
Automated Synthesis and Optimization of

Multilevel Logic Circuits

by

Lingli Wang

© Copyright by Lingli Wang 2000

A thesis presented in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

Napier University

School of Engineering

2000

Declaration

I declare that no portion of the work referred to in this thesis has been submitted in

support of an application of another degree, qualification or other academic awards of this

or any other university or institution of learning.

Lingli Wang

11

Acknow ledgements

I am deeply indebted to my research supervisor, Professor A. E. A. Almaini, School

of Engineering, Napier University, for his constant guidance, encouragement, friendship,

and interest to all that I did during this research. I am grateful to Professor Almaini for

taking his precious time to provide regular comments and invaluable suggestions. Many

ideas of this thesis were produced during our weekly meetings. He also taught me patiently

the proper style of scientific writing in English and corrected my research papers and this

thesis.

I would like to thank Mr Alex Bystrov, a former member of the digital techniques group,

for his essential support to help me learn Linux operating system and GNU C language

programming environment when I started this research.

Thanks are due to other members of the digital techniques group, especially Mr Yinshui

Xia and Mr Belgasem Ali, for their enjoyable working environment and various discussions.

I would like to thank our technician, Mr Jay Hoy for his kindly support to install Linux

operating system.

This project was funded by the School of Engineering (formerly the Department of

Electrical, Electronic and Computing Engineering), Napier University, Edinburgh. This

support is gratefully acknowledged.

Finally, I would like to thank my wife, Xiaowen Zhong, for her everlasting love, under­

standing and patience throughout my research work.

III

Contents

List of Abbreviations

List of Figures

List of Tables

Abstract

1 Introduction

1.1 A historic perspective of logic design

1.2 VLSI chip design methodology based on logic synthesis .

1.3 Two-Level versus multilevel logic synthesis

1.4 Reed-Muller logic based on AND /XOR operations

1.5 Structure of this thesis

2 Conventional Multilevel Logic Synthesis

2.1 Algorithmic approach

2.2 Rule-Based approach

2.3 BDD approach . . .

2.4 FPGA approach

2.5 Several other approaches based on perturbation

3 Multilevel Logic Minimization Using Functional Don't Cares

3.1 Introduction

3.2 Multilevel Karnaugh map technique

3.3 Multilevel logic synthesis for large Boolean functions

3.4 Experimental results

3.5 Summary

4 Multilevel Minimization for Multiple Output Logic Functions

4.1 Introduction.............

4.2 Review of Functional Don't Cares.

4.3 Simplification for single output functions

4.4 Multilevel minimization for multiple output functions.

IV

vi

IX

Xl

xii

1

1

4
7

8

10

12

12

15

16

18

20

22

22

23

29

38

40

41

41

41

44
46

4.5 Experimental results

4.6 Summary

5 Polarity Conversion for Single Output Boolean Functions

5.1 Introduction

5.2 Basic definitions and terminology

5.3 Conversion of the coefficients with zero polarity

5.4 Conversion of the coefficients with a fixed polarity

5.5 Conversion algorithm for large Boolean functions

5.6 Algorithm and experimental results.

5.7 Summary

49

50

51

51

51

53

56

61

65

70

6 Conversion Algorithm for Very Large Multiple Output Functions 71

6.1 Introduction. 71

6.2 Algorithm.. 74

6.3 Experimental Results. 76

6.4 Summary

7 Exact Minimization of Fixed Polarity Reed-Muller Expressions

7.1 Introduction.

7.2 Background .

7.3 Properties of the polarities for SOP and FPRM expressions

7.4 Best polarity for single output functions ..

7.5 Best polarity for multiple output functions.

7.6 Experimental results

7.7 Summary

8 Optimization of Reed-Muller PLA Implementations

8.1 Introduction

8.2 Review of the decomposition method

8.3 Improved decomposition method for large single output functions

8.4 Generalization to multiple output functions

8.5 Experimental results

8.6 Summary

9 Conclusions and Future Work

Publications

References and Bibliography

Disk Containing the Software

v

77

78

78

79

83

93
95
98

99

101

101

103

106

116

122

123

125

128

129

141

List of Abbreviations

ASIC

ATPG

BDD

BDP

BLIF

CAD

CLB

CNF

CMOS

CPU

DAG

DC

DD

DNF

EDA

EDIF

ESOP

Application Specific Integrated Circuit

Automatic Test Pattern Generation

Binary Decision Diagram

Binary Decision Program

Berkeley Logic Interchange Format

Computer Aided Design

Configurable Logic Block

Conjunction Normal Form

Complementary Metal-Oxide-Semiconductor

Central Process Unit

Directed Acyclic Graph

Don't Care

Decision Diagram

Disjoint Normal Form

Electronic Design Automation

Electronic Design Interchange Format

Exclusive Sum-Of-Products

EXOR(XOR) EXclusive OR operation

FDD

FPGA

FPLA

FPRM

GA

Functional Decision Diagram

Field Programmable Gate Array

Field Programmable Logic Array

Fixed Polarity Reed-Muller

Genetic Algorithm

VI

List of Abbreviations

GCC GNU Compiler Collection

GDB GNU DeBugger

HDL Hardware Description Language

IC Integrated Circuit

IWLS International Workshop on Logic Synthesis

KISS Keep Internal State Simple

LSB Least Significant Bit

LUT Look-Up Table

MCNC Microelectronics Center North Carolina

MIS Multilevel logic optimization system developed at Berkeley

MPGA Mask Programmable Gate Array

MSB Most Significant Bit

MUX Multiplexer

NP Nondeterministic Polynomial, Non-Polynomial

NRE N on-Recurring Engineering

OBDD Ordered Boolean Decision Diagram

ODC Observability Don't Care

OFDD Ordered Functional Decision Diagram

OVAG Output Value Array Graph

P &R Placement & Routing

PLA Programmable Logic Array

PLD Programmable Logic Device

PROM Programmable Read-Only Memory

PPRM Positive Polarity Reed-Muller

RMPLA Reed-Muller Programmable Logic Array

ROBDD Reduced Ordered Binary Decision Diagram

Vll

RTL

SCRL

SDC

SIS

SLIF

SOC

SOP

SRAM

VHDL

VLSI

XNF

List of Abbreviations

Register and Transfer Level

Split-level Charge Recovery Logic

Satisfiability Don't Care

Sequential Interactive System

Stanford Logic Interchange Format

System-On-Chip

Sum-Of-Products

Static Random Access Memory

Very large scale Hardware Description Language

Very Large Scale Integration

Xilinx Net-list Format

Vlll

List of Figures

Classical symbols for contacts 1.1

1.2 Moore's law the growth of Intel microprocessors

1.3 Historic perspective of logic design

1.4 A VLSI design model.

1.5 An ASIC chip design flow

1.6 Comparison between two-level and multilevel structures

1. 7 Structure of this thesis

2.1 DAG representation of a combinational Boolean network

2.2 A circuit pattern and its replacement

2.3 BDD representation of the Boolean function in example 2.1

2.4 Logic circuit from fig.2.3(b)

2.5 Typical FPGA architecture

2.6 Different partitions for the same Boolean network

3.1 Comparison between two-level and multilevel K-map methods

3.2 Multilevel K-map method for an incompletely specified function.

3.3 Two examples for definition 3.3

3.4 Examples of theorem 3.3 ...

3.5 An example of procedure 3.2

4.1 Explanation of the functional DCs

4.2 Example of functional DCs

4.3 Results of ryy6 with 16 inputs.

4.4 Simplification of Boolean relation

5.1 Bidirectional conversion between SOP and FPRM forms

5.2 Conversion algorithm using multiple segment technique.

5.3 Bidirectional conversion algorithm for large Boolean functions

5.4 CPU Time versus the number of on-set coefficients for conversion

5.5 CPU time for parity function conversions

IX

2

3

4

5

6

8

11

13

15

17

18
19

20

26

29
30

33

38

43

44
46

48

60

65

67
69

70

List of Figures

6.1 Functional decision diagrams for f = X2 EB XIXO EB X3X2XIXO

6.2 An example for algorithm 6.1

7.1 Example for a 3-variable 2-output Reed-Muller function

8.1 Limitation of i-majority m-cubes

8.2 Structures of Reed-Muller PLAs

8.3 Example of procedure 8.1

8.4 Order of ~-majority cubes

8.5 Example of procedure 8.2

8.6 Boolean function of example 8.4

8.7 Example for procedure 8.3

8.8 Example for procedure 8.4

x

73

75

98

104
104
108

110

112
113

115
117

List of Tables

1.1 Some commercial design synthesis tools 5

2.1 Brief comparison of FPGA programming techniques 19

3.1 Comparison for single output functions run on the same PC 39

4.1

4.2

5.1

5.2

5.3

5.4

6.1

6.2

7.1

7.2

8.1

8.2

Literal numbers with different encodings for table5

Results for multiple output functions .

Truth table of the criterion function gj

Example of multiple segment technique

Conversion results of some random coefficient sets .

Test results for conversion of parity functions

Distribution of dependent variables .

Experimental results of very large functions from IWLS'93 benchmark

Test results for small Boolean functions

Test results for large Boolean functions .

Comparison with ESPRESSO for general multiple output functions .

Comparison with ESPRESSO for very large multiple output functions

Xl

49

49

55

64

68

69

74

76

100

100

123

123

Abstract

With the increased complexity of Very Large Scaled Integrated (VLSI) circuits, multi­

level logic synthesis plays an even more important role due to its flexibility and compact­

ness. The history of symbolic logic and some typical techniques for multilevel logic synthesis

are reviewed. These methods include algorithmic approach; Rule-Based approach; Binary

Decision Diagram (BDD) approach; Field Programmable Gate Array(FPGA) approach

and several perturbation applications.

One new kind of don't cares (DCs), called functional DCs has been proposed for multi­

level logic synthesis. The conventional two-level cubes are generalized to multilevel cubes.

Then functional DCs are generated based on the properties of containment. The con­

cept of containment is more general than unateness which leads to the generation of new

DCs. A separate C program has been developed to utilize the functional DCs generated

as a Boolean function is decomposed for both single output and multiple output functions.

The program can produce better results than script.rugged of SIS, developed by UC Berke­

ley, both in area and speed in less CPU time for a number of testcases from MCNC and

IWLS'93 benchmarks.

In certain applications, ANDjXOR (Reed-Muller) logic has shown some attractive ad­

vantages over the standard Boolean logic based on AND JOR operations. A bidirectional

conversion algorithm between these two paradigms is presented based on the concept of po­

larity for sum-of-products (SOP) Boolean functions, multiple segment and multiple pointer

facilities. Experimental results show that the algorithm is much faster than the previously

published programs for any fixed polarity. Based on this algorithm, a new technique called

redundancy-removal is applied to generalize the idea to very large multiple output Boolean

functions. Results for benchmarks with up to 199 inputs and 99 outputs are presented.

Applying the preceding conversion program, any Boolean functions can be expressed

by fixed polarity Reed-Muller forms. There are 2n polarities for an n-variable function and

the number of product terms depends on these polarities. The problem of exact polarity

minimization is computationally extensive and current programs are only suitable when

n :::; 15. Based on the comparison of the concepts of polarity in the standard Boolean logic

and Reed-Muller logic, a fast algorithm is developed and implemented in C language which

can find the best polarity for multiple output functions. Benchmark examples of up to 25

inputs and 29 outputs run on a personal computer are given.

After the best polarity for a Boolean function is calculated, this function can be further

simplified using mixed polarity methods by combining the adjacent product terms. Hence,

an efficient program is developed based on decomposition strategy to implement mixed

polarity minimization for both single output and very large multiple output Boolean func­

tions. Experimental results show that the numbers of product terms are much less than

the results produced by ESPRESSO for some categories of functions.

xu

Chapter 1

Introduction

1.1 A historic perspective of logic design

In 1854, when George Boole published his principle work, An Investigation of the Laws of

Thought on Which Are Founded the Mathematical Theories of Logic and Probabilities, a

new branch of mathematics, Symbolic Logic, was established[22]. Logic propositions and

operations started to be represented by symbols although it had already been expressed by

natural language in times of Aristotle, the fourth century B.C. Ever since, great progress

has been made in the field of Symbolic Logic by the broad application of algebraic meth­

ods and facilities[36, 79, 95]. Until 1938, Symbolic Logic was used only as another tool

of philosophy and mathematics. In that year, a graduate student at Massachusetts In­

stitute of Technology recognized the connection between electronic switching circuits and

Symbolic Logic and published a classic paper, entitled" A Symbolic Analysis of Relay and

Switching Circuits" [135]. Based on that paper, both logic values, "TRUE" and "FALSE"

can be mapped into "MAKE" and "BREAK" states of a two-state device so that logic ma­

nipulations can be realized by switching circuits. Since then, many switching circuits and

systems for communication, automatic control, and data processing have been designed by

applying Symbolic Logic, which later came to be known as Boolean Algebra[63, 77, 84, 96,

99, 117].

During the early days, logic functions usually expressed by truth tables, Karnaugh

maps[84], and algebraic formulas, either DNFs(disjoint normal forms) or CNFs(conjunction

normal forms).l Besides, a two-state switch or contact is usually realized by relay, magnetic

core, rectifying diode, electron tube, or cryotron operated with the aid of electromagnet[77].

The physical nature of the two stable states may take such forms as conducting versus non­

conducting; closed versus open; charged versus discharged; positively magnetized versus

negatively magnetized; high potential versus low potential etc. The two states of a switch

were generally called "break" and "make" contacts whose common symbols are shown in

lThey are equivalent to SOP (sum of products) and POS(product of sums) forms respectively.

1

Chapter 1. Introduction

o--o----.r
I
1-0

1]
o~---;x~--<o

(a) symbols for break contacts

O~--+----<O

(b) symbols for make contacts

Figure 1.1: Classical symbols for contacts

Section 1.1

fig. 1. 1. This research, that can be found mainly in [63, 77, 99], becomes the classical

method of logic minimization for both combinational and sequential systems.

In 1947, the age of semiconductors arrived with the development of the first junction

transistors by William Shockley and his colleagues in Bell Labs of United States. The semi­

conductor transistors have great advantage over the traditional electromagnetic switching

devices in size, speed, power dissipation and reliability etc. In 1958, the world's first inte­

grated circuits (ICs) was developed by Jack Kilby in Texas Instruments where transistors,

resistors and capacitors along with their interconnecting wiring were fabricated on a single

piece of Germanium and glued to a glass slide. From then on, the integrated circuit technol­

ogy has progressed tremendously. In 1961, commercial ICs became available from Fairchild

Instruments. Four years later, Gordon Moore, co-founder of Intel, predicted that the num­

ber of transistors on a chip of integrated circuits could be doubled every 12 to 18 months.

His statement can still be validated by Intel microprocessors as show in fig.1.2[101]. Un­

fortunately, most of the classical methods of logic minimization are only suitable for small

Boolean functions. Therefore, these logic design methods must be improved to meet the

rapid growth of the semiconductor technology.

Although there are only several theorems in Boolean algebra to simplify Boolean func­

tions, the obtained results of minimization largely depend on how to select the orders of

these theorems and to which terms to apply them[84]. For large Boolean functions, there

are too many alternatives to be considered exhaustively. In 1976, the first general survey

of Boolean function complexity was introduced in [129]. Following that there was immense

research on the complexity of Boolean networks and their realizations that can be found in

2

Chapter 1. Introduction Section 1.2

N umber of Transistors
226 ,-------r-------,-------,-------,--------,-------,-------,

P~ntium III Xeon(866 MHz)<>
Mobile Pentium 11(400 MHz~ <>

8086<>

Intel Celeron (333 MHz)

Pentium Pro (200 MHz) <>
Pentium (66 MHz) <>

Intel486 DX <>

Inte1386 DX<>

80286 <>

210 ~ ______ L-______ ~ ______ ~ _______ IL_ ______ L_I ______ ~I ______ ~

1970 1975 1980 1985 1990 1995 2000 2005
Introduction Year

* These data are originally from "Intel Microprocessor Quick Reference Guide"

Figure 1.2: Moore's law - the growth of Intel microprocessors

[57J. It was realized that neither the traditional methods of switching theory nor manual

design was feasible for large functions. With the development of automatic physical design

methods for large Boolean systems[115, 123], several heuristic and efficient methods have

been applied to obtain "good" solutions for large Boolean functions with the aid of com­

puters. This process is typically called logic optimization or logic synthesis that was first

commercially available in 1980's[131]. Recently the designs of systems-on-a-chips (SOCs)

started to attract more and more organizations that lead to urgent demand for new genera­

tion logic synthesis tools[76]. In July of 1997, logic synthesis tools for designing Application

Specific Integrated Circuits (ASICs) and SOCs became available[13]. Expert systems may

be a new facility for logic synthesis[132]. Besides, Linux has been recommended to be

a new common operating system in EDA communities because it is the only candidate

offering a compatibility for both workstations and personal computers (PCs)[133].

On the other hand, there is a new challenge for Symbolic Logic proposed in Japan. In

their opinion, the current prevailing theory of Symbolic Logic needs a thorough revision

because of some crucial misunderstanding. Their newly developed theory is available in

the electronic book of Internet, Elements of the Reformed Theory of Logic[136]. It will not

be discussed here since this topic is beyond the coverage of this thesis. The above historic

perspective can be shown in fig.1.3, where "logic synthesis" is the subject of this thesis.

3

Chapter 1. Introduction

Natural Language Logic
Aristotle

about 400 B.C.

Symbolic Logic

Boole

Japan

1997

Circuits

1938

Figure 1.3: Historic perspective of logic design

Section 1.2

New Generation of
Logic Synthesis for SOCs

1990's

1.2 VLSI chip design methodology based on logic synthesis

The wide range of computer-aided design (CAD) tools for digital integrated circuits can

fall into four major categories based on the production of Very Large Scale Integration

(VLSI) components[59]: memories, microprocessors, Application Specific Integrated Cir­

cuits (ASICs), and Programmable Logic Devices (PLDs)[29, 108, 124]. Numerous indus­

trial applications can be implemented by either ASICs or field programmable gate arrays

(FPGAs) and offer distinct advantages. Besides, countless commercial design synthesis

tools are available and some of them are shown in table 1.1. Today's ASICs have a low

cost-per-gate advantage as well as an inherent speed advantage. In contrast, FPGAs have

been winning with their time-to-market and reprogrammability. This detail analysis and

prediction of the competition between ASICs and FPGAs is addressed in [14]. Additionally,

it can be seen that VHDL[113] and Verilog[140] are the most popular hardware description

languages (HDLs). Furthermore, each company usually applies different design methodol­

ogy. However, a unified model of design representation has been developed in [149]. It

is proposed that a model of design representation can be described by three separate do­

mains, namely behavioral, structural, and physical domains. Behavioral domain describes

the basic functionality of the design while structural domain the abstract implementation,

and the physical domain the physical implementation of the design. Each domain can

further be divided into five abstract levels that are architectural, algorithmic, register &

transfer, logic and circuit levels. This design model can be represented in fig.1.4 that is

quite similar to Y-chart in [65].

Based on the model in fig. 1.4, design synthesis is the process of translating a high

abstract level in the behavioral domain to a low level in the physical domain through

structural domain. Different design methodology may take different tracks on this model.

Moreover, not all the levels in this three domains need to be fitted neatly. For example,

silicon compilation can generate physical layout directly from behavioral description[15].

4

Chapter 1. Introduction Section 1.2

Organization System Description Input Environment

Bell Labs Design Synovation High-level VHDL & Verilog SunOS

Automation RTL Synthesis

Cadence Design FPGA Designer FPGA, PIC Schematic Unix

Systems ASIC Designer ASIC/IC design packages Verilog, VHDL

COlllpass Design ASIC Synthesizer FPGA, ASIC VHDL & Verilog Unix

Automation ASSP designs

Mentor Graphics AutoLogic II ASIC, PLD VHDL, Verilog Unix

PLD Synthesis II ABEL-4,JEDEC,

Synopsys Design Compiler ASIC, FPGA VHDL Unix

Family Verilog

Synplicity Synplify FPGA/CPLD VHDL Windows

Synplify Editor Verilog

Viewlogic Systems ViewSynthesis FPGA Design VHDL Unix

Windows

Table 1.1: Some commercial design synthesis tools

Architectural Level

Behavioral Structural

L

Floorplans

Clusters

hysical Partition

Physical

Figure 1.4: A VLSI design model

A typical ASIC chip design flow based on logic synthesis can be shown in fig.1.5.

It can be seen from fig.1.5 that three steps are involved in logic synthesis:

1. Convert the description from register transfer level to logic level consisting of AND / OR

5

Chapter 1. Introduction Section 1.3

Library

Figure 1.5: An ASIC chip design flow

gates, flip-flops, and latches. The description file in logic level may be in the formats

of KISS (Keep Internal State Simple), BLIF (Berkeley Logic Interchange Format),

SLIF (Stanford Logic Interchange Format), PLA(Programmable Logic Array), and

equations. All these formats can be converted to each other by Sr8[134].

2. Optimize the description through various available procedures by the criteria of area,

speed, power dissipation[19], or testability. This important process is typically called

logic optimization. Recently adiabatic circuits based on split-level charge recovery

logic(SCRL) is a new topic for low power VLSI design[62].

3. Produce a gate level net-list, usually in electronic design interchange format (EDIF)[58].

Comparatively speaking, step 2 is the most difficult one. In the last two decades, a lot of

heuristic techniques have been developed for logic minimization of large Boolean functions

and circuits. A new multilevel logic optimization method, based on functional don't cares

(DCs), will be proposed according to the criterion of area in chapter 3 and 4 of this thesis.

6

Chapter 1. Introduction Section 1.3

1.3 Two-Level versus multilevel logic synthesis

In the logic level of design synthesis, the two-level logic minimization is a mature and very

popular approach especially for control logic. Quine[117] laid down the basic theory that

was adapted later by McCluskey[96], known as Quine-McCluskey procedure. It basically

consists of two steps:

1. Generate all the prime implicants from on-set minterms of a Boolean function;

2. Select an optimal subset of these primes that cover all the on-set minterms of the

function.

Even though the primes can be efficiently produced in [78], solving the covering problem

is known as an NP-complete problem. Thus this technique becomes impractical for large

Boolean functions. The next important contribution in this area is MINI[78] that was

further developed into ESPREsso[26], the most powerful and popular two-level minimizer

up to date. It is possible for ESPRESSO to find "very good" solutions for incompletely

specified functions with hundreds of inputs and outputs in a reasonable time. There is one

main loop consisting of four main procedures in ESPRESSO, EXPAND, ESSENTIAL_PRIME,

IRREDUNDANT _ COVER, and REDUCE. EXPAND replaces the previous cubes by prime

implicants and assures the cover is minimal with respect to single-cube containment. Then·

ESSENTIAL _ PRIME extracts the essential primes and put them in the don't care set.

Following that IRREDUNDANT _ COVER find an optional minimum irredundant cover by

deleting totally redundant cubes. Finally, REDUCE procedure reduce all the cubes to

be smallest that cover only necessary on-set minterms. Although REDUCE produces a

non-prime cover, it can facilitate improvement in the subsequent iterations over the local

minimum result obtained by IRREDUNDANT _ COVER.

Two-level logic and its Programmable Logic Array (PLA) implementations shown in

fig.1.6(a) provide good solutions to a wide class of problems in logic design. However,

there are situations, especially for large multiple output circuits, where multilevel design

is desirable and more effective. It facilitates sharing and simplifies testing. For example, a

simple logic circuit,

(1.1)

which can be shown in fig.1.6(b), has three levels. In the first level, the product term

XOX3 is generated, which is an AND level. In the second level, both (XOX3 + X2) and

(xo + Xl) are generated with an OR level. Finally, they are combined by an AND gate to

produce the output for the function. Additionally, multilevel realization is useful for both

control and data-flow logic[25]. However, multilevel logic circuits are much more difficult

to be synthesized than two-level circuits. In 1964, Lawler proposed an approach for exact

7

Chapter 1. Introduction

Inputs

Programmable Array

of AND gates

Product terms

Programmable Array

of OR gates

Outputs

(a) Two-Level programmable logic array (PLA) structure

(b) A simple example for multilevel logic circuit

Figure 1.6: Comparison between two-level and multilevel structures

Section 1.4

multilevel logic minimization[90]. All the multilevel prime implicants are first generated,

then a minimal subset is found by solving a covering problem using any method for two­

level minimization. As an exact optimization method, it is only suitable for small Boolean

functions on account of high computational complexity. In the last two decades, many

heuristic techniques have been developed that will be reviewed in chapter 2.

1.4 Reed-Muller logic based on AND /XOR operations

It was presented in the classic paper [135], published in 1938, that any n-variable Boolean

function f can be expanded by Shannon expansion based on AND/OR operations as

8

Chapter 1. Introduction Section 1.4

follows.

(1.2)

where 0 :::; i :::; n-1, and !Xi=O and !Xi=l are called the cofactors of! with respect to Xi.

Alternatively, any Boolean function can be represented based on AND jXOR operations,

which is called Reed-Muller expansion[103, 119]. In contrast to equation (1.2), there are

three basic expansions using AND jXOR operations, which are shown in equations (1.3) -

(1.5).

!(Xn-lXn-l ... xo) = XdXi=O EB XdXi=l (1.3)

(1.4)

(1.5)

In logic synthesis process, Reed-Muller logic methods are important alternatives to

the traditional SOP approaches to implement Boolean functions. Currently, the widely

used logic minimizers for SOP forms, such as ESPREsso[26] and 8rs[134] are based on the

"unate paradigm", according to which most of the Boolean functions of practical interest

are close to unate and nearly unate functions. While the category of unate and nearly

unate functions covers many control and glue logic circuits, these minimizers perform

quite poorly on other broad classes of logic[154]. For instance, the unateness principle does

not work well for arithmetic circuits, digital signal processing operations, linear or nearly

linear functions, and randomly generated Boolean logic functions[72, 126]. However, Reed­

Muller realization is especially suitable for these functions[2, 46]. For example, to represent

a parity function with n variables, ! = xOEBxl EB· . ·EBxn-l, an SOP form needs 2n- 1 product

terms while only n terms are sufficient for an AND jXOR expression. Additionally, circuits

based on ANDjXOR operations have great advantage of easy testability [44, 92, 118].

Applications of Reed-Muller logic to function classification[143], Boolean matching[144]'

and symmetry detection[145] have also been achieved.

Due to the lack of an efficient Reed-Muller logic minimizer, applications of Reed-Muller

implementations have not become popular despite these advantages. It is generally ac­

cepted that the optimization problem for Reed-Muller logic is much more difficult than

the standard Boolean logic. One of the main obstacles is the polarity problem, including

9

Chapter 1. Introduction Section 1.5

fixed polarity and mixed polarity, which does not exist in SOP forms for the standard

Boolean logic. For a fixed polarity Reed-Muller (FPRM) form, the number of product

terms largely depends on the polarity for the same function. Further, any Boolean function

can be represented canonically by FPRM forms while it does not hold for mixed polarity

expressions. Conventionally, Boolean functions are represented by AND/OR operations,

instead of AND /XOR operations. Thus, the optimization of Reed-Muller logic consists of

conversion algorithm between SOP and FPRM formats, fixed polarity and mixed polarity

minimization. These will be discussed in chapters 5 to 8.

1.5 Structure of this thesis

Any Boolean function can be represented by two paradigms, which are based on AND/OR

and AND /XOR operations respectively. Correspondingly, there are two main parts in this

thesis as shown in fig. 1.7. The first part is multilevel logic minimization based on AND/OR

operations. The conventional methods for multilevel logic synthesis are reviewed in chapter

2 based on AND/OR operations. A new type of don't cares (DCs), functional DCs, are

introduced comparing with satisfiability DCs and observability DCs. The usefulness of

functional DCs is discussed for single output functions in chapter 3 and for multiple output

functions in chapter 4 respectively. The second part deals with Reed-Muller logic which is

based on AND /XOR operations. A mutual conversion algorithm is first proposed to convert

a single output Boolean function between SOP and FPRM formats in chapter 5 and for

very large multiple output functions in chapter 6 respectively. There are 2n polarities for

an n-variable function, and the number of on-set product terms largely depends on the

polarity. Therefore a fast algorithm in presented in chapter 7 to find the best polarity

for a function, which corresponds with the least number of on-set product terms. This

FPRM form with the best polarity can be further simplified with respect to the number

of product terms by combining the adjacent terms. Consequently, the result is in mixed

polarity Reed-Muller forms, which is covered in chapter 8. Finally, the main improvements

and contributions are summarized and some future work is suggested in the "conclusions

and future work".

10

Chapter 1. Introduction

Chapter 1

Introduction

.... ..,+"' f' ,

Section 1.5

Standard Boolean logic

ANDIOR
Operations

Reed .. Muner Logic

AND/EXOR
Operations

f
Chapter 2

Review of Multilevel Two-Level
Conventional Functional SOP
Multilevel DCs Expressions

Boolean
Functions

(Logic Level)
f +z

Chapter 7

Two-Level Two-Level
PPRMs FPRMs and

Methods L J
C/""~'4

Single Output Multiple Output Conversion

Optimization

Functions Functions Algorithm

ChapterS Chapter 6
Single Output Multiple Output

Chapter 8

Two-Level
Mixed Polarity
Minimization

Functions Functions

~'--______ ----J'
t

Conclusions
and

Future Work

PPRMs: positive polarity Reed-Muller expressions
FPRMs: fixed polarity Reed-Muller expressions

Figure 1.7: Structure of this thesis

11

Chapter 2

Conventional Multilevel Logic

Synthesis

2.1 Algorithmic approach

The algorithmic approach to multilevel logic optimization consists of defining an algorithm

for each transformation type, including elimination, decomposition, extraction, factoring,

and substitution. These transformations are manipulated based on the concept of Boolean

networks[74J.

Definition 2.1. A Boolean network 'T/ for n-variable m-output functions is an intercon­

nection of p Boolean functions defined by a five-tuple (f, y, 1,0, dX), consisting of:

1. f = (fo, il," . ,fp-d, a vector of completely specified logic functions. Each of them

is a node in the network.

2. Y = (Yo, Y1,'" ,Yp-1), a vector of logic variables (signals of the network) where Yi

has a one-to-one correspondence with fi, 0 ::; i ::; p - 1. In other words, the output of a

node can be an input for other nodes.

3. 1= (10, h,' .. ,In-d, a vector of externally controllable signals as primary inputs.

4. 0 = (0o, 0 1 , ... ,Om-d, a vector of externally observable signals as primary out­

puts.

5. dX = (di, df,··· ,d~_d, a vector of completely specified logic functions that

specify the set of don't care minterms on the outputs of'T/ where X = Yr.

For combinational logic functions, a Boolean network is usually equivalent to a Directed

Acyclic Graph (DAG) as show in fig.2.1. Elimination, collapsing or flattening of an internal

node of a Boolean network is its removal from the network, resulting in a network with one

less nodes. Decomposition is the process of re-expressing a node as a number of sub-nodes

so that these sub-nodes may be shared by other nodes in the network. Extraction, related

to decomposition, is the process of creating a new common sub-node for several interme­

diate nodes in the network. Consequently, the structure of all these intermediate nodes

12

Chapter 2. Conventional Multilevel Approaches Section 2.1

are simplified. The optimization problem associated with the extraction transformation is

to identify a set of common sub-nodes such that the resulting network has minimum area,

delay, power dissipation, maximum testability or routability[41]. If the sum-of-products

form of Boolean functions are considered as polynomial expressions, rather than Boolean

expressions, then factoring the common polynomial terms will lead to a simpler structure

of the corresponding network. The factoring problem is how to find a factored form with

the minimum number of literals. Substitution or resubstitution, is the inverse transforma­

tion of elimination. It creates an arc in the Boolean network connecting the node of the

substituting function to the node of the substituted function[50, 100].

(p nodes)

d X

Nodei

Primary output
(0)

Figure 2.1: DAG representation of a combinational Boolean network

Among these transformations, division operation, the inverse process of product op­

eration, plays a very important role to identify a common sub-expression. Given two

expressions, F and P, find expressions Q and R, such that F = p. Q + R, where Q and R'

are quotient and remainder respectively. If "." and "+" are taken as algebraic operations,

then this is algebraic division, or weak division; otherwise, if they are taken as Boolean

operations, then this is Boolean division. Comparatively speaking, algebraic division is

faster but neglects other useful properties of Boolean algebra except distribute law. How­

ever, due to the lack of an efficient algorithm, Boolean division has rarely been applied[37].

A widespread concept of kernel is first proposed in 1982 based on algebraic division as

follows[24].

Definition 2.2. The kernels of an expression F for a Boolean function f are the set of

K(F),

K(F) = {gig E D(F) and g is cube free}

13

Chapter 2. Conventional Multilevel Approaches Section 2.2

where

D(F) = {Fie I e is a eube}

and g is cube free means that there is no cube to divide it evenly and "I" is algebraic

division.

Example 2.1. A four-variable completely specified function f(x3x2x1xo) = ~{O, 1,2,5,8,

9, 10} has a minimal two-level expression F1 as follows,

(2.1)

In equation (2.1), Xo +X1, X2 +X3XO are the kernels[24] so that F1 can be simplified to

F2 or F3 by algebraic division in equations (2.2) or (2.3).

(2.2)

and

(2.3)

Both equations (2.2) and (2.3) are not the minimal multilevel forms because this func­

tion f can also be expressed by F4 using Boolean division in equation (2.4).

(2.4)

In addition to algebraic division technique, another facility that is extensively used

is don't care method, including both satisfiability don't cares (SDC) and observability

don't cares (ODC)[17, 130] in the logic level although there are more DCs in high level

synthesis[20, 23]. These DCs are shown as dX in fig.2.1. Generally, SDCs and ODCs are

quite large and complex[38]. Hence filters are needed to reduce the size so that only the

useful portions are retained[125].

Within Mrs[27] that was further developed into Srs[134], there are many algorithms to

compute the kernels and realize the previous five types of transformations. Additionally,

some scripts are included in Srs to obtain good results for different kinds of functions.

Extensive experimental results for Srs have been reported in [1].

14

Chapter 2. Conventional Multilevel Approaches Section 2.3

2.2 Rule-Based approach

Rule-based systems are a class of expert systems that use a set of rules to determine the

action to be taken to minimize a Boolean network[18, 47]. The network undergoes local

transformations[48] that preserve its functionality by a stepwise refinement.

A rule-based system may consist of[100]:

I.- A rule database that contains two types of rules: replacement rules and meta-rules.

The former abstract the local knowledge about subnetwork replacement and the latter

the global heuristic knowledge about the convenience of using a particular strategy

(i.e. applying a set. of replacement rules).

I.- A system for entering and maintaining the database.

I.- A controlling mechanism that implements the inference engine.

A rule database contains a family of circuit patterns and the corresponding replacement

for both replacement rules and meta-rules according to the overall goal, such as optimizing

area, speed, power dissipation or testability. Several rules may match a pattern, and a

priority scheme is used to choose the replacement. For example, a circuit pattern is shown

in fig.2.2, when it is acknowledged by the rule-based system, it will be replaced by a smaller

circuit.

a-;-------/

b-.----i
c

e

d~
Figure 2.2: A circuit pattern and its replacement

A major advantage of this approach is that rules can be added to the database to cover

all thinkable replacements and particular design styles. This feature plays a key role in the

acceptance of optimization systems, because when a designer could outsmart the program,

the new knowledge pattern could then be translated into a rule and incorporated into the

database.

The major disadvantage in the rule-based system is the order in which rules should be

applied and the possibility of look-ahead and backtracking. This is the task of the control

algorithm, that implements the inference engine. Further discussion and experimental

results can be found in [18, 47, 66].

15

Chapter 2. Conventional Multilevel Approaches Section 2.3

2.3 BDD approach

Binary Decision Diagrams (BDDs) were first proposed as Binary-Decision programs (BDPs)

in 1959[91], which are further generalized by Akers in 1978 and represented them as

diagrams[12]. Early research results can be found in [102]. Any Boolean function can

be expressed by a BDD based on the following definition[31].

