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Abstract 
Open-ended evolution is a fundamental issue in artificial life 
research. We consider biological and social systems as a flux of 
interacting components that transiently participate in 
interactions with other system components as part of these 
systems. This approach and the corresponding reasoning 
suggest that systems able to deliver open-ended evolution must 
have a representation equivalent of Turing machines. Here we 
provide an implementation of a such model of evolving systems 
using a cellular automata world. We analyze the simulated 
world using a set of metrics based on criteria of open-ended 
evolution suggested by Bedau et al. We show that the cellular 
automata world has significantly more evolutionary activity 
than a corresponding random shadow world. Our work 
indicates that the proposed cellular automata worlds have the 
potential to generate open-ended evolution according to the 
criteria that we have considered. 

Introduction 
Open-ended evolution has been a core topic of artificial life 
research since the beginning (Langton, 1995). The inspiration 
comes from natural biological and social systems that evolve 
apparently in a limitless, open-ended manner. Replicating 
such evolutionary processes is naturally required for 
developing evolving artificial life that is able to deal with 
novel problems that were not encountered before. The first 
systematic and analytic approach to quantify what open-ended 
evolution means in artificial life context was proposed by 
Bedau (1992; Bedau et al, 1998). Since then several systems 
have been built that aimed to provide a platform for 
developing systems with open-ended evolution, these include 
the Tierra (Ray, 1991; Shao and Ray, 2010), Geb (Channon 
and Damper, 1998; Channon, 2006), PolyWorld (Yaeger, 
1994; Yaeger and Sporns, 2006), Avida (Ofria and Wilke, 
2006; Fortuna et al, 2017), Aevol (Knibbe et al, 2007), 
Chromaria (Soros and Stanley, 2014) and others. Among 
these, it has been shown, for example, that the evolutionary 
process supported by the Geb system satisfies the criteria of 
open-ended evolution (Channon and Damper, 1998) laid 
down by Bedau (1992; Bedau et al, 1998) and also a further 
modified criterion proposed by Channon (2006). Cellular 
automata based simulations of evolution have been used since 
the beginning of artificial life research (Langton, 1984). 
Among these, we note the work of Sayama (1998, 1999), 
which shows how two dimensional cellular automata worlds 
can generate new species, although in this case the evolution 

converges to the same kind of dominant species in all cases. 
We also note the recent work of Adams et al (2017) that 
investigates the use of cellular automata for open-ended 
evolution. 

Biological and social systems undergo long-term evolution 
and lead to a large variety of evolved adapted systems. These 
systems exist in the context of variable environment and they 
can be seen as a flux of components that originate from the 
environment, end up in the environment, and transiently 
participate in interactions with other system components as 
part of the system (Alberts et al, 2008; Luhmann, 1996).This 
suggests that open-ended evolution simulations should be 
considered in the context of a variable environment, where 
individuals must pick resources from the environment and 
discard their waste into their environment. The resources are 
used to maintain the existence of the individual. The 
environment for any individual is made of the other 
individuals and possibly other environmental elements, some 
of which may be used as resources.  
 The above view of biological and social systems implies 
that these systems must compute somehow the way how they 
should interact with their environment and in an abstract sense 
they should be able to make predictions about their 
environment (Andras, 2011). The systems which make better 
predictions will have better chance to survive, expand and 
generate descendant systems. The further consequence of this 
view of such systems is that these systems must be equivalent 
in some abstract sense with Turing machines and must have 
correspondingly infinite representations (Andras, 2011), 
similar to the category theory representations of Turing 
machines (Pierce, 1991). The implication of this for building 
models of open-ended evolution is that these models must 
allow somehow the work with such infinite representations of 
the systems that develop. 
 Here we propose a cellular automata (Wolfram, 2002) 
world in which individuals are bit strings that may survive and 
reproduce in certain conditions. The proposed cellular 
automata world can be set up such that it allows the 
equivalence with Turing machines and provides an implicit 
way to deal with the corresponding infinite representations of 
evolving systems. The cellular automata world is analyzed 
using the metrics and criteria proposed by Bedau (1992; 
Bedau et al, 1998) and further derived metrics and criteria for 
the assessment of the presence of the signature of open-ended 
evolution in this simulated world. The results show that the 
criteria for open-ended evolution are satisfied. 
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The rest of the paper is structured as follows. First we 
consider the modeling of open-ended evolution of natural 
systems. Next we describe the proposed cellular automata 
world. This is followed by the measuring and assessing the 
open-endedness of the proposed cellular automata world. 
Finally, the paper is closed by the discussion and conclusions 
section. 

