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Abstract—Secrets such as passwords, encryption keys, and
certificates are used to assist in protecting access to resources
such as computing devices, customer data and other information.
Unauthorised access to resources can cause significant disruption
and/or disastrous consequences. Given the importance of protect-
ing these secrets to the security and privacy of many software
systems, many solutions have been proposed. These solutions
take two main directions: either securely store the secret and
implement an access control mechanism, or divide the secret into
a set of shares and distribute them in different machines (such as
the Shamir’s secret sharing approach or multi-party computation
MPC). However, apart from the MPC approach, they all share
the same limitation: once the consumer receives the secret, it can
be leaked and be used by any malicious actor. We believe that the
secret management should not be centralised and that the secret
should never be sent to the receiver. Therefore, in this paper we
propose, Secretation, a new approach for managing the secrets in
a decentralised way by leveraging decentralised identity concepts
such as verifiable credential technologies, password-authenticated
key exchange protocols and multi-party computation. The result
is a more scalable and secure solution that significantly reduces
the risk of leaking the secrets.

I. INTRODUCTION

Secrets are sensitive data that can only be accessed by a
limited number of users, applications, or processes. A secret
can be virtually any sensitive information that we need to
restrict access to, such as user credentials, cryptographic keys,
API keys and configuration files. Secrets are used not only
to authenticate users but also to authenticate applications,
services, devices and any ”thing” in the IoT world. Lack of
security and proper access management can lead to devastating
consequences, including an increased risk of cyber attacks
and theft of certificates or user credentials, such as by Man-
in-the-Middle (MITM) attacks and spoofing. Many solutions
and approaches have been already implemented and proposed.
These solutions can be categorised into two main categories:

• Centralised secret management systems where the secrets
are stored encrypted in central storage.

• Distributed secret management systems where the secrets
are divided into shares and stored several internal ma-
chines or in the cloud.

Most of the existing solutions implement a kind of access
control mechanism to restrict access to the secrets to specific
entities. However, they share the following limitations: 1)
Most of them are based on role-based access control which
is not adequate for fine-tuned access control [1]. 2) Some of
them relies on a third-party (e.g. in the cloud) to stores the
secrets which increase the risk of leakage. 3) The common
factor of all of them (except the solutions based on multi-
party computations such as [2]) is that the eligible secret
consumer is able to access the actual (non-encrypted) value
of the secret. We argue here that this poses a security risk
because any malicious insider (who is eligible to access the
secret) can leak the secret or use it maliciously. Rotating the
secret regularly could indeed mitigate that risk, but it is not
enough, and it is not adequate in all scenarios. For example,
rotating an encryption key requires re-encrypting the encrypted
data using the new key which might require an outage until
all data are entirely re-encrypted.

In order to remedy these limitations, we propose a new
secret management system that takes another perspective when
it comes to protecting secrets. Instead of securely storing the
secrets and delivering the secrets in their plain forms to the
recipients, our approach is to create an encapsulation layer
that protects the secret in a way that the secret must not leave
its location at any point in time to the recipients. Instead, for
each secret, there will be an agent responsible for fulfilling
the requests to access the secret. We call these requests Usage
Requests (URs). In this respect, the requester should specify
in the request how they intend to use the secret and in which
context. Once all information is available to the agent - the
only entity who knows the secret value - they can trigger the
action specified in the UR, receive the results and send them
back to the requester. For that objective, the requester must
be able to prove to the secret agent that they meet the secret
policy available to the agent and specified during the secret
creation.978-0-7381-1420-0/21/$31.00 ©2021 IEEE



II. BACKGROUND

A. Multi-party computation

Multi-party computation is, at least, a two-party protocol
that protects participants privacy and data security. Two parties
aim to compute the output of a function without revealing
their inputs and which first was described by Yao [3]. Modern
MPC protocols are complex designs in the sense that rely on
many cryptographic tools and assumptions to achieve their
objective. Therefore, garbled circuits, oblivious transfers and
zero-knowledge proofs are some of the preferred primitives to
use. Garbled circuits notion refers to a cryptographic technique
that encrypts inputs with different keys to avoid computing
functions over plain data, thus providing privacy, through a
Boolean circuit. A formalisation attempt on garbled circuits or
garbling schemes is provided in Bellare et al. [4]. An oblivious
transfer, introduced by Rabin whose transcript is found in
[5], is a message exchange cryptographic tool to privately
output the result of one of the sender’s inputs with no external
trusted party involved. A zero-knowledge proof is defined as a
probabilistic cryptographic function that allows for a verifier to
verify that a concrete construction (e.g. a proof) is valid over a
value without requiring the prover to expose the private value
[6].

