTRACT
Software product lines are emerging as a new
development paradigm for software-intensive systems,
but before an organization can successfully adopt the
product line paradigm, there are organizational as well as
technical hurdles to be surmounted. This paper
introduces a framework for product line practice that
consists of a set of practice areas in which competence
must be gained before a successful product line capability
can be achieved.

Keywords
Software product lines, software reuse, core assets,
framework for product line practice

1 INTRODUCTION

Software product lines are emerging as a new and

important software development paradigm. Companies

are finding that the practice of building sets of related

systems from common assets can yield remarkable

quantitative improvements in productivity, time to

market, product quality, and customer satisfaction.

Organizations that acquire, as opposed to build, software

systems are finding that commissioning a set of related

systems as a commonly-developed product line yields

economies in delivery time, cost, simplified training, and

streamlined acquisition. But along with the gains come

risks. Although the technical issues in product lines are

formidable, they are but one part of the entire picture.

Organizational and management issues constitute

obstacles that are at least as critical to overcome, and may

in fact add more risk because they are less obvious.

At its essence, fielding a product line involves (1)

development or acquisition of core assets, which are

software, document, process, and management artifacts

engineered to be re-used, and (2) development or

acquisition of products using those re-usable core assets.

These two activities can occur in either order (new

products are built from core assets, or core assets are

extracted from existing products). Often, products and

core assets are built in concert with each other. Core asset

development has been traditionally called domain

engineering. Product development from core assets is

often called application engineering. The entire effort is

staffed, orchestrated, tracked, and coordinated by

management. Figure 1-1 illustrates this triad of essential

activities. The iteration symbol at the center represents

the decision processes that coordinate the activities. The

bi-directional arrows indicate not only that core assets are

used to develop products, but that revisions to or even

new core assets might, and most often do, evolve out of

product development. The diagram is neutral about which

part of the effort is launched first. In some contexts,

already-existing products are mined for generic assetsa

requirements specification, an architecture, software

components, etc.that are then migrated into the product

line's asset base. In other cases, the core assets may be

developed or procured for later use in production of

products.

Organizations that have succeeded with product lines

vary widely in the nature of their products, their market

or mission, their organizational structure, their culture

and policies, their software process maturity, and the

maturity and extent of their legacy artifacts.

Nevertheless, there are universal essential activities and

practices that emerge, having to do with the ability to

construct new products from a set of core assets while

working under the constraints of various organizational

contexts and starting points.

Domain Engineering Application Engineering

MMaannaaggeemmeenntt

PPrroodduucctt
DDeevveellooppmmeenntt
// AAccqquuiissiittiioonn

CCoorree AAsssseett
DDeevveellooppmmeenntt
// AAccqquuiissiittiioonn

PPrroodduucctt LLiinnee DDeevveellooppmmeenntt // AAccqquuiissiittiioonn PPrroocceessss

Figure 1-1: Essential Product Line Activities

The Software Engineering Institute has developed a

framework1 for product line development and/or

acquisition. It describes these essential activities and

practices, in both the technical and organizational areas.

These elements and practices are those in which an

organization must be competent before it can expect to

successfully field a product line of software or software-

intensive systems. The audience for the framework

includes members of an organization who are in a

position to make or influence decisions regarding the

adoption of product line practices as well as those who

are already involved in a product line effort. The goals of

the framework are

� to identify the foundational concepts underlying
software product lines and the essential activities to
consider before creating or acquiring a product line

� to identify practice areas that an organization
creating or acquiring software product lines must
master

� to define practices in each practice area, where
current knowledge is sufficient to do so

� to provide guidance to an organization about how to
move to a product line approach for software

 An organization using this framework should be able to

understand the state of its product line capabilities by (a)

understanding the set of essential practice areas, (b)

assessing how practices in those areas differ from their

conventional forms for single product development, and

1 The framework may be found on the web at
http://www.sei.cmu.edu/plp.

(c) comparing that set of practices to its existing skill set.

As such, this framework can serve as the basis for a

technology and process improvement plan aimed at

achieving product line development or acquisition goals.

There is no one correct set of practices for every

organization, but this document contains practices that

we have seen work successfully in practice.

 This paper outlines the practice areas described in the

framework, which we believe are essential for an

organization that aspires to be successful in product line

practice.

2 PRODUCT LINE PRACTICE AREAS

As a way of organizing the practice areas for easier

reference, we divide them loosely into three categories:

software engineering practices, technical management

practices, and organizational management practices.

Software Engineering Practice Areas

Software engineering practices are those practices

necessary to apply the appropriate technology to create

and evolve both core assets and products.

Understanding Relevant Domains

Domains are areas of expertise that can be applied to the

creation of a product line. Domain knowledge is

characterized by a set of concepts and terminology

understood by practitioners in that area of expertise. It

also includes an understanding of recurring problems and

known solutions within the domain. Knowledge from

several domains is usually required to build a single

product (e.g., knowledge of user interfaces, database

management systems, and networking are needed to

create a distributed banking application; this expertise is

in addition to the fundamental financial knowledge

needed for banking). The motivation to apply such

domain knowledge in a product line context usually

begins with the recognition of an opportunity to satisfy

business goals by exploiting the reusability of an

organization’s expertise. The journey from the initial

recognition to the creation of a set of reusable core assets

requires an ability to understand and package the relevant

domain information for use and reuse across the entire

product line. The practice of understanding the relevant

domains therefore encompasses the following

responsibilities
− identifying the areas of expertise—domains—that

are useful for building the product line
− identifying the recurring problems and known

solutions within these domains
− capturing and representing this information in ways

that allow it to be communicated to the product line
stakeholders, and used and reused across the entire
product line

Achieving this understanding is a fundamental

prerequisite to the task of succeeding at large-grained

systematic reuse. It is the basis for identifying

opportunities to automate the creation of the product line.

It also allows an organization to reason about the

properties of the product line, the capabilities to be

provided by the core assets, the range of variability in the

products, and the processes, methods, and tools to be

employed in the creation of the product line.

Mining Existing Assets

Product lines are seldom built as “green field efforts”

beginning with a clean slate. Rather, systems in an

organization’s inventory are often used as the first

members of the software family. These legacy systems

therefore serve as the raw material for populating the new

product line’s core asset base with software and software-

related artifacts. These certainly include code, but also

test plans and cases and scaffolding, processes, schedules

and budget estimates, and documentation of all varieties.

This practice area describes the steps necessary to

judiciously identify salvageable artifacts in an

organization’s legacy inventory and the steps necessary

to efficiently re-engineer them for use in the new context

of the product line.

Architecture Exploration and Definition

The software architecture for the product line may be the

most important of all of the reusable core assets. The

architecture must apply to all of the products in the

product line, and enable every product to meet its

(possibly differing) behavioral, performance, and other

quality attribute requirements. The architecture typically

accomplishes this by featuring built-in variation points, at

which different components may be plugged in or at

which different quality attributes (such as, for example,

security) may be tuned for individual members of the

family. This practice area describes the drivers that serve

as requirements for a product line architecture, and steps

and approaches for crafting such an architecture from the

product line’s business and technical goals.

Architecture Evaluation

Evaluations of the architecture both of the product line

and specific products is a low cost risk reduction method

for determining whether the systems in the product line

will achieve the business and quality goals desired for

them. A product line is intended to achieve particular

business goals. Individual products in the product line are

intended to achieve other business goals – presumably in

harmony with the goals for the product line. Since the

product line success hinges on the suitability or fitness of

the architecture, its evaluation is an essential part of the

product line construction, especially now that effective

methods such as the Software Architecture Analysis

Method [SAAM]2and the Architecture Tradeoff Analysis

MethodSM [ATAMSM]3 are emerging. More approaches

to analysis may be found in [11].

COTS Utilization

The software core assets for a product line include an

architecture and a set of components that are consistent

with the architecture. These assets may be derived from a

number of different sources such as leveraging existing

assets, new development, and the utilization of COTS

(commercial off the shelf) or NDI (non-developmental

item) items. COTS products exist independently of a

specific product line, and they are developed by a

2 http://www.sei.cmu.edu/architecture/sw_architecture.html

3 Architecture Tradeoff Analysis MethodSM and ATAMSM are
registered service marks of Carnegie Mellon University.
http://www.sei.cmu.edu/architecture/sw_architecture.html

commercial organization for commercial purposes.

COTS products are available for purchase or licensing to

the general public through a catalogue or price list. NDI

products are relevant primarily within the context of

government acquisitions. They have previously been

developed by somebody else, and are available for other

authorized projects, though not necessarily to the general

public, or through a price list.

In traditional software development, each component is

built from scratch to meet requirements. The economies

of scale that accrue from product line development are

further multiplied when COTS components are used.

During the last decade, the explosion of middleware

technologies and standards has enabled the use of COTS

components on a large scale in system development to

cut costs, leverage the advantages of a common

architecture, and enable large scale reuse. However,

when COTS products are employed, there is far less

control over the ways in which the components fit into

the architecture, and the evolution of the components.

The utilization of COTS components in a product line

system introduces a new set of issues, concerns, and

tradeoffs. Because of the central importance of the

architecture for product lines, and because of the need to

fit a potentially large family of systems, a product line

solution using COTS products needs to be generalized,

involving general purpose integration mechanisms that

span a number of potential products. As a result, the

range of potentially qualifying products may be reduced,

and the use of wrappers and middleware needs to focus

on generalized solutions, rather than some of the more

opportunistic solutions that may be appropriate for single

product systems. The evolution strategy for updates,

incorporation of new releases into product lines and need

for rigorous configuration management all become more

critical for a product line approach.

Software System Integration

Software systems integration refers to the practice of

combining individual software components into an

integrated whole. Software is integrated when

components are combined into subsystems or when

subsystems are combined into products. In the extreme,

software system integration can be reduced to a step

taking zero time when generating products in product

lines where the variability is known a priori. This is

called “system generation.” In this case, developers

produce an integrated parameterized template of a

generic system with formal parameters. They then

generate final products by supplying the actual

parameters specific to the individual product

requirements. The purpose of this practice area is to give

a range of options for combining components to produce

a system, and to show how software systems integration

works for product lines.

Other Software Engineering Practice Areas

These practice areas will not be discussed here because of

spaced limitations.

� Component Development

� Testing

� Requirements, Elicitation, Analysis, and
Management

Technical Management Practice Areas

Technical management practices are those management

practices necessary to engineer the creation/acquisition

and evolution of the core assets and the products.

Technical management practices are carried out in the

core asset and product development/acquisition parts of

the figure below. Technical management includes those

practices that would be carried out by a systems builder

regardless of whether or not software was part of the

product.

Data Collection, Metrics, and Tracking

A measurement program is essential for managing a

product line initiative and making decisions about

success, failure, and continued funding. Adopting a

product line approach often requires wholesale change

throughout the organization, and it is essential that

management be confident that the often painful changes

are in fact yielding positive results; otherwise, there will

be great temptation to abandon the effort and revert to the

conventional one-at-a-time paradigm. Measurement

provides the quantitative data necessary to make

informed decisions to guide the product line program. A

comprehensive set of metrics is essential for obtaining

insight into the management and technical issues that are

most important for achieving the business goals,

improving assets, products, and processes, and

determining the return on investment.

Product Line Scoping

Product line scoping defines the bounds for systems that

will constitute the products in the product line. Scoping

also establishes commonality and bounds variability for

these systems that will then be developed from a core set

of assets. The objective of product line scoping is to

define the set of products for which commonality is

sufficient to achieve economies of production and for

which the ability to produce distinct systems is not

compromised but rather is enhanced. In addition, the

scope must satisfy business considerations such as the

following:

� prevailing or predicted market drivers

� the nature of competing efforts

� other business goals that involve embarking on a
product line approach, such as merging a set of
similar but currently independent, product
development projects

The scope defines the space of products that will be

developed from core assets. It identifies the commonality

that members share and the ways in which they vary from

each other. The scope not only includes an initial set of

products, but also an assumed set of products that have

not yet been built or completely defined, but whose

possibility is being considered or planned. In most cases,

product line scoping must continue after the initial scope

has been defined because new market opportunities may

arise, and new opportunities for strategic reuse and

merging of projects may make themselves known.

Achieving the appropriate scope is critical. If the scope

is too large, then the core assets must be engineered to be

hopelessly generic, and the effort will fail. If the scope is

too small, then only a few products can ever be built from

the core assets, and the investment will not pay off.

Configuration Management

For every development effort of any size, whether a

product or not, CM is an essential practice. For a product

line, all constituent products are managed with a single

unified CM context, whereas conventionally, each

product with all its versions may be managed separately.

Product line CM must account for the fact that assets are

produced by one project and are used in parallel by

several others. A primary goal of the product line CM is

to allow the rapid reconstruction of any version of any

product, which may have occurred using various versions

of the core assets. CM must also support the process of

merging results either because new versions of assets are

included in a product or product specific results are

introduced into the asset base. Finally, since introducing

changes may affect multiple versions of multiple

products, it is essential that the CM system delivers

sound data for an impact analysis to help understand

what impact a proposed change will have.

Technical Risk Management

Technical risk management is the practice of managing

risks within a project. A complete risk management

program should provide processes, methods and tools to

identify and assess what could go wrong (the risks),

determine what to do about the risks, and implement

actions to deal with the risks. There are well-established

approaches and guidelines for performing risk

management that should be used as a starting point [1],

[2], [3], and [10]. These approaches provide practices for

risk identification, analysis, planning, tracking, and

control. The SEI Continuous Risk Management (CRM)

paradigm [4] is representative.

For risk management targeted to product lines, the

general practices will be consistent with the standard

approaches. However, specific practices will require

more coordination because of the range of organizational

groups that are involved in product line activities and the

fact that product lines often represent a different way of

doing business. The most significant difference between

traditional and product line risk management programs is

likely to be in the scope of the program. Traditionally,

risk is managed on a project basis. In a product line

approach the intimate relationship between product

development and core asset development will require

coordination of risk management among several projects

or functions within the organization. This would

necessitate special mechanisms to ensure coordination of

risk activities.

Other Technical Management Practice Areas

These practice areas will not be discussed due to space

limitations.

� Process Modeling and Implementation

� Planning and Tracking

� Make/Buy/Mine/Outsource Analysis

� Tool Support

Organizational Management Practice Areas

Organizational management practices are those practices

necessary for the orchestration of the entire product line

effort.

Achieving the Right Organizational Structure

Organizational structure refers to how the organization

forms groups to carry out the various responsibilities

inherent in a product line effort. All organizations have a

structure, if only implicitly, that defines roles and

responsibilities appropriate to the organization's primary

activities. Particular organizational structures are chosen

to accommodate enterprise goals and directives, culture,

nature of business, and available talent. The

organizational structure reflects the division of roles,

responsibility, and authority.

A traditional (non-product line oriented) organization

primarily manages software at the project level.

Individual projects tend to be fully responsible for

technical decisions affecting their products.

Specialization might require each project to have its own

development group, with no sharing of personnel among

projects. The role of the organization's management is

usually to support the projects, gather and allocate

resources, and provide high-level oversight. In a product

line context, however, the development and acquisition

of core assets and products dictate different

organizational structure that is not project-centric. In

addition to identifying the right organizational structure

for product lines, management must be concerned with

identifying organizational charter and boundaries;

identifying functional groupings; allocating and assigning

resources; monitoring organizational effectiveness;

improving organizational operations; establishing inter-

organizational relationships; and managing

organizational transition.

Operations

When an organization makes the decision to move to a

product line approach for acquiring or developing

software, it must decide on the day-to-day operational

steps that must be taken for the product line to thrive.

Who builds the core assets? How do the product-

building groups send feedback about the assets’

suitability? What are the roles and responsibilities for

maintaining the product line? How will the architecture

be developed and maintained?

 The decisions regarding these and several other key

questions establish the basis for a product line. As these

decisions become operational, the organization

establishes a process for fielding the product line. The

definition, development, and maintenance of this process

require creation of an operational concept in order to do

the following:

� Describe the characteristics of the process for
fielding the product line from an operational
perspective. (Included in fielding are product line
development or acquisition and product line
sustainment throughout its life.)

� Facilitate understanding among stakeholders of the
goals of this process. Stakeholders for the product
line include developers and users of the products of
the process.

� Form an overall basis for long-term planning for the
product line and provide guidance for the
development of specific product line outputs such as
a Developers’ Guide, Business Plan, Architecture,
and other assets.

� Describe the organization fielding the product line
and using its products.

� Define the role acquisition will play and solidify the
general acquisition approach. Acquisition will
include procurement strategies for asset
development, product development, and/or needed
contractual products and services.

As the product line is fielded, the operational concept

provides a baseline when the organization considers

alternatives in their approach as changing conditions

warrant. The operational concept for a product line

should be documented as a Concept of Operations

(CONOPS). The CONOPS documents the decisions that

define the approach and the organizational structure

needed to put the approach into operation.

Training

Training is an important element of both the initial

product line adoption strategy and the longer-term

product line evolution strategy. The initial training occurs

in the context of the organizational and cultural changes

needed to support a product line approach; the follow-on

training occurs in the context of the evolution of the

product line or lines. It is management’s responsibility to

ensure that training is an integral part of the

organization’s product line strategy. This section of the

framework focuses on the training practices that need to

be instituted by management to ensure that the

organizational units responsible for creating, fielding, and

evolving the product line have properly trained

personnel.

Launching and Institutionalizing a Product Line

Launching and Institutionalizing a Product Line is

concerned with how to introduce product line practices

into an organization and change that organization’s “sea

course” so that it becomes an effective product line

organization. Institutionalizing can be viewed as a

special case of a technology change project. Technology

change projects are highly dependent upon the context of

the organization. Thus, it is usually inappropriate to

prescribe an invariant sequence of steps to execute the

project. Furthermore, successful technology change

projects not only account for the specific technology

involved but also account for the non-technical or human

aspects of change.
Other Organizational Management Practice Areas

These practice areas will not be discussed here because of

space limitations:

� Building and Communicating a Business Case

� Funding

� Market Analysis

� Training

� Customer Interface Management

� Developing and Implementing an Acquisition
Strategy

� Technology Forecasting

� Organizational Risk Management

REFERENCES

1. Boehm, B.; IEEE Tutorial on Software Risk
Management, IEEE Computer Society Press,
Piscataway, NJ, 1989.

2. Carr, Marvin; Konda, Suresh; Monarch, Ira; Ulrich,
Carol; & Walker, Clay. Taxonomy-Based Risk
Identification (CMU/SEI-93-TR-6, ADA266992).
Pittsburgh, PA.: Software Engineering Institute,
Carnegie Mellon University, 1993

3. Charette, R.; Software Engineering Risk Analysis
and Management, McGraw-Hill, New York, NY,
1989.

4. Dorofee, A.; Walker, J.; Alberts, C.; Higuera, R.;
Murphy, R.; Williams, R.; Continuous Risk
Management Guidebook. Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University,
1996.

5. Fairley, R.; "Risk Management for Software
Projects." IEEE Software, May 1994: 57-67.

6. Gallagher, Brian P.; Alberts, Christopher J.; Barbour
Richard E.; Software Acquisition Risk Management
Key Process Area (KPA) – A Guidebook (CMU/SEI-
96-HB-002). Pittsburgh, PA.: Software Engineering
Institute, Carnegie Mellon University, 1996.

7. Kirkpatrick, Robert J.; Walker, Julie A.; & Firth,
Robert. "Software Development Risk Management:
An SEI Appraisal." Software Engineering Institute
Technical Review '92 (CMU/SEI-92-REV).
Pittsburgh, PA.: Software Engineering Institute,
Carnegie Mellon University.

8. Myers, C.; Maher, J.; Deimel, B.; Managing
Technological Change, Course materials. Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon
University, 1992.

9. Radice, R.; Garcia, S.; "An Integrated Approach to
Software Process Improvement." Tutorial presented
at the Software Technology Conference, April 1994,
Salt Lake City Utah.

10. Sisti, F., and Joseph, S.; Software Risk Evaluation
Method Version 1.0, [CMU/SEI-94-TR-19, ADA
290697], Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1994.
Available
<http://www.sei.cmu.edu/publications/documents/94
.reports/94.tr.019.html>

11. Zhao, "Bibliography on Software Architecture
Analysis", Software Engineering Notes, vol. 24, no.
3, May 1999, pp. 61-62.

Product Line Process Framework: The Wheels process

Michel Coriat Frédéric Waeber
Thomson-CSF / LCAT1 Alcatel / LCAT1

Central Research Laboratories Corporate Research Center
Domaine de Corbeville Route de Nozay

91404 Orsay Cedex, FRANCE 91461 Marcoussis Cedex, FRANCE
+33 1 69 33 07 76 +33 1 69 33 00 00

michel.coriat@lcr.thomson-csf.com {frederic.waeber, sophie.veret}@alcatel.fr

1 LCAT is the Alcatel/Thomson-CSF Common Research Laboratory

ABSTRACT
The paper presents a process framework, called Wheels, for
product-line development. This framework is called
Wheels. Wheels is a tailorable process offering the ability
and means to adapt to several situations (business, project
management,…). Wheels is extensible and can be increased
incrementally along feedback during usage. Wheels
establishes relationships to ISO or IEEE standard
documentation (SSS, SSDD, SRS) and CMM. To achieve
these characteristics, Wheels offers three basic properties:
formalization of the process using an UML [14] meta-
model to increase the process understanding, usage of a
matrix model to implement the tailoring, definition of a full
handbook describing the process patterns.

The proposed approach is a part of an effort undertaken at
the common laboratory of Alcatel and Thomson-CSF, the
LCAT, for product line development. At the LCAT we are
investigating a method called SPLIT (Software Product
Line Integrated Technology) which is a global framework
for engineering product line of software intensive systems.
Wheels is a part of SPLIT.

Keywords
Product line process, flexibility, tailoring, extensibility,
formalization, meta-model, UML.

1 INTRODUCTION
The product-line approach is driven by the PC&C
(Produce, Consume & Customize) principle (figure 1). One
process (domain engineering) aims at producing assets,
such as requirements, product-line architecture, or product-
line software components. The other one (application
engineering) consumes and customizes assets produced

Application Engineering

Domain Engineering

Domain
Analysis

Domain
Design

Domain
Implement.

Evolution

Derivation

Application
Analysis

Application
Design

Application
Implement.

Evolution

Derivation

Evolution

Derivation

Application

Legacy codeDomain Expertise

Specific requirements

Develop
for Reuse

Develop
with Reuse

Figure 1 – The product line approach (inspired form
STARS [1])

during domain engineering for application development.

Domain engineering objective is to develop assets for
reuse, and application engineering is to develop with reuse.
The product-line approach turns reuse from opportunistic to
strategic (or systematic) reuse.

Flexibility is the key for product-line development in the
sense that we have to study commonality and variability of
assets. We must manage assets not only to support future
variants and make assets feasible but also resilient to
change.

To achieve these objectives we have adopted a process-
driven and a model-oriented approach of product-line
development.

Current processes such as V cycle, spiral model, waterfall
process reached their limits for the product-line approach,
firstly because of their rigidity (lack of capability to adapt
itself to more and more demanding projects needs), and
secondly because of their dogmatism (fixed procedural
process, and mandatory stages).

In the product-line approach, the process is much more
important since it assumes the coherence and the efficiency

2

between the different items in Processes Engineering
(Domain and Application) and guides the reusability of the
work products produced during the process items.
Moreover, the process allows the different project teams to
work with each other in a same rationale, that’s to assure
the legitimacy of the product line approach to the
organization (customer, manager or developer levels).
Everyone uses the same language.

The proposed approach is a part of an effort undertaken at
the common laboratory of Alcatel and Thomson-CSF, the
LCAT, for product line development. We are investigating
a method called SPLIT (Software Product Line Integrated
Technology) [4] which is a global framework for
engineering product line of software intensive systems. The
Wheels approach is a part of the SPLIT method and focuses
on the product line process.

The paper is organized as follow: the following part focus
on motivation and rationale that has guided the Wheels
design. The next section describes elements constituting the
Wheels process (Wheels meta-model, applicability matrix,
process template). The conclusion gives a brief positioning
of Wheels relating to existing significant processes.

2 MOTIVATION
Since the product-line approach is defined by two different
processes its applicability is more complex to apply in
organizations than it is for classical applications
development. Therefore, we choose four principles to
integrate the notion of flexibility into the product-line
process, and so, once it is set up, it is far easier for the
users.

We choose to call the product-line process “Wheels model”
because it drives work products creation and derivation.
Our approach for the product line process development is
inspired by [7] and aims at:

1. Offering pragmatic issue of process usability: rather a
process handbook with a meta-model description than
a full guide book;

2. Offering a tailorable process, with the ability and
means to adapt the Product Line Process (PLP) to
several situations (business, product line context) using
an applicability matrix;

3. Giving an extensible PLP that can be increased
incrementally along feedback during usage;

4. Establishing relationships to ISO or IEEE standard
documentation (SSS, SSDD, SRS) and CMM.

Moreover, the Wheels process is based on two rolling
bearing [15]: stakeholders and company objectives.

A stakeholder is someone who is involved into the product-
line approach (e.g., customers, end-users, managers,
architects, analysts). We’ll give a non exhaustive list
further on this paper. Hence, they are important in product-

line process because their profiles guide the potential
decisions as for the product-line design. Since we
incorporate everyone in all design levels (requirements,
architecture and components), the Wheels process presents
two advantages:

• better participation of each member which feels more
concerned and increase of the team motivation,

• better acceptance of the Wheels process because all
actors (from the senior manager to the analyst or the
designer) are concerned by the process implementation
in their organization.

A software process must allows to respect all or a part of
the company objectives. That’s why our Product Line
Process embodies the business units objectives within its
structure: this process introduces two notions, variability
and derivation, which permit to carry out an application
more optimal (return on investment more quickly).

The purpose of the derivation is to create a specific
application from work products (assets) produced in the
domain engineering [8]. The generalization of this
adjustment represents the knowledge variability.

3 SPLIT/WHEELS: THE PRODUCT-LINE
PROCESS

Wheels is an iterative and incremental development
process. These two properties have proved to be very
crucial on the employees motivation and innovation which
are directly proportional [16] with the project progress:
short milestones combined with a well-defined handbook is
the key of the success of the process.

According to [2], a process is a well-defined way to
achieve one or more products and embodies several
decision-making stages which allow engineers to know
what they must do or what they should have done.

1. the Wheels model defines the software development
process: guiding stakeholders to produce assets
(reusable artifacts) according to identified objectives
(by customers, company, …) in the product line. An
artifact is any entity manipulated during product line
approach (e.g., documentation, code source, domain
models). The Wheels model formalizes the product
line process, giving an explicit meta-model, defining
guidelines in the form of process patterns.