Modeling open-ended evolution of natural 
systems 

 Natural systems continually take up and discard 
components from and into their environment. For example, 
consider molecules in the case of cells employees working for 
a company. The taken-up components undergo a series of 
interactions with other components and may become part of 
larger structural components of the system. For example, the 
molecules that are taken up may be broken into parts and 
some of these parts may be incorporated into other molecules. 
Or a new employee may undergo a series of trainings, get 
experience in a number of roles for some period, before 
joining one of teams and later may move on to a different role 
in a different team. The discarded components, e.g. waste 
molecules or employees who are fired, interact with further 
potential system components in the environment and may get 
taken up by another system. In general, all components of 
natural systems get replaced, for example on average a water 
molecule stays inside of the human body for about two weeks 
(Alberts et al, 2008) and all employees of a company get 
replaced or lose their role after some years, including the 
CEO. Thus these systems exist in the flux of components that 
temporarily make part of the system. 
 An individual example of a natural system is made of many 
components that interact and through patterns of such 
interactions deliver the behaviors of the individual. For 
example, proteins and other molecules interact in cells, cells 
interact in organisms, and organisms interact in social 
systems. The existence of an individual system can be seen as 
the maintenance of these interactions between components in 
accordance with individual specific rules about what 
interactions and patterns of interactions are useful and what 
are not useful for the individual. The components change, but 
the rules of interactions are maintained and followed through 
many component interactions throughout the life time of the 
individual system. 

The individual systems do not take up randomly 
components from the environment, but select those that are 
required to maintain the functioning of the system. Through 
the interactions of components the individual system is able to 
make this choice sufficiently correctly on average in order to 
maintain its existence. For example, a bacterial cell may pick 
up a range of molecules from its environment, some of which 
are useful (e.g. sugar) and some of which are not useful (e.g. 
penicillin). Somehow the cell is able to select those molecular 
interactions that are useful for it (e.g. the use of sugar to 
generate energy storing molecules) and eliminate that ones 
that are harmful (e.g. by breaking up penicillin molecules 
before they can block the activity of their target proteins) 
(Blair et al 2015). Similarly, companies hire in general people 

who they need to work for them, and who can deliver on 
average the job that they are hired for. 

This implies that in order to simulate real-like open-ended 
evolution the simulation of the behavior of individuals in 
terms of interactions between components of the individuals is 
important. Furthermore, the existence of individuals should 
depend on the production of such behaviors, i.e. the existence 
of individuals should be checked by considering their 
behaviors and assessing whether these behaviors are 
consistent with the existence of the individual. 
 This reasoning also implies that biological and social 
systems somehow through their behaviors decide which 
elements of the environment are appropriate and which are not 
for the maintenance of their existence. For example, cells 
operate the right kind of channel molecules to pick up the 
right kind of molecules and ions from their environment. 
When the environment changes and one nutrient (e.g. an 
amino-acid) is replaced by another as abundant resource, the 
cells adapt and change their molecular pick-up behavior in 
order to use the available resource (Hottes et al 2013). 
 To adapt to environmental changes these systems must in 
some way predict their environment. For example, the cell 
that is ready to pick up one kind of nutrient from its 
environment experiences that the expected nutrient is not 
available and it also experiences other molecular interactions 
that indicate the presence of alternative nutrients. In response 
the cell changes the molecules exposed on its membrane that 
are in charge of facilitating the pick-up of nutrients. Such 
changes in the molecular composition of the cell membrane 
predict the cell’s expectations about its environment. 
 Thus, in a sense, the natural systems compute their 
expectations about their environment. This computation 
happens through the interactions of their components. This 
means that in order to maintain their own existence these 
systems behave as autocatalytic systems that catalyze the 
reproduction (or recruitment) of correct components and 
interactions within themselves. They do this through a self-
referential computation aimed to predict their environment 
(Andras, 2011). 
 The self-referential computation requires providing 
references to past interactions and components. This can be 
satisfied if all patterns of interactions (reference-able 
computations) can be represented by component (e.g. 
molecules that formed through corresponding molecular 
interactions), and if all patterns of components (reference-able 
data) can be represented by ongoing component interactions 
(e.g. molecular interactions which can happen only if the 
referenced pattern of molecules was present earlier). This 
circular referencing may appear irresolvable; however there is 
a mathematical formalism that can provide a solution, which 
is the theory of recursive domain equations (Pierce, 1991). 
 To put this more abstractly, systems that can produce open-
ended evolution in nature must provide a practical realization 
of a solution of the following recursive domain equation: 