Definition 2.3. A BDD is a rooted directed graph with vertex set V containing two

kinds of vertices, terminal and nonterminal vertices. If a vertex is a terminal vertex, then

it is associated a value of either 0 or 1 denoted as value(v) E {O, I}; otherwise, if it is a

nonterminal vertex then it has as attribute an argument index, index(v) E {a, 1, ... ,n -I}

and two children, low(v), high(v) E V. An n-variable Boolean function I can be expressed

by the value of the root vertex. Any vertex v corresponds with a Boolean function Iv
defined recursively as:

1) If v is a terminal vertex:

a) Ifvalue(v) =1, then Iv = 1;

b) Ifvalue(v) =0, then Iv = 0.

2) If v is a nonterminal vertex with index(v) = i, then Iv is the function

Iv = xdzow(v) + Xdhigh(v) (2.5)

In example 2.1, a Boolean function I(X3X2XIXO) = I:{O, 1,2,5,8,9, 10} can also be ex­

pressed by a BDD as in fig.2.3(a) corresponding with equation (2.4). Each path from the

root vertex to any terminal vertex corresponds to either an on-set or off-set product term.

In fig.2.3(a), there are three paths A, Band C, from the root vertex to "I" terminal ver­

tex. They correspond to three on-set products, X2XO, X2XIXO, and X3X2XIXO respectively.

Putting these products together leads to another form F5 of this function f.

(2.6)

Notice there are two common edges between path Band C. Thus another multilevel

form can be obtained as follows.

(2.7)

There are several operations directly manipulated on BDDs, RESTRICTION, COMPOSI­

TION, SATISFY, and ApPLY etc[31]. The most complex operation is ApPLY through which

16

Chapter 2. Conventional Multilevel Approaches Section 2.3

(a) with variable order (xO,xl,x2,x3) (b) with variable order (xl,xO,x2,x3)

Figure 2.3: BDD representation of the Boolean function in example 2.1

two BDDs, G1 and G2 are combined as one BDD, G = G1 <op> G2 where op is any

Boolean operation.

A BDD can be simplified by the following two rules:

1. If low(v) = high(v), then v can be deleted;

2. If the subgraphs rooted by v and Vi are isomorphic, then v and Vi can be merged to

one vertex.

A reduced BDD that has been simplified by these two rules is unique for any Boolean

function if the variable order is fixed[31]. In fig.2.3(b), another BDD is shown for the same

function as in fig.2.3(a) but with different variable order. It can be seen that fig.2.3(b)

has one more vertex than fig.2.3(a). The unique BDD corresponding with a fixed variable

order is called reduced ordered BDD(ROBDD). Therefore, the equivalence of two Boolean

functions can be checked through ROBDDs. This technique has been incorporated into

S18[134].

A logic circuit can be constructed from a BDD if each node is replaced by a multi­

plexor(MUX). The circuit corresponding with fig.2.3(b) is shown in fig.2.4.

A BDD with less node number corresponds with a simpler logic circuit realized with

MUXes. Hence the minimization of the number of nodes of a BDD is quite important[109].

17

Chapter 2. Conventional Multilevel Approaches Section 2.4

f

Figure 2.4: Logic circuit from fig.2.3(b)

Unfortunately, the size of a BDD, that is its node number, is very sensitive to the ordering

of variables. There have been extensive research on the variable ordering of BDDs[7, 9-

11, 16, 34, 55, 80, 110, 122, 159]. Furthermore, some functions do not produce efficient

results when processed using BDDs. For example, the sizes of the BDDs for representing

arithmetic functions such as multiplication are known to increase exponentially with the

number of input variables[75]. Therefore, a lot of other formats of decision diagrams, such

as reversed ROBDDs[32], hybrid DDs[40], output value array graphs(OVAG)[82], edge­

valued BDDs[89] and partitioned ROBDDs [107]' have been proposed for different types

of Boolean functions that were surveyed in [30, 52]. The research on testability for BDDs

can be found in [33].

2.4 FPGA approach

The first type of user-programmable chip that could implement Boolean functions was

the Programmable Read-Only Memory(PROM) introduced at the beginning of 1970s.

Simple logic functions can be created using PROMs as a look-up table which stores the

truth table of the function. The function inputs are connected to the address lines and

the function truth table is programmed into the memory array for each function output.

Field-Programmable Logic Array(FPLA) or simply PLA, shown as in fig.1.6(a), was later

developed specially for implementing large logic circuits by Signetics in 1975, where both

AND and OR planes are programmable. In section 1.3, it is discussed that multilevel

18

Chapter 2. Conventional Multilevel Approaches Section 2.4

logic networks usually offer more general structures and better solutions for large com­

plex circuits. Therefore, Field-Programmable Gate Array (FPGA) was first introduced

by the Xilinx company in 1985[139] to meet the general multilevel structures. FPGAs

have much more density on a chip than PLAs with the technological evolution while the

reprogramming time and cost are drastically reduced comparing with mask programmable

gate arrays(MPGAs). The FPGA market has expanded dramatically with many differ­

ent competing designs, developed by companies including Actel, Advanced Micro Devices,

Algotronix, Altera, AT&T, Cypress, Intel, Lattice, Motorola, Quick Logic, and Texas In­

struments etc. A generic FPGA architecture, shown in fig.2.5, consists of an array of logic

elements together with an interconnect network which can be configured by the user at

the point of application. This kind architecture has a very good correspondence with the

definition of Boolean network in fig.2.1. Each node in the Boolean network is mapped into

a logic block while the interconnection among the nodes can be configured inside a FPGA.

Hence, user programming specifies both the logic function of each block and the connections

between the blocks. The programming technologies used in commercial FPGA products

include floating gate transistors, anti-fuses, and Static Random Access Memory (SRAM)

cells. A brief comparison among these programming techniques is shown in table2.1[83].

Technique

EPROM
EEPROM
Anti Fuse

SRAM

Configurable
Block

Configurable

Figure 2.5: Typical FPGA architecture

Volatile Series Relative
Storage Resistance(O) Capacitance

no 2K 10
no 2K 10
no 50-500 1.2-5.0
yes 1K 15

Relative
Cell Area

1
2
1
5

Table 2.1: Brief comparison of FPGA programming techniques

19

Chapter 2. Conventional Multilevel Approaches Section 2.5

The design flow for FPGA chip is different from fig.1.5. Taking an example of Xilinx

XACT design system, the description file after logic synthesis must first be translated into

Xilinx Net-list Format (XNF), which is understood by Xilinx tools. Then in the technology

mapping step, the XNF file is mapped into Xilinx Configurable Logic Blocks (CLBs). This

step is very important because a Boolean network can be mapped into different CLBs

based on different partitions. In fig.2.6, a Boolean network is partitioned into two different

CLBs that lead different structure and cost in FPGA realizations. There has been a lot of

research in this area, merging logic optimization with technology mapping[41]. In the next

step, automatic placement assigns each CLB a physical location on the chip using simulated

annealing algorithm. After the physical placement and routing (P&R) is completed, a BIT

file is then created which contains the binary programming data. The final step is to

download the BIT file to configure the SRAM bits of the target chip. Since all the logic

blocks have been prefabricated on the chip, FPGA designs have been winning over ASICs

with its time-to-market, low NRE(non-recurring engineering) fees, and reprogrammable

features[14]' especially for small volume of products.

Figure 2.6: Different partitions for the same Boolean network

2.5 Several other approaches based on perturbation

There are some other methods for exploiting don't cares in Boolean networks. Muroga

proposed transduction method, an acronym for transformation and reduction, based on

the concept of permissible functions[105]. If replacing a node of function f in a Boolean

network with another node of function 9 applying DCs of the network does not change the

output, then 9 is called a permissible function for f. After the replacement, the network can

be transformed either locally or globally so that some redundant part in the network can be

removed. These transformations and reductions are repeated until no further improvement

is possible without changing the network outputs. These ideas were employed in the design.

system, SYLON[106] for CMOS circuit design.

The idea of logic perturbation by rearranging the structure of the network without

affecting its behavior, has been further applied for both combinational and sequential

20

Chapter 2. Conventional Multilevel Approaches Section 2.5

circuits[45]. With the help of efficient automatic test pattern generation (ATPG) tech­

niques, redundancy addition and removal method was proposed based on perturbation in

[39]. Some other results about perturbation can be found in [160, 161].

21

Chapter 3

Multilevel Logic Minimization Using

Functional Don't Cares

3.1 Introduction

Multilevel logic synthesis is a known difficult problem although it can produce better re­

sults than two-level logic synthesis methods. In [90], multilevel prime implicants are first

generated from a Boolean function, then a minimal form of these prime implicants is

selected by solving a covering problem using any method for conventional two-level min­

imization. As an exact optimization method, it is only suitable for small functions due

to the high computational complexity. In the last two decades, many heuristic methods

have been proposed[24-25, 37, 50-51, 74, 100, 134, 160-161]. In most algorithmic methods,

algebraic division plays an important role to decompose a function. Unfortunately, alge­

braic division applies the distribute law only, neglecting other useful properties of Boolean

algebra. Besides, DCs can not be used[100]. As for its counterpart, Boolean division,

there is no effective algorithm to find a good divisor. To compute the quotient for a

given divisor, a large amount of implicit don't cares, SDCs(satisfiability don't cares) and

ODCs(observability don't cares) should be generated and then a two-level minimizer[50J

is used. This approach has rarely been used because of its complexity[37, 51]. Moreover,

both of these kinds of divisions depend largely on the initial expressions[25]. Consequently,

there are different standard scripts, as used in Sr8[134], that can give quite different results

for the same problem. Sometimes, further running a script may deteriorate the result.

Other Boolean methods can be found in [25, 74, 87, 100, 160J.

Traditionally, the systematic approach to multilevel logic synthesis is known as func­

tional decomposition[43J. The main problem with this approach is to find the minimum

column multiplicity for a bound set of variables based on simple disjunctive decomposition,

multiple disjunctive decomposition and some more complicated decomposition methods

[112]. A renewed interest in functional decomposition is caused by the introduction of

22

Chapter 3. Functional DCs for Single Output Functions Section 3.2

Look-Up table FPGAs recently[41]. There, a given switching function is broken down into

a number of smaller subfunctions so that it can be implemented by the basic blocks of the

FPGAs.

The DCs discussed in this chapter are based on the functionality while the implicit

SDCs and ODCs are based on the topology of a Boolean network. In addition, these

functional DCs are different from the DCs generated on variable-entered Karnaugh maps[2,

71]. A new efficient method to apply these functional DCs for multilevel logic synthesis is

proposed according to a criterion based on the number of literals.

3.2 Multilevel Karnaugh map technique

Any Boolean function can be decomposed by Shannon expansion as follows,

f = xdlxi=l + xdlxi=O

(Xi + flxi=O)(Xi + flxi=r)

(3.1)

(3.2)

where flxi=O and flxi=l are the cofactors of f with respect to Xi and Xi. In the

Karnaugh map, the effect of the decomposition of equation (3.1) is to split the map into two

sub-maps of equal dimensions covered by cubes Xi and Xi. The split is applied recursively

until no off-set is covered based on the different orders of variables. All these cubes of the

sub-maps are linked by the OR operation which leads to the expression of the function.

This is the traditional two-level Karnaugh map technique where no DCs are generated after

the selection of a cube[2]. It is similar to the decomposition of equation (3.2). The main

purpose for two-level logic minimization is to find the least number of cubes and literals

in each cube, that is equivalent to the best order of variables to decompose the function.

For example, f(X3X2XIXO) = 2:(2,3,5,7,11,13,15) is shown in fig.3.1(a), where the blank

entries on the map are "0" outputs. Splitting this map recursively with respect to Xo and

Xl leads to a cube XIXO, which covers no off-set but 4 on-set minterms. Similarly, splitting

this map recursively with respect to xo, X2 and Xl, X2, X3 respectively leads to two cubes

X2XO and X3X2XI, which covers no off-set but all the remaining on-set minterms. Therefore,

this function can be expressed by linking these three cubes with the "OR" operation as in

equation (3.3).

(3.3)

In the previous two-level minimization, no DCs are generated. Actually, after the selec­

tion of a cube, all the on-sets covered by this cube can be used as DCs for the subsequent

minimization. This idea will be generalized to multilevel cubes as will be shown in defini-

23

Chapter 3. Functional DCs for Single Output Functions Section 3.2

tion 3.1 and will consequently lead to multilevel forms. In [93], a concept of pseudocube is

presented that has a more general form than the two-level cube since the XOR operation

is incorporated. Any arbitrary Boolean function can then be expressed as a three-level,

AND-XOR-OR form that has less literal number than the standard two-level form of sum

of products(SOP) in general. A pseudo cube enjoys some useful properties but still covers

"I" entries only on a Karnaugh map. In this chapter, the concept of a cube on a Karnaugh

map is generalized in the following definition.

Definition 3.1. A multilevel cube on a Karnaugh map is the same as a two-level cube

except that it can cover both "0" and "I" entries, where "DC" is used to indicate a don't

care minterm which can be either "0" or "I".

Definition 3.2. A Karnaugh map M will produce its complemented Karnaugh map M'

by interchanging the entries of "0" and "I" while DCs remain the same.

Theorem 3.1. Given a Karnaugh map of an incompletely specified single output n-variable
k

function f(xn-l,xn-2,"'xo), and a multilevel cube c = ITxi = XkXk-l"'XO, that may
i=O

cover the entries of "1 ", "0" and "DC", 0 ::; k ::; n-1, Xi E {Xi, Xi}, Xi E {Xn-l, Xn-2, ... xo},

then f can be decomposed as in equation (3.4) or (3.5).

f ch+12

Xk'" xlxoh + 12

Xk ... xlxo13 + 12

f (c + f4)f5

= (Xk'" XIXO + f4)f5

= (Xk'" XIXO + 16)f5

(3.4)

(3.5)

In equation (3.4), h is a function of n-k-l variables whose Karnaugh map is exactly

the n-k-l dimensional sub-map that is inside cube c; the Karnaugh map of 12 is the same as

M except that any entry of "1" covered by cube c can be taken as "DC"; and the Karnaugh

map of 13 is the complemented Karnaugh map of h. In equation (3.5), f4 is the function

whose Karnaugh map is exactly the sub-map covered by cube c; the Karnaugh map of is is

the same as M except that any entry of "0" covered by cube c can be taken as "DC"; and

the Karnaugh map of f6 is the complemented Karnaugh map of f4·

Proof. We will proof equation (3.4) only since equation (3.5) is the dual form of equation

(3.4). Moreover, in equation (3.4) only f = Xk ... xlxoh + 12 needs proving on account of

definition 3.2.

The entries of "I" on the Karnaugh map M can be divided into two parts:

24

Chapter 3. Functional DCs for Single Output Functions

Part A: entries that are inside cube c;

Part B: entries that are outside cube c.

Section 3.2

If all these entries of "I" are covered, then 1 is realized. From the definitions of hand

12, all "I" entries in part A are covered by ch, all "I" entries in part B are covered by 12.
Now we need to prove that h doesn't include any variables in c.

Because ° AND x = 0, x E {O, 1, DC}, all the entries outside of cube c on the map

can be used as DCs while minimizing function h. Suppose there is a term, xjF, in the

two-level SOP expression of 11, X j is a literal of the variable x j, j E {O, 1, .. , ,k}, then

there must be a cube xjF that is outside cube xjF, whose entries can be used as DCs

on the Karnaugh map. Let all these DCs inside the cube xjF be "I" so that we have

xjF + xjF = F. Therefore, deleting Xj from xjF will not change the function ch. From

this point, h doesn't include any variable in c. In other words, the Karnaugh map of h is

exactly the n-k-l dimensional sub-map that is inside cube c.

When all the "I" entries inside cube c have been covered by ch, they can be considered

to be DCs for minimizing 12 since 1 + x = 1, x E {O, 1, DC}.

o

Example 3.1. Equation (3.3) is the minimal two-level expression without the aid of DCs

for the function shown in fig.3.1(a). Now, apply theorem 3.1 to obtain the multilevel

expressions utilizing DCs of functional decomposition. Suppose a multilevel cube Xo is

selected first that covers both "0" and "I" entries. Then 1 can be expressed as follows

based on equation (3.4),

1 = xoh + 12 (3.6)

where h, as shown in fig.3.1(c), is a three variable function, independent of Xo. Further­

more, all the "I" entries covered by xoh can be used as DCs that are entries of" x" in

fig.3.1(d) to minimize 12. Selecting a multilevel cube X2X1 that covers "0" entries only

leads to the expression h = X2X1 = X2 + Xl as in fig.3.1(c). Additionally, cube X3X2X1 in

fig.3.1(d) covers the only on-set minterm. Therefore, we have

(3.7)

Alternatively, when the multilevel cube Xo is selected in fig.3.1(b), equation (3.5) can

be applied to split the map. Hence,

where 14 is the function whose Karnaugh map is exactly the sub-map covered by cube c

25

Chapter 3. Functional DCs for Single Output Functions

10

(a) two-level K-map method

x2xl

10

(c) K-map for f1

x 3X- ,-,,-0---,-_

DO *
01

11

10 *

(e) K-map for f4

x
IXO Iff 3X2 00 01 I 10

00 I I

01 I I

II I I

10 I

(b) select a multilevel cube

x ~ IXO

3X2 00 01 I 10

00 x I

01 x x

II x x

10 x

(d) K-map forf2

IxO
x 3x_ 00 01 11 10

00 x 1 1

01 x 1 1 x

11 x 1 1 x

10 x 1 x

(f) K-map for f5

Section 3.2

Figure 3.1: Comparison between two-level and multilevel K-map methods

and all the "0" entries covered by c can be used as DCs for 15. Hence, the Karnaugh maps

for 14 and 15 are shown in fig.3.1(e) and (f). Therefore we have another expression for 1
as follows.

1 (xo + X3 X2Xl)X2 Xl

(xo + X3X2Xl)(X2 + Xl)

If the property of "containment" of cofactors, which will be discussed in the next section, is

applied, two new "DC" entries for 14 are generated. These are marked as "*,, in fig.3.1(e).

Consequently, this function can be further simplified as

26

Chapter 3. Functional DCs for Single Output Functions Section 3.2

The following are some properties that are peculiar to a multilevel cube on a Karnaugh

map.

1. A multilevel cube can cover "1" , "DC", and "0" giving more degrees of freedom and

a multilevel expression.

2. The different orders of multilevel cubes during manipulation on a Karnaugh map may

lead to different expressions for the same function since each cube can generate different

DCs. For example, the DCs on the Karnaugh map of 12 and f5 in fig.3.1(d) and (f) can

only be generated after the cube Xo has been selected.

3. For the same multilevel cube, expansions of equation (3.4) and (3.5) may lead to

expressions of different literal numbers for the same function due to the different DCs

generated. This will be further verified in the next section.

Theorem 3.2. If all the "1" entries of a Karnaugh map M for an incompletely specified

single output n-variable function f(xn-lxn-2'" xo) or of its complemented Karnaugh map
k

M' can be covered by a traditional two-level prime implicant p = IT Xi = XkXk-l ... xo,
i=O

Xi E {Xi,Xi}, Xi E {Xn-l,Xn-2"'XO}, 0:::; k:::; n -1, then XkXk-l"'XO is the minimal

form of f in the sense that there is no other multilevel expression of f whose literal number

is less than k + 1.

Proof. We need only to proof the part for M since the counterpart for M' is obvious based

on De Morgan law.

Suppose there is a multilevel cube method to find an expression for f whose literal

number is less than k + 1 by first selecting a multilevel cube c whose literal number is j,

1 :::; j :::; k. Hence c covers p and at least one "0" entry; otherwise, c is a prime rather than

p. Moreover, there are k + 1 - j literals, Xk-j, Xk-j-l,' .. ,xo, that exist in p rather than

in c. Since c covers at least one "0" entry, equation (3.8) gives the only decomposition that

will realize function f,

f =ch (3.8)

where the Karnaugh map of h is the sub-map that is inside the cube c by theorem 3.1.

The literal number of ch is j + Ihl, where Ihl is the literal number of any expression for

h. From the previous supposition, it can be deduced that Ih I < k + 1 - j. In other words,

there is at least one literal among Xk-j, Xk-j-l,'" ,xo, that will not appear in h. Suppose

this literal is i, i: E {Xn-l,Xn-2,'" ,xo}. From equation (3.8), it can be concluded that f

is independent of the variable i:. Therefore, deleting the variable i: from p will not change

its functionality. This conflicts with the proposition that p is a prime. D

Based on theorem 3.2, we have the following procedure to simplify a Boolean function in

a multilevel form on a Karnaugh map.

27

Chapter 3. Functional DCs for Single Output Functions Section 3.2

Procedure 3.1. An incompletely specified single output Boolean function f can be ex­

pressed by a multilevel form through the following recursive steps on a Karnaugh map.

1. Let M be the initial Karnaugh map of f.
2. For a Karnaugh map M, if all the "1" (or "O'~ entries of M can be covered by a

two-level prime p, then return p (or p) as a minimal expression of M. Otherwise, select a

suitable multilevel cube, c.

3. From theorem 3.1, M is split into two sub-maps by c, MI and M2 . Additionally,

select equation (3.4) or (3.5) to decompose and generate new DCs on the sub-maps MI and

M2.

4· For both MI and M 2 , go to step 2 to obtain their expressions fMl and fM2 with the

aid of new DCs.

Example 3.2. Find a multilevel expression for an incompletely specified 4-variable func­

tion f whose Karnaugh map is shown in fig.3.2(a) where each blank entry means "0".

1. In fig.3.2(a), M is the initial Karnaugh map.

2. According to step 2 in procedure 3.1, neither ls nor Os can be covered by a two-level

prime, so a multilevel cube X3 is selected to cover the entries of "1".

3. After selecting a cube, X3 in fig.3.2 (b), M is split into two Karnaugh maps, MI

and M2 according to step 3 in procedure 3.1. Because cube X3 covers all the "1" entries,

f M2 is 0 while MI is shown in fig.3.2 (c). This lead to the expression f = x3f Ml based on

decomposition equation (3.4).

4. Now M is MI and go to step 2. In the same way, there is no prime to cover all the

entries of either "1" or "0" in fig.3.2 (c). Thus a multilevel cube Xl is selected according step

2. Consequently, the Karnaugh map is split into two sub-maps, Mll and M12 . Selecting

equation (3.5) to decompose, we have fMl = (Xl + f Mll)fM12 where the Karnaugh maps

for fMll and fM12 can be obtained in fig.3.2 (d) and (e) based on theorem 3.1. Notice that

all the "0" entries covered by Xl can be used as DCs for f M 12.

5. Now M is Mll as in fig.3.2 (d). There is a prime, X2XO, that covers all the entries

of "I". Hence fMll = X2XO. In the same way, when M is M 12 , there is also a prime, X2XO

to cover all the entries of "0", that gives the result, hvh2 = X2XO = X2 + Xo.

The previous steps give the following expression of f,

(3.9)

From example 3.2, procedure 3.1 gives a simple and convenient method to obtain the

multilevel form of a Boolean function based on Karnaugh map. It offers a good oppor­

tunity to visualize the multilevel minimization process and to understand the functional

decomposition technique. However, it has following disadvantages:

1. It is impractical for large functions;

28

Chapter 3. Functional DCs for Single Output Functions Section 3.3

x
IXO

3X2 00 01 11 10 x
IXO X3

3X2 00 Ol~ 10
00 x 1 00 Irx 1 l
01 1 x 1 odl 1 x d
11 x x x 11 x x x

10 x x x 10 x x x

(a) original K-map (b) select a multilevel cube

:tf
X2XO

x- 0 1

o x

1 1

(c) select a multilevel cube on Ml (d) select a prime on Mll

3(23(0

x x

(e) select a prime on M12

Figure 3.2: Multilevel K-map method for an incompletely specified function

2. It still depends on personal experience to select a multilevel cube in step 2 of

procedure 3.1 and to choose one decomposition equation from (3.4) and (3.5) to split in

step 3. This is difficult for automation.

3. There are more implicit DCs of functional decomposition that have not been ex­

ploited as mentioned in example 3.1.

Hence, procedure 3.1 requires further refinement as discussed in section 3.3.

3.3 Multilevel logic synthesis for large Boolean functions

Definition 3.3. Any incompletely specified Boolean function f(Xn-l, Xn-2,··· ,xo) can

be defined uniquely as two minterm sets, faN and fDC, representing the on-set and DC­

set minterms of f respectively. For a literal Xi of a certain variable Xi, 0 :::; i :::; n - 1, if

[UIXi=l)DC u Ulxi=r)ON] ~ UIXi=O)ON, where "u" and "~" are set operations of "union"

and "proper inclusion" respectively, then it is said that flxi=l contains flxi=O or there is

containment of f upon the literal Xi. If there is no containment upon Xi or Xi, then it is

said there is no containment upon variable Xi. If there is containment upon both Xi and

Xi, then it is said there is containment upon variable Xi. For convenience, this property

29

Chapter 3. Functional DCs for Single Output Functions Section 3.3

can be called the containment of cofactors.

3X2Xl~O
I

2001i O
3 00 Ii 1

I

5 old 1
7 0 1 Ii 1

11 1 0 111
13 1 1 q 1
15 1 1 Ii 1

fON

(a) minterm array of ex.3.l

3X2XIXO
I

3 00 Ii 1
5 01 q 1
6011iO
fON

3X2Xl,rO

o ooqo
7 0 1 1: 1

I

801 ~O
9 10 q 1
1 lOtiO

I

1 1100
i

1 1 1 q 1
1 1 1 Ii 1

f'vc

(c) minterm arrays of ex.3.2

3X2XI

1 001
2010

utro4hN

3X2XI 3X2XI

1 001
2 010
3 0 1 1
5 101
6 110
7 1 1 1

1 001

ftro=l Ao::o

(b) minterm arrays after split­
ting by xO for ex.3.l

3X2XI

3011
4 100
6 110
7 1 1 1

utro4hc

~3X2XI

~
utrO:::ohN

3X2XI

0000
3 0 1 1
5 101
6 110

utro:::ohc

(d) minterm arrays after splitting by xO for ex.3.2

Figure 3.3: Two examples for definition 3.3

From definition 3.3, a Boolean function and its minterm sets will be used interchange­

ably hereafter. In example 3.1, fON = {2, 3, 5, 7,11,13, 15} as shown in fig.3.3(a), fDC = 0.
From fig.3.3(a), the value of Xo in any minterm of {3, 5, 7,11,13, 15} is "I" while the value

of Xo in the minterm "2" is zero. After deleting Xo from all the minterms in fig.3.3(a),

we obtain flxo=l = {1,2,3,5,6,7}, flxo=o = {I} as shown in fig.3.3(b). Hence flxo=l

contains flxo=o or there is containment of f upon the literal Xo because of flxo=l =:J flxo=o

based on definition 3.3. In example 3.2 whose minterm arrays are shown in fig.3.3(c),

fON = {3, 5, 6}, fDC = {O, 7, 8, 9, 10, 12, 13, 15}, in the same way, we can calculate the

results as in fig.3.3(d), Ulxo=doN = {1,2}, Ulxo=l)DC = {3, 4, 6, 7}, Ulxo=O)ON = {3},

Ulxo=O)DC = {O, 3, 5, 6}. Therefore, flxo=l contains flxo=o but there is no containment

of f upon the literal Xo since Ulxo=O)ON is not properly included in the union set of

Ulxo=doN U Ulxo=dDC.

30

Chapter 3. Functional DCs for Single Output Functions Section 3.3

For comparison, there are two concepts of "containment" in the two-level minimization

technique. One is the single-cube containment where a cube c contains another cube d of

the cover[100]. So cube d is redundant and should be deleted to achieve the cover with

single cube containment minimality. The other can be called multiple-cube containment

where a cube c is contained by several relatively essential cubes. This cube c is called

totally redundant cube and will be deleted from the cover[50]. These ideas have been used

in the procedure "IRREDUNDANT _ COVER" of ESPREsso[26]. However, the containment in

definition 3.3 has more general meaning because it is a relation of cofactors instead of one

or several cubes only. In other words, the containment of cofactors is one of the properties

of the structure of Boolean functions. What is more important is that a Boolean function

with containment implies new DCs of functional decomposition as will be shown in theorem·

3.3. Consequently these DCs offer more degrees of freedom for logic minimization rather

than just deletion of the redundant cubes.

Theorem 3.3. For an incompletely specified Boolean function f(Xn-l, Xn-2,'" ,xo), if

there is containment upon a literal Xi, 0 :S i :S n - 1, then f can be decomposed as follows,

f = xdlxi=l + JIXi=O

(Xi + flxi=O)Jlxi=l

(3.10)

(3.11)

In equation (3.10), all the minterms in UIXi=O)ON can be used as DCs for flxi=l, and

JIXi=O is the same as flxi=O except that all the minterms in UIXi=O)DC which are not in

Ulx;=l)ON u Ulx;=l)DC are deleted. In equation (3.11), all the minterms that are not in

UIXi=l)ON U UIXi=dDC can be used as DCs for flxi=O, and JIXi=l is the same as flxi=l

except that all the minterms in UIXi=l)DC which are also in UIXi=O)ON are moved to

UIXi=doN.

Proof. If there is containment upon a literal Xi, from definition 3.3, we have [UIXi=dDC U

UIXi=l)ON] :J UIXi=O)ON. If all the minterms in UIXi=O)DC which are not in UIXi=doN U

Ulxi=l)DC are deleted as required in the theorem, then we have,

(3.12)

(3.13)

Because the on-set minterms of flxi=O are not deleted from JIXi=O and DCs can be set

to "0", we have equation (3.14) from equation (3.12).

31

Chapter 3. Functional DCs for Single Output Functions Section 3.3

(3.14)

From equation (3.13), we have,

(3.15)

Therefore, equation (3.1) can be rewritten as below based on equations (3.14) and

(3.15),

1 Xd[Xi=l + Xd[Xi=O

Xd[Xi=l + Xd[Xi=O + Xd[Xi=O

= xd [Xi=l + 1[Xi=0

(3.16)

(3.17)

(3.18)

Therefore equation (3.10) is proved. From equation (3.10), all the minterms in U[Xi=O)ON

are covered by 1[Xi=0. Since U[xi=O)ON covers both XiU[xi=O)ON and xU[xi=O)ON, all the

minterms in U[xi=doN that are covered by U[Xi=O)ON can be used as DCs for 1k=1 be­

cause of 1 + x = 1, x E {O, 1, DC}. This point can also be seen in equations (3.16)-(3.18).

Similarly, if there is containment upon a literal Xi, from definition 3.3, we have

If all the minterms in U[xi=dDC that are in U[xi=O)ON are moved to U[xi=doN as

required in the theorem, then we have,

(3.19)

(3.20)

Because DCs can be set to "1", we have the following equation from (3.19),

(3.21)

Besides, all the DCs in 1[Xi=0 can be set to "0", equation (3.22) can be obtained from

equation (3.20).

32

Chapter 3. Functional DCs for Single Output Functions Section 3.3

(3.22)

Therefore, equation (3.2) can be rewritten as below based on equations (3.21) and

(3.22),

f (Xi + flxi=o)(xi + flxi=l)

(Xi + flxi=o)(Xi + !IXi=l)(Xi + !IXi=r)

(Xi + flxi=o)!lxi=l

(3.23)

(3.24)

(3.25)

Hence equation (3.11) is proved. From equation (3.11), all the off-set minterms of

!IXi=l can be used as DCs for flxi=o because ° AND x = 0, x E {O, 1, DC}. Therefore, all

the minterms that are not in UIXi=r)ON U UIXi=r)DC can be used as DCs for flx;=o. This

point can also be seen from equations (3.23)-(3.25).

This completes the proof of theorem 3.3.

~X2!XIXO

o d 0:0 0
1 q oio 1 x

2 d oj 10
5 Q 1:0 1
8 Ii oio 0
9 Ii OiO 1

10 Ij oil 0
JON

IXO

3X- 00

00 III
01

11

10 IiI

01 11 10

1 1

1

1 1

(a) minterm array and K-map of ex.3

3XIXO 3XIXO

o 000 3 0 1 1
1 001 7 1 1 1
2 010 ctl X2 =cJDC 4 100
5 101
6 1 10

ctl X2 =~ON ctl X2 =cJON

X3XIXO

o 000
1 00 1
2 0 1 0 ifl) 0 1-

1
-t---tt---+t--l

4 100 X2=I DC
1 ~1~~~~

5 1 0 1 3XIXO ~ooo 01 11 10

6 1 1 0 1 0 0 1 0 1 101 I 1
ifl X2 =1) ON ifl X2 =0) ON 1

(b) select equation (14) to split by x2'

1XO

x 00

0 1

1 1

(c) select equation (15) to split by x2'

Figure 3.4: Examples of theorem 3.3

33

D

Chapter 3. Functional DCs for Single Output Functions Section 3.3

Example 3.3. A completely specified Boolean function f(X3X2X1XO) = 2:;(0,1,2,5,8,9,10)

is shown in fig.3.4(a) both in minterm array and Karnaugh map forms for better under­

standing. It can be calculated that UIX2=doN = {O, 1, 2, 4, 5, 6}; UIX2=0)ON = {I};
Ulxz=l)DC = Ulxz=O)DC = 0 from either the minterm array or the Karnaugh map. So

there is containment upon the literal X2 according to definition 3.3. Then f can be split by

X2 based on equation (3.10) or (3.11), that means to select a multilevel cube X2 on the Kar­

naugh map. First select equation (3.10) to split so that f = x2flx2=1 + llx2=0. Because

UIX2=0)DC = 0, no minterm is deleted or llx2=0 = flx2=0. However, all the minterms

in Ulxz=O)ON can be used as Des for flx2=1, that is, Ulx2=1)DC = {1};Ulx2=doN =

{O, 2, 4, 5, 6}. This result is shown in fig.3.4(b) from which it can be seen that both flx2=1

and flx2=0 can be covered by primes X1XO and X3X1XO respectively. From theorem 3.2, we

obtain flxz=l = X1XO and llx2=0 = X3X1XO that gives an expression for f as indicated in

equation (3.26).

(3.26)

Now equation (3.11) is selected to split f so that f = (X2 + flx2=0)llx2=1. Because

Ulx2=1)DC = 0, no minterm is moved or llx2=1 = flx2=1. However, all the minterms

that are not in Ulx2=1)ON U UIX2=dDC can be used as DCs for flx2=0, that is, {3,7} can

be used as DCs for flxz=o. So we have, Ulx2=1)ON = {O, 1,2,4,5, 6};Ulxz=0)ON = {I};

UIX2=0)DC = {3, 7} as shown in fig.3.4(c) from which we know that both ll x2=1 and flx2=0

can be covered by primes X1XO and X3XO respectively. In the same way, another expression

for f can be obtained as follows,

(3.27)

Comparing these two expressions for f, equation (3.27) has one less literal number than

equation (3.26). The reason is that different DCs may be generated depending on whether

equations (3.10) or (3.11) is selected. However, there are two special cases of containment

where it is simple to determine the splitting equations.

Lemma 3.1. For an incompletely specified Boolean function f(Xn-1' Xn-2,··· ,xo), if all

the entries of Xi are filled with on-set minterms, then there is containment upon Xi and

this function can be split by equation (3.28) based on equation (3.10) since flxi=l = 1.

(3.28)

In the same way, if all the on-set minterms can be covered completely by a literal, Xi,

34

Chapter 3. Functional DCs for Single Output Functions Section 3.3

o ::; i ::; n - 1, then there is containment upon Xi and the function can be split by equation

(3.29) based on equation (3.11) since flxi=o = O. Note that these two conditions will not

be met simultaneously in general; otherwise, f = Xi.

f = xdlxi=l (3.29)

For the general case of containment, we have the following heuristics to decide the

decomposition equation.

