T b
SR

. /
Integrating Measurement Techniques in an Object—Orie/nted
.Systems Design Process

Philippe Li-Thiao-Té

A thesis submitted in partial fulﬁltnent of the requirements of Napier
- University for the degréc of Doctor of’Philoso‘phy '

 December 1999 -
" Supervisors: Prof; Jessie Kennedy and Dr. John Owens.

Date of viva: April 20™, 2000
Internal examiner: Dr. Pete Barclay

External examiner: Dr. Dilip Patel

Napier University, School of Computing, Edinburgh, Scotland

Acknowledgements

I wish to express my thanks and acknowledge the assistance to people without whom this thesis

would not exist.

Firstly thanks are due to my supervisors Prof. Jessie Kennedy and Dr. John Owens, both lecturers
of Napier University, Edinburgh, Scotland. I am most grateful to Jessie for her patience, for her
valuable insights in Object-Oriented modelling and database areas. Many of our intense
discussions provided me with focus in my research work and her thorough proofreading and
corrections have contributed to the accuracy of content and style of the thesis. Overall, her support
throughout the year has made this work enjoyable and possible. I would like to thank John for his
valuable advice and for sharing his in-depth knowledge in various areas of object technology. His
guidance on the aims and directions of the thesis permitted me to tackle the obscure and

controversial object-oriented mechanism of method redefinition.

I offer especial thanks to Prof. Mike Jackson of Wolverhampton University for numerous
discussions, useful feedback and criticisms on various aspects of Object Oriented design as well as
the measurement teéhnique areas. His views on many parts of the thesis have helped my
understanding of the obscure issues since the early days of this work. I am also gratefﬁl to my

internal and extemalr examiners, respectively Dr. Pete Barclay of Napier University and Dr. Dilip '
Patel of South Bank University, for their valuable comments thich contributed to the

improvement of the overall quality of this thesis.

I am indebted in many respects to all the staff, academic, research, support and administrative in
the School of Computing at Napier University which provided me with financial support and time

for writing-up.

I am grateful to all of Arclight Strategy Systems Ltd. staff who gave me support during the last

phases of the writing-up.

I would like to thank my friends for their support and for the many distracting discussions that kept
me alert and aware of numerous aspects of life. Particular thanks are due to Alan Garny for his
endless cynicism, Cédric Raguenaud for his strong views on a non Object-Oriented world, my

cousin Jean-Luc Haw-Kwan-Yuen for his perspectives on a simple life in a complex society!

I would like to offer warm thanks to my fiancée Agnés Lai, so far but so close, who accompanies

me and fills my life with happiness.

Finally and most of all I would like to thank my family for their forbearance and their support
during these long years away from home. I am most grateful to my parents and my sister Brigitte

and her family for giving me inspiratiohs and strength throughout my life.

I have special thoughts for late members of my family whom I missed from the outset of my
studies. Especially, I have found memories for my grandad Koung-Koung who taught me honour,

loyalty, respect and proudness in life.
Thank you to you all. Edinburgh, 19" December 1999

The next section gives the same acknowledgements in French.

Remerciements

Je voudrais remercier et exprimer ma reconnaissance aux personnes sans qui cette thése

n’existerait pas.

Tout d’abord, je dois remercier mes directeurs de thése Prof. Jessie Jennedy et Dr. John Owens,
respectivement maitre de conférences et professeur a “Napier University”, Edimbourg, Ecosse. Je
suis particuliérement reconnaissant a Jessie pour sa patience et ses idées pertinentes aussi bien en
conception orientée-objets que dans le domaine des bases de données. D’innombrables et intenses
discussions m’ont permis de me concentrer sur mon travail de recherche et ses méticuleuses
relectures accompagnées de corrections ont contribué a la rigueur du contenu et du style de cette
these. Plus généralement, ses encouragements durant les années ont rendu ce travail agréable et
possible. Je voudrais remercier John pour ses recommendations et pour avoir partagé avec moi sa
connaissance approfondie dans divers domaines des technologies orientées-objets. Ses conseils
concernant les objectifs et la direction de la thése m’ont permis d’aborder I’ambigu et polémique

principe de redéfinition des méthodes dans les systémes orientés-objets.

Joffre des remerciements spéciaux au Prof. Mike Jackson de “Wolverhampton University” pour
les discussions, les commentaires et les critiques sur de nombreux aspects de la conception
orientée-objefs mais ’aussi du domaine des technfques de mesures. Ses opinions sur plusieurrsA
parties de cette thése m’ont aidé 4 comprendre les problémes les plus difficiles depuis le début de
ce travail. Je suis aussi reconnaissant 3 mes examinateurs interne et externe, respectivement Dr.
Pete Barclay de “Napier University” and Dr. Dilip Patel de “South Bank University”, pour leurs

précieux commentaires qui ont contribué a I’amélioration de la qualité générale de la thése.

