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Abstract 

With the increased complexity of Very Large Scaled Integrated (VLSI) circuits, multi­

level logic synthesis plays an even more important role due to its flexibility and compact­

ness. The history of symbolic logic and some typical techniques for multilevel logic synthesis 

are reviewed. These methods include algorithmic approach; Rule-Based approach; Binary 

Decision Diagram (BDD) approach; Field Programmable Gate Array(FPGA) approach 

and several perturbation applications. 

One new kind of don't cares (DCs), called functional DCs has been proposed for multi­

level logic synthesis. The conventional two-level cubes are generalized to multilevel cubes. 

Then functional DCs are generated based on the properties of containment. The con­

cept of containment is more general than unateness which leads to the generation of new 

DCs. A separate C program has been developed to utilize the functional DCs generated 

as a Boolean function is decomposed for both single output and multiple output functions. 

The program can produce better results than script.rugged of SIS, developed by UC Berke­

ley, both in area and speed in less CPU time for a number of testcases from MCNC and 

IWLS'93 benchmarks. 

In certain applications, ANDjXOR (Reed-Muller) logic has shown some attractive ad­

vantages over the standard Boolean logic based on AND JOR operations. A bidirectional 

conversion algorithm between these two paradigms is presented based on the concept of po­

larity for sum-of-products (SOP) Boolean functions, multiple segment and multiple pointer 

facilities. Experimental results show that the algorithm is much faster than the previously 

published programs for any fixed polarity. Based on this algorithm, a new technique called 

redundancy-removal is applied to generalize the idea to very large multiple output Boolean 

functions. Results for benchmarks with up to 199 inputs and 99 outputs are presented. 

Applying the preceding conversion program, any Boolean functions can be expressed 

by fixed polarity Reed-Muller forms. There are 2n polarities for an n-variable function and 

the number of product terms depends on these polarities. The problem of exact polarity 

minimization is computationally extensive and current programs are only suitable when 

n :::; 15. Based on the comparison of the concepts of polarity in the standard Boolean logic 

and Reed-Muller logic, a fast algorithm is developed and implemented in C language which 

can find the best polarity for multiple output functions. Benchmark examples of up to 25 

inputs and 29 outputs run on a personal computer are given. 

After the best polarity for a Boolean function is calculated, this function can be further 

simplified using mixed polarity methods by combining the adjacent product terms. Hence, 

an efficient program is developed based on decomposition strategy to implement mixed 

polarity minimization for both single output and very large multiple output Boolean func­

tions. Experimental results show that the numbers of product terms are much less than 

the results produced by ESPRESSO for some categories of functions. 
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Chapter 1 

Introduction 

1.1 A historic perspective of logic design 

In 1854, when George Boole published his principle work, An Investigation of the Laws of 

Thought on Which Are Founded the Mathematical Theories of Logic and Probabilities, a 

new branch of mathematics, Symbolic Logic, was established[22]. Logic propositions and 

operations started to be represented by symbols although it had already been expressed by 

natural language in times of Aristotle, the fourth century B.C. Ever since, great progress 

has been made in the field of Symbolic Logic by the broad application of algebraic meth­

ods and facilities[36, 79, 95]. Until 1938, Symbolic Logic was used only as another tool 

of philosophy and mathematics. In that year, a graduate student at Massachusetts In­

stitute of Technology recognized the connection between electronic switching circuits and 

Symbolic Logic and published a classic paper, entitled" A Symbolic Analysis of Relay and 

Switching Circuits" [135]. Based on that paper, both logic values, "TRUE" and "FALSE" 

can be mapped into "MAKE" and "BREAK" states of a two-state device so that logic ma­

nipulations can be realized by switching circuits. Since then, many switching circuits and 

systems for communication, automatic control, and data processing have been designed by 

applying Symbolic Logic, which later came to be known as Boolean Algebra[63, 77, 84, 96, 

99, 117]. 

During the early days, logic functions usually expressed by truth tables, Karnaugh 

maps[84], and algebraic formulas, either DNFs( disjoint normal forms) or CNFs( conjunction 

normal forms).l Besides, a two-state switch or contact is usually realized by relay, magnetic 

core, rectifying diode, electron tube, or cryotron operated with the aid of electromagnet[77]. 

The physical nature of the two stable states may take such forms as conducting versus non­

conducting; closed versus open; charged versus discharged; positively magnetized versus 

negatively magnetized; high potential versus low potential etc. The two states of a switch 

were generally called "break" and "make" contacts whose common symbols are shown in 

lThey are equivalent to SOP (sum of products) and POS(product of sums) forms respectively. 
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Chapter 1. Introduction 

o--o----.r 
I 
1-0 

1] 
o~---;x~--<o 

(a) symbols for break contacts 

O~--+----<O 

(b) symbols for make contacts 

Figure 1.1: Classical symbols for contacts 

Section 1.1 

fig. 1. 1. This research, that can be found mainly in [63, 77, 99], becomes the classical 

method of logic minimization for both combinational and sequential systems. 

In 1947, the age of semiconductors arrived with the development of the first junction 

transistors by William Shockley and his colleagues in Bell Labs of United States. The semi­

conductor transistors have great advantage over the traditional electromagnetic switching 

devices in size, speed, power dissipation and reliability etc. In 1958, the world's first inte­

grated circuits (ICs) was developed by Jack Kilby in Texas Instruments where transistors, 

resistors and capacitors along with their interconnecting wiring were fabricated on a single 

piece of Germanium and glued to a glass slide. From then on, the integrated circuit technol­

ogy has progressed tremendously. In 1961, commercial ICs became available from Fairchild 

Instruments. Four years later, Gordon Moore, co-founder of Intel, predicted that the num­

ber of transistors on a chip of integrated circuits could be doubled every 12 to 18 months. 

His statement can still be validated by Intel microprocessors as show in fig.1.2[101]. Un­

fortunately, most of the classical methods of logic minimization are only suitable for small 

Boolean functions. Therefore, these logic design methods must be improved to meet the 

rapid growth of the semiconductor technology. 

Although there are only several theorems in Boolean algebra to simplify Boolean func­

tions, the obtained results of minimization largely depend on how to select the orders of 

these theorems and to which terms to apply them[84]. For large Boolean functions, there 

are too many alternatives to be considered exhaustively. In 1976, the first general survey 

of Boolean function complexity was introduced in [129]. Following that there was immense 

research on the complexity of Boolean networks and their realizations that can be found in 

2 



Chapter 1. Introduction Section 1.2 

N umber of Transistors 
226 ,-------r-------,-------,-------,--------,-------,-------, 

P~ntium III Xeon(866 MHz)<> 
Mobile Pentium 11(400 MHz~ <> 

8086<> 

Intel Celeron (333 MHz) 

Pentium Pro (200 MHz) <> 
Pentium (66 MHz) <> 

Intel486 DX <> 

Inte1386 DX<> 

80286 <> 

210 ~ ______ L-______ ~ ______ ~ _______ IL_ ______ L_I ______ ~I ______ ~ 

1970 1975 1980 1985 1990 1995 2000 2005 
Introduction Year 

* These data are originally from "Intel Microprocessor Quick Reference Guide" 

Figure 1.2: Moore's law - the growth of Intel microprocessors 

[57J. It was realized that neither the traditional methods of switching theory nor manual 

design was feasible for large functions. With the development of automatic physical design 

methods for large Boolean systems[115, 123], several heuristic and efficient methods have 

been applied to obtain "good" solutions for large Boolean functions with the aid of com­

puters. This process is typically called logic optimization or logic synthesis that was first 

commercially available in 1980's[131]. Recently the designs of systems-on-a-chips (SOCs) 

started to attract more and more organizations that lead to urgent demand for new genera­

tion logic synthesis tools[76]. In July of 1997, logic synthesis tools for designing Application 

Specific Integrated Circuits (ASICs) and SOCs became available[13]. Expert systems may 

be a new facility for logic synthesis[132]. Besides, Linux has been recommended to be 

a new common operating system in EDA communities because it is the only candidate 

offering a compatibility for both workstations and personal computers (PCs)[133]. 

On the other hand, there is a new challenge for Symbolic Logic proposed in Japan. In 

their opinion, the current prevailing theory of Symbolic Logic needs a thorough revision 

because of some crucial misunderstanding. Their newly developed theory is available in 

the electronic book of Internet, Elements of the Reformed Theory of Logic[136]. It will not 

be discussed here since this topic is beyond the coverage of this thesis. The above historic 

perspective can be shown in fig.1.3, where "logic synthesis" is the subject of this thesis. 

3 
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Natural Language Logic 
Aristotle 

about 400 B.C. 

Symbolic Logic 

Boole 

Japan 

1997 

Circuits 

1938 

Figure 1.3: Historic perspective of logic design 

Section 1.2 

New Generation of 
Logic Synthesis for SOCs 

1990's 

1.2 VLSI chip design methodology based on logic synthesis 

The wide range of computer-aided design (CAD) tools for digital integrated circuits can 

fall into four major categories based on the production of Very Large Scale Integration 

(VLSI) components[59]: memories, microprocessors, Application Specific Integrated Cir­

cuits (ASICs), and Programmable Logic Devices (PLDs)[29, 108, 124]. Numerous indus­

trial applications can be implemented by either ASICs or field programmable gate arrays 

(FPGAs) and offer distinct advantages. Besides, countless commercial design synthesis 

tools are available and some of them are shown in table 1.1. Today's ASICs have a low 

cost-per-gate advantage as well as an inherent speed advantage. In contrast, FPGAs have 

been winning with their time-to-market and reprogrammability. This detail analysis and 

prediction of the competition between ASICs and FPGAs is addressed in [14]. Additionally, 

it can be seen that VHDL[113] and Verilog[140] are the most popular hardware description 

languages (HDLs ). Furthermore, each company usually applies different design methodol­

ogy. However, a unified model of design representation has been developed in [149]. It 

is proposed that a model of design representation can be described by three separate do­

mains, namely behavioral, structural, and physical domains. Behavioral domain describes 

the basic functionality of the design while structural domain the abstract implementation, 

and the physical domain the physical implementation of the design. Each domain can 

further be divided into five abstract levels that are architectural, algorithmic, register & 

transfer, logic and circuit levels. This design model can be represented in fig.1.4 that is 

quite similar to Y-chart in [65]. 

Based on the model in fig. 1.4, design synthesis is the process of translating a high 

abstract level in the behavioral domain to a low level in the physical domain through 

structural domain. Different design methodology may take different tracks on this model. 

Moreover, not all the levels in this three domains need to be fitted neatly. For example, 

silicon compilation can generate physical layout directly from behavioral description[15]. 

4 



Chapter 1. Introduction Section 1.2 

Organization System Description Input Environment 

Bell Labs Design Synovation High-level VHDL & Verilog SunOS 

Automation RTL Synthesis 

Cadence Design FPGA Designer FPGA, PIC Schematic Unix 

Systems ASIC Designer ASIC/IC design packages Verilog, VHDL 

COlllpass Design ASIC Synthesizer FPGA, ASIC VHDL & Verilog Unix 

Automation ASSP designs 

Mentor Graphics AutoLogic II ASIC, PLD VHDL, Verilog Unix 

PLD Synthesis II ABEL-4,JEDEC, 

Synopsys Design Compiler ASIC, FPGA VHDL Unix 

Family Verilog 

Synplicity Synplify FPGA/CPLD VHDL Windows 

Synplify Editor Verilog 

Viewlogic Systems ViewSynthesis FPGA Design VHDL Unix 

Windows 

Table 1.1: Some commercial design synthesis tools 

Architectural Level 

Behavioral Structural 

L 

Floorplans 

Clusters 

hysical Partition 

Physical 

Figure 1.4: A VLSI design model 

A typical ASIC chip design flow based on logic synthesis can be shown in fig.1.5. 

It can be seen from fig.1.5 that three steps are involved in logic synthesis: 

1. Convert the description from register transfer level to logic level consisting of AND / OR 

5 



Chapter 1. Introduction Section 1.3 

Library 

Figure 1.5: An ASIC chip design flow 

gates, flip-flops, and latches. The description file in logic level may be in the formats 

of KISS (Keep Internal State Simple), BLIF (Berkeley Logic Interchange Format), 

SLIF (Stanford Logic Interchange Format), PLA(Programmable Logic Array), and 

equations. All these formats can be converted to each other by Sr8[134]. 

2. Optimize the description through various available procedures by the criteria of area, 

speed, power dissipation[19], or testability. This important process is typically called 

logic optimization. Recently adiabatic circuits based on split-level charge recovery 

logic(SCRL) is a new topic for low power VLSI design[62]. 

3. Produce a gate level net-list, usually in electronic design interchange format (EDIF)[58]. 

Comparatively speaking, step 2 is the most difficult one. In the last two decades, a lot of 

heuristic techniques have been developed for logic minimization of large Boolean functions 

and circuits. A new multilevel logic optimization method, based on functional don't cares 

(DCs), will be proposed according to the criterion of area in chapter 3 and 4 of this thesis. 

6 



Chapter 1. Introduction Section 1.3 

1.3 Two-Level versus multilevel logic synthesis 

In the logic level of design synthesis, the two-level logic minimization is a mature and very 

popular approach especially for control logic. Quine[117] laid down the basic theory that 

was adapted later by McCluskey[96], known as Quine-McCluskey procedure. It basically 

consists of two steps: 

1. Generate all the prime implicants from on-set minterms of a Boolean function; 

2. Select an optimal subset of these primes that cover all the on-set minterms of the 

function. 

Even though the primes can be efficiently produced in [78], solving the covering problem 

is known as an NP-complete problem. Thus this technique becomes impractical for large 

Boolean functions. The next important contribution in this area is MINI[78] that was 

further developed into ESPREsso[26], the most powerful and popular two-level minimizer 

up to date. It is possible for ESPRESSO to find "very good" solutions for incompletely 

specified functions with hundreds of inputs and outputs in a reasonable time. There is one 

main loop consisting of four main procedures in ESPRESSO, EXPAND, ESSENTIAL_PRIME, 

IRREDUNDANT _ COVER, and REDUCE. EXPAND replaces the previous cubes by prime 

implicants and assures the cover is minimal with respect to single-cube containment. Then· 

ESSENTIAL _ PRIME extracts the essential primes and put them in the don't care set. 

Following that IRREDUNDANT _ COVER find an optional minimum irredundant cover by 

deleting totally redundant cubes. Finally, REDUCE procedure reduce all the cubes to 

be smallest that cover only necessary on-set minterms. Although REDUCE produces a 

non-prime cover, it can facilitate improvement in the subsequent iterations over the local 

minimum result obtained by IRREDUNDANT _ COVER. 

Two-level logic and its Programmable Logic Array (PLA) implementations shown in 

fig.1.6(a) provide good solutions to a wide class of problems in logic design. However, 

there are situations, especially for large multiple output circuits, where multilevel design 

is desirable and more effective. It facilitates sharing and simplifies testing. For example, a 

simple logic circuit, 

(1.1) 

which can be shown in fig.1.6(b), has three levels. In the first level, the product term 

XOX3 is generated, which is an AND level. In the second level, both (XOX3 + X2) and 

(xo + Xl) are generated with an OR level. Finally, they are combined by an AND gate to 

produce the output for the function. Additionally, multilevel realization is useful for both 

control and data-flow logic[25]. However, multilevel logic circuits are much more difficult 

to be synthesized than two-level circuits. In 1964, Lawler proposed an approach for exact 

7 



Chapter 1. Introduction 

Inputs 

Programmable Array 

of AND gates 

Product terms 

Programmable Array 

of OR gates 

Outputs 

(a) Two-Level programmable logic array (PLA) structure 

(b) A simple example for multilevel logic circuit 

Figure 1.6: Comparison between two-level and multilevel structures 

Section 1.4 

multilevel logic minimization[90]. All the multilevel prime implicants are first generated, 

then a minimal subset is found by solving a covering problem using any method for two­

level minimization. As an exact optimization method, it is only suitable for small Boolean 

functions on account of high computational complexity. In the last two decades, many 

heuristic techniques have been developed that will be reviewed in chapter 2. 

1.4 Reed-Muller logic based on AND /XOR operations 

It was presented in the classic paper [135], published in 1938, that any n-variable Boolean 

function f can be expanded by Shannon expansion based on AND/OR operations as 

8 



Chapter 1. Introduction Section 1.4 

follows. 

(1.2) 

where 0 :::; i :::; n-1, and !Xi=O and !Xi=l are called the cofactors of! with respect to Xi. 

Alternatively, any Boolean function can be represented based on AND jXOR operations, 

which is called Reed-Muller expansion[103, 119]. In contrast to equation (1.2), there are 

three basic expansions using AND jXOR operations, which are shown in equations (1.3) -

(1.5). 

!(Xn-lXn-l ... xo) = XdXi=O EB XdXi=l (1.3) 

(1.4) 

(1.5) 

In logic synthesis process, Reed-Muller logic methods are important alternatives to 

the traditional SOP approaches to implement Boolean functions. Currently, the widely 

used logic minimizers for SOP forms, such as ESPREsso[26] and 8rs[134] are based on the 

"unate paradigm", according to which most of the Boolean functions of practical interest 

are close to unate and nearly unate functions. While the category of unate and nearly 

unate functions covers many control and glue logic circuits, these minimizers perform 

quite poorly on other broad classes of logic[154]. For instance, the unateness principle does 

not work well for arithmetic circuits, digital signal processing operations, linear or nearly 

linear functions, and randomly generated Boolean logic functions[72, 126]. However, Reed­

Muller realization is especially suitable for these functions[2, 46]. For example, to represent 

a parity function with n variables, ! = xOEBxl EB· . ·EBxn-l, an SOP form needs 2n- 1 product 

terms while only n terms are sufficient for an AND jXOR expression. Additionally, circuits 

based on ANDjXOR operations have great advantage of easy testability [44, 92, 118]. 

Applications of Reed-Muller logic to function classification[143], Boolean matching[144]' 

and symmetry detection[145] have also been achieved. 

Due to the lack of an efficient Reed-Muller logic minimizer, applications of Reed-Muller 

implementations have not become popular despite these advantages. It is generally ac­

cepted that the optimization problem for Reed-Muller logic is much more difficult than 

the standard Boolean logic. One of the main obstacles is the polarity problem, including 

9 



Chapter 1. Introduction Section 1.5 

fixed polarity and mixed polarity, which does not exist in SOP forms for the standard 

Boolean logic. For a fixed polarity Reed-Muller (FPRM) form, the number of product 

terms largely depends on the polarity for the same function. Further, any Boolean function 

can be represented canonically by FPRM forms while it does not hold for mixed polarity 

expressions. Conventionally, Boolean functions are represented by AND/OR operations, 

instead of AND /XOR operations. Thus, the optimization of Reed-Muller logic consists of 

conversion algorithm between SOP and FPRM formats, fixed polarity and mixed polarity 

minimization. These will be discussed in chapters 5 to 8. 

1.5 Structure of this thesis 

Any Boolean function can be represented by two paradigms, which are based on AND/OR 

and AND /XOR operations respectively. Correspondingly, there are two main parts in this 

thesis as shown in fig. 1.7. The first part is multilevel logic minimization based on AND/OR 

operations. The conventional methods for multilevel logic synthesis are reviewed in chapter 

2 based on AND/OR operations. A new type of don't cares (DCs), functional DCs, are 

introduced comparing with satisfiability DCs and observability DCs. The usefulness of 

functional DCs is discussed for single output functions in chapter 3 and for multiple output 

functions in chapter 4 respectively. The second part deals with Reed-Muller logic which is 

based on AND /XOR operations. A mutual conversion algorithm is first proposed to convert 

a single output Boolean function between SOP and FPRM formats in chapter 5 and for 

very large multiple output functions in chapter 6 respectively. There are 2n polarities for 

an n-variable function, and the number of on-set product terms largely depends on the 

polarity. Therefore a fast algorithm in presented in chapter 7 to find the best polarity 

for a function, which corresponds with the least number of on-set product terms. This 

FPRM form with the best polarity can be further simplified with respect to the number 

of product terms by combining the adjacent terms. Consequently, the result is in mixed 

polarity Reed-Muller forms, which is covered in chapter 8. Finally, the main improvements 

and contributions are summarized and some future work is suggested in the "conclusions 

and future work". 
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Chapter 2 

Conventional Multilevel Logic 

Synthesis 

2.1 Algorithmic approach 

The algorithmic approach to multilevel logic optimization consists of defining an algorithm 

for each transformation type, including elimination, decomposition, extraction, factoring, 

and substitution. These transformations are manipulated based on the concept of Boolean 

networks[74J. 

Definition 2.1. A Boolean network 'T/ for n-variable m-output functions is an intercon­

nection of p Boolean functions defined by a five-tuple (f, y, 1,0, dX ), consisting of: 

1. f = (fo, il," . ,fp-d, a vector of completely specified logic functions. Each of them 

is a node in the network. 

2. Y = (Yo, Y1,'" ,Yp-1), a vector of logic variables (signals of the network) where Yi 

has a one-to-one correspondence with fi, 0 ::; i ::; p - 1. In other words, the output of a 

node can be an input for other nodes. 

3. 1= (10, h,' .. ,In-d, a vector of externally controllable signals as primary inputs. 

4. 0 = (0o, 0 1 , ... ,Om-d, a vector of externally observable signals as primary out­

puts. 

5. dX = (di, df,··· ,d~_d, a vector of completely specified logic functions that 

specify the set of don't care minterms on the outputs of'T/ where X = Yr. 

For combinational logic functions, a Boolean network is usually equivalent to a Directed 

Acyclic Graph (DAG) as show in fig.2.1. Elimination, collapsing or flattening of an internal 

node of a Boolean network is its removal from the network, resulting in a network with one 

less nodes. Decomposition is the process of re-expressing a node as a number of sub-nodes 

so that these sub-nodes may be shared by other nodes in the network. Extraction, related 

to decomposition, is the process of creating a new common sub-node for several interme­

diate nodes in the network. Consequently, the structure of all these intermediate nodes 
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are simplified. The optimization problem associated with the extraction transformation is 

to identify a set of common sub-nodes such that the resulting network has minimum area, 

delay, power dissipation, maximum testability or routability[41]. If the sum-of-products 

form of Boolean functions are considered as polynomial expressions, rather than Boolean 

expressions, then factoring the common polynomial terms will lead to a simpler structure 

of the corresponding network. The factoring problem is how to find a factored form with 

the minimum number of literals. Substitution or resubstitution, is the inverse transforma­

tion of elimination. It creates an arc in the Boolean network connecting the node of the 

substituting function to the node of the substituted function[50, 100]. 

(p nodes) 

d X 

Nodei 

Primary output 
(0) 

Figure 2.1: DAG representation of a combinational Boolean network 

Among these transformations, division operation, the inverse process of product op­

eration, plays a very important role to identify a common sub-expression. Given two 

expressions, F and P, find expressions Q and R, such that F = p. Q + R, where Q and R' 

are quotient and remainder respectively. If "." and "+" are taken as algebraic operations, 

then this is algebraic division, or weak division; otherwise, if they are taken as Boolean 

operations, then this is Boolean division. Comparatively speaking, algebraic division is 

faster but neglects other useful properties of Boolean algebra except distribute law. How­

ever, due to the lack of an efficient algorithm, Boolean division has rarely been applied[37]. 

A widespread concept of kernel is first proposed in 1982 based on algebraic division as 

follows[24]. 

Definition 2.2. The kernels of an expression F for a Boolean function f are the set of 

K(F), 

K(F) = {gig E D(F) and g is cube free} 

13 
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where 

D(F) = {Fie I e is a eube} 

and g is cube free means that there is no cube to divide it evenly and "I" is algebraic 

division. 

Example 2.1. A four-variable completely specified function f(x3x2x1xo) = ~{O, 1,2,5,8, 

9, 10} has a minimal two-level expression F1 as follows, 

(2.1) 

In equation (2.1), Xo +X1, X2 +X3XO are the kernels[24] so that F1 can be simplified to 

F2 or F3 by algebraic division in equations (2.2) or (2.3). 

(2.2) 

and 

(2.3) 

Both equations (2.2) and (2.3) are not the minimal multilevel forms because this func­

tion f can also be expressed by F4 using Boolean division in equation (2.4). 

(2.4) 

In addition to algebraic division technique, another facility that is extensively used 

is don't care method, including both satisfiability don't cares (SDC) and observability 

don't cares (ODC)[17, 130] in the logic level although there are more DCs in high level 

synthesis[20, 23]. These DCs are shown as dX in fig.2.1. Generally, SDCs and ODCs are 

quite large and complex[38]. Hence filters are needed to reduce the size so that only the 

useful portions are retained[125]. 

Within Mrs[27] that was further developed into Srs[134], there are many algorithms to 

compute the kernels and realize the previous five types of transformations. Additionally, 

some scripts are included in Srs to obtain good results for different kinds of functions. 

Extensive experimental results for Srs have been reported in [1]. 
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2.2 Rule-Based approach 

Rule-based systems are a class of expert systems that use a set of rules to determine the 

action to be taken to minimize a Boolean network[18, 47]. The network undergoes local 

transformations[48] that preserve its functionality by a stepwise refinement. 

A rule-based system may consist of[100]: 

I.- A rule database that contains two types of rules: replacement rules and meta-rules. 

The former abstract the local knowledge about subnetwork replacement and the latter 

the global heuristic knowledge about the convenience of using a particular strategy 

(i.e. applying a set. of replacement rules). 

I.- A system for entering and maintaining the database. 

I.- A controlling mechanism that implements the inference engine. 

A rule database contains a family of circuit patterns and the corresponding replacement 

for both replacement rules and meta-rules according to the overall goal, such as optimizing 

area, speed, power dissipation or testability. Several rules may match a pattern, and a 

priority scheme is used to choose the replacement. For example, a circuit pattern is shown 

in fig.2.2, when it is acknowledged by the rule-based system, it will be replaced by a smaller 

circuit. 

a-;-------/ 

b-.----i 
c 

e 

d~ 
Figure 2.2: A circuit pattern and its replacement 

A major advantage of this approach is that rules can be added to the database to cover 

all thinkable replacements and particular design styles. This feature plays a key role in the 

acceptance of optimization systems, because when a designer could outsmart the program, 

the new knowledge pattern could then be translated into a rule and incorporated into the 

database. 

The major disadvantage in the rule-based system is the order in which rules should be 

applied and the possibility of look-ahead and backtracking. This is the task of the control 

algorithm, that implements the inference engine. Further discussion and experimental 

results can be found in [18, 47, 66]. 
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2.3 BDD approach 

Binary Decision Diagrams (BDDs) were first proposed as Binary-Decision programs (BDPs) 

in 1959[91], which are further generalized by Akers in 1978 and represented them as 

diagrams[12]. Early research results can be found in [102]. Any Boolean function can 

be expressed by a BDD based on the following definition[31]. 

Definition 2.3. A BDD is a rooted directed graph with vertex set V containing two 

kinds of vertices, terminal and nonterminal vertices. If a vertex is a terminal vertex, then 

it is associated a value of either 0 or 1 denoted as value( v) E {O, I}; otherwise, if it is a 

nonterminal vertex then it has as attribute an argument index, index( v) E {a, 1, ... ,n -I} 

and two children, low(v), high(v) E V. An n-variable Boolean function I can be expressed 

by the value of the root vertex. Any vertex v corresponds with a Boolean function Iv 
defined recursively as: 

1) If v is a terminal vertex: 

a) Ifvalue(v) =1, then Iv = 1; 

b) Ifvalue(v) =0, then Iv = 0. 

2) If v is a nonterminal vertex with index(v) = i, then Iv is the function 

Iv = xdzow(v) + Xdhigh(v) (2.5) 

In example 2.1, a Boolean function I(X3X2XIXO) = I:{O, 1,2,5,8,9, 10} can also be ex­

pressed by a BDD as in fig.2.3(a) corresponding with equation (2.4). Each path from the 

root vertex to any terminal vertex corresponds to either an on-set or off-set product term. 

In fig.2.3(a), there are three paths A, Band C, from the root vertex to "I" terminal ver­

tex. They correspond to three on-set products, X2XO, X2XIXO, and X3X2XIXO respectively. 

Putting these products together leads to another form F5 of this function f. 

(2.6) 

Notice there are two common edges between path Band C. Thus another multilevel 

form can be obtained as follows. 

(2.7) 

There are several operations directly manipulated on BDDs, RESTRICTION, COMPOSI­

TION, SATISFY, and ApPLY etc[31]. The most complex operation is ApPLY through which 
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(a) with variable order (xO,xl,x2,x3) (b) with variable order (xl,xO,x2,x3) 

Figure 2.3: BDD representation of the Boolean function in example 2.1 

two BDDs, G1 and G2 are combined as one BDD, G = G1 <op> G2 where op is any 

Boolean operation. 

A BDD can be simplified by the following two rules: 

1. If low(v) = high(v), then v can be deleted; 

2. If the subgraphs rooted by v and Vi are isomorphic, then v and Vi can be merged to 

one vertex. 

A reduced BDD that has been simplified by these two rules is unique for any Boolean 

function if the variable order is fixed[31]. In fig.2.3(b), another BDD is shown for the same 

function as in fig.2.3( a) but with different variable order. It can be seen that fig.2.3(b) 

has one more vertex than fig.2.3(a). The unique BDD corresponding with a fixed variable 

order is called reduced ordered BDD(ROBDD). Therefore, the equivalence of two Boolean 

functions can be checked through ROBDDs. This technique has been incorporated into 

S18[134]. 

A logic circuit can be constructed from a BDD if each node is replaced by a multi­

plexor(MUX). The circuit corresponding with fig.2.3(b) is shown in fig.2.4. 

A BDD with less node number corresponds with a simpler logic circuit realized with 

MUXes. Hence the minimization of the number of nodes of a BDD is quite important[109]. 
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f 

Figure 2.4: Logic circuit from fig.2.3(b) 

Unfortunately, the size of a BDD, that is its node number, is very sensitive to the ordering 

of variables. There have been extensive research on the variable ordering of BDDs[7, 9-

11, 16, 34, 55, 80, 110, 122, 159]. Furthermore, some functions do not produce efficient 

results when processed using BDDs. For example, the sizes of the BDDs for representing 

arithmetic functions such as multiplication are known to increase exponentially with the 

number of input variables[75]. Therefore, a lot of other formats of decision diagrams, such 

as reversed ROBDDs[32], hybrid DDs[40], output value array graphs(OVAG)[82], edge­

valued BDDs[89] and partitioned ROBDDs [107]' have been proposed for different types 

of Boolean functions that were surveyed in [30, 52]. The research on testability for BDDs 

can be found in [33]. 