Due to inefficiencies and computational power limits, many
MPC approaches are not yet implementable except for digital
signatures schemes. Two-party digital signature schemes allow
for computing a joint signature over a message between
two participants without ever revealing their private keys nor
reconstructing private keys in the clear. These techniques
are widely known as threshold cryptography. Common MPC
signing algorithm includes 2-party ECDSA by Lindell [7] and
2-party Schnorr signatures by Nicolosi et al. [8].

B. Password-Authenticated Key Exchange

1) Shared secrets: Bellovin and Merritt [9] presented the
first Key exchange protocol to be used with passwords, namely
the Encrypted Key Exchange (EKE). EKE achieves secure
authentication by leveraging symmetric and asymmetric cryp-
tography. This work permits to establish an authenticated and
secure channel between two parties from a weak password,
which is resistant to dictionary attacks. The password is
considered a shared secret which both sides need to know
before running the protocol. Since the invention of EKE, many
improvements have been proposed, for instance, SPEKE and
DH-EKE. SPEKE presented by Jablon [10] is similar to EKE,
but instead of using a fixed primitive base for the protocol,
it uses a function to transform the password into one. DH-
EKE by Steiner et al. [11] presents a modification on the EKE
protocol to use the public key distribution system of Diffie and
Hellman. By combining DH public key and passwords, both
methods prevent man-in-the-middle and offline-attacks [10].

2) Asymmetric AKE: The technology evolved towards im-
plementing asymmetric cryptography to avoid sharing secrets
between parties which is the main concern of these protocols.
Then, the Secure Remote Protocol, which is an Asymmetric

Key Exchange (AKE) protocol, was introduced by Wu et
al. [12]. SRP prevents from sharing a long term password
by leveraging one-way functions as a verifier that creates a
relationship between them. It is based on the random oracle
model and mixing functions as well as a hashed-based MAC
to confirm session keys. In general, such protocols provide
forward secrecy but differs on the resistance to diverse at-
tacks. This particular AKE instantiation is resistance to active
attacks.

As it is not easy to model and proof security over Password-
only Authenticated Key Exchange (PAKE) many proposals
rely on digital signatures schemes to construct an AKE
protocol, such as [13] and [14]. Sometimes it seems there
is a trade-off between sharing secrets or relying on digital
signatures to develop authenticated key exchange protocols.
However, there are efforts in removing the dependence on
PKI and maintain only the easy use of passwords to define
secure authentication and key agreement protocols. Hao et
al. [15] presents J-PAKE as an AKE protocol with no PKI
requirements, although both parties share a secret password.
This protocol prevents from sending the password in clear, thus
follows a verified-based protocol, by using Schnorr signatures
as a zero-knowledge proof tool providing resistance to both
online and offline dictionary attacks.

Additionally, it is argued that pre-computation attacks on
server compromise attacks are inevitable and that resistance to
only offline attacks, without password file leaked, is sufficient.
However, some research has shown that PAKE with additional
server compromise attack resistance is possible and interesting,
so no need to update user’s passwords as shown in [16] and
[17]. Gentry et al. [16] presents a mechanism to transform
traditional PAKE into server compromise resistance protocols
by relying on symmetric encryption and a digital signature
scheme. Jarecki et al. [17] presented the first PKI-free PAKE
protocol resistant to the same attack. Both methods are proved
under the UC framework.

C. Public Key Infrastructure

Digital signatures schemes are used to prove identity, in
which each participant generates a key-pair, in particular, a
private key and a public key. Any encryption with a public
key can only be decrypted with the corresponding private
key. Likewise, any signature with the private key is only
successfully verified with the corresponding public key. The
public key system is powerful, yet introduces a key manage-
ment problem. Private keys on PKI are sensitive information
which represents ownership of identities in the digital world,
and therefore they have to be protected. Any leak or breach
on private keys introduces forgery and impersonation attacks.
Key management is still a challenge; however, many different
approaches are proposed and considered to mitigate and reduce
risks. In general, solutions are in the range of securing private
keys on secure enclaves or using secret sharing schemes. These
approaches introduce some degree of complexity within a
system, although the security significantly increases.



Recently, the introduction of Distributed Ledger Technolo-
gies (DLT) has sped up the use of PKI. Many systems are
being proposed to rely on blockchain-like technologies to
manage public keys, or public identifiers, and to communicate.
DLT provide an immutable record of transactions and informa-
tion exchange. Ownership of information is proved with digital
signatures. Furthermore, DLT is a means of freely exchanging
information between participants in a censorship resistance
environment. Public identifiers are now shared openly while
being managed by the blockchain underpinning the network. In
general, private keys management tends to rely on physically
restricted modules, such as secure enclaves, to reduce access
and protect them.