Observation 3.1. Rewrite equations (3.10) and (3.11) as follows.

f = xdlxi=l + JIXi=O (3.30)

(3.31)

In equation (3.30), all the minterms in UIXi=O)ON can be used as DCs for flxi=l, and

JIXi=O is the same as flxi=o except that all the minterms in UIXi=O)DC which are not in

UIXi=doN U UIXi=dDC are deleted. In equation (3.31), all the minterms that are not in

UIXi=doN U UIXi=l)DC can be used as DCs for flxi=o, and JIXi=l is the same as flxi=l

except that all the minterms in UIXi=dDC which are also in UIXi=O)ON are moved to

U IXi=l)ON. Suppose we do not use any of the new DCs to minimize the function f, then

the literal number of equation (3.30) is I(xdlxi=l + flxi=o)1 = 1 + Iflxi=ll + Iflxi=ol where

Iflxi=ll and Iflxi=ol are the literal numbers of flxi=l and flxi=o respectively. Similarly, if

we do not use any of the new DCs to minimize the function f, then the literal number of

equation (3.31) is I(Xi + flxi=o)flx;=ll = 1 + Iflxi=ll + Iflxi=ol. Hence the literal number

in equation (3.30) would be the same as in (3.31) if we do not use any of the new DCs.

Furthermore, the main DCs with respect to literal number in equation (3.30) is the one for

flxi=l while it is the one for flxi=o in equation (3.31) from theorem 3.3. So we need only

to compare the usefulness of these two main DCs for the equations. Intuitively, if a "DC"

minterm is adjacent to an on-set minterm, then we say it is useful for the minimization;

otherwise, we say it is not useful. In equation (3.30), the on-set minterms of flxi=l may

be used as DCs while in equation (3.31) the off-set minterms of flxi=o may be used as

DCs. Let a be the number of new generated "DC" minterms that are not adjacent to the

on-set minterms of flxi=l; and /3 be the number of new generated "DC" minterms that

are adjacent to the on-set minterms of flxi=o. If a < /3, then the new DCs in equation

(3.30) are not so effective as in equation (3.31). Consequently it is better to select equation

(3.31) to decompose the function. If a > /3, then the new DCs in equation (3.31) are not so

35

Chapter 3. Functional DCs for Single Output Functions Section 3.3

effective as equation (3.30). Consequently it is better to select equation (3.30) to decompose

the function. Otherwise, if 0: = /3, then select either of them to decompose the function.

The preceding observation can be justified by the function in example 3.3, where there

is a containment upon X2. If equation (3.30) is selected to decompose as shown in fig.3.4(b),

then there is one generated "DC" minterm but it is adjacent to two on-set minterms in

flx2=1. Therefore, 0: is "0". On the other hand, if equation (3.31) is selected to decompose

as shown in fig.3.4(c), then there are two generated "DC" minterms and one of them is

adjacent to the on-set minterm in flx2=o. Therefore, /3 is "I". From observation 3.1,

equation (3.31) should be selected to decompose the function that will lead to a smaller

literal number.

From theorems 3.2 and theorem 3.3, it is conjectured that a multilevel cube which

is nearly prime or covers more on-set minterms has priority to be selected. This idea

is expressed in the following conjecture that has already been utilized in the previous

examples.

Conjecture 3.4. For an incompletely specified Boolean function f(xn-l, Xn-2,'" ,xo),

there are 2 literals for each variable Xi, 0 :::; i :::; n - 1. Any of these literals is a n-l

dimensional multilevel cube. Among these 2n literals, a multilevel cube can be selected that

covers the most on-set minterms.

Now procedure 3.2 is obtained to minimize a Boolean function in a multilevel form

based on procedure 3.1.

Procedure 3.2. An incompletely specified Boolean function f(xn-l, Xn-2,'" ,xo) can be

simplified by the following recursive steps on the minterm sets fON and fDe·

1. If f is a constant function, then return 0 or 1.

2. If either of the two special cases in lemma 3.1 is satisfied, then return equation (3.28)

or (3.29) accordingly and go to step 1 for the subsequent function.

3. Select a literal Xi according to conjecture 3.4 to split. This is the important but

difficult step. If there are several literals that cover the same number of on-set minterms,

then a literal is selected based on the following conditions:

(a). Select a literal that has containment so that new D Cs can be generated.

(b). If there are several literals that have containment, then detect whether they

are symmetric variables[86}. If they are symmetric, just select the first one. Otherwise, go

to the next condition.

(c). If there are still several literals that satisfy the previous conditions, then select

the one that has more "DC" minterms; Otherwise, just select the first literal since no other

efficient method has been found at present.

4. If there is containment upon Xi, then select a splitting equation (3.10) or (3.11).

This is also the other key step of the procedure. At present observation 3.1 is used to select'

36

Chapter 3. Functional DCs for Single Output Functions Section 3.4

the splitting equation. Otherwise, if there is no containment, decompose the function as

equation {3.1} or {3.2}. For each of the two subsequent functions, go to step 1.

Example 3.4. The minterm array for a completely specified function f(X4X3X2X1XO) =

2:(0,1,2,4,8,9,10,12,24,25,28) is shown in fig.3.5(a). It can be simplified by procedure

3.2 as follows.

1. f is not a constant function. Besides, neither of the special cases in lemma 3.1 is

satisfied. So go to step 3 of procedure 3.2.

2. In fig.3.5(a), the on-set minterm numbers covered by the literals X4, X3, X2, Xl,

Xo are "3", "7", "3", "2", "3", shown at the bottom of the corresponding column respec­

tively. According to conjecture 3.4, literal Xl is selected because it covers the most on-set

minterms.

3. After selecting a multilevel cube Xl, the minterm array is split into two sub-arrays as

in fig.3.5(b), where Ulx1=1)ON = {O, 1, 2,4,5,6,12,13, 14}; Ulx1=1)DC = 0; Ul x1=0)oN =

{0,4}; Ulx1=0)DC = 0. It can be seen that there is containment upon Xl based on definition

3.3. If equation (3.10) is selected to split, then there will be two on-set minterms in flx=l

that can be used as DCs. But both of them are adjacent to other on-sets. Hence a is "0"

based on observation 3.1. On the other hand, if equation (3.11) is selected to split, then·

there will be 7 off-set minterms in flx=o that can be used as DCs shown in fig.3.5(b). One

of them, "8" is adjacent to a on-set minterm "0" in Ulx=o)oN. Hence (3 is "I". Based on

observation 3.1, equation (3.11) is selected to split the function because of a < (3. Thus we

have f = (Xl + h)h, where h is flx1=0 including on-set and DC minterms; h = flx1=1

as shown in fig.3.5(b).

4. For h = flx1=0, it is not a constant function, but all the on-set minterms are covered

by cubes xo, X2, and X4 that are the special cases in equation (3.29). Hence h = XOX2X4·

5. For h = flx1=1 in fig.3.5(b), the on-set minterm numbers covered by the literals xo,

X2, X3, X4 are the same in step 3 ofthe procedure. Moreover, all of them have containment.

So we use a symmetry detection method and find that they are symmetric. From step 3(b)

of procedure 3.2, the first literal, Xo is selected to split as shown in fig.3.5(c).

6. From step 4 of procedure 3.2, there is containment upon Xo in fig.3.5(c). In the

same way, it can be calculated that a = 0, (3 = 1. Based on observation 3.1, selecting

equation (3.11) to split gives h = (xo + hlxo=o)hlxo=l. For simplicity, it can be seen

that both hlxo=o and hlxo=l can be covered by two-level primes. Thus, hlxo=o = X2;

hlxo=l = X3 X4 = X3 + X4· Alternatively, applying procedure 3.2 for both hlxo=o and

h Ixo=l will produce the same results without the help of the primes.

From the above steps, we achieve the expression f = (Xl + XOX2X4)(XO + X2)(X3 + X4).

37

Chapter 3. Functional DCs for Single Output Functions

X4X3X2'X!:XIJ
I I

o oooiqo
1 00 oid, 1
2 00 Oilio

i i
4 001:0,0
8 01 O!qo
9 0 1 oid. 1

10 010i~0
I I

12011iqo
24 1 1 oid, 0
25 1 1 oid 1

I I

28 1 1 1'00
fON 37323

(a) minterm array of ex.4

0

2
3

6
7

hlio=l

4X3X2

000
001

010
01 1
1 10
111

4X3X2XO

o 0000
4X3X.tx0

000 d oj
100d1: 40100

: : Cflil-O N
2 00 Ii 0i - 4X3X2XO

4 old oi 3 0 0 1 1
I I

501 q I!
6 01 Ii oi

i i
12 1 1 q 0i
1311d1i
14 Ill! o!

f1f1=1 3633

7 01 1 1
8 1000
9 1001

10 1010
11 1 0 1 1
15 1 1 1 1

(b) split by xl'

4X3X2

o 000
2 010

6 1 10

(12 O=,) ON

4X3X2

4 100
5 1 0 1

if2 O=,}DC

(c) split by xO'

Figure 3.5: An example of procedure 3.2

3.4 Experimental results

Section 3.4

Procedure 3.2 has been implemented in C language. Given the on-set and DC-set for a

single output function, the program will produce a multilevel expression using the equation

format defined in [134]. We test all the single output functions from both IWLS'93 bench­

mark and SIS testcases on a PC with Cyrix6x86-166 CPU and 32M RAM under Linux

operating system. For all the single output functions found in the common benchmarks,

there are 1299 splits with containment property among total 1813 splits. In other words,

more than 70% of splits have the containment property of definition 3.3. The compari­

son with SIS is shown in table 3.1, where "var#", "min#", and "lit#" are the numbers of

variables, minterms, and literals respectively. Besides, the unit of "time" is second and "I"
means not available due to memory and time limitation. The program is first compared

with the algebraic method and results are shown in column "gcx" (short for "gcx; resub -a")

of table 3.1. There are two testcases, "max46.pla" and "co14.pla", for which our program

38

Chapter 3. Functional DCs for Single Output Functions Section 3.4

produces worse results in the term of literal numbers. On the other hand, we want to know

if it is possible for our program mainly based on theorem 3.3 to produce very good results

for some functions. Hence we compare with "script.rugged" and the results are shown in

column "script.rugged" of table 3.1. Among 15 testcases, there are 6 cases that our pro­

gram produces worse results. But our program is much faster in these cases. Generally

speaking, it can still produce the results very quickly although the minterm input files

are much larger than .blif or .pla files. For the testcase of parity.pla, where each cube is

actually a minterm, both "gcx" and "script.rugged" would require excessive CPU time and

memory.

From these experimental results, it can be concluded that the DCs of function decom­

position are very useful to minimize the Boolean functions in multilevel forms. For the

testcases that our program produces worse results than "gcx" and "script.rugged", there are

several reasons as follows.

1. The input files of our program are in minterm format, that have the most number

of literals comparing with .pla and .blif formats.

2. There are two heuristic methods in procedure 3.2. One is the selection of variable

orders in step 3. The other is observation 3.1, which makes the decision of decomposition

equations. Currently the order of variables is decided according to the number of minterms,

which is not suitable for some functions. Furthermore, if two cubes cover the same numbers

of on-sets and DC-sets respectively with the containment of cofactors, then there is no

efficient way to determine the order. As for the decomposition equations, there is some

inefficiency in evaluating the usefulness of new DCs based on the adjacency only.

Functional DCs gcx script .rugged
var# min# lit# time(s) lit # time(s) lit # time(s)

t481.blif* 16 42016 928 5.92 3400 79.4 881 240.5
9sym.blif 9 420 239 0.04 604 0.5 275 33.2

9symml. blif 9 420 239 0.04 364 0.4 241 19.2
xor5.blif 5 16 16 -0 97 0 16 0.5

cml52a.blif 11 1024 26 0.24 54 -0 22 0.2
majority. blif 5 21 10 -0 34 -0 10 -0

parity.blif 16 32768 60 9.29 136 0 60 0.3
parity.pla 16 32768 60 9.29 / / / /
max46.pla 9 62 215 0.03 189 0.2 174 4.1
newill.pla 8 142 23 -0 28 0 24 0

newtag.pla 8 234 11 -0 13 -0 11 -0

ryy6.pla 16 19710 17 14.6 93 0.2 21 1.2
col4.pla 14 14 118 0 77 0 68 0.5
life.pla 9 140 216 0.05 238 0.6 79 2.7

syml0.pla 10 837 391 0.09 545 17.4 205 143.2

*This testcase is from LGSynth91 benchmark.

Table 3.1: Comparison for single output functions run on the same PC

39

Chapter 3. Functional DCs for Single Output Functions Section 3.5

3.5 Summary

In this chapter, don't cares offunctional decomposition are utilized to simplify the Boolean

functions based on the concepts of multilevel cube. An important and common property of

containment of cofactors is exploited so as to produce useful DCs to minimize the function

without the help of SDCs or ODCs. The experimental results verify the correctness and

effectiveness of our method. The work is being generalized to multiple output functions

which will be presented in the next chapter.

40

Chapter 4

Multilevel Minimization for Multiple

Output Logic Functions

4.1 Introduction

Multilevel logic minimization plays a very important role in achieving high quality digital

circuits. The key point of multilevel logic simplification is to extract don't cares (DCs) from

a given Boolean network[88]. There are two kinds of internal DCs, known as satisfiability

don't cares (8DCs) and observability don't cares (ODCs) which are based on the topology

or structure of a Boolean network[17]. Usually these DCs are very large and consequently

only a small subset of them can be used efficiently as in the transduction[105, 106] and

global flow methods[21]. A new kind of DCs, namely functional DCs, have been proposed

in chapter 3[152]. These are based on functional or logic information, instead of network

or circuit connections. It is proved to be very effective for multilevel minimization. An

algorithm for single output functions has been developed in chapter 3, which can produce

better results than script.rugged of 8r8[134] for some testcases even with the most expensive

minterm input format. In this chapter, the algorithm proposed in chapter 3 is improved

for multilevel logic optimization and then generalized to multiple output functions. The

literal count is used as the cost criterion.

4.2 Review of Functional Don't Cares

The concept of functional DCs is based on the property of containment, which has been

defined in definition 3.3. For convenience, the definition is reproduced below.

Definition 4.1. For an incompletely specified Boolean function i(Xn-l, Xn-2,'" ,xo),

there are two cofactors iXi and Ixi with respect to a literal Xi, Xi E {Xi, xd, 0 :::; i :::; n - l.

There is containment upon Xi if and only if

41

Chapter 4. Functional DCs for Multiple Output Functions Section 4.2

(4.1)

Alternatively, one can say that fXi contains Ixi . For completely specified function,

equation (4.1) can be simplified as in equation (4.2).

(4.2)

As in previous equations, fDe and fON are the dc-set and on-set of the function f; "u"
and" ::)" are set operations of "union" and "proper inclusion" respectively.

The concept of containment is similar to but different from unateness due to the ex­

istence of DCs. If f is unate upon variable Xi, then there is containment upon literal

Xi. However, if there is containment upon literal Xi, then the unateness is not necessarily

guaranteed upon variable Xi. For instance, it is possible to have containment upon both Xi

and Xi based on equation (4.1)[152] but impossible to be both monotone decreasing and

monotone increasing upon variable xd26]. This fact is due to the existence of DCs. Hence

containment is a more general concept than unateness, which leads to the generation of

the functional DCs.

Theorem 4.1. Given a single output incompletely specified Boolean function f(xn-l, Xn-2,

... ,xo), if there is no containment upon literal Xi, 0 :s: i :s: n - 1, then there are at least

two literals in any of the multilevel expression for the function.

Proof. Suppose there is only one literal Xi, Xi E {Xi,Xi}, in an expression of f. Factor out

all the multilevel terms in order to obtain a two-level sum-of-products (SOP) expression F.

It is straightforward that either Xi or Xi but not both appear throughout the expression.

Hence cofactor fXi covers more cubes than cofactor f i · Consequently fXi contains fi , ,
which conflicts with the condition that there is no containment upon literal Xi for function

f. 0

If there is containment upon Xi , then functional DCs are generated and the function can

be decomposed by either of the following equations.

(4.3)

(4.4)

42

Chapter 4. Functional DCs for Multiple Output Functions Section 4.2

In equation (4.3), iXi is the same as iXi except that all the cubes covered by (fx)ON

can be used as DCs; hi is the same as Ixi except that (fx)DC is changed to (fx)~N n , ,
[(fxJON U (fxJDcl· Similarly, in equation (4.4), hi is the same as IxL except that all the

cubes which are not covered by (fxJONU(fxJDC can be used as DCs; .!xi is the same as iXi

except that all the cubes covered by (fxJDC n (fx)ON become new on-set. Both equations ,
(4.3) and (4.4) have only one literal for variable Xi which is consistent with theorem 4.1.

The generation process of functional DCs is illustrated by Venn diagrams in fig.4.1 and

example 4.1. The detail proof can be found in chapter 3 or [152].

/-

~~0 \ ,
\ /

I~~)
OFF-SET OFF-SET OFF-SET OFF-SET

1\

fr
(a) Venn diagrams for equation (4.3)

ON-SET 8
/ \

8 ,ON-SET\

I ..
OFF-SET OFF-SET

GC-SE:0 ~C-SrV
OFF-SET More

DC-SET
OFF-SET

fr Ix
~

fr
(b) Venn diagrams for equation (4.4)

Figure 4.1: Explanation of the functional DCs

Example 4.1. A Boolean function i(x3x2xlxo) = ~(O, 1,2,5,8,9,10) is shown in fig.4.2

by a Karnaugh map. It can be seen that fx2 = {O, 1,2,4,5, 6} contains ih = {I} where

X2 = X2 according to definition 4.1. After selection of the multilevel cube X2 on the Kar­

naugh map[152]' the original function can be decomposed into two subfunctions. Without

43

Chapter 4. Functional DCs for Multiple Output Functions Section 4.3

loss the generality, equation (4.4) is selected to split as shown in fig.4.2. As a result, two

minterms {3,7} which are not covered by (Jx2)ON U (Jx2)DC are functional DCs for iX2.

From equation (4.4) we have,

f lXO
X3 x_ 00

00 III
01

11

10 Ir1

f

01 11 10

1 1

1

1 1

(X2 + iX2)ix2

(X2 + X3 XO)XIXO

(X2 + X3 XO)(XI + xo)

.....
fx2~lXO

X:l", 00 01 11 10

....lr... {~ ~ I : I : 101 : I

......,. fx2XIXO

X~ 00 01 11 10

~I I~I I
Figure 4.2: Example of functional DCs

(4.5)

(4.6)

(4.7)

In this chapter, the following improvements will be added over chapter 3 on the appli­

cation of functional DCs.

1. Find a better solution to select a literal when there are more than one literals with

containment. This is similar to the variable order problem of Binary Decision Dia­

grams (BDDs).

2. One more splitting equation is introduced to further utilize the property of contain­

ment.

3. Generalize the idea for multiple output Boolean functions.

4.3 Simplification for single output functions

4.3.1 A better solution to the variable order problem

Variable order is a very common problem in logic synthesis. In ESPREsso[26], a two­

level logic minimizer based on the property of unate functions, the most binate variable

is selected to decompose a function so that the subsequent subfunctions will be unate

after the minimum number of splittings. The most binate variable is the variable having

the most number of "0" and "1" in all the cubes. The same method is used for BDDs

44

Chapter 4. Functional DCs for Multiple Output Functions Section 4.3

in [64] for multilevel methods as the initial representations since both of them are based

on AND/OR operations. Although this is very simple heuristic, it is proven to be very

powerful judging by the experimental results in [64]. For functional decision diagrams

(FDDs) based on AND jXOR operations, the most unate variable is selected in [54] to

solve the variable order problem. Ideally the most "containable" literal should be selected

to apply functional DCs which is based on containment. However it is computationally

extensive. Therefore, the most unate literal is selected instead. Based on our experiments

for incompletely specified functions, which consist of both on-sets and DCs, the most unate

literal decided by on-set cubes only usually leads to better results compared to a decision

based on both on-set and dc-set cubes which is used in [152].

4.3.2 One more splitting equation

Although equations (4.3) and (4.4) are complete to express functions that have contain­

ment, they are not sufficient to lead to the minimal results even with the generation of

functional DCs as shown in example 4.2.

Example 4.2. A 5-variable single output Boolean function f can be expressed by two

equations,

The total literal number of f is 7. If equations (4.3) and (4.4) are used to decompose

the function with functional DCs[152]' then another expression is obtained for f, h =
XO(X2 + X3X4) + xlxdx3 + X4) with 8 literals where the common subfunction X2 + X3X4

cannot be extracted and consequently shared.

Theorem 4.2. If two cofactors fXi and hi of a single output n-variable Boolean function

fare Xj +g and Xjg respectively, Xi,j E {Xi,j,Xi,j}, then there are containments upon both

Xi and Xj, where 0 :S i,j :S n -1, i =F j, 9 is a n-2 variable function independent of Xi and

Xj' Furthermore, f can be decomposed as in equation {4·8}.

Proof. From Shannon expansion, we have,

f XiiXi + XiiXi

XiXjg + Xi(Xj + g)

xig + Xjg

45

(4.8)

(4.9)

(4.10)

(4.11)

Chapter 4. Functional DCs for Multiple Output Functions Section 4A

Hence equation (4.8) holds. Based on definition 4.1, it can easily be seen that there is

containment upon Xi. From equation (4.11), iXj = 9 + Xjg and h j = Xjg. Therefore there

are containments upon both Xi and Xj. D

From theorem 4.2, if there are containments upon two literals Xi and Xj, then check whether

the following two conditions can be satisfied:

1. One cofactor ixi covers the n-l dimensional cube Xj while hi is covered by the same

cube Xj.

2. The function composed of the cubes covered by ixi - Xj and the function composed

of the cubes covered by Xj - hi can be each other's complement, where "-" is the set

operation of "difference".

If the conditions are satisfied, then decompose the function by equation (4.8) to reduce

the literal numbers. FigA.3 shows a simple example for a single output function ryy6 with

16 inputs. The output file of our program is in equation format which can be read by

SIS. Command plot_ blii is used to obtain the diagrams in figA.3. The algorithm based

on functional DCs produces better result than "script. rugged" both in area and speed .

ryy6.eqn •
•

(a) functional Des (17 literals)

ryy6

@

@

xl

(b) script.rugged (21 literals)

Figure 4.3: Results of ryy6 with 16 inputs

•
•

4.4 Multilevel minimization for multiple output functions

4.4.1 Multiple output functions and Boolean relations

It is emphasized in [28] that multiple output functions are fundamentally different from

single output functions with respect to don't care conditions. For multiple output functions,

46

Chapter 4. Functional DCs for Multiple Output Functions Section 4.4

the concept of DCs should be generalized to the concept of vertex equivalence classes in

order to formulate the functions as Boolean relations. In this way, a Boolean relation

can be considered as a specification while multiple Boolean functions are only one of the

various implementations. One main disadvantage of Boolean relations is that they are

very computation expensive to simplify. However, if we use pog!rl extra binary variables

to merge m output functions into a single output function, then the gap between single

output functions and multiple output functions is reduced and thus it provides a new way

to solve the problem of Boolean relations. This idea can be illustrated by example 6 of

[28].

Example 4.3. Given a Boolean relation IR ~ B2 X B2 with two inputs, a and b; two

outputs, x and y as shown in fig.4.4(a). When input vector (ab) = (00), the output vector

(xy) can be either (00) or (01). Similarly, when input vector (ab) = (01), the output

vector (xy) can be either (01) or (10). For either of the individual function, there is no

DC conditions. Thus the useful information cannot be represented as DCs for individual

function but use vertex equivalence classes instead. In [28], four Karnaugh maps are used

with two outputs on each map to calculate the best solution, x = a; y = b. If we add an

extra variable c so that two output functions can be merged into one 3-variable function z;

x = zlc=o and y = Zlc=l, then fig.4.4(b) can be obtained. In fig.4.4(b), when input vector

(abc) = (000), z is a constant O. As a result z can be replaced by "x" (DC) for input vector

(abc) = (001). When input vector (ab) = (01), one more extra variable d can be used to

represent the relation between the outputs x and y. Therefore, a variable-entered map[2,

71] is shown in fig.4.4(c). From that variable-entered map, d is set to 0 and the result of

z is z = ca + cb. Finally splitting z with respect to variable c leads to the same result as

in [28], x = zlc=o = a and y = Zlc=l = b.

The general algorithm to solve Boolean relations will not be further discussed here. We

will use the same strategy to implement multilevel logic minimization for multiple output

functions. This method has also been used in the minimization of BDDs for multiple

output functions where the extra variables are called output selection variables[81].

4.4.2 Encoding problem for multiple output functions

In the previous section, multiple output functions are merged into one single output func­

tion by adding extra variables. Then that function is simplified and split to produce the

results for individual functions. From the view of multilevel network, all the nodes that

are independent of extra variables are shared by all the individual functions. That will

greatly reduce the literal count.

Example 4.4. Given two Boolean functions, fO(X3, X2, Xl, XO) = {O, 1,2,8,9,10,12,13, 14}

and h(X3,X2,XI,XO) = {0,8}. One extra variable X4 is required to merge them into a

5-variable function f. Let fo = fixFO and h = flx4=1. Thus f(X4, X3, X2, Xl, XO) =

47

Chapter 4. Functional DCs for Multiple Output Functions

ab xy

00 00,01
01 01,10
11 11

z'{!-b c'" 00 01 11 10
o 0:0

I
1 Oil 1

10 10 1 O! 1 1! (1 0

(a) initial Boolean relation (b) represent the relation by a K-map

(c) minimization of the relation

Figure 4.4: Simplification of Boolean relation

Section 4.4

{O, 1,2,8,9,10,12,13,14,16, 20}. Then call the program for single output function us­

ing functional DCs, whose result is shown in example 3.4 in chapter 3, f = (X4 +
XOX3 Xl)(XO+X3)(X2+ Xl). Therefore, fo = flx4=0 = (XO+X3)(X2+ Xl) and h = flx4=1 =

XOX3 Xl (xo + X3) (X2 + Xl) = xox3xdo· It can be seen that fo and h share a common node

(xo + X3)(X2 + Xl) since it is independent of variable X4.

For more than two outputs, an obvious problem is about how to encode these outputs.

The cost varies with different encoding schemes. For example, testcase tableS has 17

input variables and 15 outputs. Hence we need rlog~51 = 4 binary variables to encode

these outputs and there are totally 16! ~ 2.1 x 1013 different encodings. In table 4.1, we

select 16 encodings among them where all the encoding numbers are in increasing order.

For example, in the No.O encoding scheme of table 4.1, (0001) is assigned to the first

subfunction, (0010) is assigned to the second subfunction and so on. Finally (1111) is

assigned to the last subfunction. Besides, the unused code (0000) can be considered as

DCs. In table 4.1, lit#l and lit#2 are the literal numbers with and without the extra

variables respectively, the unit for time is second. It can be seen that the literal number

excluding extra variables is 1064 with encoding number 12, which is less than the result of

script.rugged of Sr8[134]' whose literal number is 1074 and the CPU time is 27.7 seconds

respectively run on the same computer.

Although encoding is a traditional problem for functional decomposition[104] and other

fields of logic synthesis[147], there are several differences.

1. Encoding problem here is based on containment. In other words, the function after

the encoding should have as many containments as possible.

48

Chapter 4. Functional DCs for Multiple Output Functions

I No. Ilit#1/lit#2/time(s) II No. Ilit#1/lit#2/time(s) I
0 2021/1650/4.41 8 2212/1711/3.95
1 2021/1650/4.40 9 2106/1584/4.36
2 2064/1661/12.43 10 2157/1663/3.85
3 2054/1630/12.64 11 2120/1587/5.52
4 2764/2453/7.50 12 1772/1064/7.73
5 2772/2454/7.40 13 1824/1094/7.63
6 2334/1968/4.04 14 2797/2180/5.30
7 2041/1561/4.00 15 1800/1092/7.75

Table 4.1: Literal numbers with different encodings for table5
(11 inputs and 15 outputs)

Section 4.5

2. The extra variables will not appear in the final implementation after splitting. So

the literal number of extra variables does not matter.

4.5 Experimental results

Based on the C program developed in chapter 3, we incorporate the ideas from section

4.3 about the variable order and splitting expansions and apply it for multiple output

functions. An input PLA format[26] is first converted to minterm format of multiple m

output functions, m 2:: 1 . Then merge them into a single output function using 110g:rl

extra variables and call the improved program to simplify the single output function.

The reason for using minterm format is just to know the effectiveness of functional DCs

without any other techniques. For the practical point, the idea of functional DCs should

be incorporated to other minimizer such as SIS to further improve the results.

i/o Fun. Des script. algebraic script. rugged
lit#/time lit#/time lit#/time

alu4 14/8 2501/0.21 3530/68.1 -

b12 15/9 80/1.51 629/4.7 141/8.1
cu 14/11 66/0.26 66/0.2 58/0.3

decode 5/16 37/0.01 52/0.2 52/0.4
misex1 8/7 47/0.01 66/0.2 60/0.4
misex3 14/14 2686/0.57 4379/97.1 -

pm1 16/13 53/2.71 52/0.4 50/0.4
rd84 8/4 409/0.02 756/4.4 348/21.8
sa02 10/4 180/0.01 248/1.1 188/7.6

sqrt8ml 8/4 70/0.01 148/0.5 94/0.8
table5 17/15 1092/7.75 1236/8.1 1074/27.7

x2 10/7 45/0.06 54/0.2 48/0.3

Table 4.2: Results for multiple output functions

The developed program is tested using MCNC and IWLS'93 benchmarks on a PC

49

Chapter 4. Functional DCs for Multiple Output Functions Section 4.6

with PII-266 CPU and 64M RAM under Linux operating system. Due to lack of efficient

encoding method for the problem proposed in section 4.4.2, a simple encoding scheme

is applied, that is to encode a binary code of i to ith subfunction. For example, rd84

has 4 outputs, so (00), (01), (10), (11) are assigned to the first, second, third and fourth

subfunctions respectively. For the codes that have not been used, they are taken as external

DCs. In table 4.2, all the time is in seconds and "-" means not available due to memory and

time limitation. The results of "script. algebraic" and "script.rugged" are also shown with

BLIF input format[134]. Although there is no efficient method for encoding, our program

can still produce very good results even with the minterm input format.

4.6 Summary

The concept of containment is more general than unateness[26] and leads to the generation

of functional DCs. The algorithm of multilevel logic simplification based on functional DCs

is first reviewed and improved in the aspects of variable order and splitting equations for

single output Boolean functions. The idea is then generalized to multiple output function

through encoding method. This encoding strategy provides a new approach to simplify

Boolean relations which are known to be computationally extensive[28]. The improved

algorithm has been implemented in C language and tested using common benchmarks.

Experimental results show that functional DCs are also very effective for multiple output

function. This work can be further developed as follows.

1. Find an efficient method to solve the encoding problem described in section 4.4.2,

which is different from the traditional one for the functional decomposition[104].

2. Incorporate the idea in other logic minimizers such as SIS to improve the performance.

50

Chapter 5

Polarity Conversion for Single

Output Boolean Functions

5.1 Introduction

In the logic synthesis process, AND /XOR (Reed-Muller) design has shown several advan­

tages, such as high testability, low cost for arithmetic and symmetric functions. Therefore,

the conversion between the standard SOP and Reed-Muller forms becomes necessary and

there has been extensive research on it.

In [155]' any function in SOP form can be converted by three algorithmic rules of bj

coefficient maps, similar to Karnaugh maps. Then the best polarity that corresponds with

the maximum number of zero-valued bj coefficients can be determined by folding technique.

Tabular technique is applied in [4] and [6] for conversion between the canonical SOP and

Reed-Muller forms. The computer experiments show that it will take much CPU time

for large Boolean functions even with the parallel process realization [138]. Recently, the

relationship between on-set coefficients of SOP forms and the corresponding Reed-Muller

coefficients is published in [85]. The algorithm in [85] requires less computer memory since

it computes from only on-set coefficients, but it takes excessive CPU time when n ;::: 15. On

the other hand, a hardware realisation for conversion with any fixed polarity is proposed

in [3]. Although the conversion speed is very fast, it is only suitable for small functions

because of the limitation of the number of chip pins. Other relevant results can also be

found in [5] and [97].

5.2 Basic definitions and terminology

Any n-variable Boolean function can be expressed canonically by the SOP form in equation

(5.1) .

51

Chapter 5. Polarity Conversion for Single Output Functions

2n-1

!(Xn-IXn-2'" XO) = L aimi
i=O

Section 5.2

(5.1)

where the subscript i can also be expressed in a binary form as i = (in - l i n -2'" io),

"L:" is the OR operator, the minterm mi can be expressed as mi = Xn-IXn-2 ... xo,

{

X' i·=O . J' J
Xj =

Xj, ij = 1
(5.2)

Or it can be expressed by the exclusive sum-of-products, loosely known as the positive

polarity Reed-Muller (PPRM) form as follows.

2n-1

!(Xn-IXn-2'" xo) = ~ biPi
i=O

where "~" is the XOR operator, Pi = Xn-IXn-2'" xo,

. {I, ij = 0
Xj =

X· i· - 1 J' J-

(5.3)

(5.4)

In equations (5.2) and (5.4), j is from 0 to n - 1. We will refer to the coefficients of SOP

form and the coefficients of Reed-Muller form as a and b respectively for simplicity.

For example, when n is 2, !(XIXO) can be expanded by the SOP form as follows.

3

Alternatively, it can be expanded by the positive polarity Reed-Muller form as follows.

boo EEl bOIXO EEl blOXI EEl bnXIXO

= bo EEl blXo EEl b2XI EEl b3XIXO
3

~biPi
i=O

52

Chapter 5. Polarity Conversion for Single Output Functions Section 5.3

In a fixed polarity Reed-Muller (FPRM) expansion with any fixed polarity p, P =

(Pn-IPn-2··· po), every variable can only be either true or complemented, but not both. If

an entry ofp, Pj is 0 (or 1) then the corresponding variable is in the true (or complemented)

form. Therefore, there are 2n polarities for a n-variable function, and the positive polarity

is equivalent to zero polarity.

5.3 Conversion of the coefficients with zero polarity

Since the minterms are mutually exclusive, equation (5.1) can be rewritten as follows.

2n-1

!(Xn-IXn-2··· xo) = ~ aimi
i=O

(5.5)

Because x = 1 EEl x, replace x with 1 EEl X in each mi of equation (5.5) and simplify to convert

from a to b. For any Reed-Muller coefficient, bi, where i = (in-lin-2··· io), if ij is 1, then

there is Xj in Pi according to equation (5.4). Because Xj can be created by both Xj and Xj

in mi, ij can be both 1 and 0 in a according to equation (5.2). Otherwise, if ij is 0, then

there is a constant "I" instead of Xj in Pi according to equation (5.4). Because "I" can only

be created by Xj in mi, ij can only be 0 in a according to equation (5.2). Alternatively,.

the above transformation can be written as equation (5.6).

bi = bin_lin_2···io = ~akn-lkn-2 ... ko
k

where k = (kn - I kn - 2 ... ko),

kj =
{

X,

0,

ij = 1

ij = 0

(5.6)

(5.7)

In equation (5.7) "x" is the notation for both 0 and 1, j E {0,1,··· ,n -I}. For

example, if n is two, then according to equation (5.6) we have,

b2 blO

~axo
k

aoo EEl alO

ao EEl a2

53

Chapter 5. Polarity Conversion for Single Output Functions

In the same way, we have,

= 2:Za xx
k

aOO EEl aOI EEl alO EEl an

ao EEl al EEl a2 EEl a3

Section 5.3

Similarly, because 1 = x EEl X, replace "I" with x EEl x in each Pi of equation (5.3) and

simplify to convert from b to a. Equations (5.8) and (5.9) can be obtained in the same

way.

ai = ain_lin_2···io = 2:Zbkn-lkn-2 ... kO
k

where k = (kn- Ikn- 2 ... ko),

(5.8)

(5.9)

Comparing equations (5.6), (5.7) with (5.8), (5.9), it can be seen that the only difference

between them is the entries of a and b. The conversion methods from a to b and from b to

a are identical with zero polarity. This leads to observation 5.1.

Observation 5.1. Any Reed-Muller coefficient bi can be computed from SOP coefficients

ak according to equations {5. 6} and {5.7} with zero polarity. Similarly, any SOP coefficient

ai can be computed from Reed-Muller coefficients bk according to equations {5.8} and {5.9}
with zero polarity.