2.4 FPGA approach 

The first type of user-programmable chip that could implement Boolean functions was 

the Programmable Read-Only Memory(PROM) introduced at the beginning of 1970s. 

Simple logic functions can be created using PROMs as a look-up table which stores the 

truth table of the function. The function inputs are connected to the address lines and 

the function truth table is programmed into the memory array for each function output. 

Field-Programmable Logic Array(FPLA) or simply PLA, shown as in fig.1.6(a), was later 

developed specially for implementing large logic circuits by Signetics in 1975, where both 

AND and OR planes are programmable. In section 1.3, it is discussed that multilevel 
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logic networks usually offer more general structures and better solutions for large com­

plex circuits. Therefore, Field-Programmable Gate Array (FPGA) was first introduced 

by the Xilinx company in 1985[139] to meet the general multilevel structures. FPGAs 

have much more density on a chip than PLAs with the technological evolution while the 

reprogramming time and cost are drastically reduced comparing with mask programmable 

gate arrays(MPGAs). The FPGA market has expanded dramatically with many differ­

ent competing designs, developed by companies including Actel, Advanced Micro Devices, 

Algotronix, Altera, AT&T, Cypress, Intel, Lattice, Motorola, Quick Logic, and Texas In­

struments etc. A generic FPGA architecture, shown in fig.2.5, consists of an array of logic 

elements together with an interconnect network which can be configured by the user at 

the point of application. This kind architecture has a very good correspondence with the 

definition of Boolean network in fig.2.1. Each node in the Boolean network is mapped into 

a logic block while the interconnection among the nodes can be configured inside a FPGA. 

Hence, user programming specifies both the logic function of each block and the connections 

between the blocks. The programming technologies used in commercial FPGA products 

include floating gate transistors, anti-fuses, and Static Random Access Memory (SRAM) 

cells. A brief comparison among these programming techniques is shown in table2.1[83]. 

Technique 

EPROM 
EEPROM 
Anti Fuse 

SRAM 

Configurable 
Block 

Configurable 

Figure 2.5: Typical FPGA architecture 

Volatile Series Relative 
Storage Resistance(O) Capacitance 

no 2K 10 
no 2K 10 
no 50-500 1.2-5.0 
yes 1K 15 

Relative 
Cell Area 

1 
2 
1 
5 

Table 2.1: Brief comparison of FPGA programming techniques 
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The design flow for FPGA chip is different from fig.1.5. Taking an example of Xilinx 

XACT design system, the description file after logic synthesis must first be translated into 

Xilinx Net-list Format (XNF), which is understood by Xilinx tools. Then in the technology 

mapping step, the XNF file is mapped into Xilinx Configurable Logic Blocks (CLBs). This 

step is very important because a Boolean network can be mapped into different CLBs 

based on different partitions. In fig.2.6, a Boolean network is partitioned into two different 

CLBs that lead different structure and cost in FPGA realizations. There has been a lot of 

research in this area, merging logic optimization with technology mapping[41]. In the next 

step, automatic placement assigns each CLB a physical location on the chip using simulated 

annealing algorithm. After the physical placement and routing (P&R) is completed, a BIT 

file is then created which contains the binary programming data. The final step is to 

download the BIT file to configure the SRAM bits of the target chip. Since all the logic 

blocks have been prefabricated on the chip, FPGA designs have been winning over ASICs 

with its time-to-market, low NRE(non-recurring engineering) fees, and reprogrammable 

features[14]' especially for small volume of products. 

Figure 2.6: Different partitions for the same Boolean network 

2.5 Several other approaches based on perturbation 

There are some other methods for exploiting don't cares in Boolean networks. Muroga 

proposed transduction method, an acronym for transformation and reduction, based on 

the concept of permissible functions[105]. If replacing a node of function f in a Boolean 

network with another node of function 9 applying DCs of the network does not change the 

output, then 9 is called a permissible function for f. After the replacement, the network can 

be transformed either locally or globally so that some redundant part in the network can be 

removed. These transformations and reductions are repeated until no further improvement 

is possible without changing the network outputs. These ideas were employed in the design. 

system, SYLON[106] for CMOS circuit design. 

The idea of logic perturbation by rearranging the structure of the network without 

affecting its behavior, has been further applied for both combinational and sequential 

20 



Chapter 2. Conventional Multilevel Approaches Section 2.5 

circuits[45]. With the help of efficient automatic test pattern generation (ATPG) tech­

niques, redundancy addition and removal method was proposed based on perturbation in 

[39]. Some other results about perturbation can be found in [160, 161]. 
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Chapter 3 

Multilevel Logic Minimization Using 

Functional Don't Cares 

3.1 Introduction 

Multilevel logic synthesis is a known difficult problem although it can produce better re­

sults than two-level logic synthesis methods. In [90], multilevel prime implicants are first 

generated from a Boolean function, then a minimal form of these prime implicants is 

selected by solving a covering problem using any method for conventional two-level min­

imization. As an exact optimization method, it is only suitable for small functions due 

to the high computational complexity. In the last two decades, many heuristic methods 

have been proposed[24-25, 37, 50-51, 74, 100, 134, 160-161]. In most algorithmic methods, 

algebraic division plays an important role to decompose a function. Unfortunately, alge­

braic division applies the distribute law only, neglecting other useful properties of Boolean 

algebra. Besides, DCs can not be used[100]. As for its counterpart, Boolean division, 

there is no effective algorithm to find a good divisor. To compute the quotient for a 

given divisor, a large amount of implicit don't cares, SDCs(satisfiability don't cares) and 

ODCs( observability don't cares) should be generated and then a two-level minimizer[50J 

is used. This approach has rarely been used because of its complexity[37, 51]. Moreover, 

both of these kinds of divisions depend largely on the initial expressions[25]. Consequently, 

there are different standard scripts, as used in Sr8[134], that can give quite different results 

for the same problem. Sometimes, further running a script may deteriorate the result. 

Other Boolean methods can be found in [25, 74, 87, 100, 160J. 

Traditionally, the systematic approach to multilevel logic synthesis is known as func­

tional decomposition[43J. The main problem with this approach is to find the minimum 

column multiplicity for a bound set of variables based on simple disjunctive decomposition, 

multiple disjunctive decomposition and some more complicated decomposition methods 

[112]. A renewed interest in functional decomposition is caused by the introduction of 
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Look-Up table FPGAs recently[41]. There, a given switching function is broken down into 

a number of smaller subfunctions so that it can be implemented by the basic blocks of the 

FPGAs. 

The DCs discussed in this chapter are based on the functionality while the implicit 

SDCs and ODCs are based on the topology of a Boolean network. In addition, these 

functional DCs are different from the DCs generated on variable-entered Karnaugh maps[2, 

71]. A new efficient method to apply these functional DCs for multilevel logic synthesis is 

proposed according to a criterion based on the number of literals. 

3.2 Multilevel Karnaugh map technique 

Any Boolean function can be decomposed by Shannon expansion as follows, 

f = xdlxi=l + xdlxi=O 

(Xi + flxi=O)(Xi + flxi=r) 

(3.1) 

(3.2) 

where flxi=O and flxi=l are the cofactors of f with respect to Xi and Xi. In the 

Karnaugh map, the effect of the decomposition of equation (3.1) is to split the map into two 

sub-maps of equal dimensions covered by cubes Xi and Xi. The split is applied recursively 

until no off-set is covered based on the different orders of variables. All these cubes of the 

sub-maps are linked by the OR operation which leads to the expression of the function. 

This is the traditional two-level Karnaugh map technique where no DCs are generated after 

the selection of a cube[2]. It is similar to the decomposition of equation (3.2). The main 

purpose for two-level logic minimization is to find the least number of cubes and literals 

in each cube, that is equivalent to the best order of variables to decompose the function. 

For example, f(X3X2XIXO) = 2:(2,3,5,7,11,13,15) is shown in fig.3.1(a), where the blank 

entries on the map are "0" outputs. Splitting this map recursively with respect to Xo and 

Xl leads to a cube XIXO, which covers no off-set but 4 on-set minterms. Similarly, splitting 

this map recursively with respect to xo, X2 and Xl, X2, X3 respectively leads to two cubes 

X2XO and X3X2XI, which covers no off-set but all the remaining on-set minterms. Therefore, 

this function can be expressed by linking these three cubes with the "OR" operation as in 

equation (3.3). 

(3.3) 

In the previous two-level minimization, no DCs are generated. Actually, after the selec­

tion of a cube, all the on-sets covered by this cube can be used as DCs for the subsequent 

minimization. This idea will be generalized to multilevel cubes as will be shown in defini-

23 



Chapter 3. Functional DCs for Single Output Functions Section 3.2 

tion 3.1 and will consequently lead to multilevel forms. In [93], a concept of pseudocube is 

presented that has a more general form than the two-level cube since the XOR operation 

is incorporated. Any arbitrary Boolean function can then be expressed as a three-level, 

AND-XOR-OR form that has less literal number than the standard two-level form of sum 

of products(SOP) in general. A pseudo cube enjoys some useful properties but still covers 

"I" entries only on a Karnaugh map. In this chapter, the concept of a cube on a Karnaugh 

map is generalized in the following definition. 

Definition 3.1. A multilevel cube on a Karnaugh map is the same as a two-level cube 

except that it can cover both "0" and "I" entries, where "DC" is used to indicate a don't 

care minterm which can be either "0" or "I". 

Definition 3.2. A Karnaugh map M will produce its complemented Karnaugh map M' 

by interchanging the entries of "0" and "I" while DCs remain the same. 

Theorem 3.1. Given a Karnaugh map of an incompletely specified single output n-variable 
k 

function f(xn-l,xn-2,"'xo), and a multilevel cube c = ITxi = XkXk-l"'XO, that may 
i=O 

cover the entries of "1 ", "0" and "DC", 0 ::; k ::; n-1, Xi E {Xi, Xi}, Xi E {Xn-l, Xn-2, ... xo}, 

then f can be decomposed as in equation (3.4) or (3.5). 

f ch+12 

Xk'" xlxoh + 12 

Xk ... xlxo13 + 12 

f (c + f4)f5 

= (Xk'" XIXO + f4)f5 

= (Xk'" XIXO + 16)f5 

(3.4) 

(3.5) 

In equation (3.4), h is a function of n-k-l variables whose Karnaugh map is exactly 

the n-k-l dimensional sub-map that is inside cube c; the Karnaugh map of 12 is the same as 

M except that any entry of "1" covered by cube c can be taken as "DC"; and the Karnaugh 

map of 13 is the complemented Karnaugh map of h. In equation (3.5), f4 is the function 

whose Karnaugh map is exactly the sub-map covered by cube c; the Karnaugh map of is is 

the same as M except that any entry of "0" covered by cube c can be taken as "DC"; and 

the Karnaugh map of f6 is the complemented Karnaugh map of f4· 

Proof. We will proof equation (3.4) only since equation (3.5) is the dual form of equation 

(3.4). Moreover, in equation (3.4) only f = Xk ... xlxoh + 12 needs proving on account of 

definition 3.2. 

The entries of "I" on the Karnaugh map M can be divided into two parts: 
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Part A: entries that are inside cube c; 

Part B: entries that are outside cube c. 

Section 3.2 

If all these entries of "I" are covered, then 1 is realized. From the definitions of hand 

12, all "I" entries in part A are covered by ch, all "I" entries in part B are covered by 12. 
Now we need to prove that h doesn't include any variables in c. 

Because ° AND x = 0, x E {O, 1, DC}, all the entries outside of cube c on the map 

can be used as DCs while minimizing function h. Suppose there is a term, xjF, in the 

two-level SOP expression of 11, X j is a literal of the variable x j, j E {O, 1, .. , ,k}, then 

there must be a cube xjF that is outside cube xjF, whose entries can be used as DCs 

on the Karnaugh map. Let all these DCs inside the cube xjF be "I" so that we have 

xjF + xjF = F. Therefore, deleting Xj from xjF will not change the function ch. From 

this point, h doesn't include any variable in c. In other words, the Karnaugh map of h is 

exactly the n-k-l dimensional sub-map that is inside cube c. 

When all the "I" entries inside cube c have been covered by ch, they can be considered 

to be DCs for minimizing 12 since 1 + x = 1, x E {O, 1, DC}. 

o 

Example 3.1. Equation (3.3) is the minimal two-level expression without the aid of DCs 

for the function shown in fig.3.1(a). Now, apply theorem 3.1 to obtain the multilevel 

expressions utilizing DCs of functional decomposition. Suppose a multilevel cube Xo is 

selected first that covers both "0" and "I" entries. Then 1 can be expressed as follows 

based on equation (3.4), 

1 = xoh + 12 (3.6) 

where h, as shown in fig.3.1(c), is a three variable function, independent of Xo. Further­

more, all the "I" entries covered by xoh can be used as DCs that are entries of" x" in 

fig.3.1(d) to minimize 12. Selecting a multilevel cube X2X1 that covers "0" entries only 

leads to the expression h = X2X1 = X2 + Xl as in fig.3.1(c). Additionally, cube X3X2X1 in 

fig.3.1(d) covers the only on-set minterm. Therefore, we have 

(3.7) 

Alternatively, when the multilevel cube Xo is selected in fig.3.1(b), equation (3.5) can 

be applied to split the map. Hence, 

where 14 is the function whose Karnaugh map is exactly the sub-map covered by cube c 
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10 

(a) two-level K-map method 

x2xl 

10 
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10 x 1 x 

(f) K-map for f5 

Section 3.2 

Figure 3.1: Comparison between two-level and multilevel K-map methods 

and all the "0" entries covered by c can be used as DCs for 15. Hence, the Karnaugh maps 

for 14 and 15 are shown in fig.3.1(e) and (f). Therefore we have another expression for 1 
as follows. 

1 (xo + X3 X2Xl)X2 Xl 

(xo + X3X2Xl)(X2 + Xl) 

If the property of "containment" of cofactors, which will be discussed in the next section, is 

applied, two new "DC" entries for 14 are generated. These are marked as "*,, in fig.3.1(e). 

Consequently, this function can be further simplified as 
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The following are some properties that are peculiar to a multilevel cube on a Karnaugh 

map. 

1. A multilevel cube can cover "1" , "DC", and "0" giving more degrees of freedom and 

a multilevel expression. 

2. The different orders of multilevel cubes during manipulation on a Karnaugh map may 

lead to different expressions for the same function since each cube can generate different 

DCs. For example, the DCs on the Karnaugh map of 12 and f5 in fig.3.1(d) and (f) can 

only be generated after the cube Xo has been selected. 

3. For the same multilevel cube, expansions of equation (3.4) and (3.5) may lead to 

expressions of different literal numbers for the same function due to the different DCs 

generated. This will be further verified in the next section. 

Theorem 3.2. If all the "1" entries of a Karnaugh map M for an incompletely specified 

single output n-variable function f(xn-lxn-2'" xo) or of its complemented Karnaugh map 
k 

M' can be covered by a traditional two-level prime implicant p = IT Xi = XkXk-l ... xo, 
i=O 

Xi E {Xi,Xi}, Xi E {Xn-l,Xn-2"'XO}, 0:::; k:::; n -1, then XkXk-l"'XO is the minimal 

form of f in the sense that there is no other multilevel expression of f whose literal number 

is less than k + 1. 

Proof. We need only to proof the part for M since the counterpart for M' is obvious based 

on De Morgan law. 

Suppose there is a multilevel cube method to find an expression for f whose literal 

number is less than k + 1 by first selecting a multilevel cube c whose literal number is j, 

1 :::; j :::; k. Hence c covers p and at least one "0" entry; otherwise, c is a prime rather than 

p. Moreover, there are k + 1 - j literals, Xk-j, Xk-j-l,' .. ,xo, that exist in p rather than 

in c. Since c covers at least one "0" entry, equation (3.8) gives the only decomposition that 

will realize function f, 

f =ch (3.8) 

where the Karnaugh map of h is the sub-map that is inside the cube c by theorem 3.1. 

The literal number of ch is j + Ihl, where Ihl is the literal number of any expression for 

h. From the previous supposition, it can be deduced that Ih I < k + 1 - j. In other words, 

there is at least one literal among Xk-j, Xk-j-l,'" ,xo, that will not appear in h. Suppose 

this literal is i, i: E {Xn-l,Xn-2,'" ,xo}. From equation (3.8), it can be concluded that f 

is independent of the variable i:. Therefore, deleting the variable i: from p will not change 

its functionality. This conflicts with the proposition that p is a prime. D 

Based on theorem 3.2, we have the following procedure to simplify a Boolean function in 

a multilevel form on a Karnaugh map. 
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Procedure 3.1. An incompletely specified single output Boolean function f can be ex­

pressed by a multilevel form through the following recursive steps on a Karnaugh map. 

1. Let M be the initial Karnaugh map of f. 
2. For a Karnaugh map M, if all the "1" (or "O'~ entries of M can be covered by a 

two-level prime p, then return p (or p) as a minimal expression of M. Otherwise, select a 

suitable multilevel cube, c. 

3. From theorem 3.1, M is split into two sub-maps by c, MI and M2 . Additionally, 

select equation (3.4) or (3.5) to decompose and generate new DCs on the sub-maps MI and 

M2. 

4· For both MI and M 2 , go to step 2 to obtain their expressions fMl and fM2 with the 

aid of new DCs. 

Example 3.2. Find a multilevel expression for an incompletely specified 4-variable func­

tion f whose Karnaugh map is shown in fig.3.2(a) where each blank entry means "0". 

1. In fig.3.2(a), M is the initial Karnaugh map. 

2. According to step 2 in procedure 3.1, neither ls nor Os can be covered by a two-level 

prime, so a multilevel cube X3 is selected to cover the entries of "1". 

3. After selecting a cube, X3 in fig.3.2 (b), M is split into two Karnaugh maps, MI 

and M2 according to step 3 in procedure 3.1. Because cube X3 covers all the "1" entries, 

f M2 is 0 while MI is shown in fig.3.2 (c). This lead to the expression f = x3f Ml based on 

decomposition equation (3.4). 

4. Now M is MI and go to step 2. In the same way, there is no prime to cover all the 

entries of either "1" or "0" in fig.3.2 (c). Thus a multilevel cube Xl is selected according step 

2. Consequently, the Karnaugh map is split into two sub-maps, Mll and M12 . Selecting 

equation (3.5) to decompose, we have fMl = (Xl + f Mll)fM12 where the Karnaugh maps 

for fMll and fM12 can be obtained in fig.3.2 (d) and (e) based on theorem 3.1. Notice that 

all the "0" entries covered by Xl can be used as DCs for f M 12. 

5. Now M is Mll as in fig.3.2 (d). There is a prime, X2XO, that covers all the entries 

of "I". Hence fMll = X2XO. In the same way, when M is M 12 , there is also a prime, X2XO 

to cover all the entries of "0", that gives the result, hvh2 = X2XO = X2 + Xo. 

The previous steps give the following expression of f, 

(3.9) 

From example 3.2, procedure 3.1 gives a simple and convenient method to obtain the 

multilevel form of a Boolean function based on Karnaugh map. It offers a good oppor­

tunity to visualize the multilevel minimization process and to understand the functional 

decomposition technique. However, it has following disadvantages: 

1. It is impractical for large functions; 
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x 
IXO 

3X2 00 01 11 10 x 
IXO X3 

3X2 00 Ol~ 10 
00 x 1 00 Irx 1 l 
01 1 x 1 odl 1 x d 
11 x x x 11 x x x 

10 x x x 10 x x x 

(a) original K-map (b) select a multilevel cube 

:tf
X2XO 

x- 0 1 

o x 

1 1 

(c) select a multilevel cube on Ml (d) select a prime on Mll 

3(23(0 

x x 

(e) select a prime on M12 

Figure 3.2: Multilevel K-map method for an incompletely specified function 

2. It still depends on personal experience to select a multilevel cube in step 2 of 

procedure 3.1 and to choose one decomposition equation from (3.4) and (3.5) to split in 

step 3. This is difficult for automation. 

3. There are more implicit DCs of functional decomposition that have not been ex­

ploited as mentioned in example 3.1. 

Hence, procedure 3.1 requires further refinement as discussed in section 3.3. 

3.3 Multilevel logic synthesis for large Boolean functions 

Definition 3.3. Any incompletely specified Boolean function f(Xn-l, Xn-2,··· ,xo) can 

be defined uniquely as two minterm sets, faN and fDC, representing the on-set and DC­

set minterms of f respectively. For a literal Xi of a certain variable Xi, 0 :::; i :::; n - 1, if 

[UIXi=l)DC u Ulxi=r)ON] ~ UIXi=O)ON, where "u" and "~" are set operations of "union" 

and "proper inclusion" respectively, then it is said that flxi=l contains flxi=O or there is 

containment of f upon the literal Xi. If there is no containment upon Xi or Xi, then it is 

said there is no containment upon variable Xi. If there is containment upon both Xi and 

Xi, then it is said there is containment upon variable Xi. For convenience, this property 
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can be called the containment of cofactors. 

3X2Xl~O 
I 

2001i O 
3 00 Ii 1 

I 

5 old 1 
7 0 1 Ii 1 

11 1 0 111 
13 1 1 q 1 
15 1 1 Ii 1 

fON 

(a) minterm array of ex.3.l 

3X2XIXO 
I 

3 00 Ii 1 
5 01 q 1 
6011iO 
fON 

3X2Xl,rO 

o ooqo 
7 0 1 1: 1 

I 

801 ~O 
9 10 q 1 
1 lOtiO 

I 

1 1100 
i 

1 1 1 q 1 
1 1 1 Ii 1 

f'vc 

(c) minterm arrays of ex.3.2 

3X2XI 

1 001 
2010 

utro4hN 

3X2XI 3X2XI 

1 001 
2 010 
3 0 1 1 
5 101 
6 110 
7 1 1 1 

1 001 

ftro=l Ao::o 

(b) minterm arrays after split­
ting by xO for ex.3.l 

3X2XI 

3011 
4 100 
6 110 
7 1 1 1 

utro4hc 

~3X2XI 

~ 
utrO:::ohN 

3X2XI 

0000 
3 0 1 1 
5 101 
6 110 

utro:::ohc 

(d) minterm arrays after splitting by xO for ex.3.2 

Figure 3.3: Two examples for definition 3.3 

From definition 3.3, a Boolean function and its minterm sets will be used interchange­

ably hereafter. In example 3.1, fON = {2, 3, 5, 7,11,13, 15} as shown in fig.3.3(a), fDC = 0. 
From fig.3.3(a), the value of Xo in any minterm of {3, 5, 7,11,13, 15} is "I" while the value 

of Xo in the minterm "2" is zero. After deleting Xo from all the minterms in fig.3.3(a), 

we obtain flxo=l = {1,2,3,5,6,7}, flxo=o = {I} as shown in fig.3.3(b). Hence flxo=l 

contains flxo=o or there is containment of f upon the literal Xo because of flxo=l =:J flxo=o 

based on definition 3.3. In example 3.2 whose minterm arrays are shown in fig.3.3(c), 

fON = {3, 5, 6}, fDC = {O, 7, 8, 9, 10, 12, 13, 15}, in the same way, we can calculate the 

results as in fig.3.3(d), Ulxo=doN = {1,2}, Ulxo=l)DC = {3, 4, 6, 7}, Ulxo=O)ON = {3}, 

Ulxo=O)DC = {O, 3, 5, 6}. Therefore, flxo=l contains flxo=o but there is no containment 

of f upon the literal Xo since Ulxo=O)ON is not properly included in the union set of 

Ulxo=doN U Ulxo=dDC. 

30 



Chapter 3. Functional DCs for Single Output Functions Section 3.3 

For comparison, there are two concepts of "containment" in the two-level minimization 

technique. One is the single-cube containment where a cube c contains another cube d of 

the cover[100]. So cube d is redundant and should be deleted to achieve the cover with 

single cube containment minimality. The other can be called multiple-cube containment 

where a cube c is contained by several relatively essential cubes. This cube c is called 

totally redundant cube and will be deleted from the cover[50]. These ideas have been used 

in the procedure "IRREDUNDANT _ COVER" of ESPREsso[26]. However, the containment in 

definition 3.3 has more general meaning because it is a relation of cofactors instead of one 

or several cubes only. In other words, the containment of cofactors is one of the properties 

of the structure of Boolean functions. What is more important is that a Boolean function 

with containment implies new DCs of functional decomposition as will be shown in theorem· 

3.3. Consequently these DCs offer more degrees of freedom for logic minimization rather 

than just deletion of the redundant cubes. 

Theorem 3.3. For an incompletely specified Boolean function f(Xn-l, Xn-2,'" ,xo), if 

there is containment upon a literal Xi, 0 :S i :S n - 1, then f can be decomposed as follows, 

f = xdlxi=l + JIXi=O 

(Xi + flxi=O)Jlxi=l 

(3.10) 

(3.11) 

In equation (3.10), all the minterms in UIXi=O)ON can be used as DCs for flxi=l, and 

JIXi=O is the same as flxi=O except that all the minterms in UIXi=O)DC which are not in 

Ulx;=l)ON u Ulx;=l)DC are deleted. In equation (3.11), all the minterms that are not in 

UIXi=l)ON U UIXi=dDC can be used as DCs for flxi=O, and JIXi=l is the same as flxi=l 

except that all the minterms in UIXi=l)DC which are also in UIXi=O)ON are moved to 

UIXi=doN. 

Proof. If there is containment upon a literal Xi, from definition 3.3, we have [UIXi=dDC U 

UIXi=l)ON] :J UIXi=O)ON. If all the minterms in UIXi=O)DC which are not in UIXi=doN U 

Ulxi=l)DC are deleted as required in the theorem, then we have, 

(3.12) 

(3.13) 

Because the on-set minterms of flxi=O are not deleted from JIXi=O and DCs can be set 

to "0", we have equation (3.14) from equation (3.12). 
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(3.14) 

From equation (3.13), we have, 

(3.15) 

Therefore, equation (3.1) can be rewritten as below based on equations (3.14) and 

(3.15), 

1 Xd[Xi=l + Xd[Xi=O 

Xd[Xi=l + Xd[Xi=O + Xd[Xi=O 

= xd [Xi=l + 1[Xi=0 

(3.16) 

(3.17) 

(3.18) 

Therefore equation (3.10) is proved. From equation (3.10), all the minterms in U[Xi=O)ON 

are covered by 1[Xi=0. Since U[xi=O)ON covers both XiU[xi=O)ON and xU[xi=O)ON, all the 

minterms in U[xi=doN that are covered by U[Xi=O)ON can be used as DCs for 1k=1 be­

cause of 1 + x = 1, x E {O, 1, DC}. This point can also be seen in equations (3.16)-(3.18). 

Similarly, if there is containment upon a literal Xi, from definition 3.3, we have 

If all the minterms in U[xi=dDC that are in U[xi=O)ON are moved to U[xi=doN as 

required in the theorem, then we have, 

(3.19) 

(3.20) 

Because DCs can be set to "1", we have the following equation from (3.19), 

(3.21) 

Besides, all the DCs in 1[Xi=0 can be set to "0", equation (3.22) can be obtained from 

equation (3.20). 
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(3.22) 

Therefore, equation (3.2) can be rewritten as below based on equations (3.21) and 

(3.22), 

f (Xi + flxi=o)(xi + flxi=l) 

(Xi + flxi=o)(Xi + !IXi=l)(Xi + !IXi=r) 

(Xi + flxi=o)!lxi=l 

(3.23) 

(3.24) 

(3.25) 

Hence equation (3.11) is proved. From equation (3.11), all the off-set minterms of 

!IXi=l can be used as DCs for flxi=o because ° AND x = 0, x E {O, 1, DC}. Therefore, all 

the minterms that are not in UIXi=r)ON U UIXi=r)DC can be used as DCs for flx;=o. This 

point can also be seen from equations (3.23)-(3.25). 

This completes the proof of theorem 3.3. 

~X2!XIXO 

o d 0:0 0 
1 q oio 1 x 

2 d oj 10 
5 Q 1:0 1 
8 Ii oio 0 
9 Ii OiO 1 

10 Ij oil 0 
JON 

IXO 

3X- 00 

00 III 
01 

11 

10 IiI 

01 11 10 

1 1 

1 

1 1 

(a) minterm array and K-map of ex.3 

3XIXO 3XIXO 

o 000 3 0 1 1 
1 001 7 1 1 1 
2 010 ctl X2 =cJDC 4 100 
5 101 
6 1 10 

ctl X2 =~ON ctl X2 =cJON 

X3XIXO 

o 000 
1 00 1 
2 0 1 0 ifl ) 0 1-

1
-t---tt---+t--l 

4 100 X2=I DC 
1 ~1~~~~ 

5 1 0 1 3XIXO ~ooo 01 11 10 

6 1 1 0 1 0 0 1 0 1 101 I 1 
ifl X2 =1) ON ifl X2 =0) ON 1 

(b) select equation (14) to split by x2' 

1XO 

x 00 

0 1 

1 1 

(c) select equation (15) to split by x2' 

Figure 3.4: Examples of theorem 3.3 

33 

D 



Chapter 3. Functional DCs for Single Output Functions Section 3.3 

Example 3.3. A completely specified Boolean function f(X3X2X1XO) = 2:;(0,1,2,5,8,9,10) 

is shown in fig.3.4(a) both in minterm array and Karnaugh map forms for better under­

standing. It can be calculated that UIX2=doN = {O, 1, 2, 4, 5, 6}; UIX2=0)ON = {I}; 
Ulxz=l)DC = Ulxz=O)DC = 0 from either the minterm array or the Karnaugh map. So 

there is containment upon the literal X2 according to definition 3.3. Then f can be split by 

X2 based on equation (3.10) or (3.11), that means to select a multilevel cube X2 on the Kar­

naugh map. First select equation (3.10) to split so that f = x2flx2=1 + llx2=0. Because 

UIX2=0)DC = 0, no minterm is deleted or llx2=0 = flx2=0. However, all the minterms 

in Ulxz=O)ON can be used as Des for flx2=1, that is, Ulx2=1)DC = {1};Ulx2=doN = 

{O, 2, 4, 5, 6}. This result is shown in fig.3.4(b) from which it can be seen that both flx2=1 

and flx2=0 can be covered by primes X1XO and X3X1XO respectively. From theorem 3.2, we 

obtain flxz=l = X1XO and llx2=0 = X3X1XO that gives an expression for f as indicated in 

equation (3.26). 