R ≅ A+[RR] (1) 

where R is a domain (e.g. a set or a category), A is a part of R 
and [RR] are all transformations of R to R, i.e. functions 
from R to R. In this formalism the patterns of components that 
are represented by A are not part of the system, but these exist 
only in the environment of the system. 
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 The simplest non-empty solution of the recursive domain 
equation is the category of pre-orders, which is also a model 
of the λ-calculus (Pierce, 1991). This indicates that any 
natural system that is able do sustain open-ended evolution is 
such that it constitutes a representation of a solution of 
equation (1) and consequently it is also equivalent with a 
representation of the λ-calculus or equivalently of Turing 
machines. This means that these systems can (at least in 
principle) compute anything computable and predict their 
environment as much it is predictable. 
 However, given the constraint of finite time available for 
computations about the environment these systems 
approximate in practice the prediction of their environment. 
Their ability to approximate their environment precisely 
depends on how efficient they are in terms of implementation 
of the solution of the recursive domain equation. 
 Thus in principle any system that aims to simulate the 
open-ended evolution that can be observed in nature must be 
able to produce a representation of a non-empty solution of 
equation (1). This means that these systems must be at least of 
the size of the category of pre-orders, which is comparably 
infinite as the category of sets, more infinite than the set of 
real numbers. 
 In order to deal with apparent difficulty of representing so 
infinite systems let us consider first real systems, such as cells 
or social systems. While the above argument implies that the 
cell must be an infinite system, the reality is that it is made of 
a finite set of molecules and molecular interactions at any 
time. To accommodate the infiniteness requirement, let us 
consider the life of a bacterial cell. The cell emerges after a 
division of another bacterial cell and it lasts until its own 
division into daughter cells. However, if we consider that the 
cell is in fact the continuation of the parent cell and its 
daughter cells are continuations of the cell itself, and take the 
whole life trajectory of the continuations of the cell, both 
backward and forward, we find that we are dealing with an 
infinite system. The number of kinds of molecules involved in 
cells is also similarly infinite, given the possible variations of 
molecules (e.g. consider the huge DNA molecules). So, while 
a given cell at any time provides a finite snapshot of the 
infinite cell system, considering the cell system in its totality, 
the system is indeed infinite (Andras, 2011). 
 This means that in order to be able to simulate a real-like 
system with open-ended evolution the system must be able to 
extend infinitely in principle and the simulation at any time 
should provide a finite snapshot of the infinite system, which 
represents a solution of the recursive domain equation. The 
key aspect is that the system must be extendable infinitely into 
a representation of the λ-calculus or equivalently of Turing 
machines. We note that somewhat similar ideas are presented 
in Hernandez-Orozco et al (2016), which also imply the 
infiniteness of systems able to produce open-ended evolution. 