Alternatively, equations (5.7) and (5.9) can be expressed using a truth table, ta­

ble 5.1, to show the bitwise relationship between the subscripts of a and b, where ij

or kj is any bit of io, i l ,'" ,in-lor ko, kl ,'" ,kn- l . Here we define a criterion func­

tion 9 = (gn-lgn-2'" go), where gj is shown in table 5.1. If the value of the function

9 = (gn-lgn-2'" go) is 1, that is, all of its binary bits, gn-l, gn-2,' .. ,go are 1, then

equations (5.7) and (5.9) are satisfied. The coefficient can be computed using equation

(5.6) or (5.8) with all the coefficients whose subscript satisfies equation (5.7) or (5.9). It

can be seen from equations (5.7) and (5.9) that the number of satisfied coefficients, both

on-set and off-set, is 2t , where t is the number of I-valued bits of i. For example, to com­

pute a Reed-Muller coefficient bi from SOP coefficients, if all the binary bits of 9 are 1 for

the subscripts i and k, then the SOP coefficient ak should be included in equation (5.6);

otherwise, it should not be included. This process is shown in example 5.1.

54

Chapter 5. Polarity Conversion for Single Output Functions Section 5.3

k
J 0 1

1·
J

0 1 0

1 1 1

Table 5.l: Truth table of the criterion function 9j

Furthermore, table 5.1 can be expressed by a Boolean function (5.10) or (5.11), where

" I " and "&" are the bitwise OR and AND operators respectively. Using either equation

(5.10) or (5.11), it is possible to decide if a particular coefficient should be included for

conversion. Besides, only the on-set coefficients need to be calculated since 0 EB x = x. If

the number of the included on-set coefficients is odd, then the converted coefficient is 1;

otherwise, it is O. The above methods are exemplified in example 5.1.

(5.10)

(5.11)

Example 5.1. Compute Reed-Muller coefficient b6 with zero polarity for a 4-variable func­

tion f(X3X2XIXO) = I:(1, 2, 5, 6, 7, 8,10,11).

According to equations (5.6) and (5.7), b6 =bOllO , which means i2 = il = 1. So k2 and

kl can be both 0 and 1, that is,

bOllO 2Ia o x xO

k

= aOOOO EB aOOlO EB aOIOO EB aOllO

ao EB a2 EB a4 EB a6

OEB1EBOEB1

o

Alternatively, b6 can be calculated by equation (5.10). For the first on-set coefficient "1",

we have

55

Chapter 5. Polarity Conversion for Single Output Functions

9 116

0001 10110

1110 I 0110

= 1110

Section 5.4

Because go is 0 instead of 1, this coefficient should not be included in the computation of

b6. Then switch to the second on-set coefficient "2". Similarly we have

9 216

001010110

110110110

1111

Because all of gj are 1, this coefficient should be included. Then switch to the third on-set

coefficient and so on. After finishing all 8 on-set coefficients, only two coefficients "2" and

"6" are included. Hence b6 is 0 since two is even. All these procedures can be done easily

by a computer.

Now observation 5.1 is updated by the following observation.

Observation 5.2. Any zero polarity Reed-Muller coefficient bi can be computed from the

on-set SOP coefficients using equation (5.10) or (5.11). If all gj are 1 then this coefficient

is included. If the number of included coefficients is odd, then bi is 1; otherwise, bi is O.

In the same way, any SOP coefficient ai can be computed from the on-set Reed-Muller

coefficients with zero polarity.

5.4 Conversion of the coefficients with a fixed polarity

In the previous section, a zero polarity conversion method is introduced. In this section

a polarity for SOP forms is proposed to extend the conversion method from zero polarity

to any fixed polarity. Then the bidirectional conversion method between SOP and FPRM

forms is presented.

5.4.1 Polarity for SOP expansions of Boolean functions

For any n-variable Boolean function, there are 2n FPRM expansions and expansions with

different polarities have different on-set coefficient sets. Here we define a polarity for SOP

expansions of Boolean functions.

56

Chapter 5. Polarity Conversion for Single Output Functions Section 5.4

Definition 5.1. Any Boolean function f(X n -lXn -2'" Xo) can be expressed canonically

as in equation (5.1). That expansion is defined as the zero polarity. Any variable Xj ,

j E {a, 1, ... ,n - 1} in every minterm with a polarity P = (Pn-lPn-2'" po) of the same

SOP function f(X n -lXn -2'" xo) is defined as in equation (5.12).

if Pj = 1

if Pj = ° (5.12)

According to equation (5.12), if any entry of p, pj is ° (or 1), then the corresponding

variable is in the true (or complemented) form. This is the same as the polarity for FPRM

forms. Now equation (5.1) is extended accordingly as follows.

2n-l

f(X n -lXn -2'" xo) = 2: aimi

i=O

{
X' i·=O i;. - J' J

J - .. . 1
Xj, Zj =

(5.13)

(5.14)

In equation (5.14), x is the complemented form of X. Besides, equation (5.14) is an

extension of equation (5.2). Therefore, the corresponding subscript in equation (5.13),

i = (in-dn-2 ... io) can be obtained from equation (5.14) as follows.

{
Oi;.=X.

i. - 'J J
J - 1 v ..

, Xj = Xj
(5.15)

Example 5.2. A 3-variable function f(X2XlXO)

x = x, we have

2:(1,2,5) has zero polarity. Since

2:(1,2,5)

2:{(OOl),(010),(101)}

X2XlXO + X2XlXO + X2 Xl XO

X2XlXO + X2XlXO + X2 Xl XO

If the polarity pis 1, then X2 = X2, Xl = Xl, and :1:0 = Xo according to equation (5.12).

57

Chapter 5. Polarity Conversion for Single Output Functions Section 5.4

Hence, from equations (5.13) and (5.15), this function can also be expressed as fUhxlxo)
with polarity 1 as follows,

~{(OOO),(011),(100)}

= ~(O,3,4)

So this function is ~(1, 2, 5) with zero polarity, while it is ~(O, 3, 4) with polarity 1.

Therefore, any n-variable Boolean function can be expanded canonically as equation (5.13)

with polarity p according to definition 5.1. There are 2n polarities for a Boolean functions.

To convert any SOP expansion from polarity pi to polarity p, every subscript i, 0 ::; i < 2n

should be converted using equation (5.1),

i ¢= i 1\ P 1\ pi (5.16)

where" 1\" and "¢=" are bitwise XOR and assignment operators respectively. Since pi is

conventionally zero as in equation (5.1), equation (5.16) can be simplified as follows.

i¢=il\p (5.17)

A theorem can be formulated about the polarity of SOP expansions.

Theorem 5.1. If there are M on-set minterms of a n-variable function with polarity p,

then there are always M on-set minterms with any other polarities.

Proof. For any coefficient i of the function with polarity p, it is converted to i ' with any

other polarity pi, i ' = il\pl\p' ,according to definition 5.1 and equation (5.16). So there is·

a one-to-one correspondence between any minterm with polarity p and its corresponding

minterm with polarity p'. Thus, the number of on-set minterms is the same with any

polarity. D

Unlike the FPRM expansions, the number of on-set coefficients for any SOP expression is

fixed for all polarities. The only effect of the polarity is the order of the on-set minterms.

5.4.2 Conversion from a to b with a fixed polarity

Procedure 5.1. Any Boolean function can be converted from canonical SOP expansion to

canonical FPRM expansion with a fixed polarity p through the following steps.

1. Convert the function to SOP expansion with polarity p;

2. Convert the expansion after step 1 to Reed-Muller expansion using any zero polarity

conversion method.

58

Chapter 5. Polarity Conversion for Single Output Functions Section 5.4

Suppose P and a n-variable Boolean function are expressed by P = (Pn-lPn-2 ... po) and

!(Xn-lXn-2 ... xo) respectively. If this function is converted to a canonical Reed-Muller

expansion as equation (5.3) with zero polarity then every variable is in the true form. It

follows that the polarity of FPRM forms after zero polarity conversion is the same polarity

of SOP forms before the conversion. In short, zero polarity conversion does not change the

polarity. In other words, equation (5.3) can be extended as follows.

2n-l

!(Xn-lXn-2'" xo) = ~ biPi (5.18)
i=O

where Xj may be either the true or the complemented form of Xj, and every variable Xj'

in any term Pi is in the same form as X j', 0 ::; j, j' ::; n - 1. Now, in step 1, this function

is first converted to another SOP expansion !(Xn-lXn-2'" xo) with polarity P according

to equation (5.17). If Pj is 1, Xj is the complemented form of Xj; otherwise, Xj is the true
2n-l

form of Xj' In step 2, !(Xn-lXn-2'" xo) is converted to Reed-Muller expansion ~ b(jji
i=O

with a zero polarity conversion method. According to equation (5.18), every variable Xj in

the term Pi is the same form as in the expansion !(Xn-lXn-2'" xo) after step 2. Because
2n-l

of the canonicality of FPRM expansions, ~ biPi is the FPRM expansion of the function
i=O

!(Xn-lXn-2'" xo) with polarity P .

Example 5.3. Convert a 4-variable function !(X3X2XIXO) = :L(1, 2, 5, 6, 7, 8, 10, 11) from

the SOP form to the FPRM form with polarity 1.

In step 1, this function is converted to the SOP expansion with polarity 1. From

equation (5.17), we have,

In step 2, :L(O, 3, 4, 7, 6, 9, 11, 10) is converted to Reed-Muller expansion using any zero

polarity conversion method. We use the method based on observation 5.2. For example,

to compute bll , all the on-set minterms should be decided as in example 5.1. For the first

SOP on-set coefficient "0", we have

9 0111

000011011

111111011

= 1111

This minterm should be included. Similarly, 3, 9, 11, 10 should be included to compute

bll. The number of these included on-set coefficients is an odd number 5, so bll is 1. In

59

Chapter 5. Polarity Conversion for Single Output Functions Section 5.5

the same way, the final FPRM expansion can be obtained as ~(O, 1,2,6,7,8,11,13) with

polarity 1.

From procedure 5.1, if we have any zero polarity conversion algorithm between SOP

and Reed-Muller forms, then it can be extended to any fixed polarity.

5.4.3 Conversion from b to a with a fixed polarity

From equations (5.6), (5.7) and (5.8), (5.9), it can be seen that the zero polarity conversion

methods are exactly the same from a to b and from b to a. If a coefficient set G of a SOP

form is converted to a Reed-Muller coefficient set with zero polarity, then the result is

a set G'. Likewise, if a coefficient set G' of a SOP form is converted to a Reed-Muller

coefficient set with zero polarity, then the result is a set G. In example 5.3, the SOP

on-set coefficient set {O, 3, 4,7,6,9,11, 10} is converted to a Reed-Muller on-set coefficient

set {O, 1,2,6,7,8,11, 13}. Similarly, the SOP on-set coefficient set {O, 1, 2, 6, 7, 8, 11, 13}

will be converted to the Reed-Muller on-set coefficient set {O, 3, 4,7,6,9,11, 10}. From this

point, procedure 5.1 can be extended to procedure 5.2.

Procedure 5.2. Any Boolean function can be converted from canonical FPRM expansion

with a fixed polarity p to canonical SOP expansion through the following steps.

I'. Convert the function to SOP expansion using any zero polarity conversion method;

2'. Convert the SOP expansion after step I' from polarity p to zero polarity using

equation {5.17}.

Suppose we have converted the coefficient set G of the SOP form to the FPRM coeffi­

cient set G' by the two steps in procedure 5.1. If we want to convert G' to G, then it is

an inverse procedure. In step 1 of procedure 5.1, G is first converted to Gil , then Gil is

converted to G' in step 2. Now, Gil can be obtained in step I' because of the zero polarity

conversion method. In step 2' , G can be calculated from Gil since i !\ P !\ P = i for every

coefficient in Gil.

The bidirectional conversion is illustrated in fig.5.1 where d is a binary variable for the

direction. If d is 0, then the conversion is from a to b; otherwise, it is from b to a. Besides,

a or bin fig.5.1 is any element of the set A or E, and "*" is for multiplication.

Input coefficient I ~
set A,.pol~tity P ~ a=at..('([*p)
and dlrectlOnd

Convert between
Reed-Muller
and SOP forms
with zero

polarity and save
the results in set B

Output
~I b=bA(d *p) I~ coefficient

setB

Figure 5.l: Bidirectional conversion between SOP and FPRM forms

60

Chapter 5. Polarity Conversion for Single Output Functions Section 5.5

5.5 Conversion algorithm for large Boolean functions

In section 5.4, the method for bidirectional conversion is discussed with any fixed polarity.

This method has been implemented in C language. For a 15-variable function with 10,000

on-set coefficients, the CPU time for conversion with any fixed polarity is about 13 seconds

on a personal computer with Cyrix6x86-166 CPU and 32M RAM. Most of the CPU time,

however, is spent on the zero polarity conversion because other parts of the algorithm are

simple to compute. In this section, multiple segment and multiple pointer techniques are

introduced to improve the speed for zero polarity conversion.

5.5.1 Multiple segment technique

In observation 5.2, to compute a Reed-Muller coefficient, all the SOP on-set coefficients

should be accessed once. If we order these on-set coefficients in advance, then the speed

will be improved. Thus the multiple segment technique is introduced, defining a segment

as a suitable subset of the on-set coefficients.

Definition 5.2. For an n-variable Boolean function f(x n -lxn -2··· xo), any of its on-set

coefficients c can be ordered into one of 3 segments defined below,

c E the jth 3egment, iff j * 21 ~ C < (j + 1) * 21 (5.19)

where 3 = 2n - 1 , 0 ~ I ~ n, 0 ~ j < 3, 0 ~ C ~ 2n - 1.

Example 5.4. All of the on-set coefficients of a 4-variable function f (X3X2XIXO) =2:(1,2,5,

6,7,8,10,11) can be ordered into 4 segments, 30,31,32,33, that is, 3 = 4, I = 2. According

to definition 5.2, 30 = {1,2}, 31 = {5, 6, 7} ,32 = {8, 10, 11}, 33 = 0 . Alternatively, these

on-set coefficients can be reordered into 8 segments, 30',31',32',33',34',35',36',37', that is,

3 = 8, I = 1. Then, 30' = {I}, 31' = {2}, 32' = {5}, 33' = {6, 7}, 34' = {8}, 35' = {10, 11},

36' = 37' = 0 .

Definition 5.3. For two integers, i, k, which can be represented by binary m-tuples,

i = (im -lim -2··· io), k = (km - 1km -2··· ko), if ij ~ kj for all j, 0 ~ j < m, then i covers

k or k is covered by i.

According to definition 5.3, the relation of cover can be expressed exactly as equation

(5.10) or (5.11). So any coefficient bi can be computed from the number of all on-set

coefficients ak, where k is covered by i. If this number is odd, then bi is 1; otherwise, bi is

O.

Theorem 5.2. Supp03e there are an integer i and an integer set K, i = (im - 1im -2··· io),

k = (km - 1km - 2 ··· ko), where k is any element of K. If ij = kj for all j that is from

61

Chapter 5. Polarity Conversion for Single Output Functions Section 5.5

l to m - 1, 0 ::; l < m, and the number of elements in K covered by i is iy, then, after

subtracting if * 21 from both i and any element of the set K, if = (im-l im -2 ... il), the

number of elements in K covered by i is still iy.

Proof. For i and any element k in K, since ij = kj for all j that is from l to m - 1,

o ::; l < m, all the most significant l bits of k in set K are the same, then if covers kf,

kf = (km - 1km - 2 ··· k1) by definition 5.3. Or the criterion function 9 = kf I if is always 1

when kf and if are the same number by equation (5.10). After subtracting if * 21 from

both i and any element of K, if = (im-lim-2 ... il), all these m -l bits are set to be zero.

Therefore, the criterion function 9 = kf I if is still 1 when both kf and if are zero. So the

number of elements that are covered by i in K is the same as before subtracting. 0

Example 5.5. Let i, m and l be 109, 7 and 3 respectively, and K = {111, 110, 105, 104}.

109 (1101101)

111 (1101111)

110 = (1101110)

105 = (1101001)

104 (1101000)

All of these numbers begin with "1101", that is the number 13. Then subtract 13 * 23 =

104 from these numbers. Now i = 5, K = {7, 6, 1, O}, the number of elements in K covered

by i is the same as before subtracting, that is 2.

Procedure 5.3. Conversion between a and b with zero polarity can be implemented as

follows.

1". Anyon-set coefficient of an n-variable Boolean function f(x n-lxn-2··· xo) can be

ordered into one of s segments by definition 5.2 where s = 2n - 1, 0::; l ::; n.

2". Set u = 21 and every coefficient in the j'th segment is reduced by j' * U, 0 ::; j' < s.

3". For any integer if, 0 ::; if < u, count the numbers of on-set coefficients, kf, that are

covered by if in each segment. Save these s numbers in an integer array M[s].

4". For any integer iff , 0 ::; iff < s, if l:M[k"] is odd, where kIf is covered by i",
k"

o ::; kIf < s, and "2:" stands for the arithmetic addition operator instead of logic operator

OR here, then the coefficient if + iff * U should be saved as output. Otherwise, if l:M[k"]
kif

is even, then the coefficient if + iff * U should not be saved as output.

5". The saved coefficients in step 4" are the result .

Without losing generality, we suppose that the conversion is from a to b since it is zero

polarity conversion.

62

Chapter 5. Polarity Conversion for Single Output Functions Section 5.5

For any Reed-Muller coefficient i, 0:::; i < 2n , i = (in-lin-2·· ·io), all its n bits can

be divided into two groups, group 1: i n - 1i n -2··· il and group 2: il-1il-2 ··· io. So i can

be expressed by i = if + i" * 'U, where if = il- 1il-2 ... io, and i" = i n - 1i n -2 ... il. From

definition 5.3, the value of bi is decided by the number of on-set SOP coefficients covered

by i. If this number is odd, then bi is 1; otherwise, bi is 0. In step 1", all the on-set SOP

coefficients are ordered into s segments. So the number of on-set SOP coefficients covered

by i is the sum of the numbers of coefficients covered by if of all the segments that are

covered by i". After reducing by jf * 'U in step 2", all the most significant n - l bits are

set to zero. Therefore, the number of SOP coefficients covered by the least significant l

bits of i is the same as before subtracting according to theorem 5.2. These numbers for

summation are obtained in step 3" in each segment. Finally the sum is calculated in step

4". Therefore, the numbers saved in step 4" are the Reed-Muller on-set coefficients.

Example 5.6. Compute Reed-Muller form ofthe 4-variable function !(X3X2XIXO) =2:(1,2,

5,6,7,8,10,11) with zero polarity by procedure 5.3 if s is 4.

In step 1", all the SOP coefficients are divided into 4 segments, sO, sl, s2, s3. From

example 5.4, it can be seen that sO = {I, 2}, sl = {5, 6, 7} ,s2 = {8, 10, 11}, s3 = 0.
In step 2", set 'U = 4, and every coefficient in the j'th segment is reduced by j' * 'U,

° :::; j' < s. Therefore, sO = {I, 2}, sl = {I, 2, 3} ,s2 = {O, 2, 3}, s3 = 0.
In step 3", when if is 0, the numbers of on-set coefficients covered by if in each segment

are, M[O] = 0, M[I] = 0, M[2] = 1, M[3] = ° because ° can only cover 0.

In step 4":

when i" is 0, 2:M[k"] = M[O] = 0, because ° only covers 0. So i, that is, if + i" * 'U = 0,
k"

should not be saved.

when i" is 1, 2:M[k"] = M[O] + M[I] = 0, because 1 covers both ° and 1. So i, that
k"

is, if + i" * 'U = 4, should not be saved.

when i" is 2, 2:M[k"] = M[O] + M[2] = 1, because 2 covers both ° and 2. So i, that
k"

is, if + i" * 'U = 8, should be saved.

when i" is 3, 2:M[k"] = M[O] + M[I] + M[2] + M[3] = 1, because 3 covers 0, 1, 2, 3.
k"

So i, that is, if + i" * 'U = 12, should be saved.

Then, switch to if = 1 in step 3" after all the values of i", ° :::; i" < s have been counted

in step 4". In step 3", when if is 1, the numbers of on-set coefficients covered by if in each

segment are, M[O] = 1, M[I] = 1, M[2] = 1, M[3] = ° because 1 can only cover ° and 1.

In step 4":

when i" is 0, 2:M[k"] = M[O] = 1, because ° only covers 0. So i, that is, if +i" *'U = 1,
k"

should be saved.

when i" is 1, 2:M[k"] = M[O] + M[I] = 2, because 1 covers both ° and 1. So i, that
k"

is, if + i" * 'U = 5, should not be saved.

63

Chapter 5. Polarity Conversion for Single Output Functions Section 5.6

when i" is 2, I;M[k"] = M[O] + M[2] = 0, because 2 covers both 0 and 2. So i, that
kif

is, if + i" * 'U = 9, should not be saved.

when i" is 3, I;M[k"] = M[O] + M[l] + M[2] + M[3] = 3, because 3 covers 0, 1, 2, 3.
kif

So i, that is, if + i" * 'U = 13, should be saved.

Then switch to if = 2 in step 3" and repeat the above procedure. Finally, switch to

if = 3 in step 3" and repeat. These data are shown in table 5.2. According to procedure

5.3, the coefficients saved in step 4" are the Reed-Muller coefficients. So the Reed-Muller

form is ~(8, 12, 1, 13,2,10,7,11).

if o 1 2 3

M[O] 0 1 1 2
M[l] 0 1 1 3
M[2] 1 1 2 3
M[3] 0 0 0 0

i" 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
I; M[k"] 0 0 1 1 1 2 2 3 1 2 3 4 2 5 5 8
if + i" * 'U 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

saved(Y IN) N N Y Y Y N N Y Y N Y N N Y Y N

Table 5.2: Example of multiple segment technique

5.5.2 Multiple pointer technique

For large Boolean functions, there are still many coefficients in each segment although

they have been divided into s segments by multiple segment technique. Here the multiple

pointer technique is introduced to operate on every segment.

In the realization of the multiple segment technique, every coefficient should be accessed

by a pointer in a segment to decide the values of M[s] in step 3". If there are q pointers to

access a segment at the same time, then the speed will be improved. But the number of

all coefficients should be the multiples of q, otherwise, some coefficients may be accessed

more than once. Some extra coefficients should be appended to any segment so that all

the coefficients are accessed exactly once in this segment. The values in M[s] must be the

same as before appending of extra coefficients.

In the multiple segment technique of procedure 5.3, the coefficients in the j'th segment

are reduced by jf * 'U in step 2" so that the most significant n - l bits of any coefficient

are zero. Because zero can only cover zero by definition 5.3, any number whose most

significant bit is 1 can be appended to all segments and keep the values in M[s] same. In

our experiments, this extra coefficient e is set so that all of its bits are l.

The conversion algorithm using multiple segment and multiple pointer techniques is

given in fig.5.2.

64

Chapter 5. Polarity Conversion for Single Output Functions Section 5.6

converL with_zero_polarity(u, s, d,p, q, M M s[])

/* data in array MMs[] are the numbers of coefficients of all
segments after appending the extra coefficients */

{
for(i = O;i < u;i + +)
{

loopl: for(j = O;j < s;j + +)
covered_number[j] -¢= number _covered_by_i(M M s[j]);

lObp2: for(j = O;j < s;j + +)

}
}

{
for(k = 0; k < s; k + +)

{
9 -¢= k&];

if(g = l)temp -¢= temp + covered_number[k];
}

if (temp is odd)save(outpuLfile, (i + j * u) 1\ (d * p)) ;
}

/* this routine is based on observation 2 and
procedure 5.3 */

Figure 5.2: Conversion algorithm using multiple segment technique

5.6 Algorithm and experimental results

From section 5.5, the values of sand q, that are the number of segments and the number

of pointers, should be set first. Both sand q can not be too big or too small; otherwise,

either an extra burden, in time and memory, is incurred or no significant improvement

is achieved. Although the number of pointers q can be set dynamically using an array,

we find that the speed will suffer because of the array. In our experiments, we found, by

experiment, it is efficient to set q to be a constant 32 in most cases.

As for s, it can be seen from procedure 5.3 that most of the CPU time is spent on

steps 3/1 and 4/1. These two steps are labeled as the two loops, loopl and 100p2 in the

routine of converL with_zero_polarity() in fig.5.2. Suppose there are altogether M on­

set coefficients to convert, then these coefficients are divided into s segments. Besides,

the number of coefficients of all segments are multiples of q. Then the average number of

coefficients in a segment is ~ +~. In loopl, all the s segments should be accessed once

so the CPU time is proportional to s * (~ + ~). Similarly, the CPU time is proportional

to s2 in the second loop. We determine the value of s by setting these two parts of CPU

time to be equal.

65

Chapter 5. Polarity Conversion for Single Output Functions

M q 2
S * (- + -),8 = S

s 2

Section 5.6

(5.20)

where ,8 is a modifying factor decided by the hardware specifications of the computer

and the capability of the compiler. After experimentation, ,8 was to set to 4. From equation

(5.20) the value of s can be set to q + Jq2 +4M. Besides, s must be a power of 2 by

definition 5.2. So s is set to be the power of 2 that is close to q + J q2 + 4M.

From the above discussion, the conversion algorithm for very large functions between

SOP and Reed-Muller forms with any fixed polarity is shown in fig.5.3 using multiple

segment and multiple pointer techniques.

It can be seen from the algorithm that the CPU time is made up of three processes as

follows.

1. Initialize and read the data from the file to the memory.

2. Preprocess the data with any fixed polarity and convert them with zero polarity

according to fig.5.1.

3. Save the outputs to the file.

Further, most CPU time is spent on process 2 for large Boolean functions. Because the

conversion process for any fixed polarity is the same, the CPU time in process 2 is inde­

pendent of both the polarity and the direction. In other words, when nand M are fixed,

the combined CPU time of both process 1 and process 2 is identical for any polarity in

either direction. Since the number of on-set coefficients after conversion varies with the

polarity and the direction, the CPU time of the algorithm is mainly dependent on nand

M.

The algorithm is implemented in C language and the program is compiled by the

GNU C compiler. Then it is tested on a personal computer with Cyrix6x86-166 CPU and

32M RAM under Linux operating system. Some random coefficient sets are generated to

test the effectiveness of the algorithm. The results confirm that the CPU time is mainly

dependent on nand M only. For any n-variable Boolean function with n :s; 12, the CPU

time is almost zero using multiple segment and multiple pointer techniques with any fixed

polarity in either direction. These results, both with and without multiple segment and

multiple pointer techniques, are shown in table 5.3 and fig.5.4 when n 2: 15.

When n is greater than 20, the number of on-set coefficients is comparatively small. To

convert these sparse functions, multiple pointer technique may not be necessary. We find

from the experiments that the conversion will be slightly faster without multiple pointer

technique for the sparse functions.

Furthermore, to compare with the results from reference [85], we also test the parity

functions defined as follows.

66

Chapter 5. Polarity Conversion for Single Output Functions Section 5.6

convert(n, M,p, d, inpuLfile, outpuLfile)

{
/* n, M, p, and d are the numbers of variables, the number

of on-set coefficients, the polarity, and the direction
respectively. If d is zero, then the conversion is from SOP
coefficients to Reed-Muller coefficients. Otherwise, if d is one,
the conversion is from Reed-Muller coefficients to SOP
coefficients. All the on-set coefficients are read from the
input_file. All the on-set coefficients after conversion are saved
in the outpuLfile. */

CPU_time = clock ();
q -¢= 32;
.s = 2n;

/* .s and q are the number of segments and the number of pointers
respectively */

if (.s > (q + y''"'q2'-+-4-M-)).s -¢= .s / 2 ;

u = 2n /.s;
for(i = O;i < M;i + +)
{
temp -¢= read_a_coef ficient(inpuLfile) 1\ (d * p);
if(j * u ::; temp < (j + 1) * u)M .s[j] + +;
} /* count the numbers of coefficients for the jth segment,

o ::; j < .s, save them in the array M .s[j] */
for(i = O;i < .s;i + +)
{
if(M.s[i] i.s not a multiple of q)MM.s[i] -¢= M.s[i] + (q - M.s[i]%q);
el.se M M .s[i] -¢= M .s[i];
make_memory(M M .s[i]);
} /* make the numbers of coefficients in all segments be

multiples of q, and make memory for all the coefficients */
for(i = O;i < M;i + +)
{
temp -¢= read_a_coef ficient(inpuLfile);
temp -¢= temp 1\ (d * p);
if(j * u ::; temp < (j + 1) * u)temp -¢= temp - j * u;
} /* read all the coefficients to the memory and subtract

them according to theorem 5.2 */

}

for(i = 0; i < .s; i + +)add_extra_number.s(M .s[i], M M .s[i]);
converL with_zero_polarity(u,.s, d,p, q, M M.s[]);
CPU_time -¢= clock () - CPU_time;
di.splay(CPU_time and the number of on-.set coefficient.s);

Figure 5.3: Bidirectional conversion algorithm for large Boolean functions

67

Chapter 5. Polarity Conversion for Single Output Functions Section 5.6

number of on- number of on- CPU times CPU times

n set coefficients set coefficients polarity direction with multiple without multiple

before conversion after conversion techniques (s) techniques(s)

15 10,000 16,696 990 1 0.74 13.28

15 10,000 20,827 10,000 0 0.77 13.22

15 15,000 16,398 990 0 1.14 20.58

15 15,000 16,896 990 1 1.11 20.06

16 15,000 33,202 12,345 0 1.63 39.74

16 15,000 33,792 12,345 1 1.61 41.16

16 30,000 32,853 23,456 0 2.53 89.57

16 30,000 33,440 23,456 1 2.45 89.78

17 30,000 66,080 34,567 0 3.73 180.41

17 30,000 66,880 34,567 1 3.68 180.33

17 60,000 65,372 56,789 0 7.28 371.21

17 60,000 66,248 56,789 1 6.93 374.99

18 60,000 121,658 123,456 0 10.49 739.87

18 60,000 132,496 123,456 1 10.31 749.30

18 120,000 130,471 234,567 0 16.97 1,522.36

18 120,000 131,558 234,567 1 16.03 1,511.68

19 120,000 129,200 345,678 0 27.06 2,977.76

19 120,000 263,116 345,678 1 24.07 3,053.22

19 240,000 259,392 456,789 0 40.83 6,252.67

19 240,000 261,356 456,789 1 39.03 6,242.29

20 240,000 260,055 678,901 0 68.48 12,415.58

20 240,000 522,712 678,901 1 62.75 12,430.17

20 480,000 519,743 789,012 0 131.28 26,174.18

20 480,000 521,974 789,012 1 125.31 26,165.60

21 480,000 1,041,166 890,123 0 176.58 50,560.50

21 480,000 1,043,948 890,123 1 172.68 50,499.83

21 500,000 1,042,416 10,000 0 184.36 52,720.70

Table 5.3: Conversion results of some random coefficient sets

n-l

!(Xn -lXn -2··· XO) = ~Xi
i=O

Both the polarity and the direction are set to be zero in our algorithm while converting

the parity functions. It should be noted that the tests in reference [85] are performed

using Borland C++ on a PC with Pentium_90MHz CPU and 16M RAM under WIN32

platform. These results are shown in table 5.4 and fig.5.5.

Finally, we compare our method with the results from a recently published paper [138]

using fast tabular technique. In [138], the CPU time for conversion depends on the polarity

as well as nand M. To calculate the time in [138], the FPRM expansions for all possible

68

Chapter 5. Polarity Conversion for Single Output Functions Section 5.7

n

15

16

17

18

19

CPU_Time(s)
10000

1000

100

10 I--

I--

I

I-

I-

I I
0.1

1000 1500 1500 3000 3000 6000 6000 12000 6000 12000 6000 12000 6000 12000 6000 12000M

n=15 n=16 n=17 n=18 n=19 n=20 n=21 n=22

c:::=J conversion with multiple segment and multiple pointer techniques

.. conversion withoiout multiple segment and mUltiple pointer techniques

Figure 5.4: CPU Time versus the number of on-set coefficients for conversion

number of on- number of on- CPU time CPU time CPU time

set coefficients set coefficients with multiple without multiple from

before conversion after conversion techniques(s) techniques(s) reference [85]* (s)

16,384 15 1.48 22.14 140.39

32,768 16 2.63 99.09 560.47

65,536 17 7.90 401.94 2,254.69

131,072 18 17.42 1,658.11 9,129.83

262,144 19 53.43 6,780.51 36,757.92
* The results are performed on a PC with Pentmm _ 90MHz CPU and 16M RAM.

Table 5.4: Test results for conversion of parity functions

polarities (from 0 to 2n -1) were found, and their time average was taken for a given nand

M. In our method, the computation time depends on nand M only and is independent of

the polarity and direction of conversion. From fig.3 of [138], the average conversion times

for the logic functions with 80% of on-set minterms are about 35, 85, 220 seconds when n is

8,9, 10 respectively. The conversion was implemented in MATLAB on a PC. Applying our

method with multiple techniques for the same functions, our conversion times are about

0, 0.01, 0.03 seconds respectively.

69

Chapter 5. Polarity Conversion for Single Output Functions

CPU _Time(s)

100000 ~--~--~~--~--~----~--~----~--------~--~

10000

1000

100

10

n=15 n=16 n=17 n=18 n=19 1l

_ conversion with multiple segment and multiple pointer techniques

_ conversion without multiple segment and multiple pointer techniques

Section 5.7

_ conversion from reference [II] on a PC with Pentium_90MHz CPU and 16M RAM

Figure 5.5: CPU time for parity function conversions

5.7 Summary

We propose the polarity for SOP form of any Boolean function through which the bidi­

rectional conversion between SOP and Reed-Muller forms is direct. The CPU time for

conversion is nearly independent of the polarity and the direction for a given number of

variables and on-set coefficients. The speed of the algorithm is much faster than existing

algorithms when multiple segment and multiple pointer techniques are used. From fig.5.2,

the time complexity of our algorithm is O(21.5n), while it is O(4n) as reported in [85].

The space complexity is O(2n), same as in [85] since our conversion is also manipulated

on on-set coefficients only. The algorithm is tested for randomly generated functions of up

to 30 variable and 500,000 on-set coefficients. In the absence of a method for predicting

the best polarity, short of exhaustive search, this method makes the search for a "good"

polarity a practical reality.

70

Chapter 6

Conversion Algorithm for Very Large

Multiple Output Functions

6.1 Introduction

Any n-variable Boolean function can be expressed canonically by the sum-of-products

forms (SOPs) as follows.

2n-l

!(Xn-1Xn-2··· xo) = L ad;n-1 Xn-2··· Xo
i=O

(6.1)

where each product is a minterm, "1:" is the OR operator, ai E {O,l}, Xj E {Xj,Xj},

o :::; j :::; n - 1. Alternatively, the function can be expressed by the fixed polarity Reed­

Muller (FPRM) expressions as follows.

2n-l

!(Xn -1Xn-2·· . xo) = 2I biin-lin-2 ... io
i=O

(6.2)

where "~" is the XOR operator, bi E {O,l}, i j E {l,xj}, 0:::; j:::; n - L Furthermore,

Xj in all the cubes can only be either true or complemented, but not both, which corre­

sponds with a polarity p, 0 :::; p :::; 2n - 1. For very large Boolean functions with n 2: 25, it

is impractical to use millions of on-set minterms as in equation (6.1) to express a function.

Consequently, cube set expressions (commonly known as PLA description) and binary

decision diagrams(BDDs) are the common representations based on AND / OR operations,

corresponding with two-level and multilevel forms respectively. Accordingly, mixed polarity

Reed-Muller expressions and functional decision diagrams (FDDs) are the common repre- .

sentations for very large Boolean functions based on AND /XOR operations. A cube set ex­

pression can be first converted to disjoint cube format in the standard Boolean domain[61],

71

Chapter 6. Polarity Conversion for Multiple Output Functions Section 6.1

which is also called operational domain[68]. Then a mixed polarity two-level Reed-Muller

expression is straightforward to obtain by replacing "OR" with "XOR" operation. However,

the input irredundancy cannot be guaranteed in a mixed polarity Reed-Muller expression

since it is not canonical[114]. Consequently, the mixed polarity Reed-Muller expression

should be transformed to FPRM expressions or other procedures are employed to remove

the redundant inputs such as the application of "linking rules" in [114]. For instance, a

4-variable Boolean function can be expressed by a mixed polarity Reed-Muller form as

follows.

(6.3)

If this function is expressed by an FPRM with zero polarity, then we have equation

(6.4).