2. people which use a method consider a process not as a
real work but as extra work. Therefore, the Wheels
model applies as much tailoring and as much
pragmatic (simple but not simpler) as possible in order
for the stakeholders to consider it as essential in their
job. In fact, our product line process is completely
overlapping inside the product line approach (STARS
two-lifecycle model). The process relies on also
applicability mechanisms between their different
elements according to rules and/or constraints chosen

3

or imposed,

3. the Wheels model can be augmented incrementally
along domain trials feedback and during usage, adding
instantiations of the meta-model and increasing the
applicability matrix.

4. the Wheels model proposes and advises to map the
product line process with the standard documentation
from IEEE standard (SSS, SSDD, SRS).

The product-line process formalization
The Wheels model is based on three basic assumptions to
formalize the product-line:

• using an UML meta-model to increase the process
understanding,

• using a matrix model to implement the tailoring,

• define a full handbook describing the process patterns.

The Wheels model does not offer a single and rigid method
but offers a model describing all of process items which
make up the product line approach [6]. To represent them,
we defined the product-line process meta-model (figure 2)
which presented these items composing the product-line
process framework.

The Wheels model defines all the elements of the product
line process:

• Process: A generalization of the two sub-processes:
Domain Engineering in which all of reusable elements
are created (assets) and Application Engineering in
which a new product is built, as far as possible, by
derivation of the assets produced in Domain
Engineering.

• Artifact: Any entity manipulated during software
engineering. This includes any software, generation
procedures, documentation, domain models, and
process descriptions.

• Asset: An artifact that has been certified as being
valuable to the organization and is reusable throughout
the projects.

The difference between an artifact and an asset is a
conceptual view; an artifact is created during the

Application Engineering and may be generalized to an
asset, while an asset is created during the Domain
Engineering and derived during the Application
Engineering.

• Stakeholder: An individual, team, or organization who
is concerned in some way or the other by the product
which is generated by the product line approach. They
are defined in the sequel.

Constraints

Applicability Rules

Domain EngineeringApplication Engineering

Support

Artifactsis creating during

Assets

is created during

is derived during

is generalized in

Techniques

help in building help in deriving

Stakeholder

Management

Criteria

Lifecycle

Task
uses

performs

Process

1..*1..*

Activity

evaluated

performed

Adjustment

Figure 2 – PLPF - Product Line Process meta-model

4

• Activity: is a process item based on well-defined inputs
are produced. There are two kinds of activities: the
main activities which are composed of another
activities (e.g., domain analysis), and the activities
which are further divided into a set of tasks (e.g.,
product line scoping). An activity yields a well-defined
artefact based on responsibility for the stakeholder and
embodies other items (tasks).

• Task: A low-level set of activities where one or more
artifacts or assets are produced and finished. A task is
indivisible and is associated with techniques.

• Technique: A specific way to realize a task or a set of
tasks.

• Adjustment: is a tailored concept, which allows to
choose one or more software unit fulfilling a software
item and using a rationale. There are two kinds of
adjustment: constraints between Activities & Tasks,
and applicability rules between Tasks & Techniques.

• Applicability rule: A business or technical condition
allowing to choose a technique rather than another to
realize a task.

• Constraint: A business or technical condition allowing
to choose one or more tasks to realize an activity. A
constraint may exist to a stakeholder profile, a specific
view, a project progress, …

• Management: The majority of the Key Process Area
(KPA) from CMM (Capability Maturity Model) as
project management, risk management, quality
assurance, schedule, subcontracting management, …

• Lifecycle: An iterative and an incremental approach of
the product line process to perform an activity.

• Support: One of the KPAs (Key Process Area) called
configuration management applied to a reusable
context and so product line approach. Reuse
configuration has an impact not only on the process but
also on the work products as artifacts and assets.

To improve the flexibility of our product line process, these
elements (we also say meta-types) are linked to each other
by several applicability rules or constraints. The Wheels
model proposes a way to increase the tailoring inside the
process using a matrix model. This matrix allows to
determine relevant elements to carry out the element parent
(e.g. such activities to realize such main activity).

However, we have only defined the matrix between tasks
and techniques. This part of process is certainly the less
stable (techniques evolve highly).

One or more techniques are used to accomplish a task. The
Key is how to choose the appropriate techniques to fulfill
the tasks. This is accomplished by the use of a matrix
(figure 3).

Tasks

T
e
c
h
n
i
q
u
e
s

M D F F F
D D F F D
D D O O D
F O O O F
F M O D F
R R M R O
D R F M O
D F M D D
R R D R R
O D O O R
F M O F D

Applicability levels between tasks and techniques: Mandatory,
Recommenced, Optional, Discouraged, Forbidden.

Figure 3 – The matrix model between tasks and techniques

Our product-line approach is stakeholder-oriented. Table 1
shows stakeholders who should be affected by the product
line. Its aims at having a clear understanding of a potential
re-organization of a software department or company. This
table explains also the roles of these stakeholders. There is
a difference between roles and persons: a person can have
several roles (e.g. architect and designer) in a small project
and a role may hold by several persons (e.g. analysts,
testers) in a big project.

Stakeholders Roles

Analyst Takes user requirements and develops a
domain analysis model with users
customers and end-users) and requirement
analyst.

Architect Produces a consistent and documented
software architecture that demonstrates
the requirements by building tradeoffs on
the software architecture to be built.

Proposes and justifies technical options
which will be used.

Manages the development activities
related to this project.

Customer Places requirements on application
systems.

Emphasizes on durability of the software
application. This translates in the
following qualities: compatibility,
scalability, reliability, maintainability,
interoperability, use of industry standards,
and use of well-proven technology.

Pays, so wants to track the budget.

Tracks the schedule (software on time).

Assesses risks.

5

Manages the red points.

Is involved when deciding on priorities,
features, and rollout plans.

Defines strategic alliances with COTS
providers.

Designer Designs a subsystem or a category of
classes, and manages interfaces to other
subsystems.

Directs implementation.

Developer Develops documented and annotated
classes, methods, codes in accordance
with design decisions.

Domain
Expert

Gives expertise on the business (including
the future evolutions), and on the existing
products (e.g., internal structures).

End-User Uses the application when installed.

Is a source of usability information when
developing the software.

Emphasizes on the following qualities:
performance, dependability, use of
existing systems, and usability.

Installer Does the rollout.

Maintainer Manages required modifications: error
and improvement.

Marketer Represents customers in the organization.

Analyses the properties of described and
prescribed systems, and indicates which
features are competitive.

Plans the future time to release of the
products on the market (time to market).

Says what slots the future products will
fill in the market.

Project
Manager

Plans and estimates the resources, the
schedule, the budget of the development
process.

Decides technical choices.

Returns feedback to marketer.

Manages the roll-out.

Tracks the costs, the schedule, the
deliverables, the risks, and the red flags.

Requirement
Analyst

Interviews end-users, examines existing
requirement documents, studies
documents that describe the scope of the
domain, and derives specifications.

Senior
Manager

Plans and estimates the quality and the
evolution of the development process.

Technical Gives expertise on the technology (e.g.,

Expert well proven and state-of-the-art
technology and techniques), and on the
existing solutions (e.g., properties and
structures).

Tester Develops and executes test cases for each
development phase in order to validate the
functions and the qualities.

Table 1 – List of stakeholders and their role

To setup a product line in an organization, the process
template can be easily extended to select the relevant
elements and to instantiate the rules. Moreover, the process
assumes on the one hand the legacy system (standard
documentation, software components, project or risks
management, and so on), and on the other hand the
traceability between the different artifacts which have to be
produced.

The process pattern contains all the information which
allow engineers to build in part or the whole process:
description, purpose, involved stakeholders, informal
specifications, required artifacts or assets in input, and
imposed artifacts or assets in output. Therefore, a manager
is able to describe a new process as a function of their own
mains objectives, and to help an organization carrying out a
product-line approach (tradeoffs between activities,
stakeholders, assets, and anything else).

So, the Wheels model proposes a complete process
template. Table 2 shows all items composing it:

Items Descriptions
Synopsis General definition and description of the

process item. The purpose served by
developing process item.

Stakeholders Role of the persons who are involved in
building the process item.

Timing The step in a process where the process
item is normally produced.

Informal
specification

Accurate description of the process item
give advice and guidance.

Inputs/Outputs List of input and output software data of
the process item.

start/final points Adjustments which allow to decide
when a process item must start and
when it achieves.

List of
activities/tasks

List of commented activities/tasks of the
process item, and presentation of
associated techniques.

Example Illustration of a process item.
Reference Citations, books, articles describing in

further detail the process item.
Connection to system engineering.

Table 2 – Process template

6

The Wheels Product Line Process Framework
We presented in the previous paragraph the advantages to
develop a formalized process which clarifies the product-
line understanding offering a pragmatic issue to a company
(to manage their teams and to emphasize on their
objectives).

Since process flexibility must allow a company to decide to
go for a product-line approach (notions of constraints and
applicability rules), we have to develop the tailoring (e.g.
allow a business units to make easily a custom-made
product line process because of our handbook and the
principle of derivation) and the extensibility (add process
elements inside the meta-model and the matrix model).

The Wheels model introduces the tailoring into several
levels. A main activity is composed of activities and they
must be all achieved in order to create this main activity.
On the other hand, even if an activity may be composed of
several tasks (cf. figure 2), only few tasks may achieve it.
Indeed, depending on the organization context and/or of the
stakeholders, it may be pertinent either to not carry out
such and such task, or to realize them in no particular order.
For example, there are at least two ways to create the
“Product Line Scoping” activity. First of all, this activity is
entrusted to a beginner analyst without knowledge of the
domain. So our process will require that all of the tasks
have to be created (cf. table 3). Secondly, this activity is
entrusted to a domain expert and so our process won’t

require all of the tasks (e.g. the “Domain Definition” task).

Processes Domain Engineering, Application
Engineering

Main
activities

Domain Analysis, Domain Design, Domain
Implementation, Application Analysis,
Application Design, Application
Implementation

Activities Product Line Scoping, Requirements
Engineering, Component Design,
Implementation, Legacy Architecture
recovery, Building architecture views, …

Tasks Domain Definition, Domain Scoping,
Domain Modeling, Technological Context,
Capabilities, Subsystem, Architectural
Guidelines, Building Interface, Contextual
Dependency, …

Techniques: Use case modeling, feature modeling,
documentation, static diagrams, views
mining and modeling, …

Table 3 – a part of the Product Line Process Framework

The second level of tailoring is between the tasks and the
techniques which allow to realize them. We have defined
applicability rules between tasks and techniques (figure 2)
by use of a process matrix (figure 3). The matrix shows
how to choose the appropriate techniques to fulfil the tasks
according to the stakeholder profile:

Tasks Domain
Definition

Domain
Scoping

Capabilities Subsystem Architectural
Guidelines

Building
Interface

Use Case Modeling O R M O F O
Feature Modeling O M O R F O

Documentation O O O R M R

Collaboration Modeling F O F D F M

Style mining and
writing

F R R F M F

Decision Modeling F O M F M R
T

echniques
Traceability Support O M M O M M

Applicability levels between tasks and techniques: Mandatory, Recommended, Optional, Discouraged, Forbidden.
Figure 3 – Wheels Process matrix

Thus, in according to the product-line process framework
(PLPF) meta-model, the Wheels model listed all of the
activities, tasks, techniques, constraints, applicability rules,
and so on, necessary for the product line approach. These
different items, specially the constraints and the
applicability rules, may be imposed (e.g. by the marketer)
or chosen (e.g. by the architect).

The process template is the last point which emphasizes the
tailoring. Indeed, the activities of the Product Line Process
Framework are described by an accurate formalism. In this
way, they are easily understood by all of the stakeholders.

First of all, the Wheels model has to guide the stakeholders.
Since they must know what they have to do (output as
assets) and from what (inputs), we apply a handbook which
guides the users during all of the product line phases and
activities.

This guide is dynamic. It is created from the instantiation of
the UML meta-model of the PLPF (figure 2). Indeed, our
idea is to generate the guide sheets from the UML models
as a source code. This technique shares in the extension
advantage (process formalization with UML meta-model)
and the flexibility advantage (everyone can regenerate any
time a guide sheet if the model evolves).

7

Figure 4 shows an example of a guide sheet of a product
line process element: The Domain Modeling task which
composed the Product-Line Scoping activity inside the
Domain Analysis phase.

Name Domain Modeling task

Synopsis The domain modelling task defines the
features of the product line domain. This
goal is to build the features model asset
which describes the structure of the
selected domain. Indeed domain
modelling analyses existing product and
the market strategy inside the scope of
the product line in order to identify the
features of the product-line domain, and
to organise them. To produce the
features of the product line, a analysis
on the existing products (in yours
company and in your concurrent) and on
the market strategy (to take into account
the future standard and the market
evolution).

Stakeholders Domain expert, marketer, software
manager.

Timing

Informal
specification

The domain modelling task is very
important because it is the task which
makes the link between the product-line
scoping activity and the requirements
engineering activity. The features model
created during this task defines and
describes what features of product-line
domain are mandatory, optional or
alternative. Therefore the derivation
activity will select in the features model
the features that you need.

The both domain scoping and domain
modelling tasks are extremely
dependent because all modifications
done in the domain scoping task impact
directly the domain modelling task.
Indeed if the scope of the product-line
domain changes the features model may
also change (e.g.,, some features may
become outside of the product line
domain).

Moreover, the domain modelling task
impacts the requirements engineering
activity, because the features model will
be only closed with the achievement of
the requirements engineering activity.
The domain modelling task defines the
features of the product line follows into

three steps that are:
- Describe the features of existing

product in the product-line domain.
- Study the market strategy in the

product-line domain to avoid to
forget new features.

- Define with selecting the features
that will be implemented in the
product line domain.

Inputs/Outputs - The input of the domain modelling
task is the domain model.

- The output of the domain modelling
task is the context model.

start/final points To be defined

List of tasks Not applicable

Example To be defined

Reference FODACom,
http://www.pisa.intecs.it/reuse/FODAC
om.htm

Kang, K.C. and Cohen, S.G. and Hess,
J.A. and Novak, W.E. and Peterson,
A.S., Feature-Oriented Domain
Analysis (FODA) Feasibility Study,
Technical report, CMU/SEI-90-TR-21,
ESC-TR-90-222, Software Engineering
Institute, Carnegie Mellon, University,
Pittsburg, Pennsylvania, November
1990

Figure 4 – Example of a Process Pattern

8

4 CONCLUSION
Other current processes have been already built which
could be applied on a product line approach: RUP [13]
proposes full guidelines along a project but is not a flexible
process and do not take into account the product line
problematic. OPEN [11] (Object-Oriented Process,
Environment and Notation) formalizes its process using a
meta-model but does not define a full process template and
is not product line oriented. ODM [10] (Organization
Domain Modeling) describes only the Domain Engineering
process. RSP [12] (Reuse-driven System Processes) and
FAST [5] (Family-oriented Abstraction, Specification and
Translation) are both processes oriented towards reusability
but do not provide quite tailoring and extensibility.

We propose a process integrating all of the best practices to
carry out a product line into an organization. The Wheels
process model provides a full formalization of a product
line process through the meta-model, the applicability
model (the matrix), the stakeholder-driven approach and its
full process pattern description. Moreover, the Wheels
model proposes several applicability mechanisms between
the different elements of the process according to rules
and/or constraints chosen or imposed, which allow to have
a tailored process. The Wheels model fulfils the notion of
the extensibility through adding any process elements (e.g.
activities, tasks, techniques) into the meta-model and the
matrix model.

Table 4 summarizes the best practices which characterize
and guarantee the process flexibility.

The Wheels model is currently assessed in the context of
LCAT domain experiments. These experiments cover real
business cases of Alcatel and Thomson-CSF.

Best practices Explanations

Formalization All of the PLP elements (activities,
tasks,..) are identified in an UML meta-
model to increase the process
understanding. Moreover, a full
handbook describes all of the process.

Tailoring Constraints and applicability rules have
been defined between process elements
by use of a matrix. This matrix allows to
choose such-and-such elements
according to the company objectives
and the stakeholders profile.

Extensibility Any other elements can be added to the
process, first of all into the meta-model
and secondly into the matrix.

Standardization Establishing relationships to IEEE
standard documentation (SSS, SSDD,
SRS, …) and CMM assessment.

Full lifecycle All of the PLFP activities are defined
into an iterative an incremental process
for business and technological issues.

Pragmatism The PLFP applies a whole of pragmatic
collection of rules or constraints and a
full handbook.

Deliverables They are exactly described within the
process. A deliverable template has
been chosen and, a guide sheet explains
what and when must be done.

Metrics The PLPF defined appropriate metrics,
standards and tests to assess its maturity.

Management Some full guidelines have been set for
project management and quality
assurance.

Legacy The PLPF preserves the business units
knowledge (domain expertise, legacy
system).

Technique The PLPF separates the process and its
representation even if we defined the
process with a notation in this paper (in
this case UML notation).

Table 4 – Best practices of the PLPF

9

REFERENCES
1. P. Allen, and S. Frost, “All for One and One for All”,

Application Development Advisor, July/august 1998,
pages 26-32

2. Scott W. Ambler, “Process Patterns: Bu ilding Large-
Scale Systems Using Object Technology”, Cambridge
University Press, 1998

3. David C. Gross, and al., “An Instance of the Air
Vehicle Training Systems Domain: A STARS
Demonstration Project”, 1994 SCS Simulation
MultiConference, San Diego, April 11-15, 1994

4. M. Coriat, J. Jourdan and F. Boisbourdin, “The SPLIT
method: Building product lines for software intensive
systems”, SPLC1, August 2000

5. David M. Weiss and Chi Tau Robert Lai, “Software
Product-Line Engineering: a Family-Based Software
Development Process”, Addison-Wesley, 1999

6. D. Firesmith and B. Henderson-Sellers, “Improvements
to the OPEN Process Metamodel”, Joop,
November/December 1999

7. B. Henderson-Sellers and S. J. Mellor, “Tailoring
Process-Focused OO Methods”, Joop, July/August
1999

8. IBM Object-Oriented Technology Center, "Developing
Object-Oriented Software: An Experience-Based
Approach", Prentice Hall, 1997

9. E.-A. Karlsson, “Software Reuse: a Holistic Approach”,
John Wiley & Sons, 1996

10. Mark Simos, "Organization Domain Modeling (ODM)
guidebook", STARS report VC-A025/001/00, Version
2.0, June 1996

11. Ian Graham, Brian Henderson-Sellers, Houman
Younessi, “The Open Process Specification (Open
Series)”, Addison-Wesley, October 1997

12. R. McCabe and G. Campbell, "Reuse-Driven Software
Processes Guidebook", STARS report SPC-92019-
CMC, Version 02.00.03, November 1993

13. Ph. Kruchten, “The Rational Unified Process – an
introduction”, Addison-Wesley, 1999

14. J. Rumbaugh and I. Jacobson and G. Booch, "The
Unified Modeling Language User Guide", Addison
Wesley, February 1999

15. Barry Boehm, and Alexander Egyed, and Julie Kwan,
and Dan Port, and Archita Shah, and Ray Madachy,
“Using the WinWin Spiral Model: a case study”,
Computer, July 1998

16. George Yamamura, “Process Improvement Satisfies
Employees”, IEEE software, September/October 1999

Page 1 of 10

Analysis of the Essential Requirements for a Domain Analysis Tool

Giancarlo Succi Jason Yip Eric Liu
University of Calgary University of Calgary University of Calgary

2500 University Dr. NW 2500 University Dr. NW 2500 University Dr. NW
Calgary, AB, Canada Calgary, AB, Canada Calgary, AB, Canada

T2N 1N4 T2N 1N4 T2N 1N4
(403) 220-8357 (403) 220-4927 (403) 220-4927

Giancarlo.Succi@enel.ucalgary.ca j.c.yip@computer.org liue@enel.ucalgary.ca

Abstract
The overall domain analysis process is a large and complex process involving a web of many
activities. An effective domain analysis tool must address the need to track many different types
of information and dependencies. Investigating other fields such as requirements traceability,
tool integration, and critiquing systems has helped to derive several requirements for a domain
analysis tool which are then matched against existing domain analysis tools. The Holmes
domain analysis tool tries to learn from this analysis of domain analysis tool requirements and
existing domain analysis tools.

Keywords
Domain analysis, automated domain analysis support, traceability, tool integration, critiquing
systems, open architecture, JavaSpaces, tuple space, adapters

1. Introduction
An effective way to implement systematic reuse is through domain analysis, “the process of
identifying and organizing knowledge about some class of problems – the problem domain – to
support the description and solution of those problems” (Arango, 1991).

There have been several attempts to categorize domain analysis approaches (Wartik and Prieto-
Diaz, 1991; Arango, 1994). In particular, Arango shows that domain analysis approaches are
essentially based on coordinating a sequence of steps that start from the analysis of the market
and end with the design of actual software systems (1994). This suggests that domain analysis is
a large and complex process involving a myriad of interrelated activities.

Intuitively, higher levels of complexity lead to more difficult comprehension and a higher
incidence of errors. The complexity of the domain analysis process thus implies that a support
tool is needed. (Dionisi Vici et al., 1998) confirms this, saying that domain analysis practice
“must be supported by tools helping to manage complexity.”

This paper analyses the scope of activities covered by a domain analysis tool and how such
activities relate to other fields such as requirements traceability, tool integration, and critiquing
systems. This analysis is used to derive some possible requirements for a domain analysis
support tool and then discusses the extent to which existing tools satisfy these requirements.
Finally, the paper shows how Holmes (Succi et al., 1999), a domain analysis tool for the
Sherlock methodology, addresses these issues with an architecture based on tuple spaces
(Gelernter, 1985).

Page 2 of 10

2. Requirements of a Domain Analysis Tool
Arango describes a domain as a collection of either similar programs or similar applications
(1994). Domain analysis is then either the process of creating models to reason and predict
aspects about a set of problems or the process of organizing descriptions of common components
and architectures in a set of applications. Whether about similar problems or applications,
Arango shows that domain analysis methods can be decomposed into many, interrelated
activities.

A domain analysis tool has to track different types of information related to the different
activities involved in a particular domain analysis methodology. Since these activities are
interrelated, the tool also has to track the dependencies between different types of data.
According to (Arango, 1994), domain analysis often involves many different knowledge
contributors (i.e., analysts, domain experts, developers, etc.). This suggests that a suitable
system should also support multiple users simultaneously. Therefore, a domain analysis support
system needs to maintain both data and change consistency between many different activities.
Furthermore, it is difficult to comprehend the relationships between multiple, interrelated
activities without having semantic support.

For the remainder of this section, we will examine these aspects of a domain analysis tool:
traceability, tool integration, and semantic support.

The problem of data and change consistency is also known as the problem of traceability.
Traceability concerns have already been observed and analyzed in the field of requirements
engineering. (Gotel, 1994) defines traceability in requirements as the ability to describe and
follow the life of a requirement in both a forward and backward direction through the whole
system’s life cycle.

Traceability support has already been recognized as being valuable for tool support for domain
analysis methods. For example, (Griss et al., 1998) includes “Support for Traceability” as one of
the key concepts for tool support for the FeatuRSEB domain analysis method.

(Domges and Pohl, 1998) describes seven key capabilities of existing requirements traceability
environments. These capabilities are predefined and customizable data types, predefined and
user-definable queries including filtering and sorting, comprehensive configuration management
and change tracking, trace analysis, various presentation formats, teamwork support, and
interfaces to existing 3rd party software.

These capabilities seem to apply also to domain analysis tools with a few exceptions. Domain
analysis data types are likely to be predefined for a particular methodology and probably do not
need to be customizable. Also having various presentation formats is not as essential as the other
capabilities for domain analysis support.

According to (Krut, 1993), the purpose of a domain analysis support tool “should be to offer an
integrated environment for collecting and retrieving the domain model and architectures”. For
each specific domain analysis activity, such as modeling or developing a domain vocabulary,
there is often already an existing tool that can support it. It is preferable for users to use existing

Page 3 of 10

tools rather than having to use a newly developed tool: users are already familiar with existing
tools and specialized tools are more likely to have superior features. In addition, less time is
needed to develop the domain analysis support system, since the only effort needed is the
integration of a tool into the overall system. An effective domain analysis tool should therefore
be able to relatively easily interface to existing 3rd party applications.

Interfacing with third party software has already been analyzed in the area of tool integration.
(Gautier et al., 1995) identifies two aspects of software tool integration: tool-to-framework,
where tools communicate indirectly through the integration framework and tool-to-tool, where
tools communicate directly with each other. (Wasserman, 1989) describes four different
dimensions of integration: user interface, data, control, and process integration. User interface
refers to a common “look-and-feel,” data refers to the sharing of information, control refers to
direct tool-to-tool communication, and process refers to tool activation based on a particular
process model.

For the purpose of maintaining data and change consistency, the most important integration
dimension is data. Data integration can be achieved through a shared repository or by direct data
transfers. The other integration dimensions may be desirable for a domain analysis tool, but not
essential.

Even only considering data integration on its own, tool integration is difficult to achieve because
“in general, domain information is stored in a great variety of data sources, using different data
models, access mechanisms, and platforms.” (Braga et. al., 1999) In this light, tool-to-
framework integration seems more appropriate as it removes the problems of requiring
combinatorial adapter interfaces between multiple 3rd party tools.

(Bayer et al., 1999) recognizes that domain analysis tool support is necessary to “control
information about a domain.” The complexity of the domain analysis process and the difficulty
for the domain analysts to deal with it suggest that some form of assistance would be extremely
valuable and should focus on the semantic relationships between data rather than just syntactic
checking.

The concept of design critics suggests a suitable approach for semantic assistance. Design
critics are intelligent mechanisms that analyze a design and provide feedback to assist the
designer in improving it (Robbins, 1998). According to (Fischer et al., 1993), design critics
should be embedded in the environment and actively but non-disruptively alert designers of
potential problems suggesting potential solutions, if possible. (Robbins and Redmiles, 1998)
describes the critiquing approach as different from traditional software analysis approaches in
that the focus is on the designer’s cognitive needs. Traditional approaches attempt to prove
correctness of a completed or nearly-completed system. Critiquing approaches, on the other
hand, pessimistically detect potential problems in partially specified systems.

The P3, domain-specific component generator (Batory et. al., 2000) uses a tool called a design
wizard which is somewhat similar to design critics except that it is targeted toward optimizing
data structures rather than higher-level design advice.