A cellular automata world 
 Turning the reasoning of the previous section around, if we 
consider a system that explicitly or implicitly implements λ-
calculus then we should be able to use this system to produce 
a simulation of open-ended evolution. Given that some 
cellular automata are equivalent of Turing machines 
(Wolfram, 2002), in principle these could be used to 

implement such worlds of abstract systems, where a form of 
open-ended evolution may emerge and work. For this purpose 
we may consider Wolfram’s rule 110 for one-dimensional 
cellular automata (Wolfram, 2002) in combination with 
random input strings of black and white squares. Here we 
describe a such one dimensional cellular automata world 
where open-ended evolution may emerge. We note that the 
cellular automata systems described in Adams et al (2017), in 
particular Case III, are similar to some extent to our proposed 
cellular automata worlds. 
 Our cellular automata world in principle is an infinite string 
of bits that can be either 1 or 0, the bits of the world are 
denoted as ( ), ∈ ℤ (in practice our simulated worlds are 
strings of 5 million bits). The world gets updated in each time 
turn according to the one dimensional cellular automata rule ( ), where ∈ {0, … ,255}. The rule is defined as follows: 
for a world bit ( )the values of the bits to the left and right 
are ( − 1) and ( + 1), the new value in the next time 
turn is  where = ( − 1) + 2 ∙ ( ) + 4 ∙ ( + 1) , ∈ {0, … ,7} and the binary representation of  is … . 
The world starts with randomly set bits, with equal probability 
for each bit to be 0 or 1. After each time turn a small 
proportion ( ≪ 1) of the world bits are randomly flipped. 
 The individuals in this world are bit strings. Each 
individual belongs to a species and all individuals belonging 
to a species have the same characteristic bit string. Each 
species  has a specific length > 0 and the characteristic 
bit string of the species is = (1), … , ( ), such that  
is always an even number. An individual  belonging to 
species  occupies 2  bits in the world. Let the individual 

 have the starting (left-most) position in the world at = , then the world bits representing the individual are ( ), … , ( + 2 − 1) and the values of these bits are set 
as follows: ( + − 1) = ( )  for = 1, … , /2 , ( + 3 /2 + − 1) = ( /2 + )for = 1, … , /2. The 
values of the bits ( + ) for = /2, … , 3 /2 − 1 are 
not set specifically, but these are considered to be the inside of 
the individual. Overlap between individuals is not allowed. 
 A world turn is made of ∗ (= 50) time turns. After each 
world turn the contents of the inside of individual is checked. 
If the bit series of the inside is sufficiently similar to the 
species specific bit string of the individual then the individual 
survives – the ratio of matching bits relative to the length of 
the species bit string is  and the survival criterion is > . The  value may change depending on 
how over-populated or under-populated is the world (the 
initial = 0.37). If an individual survives after a world 
turn the set bits of the individual are set again to the species 
specific values, while the bits in the inside of the individual 
are left unchanged. If an individual does not survive it dies 
and the bits allocated to this individual become part of the 
environment and the species specific part of the individual is 
not set to the specific bit values. 
 The  value changes adaptively to prevent excessive 
population growth and also excessive population shrinking. In 
our the implementation of the cellular automata world 

 increases if the total population is above an upper 
limit and the increases get larger if the population continues to 
grow. Similarly, if the population size is below a lower limit 
the value of  decreases and the decrease gets quicker 
if the population continues to shrink. A practical impact of 
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this in our implementation of the cellular automata world is 
that the size of the population of the individuals often 
oscillates between values close to the lower and upper limits 
which trigger the changes in the . 

  
Figure 1. Two examples of individuals in cellular automata 
worlds – A) Rule 110; B) Rule 73. The rows with the darker 
colors are the rows corresponding to world turns. The red and 
green colored parts are the species specific and inside parts of 
the individuals, the grey, black and white colored part is the 
environment. In A) the environment has much more impact on 
the inside of the individual than in B). 

During the world turn the rule of the cellular automata 
world is applied to calculate the new bit values for the world. 
Through this process the environment outside of the 
individual influences the changes that happen in the inside of 
the individual. Similarly, the individual also influences what  
happens outside of itself, in its world environment. In this way 
the individuals in this world get influenced by their 
environment and influence their environment. 
 If the ratio  of the matching bits in the inside of the 
individual is sufficiently high, > = 0.63  , the 
individual produces an offspring. The offspring production 
may double the individual’s bit string, by concatenating two 
copies of the species specific bit string (with probability = 0.005). The offspring may inherit a split bit string, 
by keeping the first half of the species specific bit string and 
possibly one additional bit, if the resulting bit sting length 
would be odd (with probability = 0.005). It is also 
possible that two reproduction ready individuals produce a 
joint offspring by concatenating their bit strings (with 
probability = 0.01). In most of the cases the offspring 
simply inherits the bit string of the parent individual. To 
generate the bit string for the offspring the inside bit string of 
the individual(s) is used with corrections, i.e. the non-