Je suis reconnaissant au personnel, académique, chercheur, support technique et administratif du
département “School of Computing” de “Napier University” qui m’ont financé et accordé du
temps pour I’écriture de la thése. Merci a tout le personnel d’”Arclight Strategy Systems Ltd.”

pour m’avoir soutenu pendant les derniéres phases d’écriture de la these.

Je voudrais remercier mes amis pour leur support et pour les nombreuses discussions divertissantes
qui m’ont permis de rester attentif et au fait des divers aspects de la vie. En particulier, merci a
Alan Garny pour son interminable cynisme, a Cédric Raguenaud pour ses vues determinées sur un
monde non-orienté-objets, & mon cousin Jean-Luc Haw-Kwan-Yuen pour ses perspectives d’une

vie simple dans une société compliquée!

Je voudrais offrir des remerciements les plus chaleureux & ma fiancée Agnés Lai, si loin mais si

proche, pour m’accompagner et remplir ma vie de bonheur.

Finalement et plus que tout, je tiens a remercier toute ma famille pour leur patience and leur
soutien pendant ces longues années loin de la maison. Je suis reconnaissant 3 mes parents, ma

soeur Brigitte et sa famille pour me donner I’inspiration et la force tout au long de ma vie.

Des pensées spéciales vont aux regrettés membres de ma famille que j’ai beaucoup manqué lors de
mes études. Particulierement, j’ai de chers souvenirs pour mon grand-pére Koung-Koung qui m’a

enseigné honneur, loyauté, respect et fierté dans la vie.

Merci & vous tous. Edimbourg, le 19 Décembre 1999

To my parents

Abstract

The theme of this thesis is the assessment of quality in class hierarchies. In particular, the notion of
inheritance and the mechanism of redefinition from a modelling perspective are reviewed. It is
shown that, in Object-Oriented languages, controversial uses of inheritance can be implemented
and are subject of debate as they contradict the essence of inheritance. The discovery of an
unexpected use of the method redefinition mechanism confirmed that potential design
inconsistencies occur more often than expected in class hierarchies. To address such problems,
design heuristics and measurement techniques are investigated as the main instrument tools for the
evaluation “goodness” or “badness” in class hierarchies. Their benefits are demonstrated within

the design process.

After the identification of an obscure use of the method redefinition mechanism referred to as the
multiple descendant redefinition (MDR) problem, a set of metrics based on the GQM/MEDEA
[Bri&al94] model is proposed. To enable a measurement programme to take place within a design
_process, the’ necessary desrgn considerations are detailed and the techmcal issues involved in the
: measurement process are presented. Both aspects form a. methodologrcal approach for class

~h1erarchy assessment and especrally concentrate on the use of the redefinmon mechamsm

As one of the mam crltlcrsms of: the measurement science is the lack of good desrgn feedback the
"Aanalys1s and 1nterpretatxon phase of the metrics results is seen as a crucial phase for 1nferr1ng_
: meanmgful concluswns A novel data interpretation framework is proposed and includes the use of
various graphical data representations- and detection techniques. Also, the notion of redefinition
profiles suggested a more generic approach whereby a pattern profile can be found for a metric.
The benefits of the data interpretation method for the extraction of meaningful design feedback

from the metrics results are discussed.

The implementation of a metric tool collector enabled a set of experiments to be carried out on the
Smalltalk class hierarchy. Surprisingly, the analysis of metrics results showed that method
redefinition is heavily used compared to method extension. This suggested the existence of
potential design inconsistencies in the class hierarchy and permitted the discovery of the MDR
problem on many occasions. In addition, a set of experiments demonstrates the benefits of example
graphical representations together with detection techniques such as alarmers. In the light of

facilitating the interpretation phase, the need for additional supporting tools is highlighted.

This thesis illustrates the potential benefits of integration of measurement techniques within an
Object-Oriented design process. Given the identification of the MDR problem, it is believed that
the redefinition metrics are strong and simple candidates for detecting complex design problems
occurring within a class hierarchy. An integrated design assessment model is proposed which
logically fits into an incremental design development process. Benefits and disadvantages of the

approach are discussed together with future work.