Page 4 of 10

The previous analysis suggests that a domain analysis tool should support the following
activities:

• Queries on dependency links: filtering, sorting, and other relationships
• Link consistency management: ensures that link traces make sense
• Change consistency management between different activities: ensures that all changes are

propagated correctly
• Simultaneous multiple users: allows more than one user on the system at once
• Semantic assistance: warns user of potential problems
• Data integration with COTS tools: allows COTS tools to communicate with the

framework

3. Current Domain Analysis Tools
As mentioned earlier, there have been several surveys on domain analysis methodologies
(Wartik and Prieto-Diaz, 1991; Arango, 1993). An investigation of existing domain analysis
tools (Yip and Succi, 1999) showed that some tools are focused on particular activities within
domain analysis, mostly modeling and architecture or component development (Krut, 1993;
Prosperity Heights Software, 1999; Loral Defense Systems, 1996) and domain-specific
component generators like P3 (Batory et. al., 2000). Other tools attempt to cover a broader range
of activities. These tools include (Bayer et al., 1999), (Braga et. al., 1999), (Frakes et. al., 1998),
(Terry et. al., 1995), and (Tracz and Coglianese, 1995). In this paper, we are mostly interested in
the complications caused by the multi-activity nature of domain analysis and therefore the
following analysis focuses on the second group of tools.

DADSE (Hayes-Roth et al., 1992; Terry et al., 1995) is a support environment for DICAM
(Distributed Intelligent Control and Management) application development. Its key features
include a blackboard architecture, the ArTek ADL (architecture description language), a query-
capable persistent memory repository, knowledge-based design assistants, and the DADSE
launcher. The design assistants can be registered to respond to event patterns posted by tools to
the blackboard and are able to automate certain tasks. The configurable DADSE launcher
consists of a tool registry, used to “enroll” tools, and tool activators.

DARE-COTS (Frakes et al., 1998) uses COTS and freeware tools to support various domain
analysis activities. The overall environment centers on the Domain Book, currently implemented
using Microsoft Word in outline mode.

Diversity/CDA (Bayer et al., 1999) is a support tool produced in the context of the IESE PuLSE
methodology. This tool uses a 3-tier architecture, consisting of a client layer, a conceptual data
schema layer, and a physical database. Each unit within a client is implemented as a separate
JavaBean and change propagation between views uses InfoBus, the Java implementation of a
software data bus. The architecture allows pluggable workproducts through the use of a general
tool framework and well-defined tool interfaces. Other key features include domain model
instantiation using a decision model, traceability using extensible link types, and link inspectors
to browse links.

DOMAIN (Tracz and Coglianese, 1995) was designed to support the DSSA (Domain Specific
Software Architecture) approach to domain analysis. The tool uses the Chimera hyperweb server

Page 5 of 10

to link objects, viewers, views, anchors, and links. A Browser is used to navigate the hyperweb.
There is also a Domain Launcher that is used to invoke the various DOMAIN editors (hypertext,
dictionary, reference requirement, scenario, and thing).

Odyssey (Braga et. al., 1999) supports a domain engineering method that is called Odyssey-DE.
There is a hypermedia interface to models, patterns and components specified by various tools.
An information agent tool helps with navigation of the hypermedia web. A key feature is the use
of a mediation layer to provide “a uniform representation and manipulation mechanism” for
domain information.

Table 1 shows how the existing tools listed in the previous section target the six proposed
requirements.

Table 1: How Existing Tools Realize the Proposed Requirements

Tool Allows queries
Link

consistency
management

Change
consistency

management

Multi-user
support

Semantic
support

Tool
integration

support
DADSE Directly on

repository
contents

No explicit
links

Simple
configuration
management
with file
locking

Knowledge-
based design
assistants

Tcl/Tk
scripting for
tools not
needing
access to
system data

DARE-
COTS

Manual; links
represented in
“Domain Book”

Loose manual
integration;
all tools are
COTS

Diversity/
CDA

Textual and
graphical link
browsers

Uses InfoBus
for change
propagation

Long-term
locking for
multi-user
consistency

Supports
COTS tools
implementing
InfoBus
interface(s)

DOMAIN Customizable
hyperweb
browser display

Chimera
hyperweb
browser

Must supply
Chimera-
supported
interface

Odyssey Information
agent tool;
hypermedia
web

Mediation
layer

Some tools have support for querying. In particular, DADSE allows queries directly on the
contents of its persistent memory repository and DOMAIN allows customization of its hyperweb
browser display using filtering. Link consistency is supported by all of the tools to varying
degrees. Both Diversity/CDA and DOMAIN use a browser to navigate links while DARE-
COTS has the manual method of simply representing links in its “Domain Book”.
Diversity/CDA also has change consistency support using InfoBus. Both DADSE and
Diversity/CDA provide multi-user support in the form of file locking. DADSE also provides
semantic support with its knowledge-based design assistants. Tool integration support is
provided by all the tools examined. DARE-COTS has very loose integration while the other

Page 6 of 10

tools are tighter, using scripting (DADSE) or requiring implementation of an interface
(Diversity/CDA, DOMAIN, and Odyssey).

Altogether, the strongest area of support seems to be link consistency management and tool
integration support, with each tool having different levels and forms of integration support. The
weakest area of support seems to be in change consistency management and semantic support.

4. Holmes Architecture Experience
Holmes is a tool system built to support Sherlock.

Sherlock is a domain analysis and engineering methodology with five main phases (Domain
Definition, Domain Characterization, Domain Scoping, Domain Modeling, Domain Framework
Development), each with multiple activities. The goal of Holmes is to support the web of
activities in Sherlock while remaining open to easier future evolution.

Figure 1 shows the overall architecture of Holmes, which centres on the use of JavaSpaces (Sun,
1998) as a shared blackboard of objects. This is similar to DADSE’s use of blackboard
architecture. This type of architecture was chosen because it more simply meets several of the
identified essential requirements, namely change consistency management, multi-user support,
and tool integration. This architecture also allows for the possibility for tools to be applets to
allow a Web-based structure. A more detailed description of the Holmes architecture follows.

As shown in Figure 1, tools connect to the JavaSpace to communicate data state changes. Data
repositories used for more permanent state storage also connect to the JavaSpace to wait for
requests for data retrieval as well as monitor posted data state changes. This architecture
supports multiple users in a very simple way since each user’s client can anonymously connect
to the space and then post and listen to appropriate data state changes. This style is also
appropriate for use on the Web. The tools, in this case, would be applets and would locate the
appropriately named JavaSpace using Jini lookup.

Data
Repository

HML
Storage

State
changes

Tool 1

State
changes

State
changes

Tool
Adapter 1

Tool
Adapter 2

Tool 2

Figure 1: Holmes architecture

Page 7 of 10

Each domain analysis activity requires different data types; therefore event queues for each data
type exist in the JavaSpace. Tools interested in changes to a certain type of data listen for new
events on such queues. When a change occurs in that particular type of data, a tool posts this
change on the event queue. All listening tools are notified, and each can update their local state
accordingly. This is similar to Diversity/CDA’s use of InfoBus to propagate changes. Figure 2
shows a simplified version of the event queue.

EventQueueTail

currentPosition
eventType

Event

position:1 ...

Event

position:2

Event

position:N

Figure 2: Event Queue

Tool integration with this architecture is accomplished using tool adapters that are being
developed for each Sherlock domain analysis activity. These adapters handle the interaction with
JavaSpaces and the event queues. As shown in Figure 1, tools simply have to communicate with
the tool adapters to receive and transmit data state information. For instance, a user may be
interested in using Emacs for code editing during the domain framework development (DFD)
phase of Sherlock. A DFD adapter keeps track of the state of the shared source files by attaching
itself to the appropriate event queues in the JavaSpace. When a user edits a file, the adapter asks
Emacs to load it via an Emacs Lisp (Elisp) function call. The user can now make code changes
within Emacs. Once editing is done and changes are to be committed, the user invokes another
Elisp function to notify the adapter. The adapter will then handle the posting of the code changes
to the appropriate event queue(s).

The choice of how Holmes data is statically represented is also related to the tool integration
requirement. Holmes data is stored using the Holmes Markup Language (HML), which is
essentially XML (W3C, 1998) with a custom Document Type Declaration (DTD). The
advantage of an XML-based format is that the data can be viewed in a human-readable form
using a text or XML viewer. This maintains independence of the data from the particular tool
that manipulates it. The human-readable structure also provides the capability of building DTD
translators to convert from HML to other XML-based languages. Although it does not
completely eliminate the need to build adapters, in this case DTD translators, the effort is
somewhat standardized and reduced. Obviously the advantages of this approach relies on the
growing popularity of XML as a data format, especially for Product Data Management systems
(Gould, 2000) and UML CASE tools (OMG, 1998).

Page 8 of 10

The tool adaptors also assist with integrating a design critiquing system for semantic support.
Similar to the knowledge-based design assistants in DADSE, the critiquing system can base its
responses on the data objects that appear in the JavaSpace independent of the tool that placed the
data objects. The advantage of this approach is that the critiquing system becomes independent
of the different tool interfaces.

The critiquing system uses the Prolog (Sterling, 1986) language to write specific critiquing rules.
Prolog was chosen as the scripting language of choice since Prolog clauses are very well suited
to the description of relationships. Prolog scripts are also used to support dependency link
querying. A tool or user can apply Prolog scripts that then query the system for the dependencies
of a particular piece of activity data.

The mapping of Holmes features to the derived requirements for domain analysis tools is shown
in Table 2:

Table 2: How Holmes Satisifies Identified Requirements

Feature
Allows
queries

Change
consistency

management

Link
consistency

management

Multi-user
support

Tool
integration

support

Semantic
support

JavaSpaces X X X
Data
repositories

X X

Event queue X
Tool adaptors X
Holmes
markup
language

X

Critiquing
system

X X

Prolog
scripting

X X

5. Conclusion and Future Work
Our proposed requirements for domain analysis tools are the ability to maintain change and link
consistency, query dependency links, simultaneously support multiple users, support tool
integration, and provide semantic support. The currently existing tools support these identified
requirements in varying degrees. The weakest area seems to be in maintaining change
consistency and providing semantic support.

Our approach with the Holmes domain analysis tool has been to combine the various ideas of
existing tools with novel implementations. The experience has shown that the key ideas of
existing tools are not mutually exclusive and that there are avenues of improvement that have
been neglected or have not yet been investigated.

Our initial examination of requirements traceability tools has brought up capabilities that do not
yet exist in current domain analysis tools, namely customizable data types, trace analysis, and
various presentation formats. These capabilities should be examined more closely to assess their
usefulness and criticality in developing domain analysis tools.

Page 9 of 10

Overall, more work will be done on developing the default Holmes tools, visualizing links, and
adding capability to the critiquing system.

Finally, using XML as a data format leads to the question of whether there are any essential data
types within domain analysis. Perhaps a standard or common DTD can be generated for domain
analysis data. This would increase interoperability between different domain analysis tools as
well as just the activity-specific tools.

Acknowledgements
This research has been partly supported by the Canadian National Science and Engineering
Research Council, the Government of Alberta, and by the University of Calgary.

References
Arango, G. and R. Prieto-Diaz (1991) “Domain Analysis and Software Systems Modeling”,

Domain Analysis Concepts and Research Directions, IEEE Computer Society Press
Arango, G. (1994) “Domain analysis methods”, Software Reusability, Ellis Horwood
Bayer, J., D. Muthig and T. Widen (1999) “Support for Domain and Variant Engineering:

DIVERSITY/CDA” submitted to Automated Software Engineering ’99
Batory, D., G. Chen, E. Robertson, and T. Wang (2000) “Design Wizards and Visual

Programming Environments for GenVoca Generators”, to appear in IEEE Transactions on
Software Engineering, URL: ftp://ftp.cs.utexas.edu/pub/predator/ieee-tse-99.ps

Braga, R., C. Werner, and M. Mattoso (1999) “Odyssey: A Reuse Environment based on
Domain Models”, Proceedings of the 1999 IEEE Symposium on Application-Specific
Systems and Software Engineering & Technology

Dionisi Vici, A., N. Argentieri, A. Mansour, M. d' Alessandro, and J. Favaro (1998)
“FODAcom: An Experience with Domain Analysis in the Italian Telecom Industry”,
Proceedings of the Fifth International Conference on Software Reuse

Domges, R. and K. Pohl (1998) “Adapting Traceability Environments to Project-Specific
Needs”, Communications of the ACM, 41(12)

Fischer, G., K. Nakakoji, J. Ostwald, G. Stahl, and T. Sumner (1993) “Embedding Computer-
Based Critics in the Contexts of Design”, Conference proceedings on Human factors in
computing systems

Frakes, W., R. Prieto-Diaz and C. Fox (1998) “DARE: Domain analysis and reuse environment”,
Annals of Software Engineering, 5(1998)

Gautier, B., C. Loftus, E. Sheratt, and L. Thomas (1995) “Tool Integration: Experiences and
Directions”, Proceedings of the 1995 International Conference on Software Engineering

Gelernter, D. (1985) “Generative communication in Linda”, ACM Transactions on Programming
Languages and Systems, 7(1)

Gotel, O., and A. Finkelstein. (1994) “An analysis of the requirements traceability problem”,
Proceedings of the 1994 International Conference on Requirements Engineering

Gould, J. (2000) “PDM/EDM/ERP/SCM... Where Will It All End?”, Desktop Engineering, 5(4),
URL: http://www.deskeng.com/articles/00/Feb/pdmedm/index.htm

Griss, M., J. Favaro, and M. d’Alessandro (1998) “Integrating Feature Modeling with the
RSEB”, Proceedings of the Fifth International Conference on Software Reuse

Page 10 of 10

Hayes-Roth, F., L. Erman, A. Terry, and B. Hayes-Roth (1992) “Domain-Specific Software
Architectures: Distributed Intelligent Control and Management (DICAM) Applications and
Development Support Environment”, Software Technology Conference: Proceedings of a
Workshop

Krut, R. (1993) “Integrating 001 Tool Support into the Feature-Oriented Domain Analysis
Methodology”, Technical Report CMU/SEI-93-TR-11, Software Engineering Institute,
Carnegie Mellon University

Loral Defense Systems (1996) “User Manual: ELPA Domain Generation Environment (EDGE)
Version 2.0”, Technical Report STARS-PA 19-S001/002/00

OMG (1998) “XMI Revised Submission to the SMIF RFP”, OMG document ad/98-10-05, URL:
http://www.omg.org/cgi-bin/doc?ad/98-10-05

Predonzani, P., G. Succi, and T. Vernazza (1999) A Domain Oriented Approach to Software
Production, Artech House Publisher Inc.

Prosperity Heights Software (2000) “Metaprogramming Text Processor”, URL:
http://www.domain-specific.com/MTP/index.html

Robbins, J. (1998) “Design Critiquing Systems”, Technical Report UCI-98-41, University of
California, Irvine

Robbins, J. and D. Redmiles (1998) “Software Architecture Critics in the Argo Design
Environment”, Knowledge-Based Systems, 11(1)

Sterling, L. and E. Shapiro (1986) The Art of Prolog: Advanced Programming Techniques, MIT
Press

Succi, G., A. Eberlein, J. Yip, K. Luc, M. Nguy, and Y. Tan (1999) “The Design of Holmes: a
Tool for Domain Analysis and Engineering”, Proceedings of the 1999 IEEE Pacific Rim
Conference on Communications, Computers, and Signal Processing

Sun Microsystems (1998) “JavaSpaces™ Specification, Revision 1.0 Beta”, URL:
http://java.sun.com/products/javaspaces/specs

Terry, A., T. Dabija, T. Barnes, and A. Teklemariam (1995) “DADSE 2.3 User Manual”,
Teknowledge Federal Systems

Tracz, W. and L. Coglianese (1995) “DOMAIN (DOmain Model All Integrated): A DSSA
Domain Analysis Tool”, Technical Report ADAGE-LOR-94-13

Wartik, S. and R. Prieto-Diaz (1992) “Criteria for Comparing Reuse-Oriented Domain Analysis
Approaches”, International Journal of Software Engineering and Knowledge Engineering,
2(3)

Wasserman, A. (1989) “Tool Integration in Software Engineering Environments”, Lecture Notes
in Computer Science 467 – Proceedings of Software Engineering Environments,
International Workshop on Environments

W3C (1998) “Extensible Markup Language (XML) 1.0”, W3C Recommendation, REC-xml-
19980210, URL: http://www.w3.org/TR/REC-xml

Yip, J. and G. Succi (1999) “Domain Analysis & Engineering (DA&E) Support Tools Feature
List and Comparison”, Technical Report, University of Calgary

Embedded Systems Product Lines Díaz-Herrera & Madisetti.

All rights reserved, copyrighted material. 1 (C) Georgia Tech, 1999.

Embedded Systems Product Lines
Jorge L. Díaz-Herrera† and Vijay K. Madisetti††

†Department of Computer Science, Southern Polytechnic State University
1100 South Marietta Parkway, Marietta, GA 30060-2896 jdiaz@spsu.edu

††School of Electrical and Computer Engineering, Georgia Institute of Technology
Atlanta, GA 30332-0250 vkm@ece.gatech.edu

ABSTRACT
Embedded electronics products, ranging from PDAs, PCS phones, information appliances (IA), automotive computing
systems, to complex radar systems, consist of application-specific hardware and application-specific software optimized for
size, weight, power, and performance considerations. In most embedded systems, 80-90% of the functionality is provided in
the software, with the hardware providing the interface and computing resources. The software functionality can be quite
complex with multiple crosscutting aspects (such as performance, reliability, safety, and other embedded systems
requirements.) and diverse and stringent interface requirements (e.g., networking in terms of wireless, wired or satellite links).
Developing software for such systems can be likened to creating, composing, and conducting an orchestra or symphony, as
opposed to playing an individual instrument, and requires a new and powerful methodology. As part of the Yamacraw
Embedded Systems (YES) program1, we are developing a systematic methodology for facilitating rapid and efficient software
development for embedded real-time systems. This report presents some initial approaches and describes our product-line
oriented, reuse-driven YES methodology drawing upon best practice from industry and academia.

1 Embedded Systems Development

1 http://www.yamacraw.org

Embedded systems applications range from smart
phones, network computers, personal digital
assistants (PDAs) to enterprise web servers.
These systems, and more specifically systems-on-
a-chip (SoC), are characterized by the need for
interaction with their environment, requirements
for meeting time-driven, power, and weight
constraints, need for low cost and efficient
implementation in hardware and software, in
addition to high levels of reliability and
availability. Designing embedded electronics
products involves a diversity of creative
professionals including systems, hardware, and
software engineers involved in conceptualizing,
creating, implementing, test ing, and
manufacturing the products. This process
requires many steps and iterations, each with
specialized tools. A simplified view of this
integrated process is shown in the flow chart on
the right, highlighting the major steps in going
from a set of needs to a product/solution that
involves both computer hardware and software.

The first three steps are part of systems
engineering, an area that deals with high-level
structures such as the overall system architecture,

Needs

Hw/Sw Co-design

Systems
Requirements

Elicitation Systems
Requirements
Specification Systems

Architecture
Definition

Software
Development

Hw/Sw
Integration

Hardware
Development

System
Integration
and Testing

Solution

Systems Analysis & Design
(partitioning)

Figure 1: System Development Process

Embedded Systems Product Lines Díaz-Herrera & Madisetti.

All rights reserved, copyrighted material. 2 (C) Georgia Tech, 1999.

and the tradeoffs of partitioning functionality into hardware or software. Co-design then follows, where
hardware and software engineers are concerned with implementation details and the integration of
hardware and software; these steps are usually performed in parallel. Software development includes
application and system software. Hardware development provides the computer system architecture and
the physical devices. The Hw/Sw integration is a complex task, and includes operating systems, device
drives, APIs and the software interfacing the hardware [Madisetti1998].

Embedded system designs are increasingly more software-driven, as more and more of the functionality is
placed in software, thus software engineers are being required to perform a greater design and
implementation job. This puts much of the cost of designing embedded systems in their software
development. Embedded systems applications are highly device dependent requiring that each time a new
system is built, routine functionality is custom-written repeatedly from scratch for the hardware being
controlled. Such practices have a number of drawbacks and shortcomings as already noted [Brownsword
96; Brown 98].

While traditional software industry has had some measure of success in the past decade (due perhaps to
the development of modern programming methodologies and practices), little progress has been observed
in the area of development methodologies for embedded systems. For example, only recently, has there
been some discussions of the use of object technology for real-time systems; product development/system
design life cycle is fundamentally waterfall, and top-down driven. Current approaches are not entirely
satisfactory in all aspects of embedded systems development. With increasing pressure to reduce time-to-
market, we need to look for ways to accelerate this process. The YES effort is one of the largest and
possibly the most comprehensive effort in the world devoted to a systematic study and research in the
area of embedded systems design.

We need to move our focus from engineering single systems to engineering systems of systems through a
product line approach. This will allow us to come up with the “right” solution quickly, thus dramatically
shortening time-to-market while improving quality. The goal is to produce quality software products
consistently and predictably by moving toward an asset-supported development process and by adopting a
component-based development strategy. The quality of products is maintained through rigorous
application of analysis and prediction, continuous improvement and refinement through designed
experimentation and feedback from observations [Withey 96]. This move may assist in finding the correct
direction toward the more encompassing aim of attaining industrial-strength software engineering, a
necessary condition that naturally leads to systematic reuse [Diaz-H 95].

One of the factors that hold reuse back in the embedded systems domain is the known fact of lack of firm
standards in many areas. For example, development environments are fragmented, with little
interoperability between different levels of tools and poor portability across environments. Industry-
adopted connectivity standards between development environments involving mixing languages, cross-
platform compilers, and multilingual debuggers do not exist2. There is a need for such standards
simplifying interfaces between environments and across embedded systems components. In addition,
most embedded systems methods focus on developing single systems rather than families of systems.
Furthermore, as mentioned earlier, embedded systems have to optimize the form factor and real-time
requirements of the electronics product – including its area and power consumption, volume, and cost – a
set of factors often ignored in mainstream software practice, thus rendering opportunistic reuse
ineffective at best. . [Madisetti 1998].

In summary, our goal is then to reduce time-to-market, while increasing quality, by providing a
comprehensive embedded systems methodology supported by a rich set of reusable assets.

2 A noticeable exception is the Ada ISO standard which provides platform independent and paradigm independent technology for

embedded systems development, but Ada technology has not been widely accepted by industry.

Embedded Systems Product Lines Díaz-Herrera & Madisetti.

All rights reserved, copyrighted material. 3 (C) Georgia Tech, 1999.

2 Yamacraw Embedded Systems Methodology: a Model-Based Approach
We contend that the causal relationship between
building model solutions (or assets) and constructing
actual products from these models provides a
candidate basis for industrial-strength embedded
software construction. This duality is commonly
found in more traditional engineering where a
distinction is made between original design and
routine practice [Díaz-H. 97; Paul96]. (See Figure 2.)
Within this framework, products are created by
instantiating models and by integrating prefabricated
artifacts, whereby the developing process becomes
more a routine practice activity of mapping from
needs to solutions rather than a synthesis activity of
building from scratch. That is, setting problems in
terms of known solutions, not building products
from first principles repeatedly. In the software
realm, the term Domain Engineering (DE) is used to
refer to a development-for-reuse process to create
software assets. This process is realized by creating
new solutions using first principles, and sometimes

by inventing completely new technology. This usually requires careful technical and economic analyses
and goes through all development phases. The complementary term of Application Engineering (AE)
refers to a development-with-reuse process of producing specific systems by the routine application of
prefabricated assets to solve reoccurring problems in a domain. This generally requires original design
effort only once. Model-based Software Engineering is an approach in this direction [Withey 94].

We take this approach, discussed below, to directly support the systematic construction of products in the
domain of embedded systems for the specific Yamacraw product lines of personal, enterprise, and home
applications of embedded electronics products. The reusable assets include software components as well
as hardware blocks or “cores.”

Fundamentally, reuse (certainly not a new idea, although ASIC design for reuse is new) has the effect of
reducing variance and increasing homogeneity, key for any discipline that has moved into
industrialization3. For this, we must identify the common components that implement functionality
typically present in the applications in a domain, and particularly, the way that these may vary from one
product to another. Furthermore, those crosscutting aspects would be tackled in a uniform way, thus
generating more reusable standard solutions. The successful implementation of this approach leads to
systematic software reuse for a specific set of products, i.e., a product line. A common definition of
product line is “a group of products sharing a common, managed set of features that satisfy the specific
needs of a selected market or mission. A software product line is a set of software-intensive systems
sharing a common, managed set of features that satisfy the specific needs of a particular market segment
or mission.” [Cohen 95 & 99].

In addition to quality requirements, reusable assets must be more general, and hence adaptable, not
designed for a single technology, that is “portable” and independent of specific simulators, capable of
being independently verified in different environments (or chips), and fully documented. A critical aspect
is the ability to design “reusable” components from specification to silicon with the understanding of their
need for adaptation when reused, a more difficult task for hardware cores. Furthermore, we must be able

3 Statistical process control, for example, has worked successfully in environments characterized by low variance.

Domain Engineering or Original Design (R&D)
(application of first principles)

Application Engineering or Routine Practice
(application of known solutions)

Figure 2: Model-based development

Product lines
Development

activities

Modeling
activity

Product

Specific
product
requirements

Domain
knowledge

Model
Solutions
 (assets)

Technology

Embedded Systems Product Lines Díaz-Herrera & Madisetti.

All rights reserved, copyrighted material. 4 (C) Georgia Tech, 1999.

to capture the design information in a consistent and “standard” form, in such a way that components can
be integrated by engineers other than the original designers.

The Yamacraw embedded software design project encompasses a multi-disciplinary team of diverse
researchers grouped into five groups labeled SOW1..5 as follows:

• SOW 1.0 Requirements & Specification Methodologies for Embedded Systems
• SOW 2.0 Smart Compilers for Embedded Systems
• SOW 3.0 Personal Embedded Computing Environments
• SOW 4.0 Networked & Enterprise Embedded Applications
• SOW 5.0 Home Computing Applications

The framework presented in Figure 1 above is quite generic. In YES, we have broken the domain
modeling activity into two converging sets of activities, namely representat ion and c o -
design/optimization (see Figure 3). The development activities correspond to the various Yamacraw
product lines. A third element, and one that represents the interface between domain engineering and
application engineering, is the repository.

Figure 3: Modeling and development activities for Yamacraw Embedded Software (YES) Project [Díaz-H 00]

The modeling activities define the solution space consisting of the “reusable assets;” these take the form
of generic components4, with all their possible combinations. The assets are stored in a suitable
repository, or models library, and serve as templates for the generation of the various work-products
during a product development. Generative development can be applied, whereby that the application
engineer states requirements in abstract terms and the generator produces the desired system or
component. There are three parts to the solution space, namely domain models, solution models, and

4 We use the term components in its most widely form to include requirements, software and hardware architectures as well as

blocks (both hardware and software code modules) and their test harnesses.