(6.4)

It can be easily seen from the above equation that X2 and X3 are redundant variables,

while it is very difficult to draw the same conclusion from equation (6.3). However, there is

no efficient program available to convert directly from SOPs to canonical FPRM expressions

for very large functions because the space and time complexity increases exponentially with

the number of variables as described in chapter 5.

An alternative for obtaining FPRM expressions is by constructing functional decision

diagrams (FDDs)[53]. A two-level FPRM form can be obtained from the corresponding

ordered FDDs (OFDDs) where each I-path defines a subset of the variables that uniquely

corresponds to a cube in the FPRM form. Thereby, the number of I-paths of a OFDD

with fixed polarity variables is also the number of on-set cubes of the two-level FPRM for

the same function [53]. Hence, a function that has compact OFDD structure can usually

be represented by a two-level FPRM expression effectively. For example, an FDD for a 4-

variable function is shown in fig.6.1(a) where each node is decomposed by Davio expansion

as in equation (6.5).

1 = 10 ffixh (6.5)

In equation (6.5), if 1 is an n-variable function, then 10 and hare n-l variable functions,

independent of variable x. There are three on-set paths in fig.6.1(a) from the root node Xo

to the terminal node "1", namely, Xo -+ X2 -+ 1, Xo -+ Xl -+ X2 -+ 1, and Xo -+ Xl -+ X2 -+

X3 -+ 1. These paths are marked with "A", "B" and "C" respectively in fig.6.1(a) and the

corresponding cubes are X2, XIXO, and X3X2XIXO. Hence this function can be expressed as

72

Chapter 6. Polarity Conversion for Multiple Output Functions Section 6.1

(a) with variable order (xO, xl, x2, x3) (b) with variable order (x2, xO, xl, x3)

Figure 6.1: Functional decision diagrams for f = X2 EB XIXO EB X3X2XIXO

an FPRM form in equation (6.6).

(6.6)

The main disadvantage of FDDs is that they are generally not canonical except OFDD

where the order of variables is fixed. Additionally, the size of FDDs is sensitive to the order

of variables and the problem of finding the optimal OFDD is NP-complete as discussed

for OBDDs in section 2.3. The same function in fig.6.1(a) can be represented by another

FDD in fig.6.1(b) with a different variable order and number of nodes. However in this

case, the same expression is obtained as in equation (6.6) from fig.6.1(b).

Although it is proposed in [53] that the size of OFDDs is a lower bound for the number

of literals in FPRM expansions, in practice the size of FPRM is usually measured by the

number of terms instead of literals. The main reason for that conclusion is that FPRMs are

two-level representation while OFDDs are multilevel allowing many common literals to be

factored out and shared. Moreover, two-level FPRM expressions are canonical and easily

testable. Therefore, the conversion from SOPs to FPRM forms is desirable especially for

very large functions without utilizing FDDs.

Due to the fact that the computational complexity usually increases exponentially with

the number of input variables, an efficient approach can be achieved by possibly reducing

the variable number. In this chapter, a fast algorithm is proposed to convert directly

73

Chapter 6. Polarity Conversion for Multiple Output Functions Section 6.2

from SOPs to FPRM forms without generating mixed polarity Reed-Muller expressions or

OFDDs. The algorithm takes advantage of the inherent redundancy commonly encountered

in very large multiple output Boolean functions.

6.2 Algorithm

Observation 6.1. In the P LA description of a Boolean function, if the entries on column i

of all on-set cubes corresponding with a variable Xi are "-"s, then Xi is a redundant variable.

Consequently, the entries on column i of all FPRM on-set cubes of this function are "O"s

for the redundant variables with any polarity.

Number of Number of Number of Number of
Dependent Variables Outputs Dependent Variables Outputs

2 3 10 3
3 1 11 5
4 2 12 17
5 51 13 1
6 3 19 1
7 3 20 3
8 2 24 1
9 3 Total; 135 inputs, 99 outputs

Table 6.1: Distribution of dependent variables

For very large multiple output Boolean functions, each individual function usually does

not depend on all the input variables. In other words, there are a number of redundant

variables. For example, testcase "apex6", which is available in IWLS'93 and MCNC bench­

marks, has 135 input variables and 99 outputs. More than half of the outputs are actually

dependent on 5 variables only. The distribution of the number of dependent variables is

shown in table 6.1. Consequently, a fast algorithm can be proposed as below based on

observation 6.1.

Algorithm 6.1. Given an n-variable m-output function in traditional PLA format, the

following steps will produce a FPRM format with any polarity p, 0 S p S 2n - 1.

1. Delete all the redundant variables for any individual function h 0 SiS m - 1,

where the entries are ,,- "s for all the on-set cubes in the P LA description. Suppose the

number of redundant variables is r, then the number of dependent variables is (n - r) for

k
2. Use the algorithm proposed in chapter 5 to convert this single-output function fi of

(n - r) variables from SOP to Reed-Muller form with polarity p and return a cube set C

containing all the on-set Reed-Muller cubes.

3. Add "0" to the columns of all the cubes in C for redundant variables from observation

6.1.

74

Chapter 6. Polarity Conversion for Multiple Output Functions Section 6.3

4. Repeat steps 1 to 3, and append the new Reed-Muller cubes to C for all other

individual functions. Merge all the common Reed-Muller cubes in C to obtain the final

FPRM format.

X2XIAD 1;10
- 01 10
-10 10
00- 01
10- 01

(a) traditional PLA format

X2XIM frio
000 01
001 10
01011

(b) FPRM format with zero polarity

Figure 6.2: An example for algorithm 6.1

Example 6.1. A three-variable two-output function is shown as PLA format in fig.6.2(a),

fo = X2 X l + X2Xl, and h = XIXO + XIXO· From observation 6.1, it can be seen that Xo and

X2 are redundant for the functions fo and h respectively. Convert these two functions of

less variables from SOPs to FPRM format with default zero polarity using the method in

chapter 5 and we have,

(6.7)

and

(6.8)

Note the absence of the redundant variables in equations (6.7) and (6.8). Thus two cube sets

can be obtained, Co = {OO, Ol} for fo and C1 = {Ol, 10} for h. Then add "0" to the cubes

of Co and C1 for the redundant variables Xo and X2 respectively based on observation 6.l.

Hence Co = {000,010} and C1 = {001, 010}, which are shown in fig.6.2(b) after merging

the common cube {OlO}. Furthermore, it can be seen that X2 is actually redundant for both

fo and h from fig.6.2(b) while it is very difficult to draw this conclusion from fig.6.2(a).

75

Chapter 6. Polarity Conversion for Multiple Output Functions Section 6.3

6.3 Experimental Results

Algorithm 6.1 is implemented in C language and tested with IWLS'93 benchmark on a

personal computer with Pentium II-266 CPU and 64M RAM. For most of the very large

multiple output functions, an individual function usually does not depend on all the input

variables. The results are shown in table 6.2, where the number of input variables (variable

number), number of outputs (output number), cube number of two-level FPRM descrip­

tion with default zero polarity after merging the common cubes (RM cube number with 0

polarity), and the time for conversion(time for conversion) are also presented. The input

file of the program is the PLA description of a multiple output Boolean function, and the

output file is in FPRM format with any polarity p, 0 ::; p ::; 2n - 1, and n is the number

of variables.

testcase variable output RM cube number time for
number number with 0 polarity con version (s)

apex6 135 99 11615 1090.62
b9 41 21 706 0.94
c8 28 18 460 0.30
cht 47 36 178 0.04

count 35 16 131137 156.34
example2 85 66 1076 0.81

i6 138 67 341 0.10
i7 199 67 330 0.11
i8 133 81 41874 158.26
lal 26 19 745 0.48

misex2 25 18 1100 0.16
pcler8 27 17 104 0.44
terml 34 10 9081 122.72
unreg 36 16 132 0.03

x3 135 99 11615 1151.96
x4 94 71 3174 2.10

Table 6.2: Experimental results of very large functions from IWLS'93 benchmark

From the results shown in table 6.2, it can be seen that the time for conversion does not

depend on the number of input variables as in all the previous algorithms [5 , 6, 68, 85, 155,

138], but depends on the structure of the functions. If a function has high redundancy, then

it is still very fast even for very large function with hundreds of inputs. For example, "i7"

testcase has 199 inputs and 67 outputs and most of input variables are redundant for any

individual function. So the total conversion time is only 0.11 second while it takes much

longer time for "terml" with much less inputs and outputs. For comparison, we tested the

"misex2" and "lal" functions without applying the redundancy removal and found that it

took more than ten hours to finish the conversion of either of them by the algorithm in

chapter 5. No other comparison is available since all the previous published methods are

76

Chapter 6. Polarity Conversion for Multiple Output Functions Section 6.4

not suitable for very large multiple output functions due to the excessive complexity.

6.4 Summary

A very fast algorithm is proposed in this chapter to convert very large multiple output

Boolean functions directly from two-level PLA format to two-level FPRM format with

any polarity using the property of input redundancy. This facilitates the canonical rep­

resentation of very large multiple output Boolean functions (n 2:: 25) by two-level FPRM

forms. The space and time complexity does not depend on the number of variables but the

structure of the functions. It lays an important basis for further research on Reed-Muller

logic and logic synthesis and optimization generally.

77

Chapter 7

Exact Minimization of Fixed Polarity

Reed-Muller Expressions

7.1 Introduction

Since the publication of the classic paper by Shannon in 1938[135], there has been great

progress in the minimization of two-level Boolean functions [26 , 42]. Additionally, any

Boolean function can be expressed canonically based on AND and XOR operators using

what is commonly known as Reed-Muller(RM) expansions. Besides, Reed-Muller real­

izations have several attractive advantages especially for functions that do not produce

efficient solutions using SOP techniques[2]. Unfortunately, the techniques for synthesis

and minimization of combinational logic using Reed-Muller forms are more difficult than

those based on SOP expressions. Although there have been extensive research on Reed­

Muller methods [3-9, 67-70, 155], they are still in their early stage of development. With

recent improvement in layout technology and increased use of FPGAs where the XOR

gate is already manufactured as a basic cell component[124], research on Reed-Muller logic

received even more attention.

In fixed polarity Reed-Muller (FPRM) expressions, each variable can only be either true

or complemented, but not both. There are two major steps in the minimization of FPRM

expressions. The first one is to convert between SOP and FPRM expressions. The second

one is to find the best polarity expression that has the least number of terms. Various

minimization methods for these two steps can be classified into two categories[127]:

1. Gray code: Search all 2n polarities sequentially and find the best one. Space and

time complexities are O(2n) and O(4n) respectively;

2. Extended truth vector: Obtain the costs of 2n expansions simultaneously by an

extended truth vector and a weight vector. Both space and time complexities are

O(3n).

78

Chapter 7. Fixed Polarity Optimization Section 7.2

It is generally accepted that the exact minimization of FPRM expressions is suitable for

Boolean functions with less than 15 variables[56, 127]. A number of heuristic methods have

been proposed recently using functional decision diagrams (FDDs) and genetic algorithm

(GA) techniques[157]. The disadvantage of FDDs is that determination of the optimal

variable order is impractical for large functions[8]. Besides, we do not know how good a

polarity is by heuristic methods. In this chapter, an exact method to find the best polarity

for FPRM forms is proposed based on the on-set coefficients by gray code with space

complexity O(M) and time complexity O(2n M), where M is the average number of on-set

coefficients.

7.2 Background

For convenience, some definitions which are available in chapter 5 are reproduced here.

Any n-variable Boolean function can be expressed canonically by the SOP form in

equation (7.1).

2n-l

!(Xn -lXn -2'" xo) = L aimi
i=O

(7.1)

where the subscript i can also be written as a binary n-tuple i = (in-l in-2'" i o), "2:"
is the OR operator, the minterm mi can be represented as mi = Xn-lXn-2' .. xo,

{
X' i·=O . J' J

Xj =
xj,ij=l

(7.2)

Alternatively, it can be expressed by the positive polarity Reed-Muller (PPRM) form

as follows[68].

2n-l

!(Xn-lXn-2'" xo) = ~ bi'Tri
i=O

where "~" is the XOR operator, 7ri = Xn-lXn-2 ... xo,

(7.3)

(7.4)

In the previous equations, ai, bi E {a, I}, ° ::; j ::; n - 1. Furthermore, PPRM forms can

be extended to FPRM forms with any fixed polarity p, p = (Pn-lPn-2'" Po), where every

79

Chapter 7. Fixed Polarity Optimization Section 7.2

variable can only be either true or complemented, but not both. If a binary bit of p, Pj is

° (or 1) then the corresponding variable is in the true (or complemented) form. Therefore,

there are 2n polarities for a n-variable function, and the positive polarity is equivalent to

zero polarity. In [116], and further discussed in [148], a variable can be either a free variable

or a bound variable where a bound variable is allowed to be negated in a minterm in order

to determine a FPRM expansion with another polarity. This idea has been extended to

the polarity for SOP forms in [153] as shown in definition 7.1.

Definition 7.1. Any Boolean function f(xn-lxn-2'" xo) can be expressed canonically as

in equation (7.1). That expression is defined as the zero polarity of SOP expansion. Any

variable Xj , j E {a, 1" .. ,n - I} in every minterm with a polarity P = (Pn-lPn-2 ... po)

for the same Boolean function f(xn-lxn-2'" xo) is defined as in equation (7.5).

.. {Xj,
Xj =

Xj,

if Pj = 1

if Pj = ° (7.5)

According to equation (7.5), if a binary bit of p, Pj is ° (or 1), that variable is in the

true (or complemented) form. Now equation (7.1) is extended accordingly as follows.

2n-l

f(xn-lxn-2'" xo) = L aimi

i=O

where mi = Xn-lXn-2 ... xo,

{
X' i·=O X.- J' J

J - .. . 1
Xj, Zj =

(7.6)

(7.7)

In equation (7.7), x is the complemented form of X. Besides, equation (7.7) is an exten­

sion of equation (7.2). The corresponding subscript in equation (7.6), i = (in-lin-2'" io)

can be obtained from equation (7.7) as follows.

{
OX'=x. i. - 'J J

J - 1 - ..
, Xj = Xj

(7.8)

Definition 7.2. Consider two integers expressed by binary n-tuples, i = {in - 1in -2'" io},

j = {jn-dn-2'" jo}. If ik 2 jk for all k, ° ::; k ::; n - 1, then i covers j or j is covered by

Z.

80

Chapter 7. Fixed Polarity Optimization Section 7.2

Definition 7.3. The distance between two integers, expressed as binary n-tuples, p =

(Pn-lPn-2'" po) and q = (Qn-lQn-2'" Qo), is the number of binary bits that are different

from each other. If the distance is "I", then they are adjacent.

Definition 7.4. The Kronecker product of two Boolean matrices, P axb, Qcxd is a matrix

of dimension ac x bd given by

PooQ POlQ PO(b-l)Q

P®Q=
PlOQ PllQ Pl(b-l)Q

(7.9)

P(a-l)OQ P(a-l)l Q P(a-l)(b-l)Q acxbd

Definition 7.5. A 2n x 2n matrix Q has 2n+1 - 1 diagonal lines. The main diagonal line

is defined as diagonal line O. The ith diagonal line that is above the main diagonal line is

defined as diagonal line i. If it is below the main diagonal line, then it is defined as diagonal

line -i. This definition can be shown below when n is 2.

Lemma 7.1. Any Boolean function can be uniquely expressed by its on-set coefficient set

Co = {i} as shown later in example 7.1 with the default SOP polarity zero; while with

polarity p, the corresponding set is Cp = {i /\ p} , where "/\" is the bitwise XOR opera­

tion[153] .

Lemma 7.2. Any n-variable Boolean function can be uniquely expressed by a 2n -dimensional

vector, either Ap = lao, al,'" ,a2n _l]t in SOP form or Bp = lbo, h,'" ,b2n _l]t in Reed­

Muller form based on equations {7.1} and {7.3} respectively. These two vectors can be

converted mutually by the following recursive transform matrix Tn as long as they have the

same polarity p[153], 0 ::::; P ::::; 2n - 1.

when n is 1;

81

Chapter 7. Fixed Polarity Optimization Section 7.2

T - [T n
-

l 0 1
n - T

n
- l T

n
- l

when n is greater than 1. Besides, T~ = I where I is the unit matrix. Alternatively,

they can be expressed as in equation (7.1 0).

or (7.10)

From lemma 7.1, when an n-variable Boolean function is expressed by a 2n-dimensional

vector, the effect of a SOP polarity p is to exchange the orders of two coefficients i and

i 1\ P since (i 1\ p) 1\ P = i, 0 :::; i, p :::; 2n - 1. Consequently, the element number of DALp does

not vary with any polarity p.

Example 7.1. Consider a 3-variable function f(x2xlxo)

SOP polarity zero. Since x = x, we have

f(x2xlxo) = 2:)1,2,5)

2::(1,2,5) with the default

~{(OOI), (010), (101)}

X2XlXO + X2XIXO + X2 Xl XO

X2 Xl XO + X2XlXO + X2 XlXO

If the polarity p is I, then X2 = X2, Xl = Xl, and xo = Xo according to equation (7.5).

Hence, from equations (7.6) and (7.8), this function can also be represented as f(x2 fh xo)

with polarity I,

~{(OOO), (011), (100)}

~(O,3,4)

This function is Co = {I, 2, 5} with zero polarity, while it is ([:1 = {O, 3, 4} with polarity

1 when expressed by on-set coefficient sets. Notice that Co and ([:1 have the same number

of elements. This result can be verified by lemma 7.1 because {I 1\ 1,2 1\ 1,5 1\ I} =

{O, 3, 4}. Therefore, any n-variable Boolean function can be expanded canonically as in

equation (7.6) with polarity p according to definition 7.1. Alternatively, this function

can be represented by PPRM form through the transform matrix in lemma 7.2. In this

82

Chapter 7. Fixed Polarity Optimization Section 7.3

function, AD = [0,1,1,0,0,1,0, olt, hence, Bo = T3Ao = [0,1,1,0,0,0,1, IF with polarity

zero. When the polarity is 1, f(£2£1£0) = 2:(0,3,4), thus Al = [1,0,0,1,1,0,0, of. From

lemma 7.2, Bl = T3Al = [1,1,1,0,0,0,0, llt. The only difference between AD and Al

is the order of on-set coefficients. In AD, the three on-set coefficients are at positions 1,

2 and 5 while in AI, the three on-set coefficients are at positions 0, 3, and 4. In other

words, in order to obtain Al the elements in AD at positions 1, 2 and 5 are exchanged

with the elements at positions 0, 3 and 4. If they are expressed by on-set coefficient sets

in Reed-Muller logic, then IRa = {I, 2, 6, 7} and lRl = {O, 1,2, 7} with polarity ° and 1

respectively.

7.3 Properties of the polarities for SOP and FPRM expres-

slons

Theorem 7.1. Given two 2n-dimensional vectors AD, Ap for an n-variable completely

specified Boolean function with SOP polarities 0 and p respectively, then

(7.11)

where

column (i/\p)

Sn Ip = ° ... ° 1 ° ... ° row ~ (7.12)

In other words, there is only one "1" entry in column (i 1\ p) of any row i in Sn Ip,
° ::; i,p ::; 2n

- 1.

Proof. From lemma 7.1, any element i in the on-set coefficient set Co with polarity ° will

be converted to i 1\ P with polarity p for the same function. Besides, any minterm that is

not on-set is off-set. Therefore, for any row i in Snip, 0::; i ::; 2n - 1, there is only one "I"

entry in column (i 1\ p). We use S to represent this transform matrix since it can be taken

as a "sorting" process of the on-set coefficients according to polarity p. When n is fixed,

Sn Ip can be written as Sp for simplicity. D

Example 7.2. In example 7.1, n = 3, AD = [0,1,1,0,0,1,0, of. When pis 1,

83

Chapter 7. Fixed Polarity Optimization Section 7.3

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

S311 =
0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

Hence, Al = S311Ao = [1,0,0,1,1,0,0, O]t.

Theorem 7.2. For any polarity p of an n-variable Boolean function, o ~ p ~ 2n - 1,

n ~ 1,

(Snlp)2 = I (7.13)

where I is the unit matrix.

Theorem 7.2 can be easily proved because for any coefficient i, i Ap Ap = i, 0 ~ i ~ 2n-1.

Theorem 7.3. For two polarities p and q of n-variable Boolean function, 0 ~ p, q ~ 2n -1,

Sp = Sp!\qSq.

Theorem 7.3 can be easily proved because for any coefficient i, (i A P A q) A q = i A p,

o ~ i ~ 2n - 1.

From theorem 7.3, theorem 7.1 can be generalized when the given vector is Aq with

polarity q, rather than Ao with default polarity 0, 0 ~ q ~ 2n - 1. In this case, equation

(7.11) is extended to equation (7.14).

(7.14)

Theorem 7.4. The transform matrix SniP in theorem 1.1 can be represented in the fol­

lowing recursive way where p is the SOP polarity expressed as a binary n-tuple p =

(Pn-lPn-2 ... po), and n is the variable number, n ~ l.

If n is 1, then

84

Chapter 7. Fixed Polarity Optimization Section 7.3

otherwise,

if Pn-l = 0

(7.15)

if Pn-l = 1

where Pn-l is the most significant bit (MSB) of p, and p' is the same as p except that

the MSB is set to O.

Proof. It can be proved by induction on n as below.

(1) when n is 2, from equation (7.12),

1 0 0 0

S2lp=o =
0 1 0 0

0 0 1 0

0 0 0 1

Similarly,

0 1 0 0

[S~lo

S21p=1 =
1 0 0 0

= [S~h
0 0 0 1

S21p=2 =

0 0 1 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

000 1

o 0 1 0

o 100

1 000

S~lo 1

S~h 1

(2)Suppose when n is k, k 2:: 1, equation (7.15) is true. When n is k + 1, P =

(PkPk-l ... po) and the corresponding vector A can be divided into two parts, A = [A/IA"],
where A' is the first half of 2k elements, and A" is the other half of 2k elements.

85

Chapter 7. Fixed Polarity Optimization Section 7.3

(a)When Pk is 0, then p = p'. From lemma 7.1, a coefficient i exchanges the order

with another coefficient i /\ p, 0 ::; i ::; 2k - 1. In other words, all the coefficients exchange

their orders within A' and A". Therefore,

(b)When Pk is I, then p = 2k+pl where "+" is the arithmetic addition. From lemma

7.1, a coefficient i exchanges the order with another coefficient i /\ P = i /\ (2k + pi). Hence,

a coefficient i in A' will swap with the coefficient i /\ (2k + pi) that is in A", 0 ::; i ::; 2k - 1.

In the same way, a coefficient i in A" will swap with the coefficient i /\ (2k + pi) that is in

A' 2k < i < 2k+ 1 - 1. Thus , - - ,

From both (a) and (b), equation (7.15) is true when n is k + 1. D

Based on theorems 7.1 and 7.4, any Boolean function expressed in SOP forms with any

polarity p can be computed through the transform matrix S in either equation (7.12) or

(7.15). In the same way, a transform matrix to convert a Reed-Muller expansion of n­

variable Boolean function from polarity 0 to any other polarity p can be obtained from

theorem 7.5 based on theorem 7.4.

Theorem 7.5. Consider an n-variable Boolean function f(xn-lxn-2··· xo) expressed by

a 2'llc.dimensional vector, Bo = lbo, b1 , ... ,b2n _ 1]t with the default polarity 0 in Reed-Muller

logic. Then this function can be represented by another vector Bp with polarity p shown in

equation (7.16).

(7.16)

where

(7.17)

and Pi is any binary bit of p, p = (Pn-lPn-2··· po), 0 ::; i ::; n - 1.

Proof. Given a vector Bo = lbo, b1,··· ,b2n_l]t to express a Boolean function with the

default polarity 0 in Reed-Muller logic. Then the following equations can be deduced·

based on lemma 7.2 and theorem 7.1.

86

Chapter 7. Fixed Polarity Optimization Section 7.3

Bp TnAp

= TnSnlpAo

TnSnlpTnBo

Comparing equation (7.20) with equation (7.16), it can be seen that

It will be shown that TnSnlpTn = ~ [1 Pi 1 by induction on n as below.
i=n-l 0 1

(l)When n is 1, there are only two polarities, 0 and 1.

(7.18)

(7.19)

(7.20)

(7.21)

(2) Suppose when n is k, k ~ 1, Pklp' = TkSklp,Tk for any polarity p'. When n is k+1,

the MSB of p can be either 0 or 1. Let p' be the same as p except that the MSB is O.

(a)If the MSB of pis 0, then p = p'.

87

Chapter 7. Fixed Polarity Optimization Section 7.3

(b)If the MSB of pis 1,

From both (a) and (b), equation (7.17) is true when n is k + 1. o

Theorem 7.5 offers another method to compute Reed-Muller coefficients with polarity p

from only the on-set Reed-Muller coefficients with polarity 0 which can be shown as follows

Procedure 7.1. Given an on-set Reed-MulleT coefficient set ~ fOT an n-vaTiable Boolean

function with polaTity o. A coefficient set lffip with any otheT polaTity p can be obtained

through the following steps:

(1) Set lffip to be 0.
(2) In matTix Pnlp , delete column i if and only ifi tf-~, 0:::; i:::; 2n -1. Thus P~lp is

obtained with less columns.

88

Chapter 7. Fixed Polarity Optimization Section 7.3

(3) Count the number of "1"s in any row i of P~lp, 0 ::; i ::; 2n - 1. If the number is

odd, add i to ~.

(4) ~ is the on-set Reed-Muller coefficient set with polarity p.

Example 7.3. When n is 3, any Boolean function can be represented by a 2n-dimensional

vector, Bo = lbo, bl,··· ,b7]t with the default polarity 0 in Reed-Muller logic. With polarity

P = (P2PIPO) , the vector Bp will be,

where

P31, = ~ [~ ~i 1

[~ ~2l0[~ ~ll0[~ ~o 1

1 Po PI PIPO P2 P2PO P2PI P2PIPO
1 PI P2 P2PI

1 Po P2 P2PO
1 P2 (7.22)

1 Po PI PI Po
1 PI

1 Po
1

In equation (7.22), all the empty elements are O.

In example 7.1, the on-set Reed-Muller coefficient set IRa = {1, 2, 6, 7} with polarity O.

By procedure 7.1, lR.I can be computed with polarity P = 1 = (001) in the following steps:

(1) Set lR.I to be 0.

89

Chapter 7. Fixed Polarity Optimization Section 7.3

(2) On the matrix P 3 ip from equation (7.22), delete columns 0, 3, 4, 5. Thus

Po PI P2PI P2PIPO
1 P2PI

1 P2 P2PO

P~ip =
P2

PI PIPO
PI

1 Po
1

where the empty elements are O.
1

1

1

(3) When P = 1 = (001), P~il =

1 1

1
Rows 0, 1, 2 and 7 have odd number of "l"s. Hence IRI ={O, 1,2, 7} as in example 7.1.

Theorem 7.6. For any polarity P oj an n-variable Boolean junction, 0 :::; P :::; 2n
- 1,

n?: 1,

(7.23)

where I is the unit matrix.

Proof. It can be proved by induction on n as below.

(1) When n is 1, from equation (7.17), P,jp ~ [~ ~]. Hence,

(2) Suppose when n is k, (P k ipl)2 = I, k ?: 1, 0 :::; p' :::; 2k - 1. If n = k + 1, let the

90

Chapter 7. Fixed Polarity Optimization Section 7.3

MSB of p be Pk. From equation (7.17),

o

Theorem 7.7. For two polarities p and q of n-variable Boolean function, 0 ~ p, q ~ 2n -I,

Pp = Ppl\qP q'

Proof. It can be proved by induction on n as below.

(1) When n is 1, from equation (7.17), PII, = [~ ~], Pdq = [~ ;].

This satisfies the theorem when n = 1.

(2) Suppose when n is k, Pklp' = Pklpll\qlPklql, k 2:: I, 0 ~ p', q' ~ 2k -1. If n = k + I,

let the MSB of p and q be Pk and qk respectively. From equation (7.17),

Pk+1lpAqPk+1lq = ([~ Pk ~ qk]0 PkIVA<) ([~ ~k]0 Pkl q,)

[
Pklpll\ql (Pk 1\ qk)Pklpll\ql] [Pklql qkPkl ql]

o P k Ipll\ql 0 P k Iql

[
Pklpl PkPkl pl]

o Pklp'

Pk+Ilp

o

Now theorem 7.5 can be extended to theorem 7.8 when the given vector is Bq with polarity

q rather than Bo with the default polarity O.

Theorem 7.8. Any n-variable Boolean function can be expressed by 2n-dimensional vectors

Bp and Bq with polarity P and q respectively, 0 ~ p, q ~ 2n - 1. Then,

91

Chapter 7. Fixed Polarity Optimization Section 7.4

(7.24)

Proof. Let this n-variable Boolean function be expressed by Bo with polarity 0 in Reed­

Muller logic. From theorem 7.5 and 7.7, we have

Bp PpBo

PpAqPqBo

PpAqBq

In the same way, procedure 7.1 can be adapted as follows. o

Procedure 7.2. Given an on-set Reed-Muller coefficient set lRp for an n-variable Boolean

function with polarity p. A coefficient set lFtq with any other polarity q can be obtained

through the following steps:

(1) Set lFtq to be 0.
(2) In matrix P n IpAq, delete column i if and only if i t/:. lRp, 0 ::; i ::; 2n - 1. Thus P~ bAq

is obtained with less columns.

(3) Count the number of "1"s in any row i of P~IPAq, 0 ::; i ::; 2n - 1. If the number is

odd, add i to lFtq.

(4) lFtq is the on-set Reed-Muller coefficient set with polarity q.

From theorem 7.1 and theorem 7.5, there are 2n polarities to express any n-variable Boolean

function with either SOP or FPRM forms. By lemma 7.2 the effect of polarity for SOP

forms is to reorder all the on-set coefficients. Besides, the distance between two on-set

coefficients, defined in definition 7.3, is always the same because (i I\p) 1\ (j I\p) = (i I\j) for

two integers i, j with polarity p. Therefore, the best polarity of FPRM form is equivalent to

the best "order" of SOP form while the pairwise distances of any two on-set coefficients are

fixed. This may provide a good understanding of the "center of gravity" or "Boolean center"

proposed in [146]. Furthermore, the conversion from one polarity to another polarity for

both canonical forms can be implemented by two transform matrices Sand P based on

equations (7.11) and (7.16). Besides, theorems 7.2, 7.3 and theorems 7.6, 7.7 show that

the polarities of SOP and FPRM forms have very similar properties. While comparing

equations (7.12) and (7.17), it can be concluded that transform matrix P is much more

complex than S, which makes the synthesis and minimization of FPRM expressions much

more difficult.

92

Chapter 7. Fixed Polarity Optimization Section 7.4

7.4 Best polarity for single output functions

Results from theorem 7.5 agree with those from theorem 1 in [94]. The fast transformation

in [94], however, requires that all the 2n elements of the vector be saved, which is not

practical for large values of n. Based on our experience, the number of on-set coefficients

usually does not increase exponentially with the number of variables. Procedure 7.2 only

needs on-set Reed-Muller coefficients to convert the coefficients of a Boolean function from

one polarity to any other polarity, yet there are still 2n rows in P n which must be saved

to find the best polarity. This is not practical for large functions. A new fast algorithm to

find the best polarity for completely specified single output Boolean function is proposed

in this section based on definition 7.5.

Theorem 7.9. Given any matrix Pnlp for an n-variable Boolean function with polarity p,

all the elements below the main diagonal line are O. Furthermore, for two adjacent polarities

p and q there are only two diagonal lines 0 and p 1\ q in P n Ipl\q where the elements are

not O. In diagonal line 0, the number of "1"s is 2n while it is 2n - 1 in diagonal line p 1\ q.

Besides, any row that has two "1"s in columns e and e', e' > e, satisfies equation (7.25).

e' = e + (p 1\ q) (7.25)

where "+" is the arithmetic addition. The "1"s in diagonal line p 1\ q can only reside in

columns that cover p 1\ q, 0 :s; i :s; 2n - 1 based on definition 7.2.

Proof. theorem 7.9 can be easily proved by induction on n based on equation (7.17). 0

Example 7.4. When n is 3, suppose p = 2 = (010) and q = 3 = (011). Hence p 1\ q =

(001) = 1. By equation (7.22), we have

1 1

1

where all the empty elements are O.

1 1

1

1 1

1

1 1

1

(7.26)

It can be seen from equation (7.26) that all the elements below the main diagonal line

are 0 in P 311. There are only two diagonal lines 0 and 1 where the elements are not O.

In diagonal lines 0, the number of "1"s is 8, while it is 23- 1 = 4 on diagonal lines 1. For

any rows that have two "1"s, the difference between these two columns is always p 1\ q = 1.

93

Chapter 7. Fixed Polarity Optimization Section 7.4

Finally, the "1"s in diagonal line 1 can only reside in columns 1, 3, 5 and 7 that cover "I"

based on definition 7.2.

By theorem 7.8, if an n-variable Boolean function can be expressed by a vector Bp

(bp(n-l),bp(n-2),'" ,bpo) with polarity p, then it can be converted to Bq = PnlrBp =

(bq(n-l), bq(n-2) ... ,bqo) with polarity q, where r = p 1\ q. When polarities p and q are

adjacent, if there is only one "I" on any row i in P n Ir , 0 ::; i ::; 2n - 1, then

2n_l

bqi = 2I pijbpj = bpi
j=o

(7.27)

where Pij is the element in ith row and jth column of Pnlr. Otherwise, if there are two

"1"s in one row, then from equation (7.25) we have,

2n-l

bqi = 2I pijbpj = bpi EEl bp(p+r)
j=o

(7.28)

Consequently, the element bpi in Bp is different from bqi in Bq if and only if row i in Pnlr

has two "1"s. Therefore, we only need to detect all the rows in P n Ir where there are two

"1"s. From theorem 7.9, all the "1"s in diagonal line r can only reside in the column that

covers r. Based on this observation and the result in procedure 7.2, a fast procedure can

be obtained to convert an on-set Reed-Muller coefficient set IRp with polarity P to IRq with

polarity q of an n-variable Boolean function.

Procedure 7.3. Given an on-set Reed-Muller coefficient set IRp for an n-variable Boolean

function with polarity p. A coefficient set IRq with any adjacent polarity q can be achieved

through the following operations on IRp itself where p 1\ q = r.

(1) For any coefficient i in the set IRp, if i does not cover r, then i is an element of

IRq because bqi = bpi from equation (1.21). Therefore leave i in the set. If i covers r, from

equation (1.28) we need to search the set IRp for the coefficient (i - r). If there is such

a coefficient, then delete coefficient (i - r) from the set IRp because bqi = bpi EEl bp(p+r) =
1 EEl 1 = O. Otherwise, if there is not such a coefficient, then add coefficient (i - r) to the

set IRp because bqi = bpi EEl bp(p+r) = 0 EEl 1 = 1.

(2) The new set obtained in step (1) is the on-set Reed-Muller coefficient set with

polarity p.

Example 7.5. In example 7.1, the 3-variable function can be expressed by an on-set

coefficient set lRl = {O, 1,2, 7} when polarity p is 1. If polarity q is 0, then r = p 1\ q =

(001) 1\ (000) = 1. The following steps will obtain the coefficient set with polarity O.

(I)In lRl' the first element is O. Because it does not cover r, go to the next coefficient

1. Since 1 covers r, we need to search 1 - 1 = 0 that is in lR1 . Hence, 0 is deleted from lRl .

94

Chapter 7. Fixed Polarity Optimization Section 7.5

The third element 2 in JR.1 does not cover r. Finally, for the last element 7, it covers r. In

the same way, search 7 - 1 = 6 which is not in JR.1 . Therefore add "6" to JR.1 .

(2)The new set {I, 2, 7, 6} obtained in step (1) is the same result for IRa as in example

7.1.

From example 7.5, it can be seen that procedure 7.3 is very efficient in time and space.

To obtain the new on-set coefficient set for another polarity, the old on-set coefficients need

only be accessed once plus the time for possible search. Besides, the new coefficient set

can be saved in the same array as used by the old one. In order to improve the speed, we

can first sort the old coefficient set in ascending order so that the fast binary search can

be applied.