Decentralised Identity (DID) is a concept in development
that leverages DLT immutability and censorship resistance
characteristics to set up uniquely and global identifiers for
individuals identity. Anyone or anything is represented by a
public identifier (a DID) which is securely stored and dis-
tributed in the DLT. Preventing, removing or altering identities
in such systems are subject to costly computing power and
consumption. Furthermore, DID introduces verifiable creden-
tials as an assertion of attributes of a subject, which tries to
imitate the identifiable and credentials systems of the physical
world. However, this idea is not new because it resembles the
certificates system, but the fact of having a powerful use case
as self-sovereignty allows it to be used extensively.

D. Identity management

Before Blockchain, Identity management was addressed by
reducing the number of identities a user may have. Identity
services providers (IdP) are responsible for authenticating
users, and therefore they may provide authentication services
for users. New applications leverage third-parties to regis-
ter and authenticate users rather than handling this process
by themselves. First solutions to identity management were
provided by Federated protocols which try to solve both
authentication such as OpenID and authorisation such as UMA
[18] or OAuth2.0 [19]. Generally, authorisation frameworks
are accompanied by Identity service Providers (IdP) to tackle
authentication. Although these solutions provide segregated
tasks, and therefore individuals have increased control over
their identities, it is not a fully decentralised approach. Hard-
jono [18] argues that a federated authentication and autho-
risation provides decentralised identity management because
both tasks are separated within the system. This protocol
relies on Identity service Providers to authenticate users,
whereas Authorisation servers are responsible for defining and
enforcing policies. There is a legal trust framework abided
by all domains to agree on policy definition. Although it is
discussed to be a decentralised approach to manage identity,
there is no use of DLT nor consensus algorithm to agree on
personal identities, besides, individuals do not own identities,
but third-parties do.

III. RELATED WORK

A. Authentication and authorisation

There are many proposals for securing secrets, although
yet none of this restricts clients access once it is granted.
Generally, these approaches tackle either authentication and
authorisation or secrets securitisation. It seems that combining
and extending both systems is not widely explored. PKI, ZKP
and IAM are different mechanisms to authenticate users within
a system and therefore deny or grant access to them. Role-
based access control is de facto the most extended granting
access control allowing more higher degree of policy creation
and access restriction compared to authentication only. It is
based on a system that helps in handling user roles life-cycle
such as create, assign, modify and remove. Any authenticated
or authorised client still requires to be in possession of the
secret to use it.

On the other hand, solutions protecting secrets are just
methods or strategies and technologies to prevent unauthen-
ticated or unauthorised participants from gaining access to
these secrets. Many of these technologies are based on en-
cryption systems and secret sharing schemes. Furthermore,
these services are provided by cloud providers as SaaS, so
any entity should hand out their data to be kept safely out of
their networks.

Nonetheless, MPC is a secure form of computation in which
data access is restricted to only the owner of these data.
At this time, there are many specific solutions to multiple
MPC problems, although practical usage is still limited by
computational power. MPC is a so broader term that it is
required to define problems with a particular specification to
propose a satisfactory solution to them. Digital signatures are
one of the first technologies that benefit from MPC settings.
Current computational power alongside efficient algorithms is
sufficient to compute two-party digital signature protocols.

Private keys of cryptocurrency systems can be protected
by leveraging MPC signatures to decentralise trust required
on a single system (e.g. Unbound Tech). Concretely, this
technology allows for generating keys and signing messages
with two complementary key shares owned by two different
parties. Key shares are never combined, thus significantly
reducing the attack surface on stolen credentials. This tech-
nology is easily combined with Hardware Secure Modules or
cloud service providers without highly trusting third-parties.
Other alternatives propose to leverage PKI to prove ownership
and therefore authenticate users, and which private keys are
locally stored (e.g. Beyond Identity) or based on cloud storage
(e.g. Magic.Link). Traditional PKI based on certificates do
not leverage the potential of DLT or DID; therefore, key
management should be considered. Zero-knowledge proofs
on passwords prevent the usage of the public-key system
(e.g. NuID). HashiCorp relies on the extensively used IAM
systems but has extended role-based access control to their
own needs so that having more control and flexibility on policy
definitions.