Domain modeling

Product Development

SOW 1

Representation
• syntax
• semantics
• templates/patterns

Domain
Knowledge

Domain
Knowledge

Target Hw
Architectures

Target Hw
Architectures

SOW 2

Co-design/opt.
• compilers
• profiles
• schedulers
• maps
• code generators

Solution
Models

Domain
Models

Models
Library

SOW 3

Personal
Embedded
Applications

SOW 4

Networked &
Distributed
Applications

SOW 3

Home
Set-top Box
Applications

! Technology "
UML, RMA, …
VHDL, ADLs, ...

Configuration
Models

Reqs. Product Reqs. Product Reqs. Product

Domain
Engineering or
Original Design

(R&D)
(application of
first principles)

Application
Engineering or

Routine Practice
(application of

known solutions)

modeling

product
development

Embedded Systems Product Lines Díaz-Herrera & Madisetti.

All rights reserved, copyrighted material. 5 (C) Georgia Tech, 1999.

configuration models. A domain model formalizes knowledge about existing systems and requirements
for new systems. Solution models represent both software and hardware architectures (i.e., components
and their interfaces) suitable for solving typical problems in the domain. A configuration model maps
between the domain model and solution models in terms of product construction rules, which translate
capabilities into implementation components. These rules describe legal feature combinations, default
settings, etc. For example, certain combinations of features may be not allowed; also, if a product does
specify certain features, some reasonable defaults may be assumed and other defaults can be computed
based on some other features. The configuration model isolates abstract requirements into specific
configurations of components in a product line architecture.

A fundamental problem we are facing is the inability of representing all the design information in an
appropriate modeling notation, one that is suitable at various levels of abstraction and that can present the
design from various view points.

Unified Modeling Language (UML) Extensions: We are conducting research to develop new and
powerful extensions to UML to develop a methodology to specify and describe embedded software
systems and their underlying models of computation and communication. The extensions, which will
constitute our System-Level Description Language, include:
• Extensions to include behavior of analog interfaces within the embedded specification
• Extensions to include real-time related behavior within the specification
• Extensions to include size, weight, area, and power (SWAP) constraints early on the design process.
• Extensions to include hardware/software interfaces and capabilities to develop an executable

specification capable of expressing the concurrency in the real-system being described.

Embedded Software Product Lines: Our target market areas are for the development of applications for
the personal, enterprise and home-based embedded computing systems. The main objective of this
activity is to develop common (semantic) design pattern libraries for embedded applications. A library of
building blocks will be developed as part of this research that will allow an embedded software developer
to rapidly customize them for various applications within the target market areas using the tools and
languages provided with the YESDESK.

We have identified a number of tasks to be performed as part of this activity as follows. To address the
question of what components are needed requires special, broad analyses of the problem domain to
identify the components “present” in the products of a given domain, a process known as domain
analysis. The goal here is to produce or to acquire a description of the products that will constitute the
product line together with an analysis common and optional features. Components, or blocks, exist at
various levels ranging from domain independent IP (intellectual property) such as processors, standard
interfaces, common algorithms, to domain-specific blocks (e.g., multi-media, DSP, communication IP,
etc.), to application specific components (those intended for a single system).

Components are designed to fit a common
architecture of the products in a domain to exploit
implicit commonality with explicit control of
variability. This requires a consolidation of
understanding of the software systems in a domain
which in turn leads to design for commonality and
control of variability of the cross-cutting aspects
found in the application in the domain. This
understanding is documented in domain models
representing the common features of the software
applications, or product lines, in that particular
domain. The synthesis focus is one of control of
variability within a product line and the design of

•••

Components and
Product Line Architectures

Solution
models

product lines' features
Why

What

How

•••

Domain
models

Organization
(mission)

business factors

Vertical reuse

Horizontal reuse

Figure 4: Domain and Solution models

Embedded Systems Product Lines Díaz-Herrera & Madisetti.

All rights reserved, copyrighted material. 6 (C) Georgia Tech, 1999.

commonality across product lines, which results in the definition of product lines architectures and
components designs documented as solution models. Reuse thus actually occurs both within a product line
and across product lines, a notion discovered earlier and associated with the concepts of horizontal and
vertical reuse. These notions of vertical and horizontal reuse are widely recognized today, and have been
formally incorporated in important software construction technology such as CORBA [Siegel 98]. The
top layers of the CORBA architecture specify standard objects that can be shared by applications across
domains; they are known as the Horizontal CORBA Facilities. Standard objects that are reusable within
products in a given product line are referred to as the Vertical (Domain) CORBA Facilities.

Designing the architecture for the product line involves answering questions such as:
• what kinds of components are needed? What are the relevant architectural building blocks, such as

Styles, Patterns, and Frameworks, that can be applied towards meeting the product and production
constraints?

• Development of model libraries for analog, RF, and digital building blocks: These libraries will
facilitate rapid evaluation of various design and implementation alternatives.

• High level descriptions of the features of each product line documented as use-case models and object
models. What are the commonalties and variations among the products that will constitute the product
line? What are their behavioral and quality requirements? What features do the market and technology
forecasts say will be beneficial in the future?

• Will generic components be produced internally or purchased on the open market? What off-the-shelf
components should be used?

• How can they be connected? What kind of middleware or component model will be used? What
interfaces component categories will have?

• how they will accommodate the requirements, etc.

Inventory of Pre-existing Assets:
• What legacy components could/should be reused?
• What are the software and organizational assets available at the outset of the product line effort?
• Are there libraries, frameworks, algorithms, tools, and components that should be utilized?

We also need to define the software engineering process and support tools for building products from the
core assets, and their storage and retrieval. This involves the use of domain-specific languages, code
generators and component libraries, and it is supported by component composition technology such as
CORBA, DCOM, JavaBeans, ActiveX, etc.
• What standards apply to the products in the product line? What is the underlying infrastructure? What

are the time-to-market or time-to-initial-operating-capability requirements?
• Will the product line be built from the top-down or bottom-up? (I.e., starting with a set of core

domain-wide assets and spinning off products from those, or starting with a set of products and
generalizing their components to produce the product line assets)

• Will products be automatically generated from the assets or will they be assembled?
• What is the mechanism for cataloging, indexing, and retrieving assets? What is the configuration

management policy?

Figure 1 represents the canonical, generic design process for embedded systems. Increases in complexity
and pressures to shorten time-to-market indicate that the development/product design life cycle become
one of incremental development combining bottom-up development with top-down specifications, with
increasing iteration between hardware and software designers.

The impact of our research in this area can be significant. It can greatly increase the productivity of the
embedded software effort with our new specification languages and tools that draw from the library of
templates that will be developed. For the first time, we are able to include analog behavior, in addition to
information on constraints on the design, resulting in first pass success in code development [Chonlameth
99]. For example, SoC’s specifications are required for both hardware and software blocks, and they

Embedded Systems Product Lines Díaz-Herrera & Madisetti.

All rights reserved, copyrighted material. 7 (C) Georgia Tech, 1999.

must completely describe the behavior of the system as a whole. The various components are typically
specified using different specific technology as illustrated by Figure 5 [Keating and Bricaud 1999].

Figure 5: SoC Components specifications from [Keating and Bricaud 1999]

Smart Compilers for Embedded Systems. Most of the detailed code development for embedded
applications is done manually and is thus error-prone and also costly and time consuming. Using the
leverage provided by the UML-YES extensions in describing the embedded application in a way that
provides visibility into its function and interface requirements, we can organize the solution mapping as
follows:
• High level mapping of embedded applications on to processing architectures --- Our research is

focussed on developing tools that can extract the concurrency from an embedded specification to assist
with its efficient mapping onto parallel/multiprocessor embedded systems.

• Development of advanced simulation infrastructure for system-on-chip (SoC) and system-on-package
(SoP) application that allow efficiency co-simulation of analog, digital, and RF components that
constitute embedded applications.

• Smart compilers for embedded DSP and telecom applications: We are developing new intermediate
representations (IR) for compilers that allow capture of those characteristics in DSP and telecom
applications that will facilitate their efficient compilation on to modern system-on-chip DSP
platforms. The focus is on developing tools, unlike current research that focuses on mainframe
applications and their compilation, for embedded application compilation, taking into advantage a
library-based approach. The compilers are expected to be able to rapidly be customized for various
processor architectures, ensuring high reuse and reduced cost.

• Real-time operating systems: We are developing new specifications for real-time operating systems
that are characterized by hardware support for essential features.

The development of a new and efficiency specification for embedded software as in UML-YES, requires
support for converting this specification (in an automated manner) to its implementation. For the first
time, we are focussing on both these aspects - the specification and its implementation through the
process of “smart compilation.” The smart compilation process will synthesize (or provide extensive

CHIP

Bus monitor Application software
Drivers/RTOS Compiler(s)

Memory
(VHDL/Spec-C)

Memory controller
(VHDL/Spec-C)

Processor
(VHDL/Spec-C)

I/O Interface
(RTL)

Data Transform
(RTL)

I/O Interface
(RTL)

RTL interface RTL interface

Communication Bus
functional model

(RTL)

Sequence
generator/
analyzer

Communication Bus
functional model

(RTL)

Embedded Systems Product Lines Díaz-Herrera & Madisetti.

All rights reserved, copyrighted material. 8 (C) Georgia Tech, 1999.

support for this process) of efficient embedded systems quickly for an UML-YES specification. This will
greatly improve the productivity in developing embedded systems, possibly by an order of magnitude.

3 Summary
The YES effort, one of the largest of its kind, is characterized by its 2-3 year focus of research that will
rapidly change the way embedded software in SoC is specified, analyzed, synthesized, and implemented
in the near future. Some of the fundamental problems we are addressing include heterogeneous design
representation using a common notation (UML-YES), reuse-driven business model for SoC, sources of
reusable IP for SoC, Reuse for ASIC development is not common, however, most designs are not unique
but modifications/improvements of existing designs (new features, better performance, etc.) or integration
of existing blocks into a new larger design.

4 Bibliography
[Brownsword 96] Lisa Brownsword and Paul Clements "A Case Study in Successful Product Line

Management" CMU/SEI-96-TR-016. Pittsburgh, PA: Carnegie Mellon University, 1996.

[Brown 98] A. W. Brown and K. C. Wallmau “The Current State of CBSE.” IEEE Software, 1998.

[Cohen 95] S. Cohen, Friedman, Martin, Solderitsch, and Webster. “Product Line Identification for
ESC-Hanscom.” CMU/SEI-95-SR-024. Pittsburgh, PA: Carnegie Mellon University.

[Cohen 99] S. Cohen. “Guidelines for developing a product Line Concept of Operations.”
CMU/SEI-99-TR-008. Pittsburgh, PA: SEI, Carnegie Mellon University.

[Díaz-H. 95] J. L. Diaz-Herrera, S. Coehn, and J. Withey, Institutionalizing Systematic Reuse: A
Model-Based Approach, in Proceedings of the Seventh Workshop on Institutionalizing
Software Reuse, 1995.

[Díaz-H. 97] J. L. Díaz-Herrera, “Integrating Architectures, Frameworks, and Patterns: a Model-
Based Approach.” OPPSLA 97 workshop #26, Object technology, Architectures, and
Domain Analysis – What is the Connection? – Is there a Connection?

[Díaz-H 00] J. L. Díaz-Herrera and V. K. Madisetti “The Yamacraw Embedded Software (YES)
Methodology: A Technical Analysis.” Yamacraw (YES) Technical Report CSIP-TR-00-
01, 1/31/2000.

[Keating & Bricaud 1999] M. Keating and P. Bricaud. Reuse methodology Manual, for system-on-a-chip
designs. Kluwer, Boston: 1999.

[Madisetti 98] V. Madisetti, "An Embedded Software Research Program: A Proposal." CSIP TR-98-03,
30 August 1998. URL www.ece.gatech.edu/~vkm/TR/

Chonlameth 99 Chonlameth A. and V. K. Madisetti, "Constraint-Based Codesign (CBC) of Embedded
Systems: The UML Approach." CSIP TR-99-01, 12 December 1999.
www.ece.gatech.edu/~vkm/TR/

[Pahl 96] Pahl, G. and Beitz, W. Engineering Design: a Systematic Approach. Springer-Verlag:
Berlin, 1996.

[Siegel 98] Siegel, . “OMG Overview: CORBA and the OMA in enterprise Computing”
Communications of the ACM, vol. 41, no. 10, 1998: 37-43.

[Withey 94] Withey, J. “ Implementing MBSE in Your Organization: An Approach to Domain
Engineering (CMU/SEI-94-TR-1). Pittsburgh, PA: Carnegie Mellon University, 1994.

[Withey 96] Withey, J. “Investment Analysis of Software Assets for Product Lines” (CMU/SEI-96-
TR-010). Pittsburgh, Pa.: Carnegie Mellon University, 1996.

1

Helping Small and Medium-Sized Enterprises
In Moving Towards Software Product Lines

Dirk Muthig and Joachim Bayer
Fraunhofer Institute for Experimental Software Engineering (IESE)

Sauerwiesen 6
D-67661 Kaiserslautern, Germany

{Dirk.Muthig, Joachim.Bayer}@iese.fhg.de

ABSTRACT
The KobrA method developed at Fraunhofer IESE is an
approach for component-based product line development.
It is based on our experience gained from many industrial
projects. In this paper, we present that KobrA’s approach
of building software product lines is scaleable to small
and medium-sized enterprises (SMEs). Therefore, we
analyze the typical SME context and the constraints under
which these companies usually operate. The result is a set
of requirements for product line approaches that are
designed for being successful also in the context of SMEs.
Finally, we show that the KobrA method does fulfil these
requirements and, thus, helps SMEs in moving towards
software product lines.

1 INTRODUCTION
Small and medium-sized enterprises (SMEs) operate
under specific constraints. Independent of whether they
develop market-driven or customer-specific products,
their economical success does typically not enable them
to do long-term planning. In other words, most of them
cannot afford to hire additional people, do strategic
development, and thus become a little bit more
independent of fast changing markets. Independence of
the market means that a company does more than only
following the market and fulfilling the already existing
requirements but also having an impact on the market
itself by predicting, exploring, and thus defining the needs
of the future. If no additional resources, however, can be
hired, the only way out of the daily fight of surviving in
the market is to use the existing resources more efficiently
and, thus, free some resources that can be used in a more
strategic fashion.

Today, many approaches exist that promise to improve
software development practices (i.e., to make the
development more efficient) and also promise to improve
the situation of SMEs, too. Unfortunately, none of these
approaches has really proved what it promises, especially
in the context of SMEs where – as described above - only
little resources can be spent on the systematic introduction
of new practices or on improvements in general.

We claim that an approach that is supposed to be
successful also (or especially) in the context of SMEs
must take into account the specific needs and problems of
companies of this smaller size. We believe that most of
the problems in the context of SMEs can be traced back to
the fact that many of these approaches have not
considered SME-specific issues. That is, one kind of the
approaches address only isolated problems and, thus,
improve only one aspect of software development, which
will – step by step – return to the lower maturity level of
all other aspects during the daily work. The other kinds of
approaches are big endeavors that are usually not scalable
down to pieces manageable by SMEs.

Product line engineering approaches are usually such big
endeavors that promise to improve efficiency of software
development and are typically not manageable by SMEs.
Their idea is to systematically exploit commonalities of
systems, which are in the same or closely related
application domains, and which will be developed within
the same organization.

In this paper, we motivate the KobrA approach as an
approach for introducing and exploiting product lines in
the context of SMEs. The KobrA approach has been
developed at IESE and integrates our experience gained
from projects applying product line approaches in
general1 and also transferring product line concepts into
SMEs [1].

In the next section, we start with an analysis of SME-
specific issues, characteristics, and needs with respect to
software product lines. The analysis leads in the third
section to general requirements for a product line
approach that is applicable within SMEs. Finally, it is
shown that the KobrA approach fulfils the requirements
identified before and, thus, is an approach for component-
based product line development that is also applicable in

1 These projects have been performed in the context of
PuLSE (Product Line Software Engineering), which is a
registered trademark of the Fraunhofer IESE.

2

the context of SMEs.

2 ANALYSIS OF THE CURRENT SITUATION
In this section, we, first, analyze the status of product line
approaches and why these approaches are not applied in
the context of SMEs. Then, we analyze the market for
product lines with respect to SMEs. In the next section,
we then summarize the results and list the issues that are
not tackled by the existing product line approaches but
that must be resolved to successfully introduce any one of
them.

2.1 State of the Art
In the early days of domain engineering, people tried to
completely analyze, model, and exploit theoretical
domains. These approaches were not accepted in industry
because the necessary effort was too big and the systems
eventually be developed covered only subsets of the
theoretically defined domains.

As a consequence, people moved from domain
engineering to product line engineering. The main
difference between these two approaches is the way of
defining and bounding the domains of interest. In product
line engineering, a domain is defined by what is covered
by the set of systems, which must be developed and which
are seen as a single system family. Hence, the effort spent
on domain analysis is only spent on analyzing things that
are really needed. But the effort that must be invested in
introducing these approaches are still large because the
approaches still assume that the whole organization must
be transitioned into an organization able to manage
product lines.

Hence, product line approaches are big endeavors, which
can only hardly be scaled down, and thus they are
typically not manageable by SMEs.

No approach has ever explicitly tried to be make product
lines exploitable in the context of SMEs and, thus, there is
no experience reported that product lines in general are
not manageable by these kinds of organization.

For us, the reason that none of the existing product line
approaches aimed at the SME market is that developers of
these approaches questioned at least on of the following
assumptions.

1. There are SMEs that (plan to) develop different
systems in the same application domain whose
commonalities can be exploited.

2. There are SMEs that can benefit from the
introduction of product line engineering.

3. There are SMEs that have the capability needed for
building and managing product lines.

4. There are SMEs that have the resources with respect
to quantity and quality needed for building and
managing product lines.

2.2 State of the Practice
In this subsection, the state-of-the-practice is analyzed
according to the four assumptions listed above, which
kept people away from developing a product line
approach for SMEs.

A company that develops software either develops
systems for single customers individually or in a market-
driven way.

The former case, a company develops systems
individually for single customers, fits ideally to the
product line concept: similar systems typically in the
same application area are (sequentially) developed within
a single organization. The application domain the SME
focuses on is typically selected when the company is
founded. It is the domain in which initially know-how
exists and first potential customers have been identified.

In the other case, a company develops one or more
market-driven systems, which are systems that are
produced for the market in the hope to sell many copies, it
seems (at the first sight), that per definition no product
line exists in these environments. Unfortunately most of
the SMEs count themselves to this type of organization.

However, a study concerning the state-of-the-practice
within SMEs reports on characteristics common to all
regarded SMEs [2]. The software systems these
companies develop must all be adaptable to customers’
and users’ needs and the main triggers for most of their
projects are technology changes (e.g., move systems to a
new operating system), requests for new features from the
market, or request for customer-specific adaptations. That
is, these organizations spent most of their resources on
tailoring their systems to the needs of individual
customers or enhance the system by features that are
newly required by customers.

Product line engineering supports both activities:
individual adaptations (i.e., the development of variants)
and planning for integration of features only needed.
Hence, also SMEs building so-called market-driven
system have a product line - even when they have never
looked at their system that way.

The result of this analysis is that independent of what kind
of systems SMEs built, in most cases the systems can be
regarded as a product line. So, there are SMEs that
develop different systems in the same application domain
whose commonalities can be exploited.

The next concern is the question whether SMEs can really
benefit from regarding their systems as a product line.
Real benefits mean that they profit more from the product
line approach than they would do from any other
approach that improves their maturity in general.

As described above, the solutions and improvements
product line engineering promises match the problems

3

most SMEs face. Beside this improvement of the
development of the systems these companies build
anyway, the product line idea supports them in
systematically increasing their target market. More
adaptations and variants can be realized with the same,
available effort, as well as parts of their systems can be
separated and marketed as third-party components in
different but related application domains. Additionally,
the increased number of delivered products makes the
company more visible and thus simplifies the search for
potential future customers. In general, there are SMEs
that can benefit from the introduction of product line
engineering.

The next concern is the question whether SMEs have the
capability to build a product line, to exploit, and to
manage it. Our project experience tells us that SMEs are
very creative in finding alternative ways of selling their
products in different contexts. They are also very flexible
due to the fact that they are used to adapt very quickly to
changed markets or to new but related opportunities. They
also have a good knowledge about their domain and the
needed variants in that domain. This is a consequence of
working closely with their customers and continuously
collecting diverse requirements. In general, SMEs have
good domain knowledge and many ideas of potential
products.

Their problem is the lack of mature capabilities needed
for exploiting their existing knowledge. Typically, they
do only little strategic planning, they do not have well-
defined processes and products, they document too little
of their knowledge explicitly, and their project
management is rather weak. Hence, SMEs have the
domain knowledge and the mentality needed for building
and exploiting a product line but they lack overall in
capabilities needed to realize it technically.

Last but not least, there is the question whether SMEs
have quantitative and qualitative sufficient resources
needed for building and managing product lines. In
general, each SME has at least some people that are very
experienced in the domain and in the built applications.
Similar to an SME’s organization as a whole, the people
there have deficits concerning capabilities needed to
realize product lines, such as systematic development, or
talking and writing about domains and systems at a more
general, abstract level, etc.

The more important issue is the quantity of resources:
their number of resources is very limited but there are
usually also some resources available. Unfortunately,
their best and most experienced people are the most
needed for both the daily customer business and the
construction of a product line. So, even SMEs lack in
their technical capabilities, they do have, however, the
people needed to do product line engineering.

The essence of the analysis is that SMEs have product
lines, they can benefit from the introduction of product
line engineering, they do have the knowledge to build
product lines, and they miss a good understanding of their
product line, as well as technical capabilities needed for
the realization.

3 PRODUCT LINE APPROACH FOR SMES
In this section, we describe the requirements, which are
derived from the analysis above, for a product line
approach applicable in SMEs.

§ The approach must take care of the immaturity of its
target environment. That is, the approach must also
aim at the introduction of fundamental software
engineering capabilities (e.g., writing documentation)
in conjunction with the introduction of product line
concepts.

§ The approach must provide the possibility to
introduce new techniques and concepts step by step.
Thereby, it is important that each step results in some
visible improvement for the SME.

§ The approach must be able to step in the work in
progress because SMEs cannot stop their current
work. So, they have to continue working on the
existing products and cannot start freely to build a
product line. Hence, the approach must integrate
(parts of) existing products into a planned product
line.

§ The approach must be centered around the evolution
of product lines because SMEs do typically not plan
for a set of variants that must be build but they
continuously change their product portfolio by adding
new variants or changing the existing ones.

§ The approach must rely on standard notations and
tools. A SME, typically, cannot risk going into a
different direction than the main stream and, thus,
relying on exotic solutions, which include relying on
special, unusual tools, education, etc.

Beside these more technical requirements for an
approach, it is important to note the introduction of the
approach must be guided by external people that are
experienced in working with SMEs, in the particular
approach, as well as in building product lines in general.
The guiding consultants bring in alternative viewpoints on
an SME’s products by frequently recalling the underlying
product line ideas and pointing to existing exploitation
possibilities.

4 THE KOBRA METHOD
At Fraunhofer IESE, PuLSE has been developed as a
methodology for product line engineering, which is
customizable to its application environment [3]. PuLSE
has been applied successfully in various different contexts
for different purposes. However, in projects with SMEs
without pre-existing processes and well-defined products,

4

the introduction of PuLSE turned out to be problematic.
Therefore, the KobrA method has been developed as a
“ready-to-use”, object-oriented customization of the
PuLSE method [4].

The KobrA method represents a synthesis of several
advanced software engineering technologies, including
product line development, components-based
development, frameworks, architecture-centric
inspections, quality modeling and process modeling.
These have been integrated in KobrA with the basic goal
of providing a systematic approach to the development of
high-quality, component-based application frameworks.

The KobrA method is also applicable in SMEs because it
is designed to fulfil the requirements for such an approach
stated above.

§ As a consequence of integrating best practices from a
large and diverse set of software engineering
technologies, KobrA already contains processes
supporting the complete software development life
cycle. Hence, it also provides processes for the
processes that may be missing in immature
organizations.

§ In the center of KobrA is a tree of components that
describe either a generic framework or a particular
application. Each component is described by a set of
models, mainly UML models [6]. The types of model
that belong to the model set are well-defined but it is
not necessary to build all types of models all the time.
Therefore, KobrA provides guidelines to decide
which models should be built under which
circumstances. That means, KobrA is scalable.
Additional processes for project management or
quality assurance can also be added when needed and
when the necessary resources are available.

§ In KobrA, all products are organized around, and
oriented towards, the description of individual
components. This means that, components (and the
products that describe them) can easily be separated
from the environment in which they were developed
and reused independently. This characteristic allows
introducing KobrA initially for single components.
Components that are already existing and thus KobrA
is integrated component by component with existing
systems.

§ The idea of modeling variabilities within KobrA is
related to Gomaa’s idea of integrating variabilities in
object-oriented models [5]. That means, that
variabilities can also be added to models that were
build before without variability. In KobrA, the
component tree describing a single application is
extended by integrating variant parts and, thus, is
transitioned into a generic framework that embodies
several product variants.

§ KobrA describes components in terms of a mixture of
textual and UML-based (graphical) models. So, it is
conform to the most popular modeling notation,
which is supported by many commercial modeling
tools. Additionally, industrial project members of the
KobrA project develop a workbench to naturally
support the KobrA method.

In this paper we have shown that software product lines
are an issue for small and medium-sized enterprises and
that the KobrA is a suitable approach for introducing and
exploiting product lines in the context of SMEs.

REFERENCES
[1] Knauber, P., Muthig, D., Schmid, K., Widen, T.,

Applying Product Line Concepts in Small- and
Medium-Sized Companies, submitted to: IEEE
Software Special Issue on Software Engineering in-
the-Small

[2] Kamsties, E.; Hoermann, K.; Schlich, M.,
Requirements Engineering in Small and Medium
Enterprises. State-of-the-Practice, Problems,
Solutions, and Technology Transfer, Conference on
European Industrial Requirements Engineering 1998,
pp.40-50, Industrial Program Papers, London 1998

[3] Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig,
D., Schmid, K., Widen, T., and DeBaud, J.-M.
PuLSE: A methodology to develop software product
lines, In Proceedings of the Symposium on Software
Reusability (SSR’99), May 1999.

[4] Atkinson, C., Bayer, J., Muthig, D., Component-
Based Product Line Development: The KobrA
Approach, accepted by the First International
Software Product Line Conference, Denver, 2000

[5] Gomaa, H., Kerschberg, L., Sugumaran, V., Bosch,
C., Tavakoli, I., and O’Hara. L. A knowledge-based
software engineering environment for reusable soft-
ware requirements and architectures. Automated
Software Engineering, 3(3,4), pp. 285–307, August
1996.

[6] Unified Modeling Language (UML) Resource
Center. http://www.rational.com/uml/. December
1999.