Table of contents

Table of contents

GLOSSARY OF TERMS, ABBREVIATIONS, NOTATIONS AND TRADEMARKSccccvreernevenens 15
1. INTRODUCTION 19
2. BACKGROUND 25
2.1. INHERITANCE AND ASSOCIATED PROBLEMS.......cocoviitiitmireeeeeerieteeceiteseietesaeestssenesesenseensennsensesssensenses 27
2.1.1. USE Of INHEYILANCE. ...ttt ettt 27
2.1.2. Class hierarchy OFANISQLIONc.ccooveveueeeieeeeerieeeeseeseeeete ettt snanne s 28
2.1.3 Subclassing, subtyping or SPECIQlISINGc.cccocveveeericreeeeeeeeeeee et eeer s eene e 29
2.14. Usability and extensibilitycococoovimiinmiiieiiieee ettt 31
2.1.5. Property inheritance scheme defirition....................c.occeeeeeveeceeeeeesieeieieeseeeeeeeeeee e 34
2.1.6. Property OWNEFSHID tFANSIF............c.ccoevieviuieieniiteie v csetestesseis s e st s ebeste et ts s sese st e s 35
2.1.7. Encapsulation: visibility and accessibility of properties.............ccccccveaveeveivesveniveieeieeinnennanean, 36
2.1.8 Consequences of encapsulation on the inheritance scoping controlc.ccoecvvvivevennnn.. 38
2.1.9. Common inheritance design MISIAKESccccoeueireeeeriieieeseeeteseeresesnsees e esnasensanas 41
2.2. ON THE NOTION OF REDEFINITIONcccvieiteitiariesieeeeiaeereeanesnneeessesseessessesassesssssnsesrsssesnsesssssesasees 47
2.2.1. The redefinition PrINCIDIE.................cocccoiviieiiiiinieieiee ettt 48
2.2.2. Conditions for realising method redefinition...............cc..c.cccocoeieicriciiiiniacrieineieee e 49
2.2.3. Descendants’ heritage extent (hierarchy collapse)cccooooeoeieieivinoieiieeieieerene, 50
2:2.4. The main redefinition variantsc.c........... OO O PEO POV 52
2.2.5. Remark on super method Calls.................cccoooiiiiiiiiiiiiiciiiiiiieccce et 53
2.2.6. Disinheritance and inheritance refusal SR UPSUUURUUPURIN: 54
2.3, "HEURISTICS OR GUIDELINES FOR OBJECT-ORIENTED DESIGN..........cocecveetrieereererenrrennesiesassessesnenees .56
2.3.1. Definition and purpose.....................c.cocoueuue..... et R ST 57
2,320 IHHEIDYCIAION. ...t 58 .
2.3.3. Example of heuristic's application...................ccccouvvverens. SRR eterr s 60
2:4. ASSESSMENT TECHNIQUES [e teerees et esaer b rteaeeeranreereen erereesereatertetteraririeenaeanins 63
2.4.1. Roles of technical measurement et B et ettt be st e bene et b e ettt aebe st b e e et ehe e ebeens 64
2.4.2. Software quality model................................ bbbttt be et s s eee 65
2.4.3. Properties of software measures ettt er ettt b et et b et enat e he et e b b etnens 67
2.4.4. Internal quality factors of OO deSigR............c.cccvvvviiiienieieeiiriieeeeisieeieeeeieeeesaetesasees e ssees 68
2.4.5. Data availability and metrics COHUECHON..................c.ccocoureeereireiireieieieeieeieieeeeeeeieeeresnniressenes 70
2.4.6. MeITiCS INIErDIEIQLION. ...ttt et b e e nss s 71
2.4.6.1. Remark on the dependencies BEtWEEn MELIICSc.evveueririiieieirinirnnni et eans 74
3. ASSESSING THE PROPERTIES INHERITANCE SCHEME FOR THE MULTIPLE
DESCENDANT REDEFINITION PROBLEM IN OBJECT-ORIENTED SYSTEMScccccnu... 76
3.1 METHOD REDEFINITION: USES AND ABUSEScciveretiieinrereirnersteeersseesosesnsssesssesssseesssssssessssessrsssess 79
3.1.1. Method redefinition in class BIeFarchIescc.coceeeieiineeieeceeeeieeesees e, 79
3.1.2. Multiple descendant redefinition (MDR) problem...................cccoovveviaveiveniecieieieieieeeeeen, 80
3.1.3. Example inheritance hierarchy that avoids the MDR problem..................ccccccovvevvererennnn. 81
3.1.4. Descendants heritage extent for the MDR problem................cccoevuvieineneiienresinereseneieneen, 84
3.2. MEASURING REDEFINITION IN OBJECT-ORIENTED SYSTEMS.....cccovtrietieirieniereererennneessnesessseesnessness 85
321 The method redefinition ASSESSMENEc..cooviieciiiiieiieeeieee sttt sasenas 85
322 Percentage of redefined methods per level within a hierarchy (PRMH)......................c.oco........ 87
3.3. DESIGN CONSIDERATIONS FOR INHERITANCE ASSESSMENTcccvvieeiieirereiecveeeenieecesssresesseseesseersnsens 88
3.3.1. Methodological approach for class hierarchy assessment............c.c.cccoveveevivvieinvineniensarenens 89
3.3.2. A design information repository with metaclass facilitiesccccoeeeeveeieeeeeeeeneenn. 90
333 ClASS ANALYSEES ...ttt ettt s sttt bt ettt 94
3.3.4. State transition diagram for the method redefinition mechanism.....................c.ccoccevvevennennn, 99
3.34.1. Remark: method redefinition and unexpected message SeNds..........cocovvvrrvrrerecrcnencreneeeereens 102
3.3.5. Behavioural inheritance QRALYSISc.cccceviieiieeeeiieeeeeeeee et 105
33.5.1 Experiments on the Collection Class..........ccccoueirerririeciirerecreiracrnnrn e seese e et s 106
34. MECHANISMS FOR DATA INTERPRETATION OF METRICS FOR OBJECT-ORIENTED SYSTEMS............... 108
341, IRIPOAUCEHION. ..ottt sttt a et re ettt eb e e te e aeessete et e etseneeaesneteanan 108
3.4.2. Motivation and approach for interpretation.................cccccucveveeveiireeesineeerereeseeeese s, 109
3.4.3. Metrics interpretQlion frameWOFK.coccccocuiiiueoveieeieieisieeietieies et ste sttt esess v eteana
3.43.1. Designers’ perceptions and deCiSIONS...........ovceererirriirieiininic ettt
3432 Raw data rEPreSENtAtionccco.eviireeriee it reere ettt st et st er et sttt et ese b et s seesesne
3.43.3. Profile analysis and design feedback...........c.coveivnniiciniinni e
3434, Factors affecting the interpretation process