(3.26) 

Now equation (3.11) is selected to split f so that f = (X2 + flx2=0)llx2=1. Because 

Ulx2=1)DC = 0, no minterm is moved or llx2=1 = flx2=1. However, all the minterms 

that are not in Ulx2=1)ON U UIX2=dDC can be used as DCs for flx2=0, that is, {3,7} can 

be used as DCs for flxz=o. So we have, Ulx2=1)ON = {O, 1,2,4,5, 6};Ulxz=0)ON = {I}; 

UIX2=0)DC = {3, 7} as shown in fig.3.4(c) from which we know that both ll x2=1 and flx2=0 

can be covered by primes X1XO and X3XO respectively. In the same way, another expression 

for f can be obtained as follows, 

(3.27) 

Comparing these two expressions for f, equation (3.27) has one less literal number than 

equation (3.26). The reason is that different DCs may be generated depending on whether 

equations (3.10) or (3.11) is selected. However, there are two special cases of containment 

where it is simple to determine the splitting equations. 

Lemma 3.1. For an incompletely specified Boolean function f(Xn-1' Xn-2,··· ,xo), if all 

the entries of Xi are filled with on-set minterms, then there is containment upon Xi and 

this function can be split by equation (3.28) based on equation (3.10) since flxi=l = 1. 

(3.28) 

In the same way, if all the on-set minterms can be covered completely by a literal, Xi, 
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o ::; i ::; n - 1, then there is containment upon Xi and the function can be split by equation 

(3.29) based on equation (3.11) since flxi=o = O. Note that these two conditions will not 

be met simultaneously in general; otherwise, f = Xi. 

f = xdlxi=l (3.29) 

For the general case of containment, we have the following heuristics to decide the 

decomposition equation. 

Observation 3.1. Rewrite equations (3.10) and (3.11) as follows. 

f = xdlxi=l + JIXi=O (3.30) 

(3.31) 

In equation (3.30), all the minterms in UIXi=O)ON can be used as DCs for flxi=l, and 

JIXi=O is the same as flxi=o except that all the minterms in UIXi=O)DC which are not in 

UIXi=doN U UIXi=dDC are deleted. In equation (3.31), all the minterms that are not in 

UIXi=doN U UIXi=l)DC can be used as DCs for flxi=o, and JIXi=l is the same as flxi=l 

except that all the minterms in UIXi=dDC which are also in UIXi=O)ON are moved to 

U IXi=l)ON. Suppose we do not use any of the new DCs to minimize the function f, then 

the literal number of equation (3.30) is I(xdlxi=l + flxi=o)1 = 1 + Iflxi=ll + Iflxi=ol where 

Iflxi=ll and Iflxi=ol are the literal numbers of flxi=l and flxi=o respectively. Similarly, if 

we do not use any of the new DCs to minimize the function f, then the literal number of 

equation (3.31) is I(Xi + flxi=o)flx;=ll = 1 + Iflxi=ll + Iflxi=ol. Hence the literal number 

in equation (3.30) would be the same as in (3.31) if we do not use any of the new DCs. 

Furthermore, the main DCs with respect to literal number in equation (3.30) is the one for 

flxi=l while it is the one for flxi=o in equation (3.31) from theorem 3.3. So we need only 

to compare the usefulness of these two main DCs for the equations. Intuitively, if a "DC" 

minterm is adjacent to an on-set minterm, then we say it is useful for the minimization; 

otherwise, we say it is not useful. In equation (3.30), the on-set minterms of flxi=l may 

be used as DCs while in equation (3.31) the off-set minterms of flxi=o may be used as 

DCs. Let a be the number of new generated "DC" minterms that are not adjacent to the 

on-set minterms of flxi=l; and /3 be the number of new generated "DC" minterms that 

are adjacent to the on-set minterms of flxi=o. If a < /3, then the new DCs in equation 

(3.30) are not so effective as in equation (3.31). Consequently it is better to select equation 

(3.31) to decompose the function. If a > /3, then the new DCs in equation (3.31) are not so 
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effective as equation (3.30). Consequently it is better to select equation (3.30) to decompose 

the function. Otherwise, if 0: = /3, then select either of them to decompose the function. 

The preceding observation can be justified by the function in example 3.3, where there 

is a containment upon X2. If equation (3.30) is selected to decompose as shown in fig.3.4(b), 

then there is one generated "DC" minterm but it is adjacent to two on-set minterms in 

flx2=1. Therefore, 0: is "0". On the other hand, if equation (3.31) is selected to decompose 

as shown in fig.3.4(c), then there are two generated "DC" minterms and one of them is 

adjacent to the on-set minterm in flx2=o. Therefore, /3 is "I". From observation 3.1, 

equation (3.31) should be selected to decompose the function that will lead to a smaller 

literal number. 

From theorems 3.2 and theorem 3.3, it is conjectured that a multilevel cube which 

is nearly prime or covers more on-set minterms has priority to be selected. This idea 

is expressed in the following conjecture that has already been utilized in the previous 

examples. 

Conjecture 3.4. For an incompletely specified Boolean function f(xn-l, Xn-2,'" ,xo), 

there are 2 literals for each variable Xi, 0 :::; i :::; n - 1. Any of these literals is a n-l 

dimensional multilevel cube. Among these 2n literals, a multilevel cube can be selected that 

covers the most on-set minterms. 

Now procedure 3.2 is obtained to minimize a Boolean function in a multilevel form 

based on procedure 3.1. 

Procedure 3.2. An incompletely specified Boolean function f(xn-l, Xn-2,'" ,xo) can be 

simplified by the following recursive steps on the minterm sets fON and fDe· 

1. If f is a constant function, then return 0 or 1. 

2. If either of the two special cases in lemma 3.1 is satisfied, then return equation (3.28) 

or (3.29) accordingly and go to step 1 for the subsequent function. 

3. Select a literal Xi according to conjecture 3.4 to split. This is the important but 

difficult step. If there are several literals that cover the same number of on-set minterms, 

then a literal is selected based on the following conditions: 

(a). Select a literal that has containment so that new D Cs can be generated. 

(b). If there are several literals that have containment, then detect whether they 

are symmetric variables[86}. If they are symmetric, just select the first one. Otherwise, go 

to the next condition. 

(c). If there are still several literals that satisfy the previous conditions, then select 

the one that has more "DC" minterms; Otherwise, just select the first literal since no other 

efficient method has been found at present. 

4. If there is containment upon Xi, then select a splitting equation (3.10) or (3.11). 

This is also the other key step of the procedure. At present observation 3.1 is used to select' 

36 



Chapter 3. Functional DCs for Single Output Functions Section 3.4 

the splitting equation. Otherwise, if there is no containment, decompose the function as 

equation {3.1} or {3.2}. For each of the two subsequent functions, go to step 1. 

Example 3.4. The minterm array for a completely specified function f(X4X3X2X1XO) = 

2:(0,1,2,4,8,9,10,12,24,25,28) is shown in fig.3.5(a). It can be simplified by procedure 

3.2 as follows. 

1. f is not a constant function. Besides, neither of the special cases in lemma 3.1 is 

satisfied. So go to step 3 of procedure 3.2. 

2. In fig.3.5(a), the on-set minterm numbers covered by the literals X4, X3, X2, Xl, 

Xo are "3", "7", "3", "2", "3", shown at the bottom of the corresponding column respec­

tively. According to conjecture 3.4, literal Xl is selected because it covers the most on-set 

minterms. 

3. After selecting a multilevel cube Xl, the minterm array is split into two sub-arrays as 

in fig.3.5(b), where Ulx1=1)ON = {O, 1, 2,4,5,6,12,13, 14}; Ulx1=1)DC = 0; Ul x1=0)oN = 

{0,4}; Ulx1=0)DC = 0. It can be seen that there is containment upon Xl based on definition 

3.3. If equation (3.10) is selected to split, then there will be two on-set minterms in flx=l 

that can be used as DCs. But both of them are adjacent to other on-sets. Hence a is "0" 

based on observation 3.1. On the other hand, if equation (3.11) is selected to split, then· 

there will be 7 off-set minterms in flx=o that can be used as DCs shown in fig.3.5(b). One 

of them, "8" is adjacent to a on-set minterm "0" in Ulx=o)oN. Hence (3 is "I". Based on 

observation 3.1, equation (3.11) is selected to split the function because of a < (3. Thus we 

have f = (Xl + h)h, where h is flx1=0 including on-set and DC minterms; h = flx1=1 

as shown in fig.3.5(b). 

4. For h = flx1=0, it is not a constant function, but all the on-set minterms are covered 

by cubes xo, X2, and X4 that are the special cases in equation (3.29). Hence h = XOX2X4· 

5. For h = flx1=1 in fig.3.5(b), the on-set minterm numbers covered by the literals xo, 

X2, X3, X4 are the same in step 3 ofthe procedure. Moreover, all of them have containment. 

So we use a symmetry detection method and find that they are symmetric. From step 3(b) 

of procedure 3.2, the first literal, Xo is selected to split as shown in fig.3.5(c). 

6. From step 4 of procedure 3.2, there is containment upon Xo in fig.3.5(c). In the 

same way, it can be calculated that a = 0, (3 = 1. Based on observation 3.1, selecting 

equation (3.11) to split gives h = (xo + hlxo=o)hlxo=l. For simplicity, it can be seen 

that both hlxo=o and hlxo=l can be covered by two-level primes. Thus, hlxo=o = X2; 

hlxo=l = X3 X4 = X3 + X4· Alternatively, applying procedure 3.2 for both hlxo=o and 

h Ixo=l will produce the same results without the help of the primes. 

From the above steps, we achieve the expression f = (Xl + XOX2X4)(XO + X2)(X3 + X4). 
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Figure 3.5: An example of procedure 3.2 

3.4 Experimental results 

Section 3.4 

Procedure 3.2 has been implemented in C language. Given the on-set and DC-set for a 

single output function, the program will produce a multilevel expression using the equation 

format defined in [134]. We test all the single output functions from both IWLS'93 bench­

mark and SIS testcases on a PC with Cyrix6x86-166 CPU and 32M RAM under Linux 

operating system. For all the single output functions found in the common benchmarks, 

there are 1299 splits with containment property among total 1813 splits. In other words, 

more than 70% of splits have the containment property of definition 3.3. The compari­

son with SIS is shown in table 3.1, where "var#", "min#", and "lit#" are the numbers of 

variables, minterms, and literals respectively. Besides, the unit of "time" is second and "I" 
means not available due to memory and time limitation. The program is first compared 

with the algebraic method and results are shown in column "gcx" (short for "gcx; resub -a") 

of table 3.1. There are two testcases, "max46.pla" and "co14.pla", for which our program 

38 



Chapter 3. Functional DCs for Single Output Functions Section 3.4 

produces worse results in the term of literal numbers. On the other hand, we want to know 

if it is possible for our program mainly based on theorem 3.3 to produce very good results 

for some functions. Hence we compare with "script.rugged" and the results are shown in 

column "script.rugged" of table 3.1. Among 15 testcases, there are 6 cases that our pro­

gram produces worse results. But our program is much faster in these cases. Generally 

speaking, it can still produce the results very quickly although the minterm input files 

are much larger than .blif or .pla files. For the testcase of parity.pla, where each cube is 

actually a minterm, both "gcx" and "script.rugged" would require excessive CPU time and 

memory. 

From these experimental results, it can be concluded that the DCs of function decom­

position are very useful to minimize the Boolean functions in multilevel forms. For the 

testcases that our program produces worse results than "gcx" and "script.rugged", there are 

several reasons as follows. 

1. The input files of our program are in minterm format, that have the most number 

of literals comparing with .pla and .blif formats. 

2. There are two heuristic methods in procedure 3.2. One is the selection of variable 

orders in step 3. The other is observation 3.1, which makes the decision of decomposition 

equations. Currently the order of variables is decided according to the number of minterms, 

which is not suitable for some functions. Furthermore, if two cubes cover the same numbers 

of on-sets and DC-sets respectively with the containment of cofactors, then there is no 

efficient way to determine the order. As for the decomposition equations, there is some 

inefficiency in evaluating the usefulness of new DCs based on the adjacency only. 

Functional DCs gcx script .rugged 
var# min# lit# time(s) lit # time(s) lit # time(s) 

t481.blif* 16 42016 928 5.92 3400 79.4 881 240.5 
9sym.blif 9 420 239 0.04 604 0.5 275 33.2 

9symml. blif 9 420 239 0.04 364 0.4 241 19.2 
xor5.blif 5 16 16 -0 97 0 16 0.5 

cml52a.blif 11 1024 26 0.24 54 -0 22 0.2 
majority. blif 5 21 10 -0 34 -0 10 -0 

parity.blif 16 32768 60 9.29 136 0 60 0.3 
parity.pla 16 32768 60 9.29 / / / / 
max46.pla 9 62 215 0.03 189 0.2 174 4.1 
newill.pla 8 142 23 -0 28 0 24 0 

newtag.pla 8 234 11 -0 13 -0 11 -0 

ryy6.pla 16 19710 17 14.6 93 0.2 21 1.2 
col4.pla 14 14 118 0 77 0 68 0.5 
life.pla 9 140 216 0.05 238 0.6 79 2.7 

syml0.pla 10 837 391 0.09 545 17.4 205 143.2 

*This testcase is from LGSynth91 benchmark. 

Table 3.1: Comparison for single output functions run on the same PC 
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3.5 Summary 

In this chapter, don't cares offunctional decomposition are utilized to simplify the Boolean 

functions based on the concepts of multilevel cube. An important and common property of 

containment of cofactors is exploited so as to produce useful DCs to minimize the function 

without the help of SDCs or ODCs. The experimental results verify the correctness and 

effectiveness of our method. The work is being generalized to multiple output functions 

which will be presented in the next chapter. 
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Chapter 4 

Multilevel Minimization for Multiple 

Output Logic Functions 

4.1 Introduction 

Multilevel logic minimization plays a very important role in achieving high quality digital 

circuits. The key point of multilevel logic simplification is to extract don't cares (DCs) from 

a given Boolean network[88]. There are two kinds of internal DCs, known as satisfiability 

don't cares (8DCs) and observability don't cares (ODCs) which are based on the topology 

or structure of a Boolean network[17]. Usually these DCs are very large and consequently 

only a small subset of them can be used efficiently as in the transduction[105, 106] and 

global flow methods[21]. A new kind of DCs, namely functional DCs, have been proposed 

in chapter 3[152]. These are based on functional or logic information, instead of network 

or circuit connections. It is proved to be very effective for multilevel minimization. An 

algorithm for single output functions has been developed in chapter 3, which can produce 

better results than script.rugged of 8r8[134] for some testcases even with the most expensive 

minterm input format. In this chapter, the algorithm proposed in chapter 3 is improved 

for multilevel logic optimization and then generalized to multiple output functions. The 

literal count is used as the cost criterion. 

4.2 Review of Functional Don't Cares 

The concept of functional DCs is based on the property of containment, which has been 

defined in definition 3.3. For convenience, the definition is reproduced below. 

Definition 4.1. For an incompletely specified Boolean function i(Xn-l, Xn-2,'" ,xo), 

there are two cofactors iXi and Ixi with respect to a literal Xi, Xi E {Xi, xd, 0 :::; i :::; n - l. 

There is containment upon Xi if and only if 
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(4.1 ) 

Alternatively, one can say that fXi contains Ixi . For completely specified function, 

equation (4.1) can be simplified as in equation (4.2). 

(4.2) 

As in previous equations, fDe and fON are the dc-set and on-set of the function f; "u" 
and" ::)" are set operations of "union" and "proper inclusion" respectively. 

The concept of containment is similar to but different from unateness due to the ex­

istence of DCs. If f is unate upon variable Xi, then there is containment upon literal 

Xi. However, if there is containment upon literal Xi, then the unateness is not necessarily 

guaranteed upon variable Xi. For instance, it is possible to have containment upon both Xi 

and Xi based on equation (4.1)[152] but impossible to be both monotone decreasing and 

monotone increasing upon variable xd26]. This fact is due to the existence of DCs. Hence 

containment is a more general concept than unateness, which leads to the generation of 

the functional DCs. 

Theorem 4.1. Given a single output incompletely specified Boolean function f(xn-l, Xn-2, 

... ,xo), if there is no containment upon literal Xi, 0 :s: i :s: n - 1, then there are at least 

two literals in any of the multilevel expression for the function. 

Proof. Suppose there is only one literal Xi, Xi E {Xi,Xi}, in an expression of f. Factor out 

all the multilevel terms in order to obtain a two-level sum-of-products (SOP) expression F. 

It is straightforward that either Xi or Xi but not both appear throughout the expression. 

Hence cofactor fXi covers more cubes than cofactor f i · Consequently fXi contains fi , , 
which conflicts with the condition that there is no containment upon literal Xi for function 

f. 0 

If there is containment upon Xi , then functional DCs are generated and the function can 

be decomposed by either of the following equations. 

(4.3) 

(4.4) 
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In equation (4.3), iXi is the same as iXi except that all the cubes covered by (fx )ON 

can be used as DCs; hi is the same as Ixi except that (fx )DC is changed to (fx )~N n , , 
[(fxJON U (fxJDcl· Similarly, in equation (4.4), hi is the same as IxL except that all the 

cubes which are not covered by (fxJONU(fxJDC can be used as DCs; .!xi is the same as iXi 

except that all the cubes covered by (fxJDC n (fx )ON become new on-set. Both equations , 
(4.3) and (4.4) have only one literal for variable Xi which is consistent with theorem 4.1. 

The generation process of functional DCs is illustrated by Venn diagrams in fig.4.1 and 

example 4.1. The detail proof can be found in chapter 3 or [152]. 

/- ..... 

~~0 \ , 
\ / 

I~~) 
OFF-SET OFF-SET OFF-SET OFF-SET 

1\ 

fr 
(a) Venn diagrams for equation (4.3) 
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/ \ 

8 ,ON-SET\ 

I .. 
OFF-SET OFF-SET 

GC-SE:0 ~C-SrV 
OFF-SET More 

DC-SET 
OFF-SET 

fr Ix 
~ 

fr 
(b) Venn diagrams for equation (4.4) 

Figure 4.1: Explanation of the functional DCs 

Example 4.1. A Boolean function i(x3x2xlxo) = ~(O, 1,2,5,8,9,10) is shown in fig.4.2 

by a Karnaugh map. It can be seen that fx2 = {O, 1,2,4,5, 6} contains ih = {I} where 

X2 = X2 according to definition 4.1. After selection of the multilevel cube X2 on the Kar­

naugh map[152]' the original function can be decomposed into two subfunctions. Without 
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loss the generality, equation (4.4) is selected to split as shown in fig.4.2. As a result, two 

minterms {3,7} which are not covered by (Jx2)ON U (Jx2)DC are functional DCs for iX2. 

From equation (4.4) we have, 

f lXO 
X3 x_ 00 

00 III 
01 

11 

10 Ir1 

f 

01 11 10 

1 1 

1 

1 1 

(X2 + iX2)ix2 

(X2 + X3 XO)XIXO 

(X2 + X3 XO)(XI + xo) 

..... ..... 
fx2~lXO 

X:l", 00 01 11 10 

....lr... {~ ~ I : I : 101 : I 

......,. fx2XIXO 

X~ 00 01 11 10 

~I I~I I 
Figure 4.2: Example of functional DCs 

(4.5) 

(4.6) 

(4.7) 

In this chapter, the following improvements will be added over chapter 3 on the appli­

cation of functional DCs. 

1. Find a better solution to select a literal when there are more than one literals with 

containment. This is similar to the variable order problem of Binary Decision Dia­

grams (BDDs). 

2. One more splitting equation is introduced to further utilize the property of contain­

ment. 

3. Generalize the idea for multiple output Boolean functions. 

4.3 Simplification for single output functions 

4.3.1 A better solution to the variable order problem 

Variable order is a very common problem in logic synthesis. In ESPREsso[26], a two­

level logic minimizer based on the property of unate functions, the most binate variable 

is selected to decompose a function so that the subsequent subfunctions will be unate 

after the minimum number of splittings. The most binate variable is the variable having 

the most number of "0" and "1" in all the cubes. The same method is used for BDDs 
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in [64] for multilevel methods as the initial representations since both of them are based 

on AND/OR operations. Although this is very simple heuristic, it is proven to be very 

powerful judging by the experimental results in [64]. For functional decision diagrams 

(FDDs) based on AND jXOR operations, the most unate variable is selected in [54] to 

solve the variable order problem. Ideally the most "containable" literal should be selected 

to apply functional DCs which is based on containment. However it is computationally 

extensive. Therefore, the most unate literal is selected instead. Based on our experiments 

for incompletely specified functions, which consist of both on-sets and DCs, the most unate 

literal decided by on-set cubes only usually leads to better results compared to a decision 

based on both on-set and dc-set cubes which is used in [152]. 

4.3.2 One more splitting equation 

Although equations (4.3) and (4.4) are complete to express functions that have contain­

ment, they are not sufficient to lead to the minimal results even with the generation of 

functional DCs as shown in example 4.2. 

Example 4.2. A 5-variable single output Boolean function f can be expressed by two 

equations, 

The total literal number of f is 7. If equations (4.3) and (4.4) are used to decompose 

the function with functional DCs[152]' then another expression is obtained for f, h = 
XO(X2 + X3X4) + xlxdx3 + X4) with 8 literals where the common subfunction X2 + X3X4 

cannot be extracted and consequently shared. 

Theorem 4.2. If two cofactors fXi and hi of a single output n-variable Boolean function 

fare Xj +g and Xjg respectively, Xi,j E {Xi,j,Xi,j}, then there are containments upon both 

Xi and Xj, where 0 :S i,j :S n -1, i =F j, 9 is a n-2 variable function independent of Xi and 

Xj' Furthermore, f can be decomposed as in equation {4·8}. 

Proof. From Shannon expansion, we have, 

f XiiXi + XiiXi 

XiXjg + Xi(Xj + g) 

xig + Xjg 
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Hence equation (4.8) holds. Based on definition 4.1, it can easily be seen that there is 

containment upon Xi. From equation (4.11), iXj = 9 + Xjg and h j = Xjg. Therefore there 

are containments upon both Xi and Xj. D 

From theorem 4.2, if there are containments upon two literals Xi and Xj, then check whether 

the following two conditions can be satisfied: 

1. One cofactor ixi covers the n-l dimensional cube Xj while hi is covered by the same 

cube Xj. 

2. The function composed of the cubes covered by ixi - Xj and the function composed 

of the cubes covered by Xj - hi can be each other's complement, where "-" is the set 

operation of "difference". 

If the conditions are satisfied, then decompose the function by equation (4.8) to reduce 

the literal numbers. FigA.3 shows a simple example for a single output function ryy6 with 

16 inputs. The output file of our program is in equation format which can be read by 

SIS. Command plot_ blii is used to obtain the diagrams in figA.3. The algorithm based 

on functional DCs produces better result than "script. rugged" both in area and speed . 

ryy6.eqn • 
• 

(a) functional Des (17 literals) 

ryy6 

@ 

@ 

xl 

(b) script.rugged (21 literals) 

Figure 4.3: Results of ryy6 with 16 inputs 

• 
• 

4.4 Multilevel minimization for multiple output functions 

4.4.1 Multiple output functions and Boolean relations 

It is emphasized in [28] that multiple output functions are fundamentally different from 

single output functions with respect to don't care conditions. For multiple output functions, 
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the concept of DCs should be generalized to the concept of vertex equivalence classes in 

order to formulate the functions as Boolean relations. In this way, a Boolean relation 

can be considered as a specification while multiple Boolean functions are only one of the 

various implementations. One main disadvantage of Boolean relations is that they are 

very computation expensive to simplify. However, if we use pog!rl extra binary variables 

to merge m output functions into a single output function, then the gap between single 

output functions and multiple output functions is reduced and thus it provides a new way 

to solve the problem of Boolean relations. This idea can be illustrated by example 6 of 

[28]. 

Example 4.3. Given a Boolean relation IR ~ B2 X B2 with two inputs, a and b; two 

outputs, x and y as shown in fig.4.4(a). When input vector (ab) = (00), the output vector 

(xy) can be either (00) or (01). Similarly, when input vector (ab) = (01), the output 

vector (xy) can be either (01) or (10). For either of the individual function, there is no 

DC conditions. Thus the useful information cannot be represented as DCs for individual 

function but use vertex equivalence classes instead. In [28], four Karnaugh maps are used 

with two outputs on each map to calculate the best solution, x = a; y = b. If we add an 

extra variable c so that two output functions can be merged into one 3-variable function z; 

x = zlc=o and y = Zlc=l, then fig.4.4(b) can be obtained. In fig.4.4(b), when input vector 

(abc) = (000), z is a constant O. As a result z can be replaced by "x" (DC) for input vector 

(abc) = (001). When input vector (ab) = (01), one more extra variable d can be used to 

represent the relation between the outputs x and y. Therefore, a variable-entered map[2, 

71] is shown in fig.4.4( c). From that variable-entered map, d is set to 0 and the result of 

z is z = ca + cb. Finally splitting z with respect to variable c leads to the same result as 

in [28], x = zlc=o = a and y = Zlc=l = b. 

The general algorithm to solve Boolean relations will not be further discussed here. We 

will use the same strategy to implement multilevel logic minimization for multiple output 

functions. This method has also been used in the minimization of BDDs for multiple 

output functions where the extra variables are called output selection variables[81]. 

4.4.2 Encoding problem for multiple output functions 

In the previous section, multiple output functions are merged into one single output func­

tion by adding extra variables. Then that function is simplified and split to produce the 

results for individual functions. From the view of multilevel network, all the nodes that 

are independent of extra variables are shared by all the individual functions. That will 

greatly reduce the literal count. 

Example 4.4. Given two Boolean functions, fO(X3, X2, Xl, XO) = {O, 1,2,8,9,10,12,13, 14} 

and h(X3,X2,XI,XO) = {0,8}. One extra variable X4 is required to merge them into a 

5-variable function f. Let fo = fixFO and h = flx4=1. Thus f(X4, X3, X2, Xl, XO) = 
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Figure 4.4: Simplification of Boolean relation 

Section 4.4 

{O, 1,2,8,9,10,12,13,14,16, 20}. Then call the program for single output function us­

ing functional DCs, whose result is shown in example 3.4 in chapter 3, f = (X4 + 
XOX3 Xl)(XO+X3)(X2+ Xl). Therefore, fo = flx4=0 = (XO+X3)(X2+ Xl) and h = flx4=1 = 

XOX3 Xl (xo + X3) (X2 + Xl) = xox3xdo· It can be seen that fo and h share a common node 

(xo + X3)(X2 + Xl) since it is independent of variable X4. 

For more than two outputs, an obvious problem is about how to encode these outputs. 

The cost varies with different encoding schemes. For example, testcase tableS has 17 

input variables and 15 outputs. Hence we need rlog~51 = 4 binary variables to encode 

these outputs and there are totally 16! ~ 2.1 x 1013 different encodings. In table 4.1, we 

select 16 encodings among them where all the encoding numbers are in increasing order. 

For example, in the No.O encoding scheme of table 4.1, (0001) is assigned to the first 

subfunction, (0010) is assigned to the second subfunction and so on. Finally (1111) is 

assigned to the last subfunction. Besides, the unused code (0000) can be considered as 

DCs. In table 4.1, lit#l and lit#2 are the literal numbers with and without the extra 

variables respectively, the unit for time is second. It can be seen that the literal number 

excluding extra variables is 1064 with encoding number 12, which is less than the result of 

script.rugged of Sr8[134]' whose literal number is 1074 and the CPU time is 27.7 seconds 

respectively run on the same computer. 

Although encoding is a traditional problem for functional decomposition[104] and other 

fields of logic synthesis[147], there are several differences. 

1. Encoding problem here is based on containment. In other words, the function after 

the encoding should have as many containments as possible. 
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I No. Ilit#1/lit#2/time(s) II No. Ilit#1/lit#2/time(s) I 
0 2021/1650/4.41 8 2212/1711/3.95 
1 2021/1650/4.40 9 2106/1584/4.36 
2 2064/1661/12.43 10 2157/1663/3.85 
3 2054/1630/12.64 11 2120/1587/5.52 
4 2764/2453/7.50 12 1772/1064/7.73 
5 2772/2454/7.40 13 1824/1094/7.63 
6 2334/1968/4.04 14 2797/2180/5.30 
7 2041/1561/4.00 15 1800/1092/7.75 

Table 4.1: Literal numbers with different encodings for table5 
(11 inputs and 15 outputs) 

Section 4.5 

2. The extra variables will not appear in the final implementation after splitting. So 

the literal number of extra variables does not matter. 

4.5 Experimental results 

Based on the C program developed in chapter 3, we incorporate the ideas from section 

4.3 about the variable order and splitting expansions and apply it for multiple output 

functions. An input PLA format[26] is first converted to minterm format of multiple m 

output functions, m 2:: 1 . Then merge them into a single output function using 110g:rl 

extra variables and call the improved program to simplify the single output function. 

The reason for using minterm format is just to know the effectiveness of functional DCs 

without any other techniques. For the practical point, the idea of functional DCs should 

be incorporated to other minimizer such as SIS to further improve the results. 

i/o Fun. Des script. algebraic script. rugged 
lit#/time lit#/time lit#/time 

alu4 14/8 2501/0.21 3530/68.1 -

b12 15/9 80/1.51 629/4.7 141/8.1 
cu 14/11 66/0.26 66/0.2 58/0.3 

decode 5/16 37/0.01 52/0.2 52/0.4 
misex1 8/7 47/0.01 66/0.2 60/0.4 
misex3 14/14 2686/0.57 4379/97.1 -

pm1 16/13 53/2.71 52/0.4 50/0.4 
rd84 8/4 409/0.02 756/4.4 348/21.8 
sa02 10/4 180/0.01 248/1.1 188/7.6 

sqrt8ml 8/4 70/0.01 148/0.5 94/0.8 
table5 17/15 1092/7.75 1236/8.1 1074/27.7 

x2 10/7 45/0.06 54/0.2 48/0.3 

Table 4.2: Results for multiple output functions 

The developed program is tested using MCNC and IWLS'93 benchmarks on a PC 

49 



Chapter 4. Functional DCs for Multiple Output Functions Section 4.6 

with PII-266 CPU and 64M RAM under Linux operating system. Due to lack of efficient 

encoding method for the problem proposed in section 4.4.2, a simple encoding scheme 

is applied, that is to encode a binary code of i to ith subfunction. For example, rd84 

has 4 outputs, so (00), (01), (10), (11) are assigned to the first, second, third and fourth 

subfunctions respectively. For the codes that have not been used, they are taken as external 

DCs. In table 4.2, all the time is in seconds and "-" means not available due to memory and 

time limitation. The results of "script. algebraic" and "script.rugged" are also shown with 

BLIF input format[134]. Although there is no efficient method for encoding, our program 

can still produce very good results even with the minterm input format. 