matching bits are corrected to match the correct bit value with = 0.931 probability. The new individual is placed 
randomly into a part of the world that does not overlap with 
the location of any other existing individual. The generated 
new individual is checked to determine its species identity. If 
the species specific bit string of the individual matches closely 
the bit string of an existing species ( = 0.9 ), the 
individual is assigned to that species. If this is not the case a 
new species emerges in the world and the specific bit string of 
this new species is set to match exactly the species specific bit 
string of the new individual. 
 Through the evolution of the world new species are created, 
species may die out and the number of individuals belonging 
to a species varies. The dominant species and the number of 
individuals belonging to this species also change. The 
dynamics of the world may change significantly if the rule 
that defines the world is changed. The reported simulations 
were run mostly using rule (110), unless otherwise stated. 
Figure 1 shows an illustrative example of the evolution of the 
proposed cellular automata world for two worlds 
corresponding to two rules ( (110) and (73)). 

Measuring open-ended evolution in the 
cellular automata worlds 

 To measure the open-endedness of evolution of species in 
the cellular automata world we follow the approach proposed 
by Bedau (1992; Bedau et al, 1998). A shadow evolutionary 
system is set up in parallel with the evolution in the cellular 
automata world. The shadow world is represented as a list of 
shadow individuals belonging to shadow species. Every time 
an individual dies in the cellular automata world a randomly 
picked shadow individual dies. Every time a new individual is 
created a shadow individual is created belonging to a 
randomly picked shadow species. When a new species 
emerges in the cellular automata world a new shadow species 
is created and the last newly created individual is set to belong 
to this new shadow species. The shadow is used to calculate 
the same evolutionary metrics that are calculated for the 
cellular automata world and the metrics are compared to 
assess the relevance of the evolutionary process. In general it 
is expected that the world with the evolutionary process 
differs significantly from the shadow world in terms of these 
metrics and shows stronger evidence indicating the open-
endedness of the world than the shadow world. 
 The open-endedness metrics that we use are based on the 
metrics of Bedau (1992; Bedau et al, 1998) and are as follows. 
Diversity at world turn  is the number of species with active 
individuals ( ) = #{ |∃ ( ) ∈ ; = 1, … , ( ); = 1, … , ( )} 

(2) 

where  are species identifiers, ( )  are identifiers of 
individual active at world turn , ( ) is the total number 
of species that have existed up to world turn in the 
world, ( ) is the number of live individuals in the world at 
world turn , ( ) ∈  indicates that the individual ( ) 
belongs to species  and # denotes the cardinality of the 
set. For the shadow world diversity is defined similarly, as  
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( ) = #{ |∃ ( ) ∈ ; = 1, … , ( ); = 1, … , ( )} 

(3) 

where the prime notation indicates the shadow world. 
 The components in the cellular automata world are the 
species. The weighted component activity of the world is 
calculated by considering all individuals belonging to each 
species with live representatives. The component activity for 
each species is the amount of time measured in world turns for 
which the species has been active in the sense of having live 
individuals representing the species. We use the weighted 
world turn age of the species, where the weight is the number 
of live individuals belonging to the species. The reason behind 
this approach is that each current individual instance of a 
species represents a line of existence of the species since the 
origin of the species. The average weighted component 
activity of the world is the ratio between the sum of weighted 
component activities and the number of active species in the 
world (i.e. the diversity of the world). The average weighted 
component activity of the world is defined as follows: ( ) = 1  ∃ ( ) ∈ ; = 1, … , ( ) 0 ℎ  (4) 

( ) = ( )   ( ) > 00 ℎ  (5) 