Fig. 1. The traditional setting

IV. THE APPROACH

Let us start with the scenario illustrated in Fig. 1 where
we have a central database. Ideally, we should have a sepa-
rate account with a specified set of privileges for each user
of the database. In practice, the database admin creates a
set of accounts, each of them is shared among a set of
people/applications/services who meet some criteria (such as
a set of roles). Having this access control leads to three
issues: 1) it requires sharing and disclosing the secret (the
database credential) to the recipients who potentially can leak
that secret, 2) rotating these credentials becomes a challenge
because this requires changing the credentials from the user
and the database sides at the same time, and 3) the attacker
will not be restricted to attack the database server in or get the
required credential to access the information, they can attack
any application/service that uses these credentials.

To remedy this situation, we believe in the idea that the
secret should have one home location and that it should never
leave that location. Database credentials should be located in
the database server, and it should not leave that server. The
question now is how the consumers will use these credentials.
The answer is that the consumers should not receive the
secrets; instead, they have to hand over their requests to an
agent who is located on the same secret’s machine. After being
authenticated by the agent, it processes the requests on behalf
of the consumers and returns the results as illustrated in Fig. 2.
One of the advantages of this method is that the secret will
be located in only one location, and that reduces the attack
surface. Besides, as the agent is the only entity that has full
access to the secrets, the agent should be able to rotate the
secret regularly without the need to make any change in the
application/services sides.

The problem now is how the agent authenticates the con-
sumer. Here is where two approaches are proposed. One
is based on passwords, precisely, a password-authenticated
key exchange, whereas the other is based on the Decen-
tralised Identity (DID). Concretely, OPAQUE is a user-centric
password-only authentication protocol. It is the first PKI-free
protocol secure against pre-computation attacks on password
file leakage [17]. Particularly, the client generates a ciphertext,
which the server stores, using a secure password that is
computed by a two-party protocol between the client and

Fig. 2. The Secretation approach

server. With this authentication protocol, we keep the sim-
plicity of passwords in front of users while providing secure
authentication. Furthermore, any potential breach poses no
risk on impersonation as the password is never disclosed.
DID concept arise from distributed ledger technologies to
leverage public key systems to identify and proof ownership
of such identity. Public keys identifying agents are registered
in DLT, so verifiers are capable of validating signatures over
the identity of consumers.

In this respect, every entity (e.g. software component,
application, service, agent) should register with another so that
any two entities can communicate securely. For that aim, we
need to encapsulate that entity with an agent that works as a
representative of that entity (i.e. smart proxy). We differentiate
here between two types of agents: 1) consumer agents (CAs)
which acts on behalf of the consumers of services or secrets,
and 2) provider agents (PAs) which act on behalf of a database,
a service or even a secret.

The PA works as a smart gateway to grant or deny access
to the corresponding protected entity (i.e. database, service,
or secret). For that aim, we need to have an access policy
in place. When the PA receives a request from the CA (on
behalf of some application, for example), the PA checks if
that agent fulfils the requirements of the access policy. The
policy specifies the list of attributes the CAs should have and
any other contextual information such as the request time. The
PA is the only required entity to know the specific attributes,
whereas CA should know which type of data or requirement
is necessary for access control.

In order for the CA to proof to the PA that it holds the
required attributes, it should get its attributes (credentials)
signed by a trusted third-party. The access policy specifies
the list of accepted public keys of the trusted third-parties for
each attribute. Although it is necessary to rely on trusted third-
parties to have attributes signed, the trust and risks that exist
are reduced by leveraging multi-party computation signatures.
Fig. 3 illustrates the communication protocol between the
different agents regardless of authentication.

It is worth mentioning that the concept of granting access
to the secret based on that policy provides a powerful and
flexible mechanism which allows the software architecture to
specify the access control rules based on the attributes of
the consumers and on the specified contextual information.
That is much powerful that merely granting access based on



Fig. 3. The communication protocol between the agents

the role of the consumer. In addition, that would make the
attacker’s mission more challenging because, in the Secretation
approach, it is not enough for the attacker to compromise
the consumer account and impersonate it. The attacker must
be able to ”convince” the relevant trusted agents to sign its
corresponding credentials in order for them to provide the
proof to the PA. For instance, the policy can specify that the
location of a consumer (location attribute) should be a specific
city or a specific department location. The system can rely on
a trusted service that can detect the location of the consumer
(such as the mobile network operator or the door/building
badge system) and sign the location information accordingly.
This is similar to the multi-factor authentication concept, but
here we do not have a centralised entity that manages the
accounts; instead, we leverage a decentralised identity concept
as verifiable credentials.

A. User life-cycle

We define how users, which are potential consumer agents,
are created and managed in this system. For that reason,
the user life-cycle is defined as 1) user and agent creation
2) user registration 3) credentials issuance and 4) revocation
access. The life-cycle is dependent on the technology in
place. Although there are slight differences in the process
of managing consumer and provider agents, there are some
similarities in the protocol for issuing and fulfilling policies.