4.6 Summary 

The concept of containment is more general than unateness[26] and leads to the generation 

of functional DCs. The algorithm of multilevel logic simplification based on functional DCs 

is first reviewed and improved in the aspects of variable order and splitting equations for 

single output Boolean functions. The idea is then generalized to multiple output function 

through encoding method. This encoding strategy provides a new approach to simplify 

Boolean relations which are known to be computationally extensive[28]. The improved 

algorithm has been implemented in C language and tested using common benchmarks. 

Experimental results show that functional DCs are also very effective for multiple output 

function. This work can be further developed as follows. 

1. Find an efficient method to solve the encoding problem described in section 4.4.2, 

which is different from the traditional one for the functional decomposition[104]. 

2. Incorporate the idea in other logic minimizers such as SIS to improve the performance. 
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Chapter 5 

Polarity Conversion for Single 

Output Boolean Functions 

5.1 Introduction 

In the logic synthesis process, AND /XOR (Reed-Muller) design has shown several advan­

tages, such as high testability, low cost for arithmetic and symmetric functions. Therefore, 

the conversion between the standard SOP and Reed-Muller forms becomes necessary and 

there has been extensive research on it. 

In [155]' any function in SOP form can be converted by three algorithmic rules of bj 

coefficient maps, similar to Karnaugh maps. Then the best polarity that corresponds with 

the maximum number of zero-valued bj coefficients can be determined by folding technique. 

Tabular technique is applied in [4] and [6] for conversion between the canonical SOP and 

Reed-Muller forms. The computer experiments show that it will take much CPU time 

for large Boolean functions even with the parallel process realization [138]. Recently, the 

relationship between on-set coefficients of SOP forms and the corresponding Reed-Muller 

coefficients is published in [85]. The algorithm in [85] requires less computer memory since 

it computes from only on-set coefficients, but it takes excessive CPU time when n ;::: 15. On 

the other hand, a hardware realisation for conversion with any fixed polarity is proposed 

in [3]. Although the conversion speed is very fast, it is only suitable for small functions 

because of the limitation of the number of chip pins. Other relevant results can also be 

found in [5] and [97]. 

5.2 Basic definitions and terminology 

Any n-variable Boolean function can be expressed canonically by the SOP form in equation 

(5.1) . 
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2n-1 

!(Xn-IXn-2'" XO) = L aimi 
i=O 

Section 5.2 

(5.1) 

where the subscript i can also be expressed in a binary form as i = (in - l i n -2'" io), 

"L:" is the OR operator, the minterm mi can be expressed as mi = Xn-IXn-2 ... xo, 

{

X' i·=O . J' J 
Xj = 

Xj, ij = 1 
(5.2) 

Or it can be expressed by the exclusive sum-of-products, loosely known as the positive 

polarity Reed-Muller (PPRM) form as follows. 

2n-1 

!(Xn-IXn-2'" xo) = ~ biPi 
i=O 

where "~" is the XOR operator, Pi = Xn-IXn-2'" xo, 

. {I, ij = 0 
Xj = 

X· i· - 1 J' J-

(5.3) 

(5.4) 

In equations (5.2) and (5.4), j is from 0 to n - 1. We will refer to the coefficients of SOP 

form and the coefficients of Reed-Muller form as a and b respectively for simplicity. 

For example, when n is 2, !(XIXO) can be expanded by the SOP form as follows. 

3 

Alternatively, it can be expanded by the positive polarity Reed-Muller form as follows. 

boo EEl bOIXO EEl blOXI EEl bnXIXO 

= bo EEl blXo EEl b2XI EEl b3XIXO 
3 

~biPi 
i=O 
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In a fixed polarity Reed-Muller (FPRM) expansion with any fixed polarity p, P = 

(Pn-IPn-2··· po), every variable can only be either true or complemented, but not both. If 

an entry ofp, Pj is 0 (or 1) then the corresponding variable is in the true (or complemented) 

form. Therefore, there are 2n polarities for a n-variable function, and the positive polarity 

is equivalent to zero polarity. 

5.3 Conversion of the coefficients with zero polarity 

Since the minterms are mutually exclusive, equation (5.1) can be rewritten as follows. 

2n-1 

!(Xn-IXn-2··· xo) = ~ aimi 
i=O 

(5.5) 

Because x = 1 EEl x, replace x with 1 EEl X in each mi of equation (5.5) and simplify to convert 

from a to b. For any Reed-Muller coefficient, bi, where i = (in-lin-2··· io), if ij is 1, then 

there is Xj in Pi according to equation (5.4). Because Xj can be created by both Xj and Xj 

in mi, ij can be both 1 and 0 in a according to equation (5.2). Otherwise, if ij is 0, then 

there is a constant "I" instead of Xj in Pi according to equation (5.4). Because "I" can only 

be created by Xj in mi, ij can only be 0 in a according to equation (5.2). Alternatively,. 

the above transformation can be written as equation (5.6). 

bi = bin_lin_2···io = ~akn-lkn-2 ... ko 
k 

where k = (kn - I kn - 2 ... ko), 

kj = 
{

X, 

0, 

ij = 1 

ij = 0 

(5.6) 

(5.7) 

In equation (5.7) "x" is the notation for both 0 and 1, j E {0,1,··· ,n -I}. For 

example, if n is two, then according to equation (5.6) we have, 

b2 blO 

~axo 
k 

aoo EEl alO 

ao EEl a2 
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In the same way, we have, 

= 2:Za xx 
k 

aOO EEl aOI EEl alO EEl an 

ao EEl al EEl a2 EEl a3 

Section 5.3 

Similarly, because 1 = x EEl X, replace "I" with x EEl x in each Pi of equation (5.3) and 

simplify to convert from b to a. Equations (5.8) and (5.9) can be obtained in the same 

way. 

ai = ain_lin_2···io = 2:Zbkn-lkn-2 ... kO 
k 

where k = (kn- Ikn- 2 ... ko), 

(5.8) 

(5.9) 

Comparing equations (5.6), (5.7) with (5.8), (5.9), it can be seen that the only difference 

between them is the entries of a and b. The conversion methods from a to b and from b to 

a are identical with zero polarity. This leads to observation 5.1. 

Observation 5.1. Any Reed-Muller coefficient bi can be computed from SOP coefficients 

ak according to equations {5. 6} and {5.7} with zero polarity. Similarly, any SOP coefficient 

ai can be computed from Reed-Muller coefficients bk according to equations {5.8} and {5.9} 
with zero polarity. 

Alternatively, equations (5.7) and (5.9) can be expressed using a truth table, ta­

ble 5.1, to show the bitwise relationship between the subscripts of a and b, where ij 

or kj is any bit of io, i l ,'" ,in-lor ko, kl ,'" ,kn- l . Here we define a criterion func­

tion 9 = (gn-lgn-2'" go), where gj is shown in table 5.1. If the value of the function 

9 = (gn-lgn-2'" go) is 1, that is, all of its binary bits, gn-l, gn-2,' .. ,go are 1, then 

equations (5.7) and (5.9) are satisfied. The coefficient can be computed using equation 

(5.6) or (5.8) with all the coefficients whose subscript satisfies equation (5.7) or (5.9). It 

can be seen from equations (5.7) and (5.9) that the number of satisfied coefficients, both 

on-set and off-set, is 2t , where t is the number of I-valued bits of i. For example, to com­

pute a Reed-Muller coefficient bi from SOP coefficients, if all the binary bits of 9 are 1 for 

the subscripts i and k, then the SOP coefficient ak should be included in equation (5.6); 

otherwise, it should not be included. This process is shown in example 5.1. 
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k 
J 0 1 

1· 
J 

0 1 0 

1 1 1 

Table 5.l: Truth table of the criterion function 9j 

Furthermore, table 5.1 can be expressed by a Boolean function (5.10) or (5.11), where 

" I " and "&" are the bitwise OR and AND operators respectively. Using either equation 

(5.10) or (5.11), it is possible to decide if a particular coefficient should be included for 

conversion. Besides, only the on-set coefficients need to be calculated since 0 EB x = x. If 

the number of the included on-set coefficients is odd, then the converted coefficient is 1; 

otherwise, it is O. The above methods are exemplified in example 5.1. 

(5.10) 

(5.11) 

Example 5.1. Compute Reed-Muller coefficient b6 with zero polarity for a 4-variable func­

tion f(X3X2XIXO) = I:(1, 2, 5, 6, 7, 8,10,11). 

According to equations (5.6) and (5.7), b6 =bOllO , which means i2 = il = 1. So k2 and 

kl can be both 0 and 1, that is, 

bOllO 2Ia o x xO 

k 

= aOOOO EB aOOlO EB aOIOO EB aOllO 

ao EB a2 EB a4 EB a6 

OEB1EBOEB1 

o 

Alternatively, b6 can be calculated by equation (5.10). For the first on-set coefficient "1", 

we have 
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9 116 

0001 10110 

1110 I 0110 

= 1110 

Section 5.4 

Because go is 0 instead of 1, this coefficient should not be included in the computation of 

b6. Then switch to the second on-set coefficient "2". Similarly we have 

9 216 

001010110 

110110110 

1111 

Because all of gj are 1, this coefficient should be included. Then switch to the third on-set 

coefficient and so on. After finishing all 8 on-set coefficients, only two coefficients "2" and 

"6" are included. Hence b6 is 0 since two is even. All these procedures can be done easily 

by a computer. 

Now observation 5.1 is updated by the following observation. 

Observation 5.2. Any zero polarity Reed-Muller coefficient bi can be computed from the 

on-set SOP coefficients using equation (5.10) or (5.11). If all gj are 1 then this coefficient 

is included. If the number of included coefficients is odd, then bi is 1; otherwise, bi is O. 

In the same way, any SOP coefficient ai can be computed from the on-set Reed-Muller 

coefficients with zero polarity. 

5.4 Conversion of the coefficients with a fixed polarity 

In the previous section, a zero polarity conversion method is introduced. In this section 

a polarity for SOP forms is proposed to extend the conversion method from zero polarity 

to any fixed polarity. Then the bidirectional conversion method between SOP and FPRM 

forms is presented. 

5.4.1 Polarity for SOP expansions of Boolean functions 

For any n-variable Boolean function, there are 2n FPRM expansions and expansions with 

different polarities have different on-set coefficient sets. Here we define a polarity for SOP 

expansions of Boolean functions. 
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Definition 5.1. Any Boolean function f(X n -lXn -2'" Xo) can be expressed canonically 

as in equation (5.1). That expansion is defined as the zero polarity. Any variable Xj , 

j E {a, 1, ... ,n - 1} in every minterm with a polarity P = (Pn-lPn-2'" po) of the same 

SOP function f(X n -lXn -2'" xo) is defined as in equation (5.12). 

if Pj = 1 

if Pj = ° (5.12) 

According to equation (5.12), if any entry of p, pj is ° (or 1), then the corresponding 

variable is in the true (or complemented) form. This is the same as the polarity for FPRM 

forms. Now equation (5.1) is extended accordingly as follows. 

2n-l 

f(X n -lXn -2'" xo) = 2: aimi 

i=O 

{
X' i·=O i;. - J' J 

J - .. . 1 
Xj, Zj = 

(5.13) 

(5.14) 

In equation (5.14), x is the complemented form of X. Besides, equation (5.14) is an 

extension of equation (5.2). Therefore, the corresponding subscript in equation (5.13), 

i = (in-dn-2 ... io) can be obtained from equation (5.14) as follows. 

{
Oi;.=X. 

i. - 'J J 
J - 1 v .. 

, Xj = Xj 
(5.15) 

Example 5.2. A 3-variable function f(X2XlXO) 

x = x, we have 

2:(1,2,5) has zero polarity. Since 

2:(1,2,5) 

2:{(OOl),(010),(101)} 

X2XlXO + X2XlXO + X2 Xl XO 

X2XlXO + X2XlXO + X2 Xl XO 

If the polarity pis 1, then X2 = X2, Xl = Xl, and :1:0 = Xo according to equation (5.12). 
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Hence, from equations (5.13) and (5.15), this function can also be expressed as fUhxlxo) 
with polarity 1 as follows, 

~{(OOO),(011),(100)} 

= ~(O,3,4) 

So this function is ~(1, 2, 5) with zero polarity, while it is ~(O, 3, 4) with polarity 1. 

Therefore, any n-variable Boolean function can be expanded canonically as equation (5.13) 

with polarity p according to definition 5.1. There are 2n polarities for a Boolean functions. 

To convert any SOP expansion from polarity pi to polarity p, every subscript i, 0 ::; i < 2n 

should be converted using equation (5.1), 

i ¢= i 1\ P 1\ pi (5.16) 

where" 1\" and "¢=" are bitwise XOR and assignment operators respectively. Since pi is 

conventionally zero as in equation (5.1), equation (5.16) can be simplified as follows. 

i¢=il\p (5.17) 

A theorem can be formulated about the polarity of SOP expansions. 

Theorem 5.1. If there are M on-set minterms of a n-variable function with polarity p, 

then there are always M on-set minterms with any other polarities. 

Proof. For any coefficient i of the function with polarity p, it is converted to i ' with any 

other polarity pi, i ' = il\pl\p' ,according to definition 5.1 and equation (5.16). So there is· 

a one-to-one correspondence between any minterm with polarity p and its corresponding 

minterm with polarity p'. Thus, the number of on-set minterms is the same with any 

polarity. D 

Unlike the FPRM expansions, the number of on-set coefficients for any SOP expression is 

fixed for all polarities. The only effect of the polarity is the order of the on-set minterms. 

5.4.2 Conversion from a to b with a fixed polarity 

Procedure 5.1. Any Boolean function can be converted from canonical SOP expansion to 

canonical FPRM expansion with a fixed polarity p through the following steps. 

1. Convert the function to SOP expansion with polarity p; 

2. Convert the expansion after step 1 to Reed-Muller expansion using any zero polarity 

conversion method. 
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Suppose P and a n-variable Boolean function are expressed by P = (Pn-lPn-2 ... po) and 

!(Xn-lXn-2 ... xo) respectively. If this function is converted to a canonical Reed-Muller 

expansion as equation (5.3) with zero polarity then every variable is in the true form. It 

follows that the polarity of FPRM forms after zero polarity conversion is the same polarity 

of SOP forms before the conversion. In short, zero polarity conversion does not change the 

polarity. In other words, equation (5.3) can be extended as follows. 

2n-l 

!(Xn-lXn-2'" xo) = ~ biPi (5.18) 
i=O 

where Xj may be either the true or the complemented form of Xj, and every variable Xj' 

in any term Pi is in the same form as X j', 0 ::; j, j' ::; n - 1. Now, in step 1, this function 

is first converted to another SOP expansion !(Xn-lXn-2'" xo) with polarity P according 

to equation (5.17). If Pj is 1, Xj is the complemented form of Xj; otherwise, Xj is the true 
2n-l 

form of Xj' In step 2, !(Xn-lXn-2'" xo) is converted to Reed-Muller expansion ~ b(jji 
i=O 

with a zero polarity conversion method. According to equation (5.18), every variable Xj in 

the term Pi is the same form as in the expansion !(Xn-lXn-2'" xo) after step 2. Because 
2n-l 

of the canonicality of FPRM expansions, ~ biPi is the FPRM expansion of the function 
i=O 

!(Xn-lXn-2'" xo) with polarity P . 

Example 5.3. Convert a 4-variable function !(X3X2XIXO) = :L(1, 2, 5, 6, 7, 8, 10, 11) from 

the SOP form to the FPRM form with polarity 1. 

In step 1, this function is converted to the SOP expansion with polarity 1. From 

equation (5.17), we have, 

In step 2, :L(O, 3, 4, 7, 6, 9, 11, 10) is converted to Reed-Muller expansion using any zero 

polarity conversion method. We use the method based on observation 5.2. For example, 

to compute bll , all the on-set minterms should be decided as in example 5.1. For the first 

SOP on-set coefficient "0", we have 

9 0111 

000011011 

111111011 

= 1111 

This minterm should be included. Similarly, 3, 9, 11, 10 should be included to compute 

bll. The number of these included on-set coefficients is an odd number 5, so bll is 1. In 
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the same way, the final FPRM expansion can be obtained as ~(O, 1,2,6,7,8,11,13) with 

polarity 1. 

From procedure 5.1, if we have any zero polarity conversion algorithm between SOP 

and Reed-Muller forms, then it can be extended to any fixed polarity. 

5.4.3 Conversion from b to a with a fixed polarity 

From equations (5.6), (5.7) and (5.8), (5.9), it can be seen that the zero polarity conversion 

methods are exactly the same from a to b and from b to a. If a coefficient set G of a SOP 

form is converted to a Reed-Muller coefficient set with zero polarity, then the result is 

a set G'. Likewise, if a coefficient set G' of a SOP form is converted to a Reed-Muller 

coefficient set with zero polarity, then the result is a set G. In example 5.3, the SOP 

on-set coefficient set {O, 3, 4,7,6,9,11, 10} is converted to a Reed-Muller on-set coefficient 

set {O, 1,2,6,7,8,11, 13}. Similarly, the SOP on-set coefficient set {O, 1, 2, 6, 7, 8, 11, 13} 

will be converted to the Reed-Muller on-set coefficient set {O, 3, 4,7,6,9,11, 10}. From this 

point, procedure 5.1 can be extended to procedure 5.2. 

Procedure 5.2. Any Boolean function can be converted from canonical FPRM expansion 

with a fixed polarity p to canonical SOP expansion through the following steps. 

I'. Convert the function to SOP expansion using any zero polarity conversion method; 

2'. Convert the SOP expansion after step I' from polarity p to zero polarity using 

equation {5.17}. 

Suppose we have converted the coefficient set G of the SOP form to the FPRM coeffi­

cient set G' by the two steps in procedure 5.1. If we want to convert G' to G, then it is 

an inverse procedure. In step 1 of procedure 5.1, G is first converted to Gil , then Gil is 

converted to G' in step 2. Now, Gil can be obtained in step I' because of the zero polarity 

conversion method. In step 2' , G can be calculated from Gil since i !\ P !\ P = i for every 

coefficient in Gil. 

The bidirectional conversion is illustrated in fig.5.1 where d is a binary variable for the 

direction. If d is 0, then the conversion is from a to b; otherwise, it is from b to a. Besides, 

a or bin fig.5.1 is any element of the set A or E, and "*" is for multiplication. 

Input coefficient I ~ 
set A,.pol~tity P ~ a=at..('([*p) 
and dlrectlOnd 

Convert between 
Reed-Muller 
and SOP forms 
with zero 

polarity and save 
the results in set B 

Output 
~I b=bA(d *p) I~ coefficient 

setB 

Figure 5.l: Bidirectional conversion between SOP and FPRM forms 
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5.5 Conversion algorithm for large Boolean functions 

In section 5.4, the method for bidirectional conversion is discussed with any fixed polarity. 

This method has been implemented in C language. For a 15-variable function with 10,000 

on-set coefficients, the CPU time for conversion with any fixed polarity is about 13 seconds 

on a personal computer with Cyrix6x86-166 CPU and 32M RAM. Most of the CPU time, 

however, is spent on the zero polarity conversion because other parts of the algorithm are 

simple to compute. In this section, multiple segment and multiple pointer techniques are 

introduced to improve the speed for zero polarity conversion. 

5.5.1 Multiple segment technique 

In observation 5.2, to compute a Reed-Muller coefficient, all the SOP on-set coefficients 

should be accessed once. If we order these on-set coefficients in advance, then the speed 

will be improved. Thus the multiple segment technique is introduced, defining a segment 

as a suitable subset of the on-set coefficients. 

Definition 5.2. For an n-variable Boolean function f(x n -lxn -2··· xo), any of its on-set 

coefficients c can be ordered into one of 3 segments defined below, 

c E the jth 3egment, iff j * 21 ~ C < (j + 1) * 21 (5.19) 

where 3 = 2n - 1 , 0 ~ I ~ n, 0 ~ j < 3, 0 ~ C ~ 2n - 1. 

Example 5.4. All of the on-set coefficients of a 4-variable function f (X3X2XIXO) =2:(1,2,5, 

6,7,8,10,11) can be ordered into 4 segments, 30,31,32,33, that is, 3 = 4, I = 2. According 

to definition 5.2, 30 = {1,2}, 31 = {5, 6, 7} ,32 = {8, 10, 11}, 33 = 0 . Alternatively, these 

on-set coefficients can be reordered into 8 segments, 30',31',32',33',34',35',36',37', that is, 

3 = 8, I = 1. Then, 30' = {I}, 31' = {2}, 32' = {5}, 33' = {6, 7}, 34' = {8}, 35' = {10, 11}, 

36' = 37' = 0 . 

Definition 5.3. For two integers, i, k, which can be represented by binary m-tuples, 

i = (im -lim -2··· io), k = (km - 1km -2··· ko), if ij ~ kj for all j, 0 ~ j < m, then i covers 

k or k is covered by i. 

According to definition 5.3, the relation of cover can be expressed exactly as equation 

(5.10) or (5.11). So any coefficient bi can be computed from the number of all on-set 

coefficients ak, where k is covered by i. If this number is odd, then bi is 1; otherwise, bi is 

O. 

Theorem 5.2. Supp03e there are an integer i and an integer set K, i = (im - 1im -2··· io), 

k = (km - 1km - 2 ··· ko), where k is any element of K. If ij = kj for all j that is from 
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l to m - 1, 0 ::; l < m, and the number of elements in K covered by i is iy, then, after 

subtracting if * 21 from both i and any element of the set K, if = (im-l im -2 ... il), the 

number of elements in K covered by i is still iy. 

Proof. For i and any element k in K, since ij = kj for all j that is from l to m - 1, 

o ::; l < m, all the most significant l bits of k in set K are the same, then if covers kf, 

kf = (km - 1km - 2 ··· k1) by definition 5.3. Or the criterion function 9 = kf I if is always 1 

when kf and if are the same number by equation (5.10). After subtracting if * 21 from 

both i and any element of K, if = (im-lim-2 ... il), all these m -l bits are set to be zero. 

Therefore, the criterion function 9 = kf I if is still 1 when both kf and if are zero. So the 

number of elements that are covered by i in K is the same as before subtracting. 0 

Example 5.5. Let i, m and l be 109, 7 and 3 respectively, and K = {111, 110, 105, 104}. 

109 (1101101) 

111 (1101111) 

110 = (1101110) 

105 = (1101001) 

104 (1101000) 

All of these numbers begin with "1101", that is the number 13. Then subtract 13 * 23 = 

104 from these numbers. Now i = 5, K = {7, 6, 1, O}, the number of elements in K covered 

by i is the same as before subtracting, that is 2. 

Procedure 5.3. Conversion between a and b with zero polarity can be implemented as 

follows. 

1". Anyon-set coefficient of an n-variable Boolean function f(x n-lxn-2··· xo) can be 

ordered into one of s segments by definition 5.2 where s = 2n - 1, 0::; l ::; n. 

2". Set u = 21 and every coefficient in the j'th segment is reduced by j' * U, 0 ::; j' < s. 

3". For any integer if, 0 ::; if < u, count the numbers of on-set coefficients, kf, that are 

covered by if in each segment. Save these s numbers in an integer array M[s]. 

4". For any integer iff , 0 ::; iff < s, if l:M[k"] is odd, where kIf is covered by i", 
k" 

o ::; kIf < s, and "2:" stands for the arithmetic addition operator instead of logic operator 

OR here, then the coefficient if + iff * U should be saved as output. Otherwise, if l:M[k"] 
kif 

is even, then the coefficient if + iff * U should not be saved as output. 

5". The saved coefficients in step 4" are the result . 

Without losing generality, we suppose that the conversion is from a to b since it is zero 

polarity conversion. 
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For any Reed-Muller coefficient i, 0:::; i < 2n , i = (in-lin-2·· ·io), all its n bits can 

be divided into two groups, group 1: i n - 1i n -2··· il and group 2: il-1il-2 ··· io. So i can 

be expressed by i = if + i" * 'U, where if = il- 1il-2 ... io, and i" = i n - 1i n -2 ... il. From 

definition 5.3, the value of bi is decided by the number of on-set SOP coefficients covered 

by i. If this number is odd, then bi is 1; otherwise, bi is 0. In step 1", all the on-set SOP 

coefficients are ordered into s segments. So the number of on-set SOP coefficients covered 

by i is the sum of the numbers of coefficients covered by if of all the segments that are 

covered by i". After reducing by jf * 'U in step 2", all the most significant n - l bits are 

set to zero. Therefore, the number of SOP coefficients covered by the least significant l 

bits of i is the same as before subtracting according to theorem 5.2. These numbers for 

summation are obtained in step 3" in each segment. Finally the sum is calculated in step 

4". Therefore, the numbers saved in step 4" are the Reed-Muller on-set coefficients. 

Example 5.6. Compute Reed-Muller form ofthe 4-variable function !(X3X2XIXO) =2:(1,2, 

5,6,7,8,10,11) with zero polarity by procedure 5.3 if s is 4. 

In step 1", all the SOP coefficients are divided into 4 segments, sO, sl, s2, s3. From 

example 5.4, it can be seen that sO = {I, 2}, sl = {5, 6, 7} ,s2 = {8, 10, 11}, s3 = 0. 
In step 2", set 'U = 4, and every coefficient in the j'th segment is reduced by j' * 'U, 

° :::; j' < s. Therefore, sO = {I, 2}, sl = {I, 2, 3} ,s2 = {O, 2, 3}, s3 = 0. 
In step 3", when if is 0, the numbers of on-set coefficients covered by if in each segment 

are, M[O] = 0, M[I] = 0, M[2] = 1, M[3] = ° because ° can only cover 0. 

In step 4": 

when i" is 0, 2:M[k"] = M[O] = 0, because ° only covers 0. So i, that is, if + i" * 'U = 0, 
k" 

should not be saved. 

when i" is 1, 2:M[k"] = M[O] + M[I] = 0, because 1 covers both ° and 1. So i, that 
k" 

is, if + i" * 'U = 4, should not be saved. 

when i" is 2, 2:M[k"] = M[O] + M[2] = 1, because 2 covers both ° and 2. So i, that 
k" 

is, if + i" * 'U = 8, should be saved. 

when i" is 3, 2:M[k"] = M[O] + M[I] + M[2] + M[3] = 1, because 3 covers 0, 1, 2, 3. 
k" 

So i, that is, if + i" * 'U = 12, should be saved. 

Then, switch to if = 1 in step 3" after all the values of i", ° :::; i" < s have been counted 

in step 4". In step 3", when if is 1, the numbers of on-set coefficients covered by if in each 

segment are, M[O] = 1, M[I] = 1, M[2] = 1, M[3] = ° because 1 can only cover ° and 1. 

In step 4": 

when i" is 0, 2:M[k"] = M[O] = 1, because ° only covers 0. So i, that is, if +i" *'U = 1, 
k" 

should be saved. 

when i" is 1, 2:M[k"] = M[O] + M[I] = 2, because 1 covers both ° and 1. So i, that 
k" 

is, if + i" * 'U = 5, should not be saved. 
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when i" is 2, I;M[k"] = M[O] + M[2] = 0, because 2 covers both 0 and 2. So i, that 
kif 

is, if + i" * 'U = 9, should not be saved. 

when i" is 3, I;M[k"] = M[O] + M[l] + M[2] + M[3] = 3, because 3 covers 0, 1, 2, 3. 
kif 

So i, that is, if + i" * 'U = 13, should be saved. 

Then switch to if = 2 in step 3" and repeat the above procedure. Finally, switch to 

if = 3 in step 3" and repeat. These data are shown in table 5.2. According to procedure 

5.3, the coefficients saved in step 4" are the Reed-Muller coefficients. So the Reed-Muller 

form is ~(8, 12, 1, 13,2,10,7,11). 

if o 1 2 3 

M[O] 0 1 1 2 
M[l] 0 1 1 3 
M[2] 1 1 2 3 
M[3] 0 0 0 0 

i" 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 
I; M[k"] 0 0 1 1 1 2 2 3 1 2 3 4 2 5 5 8 
if + i" * 'U 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15 

saved(Y IN) N N Y Y Y N N Y Y N Y N N Y Y N 

Table 5.2: Example of multiple segment technique 

5.5.2 Multiple pointer technique 

For large Boolean functions, there are still many coefficients in each segment although 

they have been divided into s segments by multiple segment technique. Here the multiple 

pointer technique is introduced to operate on every segment. 

In the realization of the multiple segment technique, every coefficient should be accessed 

by a pointer in a segment to decide the values of M[ s] in step 3". If there are q pointers to 

access a segment at the same time, then the speed will be improved. But the number of 

all coefficients should be the multiples of q, otherwise, some coefficients may be accessed 

more than once. Some extra coefficients should be appended to any segment so that all 

the coefficients are accessed exactly once in this segment. The values in M[s] must be the 

same as before appending of extra coefficients. 

In the multiple segment technique of procedure 5.3, the coefficients in the j'th segment 

are reduced by jf * 'U in step 2" so that the most significant n - l bits of any coefficient 

are zero. Because zero can only cover zero by definition 5.3, any number whose most 

significant bit is 1 can be appended to all segments and keep the values in M[s] same. In 

our experiments, this extra coefficient e is set so that all of its bits are l. 

The conversion algorithm using multiple segment and multiple pointer techniques is 

given in fig.5.2. 
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converL with_zero_polarity(u, s, d,p, q, M M s[]) 

/* data in array MMs[] are the numbers of coefficients of all 
segments after appending the extra coefficients */ 

{ 
for(i = O;i < u;i + +) 
{ 

loopl: for(j = O;j < s;j + +) 
covered_number[j] -¢= number _covered_by_i(M M s[j]); 

lObp2: for(j = O;j < s;j + +) 

} 
} 

{ 
for(k = 0; k < s; k + +) 

{ 
9 -¢= k&]; 

if(g = l)temp -¢= temp + covered_number[k]; 
} 

if (temp is odd)save( outpuLfile, (i + j * u) 1\ (d * p)) ; 
} 

/* this routine is based on observation 2 and 
procedure 5.3 */ 

Figure 5.2: Conversion algorithm using multiple segment technique 

5.6 Algorithm and experimental results 

From section 5.5, the values of sand q, that are the number of segments and the number 

of pointers, should be set first. Both sand q can not be too big or too small; otherwise, 

either an extra burden, in time and memory, is incurred or no significant improvement 

is achieved. Although the number of pointers q can be set dynamically using an array, 

we find that the speed will suffer because of the array. In our experiments, we found, by 

experiment, it is efficient to set q to be a constant 32 in most cases. 