Based on procedure 7.3 and theorem 7.8, a fast algorithm to find the best polarity for

an n-variable single output completely specified Boolean function is shown below.

Procedure 7.4. Given an on-set Reed-Muller coefficient set ffip for an n-variable Boolean

function with the original polarity p. Let three integer variables, COST, BESTCOST and

BEST POLARITY represent the number of elements in the coefficient set, the least cost

and the corresponding polarity respectively. For any i, ° < i ::; 2n - 1, carry out steps (1)

to (3).

(1) Generate a polarity qi in gray code order, that is adjacent with qi-l· Let r = qi-ll\qi·

(2) Pass IRqi-l' and r to procedure 7.3 to get the new on-set coefficient set IRqi·

(3) Set COST to be the element number ofIRqi_l. If COST is less than BESTCOST,

then change BESTCOST and BEST POLARITY to COST and qi respectively.

Output (BESTPOLARITY 1\ p) that is the best polarity with BESTCOST on-set

terms.

7.5 Best polarity for multiple output functions

In procedure 7.4 which is for a single output Boolean function, all the on-set Reed-Muller

coefficients can be saved in the same array. For multiple output Boolean functions, the

output part can be saved in another array with equal dimension so that each coefficient

corresponds with one output element. Suppose the output part for a coefficient i is e =
(em - 1em - 2 ··· eo), where ej E {O, I}, 0::; j ::; m - 1, and m is the number of outputs. If a

term is the output for a sub-function ik, then ek = 1. Otherwise ek = 0, as shown in figure

7.1 of example 7.6 later. This, which can be called Reed-Muller PLA format, is similar to

that used for SOP [26]. In procedure 7.3, if a coefficient i does not cover r = p 1\ q, where

p and q are the old and new polarities, then nothing will be changed for single output

function. This result is also true for a multiple output function. If a coefficient i, whose

output part is e = (em - 1em - 2 ... eo), covers r, then there will be two possibilities:

(1) There is a coefficient (i - r) in the coefficient set whose output part can be expressed

as a binary m-tuple, TJ = (TJm-lTJm-2··· TJo). In the single output function, (i - r)

95

Chapter 7. Fixed Polarity Optimization Section 7.5

should be deleted from the set. For any particular sub-function fj, there are four

cases to decide the new output part for the coefficient (i - r).

1..- (a) ej = 0, 'f)j = 0

.. That means neither of two coefficients is a term of fj. So the new output part

for the coefficient (i - r) is still 'f)j .

.. That means coefficient i is not a term for fj, but (i - r) is. From procedure 7.3,

the new output part for the coefficient (i - r) is still 'f)j.

1..- (c)ej=l,'f)j=O

.. That means coefficient i is a term for fj, but (i - r) is not. From procedure

7.3, (i - r) should be added to the new output part for fJ. Therefore, the new

output of coefficient (i - r) for fJ is changed to 1.

1..- (d) ej = I, 'f)j = 1

.. That means both coefficients are terms for fj. From procedure 7.3, coefficient

(i - r) should be deleted from k So the new output part for the coefficient

(i - r) is changed to O.

From the above four cases, it can be seen that 'f)j should be replaced by ej /\ 'f)j.

(2) There is not such a coefficient (i - r) in the coefficient set. From procedure 7.3, (i - r)

should be added to the coefficient set. At the same time, the output part e will be

copied for the outputs of both coefficients.

Based on these observations, procedure 7.4 can be extended to multiple output function

as follows.

Procedure 7.5. Given an on-set Reed-Muller coefficient set IRp and the corresponding.

output set ~ for an n-variable Boolean function with the original polarity p. The number

of elements in IRp is COST. Set BESTPOLARITY and BESTCOST to be 0 and COST

respectively. For any i, 0 < i :::; 2n - 1, carry out steps (1) to (4).

(1) Generate a polarity qi in gray code order, that is adjacent with qi-l· Let r = qi-l/\qi·

Set RELAT IV ECOST to be O.

(2) For any coefficient j in the set ~i-l' whose output element is e, if it does not cover

r, then nothing should be changed. If it covers r, then search the set ~i-l for coefficient

(j - r). If there is such a coefficient whose output element is 'f), then change 'f) to 'f) /\ e. If 'f)

96

Chapter 7. Fixed Polarity Optimization Section 7.5

becomes 0, then delete it from the output set and coefficient (j - r) should also be removed

from the coefficient set. Besides, set RELATIVECOST to be (RELATIVECOST-1).

Otherwise, if there is not such a coefficient, then add coefficient (j - r) to the coeffi­

cient set IRqi-l and copy f) as its output element. Further, set RELAT IV ECOST to be

(RELATIVECOST + 1).

(3) Now both IRqi-l and MIqi-l becomes IRqi and MIqi. Set COST to be (COST +
RELATIVECOST). If COST is less than BESTCOST, then change BESTCOST,

BEST POLARITY to COST and qi respectively.

(4) Sort the elements in IRqi in ascending order. Update the output set accordingly to

keep the function the same as before sorting.

Output (BESTPOLARITY /\ p) that is the best polarity with BESTCOST on-set

terms.

Example 7.6. Figure 7.1(a) shows a 3-variable 2-output Boolean function expressed in

Reed-Muller PLA format with polarity p = O. There are totally 5 on-set coefficients.

Therefore, the coefficient and output sets are IRa ={O, 1,2,6, 7}, "MIo= {I, 1,3,2, 3} respec­

tively. Besides, COST= BESTCOST= 5, BESTPOLARITY = O. We now compute

the on-set coefficients and the cost with polarity 1 following procedure 7.5.

(l)For the next polarity ql = 1, r = qo /\ ql = 0/\1 = 1. RELATIVECOST is

initialized to be O.

(2)For the first element j = 0 in IRa, nothing will be changed because "0" does not cover

"I". But the second element j = 1 covers r. So we need to search for j - r = 1 - 1 = 0

that is the first element. Then the output of the first element 7] = 1 should be replaced

by 7] /\ f) = 1/\ 1 = O. Now 7] is 0, thus the coefficient 0 and its output should be deleted.

Besides, RELAT IV ECOST = 0 -1 = -1. The following coefficients 2 and 6 do not cover

r, hence go to the final coefficient j = 7 that covers r. There is a coefficient j -r = 7 -1 = 6.

Hence the output of the coefficient 6, 7] will be changed to 7] /\ f) = 2/\3 = 1. Now 7] is not

zero, so coefficient 6 is still in the array but with the different output element. This result

is shown in figure 7.1 (b).

(3)Now we have IRI = {I, 2, 6, 7}, Ml = {I, 3,1, 3} as shown in fig.7.1(c). COST is

updated to COST + RELATIVECOST = 5 - 1 = 4 that is less than BESTCOST.

Therefore, BESTCOST = 4, and BESTPOLARITY = 1.

(4) Sort IRI = {I, 2, 6, 7} and repeat steps (1)-(4) of procedure 7.5 in the same way for

other polarities.

Finally, we find the best polarity that is 1 with 4 on-set coefficients.

In [35] and [56], the number of terms for multiple output function is computed through

XOR operation on the subfunctions. However, in step 2 of procedure 7.5, all the outputs

saved in an array are processed in a parallel way. Therefore, the speed of the algorithm

does not directly depend on the number of outputs. In other words, step 2 of procedure

97

Chapter 7. Fixed Polarity Optimization Section 7.6

.i 3

.02 .i 3
000 01 .02

to be deleted

001 01 000) search 00)"': 001 01
010 11 001 forO 01 011\01=00 010 11
110 10 010 11 110 01
111 11 110) search ° 1) 111 11
.e 111 for6 11]]1\10=01 .e

(a) with polarity 0 (b) with polarity 1 (c) with polarity 1 after deletion

Figure 7.1: Example for a 3-variable 2-output Reed-Muller function

7.5 does not care about the number of outputs. This conclusion can be verified in the

following experimental results.

7.6 Experimental results

In our program, a Boolean function is first converted from SOP PLA format to the FPRM

form with polarity zero using the method in chapter 5. If there is no PLA format, then

apply SIS to convert from BLIF format to PLA format[134]. For incompletely specified

Boolean functions, we just set the don't cares to off-sets. From the FPRM form with

polarity 0, procedure 7.5 is applied to find the best polarity which has been implemented

with C language. The program is compiled by the GNU C compiler egcs-2.91.66 and

tested MCNC and IWLS'93 benchmarks on a personal computer with Cyrix6x86-166 CPU

and 32M RAM under Linux operating system. For large Boolean functions, we test the

program on a personal computer with PIII-450 CPU and 64M RAM. The results are shown

in tables 7.1 and 7.2 respectively, where "I" represents "not available". The number of

variables(n), the number of outputs(0), the number of terms with polarity O(init. term#),

the best polarity (best polarity) and the corresponding number of terms (least term#) are

also presented. In [56], no results for the exact minimization of large Boolean functions

are available. Furthermore, in [35], only small functions with n ~ 10 are tested due to

the high space complexity. Therefore, no comparison is shown in table 7.2. From both

tables 7.1 and 7.2, it can be seen that the speed of the program depends on the number

of variables and the number of on-set coefficients. In procedure 7.5, for any polarity qi

of an n-variable multiple output function, 0 ~ i ~ 2n - 1, all the on-set coefficients need

accessing once only plus a possible search in order to obtain the FPRM form with the next

polarity. Further, all the 2n polarities should be evaluated for exact minimization. Let M

98

Chapter 7. Fixed Polarity Optimization Section 7.7

be the average number of on-set coefficients as in equation (7.29).

(7.29)

where Mi is the number of on-set coefficients of FPRM form with polarity qi and I: is the
2n-l

arithmetic addition. Then the time complexity of the program is O(I: M i) = O(2n M).
i=O

In procedure 7.5, the same array can be used repeatedly by all the on-set coefficients. So

the space complexity is O(M). For example, testcase "m181" in table 7.1 has 15 variable,

9 outputs, but only about 200 on-set coefficients on average. It takes less time than a

function with less variables such as "co14" since there are much more on-set coefficients

in "co14". Furthermore, it can be seen that the speed of our program does not depend

on the number of outputs directly. If two functions have the same product of (2n M) but

different numbers of outputs, then the time to find the best polarity is the same. For "bw"

testcase which has 28 outputs, it takes about the same time as "squar5" or "rd53". In [35],

"bw" takes much longer time than "squar5" or "rd53" as shown in the last column of table

7.1. For large Boolean functions when n > 15, the number of on-set coefficients is usually

small especially for arithmetic functions such as "t481", "ryy6" and "pm1" etc. Hence it is

still very quick to find the best polarity. Comparing with the results in [35] and [56], our

program is very efficient for exact polarity minimization of large Boolean functions.

7.7 Summary

The properties of the polarities of the SOP and FPRM forms are presented in this chapter.

The comparison shows that these two kinds of polarities have great similarity but the

transform matrix for the conversion between two FPRM forms has much more complex

structure than the counterpart for SOP forms. Furthermore, the best polarity of FPRM

forms with the least number of terms corresponds with the polarity for SOP forms with

the best order of on-set minterms. This should lead to a new way for exact minimization of

FPRM expansions without complex transform and exhaustive search. A fast algorithm is

proposed to find the best polarity for completely specified multiple output functions using

gray code sequence. The space and time complexities are O(M) and O(2n M) respectively

where M is the average number of on-set coefficients. In other words, the space and time

complexities depend on the structure of the Boolean functions. This constitute a significant

improvement on previous algorithms making it possible to tackle large functions with more

than 15 variables. If a function has a "good" structure for Reed-Muller logic, then the

space and time complexities are small. This characteristic is specially attractive for large

arithmetic Boolean functions where M is usually small. The experimental results confirm

these conclusions.

99

Chapter 7. Fixed Polarity Optimization

init. best
n 0 term# polarity

bw 5 28 32 31
squar5 5 8 23 0
rd53 5 3 20 0
conI 7 2 19 80
rd73 7 3 63 0
5xp1 7 10 61 0
rd84 8 4 107 0
root 8 5 225 236
dist 8 5 216 15

log8mod 8 5 103 116
misex1 8 7 60 252

life 9 1 184 255
9sym 9 1 210 15
clip 9 5 217 71
sao2 10 4 1022 179
add6 12 7 132 0
co14 14 1 8192 16383
tial 14 8 4406 29
gary 15 11 6815 15998
m181 15 9 213 31960

*Cyrix6x86-166 PC with 32M RAM
t HP Apollo series 700 workstation
tHP Apollo series 715 workstation

least time time
term# (s)* (s)[56]t

22 -0 /
23 -0 /
20 -0 0.5
17 0 /
63 0.01 2.3
61 0.01 /
107 0.03 5.5
118 0.03 8.8
185 0.04 12.5
53 0.01 6.5
20 0.01 /

100 0.11 9.2
173 0.07 /
206 0.12 /
100 0.27 48.1
132 0.85 295.1
14 19.97 488.4

3683 66.09 8480.4
349 37.78 16216.1
67 1.82 1149.0

Table 7.1: Test results for small Boolean functions

init. best least time
n 0 term# polarity term# (s)*

t481 16 1 41 39321 13 0.36
ryy6 16 1 80 49152 64 13.83
cmb 16 4 4097 63 132 3.72
pm1 16 13 37 36 27 0.77

table5 17 15 74504 109311 2458 342.94
tcon 17 16 24 0 24 0.43
pcle 19 9 72 1280 32 14.05
mux 21 1 81 0 81 48.01

cm150a 21 1 163 1 82 46.43
cc 21 20 59 327784 41 25.75

duke2 22 29 7088 118995 255 2045.22
ttt2 24 21 788 12596031 107 1750.09

misex2 25 18 1100 28290559 87 1785.20

*Pentium 1II-450 PC with 64M RAM

Table 7.2: Test results for large Boolean functions

100

Section 7.7

time
(s)[35]+

0.94
0.10
0.10
0.10
0.10
0.10
0.10

/
/
/

0.10

/
0.20
0.20
0.30

/
/
/
/
/

Chapter 8

Optimization of Reed-Muller PLA

Implementations

8.1 Introduction

It is concluded in [126] that the Reed-Muller programmable logic array (RMPLA) struc­

tures, based on AND jXOR operations, are more economical than the conventional pro­

grammable logic array (PLA) structures based on AND JOR operations[26]. This, however,

was demonstrated mainly for small functions. Further, the Reed-Muller circuits have great

advantage of easy testability[118]. However, applications of RMPLAs have so far not

become popular due to the following two obstacles.

1. XOR gates used to have slow speed and require large silicon area to realize in com­

parison with OR gates.

2. The problem of minimization of Reed-Muller functions is difficult although there has

been a great deal of research in recent years.

With the development of new technologies and the advent of various field programmable

gate array (FPGA) devices, the first obstacle has become irrelevant. In programmable

devices, the XOR gate is either easily realized in "universal modules" or directly available.

For instance, in the AT6000 FPGA series from ATMEL Corporation, logic blocks can

be configured as various two-input gates such as XORs, ANDs and NANDs. In other

FPGAs, both AND and XOR gates are available in the macro cells or logic array blocks

(LABs)[29]. However, the minimization of Reed-Muller expressions remains much more

difficult than sum-of-products (SOPs)[26]. Although there have been extensive research

on Reed-Muller logic optimization, most of the available methods are not suitable for

very large functions. There are three basic procedures associated with the optimization of

RMPLA implementations.

101

Chapter 8. Reed-Muller PLA Implementations Section 8.1

1. Conversion algorithms to convert a Boolean function from SOP to fixed polarity

Reed-Muller (FPRM) format. The optimization method is more efficient starting

from the Reed-Muller domain than from the standard Boolean domain[120], which are

also called functional domain and operational domain respectively[68]. One obvious

advantage of FPRM forms over SOP or mixed polarity Reed-Muller forms, is the

absence of redundant variables[114].

2. Polarity optimization methods to find the best polarity with the least number of

product terms starting from the initial FPRM expression obtained from the preceding

procedure. It is conjectured in [120] that "the minimum number of mixed polarity

terms of a function is independent of the Reed-Muller polarity from which the mixed

polarity representation was obtained". Nevertheless, starting the minimization from

an FPRM form with the best polarity will greatly reduce the initial complexity. Thus

the speed of the decomposition method can be improved, as will be illustrated in our

examples later.

3. Mixed polarity minimization to further reduce the number of product terms by com­

bining the adjacent ones.

For the first procedure, many algorithms have been published which are based on Reed- .

Muller matrix transformations[68, 73], tabular techniques [4, 6, 98], and Binary Decision

Diagrams (BDDs)[8, 9, 116] among others. Most of these approaches are not suitable for

very large functions. In chapter 6, very large multiple output Boolean functions can be

converted mutually between conventional SOPs and fixed polarity Reed-Muller (FPRM)

formats using multiple segment technique presented in chapter 5. Experimental result

shows that it only takes about 0.1 seconds to convert a function with 199 inputs and

67 outputs run on a personal computer(PC). The second procedure which is to find the

best polarity is computationally extensive in both space and time especially for large

functions. It is generally accepted that exact minimization of FPRMs is only suitable

when the number of input variables is less than 15 on a common PC[5, 56, 127]. Several

heuristic methods have been proposed which apply the simulated annealing [111] or genetic

algorithm techniques[157]. The product term number can be further reduced with mixed

polarity by combining the adjacent product terms such as using xorlink operation[137].

The final results can be implemented in two-level PLA format which are called AND-XOR

PLAs with one-bit decoders in [126].

An alternative simplification scheme for RMPLAs is given in [120]. An SOP expression

is first represented with disjoint cubes using any methods such as in [61]. Then "-" and

"0" are swapped for all the variables to obtain mixed polarity Reed-Muller expression with

disjoint cubes. The rationales of this transformation are: (a) Co + CI = Co EEl Cl if cubes

Co and Cl are disjoint; (b) "-" and "0" represent a missing and complemented variables

respectively in Boolean domain, which correspond to "0" and "-" respectively in Reed-

102

Chapter 8. Reed-Muller PLA Implementations Section 8.2

Muller domain with the same functionality. Finally a (quasi-) optimal FPRM expression is

exploited and a (quasi-) minimum expression with mixed polarity product terms is obtained

by combining the adjacent terms. Unfortunately, experimental results are reported only

for small functions[120j.

There are also some other approaches that apply similar strategy as ESPRESSO starting

from a mixed polarity Reed-Muller forms[49j. In this chapter, the decomposition method,

based on the concept of ~-majority cube[142], is further investigated and generalized to

very large multiple output functions using the algorithm in chapter 5. The produced

expressions belong to the most general class of AND jXOR forms, namely exclusive-OR

sum-of-products (ESOPs)[127j.

8.2 Review of the decomposition method

8.2.1 Background

Definition 8.1. An n-variable Boolean function can be represented canonically by an

FPRM form with polarity P expressed in a binary n-tuple, P = (Pn-IPn-2 ... PO)2 as follows.

2n-1

!(Xn-IXn-2'" xo) = ~ brJri
i=O

(8.1)

where "~" is the XOR operator. Further, i can be written as a binary n-tuple i =

(in-lin-2'" iob bi E {O, 1}, lri = Xn-IXn-2'" xo,

.. {1,
Xj = .

Xj,

Pj = 1
and 0::; j ::; n - 1

Pj = ° (8.2)

If bi is 1, then the corresponding lri is called an on-set pi-term; otherwise, it is an off­

set pi-term. In fig.8.1(a), a 3-variable function is represented by a Reed-Muller coefficient

map, bj-map[155], which is the counterpart of a Karnaugh map in the standard Boolean

logic. The algorithmic rules of grouping in a bj-map are different from a Karnaugh map.

In fig.8.1(a), the function is represented with polarity 0, !(X2XIXO) = 1 EB Xo EB XIXO EB X2·

Each variable is in positive form and there are 4 on-set pi-terms and 4 off-set pi-terms.

When the polarity is 6 = (110)2, both X2 and Xl are in complemented forms while Xo is

in positive form from equation (8.2). Thus the same function can be represented by two

on-set pi-terms only, !(X2XIXO) = XIXO EB X2 whose bj-map is shown in fig.8.1(c).

After combining adjacent on-set pi-terms in an FPRM form, the result is in mixed

polarity Reed-Muller form which can be implemented by an RMPLA shown in fig.8.2.

Each variable has two inputs to the programmable array of AND gates due to the mixed

103

Chapter 8. Reed-Muller PLA Implementations Section 8.2

XIXO Xlxa

Xl 10 X2 X2 X2
0 0 0

(a) (b) (c)

Figure 8.l: Limitation of i-majority m-cubes
(a) grouping of a i-majority cube with polarity 0 (b) simpler grouping with polarity 0
(c) grouping with polarity 6 where Xl and X2 are complemented

polarity. After the generation of all the on-set product terms, they are connected to

the programmable array of XOR gates to produce the output for each function. The

implementation of the function in fig.8.1(a) is shown in fig.8.2(b), where "x" indicates

intact fuse.

Inputs
Xo ,---------,

Xl
Programmable

Array of

AND gates

Xo
ct

Xl

'V
.... ...

Product

(a)

Product
Tenns

(b)

,---------, Outputs
Programmable

Array of

XOR gates

If~x IX0E!7X2

\00"

Figure 8.2: Structures of Reed-Muller PLAs
(a) Generic structure of Reed-Muller PLAs (b) Implementation of f = Xl Xo EB X2

8.2.2 Limitations of the decomposition method

The concept of i-majority m-cube is introduced in [142] which is an m-dimensional cube

covering at least i x 2m on-set pi-terms. In the bj-map shown in fig.8.1(a), the largest

i-majority cube is a 2-dimensional cube XIXO covering i x 22 = 3 pi-terms. Note that

algorithmic rules for grouping in a bj-map, which can be found in [155], are quite different

from the counterparts of a traditional Karnaugh map. After this cube is selected, f is

104

Chapter 8. Reed-Muller PLA Implementations Section 8.2

decomposed as f = :'hxo EB g, where 9 covers both the remaining on-set pi-terms and the

off-set pi-terms covered by X1XO. Now 9 has only two on-set pi-terms, as shown in fig.8.1(a),

resulting in the mixed polarity expression of f in equation (8.3).

(8.3)

There are two advantages to the i-majority cubes: (a) It is simple to identify the largest

i-majority cube by computer. (b) The complexity of a function decreases quickly with the

selection of the largest i-majority cube although it does not guarantee the minimality of

the result. Every time a i-majority m-cube is selected, at least i x 2m on-set pi-terms

are deleted and at most ~ x 2m off-set pi-terms are added. It is conjectured in [142] that

"if off-set pi-terms are incorporated with a i-majority m-cube to form an m-cube, the

total number of groupings will be equal to or less than that resulted from grouping only

on-set pi-terms in the i-majority m-cube". However, this conjecture is not always true. In

fig.8.1(b), the same function can be expressed only by two product terms, f = X2 EB X1XO.

It takes one less product term than the grouping using i-majority cube in fig.8.1(a). The

procedure of the decomposition method consists of the following steps according to [142]:

1. Let the total number of on-set pi-terms of an n-variable function be M.

2. Determine the smallest k such that k :::: log2 M.

3. Find a prime implicant of order k. Make an arbitrary selection if there is more than

one prime implicants of order k.

4. If no prime implicant of order k can be found in step 3, let m = 1, and find a i­

majority k-cube with (2k - m) on-set pi-terms. If there is more than one choice,

make an arbitrary selection.

5. If no i-majority k-cube can be found in step 4, increment m by one and repeat step

4 until a i-majority k-cube is found.

6. If no i-majority k-cube can be found in step 5, decrement k by one and repeat step

3 through 5 until a prime implicant or a i-majority k-cube is found.

7. Obtain the residue function fr(Xn-1Xn-2 ... xo) by XORing f(Xn-1Xn-2 ... xo) with

the prime implicant or i-majority k-cube selected in step 3 through 5.

8. Repeat step 1 through 7 for the residue functions until a O-functions is obtained in

step 7.

There are several limitations to the above decomposition method.

1. The number of product terms, produced by the heuristic decomposition method,

largely depends on the polarity ofthe initial FPRM for some functions[142]. No exact

105

Chapter 8. Reed-Muller PLA Implementations Section 8.3

polarity minimization algorithm is applied there to reduce the initial complexity of

the problem.

2. The identification of the largest i-majority cube in steps (4) and (5) is inefficient. If

there are more than one i-majority cubes, then an arbitrary selection is made.

3. The algorithm is only suitable for small single output functions, mainly based on

tri-state maps[141].

4. The developed program has not been tested with the common benchmarks. Thus no

comparison is available to verify the effectiveness of the concept of i-majority cubes.

8.3 Improved decomposition method for large single output

functions

8.3.1 Initial FPRMs with the best polarity

Due to the lack of an efficient approach to find the best polarity for the initial FPRMs in

[142], various polarities are tried and then the best expression is obtained by comparing all

the available solutions. This manual search method is not practical for large functions. In

this chapter, however, an efficient algorithm, which is based on the concept of the polarity

for SOP forms proposed in chapter 5, is applied to find the best FPRM expression with

the least on-set pi-terms. Although this approach does not necessarily improve the quality

of the final result, it can greatly reduce the initial complexity of the problem and improve

the speed for decomposition. For example, there are 4 pi-terms for the function shown in

fig.8.1(a) with polarity O. Using the method based on the concept of i-majority cube, an

expression can be obtained for the function, which is shown in equation (8.3). However,

starting from an FPRM form with the best polarity 6 as shown in fig.8.1(c), only two

on-set pi-terms are necessary to express the same function. From fig.8.1(c), it is easily

concluded that both X2 and XIXO are the largest i-majority cubes. Hence equation (8.4)

can be obtained as follows.

(8.4)

In comparison with equation (8.3), equation (8.4) has less numbers of both product terms

and literals, which leads to simpler RMPLA structure.

8.3.2 Identification of the largest ~-majority cubes and prime implicants

In [142], the selection of a i-majority cube is mainly derived from a tri-state map, which

is not suitable for large functions. It is implied in [142] that only the largest i-majority

cube needs to be identified for decomposition. In this chapter, a list of on-set pi-terms is

106

Chapter 8. Reed-Muller PLA Implementations Section 8.3

applied for the representation of large functions. Consequently, the selection of the largest

i-majority cube is adapted in procedure 8.1.

Procedure 8.1. Given a list of M on-set pi-terms for an n-variable Boolean function,

M;::: 1. Let three variable sets, §o, §l, §2 and an integer l be 0,0, {XO,Xl,·· ·xn-I}, and

(n - 1) respectively. Copy the original pi-term list to a temporary list IT.., and let M' be

the number of on-set pi-terms of IT..,. The largest i-majority cube can be found through the

following steps.

(1) If M ;::: i x 2n , return Xn-lXn-2··· Xo as the largest i-majority cube. Otherwise,

go to the next step.

(2) Let ajO and ajl be the occurring numbers of "0" and "1" respectively in IT.., for each

variable Xj in §2. Hence ajO + ajl = M'. Select the larger number aj from ajO and ajl· If

they are the same, then select ajO to reduce the literal number within a product term.

(3) Determine the largest number among aj s for all the variables in §2. Suppose this

number is ak which corresponds with variable Xk, 0 :S k :S n - 1. If ak is the number of

"O"s, then move Xk from §2 to §o, and remove all the on-set pi-terms whose number of

variable Xk is 1 from IT..,. Otherwise, if ak is the number of "1"s, then move Xk from §2 to

§l, and remove all the on-set pi-terms whose number of variable Xk is 0 from IT..,. Update

the number of on-set pi-terms of IT.." M'.

(4) If ak ;::: i x 21
, then return I1xiE2h Xi· I1xiE~h xi as the largest i-majority cube where

"." is the AND operation. Otherwise, decrement l by one and go to step (2).

Example 8.1. There are four on-set pi-terms for the 3-variable function f in fig.8.1(a),

which can be represented in a list in fig.8.3(a). Thus we have M = 4, §o = §l = 0,
§2 = {X2' Xl, Xo}, l = n - 1 = 2, IT.., = {O,l, 3, 4} = {OOO, 001, 011, 100} and M' = 4.

(1) Because M e. i x 23 , go to step (2) of procedure 8.1.

(2) There are three variables xo, Xl and X2 in §2. For Xo, there are two Os and two 1s

in the on-set pi-terms of IT.., shown in fig.8.3(a). Hence aOO = aOl = 2. In the same way, we

have alO = a20 = 3, an = a21 = 1. Additionally, the larger number aj is selected between

ajO and ajl, 0 :S j :S n - 1. Therefore, ao = 2, and al = a2 = 3 as shown in fig.8.3(a).

Then go to step (3) of procedure 8.1.

(3) In step (3) of procedure 8.1, both al and a2 are the largest numbers. Suppose al is

first selected as the largest number. From step (2), it can be seen that al is the number of

Os, instead of 1 s. Hence Xl is moved from §2 to §o· As a result, §o = {xI}, §2 = {xo, X2} .

and §l = 0. Additionally, remove pi-term "011" from IT.., since the number of Xl is 1. Now

IT.., = {OOO, 001, 100} = {O, 1, 4}.

(4) Because al = 3 ;::: i X 22 , return X2XO as the largest i-majority cube as shown in

fig8.3(b). Alternatively, if a2 is selected as the largest number in step (3), then X2 is moved

from §2 to §o. Consequently, §o = {X2}, §2 = {xo, xI} and §l = 0. Therefore another

i-majority cube, XlXO is found which has been shown in fig.8.1(a).

107

Chapter 8. Reed-Muller PLA Implementations

(a) on-set pi-term list

X2XIXO

0000
1 00 1
3 0 1 1
4100

ajO 3 3 2
ajl 1 1 2

aj 332

(a) (b)

Figure 8.3: Example of procedure 8.1
(b) selection of the largest ~-majority cube X2XO

Section 8.3 .

Procedure 8.1 can be efficiently implemented in C language using bitwise operations.

After the largest ~-majority cube c is identified, an n-variable function fo can be decom­

posed as fo = c EB h, where h is an n-variable function. Furthermore, all the on-set

pi-terms covered by c are deleted and the off-set pi-terms covered by c are added to h.
Call procedure 8.1 iteratively to find the largest ~-majority cube for function h until a

zero function is obtained. For example, if X2XO is returned as the largest ~-majority cube

for the function fo in fig.8.3(a), then fo = x2xoEBh and the on-set pi-terms of hare {3, 5}.

Iteratively call procedure 8.1 for h and get another expression as shown in fig.8.3(b).

(8.5)

From equation (8.5), because X2XO and X2XO have the same set of variables, the expressions

produced by the decomposition method belong to the most general class of AND /XOR

expressions, namely exclusive-OR sum-of products expressions (ESOPs)[127]. Additionally,

in steps (3) and (4) of example 8.1, selection of variable Xl and X2 leads to different ~­

majority cubes, X2XO and XIXO. Comparing equation (8.3) and equation (8.5), it can be

seen they have the same number of product terms but different literal numbers. Based

on our experiments, the final expression is usually quite sensitive to the selection of a

~-majority cube when there are more than one choices. This problem will be discussed in

section 8.3.3.l.

In the decomposition method of [142], there are two loops to select a ~-majority cube.

The first loop consists of steps (4) and (5) where the dimension of a cube, k remains

fixed. If there is no ~-majority cube, then decrease the dimension k by one in step (6)

which constructs the second loop. However in procedure 8.1, only one loop is needed with

respect to the dimension of a cube in step (4). There is no loop in step (3), which saves

CPU time extensively to decide a ~-majority cube.

In [142], the largest prime implicant is selected prior to the selection of the largest·

~-majority cube. Actually, an m-dimensional prime implicant is only a special case of

108

Chapter 8. Reed-Muller PLA Implementations Section 8.3

a ~-majority cube, where the number of the covered on-set pi-terms is 2m . Therefore,

there is no difference between the selection of the largest prime implicant and the largest

~-majority cube. Consequently, procedure 8.1 can be applied to decide both the largest

prime implicant and the largest ~-majority cube as will be shown in example 8.2.

8.3.3 Further improvements for the decomposition method

8.3.3.1 Order of ~-majority cubes

In example 8.1, there are two largest ~-majority cubes, X2XO and X1XO. Each time only

one ~-majority cube should be returned to decompose a function. From our experimental

results, it is found that the number of product terms largely depends on the selection of

a suitable i-majority cube when there are more than one choices. This problem can be

called the determination of the order of ~-majority cubes. In [142], an arbitrary cube

is selected due to the lack of an efficient selection strategy. However, a good ~-majority

cube can chosen by deleting some on-set pi-terms that are not adjacent to any other on­

set pi-terms so that the decomposed function have a good structure. Then update the

numbers of 1 s and Os and select the largest ~-majority cubes based on the new numbers.

If the updated numbers are still the same, then select the default variable with the smallest

index. From our experiments, this modification usually leads to better results than the

arbitrary selection although it takes more time to decide the adjacency relation among

on-set pi-terms in the list. This improved selection will be illustrated in example 8.2.

Example 8.2. Given an on-set pi-term list IL = {O, 2, 9, 15} in fig.8.4(a) for a 4-variable

function. Following procedure 8.1, we have §o = §l = 0, §2 = {XO, Xl, X2, X3}. Besides,

IL = {O, 2, 9, 15}, l = 4 - 1 = 3, and M' = 4. Because 4?/. ~ X 24 in step (1),

count the occurring number for each variable in §2 which is shown in fig.8.4(a). In step

(3) of procedure 8.1, a2, which equals to 3, is selected because it is the largest number.

Additionally, X2 is moved from §2 to §o since a2 is the number of Os. Thus §o = {X2},

§l = 0, §2 = {XO, Xl, X3} and IL = {O, 2, 9} as shown in fig8.4.(b). In step (4) of procedure

8.1, since a2 e. ~ x 23 , decrease l to 2 and go to step (2) of procedure 8.1. In the same way,

count the occurring numbers for three variables in §2, which are shown in fig.8.4(b). It can

be seen that all the three occurring numbers, ao, al, and a3 are the same. Furthermore,

the on-set pi-term 9 = {1001} is not adjacent to the other two pi-terms. Hence this pi-term

can be deleted from the list IL, as shown in fig.8.4(c). Update the occurring numbers in

fig.8.4(c), ao = a3 = 2, al = 1. Then ao is selected since it is the smallest index. Therefore,

§o = {XO,X2}, §l = 0, §2 = {Xl,X3} and IL = {0,2} as shown in fig.8.4(d). In step (4)

of procedure 8.1, since ao t ~ x 22 , change l to 1 and go to step (2) of procedure 8.1.

From fig.8.4(d), a3 is selected because it is the only largest occurring number. Therefore,

§o = {XO,X2,X3}, §l = 0 and §2 = {xd in step (3) of procedure 8.1. Now a3;:: ~ x 2\ so

cube Xl is returned as the largest ~-majority cube. It can be seen that Xl in this case is

109

Chapter 8. Reed-Muller PLA Implementations Section 8.3

actually the largest prime implicant.

f 12 X3X2X lXO

00000 X3X2XIXO f f 20010 o 0000 X3 X::?X!Xo X3X2XIXO X3X2XIXO
91001 20010 o 0000 o 0000 00000

15 1 1 1 1 9 1 0 0 1 ... deleted 20010 20010 9 1001
ajIJ 2322 ajO 2 22 ajO 2 1 2 ajO 2 1 ajO 1
aj/ 2122 aj/ 1 1 1 aj/ 0 10 aj/ 0 1 ajJ 1
aj 2322 aj 2 22 aj 2 12 aj 2 1 aj 1

(a) (b) (c) (d) (e)

Figure 8.4: Order of ~-majority cubes
(a)original function (b) delete one pi-term that is not adjacent to others (c, d) select

a variable with the largest occurring number (e)two pi-terms if Xl is selected in (b)

In example 8.2, the deletion of pi-term 9 = (1001h can avoid selecting variable Xl in

fig.8.4(b). Otherwise, the selected ~-majority cubes would actually be pi-terms 1 and X3XO,

as shown in fig.8.4(e), which needs more product terms to realize the function consequently.