Firstly, we propose to use an MPC signature scheme to
increase the confidence in the user creation process. The PAKE
approach would need an administrator and the current user to
collaborate to create a valid agent. Therefore, each agent holds
a signed credential of his identity. In the DID approach, the
administrator and the user are responsible for creating key-
pairs for each agent and registering the public key as identifies
into a DLT. Agents in both methods are eligible for the user
registration phase against provider agents. Furthermore, each
time an agent is required to use its identity, it will need the
collaboration server in order to compute signed messages.

Secondly, user registration stands for the process by which
agents register to provider agents in order to access resources.
This process is only needed for the OPAQUE approach, as
PAKE protocols require, in general, a two-phase protocol,
namely registration and login. The registration should be
performed under an authenticated channel to assure that valid
parties are being registered for later authentication. In general,

this is approached by a legacy authentication system, but in
our approach, we leverage digital signatures in an MPC setting
to verify users. Conversely, in the DID approach agents are
directly authenticated by the DID protocol and the registered
public keys, which identifies them.

Thirdly, signed attributes for access control come in the
form of verifiable credential. Verifiable credentials are a con-
cept from the Decentralised Identity which represent signed
assertions of the subject of the credential. Credentials are
issued by trusted entities so that the public key of the issuer
carries out verification. To reduce the confidence given to
trusted entities, users register a key share through a two-
party digital signature scheme. MPC signatures implicitly
authenticate key shares owners with respect to a trusted entity.
Therefore, credentials are issued only under the cooperation
of both parties.

Finally, there are two ways of revoking access to resources
in the password-only method 1) changing the attributes a
consumer agent has to fulfil (e.g. modify the policy) or 2)
dropping the authentication data of the OPAQUE protocol. The
former approach let consumer agents authenticate, but the use
of resources may be restricted, whereas the latter precludes
consumer agents from authenticating against the provider
agent. With regard DID approach, provider agents either create
a deny list of public identifiers to prevent authentication or an
allow list of eligible public identifiers.

B. An OPAQUE overview

Let us briefly present the authentication protocol we rely
on which Jarecki et al. [17] presented, namely OPAQUE. It
is an asymmetric PAKE meaning that the user password is
never shared with the server. It is a two-party protocol in
which the client and server engage in message exchange to
create a mutually authenticated and encrypted channel. They
first authenticate each other and then generate an ephemeral
session key. It is defined by two phases, including registration
and login. In registration, both run a function so that the client
registers his authentication credentials. During login, the client
authenticates with the use of a password, which discloses to
him registered private and public keys to run a key exchange
protocol in order to create a secure communication channel.
Note that although saying someone registers a password, no
password or hash at all is shared or stored on the server-side.
Therefore, this secret should be only known by the client. This
feature leads to a protocol resistant to pre-computation attacks.

In short, this protocol is built up from an Oblivious
Pseudorandom function (OPRF) and an authenticated key
exchange (AKE). OPRFs are a two-party protocol that allows
computing cryptographically secure passwords from a low-
entropy user password. Both the secret value used by the
server and the password input by the user are not revealed
to the other side. The OPRF output is only learned by the
client. The concrete OPFR function of key k over input pwd
is Fk(pwd) = H(pwd,H′(pwd)k), where H and H’ represent
a traditional hash function (e.g. SHA256) and a hash-to-curve
function, respectively [17]. The generated random password



is used in the rest of the protocol. The construction of the
protocol is followed by an AKE protocol such as HMQV or
SIGMA. Any AKE protocol once combined with an OPRF
leads to a strong asymmetric PAKE with KCI resistance [17].

1) Registration phase: This phase requires the user to run
the registration over an authenticated channel to ensure only
valid users. For example, users use their identity credential to
send an authenticated registration request. The server validates
the request with the corresponding public key, previously
shared by the trusted server. For a detailed user identity
creation refer to section IV-A.