( ) = #{ ( )| ( ) ∈ ; = 1, … , ( )} (6) ( ) = ( ) ∙ ( ) (7) ̅( ) = ∑ ( )( )D(t)  (8) 

where ( ) is the existence indicator of the species  at 
world turn ; ( ) is the length of active existence (or age) 
in terms of world turns for the species  at world turn ; ( ) is the total component activity for species  at world 
turn ; ̅( ) is the average weighted component activity of 
the world at world turn ; the other notations are the same as 
for the previous equations. The corresponding equations, 
definitions and notations work for the shadow world as well, 
in a similar manner as equation (3) for the shadow world 
corresponds to equation (2) for the cellular automata world – 
the average weighted component activity of the shadow world 
is denoted as ̅′( ). 
 The innovation activity in the cellular automata world is 
represented by those species that have existed for a sufficient 
long time, but still they are sufficiently recent as well. A new 
species may emerge, but it may also die out in a few world 
turns, indicating that it does not represent an evolutionarily 
advantageous innovation. If the species is present already for 
a long time in the world then it no longer represents an 
evolutionary innovation. For practical purposes we set the 
existence interval that is considered for innovation activity 
from 10 world turns to 20 world turns. Similarly as above, the 
age of such species is multiplied with the number of 
individuals belonging to the species to get the total weighted 
innovation activity by the species. The average weighted 
innovation activity in the cellular automata world is given by 
the ratio of the sum of total weighted innovation of species 
and the number of active species (diversity). The equations 

defining the average weighted innovation activity of the world 
are as follows. ( ) = ( ) ∙ ( )  ≤ ( ) ≤0 ℎ (9) 

( ) = ∑ ( )( )D(t)  (10) 

where  and  are the lower and upper limits in terms of 
world turns for a species to be considered an innovation in the 
world ( = 10, = 20 ), ( )  is the total weighted 
innovation for species  at world turn ; ( )  is the 
average weighted innovation of the world at world turn ; the 
other notations are the same as for the previous equations. The 
average weighted innovation for the shadow world is defined 
in a similar manner – this is denoted as ′( ). 
 In addition to measuring the diversity, average weighted 
component activity and average weighted innovation in the 
world we also used two other measures to assess the 
difference between the cellular automata world and its 
shadow. These measures are the frequency of change of the 
dominant species and the ratio between the number of 
individuals belonging to the dominant species and the total 
number of individuals in the world. The additional measures 
are defined in terms of equations as follows. ∗( ) = max ( ) (11) ℎ( ) = 1 ∗( ) ≠ ∗( − 1)0 ℎ  (12) 

( ) = ∑ ℎ( ) (13) 

( ) = ∗( )( )  (14) 

where ∗( ) is the index of the species with the maximal 
number of individuals at world turn , i.e. the dominant 
species; ( )  is the frequency of changes of dominant 
species at world turn ; and ( ) is the ratio between the 
number of individuals belonging to the dominant species and 
the total population of the world. The matching definitions 
apply to the shadow world and the shadow frequency of 
changes is denoted as ′( ) and the population ratio for the 
dominant shadow species is ′( ). 
 The simulated worlds that we generated in many cases had 
drastic collapses of the number of individuals, following the 
steady and often rapid increase in the size of the total 
population of individuals. Such events can be seen as mass 
extinction events in the simulated world, which are followed 
by the regeneration of the diversity of the species (in most 
cases) or alternatively the complete die-out of all species (in 
some of the cases). Figure 2 provides an example of the 
evolution of the population size in one simulation which 
experienced mass extinction and rebounding of the species 
diversity. The mechanistic cause of these events in our 
simulated worlds is the increase of the  value, which 
is triggered by the large and increasing size of the To 
appreciate the volume of evolutionary activity, Figure 2 also 
shows the cumulative number of new species.  

We found that in all simulations the diversity of the shadow 
world was larger in general than the diversity of the cellular 
automata world (see Figure 3 for an example). The reason of  
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Figure 2. Typical evolution of the population size (thick red 
line) and of the cumulative number of new species (thin blue 
line) in the cellular automata world, including oscillating 
population size and a mass extinction event marked by the 
star. 
this is that every time when a new species is created in the 
cellular automata world a new species is also created in the 
shadow world, however the species die out through 
evolutionary selection in the cellular automata world and 
randomly in the shadow world. Thus, while the least fit 
species are likely to die out quickly in the cellular automata 
world the corresponding species may last considerably longer 
in the shadow world. 