Product Line Viewpoint and Validation Models

Nadar Nada, L. Luqi Khaled Jaber David Rine
Naval Postgraduate School Case Western Reserve Univ. George Mason University

C.S. Dept. Code CS/ 833 Dyer Rd. C.S. Dept./10900 Euclid Ave. C.S. Dept. MS 4A5
 Monterey, CA. 93943 USA Cleveland, OH. 44106 USA Fairfax, VA 22030

+1 831 656 4075 +1 860 2149 +1 703 993 1546
nnada,luqi@cs.nps.navy.mil jaber@lucent.com drine@gmu.edu

ABSTRACT
A product line is a group of systems sharing a common,
managed set of features that satisfy specific needs of a
selected market or mission. In the product line approach,
management, system developers, and a reuse team are
interested in some views of the product line. In this paper
a model is defined to present product lines, its derived
products, and common assets used in these product lines.
The model is used to convey views of interest to different
stakeholders: management, system developers, and a
reuse team in the product line approach. Its purpose is to
capture information and present this information about
organizations’ product lines, and make it visible to the
stakeholders inside and outside organizations.
Management can use the model when producing new
products of a product line, negotiating with customers,
and assessing the benefits of adopting the product line
approach. Product line developers can use the model
when developing products of a product line. A reuse team
can use the model through asset identifications, ensuring a
successful use of asset base in and across product lines,
and assessing the level of reuse.

Keywords
Product line, Product line architecture, COTS,
Organizational components, Stakeholders, and System-
unique components.

1 INTRODUCTION
Organizations that develop similar products are adopting
the product line or product family approach to deploy
systems faster, at a low cost, and a high quality. Systems
are produced in a product line using common architecture
and assets that are used across products. Organizations
reuse common assets, integrated assets, etc. that would

otherwise have to be needlessly repeated for each system.

Each stakeholder, i.e. management, systems developers,
and reuse team is interested in a particular view of the
product line. Management, for example, might be
interested in viewing products of a product line to
estimate time and schedules. Systems developers might
be interested in a view of a product line looking for
common assets. The reuse team might be interested in a
view of a product line to assess the level of reuse in a
product line. These are some of the interesting views.

We are presenting a product line viewpoint model that
shows different views of the product line, its derived
products, and common assets used. Also we are showing
how the model conveys particular views interesting to
management, systems developers, and reuse team.

Section 2 describes the product line concept. Section 3
describes the product line model. Section 4 describes
views captured by the model. Section 5 is an empirical
model for product line validation. Section 6 represents a
repository support. Section 7 is the conclusion.

2 PRODUCT LINE CONCEPT
A product line is defined as a group of products sharing a
common, managed set of features that satisfy specific
needs of a selected market or mission [1, 4]. Products in
the product line are engineered through customization
from base requirements and standard product line
architectures, and integration of common components
rather than using system-unique software [2].

The product line architecture is one of the important
assets shared by the systems in a product line. It provides
the structure for building systems in the product line. All
products are based on the product line architecture.

Product line assets are used across products in the product
line. Product line assets depend on the solutions common
to the products in a product line. Reusing these solutions
reduces or eliminates work that otherwise would be
required to build each product [3].

In the product line development, a dual life-cycle model
can be used in which domain engineering is the process
used to create domain artifacts useful across the entire

Product
Line

Product
Product
Release

Product
Release
Architecture

Common
Component
Release

Common
Component

Common
component
Description
/Interface

Product Line
Architecture
Release

Product
Line
Architecture

Product
Line

System
Unique
Component

COTS
Component

Organizat-
ional
Component

Has

Figure 1 Product Line Views Model

1 1 1 1..
Has

Has

Has

1

1..

1 1 1
1

1

1

1

1..

1..

1..

1..
1..

1.. 1..

Has Has

Has
Might
Use

Used
by

Used
by

Used
by

1..

1..

1

Used
by

1..

Uses

Belongs
to

Could
be

Comforms
to

Specify

Has

Table 1 The V iew point and A ttribute Tem plate.

V iew point Tem plate

R eference T he viewpoint nam e
A ttributes Attributes providing view point information

Tasks A reference to a set of event scenarios describing
how viewers interact w ith the product line and their tasks

Sub-view s T he names o f sub-viewpoints

 A ttributes Tem plate

V iew Entities A ttributes
Product line N ame, owner, intended market.
P roduct N ame, contact person, custom er(s).
P roduct line
architecture release

Contact person, release num ber, number of tim es reused, development
time, num ber of staff, used architectural style, inter-component used
com m unication m echanism s, operating system s(s)and platform (s).

P roduct release Customers, release number, contact person, developm ent tim e,
development cost, when developed, num ber of staff, status, operating
system(s) and platform(s).

CO T S component
release

N ame, vendor, release num ber, contact person, cost, number of tim es
reused, operating system (s) and platform(s).

O rganizational
component release

N ame, release num ber, contact person, developed internally or externally,
development cost, number of tim es reused, development tim e, number of
staff, operating system (s) and platform(s).

System -unique
component release

N ame; release num ber, contact person, development cost, developm ent
time, and num ber of staff, operating system(s) and platform(s).

product line, and application engineering is the process
used to produce a single product by adapting the domain-
wide assets [1].

3 PRODUCT LINE VIEWS MODEL
A product line model that shows different views of a
product line, its derived products, and common assets used
is presented in this section. It defines entities and
relationships between these entities to present product lines.
It presents different ways to viewing a product line
keeping in mind enhancement, modification, other models,
other entities and relationships. Figure 1 depicts the model.
The following sections describe the product line views-
point model.

3.1. Product Line Overview
A product line is defined as a group of products sharing a
common, managed set of features that satisfy specific needs
of a selected market or mission [1, 4]. A product line has a
group of products associated with it; it has a 1:M relation
with its products. A product line has a common architecture
associated with it; it has a 1:1 relation with its architecture.

3.2. Product Line Architecture
Product line architecture provides the structural elements
and their interfaces by which the system is composed out of
the product line [18]. Products are customized using the
product line architecture. Product line architecture might
evolve during the product line life cycle. New releases of
the product line architecture could be seen and this is due to
change in customers’ requirements, new technologies,
design fixes, etc. It has a 1:M relationship with its releases.
The early releases of product line architecture specify the
common components used in the product line architecture;
they could specify the functionality needed by these
components and might specify their interfaces. An M: N
relationship is established between product line architecture
release and common component description/interface. After
common components are developed, later releases of
product line architecture might refer directly to common
component releases. A product line architecture release is
used by many products’ releases; it has a 1:M relationship
with their architectures.

3. 3. Products
Products in a product line are engineered through
customization from base requirements, standard product
line architectures and integration of common components,
and might use system unique components. Each product is
associated with its releases. Each product release has
architecture associated with it called product release
architecture. Product has a 1:M relationship with its
releases, whereas, product release has a 1:1 relation with its
architecture.

3. 4. Product Release Architecture
Product release architecture is derived from the product line
architecture release and must conform to the product line
architecture release. It uses many common components
described by the product line architecture release; for each
common component used, it uses one of the releases of that
component. In addition, it might use many system-unique
components; for each system-unique component used, it
uses a release of that component.

3.5. Components
Components are the building blocks of products in a
product line and are classified into two categories: a
common component and system-unique component. A
common component is used across products of a product
line and could be a commercial-off-the-shelf (COTS)
component or an organizational component. Organizational
components refer to common components developed by the
product line organization. They could be developed
internally by the organization owning the product line or
externally by a different organization within the business
unit of which the organization is a part. A system-unique
component is used in specific products. Both types of
components, common and system-unique, could have
releases associated with them and have a 1:M relationship
with their releases. They are used in many product releases
and have an M: N relationship with product architecture
release.

3. 6. Viewpoint Attributes
Entities in the viewpoints have some interesting attributes.
Table 1 represents the viewpoint and attributes template.
Organizations that adopt the product line approach might
be interested in other attributes; these attributes can be
added to the table. The attributes listed in table 1 are used
to support the views described at section 4 in this paper.

4 PRODUCT LINE VIEWPOINT MODEL
In the product line approach, product Lines share several
different views that are interesting to management, system
developers, and a reuse team. Other interesting views might
be possible.

4.1. Management View
Management of an organization that adopts the product line
approach has authority, vision, and leadership. It manages
the development of products in a product line. They
manage staffing, training, cost, directions, and schedules
through the product line cycle. They have a clear vision
about the direction of a product line. They interact with
customers and make business decisions.

Management in the product line approach can be interested
in the products derived from a product line, customers of
these products, and customer contact persons. Also they
can be interested in cost, contact persons, time intervals,
and staffing for products and assets used in these products.

This data is supported by the mode. Management can use
this data when producing a new product of a product line,
negotiating with customers, and assessing the benefits of
adopting the product line approach.

The structural of management view and its relationships
presented by the model answers questions related to what
are the products of a product line and assets used in these
products. Attributes used in model’s entities answer
questions related to who is the customer, contact person,
time interval, cost, staffing, etc., of products in a product
line.

4.2. Reuse Team View
 A reuse team of an organization that adopts a product line
approach supports reuse across product lines. They support
reuse of components through asset identification. With
systems developers they ensure successful use of asset
bases in and across product lines. They assess the reuse
level across product lines. Reuse team can be interested in
viewing product lines, their derived products, and reusable
assets (product line architectures and components) used in a
product line. They can also be interested in the number of
times an asset is reused, and the type of components used in
a product line.

The structural of reuse team view and its relations
presented by the model shows products of a product line
and assets used in these products. Attributes used in the
model’s entities answer question related to the type of

components used, number of times an asset is reused.

The reuse team can use this information through asset
identification, ensuring a successful use of asset base in and
across product lines, and assessing the level of reuse.

4.3. Systems Developers View
System developers in the product line approach are also
interested in viewing product lines, their derived products,
the product line architecture, its evolution, assets used and
their evolution, the operating system(s) and platform(s) are
used, components types, their interfaces.

The structural of system developers view and its relations
presented by the model shows the products derived in a
product line, the product line architecture, its evolution,
components used and their evolution. Attributes used in the
model’s entities answer questions related the contact person
of an asset, components interface, component type,
operating system(s) and platform(s).

4.4. Viewpoints Development
We used the method called VORD [17] for the
development of viewpoints. Also, this method is principally
intended for requirements discovery and analysis, it
includes steps that help to translate this analysis into a
viewpoint. We considered only the first three stages of the
VORD method concerned with viewpoint identification,
structuring, and documentation.

a- Viewpoint Identification involves discovering

Viewpoint
Identification

Viewpoint
Structuring

Viewpoint
Documentation

Figure 2. Viewpoint Development Phases

Table 2. Experimental Model Phases for Product Line Validation

Phase Function Data Collection Methods
1. Adoption Assessment Survey, Legacy
2. Planning & Management Measurment & Control Survey, Legacy
3. Utilization Monitring Case Study, Project Monitor
4. Expansion Adaptation Case Study, Survey, Legacy

stakeholder viewpoint and identifying the specific
attributes, tasks, and sub-viewpoints.

b- Viewpoint Structuring involves grouping related
viewpoints into a hierarchy. Common viewpoints are
provided at higher levels in the hierarchy and are
inherited by lower-level viewpoints.

c- Viewpoints documentation involves refining the
description of the identified viewpoints.

Viewpoints and attributes information in VORD are
collected using standard forms. The form used for
viewpoint information (the viewpoint template) and
attributes information (attributes template) are shown in
Table 1.

The viewpoints and attributes templates, as well as the
viewpoint hierarchy diagrams are developed during the
three phases shown in Table 1. The templates are used to
structure the information collected, and in general a
template cannot be completely filled in during single
activity.

5 EMPIRICAL MODEL FOR PRODUCT LINE
VALIDATION

 In this section an experimental integrated model for
product line pilot project planning, measurement, and
assessment is presented. This section discusses how
qualitative and quantitative process and product line goals
are established based on customer and business needs. The
process of flow-down of goals to the level of processes and
the experimental pilot model is described. Table 2. presents
the empirical and engineering model phases for product
line validation.

5.1. Making the Product Line Adoption Decision
Product line adoption is defined in the context of an
organization rationale to agree, sponsor, commit, or
allocate resources for initiating a product line plan or
project. Product line utilization is defined in the context of
an organization as the creation of assets with the specific
“intention” to be reused as well as the utilization of assets
that had been specifically created with the “intention” of
being reused. Product line management is defined in the
context of an organization that manages the creation,
utilization, and evolution (i.e., maintenance) of reusable
assets. The application of software reuse technologies to
planned products (both new and existing) and planned
product lines is an indicator that software reuse adoption is
strongly correlated with organizational opportunities.

Most software development organizations operate
according to marketing and finance strategies. An
organization wishing to improve its financial status may
look for new or extended opportunities in software product
markets. Product line is one possible approach that may be
used to leverage decreased time to such markets with
decreased effort and increased product quality.

So the first step is to make the product line adoption
decision based on some empirically validated software
reuse reference model (RRM) [Nada 97]. This in turn will
lead to a set of decisions balancing market opportunities
with market risks. This step will also identify reuse
opportunities, reuse objectives, costs, constraints, and
options.

For adoption decision organizations conduct an analytical
study to decide either to adopt certain product line process
or technology or not. This study collects both qualitative
and quantitative benchmark data on the product line
approach.

The adoption phase includes several steps to evaluate the
technical and organizational aspects of the introduced
product line process or technology.

5.1.1 Organization context

Organization context describes the environment in which
the organization exists or existed when it launched the
product line effort. The following lists common factors that
are used in the adoption phase to evaluate the existing
environment before applying the product line approach.
The following factors will be used to record and evaluate
the context environment of organizations adopted the
product line approach. Also it used by organizations
exploring the transition to the product line approach.

Process or technology objective. To adopt the product
line approach; the objective of developing product lines
needs to be addressed and defined. This includes defining
the scope of the product line, how long the organization has
been building product lines, and the product line life cycle.

Costs/benefits. Organizations that already adopted these
processes or technologies should have data related to the
costs and benefits of this adopting. Organizations that are
thinking to adopt a software reuse approach might not have
data about the cost of adopting this technology, but the
benefits of software reuse approach should be defined.
Cost varies based on the size and the number of products in
the organization, the technical experience, organization
structure needed, skills and training, and tools.

Commonalties and variabilities. Organizations exploring
the transition to software reuse approach should identify
which products can be considered and what their
commonalties and variabilities

Common architecture. Organizations exploring software
reuse approach should consider the feasibility of common
architecture for their products. Also the style of the
architecture might be defined, e.g. layered architecture,
client server architecture, etc.

Assets used. In software reuse development approach
products are assembled using common set of assets and
might use system unique assets. Assets could be domain

models, communication protocol descriptions, user
interface descriptions, code components, type of common
components that developed internally or by using Off-The-
Shelf “COTS” components, application generators, domain
knowledge, test plans and procedures, requirement
descriptions, performance models, metrics, etc.
Organizations adopted the software reuse approach records
the common assets used in their products. Organizations
exploring the transition to the product line approach should
define what are the common assets exist.

Level of reuse. One of the benefits of adopting software
reuse is increasing the level of software assets reuse in
organizations. Organizations adopting reuse approach
should have or find other organizations data related to the
percentage of reuse achieved in adopting the this approach.
Also the type of reuse used, for example, horizontal reuse
or vertical reuse. Horizontal reuse represents wide domain
width reuse, i.e. a component that can be used in many
applications. Vertical reuse represents a narrow domain
width reuse, i.e. a component that can be used in one
application.

Organization structure. The organization’s structure for
developing one-at-a-time systems might not be suitable to
product line development. Adopting a product line
approach has an impact on organization structure. This
factor defines the impact of the new structure needed to
adopt the product line approach. The impact might be low,
medium, or high.

Process. Process used in developing one-at-a-time systems
will not be suitable to the product line development. As
part of adopting reuse technology, existing process might
be modified and new processes need to be in place, e.g.
customer interface process, software development
processes, etc. This factor defines the impact on the
organization processes by adopting new approach, what
type of the processes need to be changed, and what type of
new processes needed.

Training. Transitioning to new processes or technology
requires skilled personnel to achieve a successful
transitioning. This factor defines the type of training
needed, e.g. in house training, external consultant, etc. Also
it defines who needs training, e.g. management, systems
developers, etc.

Tools. This factor defines which tools are needed in
software development, e.g. tools to assemble products,
configuration management tools, tools to record the
progress of the product line development, etc.

Software reuse assessment is the main function of this
phase. Historical methods are used to collect data, e.g.,
survey and/or legacy

5.2. Product Line Planning
Organizations use this phase as a plan for the transition to

product line software development approach. Organizations
can use this phase to record, evaluate, and assess the
planning for the product line approach. Organizations
intending to adopt software reuse use this phase to put the
software reuse in practice.

The following include the implementation plan for software
reuse approach; a list of common factors is described in this
section as part of the planning phase.

Management Support. Building software products is not
just an engineering agenda, it precipitates changes in
personnel, personnel management, incentives, customer
interface, scheduling, budgeting, and a whole host of
management practices. It is a new vigorously and actively
supports the transition, the effort will fail. Software reuse
strategy means that organizations and managers have less
direct control over their product developments and
increased dependency on other organizations to understand
their requirements and provide acceptable solutions. Giving
up this control and the necessary dollars to support product
line technology and application development may be
difficult. Organizations adopted the software reuse
approach should record their experience of the management
support, evaluate, and assess that support.

Cultural change. The software reuse concepts should be
defined and understood by people of organizations
adopting this new approach. A particular attitude that had
to be overcome was the one-at-a-time mentality of building
a system for its own sake rather than as a contributing
effort to the organization’s strategic goal of fielding and
building up a base set of core assets. Software reuse
terminology should be defined and understood across
organization.

Organization structure. Adopting new technology or
process has an impact on the organizational structure. For
example organizations develop product line has a structure
different than organizations develop one-at-a-time systems.
Some organizations has a product line structure where a
marketers group relate product line capabilities to
prospective customers; relate customer needs to asset and
application developers. A core assets group develops
architecture and other assets for product line. An
application group deliver systems to customer. There are
different players in the product line approach and they
should have different skills to launch the product line
approach. Transitioning to the product line approach
requires the organization’s structure and players in the
product line approach to be defined.

Training and processes. Transitioning to software reuse
involve education and training on the part of management
and technicians. Managers need to support the business
motivation and strategy of the software reuse approach.
They need to understand and role of the infrastructure
technologies, understand how to monitor progress and

identify potential problems within their area of the
program. Different type of training might be needed;
Formal training, on-the-job mentoring from external
consultants, etc.

New processes are needed to develop a product line is
different from processes used in developing one-at-a-time
systems. These processes might be customer interface
processes, development process, resource ownership
processes, etc.

Training and processes changes should be defined in the
transition to the product line approach.

New technologies. Technologies allow organizations to
stay a competitive edge. Some of the technologies, for
example, used in the production of product line are domain
engineering and application engineering. Domain
engineering used to create artifacts useful across the entire
product line. Application engineering is used to produce a
single product by adopting the domain-wide assets. Other
technologies, for example, using CORBA, COM, etc.
These technologies need to be defined in the transitioning
to software reuse development approach.

Tools support: Using tools to support the new
development approach increase organizations’ productivity.
Some organizations use tools that are used to assemble
products together. Others use tool to capture domain
knowledge, etc. These type of tools used needs to be
defined in the transition phase.

Software reuse measurement is the main function of this
phase. Historical methods are used to collect data, e.g.,
survey and/or legacy.

5.3. Utilization and Management
Product line utilization is defined in the context of an
organization as the creation of assets with the specific
“intention” to be reused and the utilization of assets that
had been specifically created with the “intention” of being
reused.

The next step is to decide upon the levels of the RRM
utilization and management and to look closely at any
significant changes or impacts on both top and middle
management. This step includes the assessment of an
organization’s willingness to adopt the RRM, the
implementation levels, and the incremental investment
strategies.

5.3.1 The Product Line Utilization.

Asset Utilization The objective of processes in this family
is to utilize existing assets in software development and
evolution (i.e., maintenance) activities. The processes for
this family consist of developing or selecting criteria for
asset identification, modifying or tailoring selected asset(s),
and integrating the selected asset in the system under
development or evolution

This step is the actual production phase by applying
evolutionary approach (Boehm Spiral Life-Cycle Model)
to the reuse plan implementation. Our early research results
have shown that software development organizations at a
high success (capability) level usually carry out several
pilot (experimental) projects to help them in the
construction of a prototype repository, component model
definition, components classification scheme definition,
domain model, common architecture, and product-line as
follows:

I. Develop a prototype (pilot project)

II. Learn and evaluate of risk versus opportunities

(including assessment of effort, quality, schedule, tools,
and procedures)

III. Expand prototype to a safer version of product line
with the necessary adjustment

Repeat step (II) and (II) until you achieve a stable product
line version.

This approach to the successful learning and evolving the
RRM within an organization is like the Boehm Spiral Life-
Cycle Model [8] applied to the RRM implementation plan.

5.3.2 Product Line Management

Reuse management is defined in the context of an
organization that manages the creation, utilization, and
evolution (i.e., maintenance) of reusable assets.

Asset Management and Control: The objective of processes
in this family is to develop and organize collection(s) of
quality reusable assets, define and develop services and
capabilities to access these assets (i.e., for asset utilization
processes), and establish, support, and enact a broker role
for asset developers (i.e., from asset creation) and asset
consumers (i.e., from asset utilization).

The reuse management and control is based on the classic
plan, enact, and learn cycle. The plan, enact, learn cycle in
the reuse management idiom is based on the following
principles as described in the STARS CFRP [11].

Software reuse monitoring is the main function of this
phase. Observational and historical methods are used to
collect data, e.g., survey, case study, historical analyze
and/or legacy

5.4. Product Line Expansion
In this phase, organizations look for new product
opportunities and asses the customer needs and reuse
future plan.

Determining and evolving the future objectives, strategy,
and scope of a reuse program, resulting in selection of a set
of suitable domains and products lines in which to apply
reuse within an organization. Planning, establishing,
monitoring and evaluating Reuse engineering idiom (asset

creation, asset management, and asset utilization) projects
addressing the selected domains and product lines. Looking
for new market opportunities, market analyze, and assess
the future financial plans.

Software reuse adaptation is the main function of this
phase. Observational and historical methods are used to
collect data, e.g., survey, case study, historical analysis
and/or legacy.

6 REPOSITORY SUPPORT
Organizations adopting the product line approach can use a
repository to implement the model. The repository
supporting the product line approach can capture the
entities and their related attributes, and the relationships
between these entities to covey the model’s views. A web-
based repository is a good choice to implement the model.
It provides and easy access for many users internally or
externally to organizations developing product lines. The
Web-based repository can model the entities, some of their
related attributes, and relationships as Hyper-text links to
present a complete picture of the entire product line.

7 CONCLUSIONS
Organizations that produce similar systems are moving
towards implementing the product line approach. Products
in the product line approach are engineered through
customization from base requirements and product line
architectures, integration of common components and
system-unique components.

The model described in this paper is intended to capture a
view of the product line, its derived products, and assets
used in the product line. The model is defined to present
views interested to management, system developers, and a
reuse team in the product line approach.

REFERENCES
1. Bass, L., Clements, P., Cohen, S., Northrop, L., and

Withey, J., “Product Line Practice Workshop Report”,
June 1997,
http://www.sei.cmu.edu/about/website/indexes/siteInde
x/siteIndexTRnum.html.

2. Cohen, S., Fridman, S., Martin, L., Poyer, T.,
Solderitsch, N., and Webster, R., “Concept of
Operations for the ESC Product Line Approach”, Sept.
1996.

3. Brown, A., and Wallnau, K., “Engineering of
Component-Based Systems”, Proceedings of the 2nd

IEEE International Conference on Engineering of
Complex Systems, 1996, IEEE Computer Society
Press 1996.

4. Brownswod, L., and Clements, P., “A Case Study in
Successful Product Line Development”, Oct. 1996,
http://www.sei.cmu.edu/about/website/indexes/siteInde
x/siteIndexTRnum.html

5. Clements, P., “Report of the Reuse and Product Lines
Working Group of WISR8”, Aug. 1997,
http://www.sei.cmu.edu/about/website/indexes/siteInde
x/siteIndexTRnum.html

6. Fraks, W., “Success Factors of Systematic Reuse”,
IEEE software, Sept. 1994.

7. N. Nada, Software Reuse-Oriented Functional
Framework, Ph.D. Dissertation, George Mason
University, fall 1997.

8. Perry, D., “generic Architecture Descriptions for
Product Lines”, http://www.bell-labs.com/usr/dep

9. D. Rine and R. Sonnemann, “Investments in Reusable
Software: A Study of Software Reuse Investment
Success Factors”, The Journal of Systems and
Software, Vol. 41, pp. 17-32, 1998.

10. D. Rine and N. Nada URL-
http://www.gmu.edu/depts/survey.

11. Shaw, M., and Garlan, D., “Software Architecture”,
Prentice-Hall, Inc., 1996.

12. Software Technology for Adaptable, Reliable Systems
(STARS), "STARS Conceptual Framework for Reuse
Process (CFRP)", CDRL A018, Oct. 1993

13. Sommerville, I., Software Engineering, 5th Edition,
Addison-Wesley, New York, (1996).

14. The Software Evolution and Reuse Consortium,
“Solutions for Software Evolution and Reuse”, SER
Deliverable SER-D2-A, 1995.

15. Withey, J., “Investment Analysis of Software Assets
for Product Lines”, Nov. 1996,
http://www.sei.cmu.edu/about/website/indexes/siteInde
x/siteIndexTRnum.html

16. M. Zelkowitz, “Experimental Models for Validating
Technology”, IEEE Computer, May 1998.

17. Kotonya and Summerville, Requirements Engineering,
Wiley, 1992

18. G. Bootch, J. Rumbaugh, I. Jacobson, “The Unified
Modeling Language User Guide”, Addison Wesley,
1999.

1

An XML-based Approach to Product Line Engineering

Fred Waskiewicz Douglas Stuart
MCC MCC

3500 West Balcones Center Drive 3500 West Balcones Center Drive
Austin, TX 78759 USA Austin, TX 78759 USA

+1 512 338 3604 +1 512 338 3478
wask@mcc.com stuart@mcc.com

ABSTRACT

The engineering effort necessary to develop the software
architecture for a product line (a family of software
products) requires several inter-related steps as the
architecture evolves. A method, either formal or
informal, and, ideally, a tool should guide each step. In
order for information regarding the architecture to be
passed from one step to the next (either between tools or
between human and tool), a mechanism is needed to
capture all relevant information derived in each step. This
paper describes how product line markup languages,
derived from the eXtensible Markup Language (XML),
were used to capture product line development
information - specifically, information regarding
requirements and rationale capture, scenario definition,
architecture design and links between the artifacts of
product line development. The paper also introduces a
prototype research tool suite employing these languages
that supports the automation of the product line
engineering effort.