Let G be an elliptic curve group of order q and g the
generator. Both consumer and provider agents engage in the
OPRF. The CA chooses a blinding factor r ←R Zq to hide the
hash of his password when send it to the PA, whereas the PA
chooses a random value k ←R Zq to be applied to the received
value. The CA ends up with rw := H(pwd,H′(pwd)k), where
rw denotes a cryptographically secure password. Additionally,
both perform a Diffie-Hellman key exchange such that:

CA computes: x←R Zq, X := gx

PA computes: y ←R Zq, Y := gy

2) Login phase: The login phase is similar to the previous
one as the OPRF deterministically generates the same random
key if the user inputs the correct password. The random key is
now used to decrypt the ciphertext which the PA has retrieved
and sent back to the CA. Both run an authenticated key
exchange protocol to obtain a session key. In particular, a
3-step SIGMA-I protocol because of the identity protection
property [14]. First, each participant have an identity, in this
case CA and PA, and a long-term key-pair from any digital
signature scheme, for instance, denoted as Sig(·). Then, both
perform a DH exponentiation to obtain a shared secret key k.
A key derivation function is applied over k in order to get k1
and k2. One key is used to encrypt the channel, whereas the
other to perform a MAC. Both exchange messages as follow:

MSG 1: X ′ := gx
′

MSG 2: Y ′ := gy
′

k1{Sig(X ′, Y ′), PA,MACk2
(PA)}

MSG 3: k1{Sig(X ′, Y ′), CA,MACk2
(CA)}

C. Authentication by DID

The introduction of blockchain and other DLT allowed
for another approach to identity management. In this case,
individuals are capable of managing their own identities which
are ultimately verified by the DLT. Furthermore, such solutions
solve the PKI management of public keys as they are stored
and distributed by the DLT. This concept is widely known as
Decentralised Identity or even Self-Sovereign Identity (SSI).
Any pair of private-public key valid in the DLT represents
the identity of and individual or entity. This cryptographic
concept is represented in a URI-based syntax which depends
on the DLT in which is being used. A Decentralised Identifier

(DID) uniquely identifies a single entity that may have several
corresponding verifiable credentials issued. Credentials assert
characteristics from a subject while being tamper-proof and
unforgeable by the use of digital signatures.

Now, many communities groups are building up the DID
stack to extend and make it interoperable across several
DLT and environments. They are proposing and developing
standards to address issues related to privacy, security and
portability, among others. W3C Decentralised Identifier [20]
and Verifiable Credentials [21] working groups are standar-
dising these new concepts of the SSI in DLT-like systems,
respectively. They define and specify terms, their models and
the necessary interactions between them.

In particular, each agent generates the corresponding DID
according to the DLT in use (e.g. Bitcoin, Sovrin). Provider
agents store a list of DIDs which are allowed to use the
service. Every time a CA sends a signed request, the PA
verifies it comes from a legitimate and valid source, thus
authenticating the agent. This mechanism resembles traditional
PKI authentication, although public keys are safely recorded
in the DLT. Such technology allows creating self-sovereign
identities, recording and storing public verifiers as well as
enabling self-control of PII. Agents securely store their private
keys which purpose is to identify themselves. DIDs provide
easy to use PKI and identity management, therefore a ready
to go authentication mechanism. DID is easily combined
with verifiable credentials within the same system. Agents
are uniquely identified and able to prove the ownership of
their attributes through credentials. Note that we propose to
strengthen this notion of verifiable credentials by having both
parties, issuer and subject, cosigning the credential with an
MPC digital signature setting. Instead of arguing in favour
of trusted third-parties as issuers, both should have an under-
standing, thus a protocol, of collaborating to jointly compute
credentials in order to reduce potential abuse or forgery.

V. IMPLEMENTATION

This system aims to simulate a real-world network that is
composed of clients, several servers and data providers. This
protocol allows for managing secrets within a network, and at
the same time handling clients access rights. It is a solution
that permits to have secrets in one place only and manage
their life-cycle without interacting with other components of
the network. Clients have usage rights of some data but not
modification ones. All of these components of the protocol are
modular and independent, so each one addresses a particular
issue.

In Secretation, we create an agent for each type of secret
we need to protect. The following are initial types we are
focusing on: 1) A database agent and 2) a symmetric en-
cryption key agent. The former focuses on protecting access
to databases in such a way that the client request does not
interact directly with the server. Instead, all request are passed
to the database agents who, ultimately, pass the correct query.
In this approach, clients are not required to know the string
location of the database. Additionally, queries can be filtered



or analysed on the agent before passing it. The symmetric
encryption agent is responsible for managing encryption keys
to provide an encryption service. Encryption keys can be
either locally stored or outsourced to cloud-service providers.
Clients request the agent to encrypt or decrypt some data. The
agent handles key generation, data encryption and decryption
without permitting clients to interact with such secrets.

In particular, the solution built is based on an asymmetric
password-authenticated key exchange protocol for the authen-
tication, namely OPAQUE; an Attribute-Based Access Control
approach along with verifiable credentials under an MPC
digital signature scheme, which address policy creation and
authorisation; and usage requests as a new approach to restrict
access and manipulation rights to secrets.