As for s, it can be seen from procedure 5.3 that most of the CPU time is spent on 

steps 3/1 and 4/1. These two steps are labeled as the two loops, loopl and 100p2 in the 

routine of converL with_zero_polarity() in fig.5.2. Suppose there are altogether M on­

set coefficients to convert, then these coefficients are divided into s segments. Besides, 

the number of coefficients of all segments are multiples of q. Then the average number of 

coefficients in a segment is ~ +~. In loopl, all the s segments should be accessed once 

so the CPU time is proportional to s * (~ + ~). Similarly, the CPU time is proportional 

to s2 in the second loop. We determine the value of s by setting these two parts of CPU 

time to be equal. 
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M q 2 
S * (- + -),8 = S 

s 2 

Section 5.6 

(5.20) 

where ,8 is a modifying factor decided by the hardware specifications of the computer 

and the capability of the compiler. After experimentation, ,8 was to set to 4. From equation 

(5.20) the value of s can be set to q + Jq2 +4M. Besides, s must be a power of 2 by 

definition 5.2. So s is set to be the power of 2 that is close to q + J q2 + 4M. 

From the above discussion, the conversion algorithm for very large functions between 

SOP and Reed-Muller forms with any fixed polarity is shown in fig.5.3 using multiple 

segment and multiple pointer techniques. 

It can be seen from the algorithm that the CPU time is made up of three processes as 

follows. 

1. Initialize and read the data from the file to the memory. 

2. Preprocess the data with any fixed polarity and convert them with zero polarity 

according to fig.5.1. 

3. Save the outputs to the file. 

Further, most CPU time is spent on process 2 for large Boolean functions. Because the 

conversion process for any fixed polarity is the same, the CPU time in process 2 is inde­

pendent of both the polarity and the direction. In other words, when nand M are fixed, 

the combined CPU time of both process 1 and process 2 is identical for any polarity in 

either direction. Since the number of on-set coefficients after conversion varies with the 

polarity and the direction, the CPU time of the algorithm is mainly dependent on nand 

M. 

The algorithm is implemented in C language and the program is compiled by the 

GNU C compiler. Then it is tested on a personal computer with Cyrix6x86-166 CPU and 

32M RAM under Linux operating system. Some random coefficient sets are generated to 

test the effectiveness of the algorithm. The results confirm that the CPU time is mainly 

dependent on nand M only. For any n-variable Boolean function with n :s; 12, the CPU 

time is almost zero using multiple segment and multiple pointer techniques with any fixed 

polarity in either direction. These results, both with and without multiple segment and 

multiple pointer techniques, are shown in table 5.3 and fig.5.4 when n 2: 15. 

When n is greater than 20, the number of on-set coefficients is comparatively small. To 

convert these sparse functions, multiple pointer technique may not be necessary. We find 

from the experiments that the conversion will be slightly faster without multiple pointer 

technique for the sparse functions. 

Furthermore, to compare with the results from reference [85], we also test the parity 

functions defined as follows. 
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convert(n, M,p, d, inpuLfile, outpuLfile) 

{ 
/* n, M, p, and d are the numbers of variables, the number 

of on-set coefficients, the polarity, and the direction 
respectively. If d is zero, then the conversion is from SOP 
coefficients to Reed-Muller coefficients. Otherwise, if d is one, 
the conversion is from Reed-Muller coefficients to SOP 
coefficients. All the on-set coefficients are read from the 
input_file. All the on-set coefficients after conversion are saved 
in the outpuLfile. */ 

CPU_time = clock ( ); 
q -¢= 32; 
.s = 2n; 

/* .s and q are the number of segments and the number of pointers 
respectively */ 

if (.s > (q + y''"'q2'-+-4-M-)).s -¢= .s / 2 ; 

u = 2n /.s; 
for(i = O;i < M;i + +) 
{ 
temp -¢= read_a_coef ficient(inpuLfile) 1\ (d * p); 
if(j * u ::; temp < (j + 1) * u)M .s[j] + +; 
} /* count the numbers of coefficients for the jth segment, 

o ::; j < .s, save them in the array M .s[j] */ 
for(i = O;i < .s;i + +) 
{ 
if(M.s[i] i.s not a multiple of q)MM.s[i] -¢= M.s[i] + (q - M.s[i]%q); 
el.se M M .s[i] -¢= M .s[i]; 
make_memory(M M .s[i]); 
} /* make the numbers of coefficients in all segments be 

multiples of q, and make memory for all the coefficients */ 
for(i = O;i < M;i + +) 
{ 
temp -¢= read_a_coef ficient(inpuLfile); 
temp -¢= temp 1\ (d * p); 
if(j * u ::; temp < (j + 1) * u)temp -¢= temp - j * u; 
} /* read all the coefficients to the memory and subtract 

them according to theorem 5.2 */ 

} 

for(i = 0; i < .s; i + + )add_extra_number.s(M .s[i], M M .s[i]); 
converL with_zero_polarity(u,.s, d,p, q, M M.s[]); 
CPU_time -¢= clock ( ) - CPU_time; 
di.splay(CPU_time and the number of on-.set coefficient.s); 

Figure 5.3: Bidirectional conversion algorithm for large Boolean functions 
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number of on- number of on- CPU times CPU times 

n set coefficients set coefficients polarity direction with multiple without multiple 

before conversion after conversion techniques (s ) techniques(s) 

15 10,000 16,696 990 1 0.74 13.28 

15 10,000 20,827 10,000 0 0.77 13.22 

15 15,000 16,398 990 0 1.14 20.58 

15 15,000 16,896 990 1 1.11 20.06 

16 15,000 33,202 12,345 0 1.63 39.74 

16 15,000 33,792 12,345 1 1.61 41.16 

16 30,000 32,853 23,456 0 2.53 89.57 

16 30,000 33,440 23,456 1 2.45 89.78 

17 30,000 66,080 34,567 0 3.73 180.41 

17 30,000 66,880 34,567 1 3.68 180.33 

17 60,000 65,372 56,789 0 7.28 371.21 

17 60,000 66,248 56,789 1 6.93 374.99 

18 60,000 121,658 123,456 0 10.49 739.87 

18 60,000 132,496 123,456 1 10.31 749.30 

18 120,000 130,471 234,567 0 16.97 1,522.36 

18 120,000 131,558 234,567 1 16.03 1,511.68 

19 120,000 129,200 345,678 0 27.06 2,977.76 

19 120,000 263,116 345,678 1 24.07 3,053.22 

19 240,000 259,392 456,789 0 40.83 6,252.67 

19 240,000 261,356 456,789 1 39.03 6,242.29 

20 240,000 260,055 678,901 0 68.48 12,415.58 

20 240,000 522,712 678,901 1 62.75 12,430.17 

20 480,000 519,743 789,012 0 131.28 26,174.18 

20 480,000 521,974 789,012 1 125.31 26,165.60 

21 480,000 1,041,166 890,123 0 176.58 50,560.50 

21 480,000 1,043,948 890,123 1 172.68 50,499.83 

21 500,000 1,042,416 10,000 0 184.36 52,720.70 

Table 5.3: Conversion results of some random coefficient sets 

n-l 

!(Xn -lXn -2··· XO) = ~Xi 
i=O 

Both the polarity and the direction are set to be zero in our algorithm while converting 

the parity functions. It should be noted that the tests in reference [85] are performed 

using Borland C++ on a PC with Pentium_90MHz CPU and 16M RAM under WIN32 

platform. These results are shown in table 5.4 and fig.5.5. 

Finally, we compare our method with the results from a recently published paper [138] 

using fast tabular technique. In [138], the CPU time for conversion depends on the polarity 

as well as nand M. To calculate the time in [138], the FPRM expansions for all possible 
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n 
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n=15 n=16 n=17 n=18 n=19 n=20 n=21 n=22 

c:::=J conversion with multiple segment and multiple pointer techniques 

.. conversion withoiout multiple segment and mUltiple pointer techniques 

Figure 5.4: CPU Time versus the number of on-set coefficients for conversion 

number of on- number of on- CPU time CPU time CPU time 

set coefficients set coefficients with multiple without multiple from 

before conversion after conversion techniques(s) techniques(s) reference [85]* (s) 

16,384 15 1.48 22.14 140.39 

32,768 16 2.63 99.09 560.47 

65,536 17 7.90 401.94 2,254.69 

131,072 18 17.42 1,658.11 9,129.83 

262,144 19 53.43 6,780.51 36,757.92 
* The results are performed on a PC with Pentmm _ 90MHz CPU and 16M RAM. 

Table 5.4: Test results for conversion of parity functions 

polarities ( from 0 to 2n -1 ) were found, and their time average was taken for a given nand 

M. In our method, the computation time depends on nand M only and is independent of 

the polarity and direction of conversion. From fig.3 of [138], the average conversion times 

for the logic functions with 80% of on-set minterms are about 35, 85, 220 seconds when n is 

8,9, 10 respectively. The conversion was implemented in MATLAB on a PC. Applying our 

method with multiple techniques for the same functions, our conversion times are about 

0, 0.01, 0.03 seconds respectively. 
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CPU _Time(s) 
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_ conversion with multiple segment and multiple pointer techniques 

_ conversion without multiple segment and multiple pointer techniques 

Section 5.7 

_ conversion from reference [II] on a PC with Pentium_90MHz CPU and 16M RAM 

Figure 5.5: CPU time for parity function conversions 

5.7 Summary 

We propose the polarity for SOP form of any Boolean function through which the bidi­

rectional conversion between SOP and Reed-Muller forms is direct. The CPU time for 

conversion is nearly independent of the polarity and the direction for a given number of 

variables and on-set coefficients. The speed of the algorithm is much faster than existing 

algorithms when multiple segment and multiple pointer techniques are used. From fig.5.2, 

the time complexity of our algorithm is O(21.5n ), while it is O(4n) as reported in [85]. 

The space complexity is O(2n ), same as in [85] since our conversion is also manipulated 

on on-set coefficients only. The algorithm is tested for randomly generated functions of up 

to 30 variable and 500,000 on-set coefficients. In the absence of a method for predicting 

the best polarity, short of exhaustive search, this method makes the search for a "good" 

polarity a practical reality. 
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Chapter 6 

Conversion Algorithm for Very Large 

Multiple Output Functions 

6.1 Introduction 

Any n-variable Boolean function can be expressed canonically by the sum-of-products 

forms (SOPs) as follows. 

2n-l 

!(Xn-1Xn-2··· xo) = L ad;n-1 Xn-2··· Xo 
i=O 

(6.1 ) 

where each product is a minterm, "1:" is the OR operator, ai E {O,l}, Xj E {Xj,Xj}, 

o :::; j :::; n - 1. Alternatively, the function can be expressed by the fixed polarity Reed­

Muller (FPRM) expressions as follows. 

2n-l 

!(Xn -1Xn-2·· . xo) = 2I biin-lin-2 ... io 
i=O 

(6.2) 

where "~" is the XOR operator, bi E {O,l}, i j E {l,xj}, 0:::; j:::; n - L Furthermore, 

Xj in all the cubes can only be either true or complemented, but not both, which corre­

sponds with a polarity p, 0 :::; p :::; 2n - 1. For very large Boolean functions with n 2: 25, it 

is impractical to use millions of on-set minterms as in equation (6.1) to express a function. 

Consequently, cube set expressions (commonly known as PLA description) and binary 

decision diagrams(BDDs) are the common representations based on AND / OR operations, 

corresponding with two-level and multilevel forms respectively. Accordingly, mixed polarity 

Reed-Muller expressions and functional decision diagrams (FDDs) are the common repre- . 

sentations for very large Boolean functions based on AND /XOR operations. A cube set ex­

pression can be first converted to disjoint cube format in the standard Boolean domain[61], 
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which is also called operational domain[68]. Then a mixed polarity two-level Reed-Muller 

expression is straightforward to obtain by replacing "OR" with "XOR" operation. However, 

the input irredundancy cannot be guaranteed in a mixed polarity Reed-Muller expression 

since it is not canonical[114]. Consequently, the mixed polarity Reed-Muller expression 

should be transformed to FPRM expressions or other procedures are employed to remove 

the redundant inputs such as the application of "linking rules" in [114]. For instance, a 

4-variable Boolean function can be expressed by a mixed polarity Reed-Muller form as 

follows. 

(6.3) 

If this function is expressed by an FPRM with zero polarity, then we have equation 

(6.4). 

(6.4) 

It can be easily seen from the above equation that X2 and X3 are redundant variables, 

while it is very difficult to draw the same conclusion from equation (6.3). However, there is 

no efficient program available to convert directly from SOPs to canonical FPRM expressions 

for very large functions because the space and time complexity increases exponentially with 

the number of variables as described in chapter 5. 

An alternative for obtaining FPRM expressions is by constructing functional decision 

diagrams (FDDs)[53]. A two-level FPRM form can be obtained from the corresponding 

ordered FDDs (OFDDs) where each I-path defines a subset of the variables that uniquely 

corresponds to a cube in the FPRM form. Thereby, the number of I-paths of a OFDD 

with fixed polarity variables is also the number of on-set cubes of the two-level FPRM for 

the same function [53]. Hence, a function that has compact OFDD structure can usually 

be represented by a two-level FPRM expression effectively. For example, an FDD for a 4-

variable function is shown in fig.6.1(a) where each node is decomposed by Davio expansion 

as in equation (6.5). 

1 = 10 ffixh (6.5) 

In equation (6.5), if 1 is an n-variable function, then 10 and hare n-l variable functions, 

independent of variable x. There are three on-set paths in fig.6.1(a) from the root node Xo 

to the terminal node "1", namely, Xo -+ X2 -+ 1, Xo -+ Xl -+ X2 -+ 1, and Xo -+ Xl -+ X2 -+ 

X3 -+ 1. These paths are marked with "A", "B" and "C" respectively in fig.6.1(a) and the 

corresponding cubes are X2, XIXO, and X3X2XIXO. Hence this function can be expressed as 
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(a) with variable order (xO, xl, x2, x3) (b) with variable order (x2, xO, xl, x3) 

Figure 6.1: Functional decision diagrams for f = X2 EB XIXO EB X3X2XIXO 

an FPRM form in equation (6.6). 

(6.6) 

The main disadvantage of FDDs is that they are generally not canonical except OFDD 

where the order of variables is fixed. Additionally, the size of FDDs is sensitive to the order 

of variables and the problem of finding the optimal OFDD is NP-complete as discussed 

for OBDDs in section 2.3. The same function in fig.6.1(a) can be represented by another 

FDD in fig.6.1(b) with a different variable order and number of nodes. However in this 

case, the same expression is obtained as in equation (6.6) from fig.6.1(b). 

Although it is proposed in [53] that the size of OFDDs is a lower bound for the number 

of literals in FPRM expansions, in practice the size of FPRM is usually measured by the 

number of terms instead of literals. The main reason for that conclusion is that FPRMs are 

two-level representation while OFDDs are multilevel allowing many common literals to be 

factored out and shared. Moreover, two-level FPRM expressions are canonical and easily 

testable. Therefore, the conversion from SOPs to FPRM forms is desirable especially for 

very large functions without utilizing FDDs. 

Due to the fact that the computational complexity usually increases exponentially with 

the number of input variables, an efficient approach can be achieved by possibly reducing 

the variable number. In this chapter, a fast algorithm is proposed to convert directly 
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from SOPs to FPRM forms without generating mixed polarity Reed-Muller expressions or 

OFDDs. The algorithm takes advantage of the inherent redundancy commonly encountered 

in very large multiple output Boolean functions. 

6.2 Algorithm 

Observation 6.1. In the P LA description of a Boolean function, if the entries on column i 

of all on-set cubes corresponding with a variable Xi are "-"s, then Xi is a redundant variable. 

Consequently, the entries on column i of all FPRM on-set cubes of this function are "O"s 

for the redundant variables with any polarity. 

Number of Number of Number of Number of 
Dependent Variables Outputs Dependent Variables Outputs 

2 3 10 3 
3 1 11 5 
4 2 12 17 
5 51 13 1 
6 3 19 1 
7 3 20 3 
8 2 24 1 
9 3 Total; 135 inputs, 99 outputs 

Table 6.1: Distribution of dependent variables 

For very large multiple output Boolean functions, each individual function usually does 

not depend on all the input variables. In other words, there are a number of redundant 

variables. For example, testcase "apex6", which is available in IWLS'93 and MCNC bench­

marks, has 135 input variables and 99 outputs. More than half of the outputs are actually 

dependent on 5 variables only. The distribution of the number of dependent variables is 

shown in table 6.1. Consequently, a fast algorithm can be proposed as below based on 

observation 6.1. 

Algorithm 6.1. Given an n-variable m-output function in traditional PLA format, the 

following steps will produce a FPRM format with any polarity p, 0 S p S 2n - 1. 

1. Delete all the redundant variables for any individual function h 0 SiS m - 1, 

where the entries are ,,- "s for all the on-set cubes in the P LA description. Suppose the 

number of redundant variables is r, then the number of dependent variables is (n - r) for 

k 
2. Use the algorithm proposed in chapter 5 to convert this single-output function fi of 

(n - r) variables from SOP to Reed-Muller form with polarity p and return a cube set C 

containing all the on-set Reed-Muller cubes. 

3. Add "0" to the columns of all the cubes in C for redundant variables from observation 

6.1. 
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4. Repeat steps 1 to 3, and append the new Reed-Muller cubes to C for all other 

individual functions. Merge all the common Reed-Muller cubes in C to obtain the final 

FPRM format. 

X2XIAD 1;10 
- 01 10 
-10 10 
00- 01 
10- 01 

(a) traditional PLA format 

X2XIM frio 
000 01 
001 10 
01011 

(b) FPRM format with zero polarity 

Figure 6.2: An example for algorithm 6.1 

Example 6.1. A three-variable two-output function is shown as PLA format in fig.6.2(a), 

fo = X2 X l + X2Xl, and h = XIXO + XIXO· From observation 6.1, it can be seen that Xo and 

X2 are redundant for the functions fo and h respectively. Convert these two functions of 

less variables from SOPs to FPRM format with default zero polarity using the method in 

chapter 5 and we have, 

(6.7) 

and 

(6.8) 

Note the absence of the redundant variables in equations (6.7) and (6.8). Thus two cube sets 

can be obtained, Co = {OO, Ol} for fo and C1 = {Ol, 10} for h. Then add "0" to the cubes 

of Co and C1 for the redundant variables Xo and X2 respectively based on observation 6.l. 

Hence Co = {000,010} and C1 = {001, 010}, which are shown in fig.6.2(b) after merging 

the common cube {OlO}. Furthermore, it can be seen that X2 is actually redundant for both 

fo and h from fig.6.2(b) while it is very difficult to draw this conclusion from fig.6.2(a). 
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6.3 Experimental Results 

Algorithm 6.1 is implemented in C language and tested with IWLS'93 benchmark on a 

personal computer with Pentium II-266 CPU and 64M RAM. For most of the very large 

multiple output functions, an individual function usually does not depend on all the input 

variables. The results are shown in table 6.2, where the number of input variables ( variable 

number), number of outputs (output number), cube number of two-level FPRM descrip­

tion with default zero polarity after merging the common cubes (RM cube number with 0 

polarity), and the time for conversion(time for conversion) are also presented. The input 

file of the program is the PLA description of a multiple output Boolean function, and the 

output file is in FPRM format with any polarity p, 0 ::; p ::; 2n - 1, and n is the number 

of variables. 

testcase variable output RM cube number time for 
number number with 0 polarity con version (s) 

apex6 135 99 11615 1090.62 
b9 41 21 706 0.94 
c8 28 18 460 0.30 
cht 47 36 178 0.04 

count 35 16 131137 156.34 
example2 85 66 1076 0.81 

i6 138 67 341 0.10 
i7 199 67 330 0.11 
i8 133 81 41874 158.26 
lal 26 19 745 0.48 

misex2 25 18 1100 0.16 
pcler8 27 17 104 0.44 
terml 34 10 9081 122.72 
unreg 36 16 132 0.03 

x3 135 99 11615 1151.96 
x4 94 71 3174 2.10 

Table 6.2: Experimental results of very large functions from IWLS'93 benchmark 

From the results shown in table 6.2, it can be seen that the time for conversion does not 

depend on the number of input variables as in all the previous algorithms [5 , 6, 68, 85, 155, 

138], but depends on the structure of the functions. If a function has high redundancy, then 

it is still very fast even for very large function with hundreds of inputs. For example, "i7" 

testcase has 199 inputs and 67 outputs and most of input variables are redundant for any 

individual function. So the total conversion time is only 0.11 second while it takes much 

longer time for "terml" with much less inputs and outputs. For comparison, we tested the 

"misex2" and "lal" functions without applying the redundancy removal and found that it 

took more than ten hours to finish the conversion of either of them by the algorithm in 

chapter 5. No other comparison is available since all the previous published methods are 
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not suitable for very large multiple output functions due to the excessive complexity. 

6.4 Summary 

A very fast algorithm is proposed in this chapter to convert very large multiple output 

Boolean functions directly from two-level PLA format to two-level FPRM format with 

any polarity using the property of input redundancy. This facilitates the canonical rep­

resentation of very large multiple output Boolean functions (n 2:: 25) by two-level FPRM 

forms. The space and time complexity does not depend on the number of variables but the 

structure of the functions. It lays an important basis for further research on Reed-Muller 

logic and logic synthesis and optimization generally. 
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Chapter 7 

Exact Minimization of Fixed Polarity 

Reed-Muller Expressions 

7.1 Introduction 

Since the publication of the classic paper by Shannon in 1938[135], there has been great 

progress in the minimization of two-level Boolean functions [26 , 42]. Additionally, any 

Boolean function can be expressed canonically based on AND and XOR operators using 

what is commonly known as Reed-Muller(RM) expansions. Besides, Reed-Muller real­

izations have several attractive advantages especially for functions that do not produce 

efficient solutions using SOP techniques[2]. Unfortunately, the techniques for synthesis 

and minimization of combinational logic using Reed-Muller forms are more difficult than 

those based on SOP expressions. Although there have been extensive research on Reed­

Muller methods [3-9, 67-70, 155], they are still in their early stage of development. With 

recent improvement in layout technology and increased use of FPGAs where the XOR 

gate is already manufactured as a basic cell component[124], research on Reed-Muller logic 

received even more attention. 

In fixed polarity Reed-Muller (FPRM) expressions, each variable can only be either true 

or complemented, but not both. There are two major steps in the minimization of FPRM 

expressions. The first one is to convert between SOP and FPRM expressions. The second 

one is to find the best polarity expression that has the least number of terms. Various 

minimization methods for these two steps can be classified into two categories[127]: 

1. Gray code: Search all 2n polarities sequentially and find the best one. Space and 

time complexities are O(2n) and O(4n) respectively; 

2. Extended truth vector: Obtain the costs of 2n expansions simultaneously by an 

extended truth vector and a weight vector. Both space and time complexities are 

O(3n ). 
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It is generally accepted that the exact minimization of FPRM expressions is suitable for 

Boolean functions with less than 15 variables[56, 127]. A number of heuristic methods have 

been proposed recently using functional decision diagrams (FDDs) and genetic algorithm 

(GA) techniques[157]. The disadvantage of FDDs is that determination of the optimal 

variable order is impractical for large functions[8]. Besides, we do not know how good a 

polarity is by heuristic methods. In this chapter, an exact method to find the best polarity 

for FPRM forms is proposed based on the on-set coefficients by gray code with space 

complexity O(M) and time complexity O(2n M), where M is the average number of on-set 

coefficients. 

7.2 Background 

For convenience, some definitions which are available in chapter 5 are reproduced here. 

Any n-variable Boolean function can be expressed canonically by the SOP form in 

equation (7.1). 

2n-l 

!(Xn -lXn -2'" xo) = L aimi 
i=O 

(7.1) 

where the subscript i can also be written as a binary n-tuple i = (in-l in-2'" i o), "2:" 
is the OR operator, the minterm mi can be represented as mi = Xn-lXn-2' .. xo, 

{
X' i·=O . J' J 

Xj = 
xj,ij=l 

(7.2) 

Alternatively, it can be expressed by the positive polarity Reed-Muller (PPRM) form 

as follows[68]. 

2n-l 

!(Xn-lXn-2'" xo) = ~ bi'Tri 
i=O 

where "~" is the XOR operator, 7ri = Xn-lXn-2 ... xo, 

(7.3) 

(7.4) 

In the previous equations, ai, bi E {a, I}, ° ::; j ::; n - 1. Furthermore, PPRM forms can 

be extended to FPRM forms with any fixed polarity p, p = (Pn-lPn-2'" Po), where every 
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variable can only be either true or complemented, but not both. If a binary bit of p, Pj is 

° (or 1) then the corresponding variable is in the true (or complemented) form. Therefore, 

there are 2n polarities for a n-variable function, and the positive polarity is equivalent to 

zero polarity. In [116], and further discussed in [148], a variable can be either a free variable 

or a bound variable where a bound variable is allowed to be negated in a minterm in order 

to determine a FPRM expansion with another polarity. This idea has been extended to 

the polarity for SOP forms in [153] as shown in definition 7.1. 

Definition 7.1. Any Boolean function f(xn-lxn-2'" xo) can be expressed canonically as 

in equation (7.1). That expression is defined as the zero polarity of SOP expansion. Any 

variable Xj , j E {a, 1" .. ,n - I} in every minterm with a polarity P = (Pn-lPn-2 ... po) 

for the same Boolean function f(xn-lxn-2'" xo) is defined as in equation (7.5). 

.. {Xj, 
Xj = 

Xj, 

if Pj = 1 

if Pj = ° (7.5) 

According to equation (7.5), if a binary bit of p, Pj is ° (or 1), that variable is in the 

true (or complemented) form. Now equation (7.1) is extended accordingly as follows. 

2n-l 

f(xn-lxn-2'" xo) = L aimi 

i=O 

where mi = Xn-lXn-2 ... xo, 

{
X' i·=O X.- J' J 

J - .. . 1 
Xj, Zj = 

(7.6) 

(7.7) 

In equation (7.7), x is the complemented form of X. Besides, equation (7.7) is an exten­

sion of equation (7.2). The corresponding subscript in equation (7.6), i = (in-lin-2'" io) 

can be obtained from equation (7.7) as follows. 

{
OX'=x. i. - 'J J 

J - 1 - .. 
, Xj = Xj 

(7.8) 

Definition 7.2. Consider two integers expressed by binary n-tuples, i = {in - 1in -2'" io}, 

j = {jn-dn-2'" jo}. If ik 2 jk for all k, ° ::; k ::; n - 1, then i covers j or j is covered by 

Z. 
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Definition 7.3. The distance between two integers, expressed as binary n-tuples, p = 

(Pn-lPn-2'" po) and q = (Qn-lQn-2'" Qo), is the number of binary bits that are different 

from each other. If the distance is "I", then they are adjacent. 

Definition 7.4. The Kronecker product of two Boolean matrices, P axb, Qcxd is a matrix 

of dimension ac x bd given by 

PooQ POlQ PO(b-l)Q 

P®Q= 
PlOQ PllQ Pl(b-l)Q 

(7.9) 

P(a-l)OQ P(a-l)l Q P(a-l)(b-l)Q acxbd 

Definition 7.5. A 2n x 2n matrix Q has 2n+1 - 1 diagonal lines. The main diagonal line 

is defined as diagonal line O. The ith diagonal line that is above the main diagonal line is 

defined as diagonal line i. If it is below the main diagonal line, then it is defined as diagonal 

line -i. This definition can be shown below when n is 2. 

Lemma 7.1. Any Boolean function can be uniquely expressed by its on-set coefficient set 

Co = {i} as shown later in example 7.1 with the default SOP polarity zero; while with 

polarity p, the corresponding set is Cp = {i /\ p} , where "/\" is the bitwise XOR opera­

tion[153] . 

Lemma 7.2. Any n-variable Boolean function can be uniquely expressed by a 2n -dimensional 

vector, either Ap = lao, al,'" ,a2n _l]t in SOP form or Bp = lbo, h,'" ,b2n _l]t in Reed­

Muller form based on equations {7.1} and {7.3} respectively. These two vectors can be 

converted mutually by the following recursive transform matrix Tn as long as they have the 

same polarity p[153], 0 ::::; P ::::; 2n - 1. 

when n is 1; 
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T - [ T n
-

l 0 1 
n - T

n
- l T

n
- l 

when n is greater than 1. Besides, T~ = I where I is the unit matrix. Alternatively, 

they can be expressed as in equation (7.1 0). 

or (7.10) 

From lemma 7.1, when an n-variable Boolean function is expressed by a 2n-dimensional 

vector, the effect of a SOP polarity p is to exchange the orders of two coefficients i and 

i 1\ P since (i 1\ p) 1\ P = i, 0 :::; i, p :::; 2n - 1. Consequently, the element number of DALp does 

not vary with any polarity p. 

Example 7.1. Consider a 3-variable function f(x2xlxo) 

SOP polarity zero. Since x = x, we have 

f(x2xlxo) = 2:)1,2,5) 

2::(1,2,5) with the default 

~{(OOI), (010), (101)} 

X2XlXO + X2XIXO + X2 Xl XO 

X2 Xl XO + X2XlXO + X2 XlXO 

If the polarity p is I, then X2 = X2, Xl = Xl, and xo = Xo according to equation (7.5). 

Hence, from equations (7.6) and (7.8), this function can also be represented as f(x2 fh xo) 

with polarity I, 

~{(OOO), (011), (100)} 

~(O,3,4) 

This function is Co = {I, 2, 5} with zero polarity, while it is ([:1 = {O, 3, 4} with polarity 

1 when expressed by on-set coefficient sets. Notice that Co and ([:1 have the same number 

of elements. This result can be verified by lemma 7.1 because {I 1\ 1,2 1\ 1,5 1\ I} = 

{O, 3, 4}. Therefore, any n-variable Boolean function can be expanded canonically as in 

equation (7.6) with polarity p according to definition 7.1. Alternatively, this function 

can be represented by PPRM form through the transform matrix in lemma 7.2. In this 
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function, AD = [0,1,1,0,0,1,0, olt, hence, Bo = T3Ao = [0,1,1,0,0,0,1, IF with polarity 

zero. When the polarity is 1, f(£2£1£0) = 2:(0,3,4), thus Al = [1,0,0,1,1,0,0, of. From 

lemma 7.2, Bl = T3Al = [1,1,1,0,0,0,0, llt. The only difference between AD and Al 

is the order of on-set coefficients. In AD, the three on-set coefficients are at positions 1, 

2 and 5 while in AI, the three on-set coefficients are at positions 0, 3, and 4. In other 

words, in order to obtain Al the elements in AD at positions 1, 2 and 5 are exchanged 

with the elements at positions 0, 3 and 4. If they are expressed by on-set coefficient sets 

in Reed-Muller logic, then IRa = {I, 2, 6, 7} and lRl = {O, 1,2, 7} with polarity ° and 1 

respectively. 