Keywords

Architecture description, artifact linking, product line
engineering, rationale capture, requirements, scenarios,
tool support, XML-based languages.

1 INTRODUCTION

As a means of context setting, this section offers the
briefest of introductions to the notion of a product line
and advances the rationale for taking an architecture-
based, software engineering approach to product line
development.

Product Lines
The Software Engineering Institute (SEI) defines a
product line as “a group of products sharing a common,
managed set of features that satisfy the needs of a
selected market or mission area” [12]. The business case
for adopting a product line approach to software
development is that, by developing a group of products
into a planned, shared domain as a family, an
organization can reduce software

development time through increased productivity and
reuse of business information and technical solutions.
Examples of reused business information include the
business case for the application and/or system to be
built, use cases / scenarios, and requirements derived
from them. Technical solutions that are candidates for
reuse include development processes and decisions,
designs and their rationale, test suites and an
implementation repository (an asset base) of software
artifacts (e.g., components).

A Software Engineering Approach to Product Line
Development
If reuse is to be gained, techniques are required to
identify commonality and to manage variability.
Commonality may be thought of as requirements
applicable to all architectural elements of a product line’s
reference architecture1, while variability may be thought
of as those requirements peculiar to an instance of the
product line. Both concepts infer that an organization will
exercise proven software engineering practices in order
that commonality of business requirements and technical
solutions can be adequately identified. The concepts also
infer that variability can be consistently achieved without
violating the underlying reference architecture.

Applying software engineering techniques to product line
development requires a method - product line
engineering (section 2) – and requires a means of
representing relevant product line development
information (section 3), a role effectively played by XML
(section 4). These techniques are greatly enhanced
through tool support (section 5).

Architecture-based Approach to Product Line
Development
An architecture-based approach assumes that architecture
is central to successful product line development. It is the
architecture that:

• captures the commonality among the products within
the product line

• reflects the degree of variability spanned by the

1 an adaptable structure that is specifically intended to be instantiated in
multiple target systems [5]

2

product line

• is the starting point for achieving system qualities
and for allocating functionality within a system and

• serves as the basis for generating applications within
the domain by providing a template that can be
instantiated with product line assets.

Thus, not only is a disciplined approach to product line
development required, but also an approach which
focuses on architecture.

2 PRODUCT LINE ENGINEERING

Having advanced the case for an architecture-based,
software engineering approach to product line
development, this section introduces the steps involved.
This discussion is based upon an applied research effort
at Microelectronics and Computer Technology
Corporation (MCC) [6] (an Austin, Texas based research
consortium) that has, in turn, leveraged work in academia
and industrial research bodies.

The Goals of Product Line Engineering
MCC has adopted the SEI’s view that software
architecture forms the backbone for building successful
software-intensive systems and that a system's quality
attributes are largely permitted or precluded by its
architecture [13]. Given this emphasis on architecture,
product line engineering is a disciplined effort that should
yield the definition and representation of product-line
software architectures. The facets of this discipline
should include the evaluation of architectures for product
line suitability; architecture extraction; and evaluation of
architecture conformance to requirements.

MCC’s Approach
MCC’s approach to the product line development process
is based upon the premise that there are similarities, yet
key distinctions, between product line development and
single application development. While both efforts must
be guided by techniques that manage the progression of
software development through its entire lifecycle, a
significant difference lies in the separation of the
development process into two levels. The first, domain
engineering, focuses on establishing an asset base (an
implementation reuse repository) with which the products
in the product line can be created, while the second,
application engineering, focuses on creating an
individual application using the assets of the product line.

Domain engineering requirements activities are aimed at
identifying the boundaries of a group of products that can
be developed more effectively as a product line, not at
identifying the requirements of a single product or series
of independent products. Specification entails domain
modeling - defining the characteristics of the group of
products so that the resulting domain model can be used
to define the assets needed to build products that span the
domain. Design becomes product line architecting -

creating a reference architecture that will serve as the
basis for all of the products in the product line, and that
will identify the software assets that will make up
products conforming to that reference architecture.
Implementation becomes asset base creation,
configuration and composition. The assets needed to
create applications in the product line are acquired and
used to populate the product line asset base, and a
mechanism for composing applications using the asset
base is established. Finally, testing entails activity not
only at the application level but also at the product line
reference architecture level. Results of application testing
are used to evaluate the architecture artifacts defined at
the domain level.

Application engineering focuses on composing an
application from product line assets. Each application
instance is created by using and reusing artifacts and
processes developed during domain engineering. The
requirements for an application instance are expressed in
the vocabulary of the product line domain model and
product line requirements.

3 EXPRESSING PRODUCT LINE
DEVELOPMENT INFORMATION

The importance of conveying development information
among the progression of product line development steps
cannot be over-emphasized, especially if automation of
that effort is to be undertaken. Given that the product line
reference architecture is at the core of this effort, it is this
need to convey information that demands a means of
expressing and representing that architecture and the
rationale and requirements that went into its design. That
need also demands the ability to navigate between the
artifacts (the products of each product line engineering
step) of the architecture. That is, the necessity to link to
and exchange architectural information, either between
automated processes and/or humans, as product line
development progresses.

In its investigations of product line development, MCC
identified the following specific needs.

• The capability of expressing requirements in the
form of scenarios.

• The ability to capture design rationale.

• The ability to adequately describe software
architectures in terms of architectural elements.

• The ability to link among architecture artifacts and
documents.

Languages were required to express this information,
and, ideally, a standardized meta-language was needed to
develop these languages. Fortunately, such a meta-
language exists: XML, the eXtensible Markup Language
[3], developed by the World Wide Web Consortium [15].

3

4 APPLYING XML

With a firm foundation for an architecture-based,
software engineering approach well in place, this section,
the heart of this paper, describes how XML can be
applied to a product line engineering effort. It describes
product line markup languages, derivatives of XML, that
were defined to support specific steps identified by MCC.

XML Background
XML was developed with the ambitious goal of
providing a means of specifying content, not simply
specifying presentation of content. XML describes a class
of objects called XML documents, which are domain-
specific collections of a series of entities. An XML
document may consist of one or many “storage units”
called entities. Entities have content (parsed or unparsed
data) and most are identified by name. An entity can
contain one or more logical elements, which, in turn, can
have certain attributes (properties) that describe the way
in which it is to be processed. The significance of XML
is that it provides a formal syntax, but not the semantics,
for describing the relationships between the entities,
elements and attributes that make up an XML document.
Thus, it provides a ubiquitous, “standard” meta-language
for describing domain-specific information (such as
describing computer software architectures).

MCC’s assessment of XML’s meta-language features [9]
identified several advantages that made it an attractive
foundation for developing the languages required to
support MCC’s approach to product line engineering.
Among XML’s strong points:

• The very nature of the XML’s syntactical flexibility
introduces a capable mechanism for architectural
expressiveness and extensibility. That is, adhering to
the syntax of XML’s elements, the semantics can
represent and be extended to meet the needs of most,
if not all, domains.

• The Document Type Declaration (DTD) associated
with an XML document introduces a mechanism for
validation of an architectural specification. It also
provides the means for extracting multiple “views”
from a single document (e.g., descriptions of
instances from a reference architecture) [4].

• XML provides for links with multiple locators
(targets) into documents that may be represented
external to the linked documents (e.g., establishing a
relationship between a requirement and the
architectural elements implementing that
requirement.) XML’s linking facilities are well
suited for storing the elements of an architectural
model into a repository; associating them with
system requirements; and composing them into an
implementation aimed at a solution at a later date.
This requirements-to-implementation linking feature
greatly assists in the construction of test suites.

• Finally, the emergence of commercially available
tools supporting XML (e.g., parsers provided with
the Java/XML package providing a uniform model
interface) and the capability of web browsers to
inspect XML documents.

Armed with this positive assessment of XML, MCC
proceeded to develop XML-based languages that were
capable of representing the artifacts captured in each
phase of product line engineering. Those four languages
are presented in the order in which they appear within
product line engineering.

Domain Model Example
Due to restrictions on submission size, only the simplest
domain model, akin to “Hello World” examples found
elsewhere, will be used to illustrate the XML derivatives
presented in this paper.

This example domain model presents a system providing
field support for queries on customer and product
information. The system is broken down into three
subsystems providing customer support, security and
communication. There are four major components,
architectural elements encapsulating high-level
functionality, defined within the customer support
system.

• RemoteClient, the component residing on remote
systems supporting access to the central server. It
also marshals and unmarshals queries to and from
that server.

• ClientServer, located at the central site and
charged with directing remote queries to the
appropriate processing component.

• Customer_DB, which processes queries on the
database containing customer-related information.

• Product_DB, which processes queries on the
product-related database.

It is the expectation of the authors that the generic model-
related terms and examples used in the following
language descriptions will be self-explanatory. Where
necessary, elaboration is provided.

RCML – the Rationale Capture Markup Language
MCC’s Rationale Capture Markup Language (RCML)
describes product line engineering information related to
identifying requirements and negotiating and resolving
pertinent issues and their options. It also captures design
rationale. RCML is influenced by work in academia on
WinWin [1], a tool that assists in the capture, negotiation
and coordination of requirements for large systems of any
nature (software or otherwise). The requirements
captured by RCML reflect the commonality and
variability of the product line reference architecture. A
Document Type Definition (DTD) has been developed
that describes the RCML grammar.

4

Figure 1 offers a partial sample of RCML. The major
elements within the XML document are Project,
ProjectUser, Artifacts and Taxonomy. The
Project being defined is represented as an XML
document. A ProjectUser is a stakeholder, an
individual (or organization) with significant involvement
in the project. Attributes provide pertinent information
regarding the user. WinWin defines five artifact types:
WinConditions, Issues, Options, Agreements and
Taxonomy. Each are specified in RCML by an
Artifact element, enhanced by relevant information
captured as attributes.

A WinCondition captures the stakeholders’ goals and
concerns with the Project. If a WinCondition is
non-controversial, it is covered by a simple Agreement
indicating that the condition was not contentious.
Otherwise, an Issue is created to record the conflict.
Options suggest alternative solutions, which address
the Issues. If an Option resolves an Issue, that
adoption is recorded by an Agreement. A Taxonomy
represents the organization of domain information. For
example, it may represent the documentation of all
project-related information.

WinWin also provides the ability to define internal links
between all of its Artifacts. Figure 1 illustrates a
small subset of a RCML document.
<?xml version="1.0" ?>
<!-- DOCTYPE Project SYSTEM file:/C:/RCML.dtd -
->
<Project Name="Field_Support_System">
<Users>
<ProjectUser Name="Developer*"
Directory="C:\Project\Developers"
Role="Developer" Title="" Position=""
Organization="My_Company" Owner="true" />

<ProjectUser Name="Domain_Expert"
Directory="C:\Project\Domain_Expert"
Role="Domain_Expert" Title="" Position=""
Organization="Project_Company" />

</Users>
<Artifacts>
<Term identifier="Developer-TERM-1"
owner="Developer" role="Developer"
creationDate="01/05/00"
creationTime="08:32"
revisionDate="01/10/00"
revisionTime="08:32"
name="Composition"
priority="MEDIUM"
status="ACTIVE">
<ArtifactBody>Identifying and assembling
together the set of reusable components
needed to support field access to client
and product information.
</ArtifactBody>

</Term>
<WinCondition identifier="Developer-WINC-
1" owner="Developer" role="Developer"
creationDate="01/05/00"
creationTime="15:31"
revisionDate="01/10/00"
revisionTime="12:52"
name="Application_Diverisity"
priority="MEDIUM"
status="ACTIVE" state="UNCOVERED">
<ArtifactBody>The application code will
be in a portable language and the
program will run on multiple platforms.
</ArtifactBody>

</WinCondition>
</Artifacts>
<Taxonomy>
<TaxonomyItem Index="1" Title="Field Support
System" />
<TaxonomyItem Index="2" Title="Domain
Requirements" />
<TaxonomyItem Index="3" Title="Quality
Requirements" />
<TaxonomyItem Index="3.1"
Title="Reusability" />
<TaxonomyItem Index="3.2"
Title="Composability" />
<TaxonomyItem Index="4" Title="Functional
Requirements" />
<TaxonomyItem Index="5" Title="Deliverables"
/>
<TaxonomyItem Index="6" Title="Risk
Management" />

</Taxonomy>
</Project>

Figure 1. A Partial RCML Specification

As seen, RCML captures project and product line
development process requirements-related information
through extensive use of XML elements and attributes.
The reader is encouraged to study WinWin to fully
appreciate the nature and level of the information
captured.

SML – the Scenario Markup Language
The Scenario Markup Language (SML) developed by
MCC describes product line engineering scenario
information; specifically, a collection of usage scenarios
that capture operational requirements (i.e., how a system
will be used). More precisely, SML defines application-
specific requirements, which reflect the variability of the
product line reference architecture. SML is influenced by
research conducted in academia on scenario specification
[8] and UML use case specifications [10] and represents
those views of the constituent parts of a scenario: Agents,
Objects and Actions. A DTD has been developed that
describes the SML grammar.

Figure 2 illustrates the principal elements of SML. The
XML document, the ScenariosDocument,
represents a collection of scenarios. XML elements
represent each scenario as well as their constituent parts.
An Agent is an actor within the system that performs an
Action – some system-specific behavior. XML
attributes describe the Agent’s name and type.
Actions are specified by attributes describing the
Action’s behavior, the Agent that serves as an actor
in the action, links to that Action, and the effect of the
action on object states. Actions may be aggregated into
ActionLists. An Object is an abstraction of some
real-world entity within a system. XML attributes
describe the Object’s name and state. Last, but
certainly not least, Scenarios are specified in terms of
their Goals, Descriptions, the sequences of
Actions which comprise the Scenario, links and
references to information regarding each specific
Action and states affected by the Action.
<?xml version="1.0" ?>

5
<!DOCTYPE ScenariosDocument (View Source for
full doctype...)>
<ScenariosDocument>
<Objects>
<Object name="RemoteClient"
state="logged_on,logged_off,accessing" />
<Object name="ClientServer"
state="active,inactive" />

</Objects>
<Agents>
<Agent name="RemoteClient"
type="clientType"/>
<Agent name="ClientServer"
type="serverType"/>

</Agents>
<Actions>
<Action name="Remote_log_on" state="
logged_on">
<Description>Remote client log on.
</Description>
<AgentRef href="#descendant(1,Agent,name,
RemoteClient) xml-link="locator" />
<InitialState>
<ObjectState
href="#descendant(1,Object,name,
RemoteClient)"
state="logged_off" xml-link="locator" />

</InitialState>
<FinalState>
<ObjectState
href="#descendant(1,Object,name,
RemoteClient)"
state="logged_on" xml-link="locator" />

</FinalState>
</Action>
<Action name="Remote_query"
state="accessing">
<Description>Remotely send customer or
product query to server.</Description>
</Action>

<Scenarios>
<Scenario name="Info_Query">
<Goal>Remote access of customer and/or
product information.
</Goal>
<Description>This scenario describes how a
customer representative in the field
remotely accesses customer and product
information.
</Description>
<InitialState />
<FinalState />
<ActionSequence>
<ActionRef
href="#descendant(1,Action,name,Remote
_log_on)"
xml-link="locator"

</ActionRef>
<ActionRef
href="#descendant(1,Action,name,Remote
_query)"
xml-link="locator"

</ActionRef>
</ActionSequence>

</Scenario>
</Scenarios>

</ScenariosDocument>

Figure 2. A Partial SML Specification

The reader should view this example as a validation of
how XML can be extended to meet the requirements of
existing scenario specification techniques.

The details of scenario specification found in this
example are omitted due to space constraints imposed on
this paper. However, note should be made of the usage of
the xml-link attribute.

<ActionRef
href="#descendant(1,Action,name,Remote_query)"
xml-link="locator"

</ActionRef>

This is linking information interspersed with scenario
specification. This attribute will be described in the next
section.

LDML – the Link Definition Markup Language
The Link Definition Markup Language (LDML) describes
the necessary links found between XML documents that
capture product line analysis, design and implementation
artifacts. It is based upon work being conducted at MCC
on linking architectural elements [14]. MCC’s work is, in
turn, influenced by work at the World Wide Web
Consortium [15] on designing hypertext links for XML
[16] and XPointer [17], a language that provides for
addressing into the internal structures of XML
documents. In particular, XPointer provides for specific
reference to elements, character strings, selections, and
other parts of XML documents. A DTD has been
developed that describes the LDML grammar.

The major elements of this XML document type,
identified as a LinkedDocuments type, are
DocumentGroup, Document and Links. This ability
meets a key requirement of product line development –
the need to navigate among the essential artifacts
comprising a product line reference architecture.

Figure 3 offers a partial sample of LDML. Documents
may be linked together and categorized within a
DocumentGroup, which is described by attributes that
reference its identifying name and qualifiers defining the
type of link. Documents in turn have their own unique
identifiers, references and qualifiers defining the type of
link. Links provide link information that, for example,
ties a design artifact back to its requirement(s) as
captured in a business scenario. A Link may be grouped
into a set of Links.
<?xml version=”1.0” ?>
<!DOCTYPE LinkedDocuments (View Source for full
doctype)>
<LinkedDocuments>
<DocumentGroup name="default_documents" xml-
link="group">
<Document href="Field_Access.sml"
name="Field_Access_Scenario"
xml:link="document" />
<Document href="Field_Support_System.adml"
name="Field_Support_System"
xml:link="document" />

</DocumentGroup>
<Links name="default_links" title="Links">

<Link title="RemoteClient_Reqs"
name="RemoteClient_Requirements"
direction="both">
<From xml-link="extended" inline="false">

<Locator
href="Field_Access_Scenario.sml#name(R
emoteClient)" xml:link="locator" />

</From>
<To xml-link="extended" inline="false">
<Locator href="
Field_Support_System.adml#id(203981035
274767)" xml:link="locator" />

</To>
</Link>

</Links>

6
</LinkedDocuments>

Figure 3. A Partial LDML Specification

What is most important about this abbreviated example is
the use of XML mechanisms, linking and the XPointer
language, to tie together:

• the scenario requirements document
(Field_Access.sml) with the architectural description
XML document (Field_Support_System.adml) and

• specific requirements within the scenario document
with the implementation of those requirements as
found in the architectural description document.

In Figure 3, the xml:link attribute value “document”
for the Document elements signifies that documents
Field_Access.sml and Field_Support_System.adml are
being linked. The xml:link attribute value “locator”
associated with the From and To elements signifies that
resources that are not XML documents are being linked.

ADML – the Architecture Description Markup
Language
Research has yielded various architecture description
languages (ADLs) [11] over the years to address the need
for a descriptive language for software architectures.
ACME [2], developed at Carnegie-Mellon University as
an interchange language between ADLs, represents a
distillation of the information provided by its
predecessors, making it an attractive basis for an ADL for
product line development. While ACME provides the
semantics for adequately describing software
architecture, it lacks status as a de jure or de facto
standard, limiting its use as a representation language.
Using ACME as a basis for architectural description and
XML as a basis for the presentation of that information,
MCC developed its Architecture Description Markup
Language (ADML). A DTD has been developed that
describes the ADML grammar.

Using graphical artifacts derived from the ACME, XML
elements define a top-level design (the XML
document), systems, components,
representations (refinements of architectural
elements) and connectors (architectural design
elements showing the interaction between components).
The conventional concept of relationship has no
relevance in this type of high-level design model; rather,
the notion of attachment describes how components
and connectors are related. One appealing feature of
ACME is the provision for the definition of properties,
name-value pairs that are not limited by ACME
semantics (have no predefined meaning) and provide the
primary mechanism for extensibility. That ACME feature
has been cast to ADML properties that describe
relevant architectural information such as dependencies
among design components, performance attributes for the
implementations of design components, requirements
traceability, design rationale and so forth. A single

property or a set or sequence of properties may be used to
describe an architectural element. The
PropertyLiteralValue element is used to specify
the value of the name-value attribute pair associated with
a property.

As architecturally-complete entities, systems can
represent architectures of complete applications within a
product line, or subsystems providing specific capability
(e.g., a security subsystem or communications subsystem
within a customer service system.) Components represent
a system’s computational and data elements. Connectors
may exhibit role-like behavior that describes how a
component participates in an interaction with another
component.

The following figure offers a partial sample of ADML in
which XML elements are employed to offer design
information for the Field_Support_System
example. Note that the design breaks the larger system
down into sub-systems: the Customer_Support
subsystem that implements the paper’s example domain
model, and a Security_System and
Communication_System that provide infrastructure
support.
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE Design (View Source for full
doctype...)>
<Design identifier="Field_Support_System">
<System name="Customer_Support_System">
<SystemDescription>
<SystemStructure>
<Component name="ClientServer">
<ComponentDescription />
</Component>
<Component name="Customer_DB">
<ComponentDescription>
<ComponentBody>
<Property name="Asset Base Properties">
<PropertyValue>
<PropertySetValue

name="Implementation">
<PropertyValue>
<PropertySequenceValue

name="Implementation object">
<PropertySequenceElement

position="1">
<PropertyValue>
<PropertyLiteralValue

value="%ASSET_BASE%\source\ATM.java" />
</PropertyValue>
</PropertySequenceElement>
<PropertySequenceElement

position="2">
<PropertyValue>
<PropertyLiteralValue
value="%TARGET%" />

</PropertyValue>
</PropertySequenceElement>
</PropertySequenceValue>
</PropertyValue>
</PropertySetValue>
</PropertyValue>
</Property>
</ComponentBody>
</ComponentDescription>
</Component>
<Component name="Product_DB">
<ComponentDescription />

</Component>
<Component name="RemoteClient">
<ComponentDescription>
<ComponentBody>

7
<Property name="Dependency">
<PropertyValue>
<PropertySequenceValue>
<PropertySequenceElement position="1">
<PropertyValue>
<PropertyLiteralValue

value="ClientServer" />
</PropertyValue>
</PropertySequenceElement>
<PropertySequenceElement position="2">
<PropertyValue>
<PropertyLiteralValue

value="Customer_DB" />
</PropertyValue>
</PropertySequenceElement>
<PropertySequenceElement position="3">
<PropertyValue>
<PropertyLiteralValue

value="Product_DB" />
</PropertyValue>
</PropertySequenceElement>
</PropertySequenceValue>
</PropertyValue>
</Property>
<Port name="Server_API">
<PortDescription />
</Port>
</ComponentBody>
</ComponentDescription>
</Component>
<Connector>
<ConnectorDescription>
<ConnectorBody>
<Role name="Server_client">
<RoleDescription />
</Role>
</ConnectorBody>
</ConnectorDescription>
</Connector>
<Attachments>
<Attachment PortID="PT01" RoleID="R01" />
</Attachments>
</SystemStructure>
</SystemDescription>
</System>
<System name="Security_System">
<SystemDescription />
</System>
<System name="Communication_System">
<SystemDescription />
</System>
</Design>

Figure 4. A Partial ADML Specification

A typical initial reaction by a reader is that the language
is overly verbose, yet this apparent excess provides one
of the major features of ADML: flexibility (extensibility),
inherited from both XML and ACME. Guided by a
syntax that, while prescriptive, is not excessively
constraining, a designer can craft a complex ADML
document that is both human and machine readable. For
example, information related to a component’s
association with its asset base is specified as a complex
property. Implementation information is specifically
composed of a set of properties. Within the set,
sequences define implementation information such as the
location of source files and the location of the build
environment. The set could easily contain other, more
primitive types of information, such as strings or integers
denoting performance criteria. A component’s
dependency on other component(s) is defined as a
sequence whose elements identify the component(s) upon
which the dependency is placed. In both cases, the

PropertyValue element is used in ADML as a signal
to the processor (either human or machine) that what
follows may or may not conform to any predefined
schema.

Using this specific example to clarify the above
discussion, PropertySequenceElement attributes
are used to define properties for component
Customer_DB that specify the location of a Java [tm]
file containing the source code implementing this
component and the target directory in which the instance
build image resides. The RemoteClient component
requires (is dependent upon) the other three components
in order to function as desired. The
PropertyLiteralValue of elements of a
PropertySequenceValue are used to describe this
property.

Finally, connectors are specified through use of a
Connector element which defines the role to be
played by the component employing the connector to
interact with another component and by an
Attachment which specifies the association between
that role and the port into the component being
employed. Due to space constraints, representations were
not incorporated in to this example.

5 TOOL SUPPORT

The previous sections advanced the case for an
architecture-based software engineering approach to
product line development; offered a specific technique –
MCC’s product line engineering approach; and showed
how XML can play a key role in that effort. This section
provides a cursory description of a prototype suite of
tools developed at MCC which was constructed to assist
in product line development. More germane to this paper,
it also discusses how those tools employ the XML-based
product line markup languages developed by MCC. The
intent is not to provide in-depth descriptions of each tool
but rather to provide a summary of each tool’s purpose,
to show how its functionality applies to product line
engineering, and to show how the XML-derived
languages are employed. The six tools to be discussed are
WinWin-NT, the ScenarioManager, the LinkManager,
VisualADML, the DependencyChecker and the
CompositionTool.

Figure 5, depicting interaction among the tools in the
suite, conveys the flow of architectural information as
captured in MCC’s product line markup languages.

WinWin-NT
Originally developed at the University of Southern
California, WinWin [1] is a tool that captures product
line engineering information related to identifying
requirements and negotiating and resolving pertinent
issues and their options. It also captures design rationale.
MCC’s version, WinWin-NT, is a modification that
exports that information in RCML, using a Document
Type Definition (DTD) to validate its output. Although

8

RCML employs the full complement of WinWin artifact
types, three are of special interest: conditions,
issues and options. Conditions represent
requirements, the commonality of a reference
architecture, while issues and their options represent the
variability that may yield instances of a product line.

Figure 5. Prototype Tool Suite for Product Line
Development

ScenarioManager
ScenarioManager is a graphical tool for creating,
viewing, and editing an SML document, a scenarios
document consisting of a list of scenarios and their
constituent parts: Agents, Objects and Actions. The tool
uses a DTD to validate its output. The value of the tool
lies in its assistance in defining application-specific
requirements, which represents the variability that may
yield instances of a product line.

VisualADML
VisualADML is a graphical editor that supports the
visual modeling of a product line reference architecture
and creation of a textual ADML description of that
architecture. A designer creates a reference architecture
by identifying its high–level design and specifying the
systems and subsystems within that design. Those
systems are further decomposed into components whose
interactions are defined by connectors and attachments,
which describe the relationship between components and
connectors. Editing assistance in the form of menus are
provided that aid in the specification of component
properties. The output of this tool is an ADML document
that textually describes the design. A forthcoming version
of the tool will use a DTD to validate this output.