Legacy authentication systems or identity credentials are
used in the key generation process of both the Password-
authenticated key exchange and the MPC signature scheme.
This is set as the first step towards password registration in
the proposed authentication mechanism as well as to distribute
trust due to multi-party computation schemes. Both approaches
make it possible to authenticate legitimate users within the
network while reducing the exposure to intruders. Provider
agents are able to create and manipulate the data they are
holding as well as the access policies. Likewise, clients are
capable of requesting verifiable credentials to issuers once
they know the policy requirements. Both the issuer and client
engage in a two-party signature scheme to generate verifiable
credentials. Clients are authorised if their credentials satisfy
the requirements imposed by the access policy. Note that,
authorisation only happens if clients were previously authenti-
cated against the server. Finally, consumer agents are capable
of issuing usage request through an authenticated, authorised
and encrypted channel.

A proof-of-concept validates the idea, which integrates
gopaque and blockchain-crypto-mpc libraries. The former is
a protocol implementation of the OPAQUE specification in
[22], whereas the former is an implementation of multi-party
computation digital signatures such as ECDSA and EdDSA.
Gopaque acts as the main protocol between consumer agents
and provider agents to both registration and login phases.
CAs register passwords that are not stored nor seen by the
service. Blockchain-crypto-mpc library allows for creating
verifiable credentials that are signed by consumer agents and
the issuer entity. It handles private key shares creation as well
as signatures. Issuers are responsible for filling up credentials
with appropriate consumer agent’s data in JSON Web Token
format as defined in RFC 7519 [23].

A. Protocol illustration - Use case scenario

Let us illustrate a scenario of an encryption service leverag-
ing the PAKE approach. Note that the DID approach follows
a similar behaviour in which an administrator handles DLT
public identifiers registration and distribution. We describe
three different participants, which are potential consumer
agents in our network. There are two consumer agents in which
one is eligible to use the service, whereas the other is just a

valid user in the network but not eligible to use that service.
A third participant is a malicious actor outside our control.
Furthermore, there is a machine, known as the provider agent,
providing several services from which one is an encryption
service as well as two additional trusted servers. One of these
servers is a collaborating server managed by an administrator,
whereas the other is the issuance authority (which may be
external to our network).

Both valid users will have undergone the user creation
process, and therefore have their own identity certificates.
This process resembles a legacy authentication system in order
to create valid users within our network. Identity certificates
try to replace legacy authentication systems when registering
agents in multiple providers agents. Therefore, any legacy
system is run only one time, instead of running them on
each registration step of different protocols. As this process
leverages MPC signatures, the collaborating server is able to
share the corresponding users’ public key with the encryption
service and the issuance authority. Thus, these users will be
registered in both services successfully. CAs register a user
and a password with the PA through the OPAQUE protocol,
see section IV-B. Registration concerning the issuance author-
ity is defined by the creation process of key shares in the MPC
digital signature scheme.

Upon authentication requests, both the consumer agent and
the provider agent engage in the OPAQUE protocol. Only
registered agents will be authenticated. Any attempt of a
malicious actor trying to authenticate will fail as no password
registration is stored in the service. After authentication, an
ephemeral session key is generated which encrypts all traffic
between CAs and the PA. After that, both agents request access
to the encryption services, and therefore the PA presents the
authorisation policy. This policy includes the requirements
to be satisfied in order to use those specific services (e.g.
department, role, location). In particular, the PA only presents
the requirements but internally stores and handles the attributes
assigned to each one. Each CA contacts the issuance authority
and share the policy requirements to get their respective ver-
ifiable credentials. The issuance authority creates a credential
based on their stored data regarding that CA. As it is a trusted
entity, we assume the information set in the credential is
correct. By leveraging MPC signatures both jointly compute a
signature over the credential. As we have defined two different
users, both have different verifiable credentials meaning that
their attributes are different (e.g. distinct departments).

CAs hand over their credentials to the PA through the
authenticated and encrypted channel. The PA validates the sig-
nature and checks the attributes in it with the attributes defined
in the access policy. Only one CA have the access granted
as having presented a matching credential. The unauthorised
agent has the access denied, and therefore has two options
1) end session or 2) request access to another service that
may be eligible to use. Note that credentials only have to be
requested one time to the issuance authority if the information
associated with that agent not changes over time. Finally, the
authenticated and authorised CA is eligible to send usage



requests indicating which data has to be used in the service. In
particular, the CA specifies either an encryption or decryption
service. Upon receiving a usage request, the PA processes the
request, in this case, the PA encrypts or decrypts data. Then,
it returns either a ciphertext or a plaintext to the CA.