7.3 Properties of the polarities for SOP and FPRM expres-

slons 

Theorem 7.1. Given two 2n-dimensional vectors AD, Ap for an n-variable completely 

specified Boolean function with SOP polarities 0 and p respectively, then 

(7.11) 

where 

column (i/\p) 

Sn Ip = ° ... ° 1 ° ... ° row ~ (7.12) 

In other words, there is only one "1" entry in column (i 1\ p) of any row i in Sn Ip, 
° ::; i,p ::; 2n 

- 1. 

Proof. From lemma 7.1, any element i in the on-set coefficient set Co with polarity ° will 

be converted to i 1\ P with polarity p for the same function. Besides, any minterm that is 

not on-set is off-set. Therefore, for any row i in Snip, 0::; i ::; 2n - 1, there is only one "I" 

entry in column (i 1\ p). We use S to represent this transform matrix since it can be taken 

as a "sorting" process of the on-set coefficients according to polarity p. When n is fixed, 

Sn Ip can be written as Sp for simplicity. D 

Example 7.2. In example 7.1, n = 3, AD = [0,1,1,0,0,1,0, of. When pis 1, 
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0 1 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

S311 = 
0 0 1 0 0 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 1 0 

Hence, Al = S311Ao = [1,0,0,1,1,0,0, O]t. 

Theorem 7.2. For any polarity p of an n-variable Boolean function, o ~ p ~ 2n - 1, 

n ~ 1, 

(Snlp)2 = I (7.13) 

where I is the unit matrix. 

Theorem 7.2 can be easily proved because for any coefficient i, i Ap Ap = i, 0 ~ i ~ 2n-1. 

Theorem 7.3. For two polarities p and q of n-variable Boolean function, 0 ~ p, q ~ 2n -1, 

Sp = Sp!\qSq. 

Theorem 7.3 can be easily proved because for any coefficient i, (i A P A q) A q = i A p, 

o ~ i ~ 2n - 1. 

From theorem 7.3, theorem 7.1 can be generalized when the given vector is Aq with 

polarity q, rather than Ao with default polarity 0, 0 ~ q ~ 2n - 1. In this case, equation 

(7.11) is extended to equation (7.14). 

(7.14) 

Theorem 7.4. The transform matrix SniP in theorem 1.1 can be represented in the fol­

lowing recursive way where p is the SOP polarity expressed as a binary n-tuple p = 

(Pn-lPn-2 ... po), and n is the variable number, n ~ l. 

If n is 1, then 
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otherwise, 

if Pn-l = 0 

(7.15) 

if Pn-l = 1 

where Pn-l is the most significant bit (MSB) of p, and p' is the same as p except that 

the MSB is set to O. 

Proof. It can be proved by induction on n as below. 

(1) when n is 2, from equation (7.12), 

1 0 0 0 

S2lp=o = 
0 1 0 0 

0 0 1 0 

0 0 0 1 

Similarly, 

0 1 0 0 

[ S~lo 

S21p=1 = 
1 0 0 0 

= [ S~h 
0 0 0 1 

S21p=2 = 

0 0 1 0 

0 0 1 0 

0 0 0 1 

1 0 0 0 

0 1 0 0 

000 1 

o 0 1 0 

o 100 

1 000 

S~lo 1 

S~h 1 

(2)Suppose when n is k, k 2:: 1, equation (7.15) is true. When n is k + 1, P = 

(PkPk-l ... po) and the corresponding vector A can be divided into two parts, A = [A/IA"], 
where A' is the first half of 2k elements, and A" is the other half of 2k elements. 
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(a)When Pk is 0, then p = p'. From lemma 7.1, a coefficient i exchanges the order 

with another coefficient i /\ p, 0 ::; i ::; 2k - 1. In other words, all the coefficients exchange 

their orders within A' and A". Therefore, 

(b )When Pk is I, then p = 2k+pl where "+" is the arithmetic addition. From lemma 

7.1, a coefficient i exchanges the order with another coefficient i /\ P = i /\ (2k + pi). Hence, 

a coefficient i in A' will swap with the coefficient i /\ (2k + pi) that is in A", 0 ::; i ::; 2k - 1. 

In the same way, a coefficient i in A" will swap with the coefficient i /\ (2k + pi) that is in 

A' 2k < i < 2k+ 1 - 1. Thus , - - , 

From both (a) and (b), equation (7.15) is true when n is k + 1. D 

Based on theorems 7.1 and 7.4, any Boolean function expressed in SOP forms with any 

polarity p can be computed through the transform matrix S in either equation (7.12) or 

(7.15). In the same way, a transform matrix to convert a Reed-Muller expansion of n­

variable Boolean function from polarity 0 to any other polarity p can be obtained from 

theorem 7.5 based on theorem 7.4. 

Theorem 7.5. Consider an n-variable Boolean function f(xn-lxn-2··· xo) expressed by 

a 2'llc.dimensional vector, Bo = lbo, b1 , ... ,b2n _ 1]t with the default polarity 0 in Reed-Muller 

logic. Then this function can be represented by another vector Bp with polarity p shown in 

equation (7.16). 

(7.16) 

where 

(7.17) 

and Pi is any binary bit of p, p = (Pn-lPn-2··· po), 0 ::; i ::; n - 1. 

Proof. Given a vector Bo = lbo, b1,··· ,b2n_l]t to express a Boolean function with the 

default polarity 0 in Reed-Muller logic. Then the following equations can be deduced· 

based on lemma 7.2 and theorem 7.1. 
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Bp TnAp 

= TnSnlpAo 

TnSnlpTnBo 

Comparing equation (7.20) with equation (7.16), it can be seen that 

It will be shown that TnSnlpTn = ~ [1 Pi 1 by induction on n as below. 
i=n-l 0 1 

(l)When n is 1, there are only two polarities, 0 and 1. 

(7.18) 

(7.19) 

(7.20) 

(7.21) 

(2) Suppose when n is k, k ~ 1, Pklp' = TkSklp,Tk for any polarity p'. When n is k+1, 

the MSB of p can be either 0 or 1. Let p' be the same as p except that the MSB is O. 

(a)If the MSB of pis 0, then p = p'. 
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(b)If the MSB of pis 1, 

From both (a) and (b), equation (7.17) is true when n is k + 1. o 

Theorem 7.5 offers another method to compute Reed-Muller coefficients with polarity p 

from only the on-set Reed-Muller coefficients with polarity 0 which can be shown as follows 

Procedure 7.1. Given an on-set Reed-MulleT coefficient set ~ fOT an n-vaTiable Boolean 

function with polaTity o. A coefficient set lffip with any otheT polaTity p can be obtained 

through the following steps: 

(1) Set lffip to be 0. 
(2) In matTix Pnlp , delete column i if and only ifi tf-~, 0:::; i:::; 2n -1. Thus P~lp is 

obtained with less columns. 
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(3) Count the number of "1"s in any row i of P~lp, 0 ::; i ::; 2n - 1. If the number is 

odd, add i to ~. 

(4) ~ is the on-set Reed-Muller coefficient set with polarity p. 

Example 7.3. When n is 3, any Boolean function can be represented by a 2n-dimensional 

vector, Bo = lbo, bl,··· ,b7]t with the default polarity 0 in Reed-Muller logic. With polarity 

P = (P2PIPO) , the vector Bp will be, 

where 

P31, = ~ [~ ~i 1 

[~ ~2l0[~ ~ll0[~ ~o 1 

1 Po PI PIPO P2 P2PO P2PI P2PIPO 
1 PI P2 P2PI 

1 Po P2 P2PO 
1 P2 (7.22) 

1 Po PI PI Po 
1 PI 

1 Po 
1 

In equation (7.22), all the empty elements are O. 

In example 7.1, the on-set Reed-Muller coefficient set IRa = {1, 2, 6, 7} with polarity O. 

By procedure 7.1, lR.I can be computed with polarity P = 1 = (001) in the following steps: 

(1) Set lR.I to be 0. 
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(2) On the matrix P 3 ip from equation (7.22), delete columns 0, 3, 4, 5. Thus 

Po PI P2PI P2PIPO 
1 P2PI 

1 P2 P2PO 

P~ip = 
P2 

PI PIPO 
PI 

1 Po 
1 

where the empty elements are O. 
1 

1 

1 

(3) When P = 1 = (001), P~il = 

1 1 

1 
Rows 0, 1, 2 and 7 have odd number of "l"s. Hence IRI ={O, 1,2, 7} as in example 7.1. 

Theorem 7.6. For any polarity P oj an n-variable Boolean junction, 0 :::; P :::; 2n 
- 1, 

n?: 1, 

(7.23) 

where I is the unit matrix. 

Proof. It can be proved by induction on n as below. 

(1) When n is 1, from equation (7.17), P,jp ~ [~ ~]. Hence, 

(2) Suppose when n is k, (P k ipl)2 = I, k ?: 1, 0 :::; p' :::; 2k - 1. If n = k + 1, let the 
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MSB of p be Pk. From equation (7.17), 

o 

Theorem 7.7. For two polarities p and q of n-variable Boolean function, 0 ~ p, q ~ 2n -I, 

Pp = Ppl\qP q' 

Proof. It can be proved by induction on n as below. 

(1) When n is 1, from equation (7.17), PII, = [~ ~], Pdq = [~ ;]. 

This satisfies the theorem when n = 1. 

(2) Suppose when n is k, Pklp' = Pklpll\qlPklql, k 2:: I, 0 ~ p', q' ~ 2k -1. If n = k + I, 

let the MSB of p and q be Pk and qk respectively. From equation (7.17), 

Pk+1lpAqPk+1lq = ([ ~ Pk ~ qk ]0 PkIVA<) ([ ~ ~k ]0 Pkl q,) 

[ 
Pklpll\ql (Pk 1\ qk)Pklpll\ql ] [Pklql qkPkl ql ] 

o P k Ipll\ql 0 P k Iql 

[ 
Pklpl PkPkl pl ] 

o Pklp' 

Pk+Ilp 

o 

Now theorem 7.5 can be extended to theorem 7.8 when the given vector is Bq with polarity 

q rather than Bo with the default polarity O. 

Theorem 7.8. Any n-variable Boolean function can be expressed by 2n-dimensional vectors 

Bp and Bq with polarity P and q respectively, 0 ~ p, q ~ 2n - 1. Then, 
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(7.24) 

Proof. Let this n-variable Boolean function be expressed by Bo with polarity 0 in Reed­

Muller logic. From theorem 7.5 and 7.7, we have 

Bp PpBo 

PpAqPqBo 

PpAqBq 

In the same way, procedure 7.1 can be adapted as follows. o 

Procedure 7.2. Given an on-set Reed-Muller coefficient set lRp for an n-variable Boolean 

function with polarity p. A coefficient set lFtq with any other polarity q can be obtained 

through the following steps: 

(1) Set lFtq to be 0. 
(2) In matrix P n IpAq, delete column i if and only if i t/:. lRp, 0 ::; i ::; 2n - 1. Thus P~ bAq 

is obtained with less columns. 

(3) Count the number of "1"s in any row i of P~IPAq, 0 ::; i ::; 2n - 1. If the number is 

odd, add i to lFtq. 

(4) lFtq is the on-set Reed-Muller coefficient set with polarity q. 

From theorem 7.1 and theorem 7.5, there are 2n polarities to express any n-variable Boolean 

function with either SOP or FPRM forms. By lemma 7.2 the effect of polarity for SOP 

forms is to reorder all the on-set coefficients. Besides, the distance between two on-set 

coefficients, defined in definition 7.3, is always the same because (i I\p) 1\ (j I\p) = (i I\j) for 

two integers i, j with polarity p. Therefore, the best polarity of FPRM form is equivalent to 

the best "order" of SOP form while the pairwise distances of any two on-set coefficients are 

fixed. This may provide a good understanding of the "center of gravity" or "Boolean center" 

proposed in [146]. Furthermore, the conversion from one polarity to another polarity for 

both canonical forms can be implemented by two transform matrices Sand P based on 

equations (7.11) and (7.16). Besides, theorems 7.2, 7.3 and theorems 7.6, 7.7 show that 

the polarities of SOP and FPRM forms have very similar properties. While comparing 

equations (7.12) and (7.17), it can be concluded that transform matrix P is much more 

complex than S, which makes the synthesis and minimization of FPRM expressions much 

more difficult. 
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7.4 Best polarity for single output functions 

Results from theorem 7.5 agree with those from theorem 1 in [94]. The fast transformation 

in [94], however, requires that all the 2n elements of the vector be saved, which is not 

practical for large values of n. Based on our experience, the number of on-set coefficients 

usually does not increase exponentially with the number of variables. Procedure 7.2 only 

needs on-set Reed-Muller coefficients to convert the coefficients of a Boolean function from 

one polarity to any other polarity, yet there are still 2n rows in P n which must be saved 

to find the best polarity. This is not practical for large functions. A new fast algorithm to 

find the best polarity for completely specified single output Boolean function is proposed 

in this section based on definition 7.5. 

Theorem 7.9. Given any matrix Pnlp for an n-variable Boolean function with polarity p, 

all the elements below the main diagonal line are O. Furthermore, for two adjacent polarities 

p and q there are only two diagonal lines 0 and p 1\ q in P n Ipl\q where the elements are 

not O. In diagonal line 0, the number of "1"s is 2n while it is 2n - 1 in diagonal line p 1\ q. 

Besides, any row that has two "1"s in columns e and e', e' > e, satisfies equation (7.25). 

e' = e + (p 1\ q) (7.25) 

where "+" is the arithmetic addition. The "1"s in diagonal line p 1\ q can only reside in 

columns that cover p 1\ q, 0 :s; i :s; 2n - 1 based on definition 7.2. 

Proof. theorem 7.9 can be easily proved by induction on n based on equation (7.17). 0 

Example 7.4. When n is 3, suppose p = 2 = (010) and q = 3 = (011). Hence p 1\ q = 

(001) = 1. By equation (7.22), we have 

1 1 

1 

where all the empty elements are O. 

1 1 

1 

1 1 

1 

1 1 

1 

(7.26) 

It can be seen from equation (7.26) that all the elements below the main diagonal line 

are 0 in P 311. There are only two diagonal lines 0 and 1 where the elements are not O. 

In diagonal lines 0, the number of "1"s is 8, while it is 23- 1 = 4 on diagonal lines 1. For 

any rows that have two "1"s, the difference between these two columns is always p 1\ q = 1. 
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Finally, the "1"s in diagonal line 1 can only reside in columns 1, 3, 5 and 7 that cover "I" 

based on definition 7.2. 

By theorem 7.8, if an n-variable Boolean function can be expressed by a vector Bp 

(bp(n-l),bp(n-2),'" ,bpo ) with polarity p, then it can be converted to Bq = PnlrBp = 

(bq(n-l), bq(n-2) ... ,bqo ) with polarity q, where r = p 1\ q. When polarities p and q are 

adjacent, if there is only one "I" on any row i in P n Ir , 0 ::; i ::; 2n - 1, then 

2n_l 

bqi = 2I pijbpj = bpi 
j=o 

(7.27) 

where Pij is the element in ith row and jth column of Pnlr. Otherwise, if there are two 

"1"s in one row, then from equation (7.25) we have, 

2n-l 

bqi = 2I pijbpj = bpi EEl bp(p+r) 
j=o 

(7.28) 

Consequently, the element bpi in Bp is different from bqi in Bq if and only if row i in Pnlr 

has two "1"s. Therefore, we only need to detect all the rows in P n Ir where there are two 

"1"s. From theorem 7.9, all the "1"s in diagonal line r can only reside in the column that 

covers r. Based on this observation and the result in procedure 7.2, a fast procedure can 

be obtained to convert an on-set Reed-Muller coefficient set IRp with polarity P to IRq with 

polarity q of an n-variable Boolean function. 

Procedure 7.3. Given an on-set Reed-Muller coefficient set IRp for an n-variable Boolean 

function with polarity p. A coefficient set IRq with any adjacent polarity q can be achieved 

through the following operations on IRp itself where p 1\ q = r. 

(1) For any coefficient i in the set IRp, if i does not cover r, then i is an element of 

IRq because bqi = bpi from equation (1.21). Therefore leave i in the set. If i covers r, from 

equation (1.28) we need to search the set IRp for the coefficient (i - r). If there is such 

a coefficient, then delete coefficient (i - r) from the set IRp because bqi = bpi EEl bp(p+r) = 
1 EEl 1 = O. Otherwise, if there is not such a coefficient, then add coefficient (i - r) to the 

set IRp because bqi = bpi EEl bp(p+r) = 0 EEl 1 = 1. 

(2) The new set obtained in step (1) is the on-set Reed-Muller coefficient set with 

polarity p. 

Example 7.5. In example 7.1, the 3-variable function can be expressed by an on-set 

coefficient set lRl = {O, 1,2, 7} when polarity p is 1. If polarity q is 0, then r = p 1\ q = 

(001) 1\ (000) = 1. The following steps will obtain the coefficient set with polarity O. 

(I)In lRl' the first element is O. Because it does not cover r, go to the next coefficient 

1. Since 1 covers r, we need to search 1 - 1 = 0 that is in lR1 . Hence, 0 is deleted from lRl . 
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The third element 2 in JR.1 does not cover r. Finally, for the last element 7, it covers r. In 

the same way, search 7 - 1 = 6 which is not in JR.1 . Therefore add "6" to JR.1 . 

(2)The new set {I, 2, 7, 6} obtained in step (1) is the same result for IRa as in example 

7.1. 

From example 7.5, it can be seen that procedure 7.3 is very efficient in time and space. 

To obtain the new on-set coefficient set for another polarity, the old on-set coefficients need 

only be accessed once plus the time for possible search. Besides, the new coefficient set 

can be saved in the same array as used by the old one. In order to improve the speed, we 

can first sort the old coefficient set in ascending order so that the fast binary search can 

be applied. 

Based on procedure 7.3 and theorem 7.8, a fast algorithm to find the best polarity for 

an n-variable single output completely specified Boolean function is shown below. 

Procedure 7.4. Given an on-set Reed-Muller coefficient set ffip for an n-variable Boolean 

function with the original polarity p. Let three integer variables, COST, BESTCOST and 

BEST POLARITY represent the number of elements in the coefficient set, the least cost 

and the corresponding polarity respectively. For any i, ° < i ::; 2n - 1, carry out steps (1) 

to (3). 

(1) Generate a polarity qi in gray code order, that is adjacent with qi-l· Let r = qi-ll\qi· 

(2) Pass IRqi-l' and r to procedure 7.3 to get the new on-set coefficient set IRqi· 

(3) Set COST to be the element number ofIRqi_l. If COST is less than BESTCOST, 

then change BESTCOST and BEST POLARITY to COST and qi respectively. 

Output (BESTPOLARITY 1\ p) that is the best polarity with BESTCOST on-set 

terms. 

7.5 Best polarity for multiple output functions 

In procedure 7.4 which is for a single output Boolean function, all the on-set Reed-Muller 

coefficients can be saved in the same array. For multiple output Boolean functions, the 

output part can be saved in another array with equal dimension so that each coefficient 

corresponds with one output element. Suppose the output part for a coefficient i is e = 
(em - 1em - 2 ··· eo), where ej E {O, I}, 0::; j ::; m - 1, and m is the number of outputs. If a 

term is the output for a sub-function ik, then ek = 1. Otherwise ek = 0, as shown in figure 

7.1 of example 7.6 later. This, which can be called Reed-Muller PLA format, is similar to 

that used for SOP [26]. In procedure 7.3, if a coefficient i does not cover r = p 1\ q, where 

p and q are the old and new polarities, then nothing will be changed for single output 

function. This result is also true for a multiple output function. If a coefficient i, whose 

output part is e = (em - 1em - 2 ... eo), covers r, then there will be two possibilities: 

(1) There is a coefficient (i - r) in the coefficient set whose output part can be expressed 

as a binary m-tuple, TJ = (TJm-lTJm-2··· TJo). In the single output function, (i - r) 
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should be deleted from the set. For any particular sub-function fj, there are four 

cases to decide the new output part for the coefficient (i - r). 

1..- (a) ej = 0, 'f)j = 0 

.. That means neither of two coefficients is a term of fj. So the new output part 

for the coefficient (i - r) is still 'f)j . 

.. That means coefficient i is not a term for fj, but (i - r) is. From procedure 7.3, 

the new output part for the coefficient (i - r) is still 'f)j. 

1..- (c)ej=l,'f)j=O 

.. That means coefficient i is a term for fj, but (i - r) is not. From procedure 

7.3, (i - r) should be added to the new output part for fJ. Therefore, the new 

output of coefficient (i - r) for fJ is changed to 1. 

1..- (d) ej = I, 'f)j = 1 

.. That means both coefficients are terms for fj. From procedure 7.3, coefficient 

(i - r) should be deleted from k So the new output part for the coefficient 

(i - r) is changed to O. 

From the above four cases, it can be seen that 'f)j should be replaced by ej /\ 'f)j. 

(2) There is not such a coefficient (i - r) in the coefficient set. From procedure 7.3, (i - r) 

should be added to the coefficient set. At the same time, the output part e will be 

copied for the outputs of both coefficients. 

Based on these observations, procedure 7.4 can be extended to multiple output function 

as follows. 

Procedure 7.5. Given an on-set Reed-Muller coefficient set IRp and the corresponding. 

output set ~ for an n-variable Boolean function with the original polarity p. The number 

of elements in IRp is COST. Set BESTPOLARITY and BESTCOST to be 0 and COST 

respectively. For any i, 0 < i :::; 2n - 1, carry out steps (1) to (4). 

(1) Generate a polarity qi in gray code order, that is adjacent with qi-l· Let r = qi-l/\qi· 

Set RELAT IV ECOST to be O. 

(2) For any coefficient j in the set ~i-l' whose output element is e, if it does not cover 

r, then nothing should be changed. If it covers r, then search the set ~i-l for coefficient 

(j - r). If there is such a coefficient whose output element is 'f), then change 'f) to 'f) /\ e. If 'f) 
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becomes 0, then delete it from the output set and coefficient (j - r) should also be removed 

from the coefficient set. Besides, set RELATIVECOST to be (RELATIVECOST-1). 

Otherwise, if there is not such a coefficient, then add coefficient (j - r) to the coeffi­

cient set IRqi-l and copy f) as its output element. Further, set RELAT IV ECOST to be 

(RELATIVECOST + 1). 

(3) Now both IRqi-l and MIqi-l becomes IRqi and MIqi. Set COST to be (COST + 
RELATIVECOST). If COST is less than BESTCOST, then change BESTCOST, 

BEST POLARITY to COST and qi respectively. 

(4) Sort the elements in IRqi in ascending order. Update the output set accordingly to 

keep the function the same as before sorting. 

Output (BESTPOLARITY /\ p) that is the best polarity with BESTCOST on-set 

terms. 

Example 7.6. Figure 7.1(a) shows a 3-variable 2-output Boolean function expressed in 

Reed-Muller PLA format with polarity p = O. There are totally 5 on-set coefficients. 

Therefore, the coefficient and output sets are IRa ={O, 1,2,6, 7}, "MIo= {I, 1,3,2, 3} respec­

tively. Besides, COST= BESTCOST= 5, BESTPOLARITY = O. We now compute 

the on-set coefficients and the cost with polarity 1 following procedure 7.5. 

(l)For the next polarity ql = 1, r = qo /\ ql = 0/\1 = 1. RELATIVECOST is 

initialized to be O. 

(2)For the first element j = 0 in IRa, nothing will be changed because "0" does not cover 

"I". But the second element j = 1 covers r. So we need to search for j - r = 1 - 1 = 0 

that is the first element. Then the output of the first element 7] = 1 should be replaced 

by 7] /\ f) = 1/\ 1 = O. Now 7] is 0, thus the coefficient 0 and its output should be deleted. 

Besides, RELAT IV ECOST = 0 -1 = -1. The following coefficients 2 and 6 do not cover 

r, hence go to the final coefficient j = 7 that covers r. There is a coefficient j -r = 7 -1 = 6. 

Hence the output of the coefficient 6, 7] will be changed to 7] /\ f) = 2/\3 = 1. Now 7] is not 

zero, so coefficient 6 is still in the array but with the different output element. This result 

is shown in figure 7.1 (b). 

(3)Now we have IRI = {I, 2, 6, 7}, Ml = {I, 3,1, 3} as shown in fig.7.1(c). COST is 

updated to COST + RELATIVECOST = 5 - 1 = 4 that is less than BESTCOST. 

Therefore, BESTCOST = 4, and BESTPOLARITY = 1. 

(4) Sort IRI = {I, 2, 6, 7} and repeat steps (1)-(4) of procedure 7.5 in the same way for 

other polarities. 

Finally, we find the best polarity that is 1 with 4 on-set coefficients. 

In [35] and [56], the number of terms for multiple output function is computed through 

XOR operation on the subfunctions. However, in step 2 of procedure 7.5, all the outputs 

saved in an array are processed in a parallel way. Therefore, the speed of the algorithm 

does not directly depend on the number of outputs. In other words, step 2 of procedure 
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.i 3 

.02 .i 3 
000 01 .02 

to be deleted 

001 01 000) search 00)"': 001 01 
010 11 001 forO 01 011\01=00 010 11 
110 10 010 11 110 01 
111 11 110) search ° 1) 111 11 
.e 111 for6 11 ]]1\10=01 .e 

(a) with polarity 0 (b) with polarity 1 (c) with polarity 1 after deletion 

Figure 7.1: Example for a 3-variable 2-output Reed-Muller function 

7.5 does not care about the number of outputs. This conclusion can be verified in the 

following experimental results. 

7.6 Experimental results 

In our program, a Boolean function is first converted from SOP PLA format to the FPRM 

form with polarity zero using the method in chapter 5. If there is no PLA format, then 

apply SIS to convert from BLIF format to PLA format[134]. For incompletely specified 

Boolean functions, we just set the don't cares to off-sets. From the FPRM form with 

polarity 0, procedure 7.5 is applied to find the best polarity which has been implemented 

with C language. The program is compiled by the GNU C compiler egcs-2.91.66 and 

tested MCNC and IWLS'93 benchmarks on a personal computer with Cyrix6x86-166 CPU 

and 32M RAM under Linux operating system. For large Boolean functions, we test the 

program on a personal computer with PIII-450 CPU and 64M RAM. The results are shown 

in tables 7.1 and 7.2 respectively, where "I" represents "not available". The number of 

variables(n), the number of outputs( 0), the number of terms with polarity O( init. term#), 

the best polarity (best polarity) and the corresponding number of terms (least term#) are 

also presented. In [56], no results for the exact minimization of large Boolean functions 

are available. Furthermore, in [35], only small functions with n ~ 10 are tested due to 

the high space complexity. Therefore, no comparison is shown in table 7.2. From both 

tables 7.1 and 7.2, it can be seen that the speed of the program depends on the number 

of variables and the number of on-set coefficients. In procedure 7.5, for any polarity qi 

of an n-variable multiple output function, 0 ~ i ~ 2n - 1, all the on-set coefficients need 

accessing once only plus a possible search in order to obtain the FPRM form with the next 

polarity. Further, all the 2n polarities should be evaluated for exact minimization. Let M 
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be the average number of on-set coefficients as in equation (7.29). 

(7.29) 

where Mi is the number of on-set coefficients of FPRM form with polarity qi and I: is the 
2n-l 

arithmetic addition. Then the time complexity of the program is O( I: M i ) = O(2n M). 
i=O 

In procedure 7.5, the same array can be used repeatedly by all the on-set coefficients. So 

the space complexity is O(M). For example, testcase "m181" in table 7.1 has 15 variable, 

9 outputs, but only about 200 on-set coefficients on average. It takes less time than a 

function with less variables such as "co14" since there are much more on-set coefficients 

in "co14". Furthermore, it can be seen that the speed of our program does not depend 

on the number of outputs directly. If two functions have the same product of (2n M) but 

different numbers of outputs, then the time to find the best polarity is the same. For "bw" 

testcase which has 28 outputs, it takes about the same time as "squar5" or "rd53". In [35], 

"bw" takes much longer time than "squar5" or "rd53" as shown in the last column of table 

7.1. For large Boolean functions when n > 15, the number of on-set coefficients is usually 

small especially for arithmetic functions such as "t481", "ryy6" and "pm1" etc. Hence it is 

still very quick to find the best polarity. Comparing with the results in [35] and [56], our 

program is very efficient for exact polarity minimization of large Boolean functions. 

7.7 Summary 

The properties of the polarities of the SOP and FPRM forms are presented in this chapter. 