 
Figure 3. Typical evolution of the number of live species
(diversity) in the cellular automata world (continuous red 
line– ( )) and the shadow world (segmented blue line – ′( )). 
 The average component activity in most cases is higher in 
the case of the cellular automata world than in the case of the 
shadow world – see Figure 4. This implies that successful 
species persist for longer in the cellular automata world than 
in the shadow world and they also have more copies in the 
proper world than in the shadow world. This is due to the 
evolutionary selection of the best performing individuals that 
belong most likely to the most successful species. This 
counter balances the higher diversity in the shadow world and 
shows that the evolution in the cellular automata world is 
driven by the evolutionary process and not some form of 
random selection. The average component activity of the 
cellular automata world grows in general and this growth 
stops only in cases of larger or smaller scale extinction events 
(i.e. when the number of individuals and species drastically 

drops, possibly to the level of less than a handful species with 
only a few representative individuals for each – see Figure 2). 

Figure 4. Typical evolution of the average weighted 
component activity in the cellular automata world (continuous 
line – ̅( )) and the shadow world (segmented line – ̅ ′( )) 

 The average innovation activity in the cellular automata 
world is usually higher than the innovation activity in the 
shadow world, although not always (see Figure 5). Typically 
the average innovation activity follows a growth trend, 
although the actual variation in the activity has both ups and 
downs. This shows that the cellular automata worlds proposed 
here generate sufficiently persistent novel species following 
an increasing trend and in general much more than what is 
generated randomly in the shadow world. Naturally, the 
amount of innovation gets reduced following major extinction 
events. The drivers of the innovation are the reproduction 
mechanisms described above, i.e. imperfect copying of the 
parent’s species specific bit string, doubling, splitting and 
joining of bit strings, which lead to the emergence of new 
species in the cellular automata world. 

Figure 5. Typical evolution of the average weighted 
innovation activity in the cellular automata world (continuous 
red line – ( )) and the shadow world (segmented blue line – ′( ))
 Comparing the frequency of changes of dominant species 
between the proper world and the shadow world shows that 
the dominant species changes much more frequently in the 
shadow world. This indicates that the dominant species in the 
cellular automata world are determined by evolutionary 
selection and not randomly as in the shadow world. Similarly, 
the comparison of the proportions of the dominant species 
between the proper and shadow worlds show that the 
dominant species are much more dominant in the proper 
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world. Again this confirms the importance of the evolutionary 
selection in the cellular automata world in comparison with 
the random determination of the dominant species in the 
shadow world. Figures 6 and 7 show an example for the 
comparison of frequencies of dominant species changes and 
proportions of dominant species for the cellular automata 
world and the shadow world. 

 
Figure 6. Typical evolution of the frequency of change of the 
dominant species in the cellular automata world (continuous 
red line – ( )) and the shadow world (segmented blue line – ′( )). 

 
 
Figure 7. Typical evolution of the proportion of the dominant 
species in the cellular automata world (continuous red line – ( )) and the shadow world (segmented blue line – ′( )) 

 The distributions of the values of the ratios between species 
numbers (diversity), average weighted component activities, 
average weighted innovation activities, frequencies of change 
of dominant species and proportions of dominant species for 
the cellular automata world and the shadow world are shown 
in box plot format in Figure 8. The data for these distributions 
represents five different runs of the simulations containing 
over 1,200 data values. This analysis confirms that the 
diversity of the cellular automata world is smaller than that of 
the shadow world – the typical ratio range is 0.5 – 0.69for ( )/ ′( ) . It shows that average weighted component 
activity in the cellular automata world is above this activity of 
the shadow world with the typical ratio of ̅( )/ ̅′( ) being 
above 1.07 and below 1.74. The weighted innovation activity 
in the cellular automata world can be much larger than the 
same activity in the shadow world and the typical values for 

the ratio ( )/ ′( ) are in the range of 1.35 – 7.21. The 
dominant species changes much less frequently in the cellular 
automata world than in the shadow world, with typical ratios 
for ( )/ ′( ) in the range of 0.04 – 0.14. On the other side, 
the proportion of the dominant species in the total population 
is much larger in the cellular automata world than in the 
shadow world with typical ratios for ( )/ ′( ) being in the 
range of 2.57 – 14.11.  