B. Corrupt users

As in any system, some information is susceptible to be
compromised. In this setup, agents have several sensitive
information to be kept safe. Depending on the approach
taken agents may have a different kind of private information.
Regardless of the authentication schema, agents have identity
certificates, which identifies and validates their eligibility
within the network. Agents hold either a DID key-pair or an
internally valid key-pair share as specified in the creation step
of the user life-cycle shown in section IV-A. Furthermore, they
hold private key shares with regard to issuance authorities to
create and manage verifiable credentials. Additionally, in the
OPAQUE approach users should memorise or keep a password
in order to use the authentication protocol.

Instead of managing private keys to compute digital sig-
natures which upon compromise impersonation is possible,
they manage key shares in the MPC setting. The advantage
is that if a key share is compromised, credentials forgery is
not possible as an honest entity still controls the other key
share, for instance, the issuance authority. Identity credentials
prevent unidentified agents from registering to any service.
If all the key shares are compromised, a malicious actor
may impersonate an agent by getting his credentials, but
forgery is still not possible. If DID key shares are exposed,
then an unregistered user will authenticate, whereas exposing
key shares concerning an issuer will reveal credentials to an
unintended party and lead to a possible impersonation. A
password leak on OPAQUE leads to successful authentication,
although the access control still has to be passed. Note that for
a successful attack, most of the secrets need to be breached in
order to bypass authentication and authorisation. Nonetheless,
secrets of provider agents are not accessible due to the usage
request proposal, introduced in section I.

Passwords and DID key shares prevent unauthenticated
actors from accessing a service. Identity credentials and key
shares identify agents and prevent impersonation and forgery,
respectively. If a key share is leaked and someone tries
to use it, their identity will not match with the identities
handled by the issuance authority. Conversely, if the identity
is compromised, but the key share is not controlled, then no
valid, verifiable credentials over that entity will be generated.
Note that incorrect paired key shares lead to invalid digital
signatures.

VI. EVALUATION

We do not believe that the central server is the best option
for the secret management system. It is better to extend the
storage of secrets to multiple servers in order to reduce the
risk of exposure. In the Secretation approach, we take the
decentralised approach to manage the secrets. The agent can

be configured to log the secret usages to a central server for
auditing purposes. For that reason, multiple specific agents are
proposed depending on the use case they address, as shown
in section V.

Several tests show that the protocol is lightweight, although
having a significant degree of message complexity due to
the nature of two-party protocols. Both authentication and
authorisation process happens rapidly. However, getting issued
credentials from third-parties may take longer depending on
the issuer capabilities. Any of the verification processes are
a set of computations that are performed on the provider
agent side. Worth mentioning that each time a consumer
agent is willing to make use of usage requests, this has to
send a request even if using the same resource every time.
That construction limits the number of executions a CA can
make in a limited time but increases the security significantly.
Although we leverage an MPC digital signature scheme to sign
credentials which has an added cost in the form of computation
and message exchange, key generation and signatures are
performed in the range of milliseconds.

Known attacks on DLT may cause a temporary denial
of service on a peer’s registration process. For instance, an
attacker could intercept and manipulate transactions such that
the resulting identifier is different from the original. If the ma-
liciously crafted transaction is confirmed into the blockchain,
then the originally intended transaction will be rejected as
double spend, this is known as a transaction malleability attack
[24].

VII. CONCLUSION

This solution presents a new way of thinking towards
storage and usage of sensitive information in which leaks poses
a costly risk. Secretation proposes a new protocol which com-
bines authentication, access control and multi-party computa-
tion schemes to offer a simple yet complete, flexible and secure
secret management. It provides a non-friction and stand-alone
technology, no dependencies needed to external entities, easy
to use by users and complete and flexible by administrators.
Password-authenticated key exchange provides mutual client-
server authentication, whereas attribute-based access controls
and verifiable credentials allow for a flexible alternative to
controlling access conditions and producing unforgeable au-
thorisation credentials. Alternatively, the Decentralised Iden-
tity in concert with multi-party computation digital signatures
are leveraged to manage keys and authenticate users securely.
Two-party digital signatures schemes reduce the attack surface
on PKI and ease the key management while offering more
controllable credentials issuing. Additionally, usage request,
a delegated system approach, gives only authenticated and
authorised users permission to use resources but limit their
direct interaction and manipulation. With this approach, secrets
do not leave the service machine. Registration processes
prevent unintended parties to be authenticated, while issuance
authorities and verifiable credentials ensure attributes not to
be forged or faked, and therefore a reliable and strong access
control.
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