LinkManager
LinkManager is an editing tool that permits designers to
manually create and navigate between the necessary links
found within XML documents that capture product line
analysis, design and implementation artifacts. For
example, experiments at MCC defined product line
requirements in RCML and components implementing

the solutions to those requirements in ADML. As both
RCML and ADML are XML derivatives, it was possible
to establish multi-way links. These links allowed
validation of multiple instance designs through linking
the artifacts (e.g., requirements) established within
application design back to the original product line
requirements. Automatic link creation would be ideal, but
investigation at MCC indicates that current knowledge is
not sufficient to meet that need. The product of this tool
is a LDML document, which is validated by its DTD.

Another element of this tool, the Architecture
Components Selector (ACS), provides a set of instance
requirement artifacts by generating a list of product line
architecture components. It accomplishes this by
navigating the links between the reference architecture
options captured in RCML and the issues defined for the
instance.

DependencyChecker
The DependencyChecker is an automated tool designed
to create a product line instance from its reference
architecture. This is accomplished by using the output
from the LinkManager’s ACS – essentially, a list of
components - as the basis for the instance architecture.
Given this list of components, the DependencyChecker
examines the ADML document created by VisualADML,
the textual description of the reference architecture, for
dependency-related properties for each of these
components. The intent of this operation is to ensure that
a complete instance architecture has been specified. The
output from this tool is a modified ADML document
reflecting the instance architecture.

An interesting feature of the tool is support of both direct
and indirect dependency. A direct dependency infers that
an architectural element explicitly requires the
implementation of another. Indirect dependency, while
still inferring an implementation of both, implies that
they may be required by some other architectural
element(s) while not necessarily interoperating with one
another.

Figure 6a provides an example of an ADML specification
of a direct dependency. A RemoteClient requires an
implementation of the ClientServer component in
order to function properly.
<ComponentDeclaration name="RemoteClient">

<SequenceDeclaration name="Dependency">
<LiteralDeclaration type="String"
value="ClientServer"/>

</SequenceDeclaration>
</ComponentDeclaration>

Figure 6a. Specifying a Direct Dependency

Figure 6b provides an example of an ADML
specification of an indirect dependency. A new
component, Product_Forecast, is deemed
necessary to the system design by the mutual dependence
upon it by two non-interacting components,

9

Customer_DB and Product_DB.
<SystemDeclaration name="Customer_Support">
<SetDeclaration name="Indirect Dependencies">
<SequenceDeclaration
name="Product_Forecast_users">

<LiteralDeclaration type="String"
value="Customer_DB" />
<LiteralDeclaration type="String"
value="Product_DB" />

</SequenceDeclaration>
</SetDeclaration>

</SystemDeclaration>

Figure 6b. Specifying an Indirect Dependency

CompositionTool
The CompositionTool composes the build environment
for the implementation of the instance architecture. Using
information contained with the modified ADML
document produced by the DependencyChecker (the
instance architecture), the CompositionTool creates a
script file that moves source files representing component
implementations from the asset base, its reuse repository,
to target directories on the build platform where instance
applications are constructed. The CompositionTool also
adds command line or operating system directives to the
script when specialized operations are required.
Examples of these operations include modifications to
configuration files or identification and potential
generation of “glue code” necessary to integrate software
components. The final step in creating the instance
architecture executable(s) is to run a site-specific
makefile on this build environment.

6 CONCLUSION

This paper has provided an assessment of effectiveness of
the role that XML can play in product line development.
Taking an architecture-based product line engineering
approach, it has shown how product line markup
languages derived from the XML meta-language can be
used to capture artifacts produced during the product line
development lifecycle. It has also illustrated how tools
assisting in product line engineering tasks can employ
these XML-derived languages.

The work described in this paper is part of on-going
research at MCC on the application of an architecture-
based approach to product line development. Areas of
interest for possible future product line development
research affecting the methodology, tool suite and the
XML-based languages include:

• A more substantial validation effort regarding the
artifacts exchanged between tools in the product line
tool suite.

• Increased support of the concepts of commonality
and variability with regard to creating instances of a
product line reference architecture.

• Analysis of architectural “ilities” (e.g.,
interoperability, extensibility) and implementation
characteristics (e.g., security, performance).

• Expansion of composition capabilities to represent
“glue code” (composition-related information)
within ADML.

It is worth noting that, as of publication date, the Open
Group [7] is in the final stages of adopting MCC’s
ADML as a standard notation for describing their
architectures.

7 INFORMATION AND QUESTIONS
For more information or questions, contact the authors or
visit MCC’s public web site at [6].

ACKNOWLEDGEMENTS
The authors wish to acknowledge the following team
members for their significant technical contributions
upon which this paper is based: Deborah Cobb, T.W.
Cook, Charles Goyette, Steve Pruitt and Wonhee Sull.

DISCLAIMER
All company, product, and service names mentioned are
used for identification purposes only, and may be
registered trademarks, trademarks or service marks of
their respective owners.

REFERENCES
1. Boehm, B. and Egyed, A., "WinWin Requirements

Negotiation Processes: A Multi-Project Analysis." In
Proceedings of 5th International Conference on
Software Processes, June, 1998.

2. Garlan, D.; Monroe, R. and Wile, D. “ACME: An
Architecture Description Interchange Language.” In
Proceedings of CASCON 97, November, 1997.

3. Garshol, L.M. “Introduction to XML.” Available at
http://www.stud.ifi.uio.no/~lmariusg/download/xml/
xml_eng.html

4. IEEE, Architecture Working Group of the Software
Engineering Standards Committee. “Draft
Recommended Practice for Architectural
Description.” IEEE P1471/D4.1.

5. Lao-Tsu. “The Tao of the Software Architect.”
Available at
http://www.sei.cmu.edu/architecture/essays.html

6. MCC, Information Systems Engineering Project
Web Site. Available at
http://www.mcc.com/projects/ise/

7. The Open Group Web Site. Available at
http://www.opengroup.org/

8. Potts, C. “ScenIC Guidebook: Scenario-based
Requirements Determination for Evolving Software
Systems.” Technical Report DRAFT, College of
Computing, Georgia Tech, July, 1998.

9. Pruitt, S. et. al. “The Merit of XML as an
Architecture Description Language Meta-Language.”
Position paper for WICSA, San Antonio, TX.
February, 1999.

http://www.stud.ifi.uio.no/~lmariusg/download/xml/xml_eng.html
http://www.stud.ifi.uio.no/~lmariusg/download/xml/xml_eng.html
http://www.sei.cmu.edu/architecture/essays.html
http://www.mcc.com/projects/ise
http://www.opengroup.org/

10

10. Quantrani, T. “Visual Modeling with Rational Rose
and UML.” Addison-Wesley, 1998.

11. SEI Architecture Description Languages Web Site.
Available at
http://www.sei.cmu.edu/architecture/adl.html

12. SEI Product Line Systems Web Site. Available at
http://www.sei.cmu.edu/activities/plp/product_line_o
verview.html

13. SEI Software Architecture and the Architecture
Tradeoff Analysis Initiative Web Site.
http://www.sei.cmu.edu/ata/ata_init.html

14. Stuart, D.; Sull, W. and Cook, T.W. “Dependency
Navigation in Product Lines Using XML.” To appear
in Proceedings of Third International Workshop on
Software Architectures for Product Families (IW-
SAPF-3).

15. World Wide Web Consortium (W3C) site. Available
at http://www.w3c.org/

16. W3C, XML Linking Working Group Web Site.
Available at http://www.oasis-
open.org/cover/xml/WG1999.html#linkingWG

17. W3C, XML Pointer Language (XPointer) Working
Draft. Available at
http://www.w3.org/TR/xptr

http://www.sei.cmu.edu/architecture/adl.html
http://www.sei.cmu.edu/activities/plp/product_line_overview.html
http://www.sei.cmu.edu/activities/plp/product_line_overview.html
http://www.sei.cmu.edu/ata/ata_init.html
http://www.w3c.org/
http://www.oasis-open.org/cover/xmlWG1999.html#linkingWG
http://www.oasis-open.org/cover/xmlWG1999.html#linkingWG
http://www.w3.org/TR/xptr

Reusable Architectures for Software Product Lines
H. Gomaa

Department of Information and
Software Engineering

George Mason University
Fairfax, VA 22030-4444
hgomaa@isse.gmu.edu

G.A. Farrukh
The MITRE Corporation

1820 Dolley Madison Blvd
McLean, VA 22102-3481

farrukh@mitre.org

1 INTRODUCTION
In this paper, a software product line architecture is defined as an architecture for a family of systems that have some
features in common and others that differentiate them. The architecture is described using an Architecture Description
Language (ADL) [Shaw96] in terms of components and their interconnections. This paper describes two approaches for
composing reusable software product line architectures from feature based domain specific architecture patterns. An
architecture pattern is defined to be a set of interconnected components specified in an ADL in terms of their interfaces
and interconnections. The first approach uses reusable black box architecture patterns, in which the entire pattern is
reused without change, although components in a pattern may have configuration parameters passed to them at
instantiation time. The second approach uses white box extensible architecture patterns, allowing the architecture to
evolve after it has been deployed. The approaches are described and compared.
 2 SOFTWARE PRODUCT LINE ARCHITECTURAL DESIGN
A domain model is an object-oriented analysis model for a family of systems. The domain modeling method [Gomaa95]
allows the explicit modeling of the similarities and variations in a family of systems. A feature is an end-user
requirement [Kang90] that is supported in the software product line architecture. In a family of systems, features may be
kernel, i.e., required by all members of the family, or optional, i.e., required by only some members of the family.
Optional features may also be mutually exclusive. A feature may require another feature as a prerequisite. Features are
determined during domain modeling. Scenarios are also used to determine the objects required to support each feature
[Gomaa95, Gomaa96].
 During product line architectural design, a reusable architecture is developed for the product line family. Each object
type in the domain model is mapped to a component type and each feature is mapped to a domain specific architecture
pattern, showing the composition of interconnected components required to satisfy the feature.
 In this paper, components types and architecture patterns are specified using an ADL, Darwin, which is part of the Regis
configuration environment for parallel and distributed programming developed at Imperial College, London [Magee94].
The Regis environment uses the Darwin ADL for the external specification of each component type, while the internals of
component types are programmed in the object-oriented language C++.
 A Darwin component specification describes the external specification of the component type. For every simple kernel,
optional, and variant object type in the domain model, an equivalent Darwin component type is developed. Every Darwin
component type is defined in terms of the interfaces it provides and requires from other Darwin component types. An
example of a Darwin component type is:
 component Line_Assembly_Workstation_Controller (char* wkst_name)
 {
 provide Part_Requested <port Part_Request_Type>;
 provide Part_Coming <port Part_Type>;

 require Workstation_Data <port Part_Type>;
 require Part_Sent <port Part_Type>;
 require Part_Request <port Part_Request_Type>;
 require Operation_Request <entry OpReq_Type, OpRes_Type>;
 require Alarms <port Alarm_Type>;
 }
Our approach for developing reusable architectures uses domain specific architecture patterns. The problem that an
architecture pattern solves is described by a feature. The solution of the architecture pattern is a set of interconnected
components, describing the components and their interconnections. The context in which the pattern solution works is
described in terms of the feature / feature dependencies, which are the constraints to be applied when combining features
and hence architecture patterns to compose the architecture of a target system (one of the members of the family). Thus
one feature may be a prerequisite for another or one feature may be mutually exclusive with another.
To relate the domain features to the reusable architecture, a scenario driven approach [Gomaa97] is used. An architecture
pattern shows the collaboration among the components required to support a given feature, as well as communication
with collaborating components in prerequisite architecture patterns.
For every feature in the domain model, an architecture pattern is specified using the Darwin ADL in the reusable
architecture. There is one kernel architecture pattern, which is required by every member of the product line, and
consists of non-variant components and their interconnections. For each optional feature, an architecture pattern is

2

developed, in which the optional and variant components needed to support it are defined as well as the interconnection
between these components. In addition, interconnections are defined between the components in the architecture pattern
and any kernel components used by these components. Interconnections are also defined to any optional or variant
components defined in prerequisite architecture patterns.

Figure 1: Software Architecture Diagram for High Volume Architectural Pattern
An example of a Darwin ADL description of an architecture pattern is given in Fig. 1 from a factory automation product
line. The High Volume architecture pattern has three component types: Receiving Workstation Controller, Line
Assembly Workstation Controller (which has a configuration parameter, workstation name) and Shipping Workstation
Controller. The instantiation statements are used to create one or more instances of a component type:
inst
 Receiving_Wkst: Receiving_Workstation_Controller;
 Shipping_Wkst: Shipping_Workstation_Controller;
 Line_Wkst: Line_Assembly_Workstation_Controller(wkst_name);
The pattern also defines the interconnections between components contained in the pattern. Message communication
between two components involves connecting the require interface of the sending component to the provide interface of
the receiving component using the Darwin bind statement. For example, the Line Assembly Workstation Controller sends
the Part Sent message to the Shipping Workstation Controller:
bind Line_Wkst.Part_Sent -- Shipping_Wkst.Part_Sent;
In this simple example, the High Volume Pattern also depends on two other architecture patterns: the kernel pattern,
which contains the kernel components, and the Factory Production pattern, which contains two other components. Any
dependencies on components in these required patterns must be explicitly defined in the dependent pattern.
3 TARGET SYSTEM ARCHITECTURE COMPOSITION
Target system architectures, which are members of the product line family, are composed from domain specific
architecture patterns, where the constraints for interconnecting architecture patterns are given by the feature/feature
dependencies. Thus the relationship among product line features, which is defined during domain analysis, is preserved
as constraints among architecture patterns. For a High Volume Manufacturing system, the High Volume, Factory
Production, and kernel architecture patterns are needed, as shown in Fig. 2. The High Volume target system architecture
consists of the composition of these three patterns involving the instantiation and interconnection among the components
of the patterns. As both High Volume and Flexible Manufacturing systems, which are both members of the software
product line, require the kernel and Factory Production architecture patterns, components in these architecture patterns
are reused in different target systems. Furthermore, the High Volume and Flexible Manufacturing architecture patterns
are constrained to be mutually exclusive by the feature/feature dependencies.
4 EVOLUTION OF SOFTWARE ARCHITECTURES
This section describes an evolutionary software architecture consisting of extensible white box architecture patterns. The
application domain is that of federations of client/server systems [Gomaa99].
A Federation Interface Manager (FIM) is a software subsystem that mediates each member’s interface to the federation.
The goal is to allow each information system's clients and server to be integrated into the federation with the minimum
amount of software modification. There are logically two kinds of FIMs, client FIMs and server FIMs. As new members
of the federation can be added after the federation is operational, it is also necessary to decouple clients from servers
through the use of object brokerage services. A high level view of the federation is shown in Fig. 3.

 Receiving
Workstation
 Controller

 Line Assembly
 Workstation
 Controller

 Shipping
Workstation
 Controller

Part_Coming

Part_Request

Part_Sent

Part_Requested

Alarms Workstation_Data

Part_Complete

Alarms

Start_Part

Alarms

Operation_Request

3

Figure 2: Software Architecture Diagram for the High Volume Target System

Figure 3: Federation of Client/Server Systems
The goal is to have FIMs that are reusable by each member of the federation. However, each member of the federation is
likely to need a different variation of the FIM, since each FIM will need to reflect the characteristics of the individual
client or server that it is interfacing to, as well as the characteristics of the federation, which are common. Thus a FIM
has some aspects that are common to all members of the federation, and other aspects that are specific to each individual
member of the federation. In addition, federation services can be split into those that are domain independent, e.g.,
brokerage services, and those that are domain specific, e.g., banking services in an electronic commerce domain. The
characteristics of this problem make it very amenable to domain modeling.
The FIM architecture operates at three different levels of reuse: federation, domain, and application. At the Federation
Level, the architecture is most abstract and can be used for any application domain. The overall structure of client FIMs,

 Production
Management

 Process
Planning
 Server

 Receiving
Workstation
 Controller

 Line
 Assembly
Workstation
 Controller

 Shipping
Workstation
 Controller

 Alarm
Handling
 Server

Workstation
 Status
 Server

Operator
Interface

Process_Plan_Request

Operation_Request

Start_
Part

Part_Complete

Part_Coming Part_Sent

Part_Request Part_Requested

Alarms Alarms Alarms Workstation_Data

Alarm_Request Workstation_Request

Factory
Production
Pattern

 High
 Volume
Pattern

 Kernel
Pattern

Client Brokerage
Request/Response

Brokerage
Services

Client FIM

Server FIM

Server Brokerage
Request/Response

Federated
Client

Request

Federated
Server

Response

Client

Server

Client
Request

Client
Response

Server
Request

Server
Response

4

server FIMS, and registration server, are defined. The architecture is defined in terms of the structure and interfaces of
the components, and is specified in the Darwin ADL. It defines the overall control structure for the federation. The
implementation of components providing federation level services is also domain independent.
The object brokerage services and the federation registration message are domain independent because registration
services are the same regardless of the application domain. The header part of the federation transaction is also domain
independent.
At the Domain Level, domain specific functionality is defined. In particular, domain level transactions are defined, e.g.,
for electronic commerce, which define the type of service provided for the domain, transaction requests containing
service requests and parameters, and transaction responses, are defined.
At the Application Level, functionality for individual applications (clients and servers) is added. For example, for an
ATM client, its transaction types and translation mechanisms are defined. At this level, clients and servers can actually
instantiate their respective FIMs and become members of a federation.
The FIM architecture along with the C++ code represents a framework [Johnson97]. In the approach described in this
paper, the framework consists of three architecture patterns (defined in the Darwin ADL) and components implemented
in C++. The patterns are micro-architectures for the Client FIM, Server FIM, and brokerage services. The brokerage
services form a black-box pattern, which is reused without adaptation. There is one instance of this pattern for a given
federation. The Client FIM and Server FIM are white-box patterns, which need to be extended before they can be used.
There are several variant implementations of these patterns in a given federation.
5. CONCLUSIONS
This paper has described two approaches for composing reusable software product line architectures from feature based
domain specific architecture patterns. The first approach uses reusable black box architecture patterns. A feature
describes the problem that an architecture pattern solves. The solution given by the architecture pattern is a set of
interconnected components, with a description of the components, their interconnections and their pattern of
communication. The context in which the pattern solution works is described in terms of the feature / feature
dependencies, which are the constraints to be applied when combining architecture patterns to compose the architecture
of a target system. When an architecture pattern is reused, its components are usually interconnected to different
components each time. With black-box patterns, the entire pattern is reused without change, although components in a
pattern may have configuration parameters passed to them at instantiation time. The second approach uses white box
extensible architecture patterns, allowing the architecture to evolve after it has been deployed. Using extensible
architecture patterns gives much greater flexibility, although considerably more knowledge of the architecture, and how
to adapt it is required.
To support our research into software product lines, we have developed several tools [Gomaa96, Gomaa97]. Currently,
we are developing an object-oriented UML based analysis and design method for software product line architectures,
which is based on use cases [Gomaa98] from which architecture patterns are developed.
6. ACKNOWLEDGEMENTS
This research was supported in part by the NASA Goddard Space Flight Center, the Virginia Center of Innovative
Technology, and DARPA. The authors gratefully acknowledge several valuable discussions with J. Kramer and J. Magee.
The views and conclusions expressed are those of authors and should not be interpreted as representing the official
policies or endorsements, either expressed or implied, of NASA, DARPA, or The MITRE Corporation.
7. REFERENCES
[Gamma95] Gamma E., Helm, R., Johnson R., and Vlissides J., Design Patterns: Elements of Reusable Object-Oriented
Software, Addison Wesley, 1995.
[Gomaa95] Gomaa H., "Reusable Software Requirements and Architectures for Families of Systems", Journal of
Systems and Software, April 1995.
[Gomaa96] Gomaa H., et. al. "A Knowledge-Based Software Engineering Environment for Reusable Software
Requirements and Architectures," J. Automated Software Engineering, Vol. 3, Nos. 3/4, August 1996.
[Gomaa97] Gomaa H. and Farrukh, G.A., “Automated Configuration of Distributed Applications from Reusable
Software Architectures”, Proceedings IEEE International Conference on Automated Software Engineering, Lake Tahoe,
November 1997.
[Gomaa98] H. Gomaa, “Use Cases for Distributed Real-Time Software Architectures”, Journal of Parallel and
Distributed Computing Practices, Vol. 1, No. 2, 1998.
 [Gomaa99] H. Gomaa and G. A. Farrukh, “A Reusable Architecture for Federated Client/Server Systems”, Proc. ACM
Symposium on Software Reusability, Los Angeles, May 1999.
[Johnson97] Johnson, R.E., “Frameworks = (Components+Patterns)”, CACM, Vol. 40, No. 10, Oct. 1997, pp. 39-42.
[Kang90] K. C. Kang et. al., “Feature-Oriented Domain Analysis,” Technical Report No. CMU/SEI-90-TR-21, Software
Engineering Institute, November 1990.
[Magee94] Magee, J., Dulay, N., and Kramer, J., "Regis: A Constructive Development Environment for Parallel and
Distributed Programs", J. Distributed Systems Engineering, 1994, pp. 304-312.
[Shaw96] Shaw, M. & Garlan, D, Software Architecture: Perspectives on an Emerging Discipline, Prentice Hall, 1996.

ICSE/IWPL1 submission paper

A bumon Methodology for Product Line Conceptual Modeling

Masao J.Matsumoto, Masahiko Kamata and Kaoru Umezawa
University of Tsukuba,Tokyo
Graduate School of Systems Management
3-29-1 Otsuka, Bunkyo, Tokyo 1120012 Japan
mjm@gssm.otsuka.tsukuba.ac.jp

Abstract

This paper presents a workable methodology for product line modeling. Though some advantages of
product line as compared to single shot have been recognized, actually workable methodology has
not been presented well covering and supporting those essential points as core conceptual, structural
and operational aspects that are incorporated into the architecture retaining throughout the lifecycle.
Conceptual modeling is the first crucial step for structuring the architecture, so that a new
methodology for it has been experimented in the internet-based enterprise modeling (bumon) project.

Keywords: Extended Objectives-Tree,

1.Introduction

Disciplines behind such success product line cases as AT&T ESA, IBM OS/360, Microsoft Windows
are risky to follow as guideline. Because, all them might not won their victories by their excellent
technology, but mainly by enormous capital investments and without any sound technology. It is
hard to find any sound technological advancement in developing Windows [AND96]. It must be
carefully checked to see whether there have existed the sound technology and architectural model at
the beginning of the Product Line developments. In most cases, the model gradually came up along
with, in most likely at the end of, the Product Line development life cycle as one of the resultants. In
this paper, some acronyms are used for making the descriptions neat such that PL for Product Line
and SSP for Single Shot Product.

This paper will discuss which methodology suites to PL development, especially for PL modeling
assuming PL model-based development is a good approach. A couple of questions are raised on PL
modeling and development and their methodologies, for example, does SSP development
methodology not fit to PL development? In addition, what is particularity of PL development
methodology? Why model-based approach is appropriate to PL development? What looks like PL
modeling methodology, any special features?

The authors have conducted internet-based enterprise, interprise in short, modeling research project
called bumon at University of Tsukuba, Tokyo campus since 1996 covering rather wide range of
themes as formal and empirical approaches for interprise modeling, business process simulation, PL
innovation. Some come-ups from bumon project are disclosed in this paper with focusing the PL
modeling methodology named Extended Objectives-Tree that was experimented in the project.

2.Product Line Requirements

As opposed to Single Shot Product, Product Line seems have some unique features. In order to
clarify what PL is, Table 1 shows the varaiability (difference) and similarity (commonality) between
SSP and PL. The table lists up not only the SSP and PL natures but also characteristics of
methodologies used for their modeling. SSP development methodology does not fit to PL
development, since the methodology does focus on the SSP itself and needs not pay attention to
product line family concerns. On the contrary, PL development methodology has to place more

emphasis on the family concerns, while SSP methodology needs not.

Table 1. Variability and Similarity observed in SSP and PL

Variability: SSP

 Attitude - Reactive to specific users’
 Requirements

 Offer -Stand alone product and not
 formed as a product family

 Evolution -On demand-basis, que se la se
 la style

 Life cycle -Single tired, SSP life cycle only

 Modeling -Scoped only by SSP itself

 PL

-Proactive to arbitrary user groups
forming market segments

-Family of several member products
called poduct line

-Intention-basis, target specific market
segments as developers want to get

-Dual tired, PL life cycle as well as each
member life cycles

-Scoped by PL family conscious

Similarity: •@•[Both are Software Product,
 •[•@Solution Engineering used as well as Domain Analysis

The variability in Table 1 shows requiring a different modeling for PL, since PL requirements differ
from SSP’s. Before step into PL modeling discussion, let’s have a quick look at PL ideal factors that
make PL more sound.

Necessary Conditions of sound PL include that the PL must have evolution ability, so that useful
product member could be provided for use one after another along with the PL life cycle. Technical
interpretation of this would be that the PL structure should be of evolution, extendable, and
expandable through the life cycle. The PL development is required to meet high adaptability product
with better quality with less cost with shorter time to market.

Sufficient Conditions of sound PL include that the PL is able to give greater benefits and profits
both for users and developers with smoothly getting PL development and evolution consensus
among the stakeholders. Today’s economic situations are featured with rapid and ever requirement
changing, stiff competition, high-graded product requirement. These features force PL development
be done more effectively and efficiently.

3.Product Line Life Cycle

Usually it is very rare that such sound PL as meets the conditions described in the previous sections
can be developed as a single shot product, but normally could been developed thorough a series of
evolutionary developments in which the developers are trying to meet the market needs .

PL is usually developed through two different phases, namely, the initial development and the
successive enhancement and evolution phases. PL is born in initial phase and may or may not grow
up to a sound PL through series of development cycles.

Initial phase

The most important aspect of initial phase of PL project life cycle is whether the PL starts with its
life cycle based on sound PL model. If not based on sound PL model, the PL will not grow up

smoothly, but may be have to change the basic architecture from a PL family member to another (or
in case of within a PL family member, from a member version to another), since the upholding basic
architecture falls into a ditch difficult to support the successive PL family members’ requirements.
Changing the basic architecture in the middle of PL development means discontinuity of the PL life
cycle. This kind of change will be also happen in the middle of a family member development,
namely, discontinuity of the family member life cycle.

Evolution phase

Once a PL is launched to user sites in marketplace, how the PL will keep growing up? In the PL
evolution phase, at least two factors will be observed as key criteria which decide extent of the PL
evolution, namely, the availability of feed back opinions on the PL enhancement from user sites and
the evolution ability of the PL itself.

Through utilization of the PL by the users in marketplace, they may feed back their opinions on the
PL to the developers. Those opinions are usually not known to the PL developers from the very
beginning in the initial phase, but become gradually revealed along with actual users’ use of it. The
users’ opinion never come up all at once in the initial phase, but be gathered one after another
throughout the life cycle. The market demands, instead of each users’ opinions, are also feed back to
the PL enhancement development. The feed back information from user community or the market is
thought valuable as the sources by which developers can make decision on the directions of PL
enhancement. In case of no feed back information given, the developers have to make the decision
on the PL enhancement and evolution by themselves.