8.3.3.2 One more expansion for decomposition

An n-variable function can be decomposed by Davio expansions with respect to variable

Xi as follows.

f fXi=O EB Xi (fxi=O EB fXi=l)

fXi=l EB Xi (fxi=O EB fXi=l)

fo IXi EB xdllxi

(8.6)

(8.7)

(8.8)

where both folxi and hlxi are n-1 variable functions and Xi E {Xi, Xi}. All the functions

can be expressed by recursive decomposition of equation (8.8). Equation (8.8) is complete

to express any function but does not necessarily produce the simplest solution even with

the best polarity and application of the ~-majority cubes. For a class of Boolean functions

that satisfy the following condition,

(8.9)

the decomposition method in [142] does not necessarily produce "good" results even with

the best polarity. Instead, procedure 8.2 can be applied for the decomposition of this class

of functions.

110

Chapter 8. Reed-Muller PLA Implementations Section 8.3

Procedure 8.2. For an n-variable function f that satisfy equation {8.9} with respect to

variable Xi, 0 :::; i :::; n - 1, n> 2, then f can be expressed by equation {8.12} or {8.15}.

f

f

fo IXi EB xd1lxi

folxi EB Xi(Xn -1Xn-2··· Xi+lXi-1 ... Xo EB folxJ

Xn -1Xn -2··· Xi+lXiXi-1 ... Xo EB xdolxi

folxi EB xd1lxi

(Xn -1Xn-2··· Xi+1Xi-1··· Xo EB hlxJ EB xd1lxi

Xn -1Xn-2··· Xi+lXi-1 ... Xo EB xihlxi

(8.10)

(8.11)

(8.12)

(8.13)

(8.14)

(8.15)

From equation {8.9}, the total on-set pi-terms of folxi and hlxi is 2n
-

1
. To reduce the

complexity of the subsequent function, a function with less on-set pi-term is selected between

folxi and hlxi· In other words, if folxi has less on-set pi-terms than hlxi' then equation

{8.12} is selected to decompose the function. If hlxi has less on-set pi-terms than folxi'

then equation {8.15) is selected to decompose the function. If the on-set pi-term number is

the same, then equation {8.15} is selected to reduce the literal number since literal Xi does

not appear in the first product term in equation {8.15}. Ifn:::; 2, this new expansion is not

applied to save the literal numbers, which can be illustrated in example 8.3.

Example 8.3. A 3-variable function f is shown in fig.8.5(a) both in a bj-map and a pi­

term list with the best polarity. While applying procedure 8.1, it is very difficult to decide

the order of %-majority cubes discussed in section 8.3.3.1. Actually, each individual pi-term

in fig.8.5(a) is the largest %-majority cube. Hence we have

(8.16)

Using the notations in equation (8.8), we have folxl = Xo EB X2 and hlxl = 1 EB X2 XO·

Therefore, fo IXI EB h IXI = Xo EB X2 EB 1 EB X2XO = X2XO, and equation (8.9) is satisfied.

Because the on-set pi-term numbers of fo IXI and h IXI are equal, from procedure 8.2,

equation (8.15) is selected to decompose the function as f = X2XO EB x19, where 9 is a

2-variable function shown in fig.8.5(b). Note that the bj-map of 9 is the right half of the

bj-map shown in fig.8.5(a). Additionally, function 9 also satisfies equation (8.9). In the

same way, we have,

(8.17)

111

Chapter 8. Reed-Muller PLA Implementations Section 8.3

or

(8.18)

corresponding with equations (8.12) and (8.15) respectively. If ~-majority cube is used

instead, then another expression for g,

(8.19)

is obtained since both 1 and X2XO are the largest ~-majority cubes. It can be seen that

equation (8.19) is simpler than equation (8.17) or (8.18), which is the result of applying

equation (8.12) or (8.15). Hence the new expansion, equation (8.12) or (8.15) will not be

applied when n :s; 2. As a result, f = X2XO EB Xl EB X2XlXO which is one product term less

than equation (8.16).

X2X iXO

1 001
2010
4 100
7 1 1 1

ajo 222
ajl 222
aj 222

b.
J XIXO

x 2 00 01

o CD
i' i'-V

(a)

11 10

CD
CD

X2XO

000
1 1 1

ajO 1 1
aji 1 1
aj 1

Figure 8.5: Example of procedure 8.2

bjmXOl 0
x2 (,\
o 0
lQ

(b)

(a) original function in a pi-term list and a bj-map (b) decomposed function 9 using
equation (8.15) to expand

8.3.3.3 Even faster decomposition

In step (2) of procedure 8.1, if the number of Os or 1 s for a variable Xj, aj is M, then

all the on-set pi-terms are inside either cube Xn-lXn-2··· Xj+lXjXj-l ... Xo if aj is the

number of 1 s or cube Xn-lXn-2 ... Xj+lXj-l ... Xo if aj is the number of Os. In this case,

this n-variable function fo can be decomposed as in equation (8.20).

(8.20)

where h is a n-1 variable function and Xj is Xj if aj is the number of 1 s for variable

x j; otherwise x j is 1.

Example 8.4. In fig.8.6(a), a 4-variable function fo has 4 on-set pi-terms with the best

polarity. It can be seen from fig.8.6(a) that a2 is 4 and it is the number of 1 s for variable.

112

Chapter 8. Reed-Muller PLA Implementations Section 8.3

X2. From equation (8.20), we have fo = x2il where h is a 3-variable function shown in

fig.8.6(b). Iteratively call procedure 8.1 and return the largest ~-majority cubes, X3X1XO

and X1XO. Thus,

(8.21)

Alternatively, call procedure 8.2 and find that equation (8.9) is satisfied for function h
with respect to variable Xl. Furthermore, equation (8.12) is selected to decompose function

h,

(8.22)

where 12 is a 2-variable function shown in fig.8.6(c). It is obvious that 12 = Xo. Replace

12 in equation (8.22) and the same result fo = X3X2X1XO EB X2X1XO is obtained as equation

(8.21).

Additionally, in fig.8.4(c), after deleting a pi-term 9, the occurring numbers of Xo, X2,

and X3 are equal to M = 2. Hence these three variables can be deleted because they are

the numbers of Os. Consequently, a product term Xl can be returned directly.

3X2XIXO bj
5 0 1 0 1 X3

6 01 10
14 1 1 1 0
15 1 1 1 1

ajO 2012
ajl 2432
aj 2432

X lXO

x- 00

00

01

11

10

(a)

01 11

l,f

1\..1

1 ,
I'
J;

11~X;
ajO 1 0
ajl 0 1
aj 1 1

X2X lXo

1 001
2010
6 1 10
7 1 1 1 0

ajO 2 1 2
aji 232
a j 232

(b)

b.
lmxoo 1 x3 r7\ o 0
1

(c)

Figure 8.6: Boolean function of example 8.4

10

1

(a) the original function fo (b, c) functions hand 12 respectively after decomposition

8.3.4 Improved decomposition method

Based on the previous improvements to the decomposition method proposed in [142] and·

procedure 8.1, the following heuristic procedure can be proposed for the mixed polarity

113

Chapter 8. Reed-Muller PLA Implementations Section 8.3

Reed-Muller minimization.

Procedure 8.3. Given an n-variable Boolean function fa in the conventional PLA format

based on AND JOR operations. First call the program in chapter 5 to convert the function

from SOP to FPRM format with polarity 0 and find the best polarity Pbest. Then call the

program again to convert fa from SOP to FPRM format with polarity Pbest. Save all the

on-set pi-terms in a list lL, and let M be the number of on-set pi-terms. Additionally, let

product term number T = O.

(1) If n or M is zero, then return fa as a constant and go to step (1).

(2) If M 2:: ~ x 2n , then cube Xn -lXn-2··· Xo is the largest ~-majority cube. Therefore,

fa = Xn -lXn -2· .. Xo EEl h, where h is an n-variable function covering all the off-set pi­

terms. These new on-set pi-terms are saved in the list lL. Increase T by 1 and change M·

to 2n - M. Replace fa with h and go to step (1). Otherwise, go to the next step.

(3) Let ajO and ajl be the occurring numbers of "0" and "1" respectively in lL for each

variable Xj, 0 :::; j :::; n - 1 . Select the larger number aj from ajO and ajl· If they are the

same, then select ajO to reduce the literal number within a product term.

(4) If there are a variables whose occurring numbers aj equal to M, 1 :::; a :::; n -1, then

from equation (8.20), fa can be decomposed as fa = (ITf==-Ol xi)h, where h is an (n - a)

variable function. Replace fa with h and go to step (1). Otherwise, go to the next step.

(5) If there are f3 variables whose occurring numbers ajO + ajl = 2n
-

l
, 1 :::; f3 :::;

n - 1, n > 2, then from section 8.3.3.2, call procedure 8.2 to check if the function can be

decomposed by equations (8.12) or (8.15). If there is one variable Xi that satisfies equation

(8.9), then the function is decomposed based on procedure 8.2. Decrease n by one and

increase T by one. Update both lL, M and go to step (1). Otherwise, go to the next step.

(6) Call procedure 8.1 to find the largest ~-majority cube c. If there are more than

one choices, then apply the adjacency relation discussed in section 8.3.3.1 to decide one of

them. Consequently, fa is decomposed by cube c, fa = c EEl h, where h is an n-variable

function, covering both the remaining on-set pi-terms of fa and the off-set pi-term covered

by c. Update both lL and M accordingly. Increase T by 1 and go to step (1) for h·

(1) Update all the variables according to Pbest. In other words, if the polarity of variable

x is 1, then complement all the occurrences of x in the expression obtained from the previous

steps.

Example 8.5. A 5-variable function fa with 18 on-set minterms is given in PLA format

whose function is 2::(0,3,4,7,8,12,16,17,20-25,28-31). It can be first converted to

FPRM format with polarity 0 as ~(0-2, 11, 17,22,27) and the best polarity is 20. Hence

convert the function from SOP to FPRM with polarity 20, which is shown in fig.8.7(a) as

fa = ~(O, 6, 17, 18, 22, 27). Thus lL = {O, 6, 17, 18,22, 27}, T = 0 and M = 6. Now this

function can be simplified following procedure 8.3.

(1) Neither n or M is zero, go to step (2) of procedure 8.3.

(2) M 1::- ~ X 25 , go to step (3) of procedure 8.3 ..

114

Chapter 8. Reed-Muller PLA Implementations Section 8.3

t
!OX4X3X2XIXO t t 000000
600110 11 X4X3X,X IXO 12 X4X3X lXO

17 10001 000000 0000 t t 18 10010 1710001 9 100 1 13 X4X3X IXo 14 X3Xl

22 101 1 0 27 1 1 0 1 1 15 1 1 1 1 01001 000
27 1 1 0 1 1 200010 20010 15 1 1 1 1 3 1 1
ajO 25424 ajO 23422 ajO 2322 ajO 0 1 1 0 ajO 1 1
ajl 4 1 242 ajl 21022 ajl 2122 ajl 2 1 1 2 ajl 1 1
aj 45444 aj 23422 aj 2322 aj 21 12 aj 1 1

(a) (b) (c) (d) (e)

Figure 8.7: Example for procedure 8.3
(a) original function fo with the best polarity (b, c, d, e) functions il, 12, 13 and f4

respectively

(3) Count ajO and ajl for all the variables which are shown in fig.8.7(a), 0 ~ j ~ 4.

From fig.8.7(a), we have ao = al = a2 = a4 = 4, and a3 = 5.

(4) No variable whose occurring number aj equals to M, go to step (5) of procedure

8.3.

(5) Similarly, the condition in step (5) of procedure 8.3 is not satisfied, go to step (6).

(6) Call procedure 8.1 and cube X4X2Xl is returned as the largest ~-majority cube.

Hence fo is decomposed as fo = X4X2Xl EB il, where il is a 5-variable function shown in

fig.8.7(b). Additionally, T = 1, M = 4, and lL = {O, 2,17, 27} because cube X4X2Xl covers

three on-set pi-terms, 6,18,22, and one off-set pi-term 2. Go to step (1) of procedure 8.3

for il.
(7) Neither n nor M is zero. Furthermore, M"i. ~ X 25 . Hence count the occurring

numbers for these five variables as shown in fig.8. 7(b) in step (3) of procedure 8.3. In step

(4) of procedure 8.3, the occurring number a2 of variable X2 equals to M. From equation

(8.20), il = 1· 12 = 12, where 12 is a 4-variable function shown in fig.8.7(c). Thus T = 1,

M = 4, n = 4, and go to step (1) of procedure 8.3.

(8) Neither n nor M is zero. Furthermore, M"i. ~ X 24. Hence count the occurring

numbers for each variable which is shown in fig.8.7(c) in step (3) of procedure 8.3. Then

a3 is selected because it is the only largest number 3. No condition in step (4) and (5) of

procedure 8.3 is satisfied, so call call procedure 8.1 to find the largest ~-majority cube in

step (6) of procedure 8.3. From example 8.2, cube Xl is returned as the largest ~-majority

cube. Therefore, 12 = Xl EB 13 where 13 is shown in fig.8.7(d). Additionally, T = 2, M = 2,

and lL = {O, 15} since Xl covers two pi-terms 0 and 2.

(9) In step (4) of procedure 8.3, the occurring numbers, ao and a4 of variable Xo and X4

equal to M. From equation (8.20), 13 = x4xof4, where f4 is a 2-variable function shown

in fig.8.7(e). Go to step (1) of procedure 8.3 with lL = {O, 3} and n = 2.

115

Chapter 8. Reed-Muller PLA Implementations Section 8.4

(10) Following the steps in procedure 8.3, it can be seen that f4 = 1 EEl X3Xl with T = 4.

From the above steps, an expression of the function is obtained.

(8.23)

(11) In step (7) of procedure 8.3, since Pbest = 20 = (10100), variable X2 and X4 should

be complemented in equation (8.23). The final expression of the function is obtained as

follows.

(8.24)

8.3.5 Functional verification

The output of the program realizing procedure 8.3 is in RMPLA format, where "0", "I",

and "-" represents the corresponding variable is missing, positive and complemented re­

spectively. The following procedure is applied for the functional verification.

Procedure 8.4. Given an FPRM form f for an n-variable function with zero polarity,

procedure 8.3 can produce an RMPLA format. This RMPLA output can be functionally

verified in the following steps.

1. Replace each "-" with "0" and "1" so that a product term with i "- "s produces 2i

pi-terms;

2. Delete the generated pi-terms with an even occurrences.

3. Compare the remaining pi-terms with the pi-terms in the original FPRM form f· If

they are the same, then the output RMPLA is functionally correct; otherwise, it is wrong.

Example 8.6. Equation (8.24) in example 8.5 can be expressed by an RMPLA format [26],

shown in fig.8.8(a). This result can be verified by the following steps.

1. Replace each "-" with "0" and "I" for each product term, which is shown in fig.8.8(b).

2. No duplicate pi-term exists. Thus none of them is deleted. The decimal numbers

are also shown in brackets in fig.8.8(b).

3. The pi-terms obtained from fig.8.8(b) are 0-2,11,17,22,27, which are the same as

the original FPRM form with zero polarity in example 8.5.

8.4 Generalization to multiple output functions

8.4.1 Decomposition method using encoding

For multiple output functions, an important criterion is how best to share the common

product terms with several subfunctions. In [120], an n-variable m-output function is sim­

plified by minimizing an (m+n)-variable single output function denoted as a hyperfunction.

116

Chapter 8. Reed-Muller PLA Implementations

.i 5

.0 1

.i 5 .p 7

.0 1 10 11 0 1

.p4
00000 1
00010 1

1 0 11 0 1 00001 1
000-0 1 10001 1
-0001 1 01011 1
-1011 1 1 101 1 1

(a) (b)

Figure 8.8: Example for procedure 8.4
(a) the output RMPLA format of the function in example 8.5
on-set pi-terms

Section 8.4

(22)
(0)
(2)
(1)
(17)
(11)
(27)

(b) the corresponding

This is not suitable for large functions run on a PC. In this chapter, an encoding scheme

is applied to merge the multiple outputs into single output by adding flog21, instead of

m extra variables, where flog21 is the smallest integer equal to or greater than log2' The

following algorithm, shown as procedure 8.5, is proposed, through which the problem of

sharing the common product terms can be solved implicitly.

Procedure 8.5. Suppose there is an n-variable m-output Boolean function, Um-l, fm-2,

... , fo}, m 2:: 2. Then "'(= flog21 extra variables are used to merge these outputs into a

single output function f of"'(+ n variables. For simplicity, the binary code of i is added to

the "'(most significant bits (MSBs) of each pi-term for the jth subfunction fj, 0 :::; j :::; m -1.

This transformation can be expressed in equation (8. 25}.

m-l

f = ~ [X,+n-l X,+n-2'" xn]jfj
j=O

(8.25)

In equation (8.25), j can be expressed by a binary "'(-tuple, (j,-d,-2'" joh, and

. {I,
Xi =

Xi,

Suppose there is a 4-variable 2-output function, fo(x3,x2,xl,xo) and h(X3,X2,Xl,XO)'

An extra variable X4 can be applied to merge these two outputs into a 5-variable func­

tion f(x4, X3, X2, Xl, xo). From procedure 8.5, "0" is added to the MSB of each pi-term

of fo(x3, X2, Xl, xo) while "I" is added to the MSB of each pi-term of h (X3, X2, Xl, xo).

117

Chapter 8. Reed-Muller PLA Implementations Section 8.4

Therefore we have,

(8.26)

After a simplified expression of f(X4, X3, X2, Xl, xo) is obtained by calling procedure 8.3,

theorem 8.1 can be applied to split the expression and generate the representations for each

individual subfunction using definition 8.2 of "cover" relation and its properties.

Definition 8.2. A binary relation of "cover", R on a set § = {O, 1, 2} can be expressed

by a set of ordered pairs[121], R = {(O, 0), (1, 1), (2,0), (2, I)}. Additionally, a product

term Xn-lXn-2 ... Xo can be represented by a ternary number a n -lan -2 ... ao that satisfies

equation (8.27).

{

0, Xi = 1

ai = 1, Xi = Xi

2, Xi = Xi

(8.27)

where 0 ::; i ::; n -1. A ternary number a n -lan -2'" ao covers another ternary number

bn - l bn -2'" bo if aiRbi for any i, 0 ::; i ::; n - 1. A product term Xn -lXn -2'" Xo covers

another product term Yn-lYn-2 ... Yo if their corresponding ternary number a covers b.

Example 8.7. A 4-variable product term X3X2XlXO can be expressed by a ternary number

(1211h. It covers two ternary numbers, (1011h and (l1l1h based on the "cover" relation

R in definition 8.2. Accordingly, the product term X3X2XlXO covers two other product terms

X3XlXO and X3X2XlXO. In the same way, a 4-variable product term Xl can be represented by

a ternary number (0020h, which covers two other ternary numbers, (OOOOh and (0010h­

In other words, Xl covers two product terms, 1 and Xl.

If a product term Co covers another product term Cl, then cube Cl is inside Co in the

corresponding bj -map[155]. For example, in fig.8.3(b), product term X2XO covers X2XO

based on definition 8.2. It can be seen that cube X2XO is inside X2XO. Similarly, cube Xl is

also properly inside cube XlXO in fig.8.1(a) because product term XlXO covers Xl based on

definition 8.2.

Lemma 8.1. Any ternary number covers at least another ternary number.

Lemma 8.1 is obvious. If there is no "2" in all the bits of a ternary number, then it

covers itself. Otherwise, it at least covers two other ternary numbers based on definition

8.2.

Lemma 8.2. Any product term, Xn -lXn -2'" xo, can be represented by XORing all the

118

Chapter 8. Reed-Muller PLA Implementations

pi-terms it covers. Equivalently,

2ki-1

~ [Xn-1Xn-2··· xO]j
j=O

Section 8.4

(8.28)

(8.29)

where ki is the number of variables whose corresponding ternary number of product

term Xn-1Xn-2··· xo is 2, ki 2: O. In other words, [Xn-1Xn-2··· xO]j is a pi-term covered

by Xn-1Xn-2· .. Xo based on definition 8.2, Xi E {I, xd, 0 ~ i ~ n - 1, 0 ~ j ~ 2ki - 1.

Lemma 8.2 is also obvious. In example 8.7, the product term X3X2X1XO, whose ternary

number is (1211h, covers two pi-terms, X3X2X1XO and X3X1XO, whose ternary numbers are
21_1

(1111h and (1011h respectively. Hence X3X2X1XO = ~ [X3X2X1XO]j = X3x2x1xOEElx3x1XO·
j=O

Similarly, Xl = 1 EEl Xl since Xl covers both 1 and Xl·

Theorem 8.1. Suppose an n-variable m-output Boolean function is merged into a single

output function f of "I + n variables by procedure 8.5, where "I = flog2'l, m 2: 2. Let f be

expressed by T product terms as in equation (8.30).

T-1

f(x,+n-1x,+n-2··· xo) = ~ X,+n-1 X,+n-2 ... xo
i=O

(8.30)

where Xi E {I, Xi, xd, 0 ~ i ~ "I + n - 1. Then any individual subfunction fj can be

represented by a subset of these T product terms in equation (8.31).

T-1

jj = ~ [X,+n-1X,+n-2 ... xnL . Xn-1 ... Xo
i=O

(8.31)

where "." is the AND operation, j can be expressed by a binary "I-tuple, (j,-11,-2 ... joh,

o ~ j ~ m - 1. In equation (8.31), if the "I MSBs of the ternary number of the product

term X,+n-1X,+n-2 ... Xo covers j, then [X,+n-1X,+n-2 ... xn]j is 1; otherwise it is O. In

other words, for each product term, X,+n-1X,+n-2··· Xo in equation (8.30), if its "I MSBs

of the corresponding ternary number, defined in definition 8.2, covers j, then product term,

Xn-1Xn-2··· xo, is included in equation (8.31). Otherwise, it is not included for fj. Hence

the total product term number to realize these m subfunctions is T, which is the same

product term number for the single output function f shown in equation (8.30).

Proof. In equation (8.30), each mixed polarity product term, X,+n-1X,+n-2··· xo, can

be divided into two parts, (X,+n-1X,+n-2··· xn) . (Xn-1 ... xo), where "." is the AND

operation. The first part (X,+n-1X,+n-2 ... xn) can be replaced by all the pi-terms covered

119

Chapter 8. Reed-Muller PLA Implementations Section 8.4

by the product term according to lemma 8.2. Let every product term in equation (8.30)

be symbolized as PTi = [XI'+n-1XI'+n-2 ... xoli' 0 :S i :S T - 1. From equations (8.29) and

(8.30), we have,

(8.32)
i=O

T-1

~ [XI'+n-1 XI'+n-2 ... xoli (8.33)
i=O

T-1

= ~ [(XI'+n-1 XI'+n-2 ... xn) . (Xn-1 ... XO)]i (8.34)
i=O

T-1 [(2ki _1) 1 ~ ~ [XI'+n-1XI'+n-2··· Xnlj . (Xn-1 ... XO) (8.35)
z=O J=O i

2ki-1 T-1

~ ~ [[XI'+n-1 XI'+n-2··· Xnlj . (Xn-1 ... xo)L (8.36)
j=O i=O

In equation (8.35), ki is the number of variables whose corresponding ternary number

of product term PTi is "2". Additionally, [XI'+n-1XI'+n-2··· xnlj is an pi-term covered by

XI'+n-1XI'+n-2 ... xn. Compare equations (8.36) and (8.25), it can be concluded that each

subfunction fj can be represented by XORing the product term Xn-1Xn-2 ... xo if the 'Y

MSBs of the corresponding product term, XI'+n-1XI'+n-2··· xo, cover j. Thus equation

(8.31) is proved.

From Lemma 8.1, any product term in equation (8.30) can be used by at least one

subfunction. Additionally, the product terms of any subfunctions are the subset of the

product terms in equation (8.30). Therefore, the total product term number to realize all

the subfunctions is the same as the product term number in equation (8.30). D

Example 8.8. Suppose two 4-variable functions, gO(X3X2X1XO) and gl (X3X2X1XO) are merged

into a 5-variable function 9 by adding an extra variable X4 so that 9 = go EEl X4g1 based on

equation (8.25) in procedure 8.5. Suppose the expression of 9 is the same as in equation

(8.24),

(8.37)

These four product terms can be denoted as ternary numbers, namely, (10110h, (00020)3,·

(20001h, and (21011h. From theorem 8.1, the product terms of subfunction go are the

ones whose MSB covers "0" based on the definition 8.2. Because both "0" and "2" cover

"0", there are three product terms (00020h, (20001h, and (21011h whose MSB cover "0".

120

Chapter 8. Reed-Muller PLA Implementations Section 8.4

Therefore, go can be realized by XORing (0020h, (OOOIh, and (IOllh. Thus we have,

(8.38)

Similarly, the product terms of subfunction gl are the ones whose MSB covers "I" . From

definition 8.2, there are three product terms, (10110h, (2000Ih, and (2IOllh that satisfy

this condition. Therefore gl can be expressed in the following equation.

(8.39)

From equations (8.38) and (8.39), two product terms, Xo and X3X1XO, are shared by

these two subfunctions. These two subfunctions, go and gl, can be realized by 4 product

terms, that is the same product term number for function g. It is worthwhile to note that

gl is different from the cofactor of 9 with respect to X4, gX4=1 = X2Xl EEl Xl·

Suppose 9 is obtained by merging four 3-variable functions, g~(X2X1XO), g~ (X2X1XO),

g~(X2X1XO) and g~(X2X1XO). From theorem 8.1, the product terms of subfunction g~ are

the ones whose two MSBs cover "00". From definition 8.2, there are two product terms,

(00020h and (2000Ih, that satisfy this condition. Hence g~ = Xl EEl Xo. In the same way,
I

gl = X3 X 1X O because it is only this product term whose two MSBs cover "01". Similarly,

we have g~ = X2Xl EEl Xo and g~ = X1XO·

From theorem 8.1 and example 8.8, it can be concluded that the more occurrences of the

complemented form of extra variables, the more product terms are shared by subfunctions.

Based on the previous discussion, the following procedure can be presented for mixed

polarity Reed-Muller minimization.

Procedure 8.6. Given an n-variable m-output Boolean function f in the conventional

PLA format. First call the program in chapter 5 to convert it from SOP to FPRM format

with polarity 0 and find the best polarity Pbest for function f. Then call the program again

to convert it from SOP to FPRM format with polarity Pbest. Suppose all the on-set pi-terms

and output parts are saved in lists lLl and ~. Let M be the number of on-set pi-terms in

lLl and product term number T = O.

(1) Call procedure 8.5 to merge the multiple outputs into single output by adding extra

variables.

(2) Call procedure 8.3 to simplify this single output function in the Reed-Muller domain

directly, which excludes conversion and best polarity algorithms in procedure 8.3. Return

an expression for f and the product term number T.

(3) Apply theorem 8.1 to split the expression and produce the result for each subfunc­

tions.

(4) Call procedure 8·4 to verify the result.

121

Chapter 8. Reed-Muller PLA Implementations Section 8.6

8.4.2 Very large functions

For very large multiple output functions whose variable number is usually more than 25,

the encoding approach in section 8.4.1 is not suitable because there are usually too many

input variables for the merged single output function. For example, a 26-variable 50-

output function would be merged into a 32-variable function, which is not practical to run

on a common PC. However, it is observed that there are many redundant variables for

each individual function for these very large functions. In other words, each subfunction is

usually dependent on a small number of these inputs. Therefore, each subfunction can first

be simplified individually using procedure 8.3. Then merge the common product terms to

reduce the product term number. Although this strategy is simple, it is very efficient based

on our experimental results which are shown in the next section.

8.5 Experimental results

Procedure 8.6 has been implemented in C language. The input to the program is the

conventional PLA format which is based on AND/OR operations. The program produces

the RMPLA result of the function. This program is compiled by the GNU Compiler

Collection egcs-1.1.2 and tested using MCNC and IWLS'93 benchmarks on a PC with

Pentium-266 CPU and 64M RAM under Linux operating system. The comparisons with

ESPRESso[26] are shown in tables 8.1 and 8.2, where "i/o" means the numbers of inputs

and outputs respectively. In the column of "Reed-Muller Domain", the time to obtain the

FPRM with the best polarity from the conventional SOP input is shown as "FPRM". The

product term number and CPU time of the mixed polarity optimization are shown in the

column of "Decomp. Method" as "term#" and "time" respectively. All the results have been

verified using procedure 8.4. It can be seen from table 8.1 that the decomposition method

can produce much less product terms than ESPRESSO for most testcases. For instance,

"t481" needs 481 product terms to be implemented based on AND/OR operations while

only 13 mixed polarity terms are sufficient based on AND /XOR operations. Due to the

conventional SOP input format, most of the CPU time is actually spent on the FPRM

forms.

For very large multiple output functions, an alternative scheme, which is discussed in

section 8.4.2, is applied. Instead of using encoding method to merge the multiple outputs

into single output, the decomposition method is first applied for each individual function,

then the common product terms are merged. It can be seen that for most testcases in table

8.2, the decomposition method produces much better results than ESPRESSO with respect

to product term numbers.

122

Chapter 8. Reed-Muller PLA Implementations Section 8.6

Reed-Muller Domain Boolean Domain
testcase i/o timers) Decomp. Method ESPRESSO

FPRM term# timers) term# timers)

5xp1 7/10 0.06 63 0.03 65 0.07
cm150a 21/1 512.35 17 0.02 17 0.01

cmb 16/4 17.65 5 0.01 15 0.07
f51m 8/8 0.12 51 0.01 76 0.06
mux 21/1 287.76 16 0.01 16 0.01
pcle 19/9 263.00 26 0.03 45 0.03
pm1 16/13 34.18 25 0.03 28 0.05
rd53 5/3 0.05 20 0.01 31 0.01
rd73 7/3 0.08 63 0.02 127 0.09
rd84 8/4 0.16 107 0.03 255 0.35
t481 16/1 9.25 13 0.01 481 0.62
tcon 17/16 56.22 25 0.04 24 0.01

Table 8.1: Comparison with ESPRESSO for general multiple output functions

Reed-Muller Domain Boolean Domain
testcase i/o timers) Decomp. Method ESPRESSO

FPRM term# timers) term# timers)

apex6 135/99 3162.56 491 0.06 656 43.12
b9 41/21 5.12 119 0.01 106 0.38
c8 28/18 0.47 52 0.01 79 0.13
cht 47/36 0.03 81 0.01 81 0.08

count 35/16 583.81 64 0.01 169 0.31
example2 85/66 7.23 234 0.01 329 1.53

i6 138/67 0.03 239 0.03 202 0.37
i7 199/67 0.05 268 0.01 264 0.78

pcler8 27/17 2.67 40 0.01 53 0.20
unreg 36/16 0.03 48 0.01 48 0.03

x3 135/99 4554.53 536 0.09 656 46.97
x4 94/71 14.79 374 0.05 520 5.49

Table 8.2: Comparison with ESPRESSO for very large multiple output functions

8.6 Summary

Although there has been extensive research on AND /XOR forms, applications of Reed­

Muller logic have not become popular due to lack of efficient algorithms for mixed polarity

minimization. In this chapter, an improved decomposition method is developed based on

the concept of i-majority cubes[142] and top-down approach. Using the fast algorithms for

fast conversion between SOP and FPRM formats in chapter 5 and the polarity optimization

which is based on the concept of the polarity for SOP forms, the decomposition method is

generalized to very large multiple output Boolean functions. Although the problem of Reed-

123

Chapter 8. Reed-Muller PLA Implementations Section 8.6

Muller logic minimization is much more difficult than SOPs, the improved decomposition

method can produce much better results, which is consistent with the conclusion in [126].

Therefore the developed program offers an important opportunity for the practical RMPLA

applications for very large multiple output functions.

124

Chapter 9

Conclusions and Future Work

The aim of the project is to develop various algorithms for logic synthesis for both the

standard Boolean logic and Reed-Muller logic, which are based on AND/OR operations

and AND /XOR operations respectively. The main contributions of this thesis can be

summarized as follows.

I.- In chapter 3, the concept of two-level cube on a Karnaugh map is first general­

ized to a multilevel cube that can cover both "0" and "I" entries. Then an efficient

procedure is presented to produce a multilevel form of any incompletely specified

function on a Karnaugh map utilizing don't cares (DCs) generated as the function

is decomposed. Further, an important property of Boolean functions, "containment"

of cofactors is introduced so that new DCs, which are called functional DCs, can be

generated to simplify large functions. The functional DCs are on function/logic level

while satisfiability don't cares (SDCs) and observability don't cares (ODCs) are on

circuit/network level. An algorithm based on the concept of multilevel cube and the

property of "containment" is developed and implemented in C language. From the

experimental results, more than 70% of the splits have the containment property for

all the single output functions in the common benchmarks. The developed program

can produce better results than script.rugged of SIS, both in area and speed for a

number of testcases.

I.- The above mentioned algorithm is improved with respect to variable order and split­

ting equation problems, then generalized to multiple outputs using the encoding

method in chapter 4. This encoding strategy provides a new approach to simplify

Boolean relations. Experimental results show that functional DCs which are based

on the concept of containment are very effective not only for single output, but also

for multiple output Boolean functions.

I.- In chapter 5, the concept of polarity for canonical sum-of-products (SOP) Boolean

functions is introduced. This facilitates efficient conversion between SOP and fixed

125

Conclusions and Future Work

polarity Reed-Muller (FPRM) forms. New algorithms are presented for the bidirec­

tional conversion between the two paradigms. Multiple segment and multiple pointer

techniques are employed to achieve fast conversion for large Boolean functions. Ex­

perimental results show that the algorithm is very efficient in terms of time and

space for large Boolean functions. The algorithm is tested for randomly generated

functions of up to 30 variables and 500, 000 on-set coefficients.

I.- In chapter 6, a fast algorithm is proposed to convert from SOPs to FPRM forms

without generating disjoint cube covers or functional decision diagrams. This pro­

cedure is based on the property of input redundancy and is tailored for very large

multiple output Boolean functions. Test result shows that it only takes about 0.1

seconds to convert a function with 199 inputs and 67 outputs run on a common

personal computer.

I.- The properties of the polarity for canonical sum-of-products expressions of Boolean

functions are further examined and formalized in chapter 7. A transform matrix

is developed to convert SOP expressions from one polarity to any other polarity.

It is shown that the effect of SOP polarity is to reorder the on-set minterms of

a Boolean function. Based on these properties, we achieve the transform matrix

for fixed polarity Reed-Muller expressions for the conversion between two different

polarities. Comparison of these two matrices shows that the Reed-Muller transform

matrix has much more complex structure. Besides, the best polarity of FPRM forms

with the least on-set terms corresponds with the polarity of SOP forms with the best

"order" of the on-set minterms. Applying these features of the transform matrix, a

fast algorithm is presented to obtain the best polarity for multiple output completely

specified Boolean functions. The advantage of the algorithm is achieved by fast

binary search strategy, instead of iterative AND or XOR operations. Furthermore,

the speed of the algorithm does not depend on the number of outputs because the

output part is taken collectively as a normal integer. Test results for benchmark

examples of up to 25 inputs and 29 outputs are given run on a common personal

computer. Previously it has been generally accepted that exact minimization of fixed

polarity Reed-Muller forms is only suitable when the number of input variables is

less than 15.

I.- In chapter 8, decomposition techniques are utilized for mixed polarity Reed-Muller

minimization, which lead to Reed-Muller programmable logic array implementations

for Boolean functions. The proposed algorithm produces simplified mixed polarity

Reed-Muller format from the conventional sum-of-products input based on top-down

strategy. The output format belongs to the most general class of AND /XOR forms,

namely exclusive-OR sum-of-products. This method is further generalized to very

large multiple output Boolean functions. The developed decomposition method is

126

Conclusions and Future Work

implemented in C language and tested with MCNC and IWLS'93 benchmarks. Ex­

perimental results show that the decomposition method can produce much better

results than ESPRESSO for many testcases. This efficient method offers compact

Reed-Muller programmable logic array implementations to add to their inherent ad­

vantage of easy testability compared to the conventional programmable logic array

realizations.

The above work can be further generalized and improved along the following lines.

I.- The encoding problem described in section 4.4.2 can be solved with the help of the

similar problem arisen in the traditional functional decomposition[104]. The solution

may be applied to the minimization of Boolean relations[28] as slightly covered in

section 4.4.1.

I.- The idea of functional don't cares can be incorporated in other logic minimizers, such

as SIS, to improve their performance.