Figure 8. Box plots of the value distributions for the ratios 
between: A) the species numbers – ( )/ ′( ); B) the 
average component activities – ̅( )/ ̅′( ); C) the average 
innovation activities – ( )/ ′( ); D) the frequencies of 
change of the dominant species – ( )/ ′( ); E) the 
proportions of the dominant species – ( )/ ′( ). Outliers 
are not shown to avoid clutter in the figure. 
 
 The results reported here show that the evolutionary 
selection process plays a defining role in the evolution in the 
cellular automata world. Our data shows that the evolution of 
the average weighted component activity and weighted 
innovation activity follow a growth path in general. The 
growth path of average component activity is broken 
occasionally by extinction events imposed by the growth 
constraints that we implemented in the cellular automata 
world. The average innovation activity has large variations 
along the growth path. The observed growth paths of the 
average weighted component activity and innovation activity 
indicate that the proposed cellular automata world has the 
potential for open-ended evolution. 

Discussion and conclusions 
 The simulations reported here typically stop after 200 – 800 
world turns due to saturation of the simulated world with 
individuals. To appreciate the volume of evolutionary activity, 
consider that in the example shown in Figure 2 the average 
number of new species per world turn is 200 and in a slowed 
down version of cellular automata world simulations the 
average number of new species per world turn is around 1. 
This implies that each world turn in the reported simulations 
is equivalent of 10,000 (50 x 200) time turns in the slower 
pace simulation. So, 200 – 800 world turns in the reported 
simulations are in effect equivalent of 2 – 8 million time turns 
in slower simulations of the cellular automata world. 
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 We chose in this paper to report the weighted versions of 
the component and innovation activity. The fundamental 
reason for this is explained above. One may object that the 
increase in the weighted version may be due purely to the 
increase in ( ) , the count of individuals belonging to 
possibly very short lived species. However, this value can 
only increase as new individuals are created over time, and the 
number of newly created individuals belonging to a species is 
at most the number of existing individuals (usually below this 
number as not all individuals reproduce). Typically the 
number of individuals belonging to a species first grows and 
then falls as fitter species emerge. The weighted measures 
capture better the evolutionary superiority of the cellular 
automata world compared to their shadow worlds. Due to the 
creation of a shadow species every time when a real species is 
created, and the random selection of shadow species for 
adding and eliminating individuals, the average age of shadow 
species is larger than the average age of real species. The 
individuals of the latter are selected for reproduction and 
death on the basis of their performance in an evolutionary 
competition, which leads to the elimination of the less well 
performing species relatively quickly. Thus, while the average 
age of species increases in general for both the real and 
shadow world, it is higher for the shadow world. This may be 
read misleadingly as an indication that the shadow world has 
more evolutionary activity, which is wrong, as shown by the 
measures reported in the paper. 
 To summarize, the proposed cellular automata worlds show 
positive average component activity and average innovation 
activity along the evolutionary trajectory of the world and 
both measures of open-endedness follow an increasing trend 
over time. This indicates that these cellular automata worlds 
are able to produce open-ended evolution according to these 
measures (Bedau, 1992; Bedau et al, 1998). The comparisons 
with the associated random shadow worlds show that the 
evolutionary selection processes play a defining role in the 
cellular automata worlds and that their evolution is not similar 
to a random selection process.  
 In our introductory reasoning we noted the importance of 
the Turing equivalence of the underlying mechanism of the 
cellular automata world. We chose to use a world rule (110) 
that is assumed to satisfy this requirement. However, we have 
not assessed the nature and the extent to which this feature of 
the world influences the evolutionary process in the world. 
 We believe that the proposed cellular automata worlds 
provides a novel avenue for the research on open-ended 
evolution and the potential and features of evolutionary 
processes. While the proposed worlds share similarity with 
other cellular automate based approaches (e.g. Sayama, 1998, 
1999; Adams et al, 2017), they are simpler (one dimensional), 
infinite and mechanistically more transparent than higher 
dimensional cellular automata based world.  

The source code (in Delphi) for the implementation and 
simulation of the proposed cellular automata worlds is 
available on request from the author. 
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