The comparison shows that these two kinds of polarities have great similarity but the 

transform matrix for the conversion between two FPRM forms has much more complex 

structure than the counterpart for SOP forms. Furthermore, the best polarity of FPRM 

forms with the least number of terms corresponds with the polarity for SOP forms with 

the best order of on-set minterms. This should lead to a new way for exact minimization of 

FPRM expansions without complex transform and exhaustive search. A fast algorithm is 

proposed to find the best polarity for completely specified multiple output functions using 

gray code sequence. The space and time complexities are O(M) and O(2n M) respectively 

where M is the average number of on-set coefficients. In other words, the space and time 

complexities depend on the structure of the Boolean functions. This constitute a significant 

improvement on previous algorithms making it possible to tackle large functions with more 

than 15 variables. If a function has a "good" structure for Reed-Muller logic, then the 

space and time complexities are small. This characteristic is specially attractive for large 

arithmetic Boolean functions where M is usually small. The experimental results confirm 

these conclusions. 
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init. best 
n 0 term# polarity 

bw 5 28 32 31 
squar5 5 8 23 0 
rd53 5 3 20 0 
conI 7 2 19 80 
rd73 7 3 63 0 
5xp1 7 10 61 0 
rd84 8 4 107 0 
root 8 5 225 236 
dist 8 5 216 15 

log8mod 8 5 103 116 
misex1 8 7 60 252 

life 9 1 184 255 
9sym 9 1 210 15 
clip 9 5 217 71 
sao2 10 4 1022 179 
add6 12 7 132 0 
co14 14 1 8192 16383 
tial 14 8 4406 29 
gary 15 11 6815 15998 
m181 15 9 213 31960 

*Cyrix6x86-166 PC with 32M RAM 
t HP Apollo series 700 workstation 
tHP Apollo series 715 workstation 

least time time 
term# (s)* (s )[56]t 

22 -0 / 
23 -0 / 
20 -0 0.5 
17 0 / 
63 0.01 2.3 
61 0.01 / 
107 0.03 5.5 
118 0.03 8.8 
185 0.04 12.5 
53 0.01 6.5 
20 0.01 / 

100 0.11 9.2 
173 0.07 / 
206 0.12 / 
100 0.27 48.1 
132 0.85 295.1 
14 19.97 488.4 

3683 66.09 8480.4 
349 37.78 16216.1 
67 1.82 1149.0 

Table 7.1: Test results for small Boolean functions 

init. best least time 
n 0 term# polarity term# (s)* 

t481 16 1 41 39321 13 0.36 
ryy6 16 1 80 49152 64 13.83 
cmb 16 4 4097 63 132 3.72 
pm1 16 13 37 36 27 0.77 

table5 17 15 74504 109311 2458 342.94 
tcon 17 16 24 0 24 0.43 
pcle 19 9 72 1280 32 14.05 
mux 21 1 81 0 81 48.01 

cm150a 21 1 163 1 82 46.43 
cc 21 20 59 327784 41 25.75 

duke2 22 29 7088 118995 255 2045.22 
ttt2 24 21 788 12596031 107 1750.09 

misex2 25 18 1100 28290559 87 1785.20 

*Pentium 1II-450 PC with 64M RAM 

Table 7.2: Test results for large Boolean functions 
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Chapter 8 

Optimization of Reed-Muller PLA 

Implementations 

8.1 Introduction 

It is concluded in [126] that the Reed-Muller programmable logic array (RMPLA) struc­

tures, based on AND jXOR operations, are more economical than the conventional pro­

grammable logic array (PLA) structures based on AND JOR operations[26]. This, however, 

was demonstrated mainly for small functions. Further, the Reed-Muller circuits have great 

advantage of easy testability[118]. However, applications of RMPLAs have so far not 

become popular due to the following two obstacles. 

1. XOR gates used to have slow speed and require large silicon area to realize in com­

parison with OR gates. 

2. The problem of minimization of Reed-Muller functions is difficult although there has 

been a great deal of research in recent years. 

With the development of new technologies and the advent of various field programmable 

gate array (FPGA) devices, the first obstacle has become irrelevant. In programmable 

devices, the XOR gate is either easily realized in "universal modules" or directly available. 

For instance, in the AT6000 FPGA series from ATMEL Corporation, logic blocks can 

be configured as various two-input gates such as XORs, ANDs and NANDs. In other 

FPGAs, both AND and XOR gates are available in the macro cells or logic array blocks 

(LABs)[29]. However, the minimization of Reed-Muller expressions remains much more 

difficult than sum-of-products (SOPs)[26]. Although there have been extensive research 

on Reed-Muller logic optimization, most of the available methods are not suitable for 

very large functions. There are three basic procedures associated with the optimization of 

RMPLA implementations. 
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1. Conversion algorithms to convert a Boolean function from SOP to fixed polarity 

Reed-Muller (FPRM) format. The optimization method is more efficient starting 

from the Reed-Muller domain than from the standard Boolean domain[120], which are 

also called functional domain and operational domain respectively[68]. One obvious 

advantage of FPRM forms over SOP or mixed polarity Reed-Muller forms, is the 

absence of redundant variables[114]. 

2. Polarity optimization methods to find the best polarity with the least number of 

product terms starting from the initial FPRM expression obtained from the preceding 

procedure. It is conjectured in [120] that "the minimum number of mixed polarity 

terms of a function is independent of the Reed-Muller polarity from which the mixed 

polarity representation was obtained". Nevertheless, starting the minimization from 

an FPRM form with the best polarity will greatly reduce the initial complexity. Thus 

the speed of the decomposition method can be improved, as will be illustrated in our 

examples later. 

3. Mixed polarity minimization to further reduce the number of product terms by com­

bining the adjacent ones. 

For the first procedure, many algorithms have been published which are based on Reed- . 

Muller matrix transformations[68, 73], tabular techniques [4, 6, 98], and Binary Decision 

Diagrams (BDDs)[8, 9, 116] among others. Most of these approaches are not suitable for 

very large functions. In chapter 6, very large multiple output Boolean functions can be 

converted mutually between conventional SOPs and fixed polarity Reed-Muller (FPRM) 

formats using multiple segment technique presented in chapter 5. Experimental result 

shows that it only takes about 0.1 seconds to convert a function with 199 inputs and 

67 outputs run on a personal computer(PC). The second procedure which is to find the 

best polarity is computationally extensive in both space and time especially for large 

functions. It is generally accepted that exact minimization of FPRMs is only suitable 

when the number of input variables is less than 15 on a common PC[5, 56, 127]. Several 

heuristic methods have been proposed which apply the simulated annealing [111] or genetic 

algorithm techniques[157]. The product term number can be further reduced with mixed 

polarity by combining the adjacent product terms such as using xorlink operation[137]. 

The final results can be implemented in two-level PLA format which are called AND-XOR 

PLAs with one-bit decoders in [126]. 

An alternative simplification scheme for RMPLAs is given in [120]. An SOP expression 

is first represented with disjoint cubes using any methods such as in [61]. Then "-" and 

"0" are swapped for all the variables to obtain mixed polarity Reed-Muller expression with 

disjoint cubes. The rationales of this transformation are: (a) Co + CI = Co EEl Cl if cubes 

Co and Cl are disjoint; (b) "-" and "0" represent a missing and complemented variables 

respectively in Boolean domain, which correspond to "0" and "-" respectively in Reed-
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Muller domain with the same functionality. Finally a (quasi-) optimal FPRM expression is 

exploited and a (quasi-) minimum expression with mixed polarity product terms is obtained 

by combining the adjacent terms. Unfortunately, experimental results are reported only 

for small functions[120j. 

There are also some other approaches that apply similar strategy as ESPRESSO starting 

from a mixed polarity Reed-Muller forms[49j. In this chapter, the decomposition method, 

based on the concept of ~-majority cube[142], is further investigated and generalized to 

very large multiple output functions using the algorithm in chapter 5. The produced 

expressions belong to the most general class of AND jXOR forms, namely exclusive-OR 

sum-of-products (ESOPs)[127j. 

8.2 Review of the decomposition method 

8.2.1 Background 

Definition 8.1. An n-variable Boolean function can be represented canonically by an 

FPRM form with polarity P expressed in a binary n-tuple, P = (Pn-IPn-2 ... PO)2 as follows. 

2n-1 

!(Xn-IXn-2'" xo) = ~ brJri 
i=O 

(8.1) 

where "~" is the XOR operator. Further, i can be written as a binary n-tuple i = 

(in-lin-2'" iob bi E {O, 1}, lri = Xn-IXn-2'" xo, 

.. {1, 
Xj = . 

Xj, 

Pj = 1 
and 0::; j ::; n - 1 

Pj = ° (8.2) 

If bi is 1, then the corresponding lri is called an on-set pi-term; otherwise, it is an off­

set pi-term. In fig.8.1(a), a 3-variable function is represented by a Reed-Muller coefficient 

map, bj-map[155], which is the counterpart of a Karnaugh map in the standard Boolean 

logic. The algorithmic rules of grouping in a bj-map are different from a Karnaugh map. 

In fig.8.1(a), the function is represented with polarity 0, !(X2XIXO) = 1 EB Xo EB XIXO EB X2· 

Each variable is in positive form and there are 4 on-set pi-terms and 4 off-set pi-terms. 

When the polarity is 6 = (110)2, both X2 and Xl are in complemented forms while Xo is 

in positive form from equation (8.2). Thus the same function can be represented by two 

on-set pi-terms only, !(X2XIXO) = XIXO EB X2 whose bj-map is shown in fig.8.1(c). 

After combining adjacent on-set pi-terms in an FPRM form, the result is in mixed 

polarity Reed-Muller form which can be implemented by an RMPLA shown in fig.8.2. 

Each variable has two inputs to the programmable array of AND gates due to the mixed 
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XIXO Xlxa 

Xl 10 X2 X2 X2 
0 0 0 

(a) (b) ( c) 

Figure 8.l: Limitation of i-majority m-cubes 
(a) grouping of a i-majority cube with polarity 0 (b) simpler grouping with polarity 0 
(c) grouping with polarity 6 where Xl and X2 are complemented 

polarity. After the generation of all the on-set product terms, they are connected to 

the programmable array of XOR gates to produce the output for each function. The 

implementation of the function in fig.8.1(a) is shown in fig.8.2(b), where "x" indicates 

intact fuse. 
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Figure 8.2: Structures of Reed-Muller PLAs 
( a) Generic structure of Reed-Muller PLAs (b) Implementation of f = Xl Xo EB X2 

8.2.2 Limitations of the decomposition method 

The concept of i-majority m-cube is introduced in [142] which is an m-dimensional cube 

covering at least i x 2m on-set pi-terms. In the bj-map shown in fig.8.1(a), the largest 

i-majority cube is a 2-dimensional cube XIXO covering i x 22 = 3 pi-terms. Note that 

algorithmic rules for grouping in a bj-map, which can be found in [155], are quite different 

from the counterparts of a traditional Karnaugh map. After this cube is selected, f is 
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decomposed as f = :'hxo EB g, where 9 covers both the remaining on-set pi-terms and the 

off-set pi-terms covered by X1XO. Now 9 has only two on-set pi-terms, as shown in fig.8.1(a), 

resulting in the mixed polarity expression of f in equation (8.3). 

(8.3) 

There are two advantages to the i-majority cubes: (a) It is simple to identify the largest 

i-majority cube by computer. (b) The complexity of a function decreases quickly with the 

selection of the largest i-majority cube although it does not guarantee the minimality of 

the result. Every time a i-majority m-cube is selected, at least i x 2m on-set pi-terms 

are deleted and at most ~ x 2m off-set pi-terms are added. It is conjectured in [142] that 

"if off-set pi-terms are incorporated with a i-majority m-cube to form an m-cube, the 

total number of groupings will be equal to or less than that resulted from grouping only 

on-set pi-terms in the i-majority m-cube". However, this conjecture is not always true. In 

fig.8.1(b), the same function can be expressed only by two product terms, f = X2 EB X1XO. 

It takes one less product term than the grouping using i-majority cube in fig.8.1(a). The 

procedure of the decomposition method consists of the following steps according to [142]: 

1. Let the total number of on-set pi-terms of an n-variable function be M. 

2. Determine the smallest k such that k :::: log2 M. 

3. Find a prime implicant of order k. Make an arbitrary selection if there is more than 

one prime implicants of order k. 

4. If no prime implicant of order k can be found in step 3, let m = 1, and find a i­

majority k-cube with (2k - m) on-set pi-terms. If there is more than one choice, 

make an arbitrary selection. 

5. If no i-majority k-cube can be found in step 4, increment m by one and repeat step 

4 until a i-majority k-cube is found. 

6. If no i-majority k-cube can be found in step 5, decrement k by one and repeat step 

3 through 5 until a prime implicant or a i-majority k-cube is found. 

7. Obtain the residue function fr(Xn-1Xn-2 ... xo) by XORing f(Xn-1Xn-2 ... xo) with 

the prime implicant or i-majority k-cube selected in step 3 through 5. 

8. Repeat step 1 through 7 for the residue functions until a O-functions is obtained in 

step 7. 

There are several limitations to the above decomposition method. 

1. The number of product terms, produced by the heuristic decomposition method, 

largely depends on the polarity ofthe initial FPRM for some functions[142]. No exact 
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polarity minimization algorithm is applied there to reduce the initial complexity of 

the problem. 

2. The identification of the largest i-majority cube in steps (4) and (5) is inefficient. If 

there are more than one i-majority cubes, then an arbitrary selection is made. 

3. The algorithm is only suitable for small single output functions, mainly based on 

tri-state maps[141]. 

4. The developed program has not been tested with the common benchmarks. Thus no 

comparison is available to verify the effectiveness of the concept of i-majority cubes. 

8.3 Improved decomposition method for large single output 

functions 

8.3.1 Initial FPRMs with the best polarity 

Due to the lack of an efficient approach to find the best polarity for the initial FPRMs in 

[142], various polarities are tried and then the best expression is obtained by comparing all 

the available solutions. This manual search method is not practical for large functions. In 

this chapter, however, an efficient algorithm, which is based on the concept of the polarity 

for SOP forms proposed in chapter 5, is applied to find the best FPRM expression with 

the least on-set pi-terms. Although this approach does not necessarily improve the quality 

of the final result, it can greatly reduce the initial complexity of the problem and improve 

the speed for decomposition. For example, there are 4 pi-terms for the function shown in 

fig.8.1(a) with polarity O. Using the method based on the concept of i-majority cube, an 

expression can be obtained for the function, which is shown in equation (8.3). However, 

starting from an FPRM form with the best polarity 6 as shown in fig.8.1(c), only two 

on-set pi-terms are necessary to express the same function. From fig.8.1(c), it is easily 

concluded that both X2 and XIXO are the largest i-majority cubes. Hence equation (8.4) 

can be obtained as follows. 

(8.4) 

In comparison with equation (8.3), equation (8.4) has less numbers of both product terms 

and literals, which leads to simpler RMPLA structure. 

8.3.2 Identification of the largest ~-majority cubes and prime implicants 

In [142], the selection of a i-majority cube is mainly derived from a tri-state map, which 

is not suitable for large functions. It is implied in [142] that only the largest i-majority 

cube needs to be identified for decomposition. In this chapter, a list of on-set pi-terms is 
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applied for the representation of large functions. Consequently, the selection of the largest 

i-majority cube is adapted in procedure 8.1. 

Procedure 8.1. Given a list of M on-set pi-terms for an n-variable Boolean function, 

M;::: 1. Let three variable sets, §o, §l, §2 and an integer l be 0,0, {XO,Xl,·· ·xn-I}, and 

(n - 1) respectively. Copy the original pi-term list to a temporary list IT.., and let M' be 

the number of on-set pi-terms of IT..,. The largest i-majority cube can be found through the 

following steps. 

(1) If M ;::: i x 2n , return Xn-lXn-2··· Xo as the largest i-majority cube. Otherwise, 

go to the next step. 

(2) Let ajO and ajl be the occurring numbers of "0" and "1" respectively in IT.., for each 

variable Xj in §2. Hence ajO + ajl = M'. Select the larger number aj from ajO and ajl· If 

they are the same, then select ajO to reduce the literal number within a product term. 

(3) Determine the largest number among aj s for all the variables in §2. Suppose this 

number is ak which corresponds with variable Xk, 0 :S k :S n - 1. If ak is the number of 

"O"s, then move Xk from §2 to §o, and remove all the on-set pi-terms whose number of 

variable Xk is 1 from IT..,. Otherwise, if ak is the number of "1"s, then move Xk from §2 to 

§l, and remove all the on-set pi-terms whose number of variable Xk is 0 from IT..,. Update 

the number of on-set pi-terms of IT.." M'. 

(4) If ak ;::: i x 21
, then return I1xiE2h Xi· I1xiE~h xi as the largest i-majority cube where 

"." is the AND operation. Otherwise, decrement l by one and go to step (2). 

Example 8.1. There are four on-set pi-terms for the 3-variable function f in fig.8.1(a), 

which can be represented in a list in fig.8.3(a). Thus we have M = 4, §o = §l = 0, 
§2 = {X2' Xl, Xo}, l = n - 1 = 2, IT.., = {O,l, 3, 4} = {OOO, 001, 011, 100} and M' = 4. 

(1) Because M e. i x 23 , go to step (2) of procedure 8.1. 

(2) There are three variables xo, Xl and X2 in §2. For Xo, there are two Os and two 1s 

in the on-set pi-terms of IT.., shown in fig.8.3(a). Hence aOO = aOl = 2. In the same way, we 

have alO = a20 = 3, an = a21 = 1. Additionally, the larger number aj is selected between 

ajO and ajl, 0 :S j :S n - 1. Therefore, ao = 2, and al = a2 = 3 as shown in fig.8.3(a). 

Then go to step (3) of procedure 8.1. 

(3) In step (3) of procedure 8.1, both al and a2 are the largest numbers. Suppose al is 

first selected as the largest number. From step (2), it can be seen that al is the number of 

Os, instead of 1 s. Hence Xl is moved from §2 to §o· As a result, §o = {xI}, §2 = {xo, X2} . 

and §l = 0. Additionally, remove pi-term "011" from IT.., since the number of Xl is 1. Now 

IT.., = {OOO, 001, 100} = {O, 1, 4}. 

(4) Because al = 3 ;::: i X 22 , return X2XO as the largest i-majority cube as shown in 

fig8.3(b). Alternatively, if a2 is selected as the largest number in step (3), then X2 is moved 

from §2 to §o. Consequently, §o = {X2}, §2 = {xo, xI} and §l = 0. Therefore another 

i-majority cube, XlXO is found which has been shown in fig.8.1(a). 
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(a) on-set pi-term list 

X2XIXO 

0000 
1 00 1 
3 0 1 1 
4100 

ajO 3 3 2 
ajl 1 1 2 

aj 332 

(a) (b) 

Figure 8.3: Example of procedure 8.1 
(b) selection of the largest ~-majority cube X2XO 

Section 8.3 . 

Procedure 8.1 can be efficiently implemented in C language using bitwise operations. 

After the largest ~-majority cube c is identified, an n-variable function fo can be decom­

posed as fo = c EB h, where h is an n-variable function. Furthermore, all the on-set 

pi-terms covered by c are deleted and the off-set pi-terms covered by c are added to h. 
Call procedure 8.1 iteratively to find the largest ~-majority cube for function h until a 

zero function is obtained. For example, if X2XO is returned as the largest ~-majority cube 

for the function fo in fig.8.3(a), then fo = x2xoEBh and the on-set pi-terms of hare {3, 5}. 

Iteratively call procedure 8.1 for h and get another expression as shown in fig.8.3(b). 

(8.5) 

From equation (8.5), because X2XO and X2XO have the same set of variables, the expressions 

produced by the decomposition method belong to the most general class of AND /XOR 

expressions, namely exclusive-OR sum-of products expressions (ESOPs)[127]. Additionally, 

in steps (3) and (4) of example 8.1, selection of variable Xl and X2 leads to different ~­

majority cubes, X2XO and XIXO. Comparing equation (8.3) and equation (8.5), it can be 

seen they have the same number of product terms but different literal numbers. Based 

on our experiments, the final expression is usually quite sensitive to the selection of a 

~-majority cube when there are more than one choices. This problem will be discussed in 

section 8.3.3.l. 

In the decomposition method of [142], there are two loops to select a ~-majority cube. 

The first loop consists of steps (4) and (5) where the dimension of a cube, k remains 

fixed. If there is no ~-majority cube, then decrease the dimension k by one in step (6) 

which constructs the second loop. However in procedure 8.1, only one loop is needed with 

respect to the dimension of a cube in step (4). There is no loop in step (3), which saves 

CPU time extensively to decide a ~-majority cube. 

In [142], the largest prime implicant is selected prior to the selection of the largest· 

~-majority cube. Actually, an m-dimensional prime implicant is only a special case of 
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a ~-majority cube, where the number of the covered on-set pi-terms is 2m . Therefore, 

there is no difference between the selection of the largest prime implicant and the largest 

~-majority cube. Consequently, procedure 8.1 can be applied to decide both the largest 

prime implicant and the largest ~-majority cube as will be shown in example 8.2. 

8.3.3 Further improvements for the decomposition method 

8.3.3.1 Order of ~-majority cubes 

In example 8.1, there are two largest ~-majority cubes, X2XO and X1XO. Each time only 

one ~-majority cube should be returned to decompose a function. From our experimental 

results, it is found that the number of product terms largely depends on the selection of 

a suitable i-majority cube when there are more than one choices. This problem can be 

called the determination of the order of ~-majority cubes. In [142], an arbitrary cube 

is selected due to the lack of an efficient selection strategy. However, a good ~-majority 

cube can chosen by deleting some on-set pi-terms that are not adjacent to any other on­

set pi-terms so that the decomposed function have a good structure. Then update the 

numbers of 1 s and Os and select the largest ~-majority cubes based on the new numbers. 

If the updated numbers are still the same, then select the default variable with the smallest 

index. From our experiments, this modification usually leads to better results than the 

arbitrary selection although it takes more time to decide the adjacency relation among 

on-set pi-terms in the list. This improved selection will be illustrated in example 8.2. 

Example 8.2. Given an on-set pi-term list IL = {O, 2, 9, 15} in fig.8.4(a) for a 4-variable 

function. Following procedure 8.1, we have §o = §l = 0, §2 = {XO, Xl, X2, X3}. Besides, 

IL = {O, 2, 9, 15}, l = 4 - 1 = 3, and M' = 4. Because 4?/. ~ X 24 in step (1), 

count the occurring number for each variable in §2 which is shown in fig.8.4(a). In step 

(3) of procedure 8.1, a2, which equals to 3, is selected because it is the largest number. 

Additionally, X2 is moved from §2 to §o since a2 is the number of Os. Thus §o = {X2}, 

§l = 0, §2 = {XO, Xl, X3} and IL = {O, 2, 9} as shown in fig8.4.(b). In step (4) of procedure 

8.1, since a2 e. ~ x 23 , decrease l to 2 and go to step (2) of procedure 8.1. In the same way, 

count the occurring numbers for three variables in §2, which are shown in fig.8.4(b). It can 

be seen that all the three occurring numbers, ao, al, and a3 are the same. Furthermore, 

the on-set pi-term 9 = {1001} is not adjacent to the other two pi-terms. Hence this pi-term 

can be deleted from the list IL, as shown in fig.8.4(c). Update the occurring numbers in 

fig.8.4(c), ao = a3 = 2, al = 1. Then ao is selected since it is the smallest index. Therefore, 

§o = {XO,X2}, §l = 0, §2 = {Xl,X3} and IL = {0,2} as shown in fig.8.4(d). In step (4) 

of procedure 8.1, since ao t ~ x 22 , change l to 1 and go to step (2) of procedure 8.1. 

From fig.8.4( d), a3 is selected because it is the only largest occurring number. Therefore, 

§o = {XO,X2,X3}, §l = 0 and §2 = {xd in step (3) of procedure 8.1. Now a3;:: ~ x 2\ so 

cube Xl is returned as the largest ~-majority cube. It can be seen that Xl in this case is 
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actually the largest prime implicant. 

f 12 X3X2X lXO 

00000 X3X2XIXO f f 20010 o 0000 X3 X::?X!Xo X3X2XIXO X3X2XIXO 
91001 20010 o 0000 o 0000 00000 

15 1 1 1 1 9 1 0 0 1 ... deleted 20010 20010 9 1001 
ajIJ 2322 ajO 2 22 ajO 2 1 2 ajO 2 1 ajO 1 
aj/ 2122 aj/ 1 1 1 aj/ 0 10 aj/ 0 1 ajJ 1 
aj 2322 aj 2 22 aj 2 12 aj 2 1 aj 1 

(a) (b) (c) (d) (e) 

Figure 8.4: Order of ~-majority cubes 
(a)original function (b) delete one pi-term that is not adjacent to others (c, d) select 

a variable with the largest occurring number (e)two pi-terms if Xl is selected in (b) 

In example 8.2, the deletion of pi-term 9 = (1001h can avoid selecting variable Xl in 

fig.8.4(b). Otherwise, the selected ~-majority cubes would actually be pi-terms 1 and X3XO, 

as shown in fig.8.4(e), which needs more product terms to realize the function consequently. 

8.3.3.2 One more expansion for decomposition 

An n-variable function can be decomposed by Davio expansions with respect to variable 

Xi as follows. 

f fXi=O EB Xi (fxi=O EB fXi=l) 

fXi=l EB Xi (fxi=O EB fXi=l) 

fo IXi EB xdllxi 

(8.6) 

(8.7) 

(8.8) 

where both folxi and hlxi are n-1 variable functions and Xi E {Xi, Xi}. All the functions 

can be expressed by recursive decomposition of equation (8.8). Equation (8.8) is complete 

to express any function but does not necessarily produce the simplest solution even with 

the best polarity and application of the ~-majority cubes. For a class of Boolean functions 

that satisfy the following condition, 

(8.9) 

the decomposition method in [142] does not necessarily produce "good" results even with 

the best polarity. Instead, procedure 8.2 can be applied for the decomposition of this class 

of functions. 
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Procedure 8.2. For an n-variable function f that satisfy equation {8.9} with respect to 

variable Xi, 0 :::; i :::; n - 1, n> 2, then f can be expressed by equation {8.12} or {8.15}. 

f 

f 

fo IXi EB xd1lxi 

folxi EB Xi(Xn -1Xn-2··· Xi+lXi-1 ... Xo EB folxJ 

Xn -1Xn -2··· Xi+lXiXi-1 ... Xo EB xdolxi 

folxi EB xd1lxi 

(Xn -1Xn-2··· Xi+1Xi-1··· Xo EB hlxJ EB xd1lxi 

Xn -1Xn-2··· Xi+lXi-1 ... Xo EB xihlxi 

(8.10) 

(8.11) 

(8.12) 

(8.13) 

(8.14) 

(8.15) 

From equation {8.9}, the total on-set pi-terms of folxi and hlxi is 2n
-

1
. To reduce the 

complexity of the subsequent function, a function with less on-set pi-term is selected between 

folxi and hlxi· In other words, if folxi has less on-set pi-terms than hlxi' then equation 

{8.12} is selected to decompose the function. If hlxi has less on-set pi-terms than folxi' 

then equation {8.15) is selected to decompose the function. If the on-set pi-term number is 

the same, then equation {8.15} is selected to reduce the literal number since literal Xi does 

not appear in the first product term in equation {8.15}. Ifn:::; 2, this new expansion is not 

applied to save the literal numbers, which can be illustrated in example 8.3. 

Example 8.3. A 3-variable function f is shown in fig.8.5(a) both in a bj-map and a pi­

term list with the best polarity. While applying procedure 8.1, it is very difficult to decide 

the order of %-majority cubes discussed in section 8.3.3.1. Actually, each individual pi-term 

in fig.8.5(a) is the largest %-majority cube. Hence we have 

(8.16) 

Using the notations in equation (8.8), we have folxl = Xo EB X2 and hlxl = 1 EB X2 XO· 

Therefore, fo IXI EB h IXI = Xo EB X2 EB 1 EB X2XO = X2XO, and equation (8.9) is satisfied. 

Because the on-set pi-term numbers of fo IXI and h IXI are equal, from procedure 8.2, 

equation (8.15) is selected to decompose the function as f = X2XO EB x19, where 9 is a 

2-variable function shown in fig.8.5(b). Note that the bj-map of 9 is the right half of the 

bj-map shown in fig.8.5(a). Additionally, function 9 also satisfies equation (8.9). In the 

same way, we have, 

(8.17) 
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or 

(8.18) 

corresponding with equations (8.12) and (8.15) respectively. If ~-majority cube is used 

instead, then another expression for g, 

(8.19) 

is obtained since both 1 and X2XO are the largest ~-majority cubes. It can be seen that 

equation (8.19) is simpler than equation (8.17) or (8.18), which is the result of applying 

equation (8.12) or (8.15). Hence the new expansion, equation (8.12) or (8.15) will not be 

applied when n :s; 2. As a result, f = X2XO EB Xl EB X2XlXO which is one product term less 

than equation (8.16). 

X2X iXO 
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2010 
4 100 
7 1 1 1 

ajo 222 
ajl 222 
aj 222 

b. 
J XIXO 

x 2 00 01 

o CD 
i' i'-V 

(a) 

11 10 

CD 
CD 

X2XO 

000 
1 1 1 

ajO 1 1 
aji 1 1 
aj 1 

Figure 8.5: Example of procedure 8.2 

bjmXOl 0 
x2 (,\ 
o 0 
lQ 

(b) 

(a) original function in a pi-term list and a bj-map (b) decomposed function 9 using 
equation (8.15) to expand 

8.3.3.3 Even faster decomposition 

In step (2) of procedure 8.1, if the number of Os or 1 s for a variable Xj, aj is M, then 

all the on-set pi-terms are inside either cube Xn-lXn-2··· Xj+lXjXj-l ... Xo if aj is the 

number of 1 s or cube Xn-lXn-2 ... Xj+lXj-l ... Xo if aj is the number of Os. In this case, 

this n-variable function fo can be decomposed as in equation (8.20). 

(8.20) 

where h is a n-1 variable function and Xj is Xj if aj is the number of 1 s for variable 

x j; otherwise x j is 1. 

Example 8.4. In fig.8.6(a), a 4-variable function fo has 4 on-set pi-terms with the best 

polarity. It can be seen from fig.8.6( a) that a2 is 4 and it is the number of 1 s for variable. 
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X2. From equation (8.20), we have fo = x2il where h is a 3-variable function shown in 

fig.8.6(b). Iteratively call procedure 8.1 and return the largest ~-majority cubes, X3X1XO 

and X1XO. Thus, 

(8.21) 

Alternatively, call procedure 8.2 and find that equation (8.9) is satisfied for function h 
with respect to variable Xl. Furthermore, equation (8.12) is selected to decompose function 

h, 

(8.22) 

where 12 is a 2-variable function shown in fig.8.6(c). It is obvious that 12 = Xo. Replace 

12 in equation (8.22) and the same result fo = X3X2X1XO EB X2X1XO is obtained as equation 

(8.21). 

Additionally, in fig.8.4(c), after deleting a pi-term 9, the occurring numbers of Xo, X2, 

and X3 are equal to M = 2. Hence these three variables can be deleted because they are 

the numbers of Os. Consequently, a product term Xl can be returned directly. 

3X2XIXO bj 
5 0 1 0 1 X3 

6 01 10 
14 1 1 1 0 
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Figure 8.6: Boolean function of example 8.4 
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1 

(a) the original function fo (b, c) functions hand 12 respectively after decomposition 

8.3.4 Improved decomposition method 

Based on the previous improvements to the decomposition method proposed in [142] and· 

procedure 8.1, the following heuristic procedure can be proposed for the mixed polarity 
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Reed-Muller minimization. 