For fulfilling those feed back opinions came along later, it is important to make judgement on
whether the PL could be improved or enhanced. The conditions for making those improvements and
enhancements possible, will be that the PL will not result in a hazardous situation in the course of its
continuous enhancements. In other words, the PL model is able to keep supporting the PL
enhancements along the PL evolution. What does the PL evolution ability means? The ability
implies that not only the PL itself could be evolved,(this is so-called “Line evolution”) but also each
active family members, that are existing ones, could be evolved. Be sure not all of the family
members are evolved well. Some members are not evolved for some reasons like the market needs
dismissing. On the contrary, brand new member happen to be born in order for meeting new
requirements. These are so called “Member evolution”. The relationship between line and member
evolutions seems aggregation. Aggregating all relevant members’ evolution forms the PL evolution.
An important issue is whether the developers are able to build such a model that can fulfill the needs
for those member and line evolutions. In the later sections of this paper, the model itself is discussed
in details.

4. PL Modeling

Why PL Modeling (Why not domain modeling)?

Domain modeling is usually carried out gathering systems development cases in the underlining
application domain, making analysis of the cases, extracting commonality and varaiability features
from the cases, and building a domain model that may be utilized for systems development in the
domain. Domain modeling in general does not intend build any PL model. As discussed earlier in
Chapters 2 and 3, a better way of PL development and more importantly enhancement for the
evolution indeed relies on availability of appropriate PL model which member products development
is based on.

Prerequisites for the modeling

There are several prerequisites that PL model must meet including as:

1. Clearly separate core functionality from trivial functions that PL supports,
2. Incrementally PL development must be possible with core functionality first,
3. Precisely elicit the PL requirements including potentials,
4. Appropriately make the PL adaptable to ever changing requirements,
5. Largely cover market share with long life cycle evolution ability,

What to model

PL architecture is a special case of domain model that is specializing at PL. The PL architecture
serves as core portion for all member products, so that the architecture represents common structure,
functionality, non-functionality as well as their varaiability which are made reference by PL
members. A Priority is given to conceptual model in PL architecture, since the model is a key to
construct a sound PL. The remaining aspects of the architecture should be supported by traditional
technology.

How to model

Case-base method may be appropriately uses for PL conceptual modeling. However, it is known that
sufficient cases are not always available for analysis. A methodology for making model incubation
(Quick Evolution) must be useful, since PL requires as much extensible conceptual model. Extended
Objectives-Tree is discussed with some others in later chapters.

5. PL Modeling Methodologies

It is widely believed that those methodologies invented as domain modeling, software engineering,
or systems engineering could be used for PL modeling purpose. However, that is a wrong belief,
since PL is neither equivalent to domain (PL is a sort of systems that is primarily oriented towards a
set of product family-members) nor to single software or system. Some methodologies in software
engineering and systems engineering might be utilized for PL modeling purpose, but they must not
primarily be oriented towards PL modeling. What PL must differ from usual systems are those
among that PL typically comprises a family of product members each of which has any of such
family relationship to others as parent-children, brothers and sisters, uncle, aunt, cosines, nephews.
The meanings of family relationship must be obvious, but how to produce each family member is
not so obvious.

Basically, there are two different ways of developing a product line and its family member, i.e.,
develop it “with PL model” or “without PL model”. A model-based PL development is one way of
developing any member of product line family and based on a model. That way of PL development
must be better than non model-based development, since model shows a basic architecture by which
each PL member must be built. A model is also useful as a guideline that shows a way of developing
the PL. The model-based PL development obviously assumes that certain model for the PL exists. If
no model does exist, one has to develop a model. A question is how one can develop such model that
is useful for developing a PL member. Are there any methodologies which support PL model
development? This and next chapters will focus in such methodologies that seem useful for PL
modeling, especially for PL conceptual modeling. Theoretically, the conceptual modeling needs at
least three different kinds of supports, let’s say,
Issues identification, Objectives structuring, and Commonality analysis. Issues identification comes
first of all and is needed for identifying the issues surrounding the PL. Objectives structuring comes
next and is needed for making PL objectives clear to define hopefully hierarchical structure of PL.
Commonality analysis may be used to make PL relevant characteristics clear from those particular
ones unique to each PL family member.

If the authors select some methodologies for PL conceptual modeling, they may be includes the
Issue-based, Objectives-tree, Commonality analysis, and optionally Factor analysis methodologies.
Those methodologies are strictly speaking, not invented for PL modeling but in general rather for
arbitrary systems. The reason why touching on them in this paper is that the methodologies would be
worth to experimental use to see whether they are useful for PL conceptual modeling.

5.1 Identifying Issues

It is said that if the issues about the problem, in this case the problem is PL, has been clearly defined,
then more than half way of project might be progressed and the remaining parts must be
accomplished without much difficulties. Paradoxically, if no issue is clearly made, then the project
must be in uncertain and no one guarantees its sound progress. Issue identification is very important
in development project and PL project is no exceptional on this.

The Issue-based may be useful for identifying issues surrounding the underlining PL. The Soft
Systems Method, SSM in short, has been developed by Checkland et al [CHE90] and useful for
identifying problem structure, especially with clear descriptions of each view to the problem based
on their world view, so-called weltanschauunk. The SSM is particularly useful for ill-structured
problem rather than well-structured. One must get sound views to the problem structure of the PL by
the SSM at initial stage of the PL modeling.

As the other methods of issue-based objectives analysis, the authors can point The Interpretive
Structural Modeling, ISM in short, and The DEecision Making Trail and Evaluation Laboratory,
DEMATEL in short, both have been developed by Battel Columbus Laboratory, Swiss. The ISM is
primarily-oriented towards large scale project analysis, in its issues identification and determining
development objectives. ISM helps modeler to systematic seize issue chain identified in the problem
and draw the multi-layered arc graph representing the issue structure. The DEMATEL method is
primarily-oriented towards complex problem analysis like world model, ranking strength of issue
relationships in a form of matrix representation [AKA92][KAM97]. As a traditional issue
identification method, the KT method was proposed by Kepner et al to help analysts make clear
analysis with focusing especially in such four aspects of problems as situation, problem, optimum
solution decision, potential risk [KEP81].

The IBIS is another methodology that may be useful for identifying problem, issue, and arguments
[CON88]. The IBIS may be helpful for one to find out any rational behind the issues showing all the
relationships among three separate views surrounding the problem, namely, design issue, design
conditions, design position and affirmative and/or negative arguments.
A ambitious research has been tackled by Software Reuse Special Interest Group headed by Komiya
Seiichi trying to compromise those KT and IBIS to improved method[KOM93]. It is worth to note
that the extensible improvement was made on development rational management through the
research.

There are a lot of methodologies invented elsewhere. It is not this paper’s purpose to list up them
exhaustively, but just points out they are fallen into two categories of ways of thinking, divergence
and convergence, see, Table 2. Divergence and Convergence ways of problem analysis.

 Table•@‚Q•@Convergence•@vs.•@Divergence•@Study Method‚“[KAM‚X‚V•n

Stages Divergence Convergence
Data•@used Method Method•@Type•@•@•@Method

Set up Problem Interview Evaluate Several Evaluate
MethodsDiscuss

 As-is ‚a‚r•C‚b‚a‚r method Spacial Relating
 Play writing
 Issue Issue data Defects Cause-Effect Fishborne
 Play writing Cause Analysis
 ‚a‚r

Objectives Goal Checklist Evaluate Several Evaluate
 Structure ‚a‚r Spacial Relationship
 Idea data Wishes Listup ‚j‚i method
 Attribute Listup Cross method
 Actual

Plan

 Gordon Cause-Effect Story method
 Shape Analysis
 Synetics
 ‚m‚l method
 Procedure Work data ‚a‚r Temporal Card-Part method
 ‚b‚a‚r method Gant Chart

Total Eval Reactive data Questionare Evaluate Several Evaluate Method

Fact data

Solution

Prob Seize

6.2 Commonality Analysis

The Commonality analysis is a method that had been developed for domain analysis [DIA87].
Ruben Prieto-Diaz explored domain analysis method focusing in its process and proposed a way of
representing domain taxonomy catching a hierarchy of objects, functions at the structure nodes and
different kinds of relationships at the edges. Commonality analysis is a method that allows one to
analyze any commonality, similarity, and variability that might exist in and among members of a
product family. Weiss tried to apply the commonality analysis method to model of PL [WEI95].

The research theme of applying the Objectives-Tree analysis methodology to PL modeling, or if not
the case, just software product developments, has been studied by several researchers including
Parnas, Mittermeir, Umezawa, see, next sections for details.

6.3 Traditional Objectives-Tree Methodology

As discussed earlier in Section 3, PL objectives must address technical essential issues as well as
mankind survival issues in environment and economics, since objectives are defined as
representations of the PL strategy and the ways of putting it into practice, setting out goals to achieve
and evaluating the performance. Objectives are traditionally used to focus on only certain specific
product itself and typically not for a product line, since still rather week conscious to product line.

What does PL objectives differ from single product objectives? PL objectives must have
perspectives of the PL’s competitiveness over its lifecycle in the targeted marketplace, so that the
objectives must usually cover longer time frame in time axis and more wider market scope in target
market axis than objectives for a single stand-alone product.

Objectives-means method had first been proposed by Parnas [PAR79] and afterwards revisited by
Mittermeire with an intention of applying it to software family requirement definition [MIT90], and
the method provides a way to make a hierarchy of objectives with exploring each levels of

objectives’ why-to-do as well as how-to-do. The exploration is to verify the hierarchy of the
objectives. The procedures for defining objectives hierarchy seem rather ambiguous, but essential
points include first, focusing at a major issue at which organization faces, second, thinking of how
the issue can be accomplished, in turn, reading this how to do an issue for the lower level of
objectives hierarchy. Repeating these steps of the procedures until four or five levels of hierarchy
would be clearly defined. If the modelers are not confidence in the soundness of the hierarchy, they
must verify the hierarchy each level by level to check relationships between a level of issue and its
why should do and its how to do.

7. The bumon Objectives-Tree

The traditional method addresses only the hierarchy of issues. Though the hierarchy represents major
aspect of objectives, there are still some other aspects of the objectives. One can optionally address
functionality of PL depending on which aspect should be thought major factor in the PL project.
Thus, PL objectives-tree can be defined.

In PL objectives-tree, it is important to define two different evolution aspects, horizontal and
vertical. In horizontal evolution, one may deal with PL’s characteristics including issues, functional
and non-functional requirements, and structure. Non-functional requirements will cover performance
and quality, ease to use human machine interface. In vertical evolution, one may define deliverable
products showing parent-children relationships of the PL upon launching one new family member
after another until the end of the total PL lifecycle. The Extended Objectives-Tree was first invented
and experimented in bumon project prior to the deployment of the methodology into several
practical PL developments.
1) Identify issues

Several issue identification methods are discussed in the previous section. In bumon project, SSM is
mainly experimented, because problem nature as observed in PL is similar to a kind of social
problems that fit to SSM.

2) Extract common characteristics

In top down approach, the modelers must break the PL objectives-tree down to the tree of each
product member. Alternatively in bottom up approach, modelers may apply the same procedures to
each product member, and then get product member objectives-tree. Modelers aggregate all
objectives-trees, and could form PL objectives-tree.

Once the hierarchy of objectives is defined, try to extract common characteristics over the product
line. This extraction is done through careful checking the objectives tree structure. Important thing
is that those characteristics appear in each product members and should be dealt with major bone in
the PL.

3) Make PL model

In previous section, common characteristics in PL are addressed. The term characteristics is off
course a generic and could be interpreted into many others, for example, functional, non-functional,
structural, behavioral. All these characteristics must be taken into consideration in making PL model.
Taking the procedure mentioned in the previous section, one can define common functionality for
the underlining PL. Likewise, one can define common structural and others, thus one can define the
commonality of the PL with respect to non-trivial factors.

Using commonality analysis method, one can identify variability that may be exists in the PL. The
authors have found some lessons learned through the experimental uses of the commonality analysis
method undertaken in the bumon project at University of Tsukuba over these three years.

Commonality is rather easy identifiable, while variability difficult. The reasons why it is difficult to
identify the variability are that commonality findings are close ended, while variability findings are
rather open-ended. Variability must be identified in many senses, so that it is difficult for modelers to
exhaustively identified every non-trivial aspects of a variety, let’s say, difficult to find out every
parameter sources representing for variability. See [MJM99] for details the lessons learned.

Variability leads to form a generic representation of PL model. Commonality leads to form a basic
structure which each product line members must commonly incorporate. Basically, PL model can be
constructed by the basic structure in generic representation.

8. Experiments

Experimental research has been done in bumon project at The University of Tsukuba in order to do
verification of usability of the Extended Objectives-Tree Methodology in PL conceptual modeling.
Human Resource Management (HRM) and some other domains are selectively experimented.
Umezawa undertook his role to improve the relevant methods and apply them in HRM PL
development, not only research base but also actual field practices [UME00].
For HRM, PL conceptual model has been made as:
1. Explore several product member in HRM with respect to functional and non-functional of the PL,
2. Check and extract core functionality from the PL Objectives-Tree as functions commonly appear

throughout PL members. This is rather tough task, since it is somehow difficult to extract
common function.

3. Construct conceptual model for the PL using those common functional.
.

8. Concluding Remarks

It is important to recognize what PL differs from stand-alone SSP type product. PL should keep

Utilize HR Pos.Trans

Recrute

Wage Updt

Slct Person

Notify

Set framewrk

Fig.2 Extended Objectives-Tree for HRM(Portions)

holding consistent model throughout its evolution lifecycle, otherwise both developers and users
must take disadvantages, as discussed earlier chapters. PL modeling methodology is a key to success
in PL. Specifically, in the modeling, such two analysis as issue identification and commonality and
varaiability extraction are essentially needed to do. The bumon Objectives-Tree is helpful to form PL
characteristic hierarchy on which based, conceptual model is built. What has been verification
through bumon experiment and actual practices in PL development in field that the model-based PL
is constructed and evolved well satisfying the requirements addressed in earlier chapters.

References
[AND96] Anderson, C.: An Operating System Development:Windows 3, Proc. ICSE,pp.101-
Industrial Experiences Section 2D, 1996
[KEP81] Kepner, C.H. and Tregoe, B.B.: “The New Rational Manager”, Princeton Research Press,
1981
[AKA92] Akagi, S.: “Systems Engineering”, Kyoritsu-shuppan, 1992
[KAM97] Kamata,M.: “Research on Systematic Clarification Methodology for Problem Domain”,
Master Thesis Paper, University of Tsukuba, Tokyo, 1997
[CHE90] Ceckland, Peter and Scholes, Jim: “Soft Systems Methodology in Action”, John Wiley &
Sons, Ltd., 1990
[CHE81] Ceckland, Peter : “Systems Thinking, Systems Practice”, John Wiley & Sons, Ltd., 1990
[CON88] Conklin,J. and Begeman,M.L.: gIBIS: hypertext Tool for Exploratory Policy Discussion,
Proc. CSCW’88, ACM, pp.140-152, 1988
[DIA87] Prieto-Diaz, R.: Domain Analysis for reusability, Proc.COMPSAC’87,pp.23-29, 1987
[WEI99] Weiss, D.M. and Lai, C.T.R.: ”Software Product –Line Engineering, A Family-based
Software Development Process, Addison-Wesley, 1999
[WEI94] Weiss, D.M. : Commonality Reviews, AT&T Laboratories Technical Memorandum,
BL0112650-940321-09, 1994
[WEI99] Weiss, D.M. Software Synthesis: The FAST Process, MultiUse Express, 1994
[KOM93] Komiya,S.: Reuse of Software Design Know-hows, 4th SIG C group, SPC Research
Report, JUSE, in Japanese, pp.124-146,1993
[PAR79] Parnas, D.L.: Designing Software for ease of extention and contraction, IEEE Trans. on
Software Engineering, SE-5, No. 2, 1979
[MIT90] Mittermeire, R.L. et al: An Integrated Approach to Requirements Analysis, Van Nostrand
Reinhold, 1990
[UME00] Umezawa,K.: “A Definition Method for Product Line Architecture”, Master Thesis Paper,
University of Tsukuba, 2000
[MJM99] Matsumoto,M.J.: Lessons learned in Commonality Analysis, R-Memo,University of
Tsukuba,1999

ESAPS – Engineering Software Architectures, Processes and
Platforms for System Families

Frank van der Linden
Philips Medical Systems B.V.

Veenpluis 4-6
5684 PC Best

the Netherlands
+31 40 276 4577

frank.van.der.linden@philips.com

1 INTRODUCTION
Across Europe 21 companies and research institutions work
since July 1999 in a project “Engineering Software Archi-
tectures, Processes and Platforms for System Families” –
ESAPS, project 99005 in the Eureka Σ! 2023 Programme.
Based upon earlier and smaller scale experiments in ARES
[1] and PRAISE [2], ESAPS aims to improve the state of
practice in European industry with respect to the engineer-
ing of architectures, processes and platforms for system
families in order to achieve significant higher levels of re-
use and improved system quality

The ESAPS project is conceived as a 4-year project that has
been divided into two phases of two years each. The first
phase will concentrate on the development of the approach
and laboratory scale validation of the individual technolo-
gies and technology integration framework. The second
phase will focus on the integration of the individually vali-
dated technologies and automation of the approach and
industrial scale validation in various domains.

The idea of a program family is not new and dates back to
the seminal papers of David Parnas and Edsger Dijkstra [6,
4]. Nowadays system-families are becoming strategic busi-
ness assets. For designing products we have to take into
account an increasing number of user groups (so-called
stakeholders) with diverging requirements. So we have to
handle requirements and architecture in such a way that
varying products can be derived using a common pattern –
i.e. a family concept. The structuring of systems into sys-
tem-families allows sharing of development effort within

the system-family and as such counters the impact of
growing system complexity. This makes it possible to sus-
tain the rate of product innovation, while keeping guaran-
teed levels of overall system performance and quality. The
fundamental concept of a system-family is based on do-
main-specific product architecture determining a layered
set of platforms. A software engineering process focussed
on pervasive reuse supports the family.

The ESAPS project aims to provide an enhanced system-
family approach and enhanced domain-specific platforms
for the application domains of the partners. ESAPS is de-
signed to enable a major paradigm shift in the existing pro-
cesses, methods, platforms and tools and comprises
amongst others the change from engineering single systems
to the engineering of multiple systems or system-families.

The basic idea is to have a large commercial diversity with
a relative small technical diversity. It supports the devel-
opment and evolution of product variants for different cus-
tomer groups, e.g. for different countries. It reduces signifi-
cantly the time to market for individual system variants. It
enables a delta development approach.

2 ESAPS APPROACH
A system-family is defined as a group of systems sharing a
common, managed set of features that satisfy core needs of
a scoped domain. The idea behind a system-family ap-
proach is to build a new system or application from a
common set of assets (domain model, reference architec-
ture, components, platform) defined from earlier developed
systems belonging to the same line. A software asset is a
description of a partial solution. It might be a component,
known requirements or design elements that an engineer
uses to build or modify a software product.

ESAPS analysis tasks
One of the topics of ESAPS deals with analysis, separated
in the analysis of the problem-domain and the solution-
domain. The architecture should take into account all kinds
of customer preferences but also preferences of the other

LEAVE BLANK THE LAST 2.5 cm (1”)
OF THE LEFT COLUMN ON THE FIRST PAGE

FOR THE COPYRIGHT NOTICE.
(preserve these six lines in some
 cases, but make their contents

 blank in your text)

stakeholders. In particular we have an activity dealing with
aspect analysis, incorporating the quality requirements
(non-functional requirements) a product family has to meet.
The book [3] distinguishes between runtime discernible,
not run time discernible, inherent and business aspects.

Specific analysis and design techniques have to be devel-
oped and integrated to deal with the different qualities. So-
lutions may lie in (run-time or development-time) infra-
structure support, in the design of specific interfaces, in the
design of specific services or a combination of all. For ex-
ample, concerns like configuration, testing, logging, ini-
tialization may be served by a combination of an infra-
structure component and specific interfaces. These inter-
faces have to be designed for each of the components of the
system family.

As can already be deducted from the different quality
classes, the different qualities serve the needs of distinct
stakeholders. Each of these qualities and interfaces are of-
ten very important from the view of a particular
stakeholder.

As the development and marketing organization are im-
portant stakeholders, economic analysis is part of the aspect
analysis investigations. Moreover, we have started special
task dealing with economic analysis of the use of system
family engineering.

It is our conviction that the system family approach only
pays when there is a large amount of variability foreseen in
the family. Only then the additional investments of setting
up a product-line organization may benefit. However, Set-
ting up the organization well may lead to possibilities of
easy outsourcing, giving chances to middle size companies
delivering specific and generic components that can be
used within the family.

ESAPS design tasks
The ESAPS design tasks have a focus on how to share a
common architecture within a system family. For instance,
product line processes are considered. Jacobson et. al. [5]
determines three process categories which should be com-
bined to obtain a complete process for system family de-
velopment. The first of which deals specific with all assets
whose scope encompasses single products.

1. application family engineering covering the devel-
opment of assets usable for the complete family

2. component system engineering covering the devel-
opments of single (platform) components to be used
within system-family members.

3. application system engineering covering the neces-
sary developments to construct the family members
using the components developed in 2.

The reference architecture is an important system-family
artifact, as it comprises the main architectural information

of the complete family. It is an intermediate between the
problem space, encapsulated in the domain model, and the
solution space. Designing system families requires a way of
architecting the commonality and variability in order to
exploit them during the tailoring phase.

The system family architecture, or reference architecture,
defines the components (which may be mandatory, op-
tional, or alternative), component interrelationships, con-
straints, and guidelines for use and evolution in building
systems in the system family. Consequently, the reference
architecture must support common capabilities identified in
the specification, the commonality, and the potential vari-
ability within the system family. The reference architecture
is then used to create an instance of a particular architecture
for a new variant. The system family scoping, defined in
the analysis phase is essential for the development of a ref-
erence architecture since it defines the bounds for systems
that will constitute the system family as well as the goals to
be achieved and targeted by system family development.

ESAPS derivation tasks
Within this task the two aspects of system-family evolution
are present: First, the family evolves because new members
are added, secondly the separate system artifacts evolve
separately into improved versions. An important tool for
dealing with evolution will be derived from advanced re-
quirements modeling and traceability techniques.

Deriving a new member of the family, defined by a set of
new requirements, means to:

• identify those requirements which are common to all
product variants and those which belong to specific
variants

• select and adjust those parts of the system family ar-
chitecture which can be reused in the new variant,

• to document and reuse the architectural decisions at the
variation points which have to be taken to complete the
variant architecture, and,

• identify and possibly adjust the components along with
an adequate configuration that can be used in the new
product.

Establishing and maintaining traceability between devel-
opment artifacts is essential for an effective and error-free
definition of a product specific reference architecture. More
precisely

• the new requirements must be mapped onto the refer-
ence requirements defined in the domain assets

• the requirements must be interrelated with the corre-
sponding parts of the reference architecture

• the architecture parts must be related with the system
components

• the interrelations should be justified by recording im-
portant design decisions.

Capturing, documenting and maintaining the traceability
information is labor and cost intensive. Traceability should
thus be adjusted to product family specific needs and as far
as possible be automated.

Moreover we need to be able to determine impacts of
change and how changes propagate. Change to a product
concerns modification related to defects or new require-
ments. It is then necessary to analyze the affected assets
and determine whether changes have impact on reference
assets. It is also necessary to keep track of the proportion of
reference assets that are faulty. In general, this enables us to
predict the properties of variants or new reference assets
before actually building them.

Change may influence several system artifacts at different
levels of abstractions such as components, architectural
models, and requirements. Changing one artifact may re-
quire the adaptation of dependent artifacts, again at differ-
ent abstraction levels. This dependency relationship refers
to interactive change impact propagation. Change impact
propagation is illustrated by references to potential changes
required.

REFERENCES
1. ARES Web Sites, Available at Vienna

<http://hpv17.infosys.tuwien.ac.at/ARES/> and Ma-
drid <http://sirio.dit.upm.es/~ares/>

2. PRAISE Web Site. Available at
<http://www.esi.es/Projects/Reuse/PRAISE/>.

3. Len Bass, Paul Clements, Rick Kazman, Software Ar-
chitecture in Practice, 1998, Addison Wesley: ISBN 0-
201-19930-0

4. E.W. Dijkstra, Notes on structured programming, O,J.
Dahl, E.W. Dijkstra, C.A.R. Hoare, edss., Academic
Press, London 1972.

5. Ivar Jacobson, et al; Software Reuse: Architecture Pro-
cess and Organization for Business Success, 1997,
ACM Press New York: ISBN 0-201-92476-5

6. D. L. Parnas On the Design and Development of Pro-
gram Families, Transactions on Software Engineering,
SE-2:1-9, March 1976.

Document Information

Copyright 2000, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means includ-
ing, without limitation, photocopying, recording,
or otherwise, without the prior written permission
of the publisher. Written permission is not needed
if this publication is distributed for non-commercial
purposes.

Title: Software Product Lines:
Economics, Architectures,
and Implications
Workshop #15 at 22nd
International Conference
on Software Engineering
(ICSE), Limerick, Ireland,
June 10th 2000

Date: June 2000
Report: IESE-076.00/E
Status: Final
Distribution: Public

	Perspectives on Software Product Lines
	Economic and organizational aspects of product line development
	Multi-Staged Scoping for Software Product Lines
	Product-line analysis: Do we go ahead?
	Quantifying Software Product Line Ageing

	Case studies, experiments, reports from industrial projects
	A Comparative Analysis of Domain Engineering Methods: A Controlled Case Study
	Performance Issues of Variability Design for Embedded System Product Lines
	Athena: A Software Product Line Architecture for Meter Data Processing and Control
	Applied technology for designing a PL architecture of a pilot training sytem
	A product line experience in the domain of fund management
	Domain analysis and product-line scoping: a Thomson-CSF product-line case study
	Moving toward software product lines in a small software firm: a case study

	New product line approaches
	A Product Line Process for the Production of Platform Software at Bosch
	A Framework for Software Product Line Practice
	Product Line Process Framework: The Wheels process
	Analysis of the Essential Requirements for a Domain Analysis Tool
	Embedded Systems Product Lines
	Helping Small and Medium-Sized Enterprises In Moving Towards Software Product Lines
	Product Line Viewpoint and Validation Models
	An XML-based Approach to Product Line Engineering
	Reusable Architectures for Software Product Lines
	A bumon Methodology for Product Line Conceptual Modeling
	ESAPS – Engineering Software Architectures, Processes and Platforms for System Families

	Document Information