I.- The conversion algorithm for single output functions, presented in chapter 5, has been

successfully generalized to very large multiple output Boolean functions in chapter

6 based on redundancy removal strategy. Accordingly, the fast algorithm for exact

polarity minimization in chapter 7 can be applied for very large multiple output

Boolean functions based on the same strategy.

I.- The mixed polarity optimization method in chapter 8 can be utilized for multilevel

Reed-Muller minimization based on decomposition scheme. Little work has been

done in this area[128].

I.- The above mentioned methods for Reed-Muller optimization can be further general­

ized to incompletely specified Boolean functions.

127

Publications

The following list shows the papers published or submitted after April, 1998.

1. L. Wang, A. E. A. Almaini , Fast Conversion Algorithm for Very Large Boolean

Functions, Electronics Letters, Vo1.36, No.16, 1370-1371, 2000

2. L. Wang, A. E. A. Almaini, and A. Bystrov, Efficient Polarity Conversion for Large

Boolean Functions, lEE Proceedings Computers and Digital Techniques,

Vo1.146 , No.4, 197-204, 1999

3. L. Wang, X. Chen, and A. E. A. Almaini, Algebraic Properties of Multiple-Valued

Modulo Systems and Their Applications to Current-Mode CMOS Circuits, lEE Pro­

ceedings Computers and Digital Techniques, Vo1.145 , No.5, 364-368, 1998

4. L. Wang, X. Chen, and A. E. A. Almaini, Modulo Correlativity and its Application

in a Multiple Valued Logic System, International J. Electronics, Vol. 85 , No.5,

561-570, 1998

5. X. Wu, M. Pedram, and L. Wang, Multi-Code State Assignment for Low Power

Sequential Circuit Design, lEE Proceedings Circuits, Devices and Systems,

Vo1.147 , No.5, 271-275, 2000

6. L. Wang and A. E. A. Almaini, Fast Algorithm for Exact Minimization of Large

Boolean Functions (submitted), IEEE Trans. on Computers, 2000

7. L. Wang and A. E. A. Almaini, Multilevel Logic Minimization Using Functional

Don't Cares (accepted), IEEE Proceedings, International Conference on VLSI

Design, Bangalore, India, 2001

8. L. Wang and A. E. A. Almaini, Multilevel Logic Simplification for Multiple Output

Boolean Functions Using Functional Don't Cares (to be submitted), 2001

9. L. Wang and A. E. A. Almaini, Optimization of Reed-Muller PLA Implementations

(submitted), lEE Proceedings Circuits, Devices and Systems, 2000

128

References and Bibliography

[1] Abouzeid, P., Besson, T., Sakouti, K., Saucier, G., Gaume, F., and Roane, R.,

Experimental Results on the Impact of Factorization and Technology Independent

Mapping Options on Multilevel Synthesis, Euro ASIC'92, Los Alamitos, CA, 402-403,

1992

[2] Almaini, A. E. A., Electronic Logic Systems, 3rd ed., Prentice Hall, Londoen, 1994

[3] Almaini, A. E. A., A semicustom IC for generating optimum generalized Reed-Muller

expansions, Microelectronics Journal, Vo1.28, No.2, 129-142, 1997

[4] Almaini, A. E. A. and McKenzie, L., Tabular techniques for generating Kronecker

expansions, lEE Proc. Comput. Digit. Tech., Vo1.143 , No.4, 205-212, 1996

[5] Almaini, A. E. A. and Ping, S., Algorithm for Reed-Muller expansions of Boolean

functions and optimization of fixed polarities, The fourth IEEE International Con­

ference on Electronics, Circuits and Systems, Cairo, 148-153, December 1997

[6] Almaini, A. E. A. Thomson, P. and Hanson, D., Tabular techniques for Reed-Muller

logic, Int. J. Electronics, Vo1.70, No.1, 23-34, 1991

[7] Almaini, A. E. A., and Woodward, An Approach to the Control Variable Selection

Problem for Universal Logic Modules, Digital Process, Vo1.3, 189-206, 1977

[8] Almaini, A. E. A., Zhuang, N., and Bourset, F., Minimisation of Multioutput Binary

Decision Diagrams Using Hybrid Genetic Algorithms, lEE Electronic Letters, Vo1.31,

No.20, 1722-1723, 1995

[9] Almaini, A. E. A. and Zhuang, N., Using Genetic Algorithms for the Variable Or­

dering of Reed-Muller Binary Decision Diagrams, Microelectronic Journal, Vo1.24,

No.4, 471-480, 1995

[10] Almaini, A. E. A. and Zhuang, N., Variable Ordering of BDDs for Multioutput

Boolean Functions Using Evolutionary Techniques, Fourth IEEE Int. Conference on

Electronics, Circuits & Systems, ICECS'97, Cairo, 148-153, 1997

[11] Almaini, A. E. A., Zhuang, N., and Bourset, F., Minimisation of Multioutput Binary

Decision Diagrams Using Hybrid Genetic Algorithms, lEE Electronic Letters, Vo1.31,

No.20, 1722-1723, 1995

129

References and Bibliography

[12] Akers, S. B., Binary Decision Diagram, IEEE Transactions on Computers, Vol.C-27,

No.6, 509-516, 1978

[13] Arensman, R, Squeeze Play, Electronic Business, http://www.eb-mag.com/. June,

1998

[14] Awalt, R K, Making the ASIC/FPGA Decision, Integrated System Design,

http://www.isdmag.com/. July, 1999

[15] Ayres, R F., VLSI Silicon Compilation and the Art of Automatic Microchip Design,

Prentice-Hall, Inc., New Jersey, 1983

[16] Aziz, A., Balarin, F., Brayton, R, and Sangiovanni-Vincentelli, A., Sequential Syn­

thesis Using SIS, ICCAD, California, 612-617, 1995

[17] Bartlett, K A. Brayton, R K Hachtel, G. D. Jacoby, R M. Morrison, C. R Rudell,

R L. Sangiovanni-Vincentelli, A. and Wang, A. R, Multilevel Logic Minimization

Using Implicit Don't Cares, IEEE Tansactions on Computer-Aided Design, Vol. 7,

No.6, 723-740, 1988

[18] Bartlett, K, Cohen, W., Genus, A. D., and Hachtel, G., Synthesis and Optimization

of Multilevel Logic under Timing Constraints, IEEE Transactions on Computer­

Aided Design, Vol.CAD-5, No.4, 582-596, 1986

[19] Benini, L., and Micheli, G. D., System-Level Power Optimization: Techniques and

Tools, ACM Transactions on Design Automation of Electronic Systems, Vol. 5 , No.2, .

115-192, 2000

[20] Bergamaschi, R A., Brand, D., and Stok, L., Efficient Use of Large Don't Cares in

High-Level and Logic Synthesis, ICCAD, CA, 272-278, 1995

[21] Berman L. and Trevillyan, L., Global Flow Optimization in Automatic Logic Design,

IEEE Transactions on CAD/ICAS, Vol.CAD-10, No.5, 557-564, 1991

[22] Boole, G., An Investigation of the Laws of Thought on Which Are Founded the

Mathematical Theories of Logic and Probabilities, Dover Publications, Inc., New

York, 1854(reprint in 1958)

[23] Brand, D., Bergamaschi, R A., and Stok, L., Don't Cares in Synthesis: Theoretical

Pitfalls and Practical Solutions, IEEE Trans. Computer-Aided Design of Integrated

Circuits and Systems, Vo1.17, No.4, 285-305, 1998

[24] Brayton, R K and McMullen, C., The Decomposition and Factorization of Boolean

Expressions, Proceedings of the International Symposium on Circuits and Systems,

49-54, Rome, May 1982

130

References and Bibliography

[25] Brayton, R K, Hachtel, G. D., and Sangiovanni-Vincentelli, A. L., Multilevel Logic

Synthesis, Proceedings of IEEE, Vol. 78 , No.2, 264-300, 1990

[26] Brayton, R K, Hachtel, G. D. McMullen, C. T. and Sangiovanni-Vincentelli, A.

L., Logic Minimization Algorithms for VLSI Synthesis, Boston, Kluwer Academic

Publishers, 1984

[27] Brayton R K, Rudell Richard, Sangiovanni-Vincentelli Alberto, and Wang AL­

bert R, MIS: A Multiple-Level Logic Optimization System, IEEE Transactions on

Computer-Aided Design, Vol.CAD-6, No.6, 1062-1081, 1987

[28] Brayton, R K, and Somenzi, F., Boolean Relations, MCNC/ ACM, IWLS'89, May

23-26, North Carolina, 1-9, 1989

[29] Brown, S. D., Francis, R J., Rose, J., and Vranesic, Z. G., Field-Programmable Gate

Arrays, Kluwer Academic Publishers, Boston, 1992

[30] Bryant, R E., Binary Decision Diagrams and Beyond: Enabling Technologies for·

Formal Verification, ICCAD, California, 236-243, 1995

[31] Bryant, R E., Graph-Based Algorithms for Boolean Function Manipulation, IEEE

Transactions on Computers, Vol.C-35, No.8, 677-691, 1986

[32] Bystrov, A., Almaini, A. E. A., Reversed ROBDD Circuits, lEE Electronic Letters,

Vol.34, No.15, 1447-1449, 1998

[33] Bystrov, A., Almaini, A. E. A., Testability and Test Compaction for Decision Di­

agram Circuits, lEE Proc.-Circuits, Devices and Systems, Vo1.146 , No.4, 153-158,

1999

[34] Cabodi, G., Quer, S., Meinel, C., Sack, H., Slobodova, A., and Stangier, C., Binary

Decision Diagrams and the Multiple Variable Order Problem, IEEE/ ACM IWLS'98,

CA, 346-352, 1998

[35] Chang, C.-H., and Falkowski, B, J., Adaptive Exact Optimisation of Minimally

Testable FPRM Expansions, IEE Proc. Comput. Digit. Tech., Vo1.145, No.6, 385-394,

1998

[36] Chang, C-L, and Lee, R C-T., Symbolic Logic and Mechanical Theorem Proving,

Academic Press, New York, 1973

[37] Chang, S-C, and Cheng, D. 1., Efficient Boolean Division and Substitution, Proc.

DAC'98, California, 342-347, 1998

[38] Chang, S-C., Marek-Sadowska, M., Cheng, K-T, An Efficient Algorithm for Local

Don't Care Sets Calculation, 32nd DAC'95, CA., 663-667, 1995

131

References and Bibliography

[39] Chang, S. C., Marek-Sadowska, M., and Cheng, K. T., Perturb and Simplify: Multi­

level Boolean Network Optimizer, IEEE Trans. on Computer Aided Design, VoLl5,

No.12, 1494-1504, 1996

[40] Clarke, E. M., Fujita, M., and Zhao, X., Hybrid Decision Diagrams, ICCAD, Cali­

fornia, 159-163, 1995

[41] Cong, J., Ding, Y., Combinational Logic Synthesis for LUT Based Field Pro­

grammable Gate Arrays, ACM Trans. Design Automation of Electronic Systems,

VoLl, No.2, 145-204, 1996

[42] Coudert, 0., Two-Level Logic Minimization: An Overview, Integration, (VLSI jour­

nal), VoLl7, No.2, 97-140, 1994

[43] Curtis, H. A., A New Approach to the Design of Switching Circuits, D. Van Nostrand

Company, Princeton, N. J., 1962

[44] Damarla, T., and Karpovsky, M., Detection of Stuck-at and Bridging Faults in Reed­

Muller Canonical (RMC) Networks, lEE Proc. Pt.E, VoLl36 , No.5, 430-433, 1989

[45] Damiani, M., and Micheli, G. De, Don't Care Set Specifications in Combinational and

Synchronous Logic Circuits, IEEE Trans. on Computer-Aided Design, Vol.CAD-12,

No.3, 365-388, 1993

[46] Damm. C., How Much EXOR improves on OR? Technical Reports, Forschungsbericht

Nr. 93-07, 1-6, 1993

[47] Darringer J. A., Brand D., Gerbi, J. V. Joyner William H., Jr and Trevillyan, L.,

LSS: A System for Production Logic Synthesis, IBM J. Res. Develop. Vo1.28, No.5,

537-545, 1984

[48] Darringer J. A., Joyner William H., Jr, Berman C. L, and Trevillyan, L., Logic

Synthesis Through Local Transformations, IBM J. Res. Develop. Vol. 25 , No.4, 272-

280, 1981

[49] Debnath, D., and Sasao, T., GRMIN2: A Heuristic Simplification Algorithm for Gen­

eralised Reed-Muller Expressions, lEE Proc. Comput. Digit. Tech., VoLl43 , No.6,

376-384, 1996

[50] Devadas S., Ghosh A., and Keutzer K., Logic Synthesis, McGraw-Hill, Inc., New

York, 1994

[51] Devadas, S., Wang, A. R., Newton, A. R., and Sangiovanni-Vincentelli, A., Boolean

Decomposition in Multilevel Logic Optimization, IEEE Journal of Solid State Cir­

cuits, Vol. 24, No.2, 399-408, 1989

132

References and Bibliography

[52] Drechsler, R, Becker, B., Overview of Decision Diagrams, lEE Proc. Comput. Digit.

Tech., Vo1.144, No.3, 187-193, 1997

[53] Drechsler, R, and Becker, B., Relation Between OFDDs and FPRMs, Electronics

Letters, Vo1.32, No.21, 1975-1976, 1996

[54] Drechsler, R, Becker, B., and Jahnke, A., On Variable Ordering and Decomposition

Type Choice in OKFDDs, IEEE Trans. Computers, Vo1.47, No.12, 1398-1403, 1998

[55] Drechsler, R, Drechsler, N., Gunther, W., Fast Exact Minimization of BDDs,

DAC'98, California, 200-205, 1998

[56] Drechsler, R, Theobald, M., and Becker, B., Fast OFDD-Based Minimization of

Fixed Polarity Reed-Muller Expressions, IEEE Trans. Computers, Vol. 45 , No.11,

1294-1299, 1996

[57] Dunne, P. E., The complexity of Boolean Networks, Academic Press Ltd, London,

1988

[58] Electronic Design Interchange Format,

http://www.edif.org/

Electronic Industries Alliance,

[59] Edwards M. D., Automatic Logic Synthesis Techniques for Digital Systems, Macmil­

lan Press Ltd, Hampshire, 1992

[60] Falkowski, B. J., and Chang, C-H., Generalised k-variable-mixed-polarity Reed­

Muller Expansions for System of Boolean Functions and Their Minimisation, lEE

Proc.-Circuits, Devices and Systems, Vo1.147, No.4, 201-210, 2000

[61] Falkowski, B. J., and Perkowski, M. A., Algorithm for the Generation of Disjoint

Cubes for completely and incompletely Specified Boolean Functions, Int. J. Elec­

tronics, Vo1.70, NO.3, 533-538, 1991

[62] Frank, M. P, Knight, T., Margolus, N., Reversibility in optimal scalable computer

architectures, Proceedings of the First International Conference on Unconventional

Models of Computation, Springer, 165-182, 1998

[63] Friedman, A. D., and Premachandran, R M., Theory & Design of Switching Circuits,

Bell Telephone Laboratories, Inc. and Computer Science Press, California, 1975

[64] Fujita, M., and Matsunaga, Y., Variable Ordering of Binary Decision Diagrams for

Multi-Level Logic Minimization, FUJITSU Sci. Tech. J., Vo1.29, No.2, 137-145, 1993

[65] Gajski, D. and Kuhn, R, Guest Editors' Introduction - New VLSI Tools, IEEE

Computer, Vo1.16, No.12, 11-14, 1983

133

References and Bibliography

[66] Geus, A.J., and Gregory, D. J., The Socrates Logic Synthesis and Optimization

System, Design Systems for VLSl Circuits, Martinus Nijhoff Publishers, 473-498,

1987

[67] Green, D. H., Dual Forms of Reed-Muller Expansions, lEE Proc.-Comput. Digit.

Tech., Vo1.l41, No.3, 184-192, 1994

[68] Green, D., Modern Logic Design, Addison-Wesley Publishing Company, Working­

ham, England, 1986

[69] Green, D. H., Reed-Muller Expansions with Fixed and Mixed Polarities Over GF(4),

IEE Proc. Pt.E., Vo1.l37, No.5, 380-388, 1990

[70] Green, D. H., Reed-Muller Variable-Entered Vectors and Maps, Int. J. Electronics, .

Vol. 78, No.1, 161-186, 1995

[71] Green, D. H., Simplification of Switching Functions Using Variable-Entered Maps,

Int. J. Electronics, Vol. 75 , No.5, 877-886, 1993

[72] Guan, Z., A Study of Arithmetic Circuits and the Effect of Utilising Reed-Muller

Techniques, PhD Thesis, Napier University, 1995

[73] Habib, M. K., Boolean Matrix Representation for the conversion of min terms to Reed­

Muller Coefficients and the minimization of Exclusive-OR Switching Functions, Int.

J. Electron., Vol.68, No.4, 493-506, 1990

[74] Hachtel, G. D. and Somenzi, F., Logic Synthesis and Verification Algorithms, Kluwer

Academic Publishers, Boston, 1996

[75] Hamaguchi, K., Morita, A., Yajima, S., Efficient Construction of Binary Moment

Diagrams for Verifying Arithmetic Circuits, ICCAD, 78-82, California, 1995

[76] Hasegawa, T. and McNally, Tell Me Again-What Does the "s" in SOC Stand For?,

Integrated System Design, http://www.isdmag.com/. July, 1999

[77] Hohn, F. E., Applied Boolean Algebra, The Macmillan Company, New York, 1966

[78] Hong, S. J., Cain, R. G., Ostapko, D. L., MINI: A heuristic approach for logic

minimization, IBM J. of Res. and Dev., Vol. 18, 443-458, 1974

[79] Huntington, E. V., Sets of Independent Postulates for the Algebra of Logic, Trans.

Am. Math. Soc., Vol. 5 , 294-309, July 1904

[80] Ishiura, N., Synthesis of Multilevel Logic Circuits from Binary Decision Diagram,

IEICE Trans. Inf. & Syst., Vol.E76-D, No.9, 1085-1092, 1993

134

References and Bibliography

[81] Ishiura, N., Sawada, H., and Yajima, S., Minimization of Binary Decision Diagrams

Based on Exchanges of Variables, ICCAD, Santa Clara, CA, 472-475, 1991

[82] Jiang, H., and Majithia, J. C., Suggestion for a New Representation for Binary

Function, IEEE Trans. Computers, Vol. 45 , No.12, 1445-1449, 1996

[83] Jones, H. and Harper, C. editors, Handbook of Components for Electronics, 2nd

Edition, McGraw-Hill, Inc., New York, 1996

[84] Karnaugh, M., The Map Method for Synthesis of Combinational Login Circuits,

Transactions of the AIEE, Vol. 72 , Pt.l, 593-598, 1953

[85] Khan, Md. M. H. A. Alam, Md. S., Mapping of Fixed Polarity Reed-Muller Coef­

ficients from Minterms and the Minimisation of Fixed Polarity Reed-Muller expres­

sions, Int. J. Electronics, Vo1.83, No.2, 235-247, 1997

[86] Kohavi, Z., Switching and Finite Automata Theory, 2nd ed., New York, McGraw­

Hill, Inc., 1978

[87] Kravets, V. N., and Sakallah, K A., M32: A Constructive Multilevel Logic Synthesis

System, ACM/IEEE DAC, San Francisco, CA, 336-341, 1998

[88] Kunz, W., and Stoffel, D., Reasoning in Boolean Networks: Logic Synthesis and

Verification Using Testing Techniques, Kluwer Academic Publishers, Boston, 1997

[89] Lai, Y-T., Pedram, M., and Vrudhula, S. B. K, Formal Verification Using Edge­

Valued Binary Decision Diagrams, IEEE Trans. Computers, Vol. 45 , No.2, 247-255,

1996

[90] Lawler E. L., An Approach to Multilevel Boolean Minimization, Journal of the As­

sociation for Computing Machinery, VoLll, No.3, 283-295, 1964

[91] Lee, C. Y., Representation of Switching Circuits by Binary-Decision Programs, Bell

Syst. Tech. J., Vo1.38, No.4, 985-999, 1959

[92] Loureiro, G. V., Digital Systems Design for Testability Based on a Reed-Muller

Tree-Circuit Approach, PhD Thesis, University of Manchester Institute of Science

and Technology, 1993

[93] Luccio, F., and Pagli, L., On a New Boolean Function with Applications, IEEE

'Trans. Computers, Vol. 48 , No.3, 296-310, 1999

[94] Lui, P. K, and Muzio, J. C., Boolean Matrix Transforms for the Minimization of

Modulo-2 Canonical Expansions, IEEE Trans. Computers, Vo1.41 , No.3, 342-347,

1992

135

References and Bibliography

[95] Lynch, E. P., Applied Symbolic Logic, John Wiley & Sons, New York, 1980

[96] McCluskey E., Minimization of Boolean Functions, Bell System Technical Journal,

Vo1.35, No.5, 1417-1444, 1956

[97] McKenzie, L. Almaini, A. E. A. Miller, J. F. and Thomson P., Optimization of

Reed-Muller logic functions, Int. J. Electronics, Vo1.75, No.3, 451-466, 1993

[98] McKenzie, L., and A. E. A. Almaini, Generating Kronecker Expansions from Reduced

Boolean Forms Using Tabular Methods, Int. J. Electronics, Vo1.82, No.4, 313-325,

1997

[99] Mendelson, E., Boolean Algebra and Switching Circuits, McGraw-Hill Book Com­

pany, New York, 1970

[100] Micheli G. D., Synthesis and Optimization of Digital Circuits, McGraw-Hill, Inc.,

New York, 1994

[101] Moore, G. E., An Update on Moore's Law, http)/developer.intel.com/, Intel Devel­

oper Forum Keynote, San Francisco, 1997

[102] Moret Bernard M. E., Decision Trees and Diagrams, Computing Surveys, Vo1.14,

No.4, 593-623, 1982

[103] Muller, D. E., Application of Boolean Algebra to Switching Circuits Design and to

Error Detection, IRE Trans. Electron. Comput., Vol.EC-3, 6-12, 1954

[104] Murgai, R, Brayton, R K., and Sangiovanni-Vincentelli, A., Optimum Functional

Decomposition Using Encoding, 31st DAC, San Diego, 408-414, 1994

[105] Muroga, S., Kambayashi, Y., Lai, H. C., Culliney, J. N., The Transduction Method­

Design of Logic Networks Based on Permissible Functions, IEEE Trans. Computers,

Vo1.38, No.10, 1404-1423, 1989

[106] Muroga, S., Logic Synthesizers, The Transduction Method and Its Extension, SY­

LON, in the book of "Logic Synthesis and Optimization", edited by Sasao, T., Kluwer

Academic Publishers, Boston, 59-86, 1993

[107] Narayan, A., Jain, J., Fujita, M., and Sangiovanni-Vincentelli, Partitioned ROBDDs

- A Compact, Canonical and Efficiently Manipulable Representation for Boolean

Functions, IEEEI ACM Proceedings, ICCAD, San Jose, CA, 547-554, 1996

[108] Oldfield, J. V., Dorf, R C., Field Programmable Gate Arrays, John Wiley & Sons,

Inc., New York, 1995

136

References and Bibliography

[109] Oliveira, A. L., Carloni, L. P., Villa, T., and Sangiovanni-Vincentelli, A. L., Exact

Minimization of Binary Decision Diagrams Using Implicit Techniques, IEEE Trans.

Computers, Vo1.47, No.ll, 1282-1296, 1998

[110] Panda, S., and Somenzi, F., Who Are the Variables in Your Neighbourhood, ICCAD,

California, 74-77, 1995

[111] Parrilla, L., Ortega, J., and Lloris, A., Nondeterministic AND-EXOR Minimisation

by Using Rewrite Rules and Simulated Annealing, lEE Proc. Comput. Digit. Tech.,

Vo1.146 , No.1, 1-8, 1999

[112] Perkowski, M., and Grygiel, S., A Survey of Literature on Function Decomposition,

Version IV, Portland State University, Portland, November, 1995

[113] Perry, D. L., VHDL, 3rd edition, McGraw-Hill Inc., New York, 1998

[114] Pitty, E. B., and Salmon, J. V., Input Irredundancy of Mixed-Polarity Reed-Muller

Equations, Electronics Letters, Vo1.24, No.5, 258-260, 1988

[115] Preas, B. and Lorenzetti, M., Physical Design Automation of VLSI systems, Ben­

jamin Cummings, CA., 1988

[116] Purwar, S., An Efficient Method of Computing Generalized Reed-Muller Expansions

from Binary Decision Diagram, IEEE Trans. Computers, Vol. 40 , No.ll, 1298-1301,

1991

[117] Quine, W. V., The Problem of Simplifying Truth Functions, American Mathematics

Monthly, Vol. 59 , No.8, 521-531, 1952

[118] Reddy, S. M., Easily Testable Realization for Logic Functions, IEEE Trans. Com­

puters, Vol.C-21, No.ll, 1183-1188, 1972

[119] Reed, 1. S., A Class of Multiple-Error-Correcting Codes and the Decoding Scheme, .

IRE Trans. Infomation Theory, Vol.PGIT-4, 38-49, 1954

[120] Riege, M. W., and Besslich, Ph. W., Low-Complexity Synsthesis of Incompletely

Specified Multiple-Output Mod-2 Sums, lEE Proc.-E, Vo1.139 , No.4, 355-362, 1992

[121] Rosen, K. H., Discrete Mathematics and Its Applications, 3rd ed., McGraw-Hill, Inc.,

New York, 1994

[122] Rudell, R., Dynamic Variable Ordering for Ordered Binary Decision Diagrams, IC­

CAD, 42-47, 1993

[123] Sait, S. M., VLSI Physical Design Automation Theory and Practice, McGraw-Hill,

London, 1995

137

References and Bibliography

[124] Salcic, Z. and Smailagic, A., Digital Systems Design and Prototyping Using Field

Programmable Logic, Kluwer Academic Publishers, Boston, 1997

[125] Saldanha, A. Wang A. R. and Brayton R. K, Multi-Level Logic Simplication Using

Don't Cares and Filters, 26th ACM/IEEE Design Automation COmference, 277-282,

1989

[126] Sasao, T., and Besslich, P., On the Complexity of MOD-2 Sum PLA's, IEEE Trans.

on Computers, Vo1.39, No.2, 262-266, 1990

[127] Sasao, T. and Izuhara, F., Exact Minimization of FPRMs Using Multi-Terminal

EXOR TDDs, pp. 191-210, in Sasao, T. and Fujita, M., (editors), Representations

of Discrete Functions, Kluwer Academic Publishers, Boston, 1996

[128] Saul, J., An Algorithm for the Multi-level Minimization of Reed-Muller Representa­

tions, Int. Conf. on Computer Design, 634-637, Cambridge, Mass, USA, 1991

[129] Savage, J. E., The Complexity of Computing, John Wiley and Sons, 1976

[130] Savoj. H. and Brayton, R. K, The Use of Observability and External Don't Cares

for the Simplification of Multi-Level Networks, Proc. DAC, 297-301, 1990

[131] Schulz, S. E., Focus Report: Logic Synthesis and Silicon Compilation Tools, Inte­

grated System Design, http://www.isdmag.com/. May, 1996

[132] Schwarz, A. F., Handbook ofVLSI Chip Design and Expert Systems, Academic Press

Ltd., London, 1993

[133] Schulz, S. E., A Strategy for Linux EDA Success, Integrated System Design,

http://www.isdmag.com/. March, 1999

[134] Sentovich, E. M., Singh, K J., Lavagno, L., Moon, C., Murgai, R., Saldanha, A.,

Savoj, H., Stephan, P. R., Brayton, R. K, and Sangiovanni-Vincentelli A., SIS: A

System for Sequential Circuit Synthesis, Electronics Research Laboratory, Memoran­

dum No. UCB/ERL M92/41, UC, Berkeley, May, 1992

[135] Shannon, C. E., A Symbolic Analysis of Relay and Switching Circuits, Trans. AlEE,

Vo1.57, 713-723, December 1938

[136] Shiraishi, M.(EURMS), Elements of the Reformed Theory of Logic, (E-Book), LOR­

EIN, Japan, 1997

[137] Song, N., and Perkowski, M. A., New Fast Approach to Approximate ESOP Mini­

mization for Incompletely Specified Multi-Output Functions, Proc. Reed-Muller'97

Conference, Oxford Univ., UK, 61-72, 1997

138

References and Bibliography

[138] Tan, E. C. and Yang, H., Fast Tabular Technique for Fixed-Polarity Reed-Muller

Logic with Inherent Parallel Process, Int. J. Electronics, Vo1.85, No.4, 511-520, 1998

[139] The Programmable Logic Data Book, Xilinx Inc., CA, 1994

[140] Thomas, D. E., The Verilog Hardware Description Language, Fourth Edition, Kluwer

academic publishers, Lowell, MA, 1998

[141] Tran, A., Tri-State Map for the Minimisation of Exclusive-OR Switching Functions,

lEE Proc. Vo1.136 , Pt.E, No.1, 16-21, 1989

[142] Tran, A., and Wang, J., Decomposition Method for Minimisation of Reed-Muller

Polynomials in Mixed-Polarity, lEE Proc.-E, Vo1.140, No.1, 65-68, 1993

[143] Tsai, C-C, and Marek-Sadowska, M, Boolean Functions Classification via Fixed Po­

larity Reed-Muller Forms, IEEE Trans. Computers, Vol. 46 , No.2, 173-186, 1997

[144] Tsai, C-C, and Marek-Sadowska, M, Boolean Matching Using Generalized Reed­

Muller Forms, 31st ACMjIEEE DAC, 339-344, 1994

[145] Tsai, C-C, and Marek-Sadowska, M, Generalized Reed-Muller Forms as a Tool to

Detect Symmetries, IEEE Trans. Comput., Vol. 45 , No.1, 33-40, 1996

[146] Tsai, C-C, and Marek-Sadowska, M, Minimisation of Fixed-Polarity AND jXOR

Canonical Networks, lEE Proc. Comput. Digit. Tech., Vo1.141 , No.6, 369-374, 1994

[147] Villa, T., Encoding Problems in Logic Synthesis, PhD Thesis, Electrical Engineering

and Computer Sciences, Univ. of California at Berkeley, 1995

[148] Vinnakota, B., and Rao, V. V. B., Generation of All Reed-Muller Expansions of a

Switching Function, IEEE Trans. Computers, Vol. 43 , No.1, 122-124, 1994

[149] Walker, R. A. and Thomas, D. E., A Model of Design Representation and Synthesis,

Proc. ACMjIEEE 22nd Design Automation Conference, Las Vegas, Nevada, 453-459,

1985

[150] Wang, L., and Almaini, A. E. A., Fast Algorithm for Exact Minimization of Large

Boolean Functions (submitted), IEEE Trans. on Computers, 2000

[151] Wang, L., and Almaini, A. E. A., Fast Conversion Algorithm for Very Large Boolean

Functions, Electronics Letters, Vol. 36 , No.16, 1370-1371, 2000

[152] Wang, L., and Almaini, A. E. A., Multilevel Logic Minimization Using Functional

Don't Cares, IEEE Proceedings, 14th International Conference on VLSI Design (ac­

cepted), Bangalore, India, 2001

139

References and Bibliography

[153] Wang, L., Almaini, A. E. A., and Bystrov, A., Efficient Polarity Conversion for Large

Boolean Functions, IEE Proc.-Comput. Digit. Tech., VoLl46 , No.4, 197-204, 1999

[154] Wu, H., Perkowaki, M. A., Zeng, X., and Zhuang, N., Generalized Partially-Mixed­

Polarity Reed-Muller Expansion and Its Fast Computation, IEEE Trans. Computers,

Vol. 45 , No.9, 1084-1088, 1996

[155] Wu, X. Chen, X. and Hurst, S. L., Mapping of Reed-Muller coefficients and the

minimization of exclusive-OR switching functions, lEE Proc. E, Vo1.129 , No.1, 15-

20, 1982

[156] Xu, L., Almaini, A. E., A., Miller, J. F., and McKenzie, L., Reed-Muller Universal

Logic Module Networks, IEE Proc.-E., VoLl40, No.2, 105-108, 1993

[157] Yang, H., Tan, E. C., Optimization of Multi-Output Fixed-Polarity Reed-Muller

Circuits Using the Genetic Algorithm, Int. J. Electronics, Vo1.86, No.6, 663-670,

1999

[158] Yang, S., and Ciesielski, M., Optimum and Suboptimum Algorithms for Input En­

coding and Its Relationship to Logic Minimization, IEEE Trans. on Computer Aided

Design, VoLlO, No.1, 4-12, 1991

[159] Yeh, F.-M., and Kuo, S.-Y, Variable Ordering for Ordered Binary Decision Diagrams

by a Divide-and-Conquer Approach, lEE Comput. Digit. Tech., VoLl44, No.5, 261-

266, 1997

[160] Zemva, A., Brglez, F., Zajc, B., Multi-level Logic Optimization Based on Wave

Synthesis of Permissible Mutation Functions(WASP), IEEE/ ACM, IWLS'98, CA,

1998

[161] Zemva, A., Trost, A., and Zajc, B., Multi-level Logic Optimisation Based on Permis­

sible Perturbations, lEE Proc.-Comput. Digit. Tech., VoLl47, No.2, 53-58, 2000

140

Disk Containing the Software

The attached floppy disk contains the programs developed in the previous chapters.

Please read the ReadMe.txt file for more information.

141

CONTAINS DISKETTE

UNABLE TO COpy

CONTACT UNIVERSITY

IF YOU WISH TO SEE

THIS MATERIAL

	326051_0001
	326051_0002
	326051_0003
	326051_0004
	326051_0005
	326051_0006
	326051_0007
	326051_0008
	326051_0009
	326051_0010
	326051_0011
	326051_0012
	326051_0013
	326051_0014
	326051_0015
	326051_0016
	326051_0017
	326051_0018
	326051_0019
	326051_0020
	326051_0021
	326051_0022
	326051_0023
	326051_0024
	326051_0025
	326051_0026
	326051_0027
	326051_0028
	326051_0029
	326051_0030
	326051_0031
	326051_0032
	326051_0033
	326051_0034
	326051_0035
	326051_0036
	326051_0037
	326051_0038
	326051_0039
	326051_0040
	326051_0041
	326051_0042
	326051_0043
	326051_0044
	326051_0045
	326051_0046
	326051_0047
	326051_0048
	326051_0049
	326051_0050
	326051_0051
	326051_0052
	326051_0053
	326051_0054
	326051_0055
	326051_0056
	326051_0057
	326051_0058
	326051_0059
	326051_0060
	326051_0061
	326051_0062
	326051_0063
	326051_0064
	326051_0065
	326051_0066
	326051_0067
	326051_0068
	326051_0069
	326051_0070
	326051_0071
	326051_0072
	326051_0073
	326051_0074
	326051_0075
	326051_0076
	326051_0077
	326051_0078
	326051_0079
	326051_0080
	326051_0081
	326051_0082
	326051_0083
	326051_0084
	326051_0085
	326051_0086
	326051_0087
	326051_0088
	326051_0089
	326051_0090
	326051_0091
	326051_0092
	326051_0093
	326051_0094
	326051_0095
	326051_0096
	326051_0097
	326051_0098
	326051_0099
	326051_0100
	326051_0101
	326051_0102
	326051_0103
	326051_0104
	326051_0105
	326051_0106
	326051_0107
	326051_0108
	326051_0109
	326051_0110
	326051_0111
	326051_0112
	326051_0113
	326051_0114
	326051_0115
	326051_0116
	326051_0117
	326051_0118
	326051_0119
	326051_0120
	326051_0121
	326051_0122
	326051_0123
	326051_0124
	326051_0125
	326051_0126
	326051_0127
	326051_0128
	326051_0129
	326051_0130
	326051_0131
	326051_0132
	326051_0133
	326051_0134
	326051_0135
	326051_0136
	326051_0137
	326051_0138
	326051_0139
	326051_0140
	326051_0141
	326051_0142
	326051_0143
	326051_0144
	326051_0145
	326051_0146
	326051_0147
	326051_0148
	326051_0149
	326051_0150
	326051_0151
	326051_0152
	326051_0153
	326051_0154