Procedure 8.3. Given an n-variable Boolean function fa in the conventional PLA format 

based on AND JOR operations. First call the program in chapter 5 to convert the function 

from SOP to FPRM format with polarity 0 and find the best polarity Pbest. Then call the 

program again to convert fa from SOP to FPRM format with polarity Pbest. Save all the 

on-set pi-terms in a list lL, and let M be the number of on-set pi-terms. Additionally, let 

product term number T = O. 

(1) If n or M is zero, then return fa as a constant and go to step (1). 

(2) If M 2:: ~ x 2n , then cube Xn -lXn-2··· Xo is the largest ~-majority cube. Therefore, 

fa = Xn -lXn -2· .. Xo EEl h, where h is an n-variable function covering all the off-set pi­

terms. These new on-set pi-terms are saved in the list lL. Increase T by 1 and change M· 

to 2n - M. Replace fa with h and go to step (1). Otherwise, go to the next step. 

(3) Let ajO and ajl be the occurring numbers of "0" and "1" respectively in lL for each 

variable Xj, 0 :::; j :::; n - 1 . Select the larger number aj from ajO and ajl· If they are the 

same, then select ajO to reduce the literal number within a product term. 

(4) If there are a variables whose occurring numbers aj equal to M, 1 :::; a :::; n -1, then 

from equation (8.20), fa can be decomposed as fa = (ITf==-Ol xi)h, where h is an (n - a) 

variable function. Replace fa with h and go to step (1). Otherwise, go to the next step. 

(5) If there are f3 variables whose occurring numbers ajO + ajl = 2n
-

l
, 1 :::; f3 :::; 

n - 1, n > 2, then from section 8.3.3.2, call procedure 8.2 to check if the function can be 

decomposed by equations (8.12) or (8.15). If there is one variable Xi that satisfies equation 

(8.9), then the function is decomposed based on procedure 8.2. Decrease n by one and 

increase T by one. Update both lL, M and go to step (1). Otherwise, go to the next step. 

(6) Call procedure 8.1 to find the largest ~-majority cube c. If there are more than 

one choices, then apply the adjacency relation discussed in section 8.3.3.1 to decide one of 

them. Consequently, fa is decomposed by cube c, fa = c EEl h, where h is an n-variable 

function, covering both the remaining on-set pi-terms of fa and the off-set pi-term covered 

by c. Update both lL and M accordingly. Increase T by 1 and go to step (1) for h· 

(1) Update all the variables according to Pbest. In other words, if the polarity of variable 

x is 1, then complement all the occurrences of x in the expression obtained from the previous 

steps. 

Example 8.5. A 5-variable function fa with 18 on-set minterms is given in PLA format 

whose function is 2::(0,3,4,7,8,12,16,17,20-25,28-31). It can be first converted to 

FPRM format with polarity 0 as ~(0-2, 11, 17,22,27) and the best polarity is 20. Hence 

convert the function from SOP to FPRM with polarity 20, which is shown in fig.8.7(a) as 

fa = ~(O, 6, 17, 18, 22, 27). Thus lL = {O, 6, 17, 18,22, 27}, T = 0 and M = 6. Now this 

function can be simplified following procedure 8.3. 

(1) Neither n or M is zero, go to step (2) of procedure 8.3. 

(2) M 1::- ~ X 25 , go to step (3) of procedure 8.3 .. 
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t 
!OX4X3X2XIXO t t 000000 
600110 11 X4X3X,X IXO 12 X4X3X lXO 

17 10001 000000 0000 t t 18 10010 1710001 9 100 1 13 X4X3X IXo 14 X3Xl 

22 101 1 0 27 1 1 0 1 1 15 1 1 1 1 01001 000 
27 1 1 0 1 1 200010 20010 15 1 1 1 1 3 1 1 
ajO 25424 ajO 23422 ajO 2322 ajO 0 1 1 0 ajO 1 1 
ajl 4 1 242 ajl 21022 ajl 2122 ajl 2 1 1 2 ajl 1 1 
aj 45444 aj 23422 aj 2322 aj 21 12 aj 1 1 

(a) (b) (c) (d) (e) 

Figure 8.7: Example for procedure 8.3 
(a) original function fo with the best polarity (b, c, d, e) functions il, 12, 13 and f4 

respectively 

(3) Count ajO and ajl for all the variables which are shown in fig.8.7(a), 0 ~ j ~ 4. 

From fig.8.7(a), we have ao = al = a2 = a4 = 4, and a3 = 5. 

(4) No variable whose occurring number aj equals to M, go to step (5) of procedure 

8.3. 

(5) Similarly, the condition in step (5) of procedure 8.3 is not satisfied, go to step (6). 

(6) Call procedure 8.1 and cube X4X2Xl is returned as the largest ~-majority cube. 

Hence fo is decomposed as fo = X4X2Xl EB il, where il is a 5-variable function shown in 

fig.8.7(b). Additionally, T = 1, M = 4, and lL = {O, 2,17, 27} because cube X4X2Xl covers 

three on-set pi-terms, 6,18,22, and one off-set pi-term 2. Go to step (1) of procedure 8.3 

for il. 
(7) Neither n nor M is zero. Furthermore, M"i. ~ X 25 . Hence count the occurring 

numbers for these five variables as shown in fig.8. 7(b) in step (3) of procedure 8.3. In step 

(4) of procedure 8.3, the occurring number a2 of variable X2 equals to M. From equation 

(8.20), il = 1· 12 = 12, where 12 is a 4-variable function shown in fig.8.7(c). Thus T = 1, 

M = 4, n = 4, and go to step (1) of procedure 8.3. 

(8) Neither n nor M is zero. Furthermore, M"i. ~ X 24. Hence count the occurring 

numbers for each variable which is shown in fig.8.7(c) in step (3) of procedure 8.3. Then 

a3 is selected because it is the only largest number 3. No condition in step (4) and (5) of 

procedure 8.3 is satisfied, so call call procedure 8.1 to find the largest ~-majority cube in 

step (6) of procedure 8.3. From example 8.2, cube Xl is returned as the largest ~-majority 

cube. Therefore, 12 = Xl EB 13 where 13 is shown in fig.8.7(d). Additionally, T = 2, M = 2, 

and lL = {O, 15} since Xl covers two pi-terms 0 and 2. 

(9) In step (4) of procedure 8.3, the occurring numbers, ao and a4 of variable Xo and X4 

equal to M. From equation (8.20), 13 = x4xof4, where f4 is a 2-variable function shown 

in fig.8.7(e). Go to step (1) of procedure 8.3 with lL = {O, 3} and n = 2. 
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(10) Following the steps in procedure 8.3, it can be seen that f4 = 1 EEl X3Xl with T = 4. 

From the above steps, an expression of the function is obtained. 

(8.23) 

(11) In step (7) of procedure 8.3, since Pbest = 20 = (10100), variable X2 and X4 should 

be complemented in equation (8.23). The final expression of the function is obtained as 

follows. 

(8.24) 

8.3.5 Functional verification 

The output of the program realizing procedure 8.3 is in RMPLA format, where "0", "I", 

and "-" represents the corresponding variable is missing, positive and complemented re­

spectively. The following procedure is applied for the functional verification. 

Procedure 8.4. Given an FPRM form f for an n-variable function with zero polarity, 

procedure 8.3 can produce an RMPLA format. This RMPLA output can be functionally 

verified in the following steps. 

1. Replace each "-" with "0" and "1" so that a product term with i "- "s produces 2i 

pi-terms; 

2. Delete the generated pi-terms with an even occurrences. 

3. Compare the remaining pi-terms with the pi-terms in the original FPRM form f· If 

they are the same, then the output RMPLA is functionally correct; otherwise, it is wrong. 

Example 8.6. Equation (8.24) in example 8.5 can be expressed by an RMPLA format [26], 

shown in fig.8.8( a). This result can be verified by the following steps. 

1. Replace each "-" with "0" and "I" for each product term, which is shown in fig.8.8(b). 

2. No duplicate pi-term exists. Thus none of them is deleted. The decimal numbers 

are also shown in brackets in fig.8.8(b). 

3. The pi-terms obtained from fig.8.8(b) are 0-2,11,17,22,27, which are the same as 

the original FPRM form with zero polarity in example 8.5. 

8.4 Generalization to multiple output functions 

8.4.1 Decomposition method using encoding 

For multiple output functions, an important criterion is how best to share the common 

product terms with several subfunctions. In [120], an n-variable m-output function is sim­

plified by minimizing an (m+n)-variable single output function denoted as a hyperfunction. 
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.i 5 

.0 1 

.i 5 .p 7 

.0 1 10 11 0 1 

.p4 
00000 1 
00010 1 

1 0 11 0 1 00001 1 
000-0 1 10001 1 
-0001 1 01011 1 
-1011 1 1 101 1 1 

(a) (b) 

Figure 8.8: Example for procedure 8.4 
(a) the output RMPLA format of the function in example 8.5 
on-set pi-terms 

Section 8.4 

(22) 
(0) 
(2) 
(1) 
(17) 
(11) 
(27) 

(b) the corresponding 

This is not suitable for large functions run on a PC. In this chapter, an encoding scheme 

is applied to merge the multiple outputs into single output by adding flog21, instead of 

m extra variables, where flog21 is the smallest integer equal to or greater than log2' The 

following algorithm, shown as procedure 8.5, is proposed, through which the problem of 

sharing the common product terms can be solved implicitly. 

Procedure 8.5. Suppose there is an n-variable m-output Boolean function, Um-l, fm-2, 

... , fo}, m 2:: 2. Then "'( = flog21 extra variables are used to merge these outputs into a 

single output function f of"'( + n variables. For simplicity, the binary code of i is added to 

the "'( most significant bits (MSBs) of each pi-term for the jth subfunction fj, 0 :::; j :::; m -1. 

This transformation can be expressed in equation (8. 25}. 

m-l 

f = ~ [X,+n-l X,+n-2'" xn]jfj 
j=O 

(8.25) 

In equation (8.25), j can be expressed by a binary "'(-tuple, (j,-d,-2'" joh, and 

. {I, 
Xi = 

Xi, 

Suppose there is a 4-variable 2-output function, fo(x3,x2,xl,xo) and h(X3,X2,Xl,XO)' 

An extra variable X4 can be applied to merge these two outputs into a 5-variable func­

tion f(x4, X3, X2, Xl, xo). From procedure 8.5, "0" is added to the MSB of each pi-term 

of fo(x3, X2, Xl, xo) while "I" is added to the MSB of each pi-term of h (X3, X2, Xl, xo). 
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Therefore we have, 

(8.26) 

After a simplified expression of f(X4, X3, X2, Xl, xo) is obtained by calling procedure 8.3, 

theorem 8.1 can be applied to split the expression and generate the representations for each 

individual subfunction using definition 8.2 of "cover" relation and its properties. 

Definition 8.2. A binary relation of "cover", R on a set § = {O, 1, 2} can be expressed 

by a set of ordered pairs[121], R = {(O, 0), (1, 1), (2,0), (2, I)}. Additionally, a product 

term Xn-lXn-2 ... Xo can be represented by a ternary number a n -lan -2 ... ao that satisfies 

equation (8.27). 

{ 

0, Xi = 1 

ai = 1, Xi = Xi 

2, Xi = Xi 

(8.27) 

where 0 ::; i ::; n -1. A ternary number a n -lan -2'" ao covers another ternary number 

bn - l bn -2'" bo if aiRbi for any i, 0 ::; i ::; n - 1. A product term Xn -lXn -2'" Xo covers 

another product term Yn-lYn-2 ... Yo if their corresponding ternary number a covers b. 

Example 8.7. A 4-variable product term X3X2XlXO can be expressed by a ternary number 

(1211h. It covers two ternary numbers, (1011h and (l1l1h based on the "cover" relation 

R in definition 8.2. Accordingly, the product term X3X2XlXO covers two other product terms 

X3XlXO and X3X2XlXO. In the same way, a 4-variable product term Xl can be represented by 

a ternary number (0020h, which covers two other ternary numbers, (OOOOh and (0010h­

In other words, Xl covers two product terms, 1 and Xl. 

If a product term Co covers another product term Cl, then cube Cl is inside Co in the 

corresponding bj -map[155]. For example, in fig.8.3(b), product term X2XO covers X2XO 

based on definition 8.2. It can be seen that cube X2XO is inside X2XO. Similarly, cube Xl is 

also properly inside cube XlXO in fig.8.1(a) because product term XlXO covers Xl based on 

definition 8.2. 

Lemma 8.1. Any ternary number covers at least another ternary number. 

Lemma 8.1 is obvious. If there is no "2" in all the bits of a ternary number, then it 

covers itself. Otherwise, it at least covers two other ternary numbers based on definition 

8.2. 

Lemma 8.2. Any product term, Xn -lXn -2'" xo, can be represented by XORing all the 
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pi-terms it covers. Equivalently, 

2ki-1 

~ [Xn-1Xn-2··· xO]j 
j=O 

Section 8.4 

(8.28) 

(8.29) 

where ki is the number of variables whose corresponding ternary number of product 

term Xn-1Xn-2··· xo is 2, ki 2: O. In other words, [Xn-1Xn-2··· xO]j is a pi-term covered 

by Xn-1Xn-2· .. Xo based on definition 8.2, Xi E {I, xd, 0 ~ i ~ n - 1, 0 ~ j ~ 2ki - 1. 

Lemma 8.2 is also obvious. In example 8.7, the product term X3X2X1XO, whose ternary 

number is (1211h, covers two pi-terms, X3X2X1XO and X3X1XO, whose ternary numbers are 
21_1 

(1111h and (1011h respectively. Hence X3X2X1XO = ~ [X3X2X1XO]j = X3x2x1xOEElx3x1XO· 
j=O 

Similarly, Xl = 1 EEl Xl since Xl covers both 1 and Xl· 

Theorem 8.1. Suppose an n-variable m-output Boolean function is merged into a single 

output function f of "I + n variables by procedure 8.5, where "I = flog2'l, m 2: 2. Let f be 

expressed by T product terms as in equation (8.30). 

T-1 

f(x,+n-1x,+n-2··· xo) = ~ X,+n-1 X,+n-2 ... xo 
i=O 

(8.30) 

where Xi E {I, Xi, xd, 0 ~ i ~ "I + n - 1. Then any individual subfunction fj can be 

represented by a subset of these T product terms in equation (8.31). 

T-1 

jj = ~ [X,+n-1X,+n-2 ... xnL . Xn-1 ... Xo 
i=O 

(8.31) 

where "." is the AND operation, j can be expressed by a binary "I-tuple, (j,-11,-2 ... joh, 

o ~ j ~ m - 1. In equation (8.31), if the "I MSBs of the ternary number of the product 

term X,+n-1X,+n-2 ... Xo covers j, then [X,+n-1X,+n-2 ... xn]j is 1; otherwise it is O. In 

other words, for each product term, X,+n-1X,+n-2··· Xo in equation (8.30), if its "I MSBs 

of the corresponding ternary number, defined in definition 8.2, covers j, then product term, 

Xn-1Xn-2··· xo, is included in equation (8.31). Otherwise, it is not included for fj. Hence 

the total product term number to realize these m subfunctions is T, which is the same 

product term number for the single output function f shown in equation (8.30). 

Proof. In equation (8.30), each mixed polarity product term, X,+n-1X,+n-2··· xo, can 

be divided into two parts, (X,+n-1X,+n-2··· xn) . (Xn-1 ... xo), where "." is the AND 

operation. The first part (X,+n-1X,+n-2 ... xn) can be replaced by all the pi-terms covered 
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by the product term according to lemma 8.2. Let every product term in equation (8.30) 

be symbolized as PTi = [XI'+n-1XI'+n-2 ... xoli' 0 :S i :S T - 1. From equations (8.29) and 

(8.30), we have, 

(8.32) 
i=O 

T-1 

~ [XI'+n-1 XI'+n-2 ... xoli (8.33) 
i=O 

T-1 

= ~ [(XI'+n-1 XI'+n-2 ... xn) . (Xn-1 ... XO)]i (8.34) 
i=O 

T-1 [(2ki _1 ) 1 ~ ~ [XI'+n-1XI'+n-2··· Xnlj . (Xn-1 ... XO) (8.35) 
z=O J=O i 

2ki-1 T-1 

~ ~ [[XI'+n-1 XI'+n-2··· Xnlj . (Xn-1 ... xo)L (8.36) 
j=O i=O 

In equation (8.35), ki is the number of variables whose corresponding ternary number 

of product term PTi is "2". Additionally, [XI'+n-1XI'+n-2··· xnlj is an pi-term covered by 

XI'+n-1XI'+n-2 ... xn. Compare equations (8.36) and (8.25), it can be concluded that each 

subfunction fj can be represented by XORing the product term Xn-1Xn-2 ... xo if the 'Y 

MSBs of the corresponding product term, XI'+n-1XI'+n-2··· xo, cover j. Thus equation 

(8.31) is proved. 

From Lemma 8.1, any product term in equation (8.30) can be used by at least one 

subfunction. Additionally, the product terms of any subfunctions are the subset of the 

product terms in equation (8.30). Therefore, the total product term number to realize all 

the subfunctions is the same as the product term number in equation (8.30). D 

Example 8.8. Suppose two 4-variable functions, gO(X3X2X1XO) and gl (X3X2X1XO) are merged 

into a 5-variable function 9 by adding an extra variable X4 so that 9 = go EEl X4g1 based on 

equation (8.25) in procedure 8.5. Suppose the expression of 9 is the same as in equation 

(8.24), 

(8.37) 

These four product terms can be denoted as ternary numbers, namely, (10110h, (00020)3,· 

(20001h, and (21011h. From theorem 8.1, the product terms of subfunction go are the 

ones whose MSB covers "0" based on the definition 8.2. Because both "0" and "2" cover 

"0", there are three product terms (00020h, (20001h, and (21011h whose MSB cover "0". 
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Therefore, go can be realized by XORing (0020h, (OOOIh, and (IOllh. Thus we have, 

(8.38) 

Similarly, the product terms of subfunction gl are the ones whose MSB covers "I" . From 

definition 8.2, there are three product terms, (10110h, (2000Ih, and (2IOllh that satisfy 

this condition. Therefore gl can be expressed in the following equation. 

(8.39) 

From equations (8.38) and (8.39), two product terms, Xo and X3X1XO, are shared by 

these two subfunctions. These two subfunctions, go and gl, can be realized by 4 product 

terms, that is the same product term number for function g. It is worthwhile to note that 

gl is different from the cofactor of 9 with respect to X4, gX4=1 = X2Xl EEl Xl· 

Suppose 9 is obtained by merging four 3-variable functions, g~(X2X1XO), g~ (X2X1XO), 

g~(X2X1XO) and g~(X2X1XO). From theorem 8.1, the product terms of subfunction g~ are 

the ones whose two MSBs cover "00". From definition 8.2, there are two product terms, 

(00020h and (2000Ih, that satisfy this condition. Hence g~ = Xl EEl Xo. In the same way, 
I 

gl = X3 X 1X O because it is only this product term whose two MSBs cover "01". Similarly, 

we have g~ = X2Xl EEl Xo and g~ = X1XO· 

From theorem 8.1 and example 8.8, it can be concluded that the more occurrences of the 

complemented form of extra variables, the more product terms are shared by subfunctions. 

Based on the previous discussion, the following procedure can be presented for mixed 

polarity Reed-Muller minimization. 

Procedure 8.6. Given an n-variable m-output Boolean function f in the conventional 

PLA format. First call the program in chapter 5 to convert it from SOP to FPRM format 

with polarity 0 and find the best polarity Pbest for function f. Then call the program again 

to convert it from SOP to FPRM format with polarity Pbest. Suppose all the on-set pi-terms 

and output parts are saved in lists lLl and ~. Let M be the number of on-set pi-terms in 

lLl and product term number T = O. 

(1) Call procedure 8.5 to merge the multiple outputs into single output by adding extra 

variables. 

(2) Call procedure 8.3 to simplify this single output function in the Reed-Muller domain 

directly, which excludes conversion and best polarity algorithms in procedure 8.3. Return 

an expression for f and the product term number T. 

(3) Apply theorem 8.1 to split the expression and produce the result for each subfunc­

tions. 

(4) Call procedure 8·4 to verify the result. 
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8.4.2 Very large functions 

For very large multiple output functions whose variable number is usually more than 25, 

the encoding approach in section 8.4.1 is not suitable because there are usually too many 

input variables for the merged single output function. For example, a 26-variable 50-

output function would be merged into a 32-variable function, which is not practical to run 

on a common PC. However, it is observed that there are many redundant variables for 

each individual function for these very large functions. In other words, each subfunction is 

usually dependent on a small number of these inputs. Therefore, each subfunction can first 

be simplified individually using procedure 8.3. Then merge the common product terms to 

reduce the product term number. Although this strategy is simple, it is very efficient based 

on our experimental results which are shown in the next section. 

8.5 Experimental results 

Procedure 8.6 has been implemented in C language. The input to the program is the 

conventional PLA format which is based on AND/OR operations. The program produces 

the RMPLA result of the function. This program is compiled by the GNU Compiler 

Collection egcs-1.1.2 and tested using MCNC and IWLS'93 benchmarks on a PC with 

Pentium-266 CPU and 64M RAM under Linux operating system. The comparisons with 

ESPRESso[26] are shown in tables 8.1 and 8.2, where "i/o" means the numbers of inputs 

and outputs respectively. In the column of "Reed-Muller Domain", the time to obtain the 

FPRM with the best polarity from the conventional SOP input is shown as "FPRM". The 

product term number and CPU time of the mixed polarity optimization are shown in the 

column of "Decomp. Method" as "term#" and "time" respectively. All the results have been 

verified using procedure 8.4. It can be seen from table 8.1 that the decomposition method 

can produce much less product terms than ESPRESSO for most testcases. For instance, 

"t481" needs 481 product terms to be implemented based on AND/OR operations while 

only 13 mixed polarity terms are sufficient based on AND /XOR operations. Due to the 

conventional SOP input format, most of the CPU time is actually spent on the FPRM 

forms. 

For very large multiple output functions, an alternative scheme, which is discussed in 

section 8.4.2, is applied. Instead of using encoding method to merge the multiple outputs 

into single output, the decomposition method is first applied for each individual function, 

then the common product terms are merged. It can be seen that for most testcases in table 

8.2, the decomposition method produces much better results than ESPRESSO with respect 

to product term numbers. 
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Reed-Muller Domain Boolean Domain 
testcase i/o timers) Decomp. Method ESPRESSO 

FPRM term# timers) term# timers) 

5xp1 7/10 0.06 63 0.03 65 0.07 
cm150a 21/1 512.35 17 0.02 17 0.01 

cmb 16/4 17.65 5 0.01 15 0.07 
f51m 8/8 0.12 51 0.01 76 0.06 
mux 21/1 287.76 16 0.01 16 0.01 
pcle 19/9 263.00 26 0.03 45 0.03 
pm1 16/13 34.18 25 0.03 28 0.05 
rd53 5/3 0.05 20 0.01 31 0.01 
rd73 7/3 0.08 63 0.02 127 0.09 
rd84 8/4 0.16 107 0.03 255 0.35 
t481 16/1 9.25 13 0.01 481 0.62 
tcon 17/16 56.22 25 0.04 24 0.01 

Table 8.1: Comparison with ESPRESSO for general multiple output functions 

Reed-Muller Domain Boolean Domain 
testcase i/o timers) Decomp. Method ESPRESSO 

FPRM term# timers) term# timers) 

apex6 135/99 3162.56 491 0.06 656 43.12 
b9 41/21 5.12 119 0.01 106 0.38 
c8 28/18 0.47 52 0.01 79 0.13 
cht 47/36 0.03 81 0.01 81 0.08 

count 35/16 583.81 64 0.01 169 0.31 
example2 85/66 7.23 234 0.01 329 1.53 

i6 138/67 0.03 239 0.03 202 0.37 
i7 199/67 0.05 268 0.01 264 0.78 

pcler8 27/17 2.67 40 0.01 53 0.20 
unreg 36/16 0.03 48 0.01 48 0.03 

x3 135/99 4554.53 536 0.09 656 46.97 
x4 94/71 14.79 374 0.05 520 5.49 

Table 8.2: Comparison with ESPRESSO for very large multiple output functions 

8.6 Summary 

Although there has been extensive research on AND /XOR forms, applications of Reed­

Muller logic have not become popular due to lack of efficient algorithms for mixed polarity 

minimization. In this chapter, an improved decomposition method is developed based on 

the concept of i-majority cubes[142] and top-down approach. Using the fast algorithms for 

fast conversion between SOP and FPRM formats in chapter 5 and the polarity optimization 

which is based on the concept of the polarity for SOP forms, the decomposition method is 

generalized to very large multiple output Boolean functions. Although the problem of Reed-
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Muller logic minimization is much more difficult than SOPs, the improved decomposition 

method can produce much better results, which is consistent with the conclusion in [126]. 

Therefore the developed program offers an important opportunity for the practical RMPLA 

applications for very large multiple output functions. 
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Chapter 9 

Conclusions and Future Work 

The aim of the project is to develop various algorithms for logic synthesis for both the 

standard Boolean logic and Reed-Muller logic, which are based on AND/OR operations 

and AND /XOR operations respectively. The main contributions of this thesis can be 

summarized as follows. 

I.- In chapter 3, the concept of two-level cube on a Karnaugh map is first general­

ized to a multilevel cube that can cover both "0" and "I" entries. Then an efficient 

procedure is presented to produce a multilevel form of any incompletely specified 

function on a Karnaugh map utilizing don't cares (DCs) generated as the function 

is decomposed. Further, an important property of Boolean functions, "containment" 

of cofactors is introduced so that new DCs, which are called functional DCs, can be 

generated to simplify large functions. The functional DCs are on function/logic level 

while satisfiability don't cares (SDCs) and observability don't cares (ODCs) are on 

circuit/network level. An algorithm based on the concept of multilevel cube and the 

property of "containment" is developed and implemented in C language. From the 

experimental results, more than 70% of the splits have the containment property for 

all the single output functions in the common benchmarks. The developed program 

can produce better results than script.rugged of SIS, both in area and speed for a 

number of testcases. 

I.- The above mentioned algorithm is improved with respect to variable order and split­

ting equation problems, then generalized to multiple outputs using the encoding 

method in chapter 4. This encoding strategy provides a new approach to simplify 

Boolean relations. Experimental results show that functional DCs which are based 

on the concept of containment are very effective not only for single output, but also 

for multiple output Boolean functions. 

I.- In chapter 5, the concept of polarity for canonical sum-of-products (SOP) Boolean 

functions is introduced. This facilitates efficient conversion between SOP and fixed 
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polarity Reed-Muller (FPRM) forms. New algorithms are presented for the bidirec­

tional conversion between the two paradigms. Multiple segment and multiple pointer 

techniques are employed to achieve fast conversion for large Boolean functions. Ex­

perimental results show that the algorithm is very efficient in terms of time and 

space for large Boolean functions. The algorithm is tested for randomly generated 

functions of up to 30 variables and 500, 000 on-set coefficients. 

I.- In chapter 6, a fast algorithm is proposed to convert from SOPs to FPRM forms 

without generating disjoint cube covers or functional decision diagrams. This pro­

cedure is based on the property of input redundancy and is tailored for very large 

multiple output Boolean functions. Test result shows that it only takes about 0.1 

seconds to convert a function with 199 inputs and 67 outputs run on a common 

personal computer. 

I.- The properties of the polarity for canonical sum-of-products expressions of Boolean 

functions are further examined and formalized in chapter 7. A transform matrix 

is developed to convert SOP expressions from one polarity to any other polarity. 

It is shown that the effect of SOP polarity is to reorder the on-set minterms of 

a Boolean function. Based on these properties, we achieve the transform matrix 

for fixed polarity Reed-Muller expressions for the conversion between two different 

polarities. Comparison of these two matrices shows that the Reed-Muller transform 

matrix has much more complex structure. Besides, the best polarity of FPRM forms 

with the least on-set terms corresponds with the polarity of SOP forms with the best 

"order" of the on-set minterms. Applying these features of the transform matrix, a 

fast algorithm is presented to obtain the best polarity for multiple output completely 

specified Boolean functions. The advantage of the algorithm is achieved by fast 

binary search strategy, instead of iterative AND or XOR operations. Furthermore, 

the speed of the algorithm does not depend on the number of outputs because the 

output part is taken collectively as a normal integer. Test results for benchmark 

examples of up to 25 inputs and 29 outputs are given run on a common personal 

computer. Previously it has been generally accepted that exact minimization of fixed 

polarity Reed-Muller forms is only suitable when the number of input variables is 

less than 15. 

I.- In chapter 8, decomposition techniques are utilized for mixed polarity Reed-Muller 

minimization, which lead to Reed-Muller programmable logic array implementations 

for Boolean functions. The proposed algorithm produces simplified mixed polarity 

Reed-Muller format from the conventional sum-of-products input based on top-down 

strategy. The output format belongs to the most general class of AND /XOR forms, 

namely exclusive-OR sum-of-products. This method is further generalized to very 

large multiple output Boolean functions. The developed decomposition method is 
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implemented in C language and tested with MCNC and IWLS'93 benchmarks. Ex­

perimental results show that the decomposition method can produce much better 

results than ESPRESSO for many testcases. This efficient method offers compact 

Reed-Muller programmable logic array implementations to add to their inherent ad­

vantage of easy testability compared to the conventional programmable logic array 

realizations. 

The above work can be further generalized and improved along the following lines. 

I.- The encoding problem described in section 4.4.2 can be solved with the help of the 

similar problem arisen in the traditional functional decomposition[104]. The solution 

may be applied to the minimization of Boolean relations[28] as slightly covered in 

section 4.4.1. 

I.- The idea of functional don't cares can be incorporated in other logic minimizers, such 

as SIS, to improve their performance. 

I.- The conversion algorithm for single output functions, presented in chapter 5, has been 

successfully generalized to very large multiple output Boolean functions in chapter 

6 based on redundancy removal strategy. Accordingly, the fast algorithm for exact 

polarity minimization in chapter 7 can be applied for very large multiple output 

Boolean functions based on the same strategy. 

I.- The mixed polarity optimization method in chapter 8 can be utilized for multilevel 

Reed-Muller minimization based on decomposition scheme. Little work has been 

done in this area[128]. 

I.- The above mentioned methods for Reed-Muller optimization can be further general­

ized to incompletely specified Boolean functions. 
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Disk Containing the Software 

The attached floppy disk contains the programs developed in the previous chapters. 

Please read the ReadMe.txt file for more information. 
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