Table of contents

3.5, CONCLUSIONcoititiinruriiiscrtr ettt sttt bttt st e s e e e as e a st sb e et et ebebetetetassesereresosessnsseansereees 119
4. METRIC TOOL COLLECTOR AND IMPLEMENTATION ISSUES 120
4.1. INTRODUCTION......c.oerutimtiuietnietatesieseesseessesarasasssassssstesssessasseasbessassensensoseesnossonsenstossintansessensessesnesnes 120
42, REQUIREMENTS....c.tteutruteuteuteutetanrestaastesesstrsesstaseassesssesssasssessessansessesessesnsessosssssssesssossessssnsessossesseon 121
421 FOALUFES ...ttt 121
4.3, ANALYSIS AND DESIGN OF THE METRIC COLLECTOR TOOLvooviviiniiereeieereeereeiresesenseesseosssesenenes 122
4.3.1 Class lineage and parsing SIrQLEGIESc..ocvcveveeiviveeveeeeieeieeeeeeseeeee e 122
44, ARCHITECTUREctteitiatirtieierrestesteseeesteesseessaesaseeseesasesessssatesnsesssententssssesstesssesnsssnsesnssssneossesssneses 124
4.5, USER INTERFACESc.cvvitiiterirerreiteretesereseesseesseessseenseesssesessssntesesessssssesssessssssessessnsssnsessssssnsonsesssneses 126
4.5.1 The System Metric BROWSEFc.ccooceiveieeeiiiaieiieseetee ettt aeasen 126
4.5.2. Metrics deriVALiONcocooviviieiiiiiiiiiiteiieetee ettt e en e 127
4.5.3. The method profiles MANAGEFccouveeeiviiiiiieeeeeeeeeeeee ettt 128
4.53.1. The method Profiles BIOWSET......c.c.ociiiiiiiiiiit ettt bbb eanas 130
4.5.4. The definition of ranges for the Qlarmer.......................cccccoovoeeeececeieeeeeeieeeeeeeeseeereeeeens 133
4.6. CONCLUDING REMARKSccuitiiirieurriitaeteesarsesesssesssestesssassessassesssssassassensessessesssesssssesnsesssaresneenes 135
5. EXPERIMENTS 137
5.1. OVERVIEW OF THE METHOD REDEFINITION PROFILES USING THE PRM METRICovrveveveerererenen.. 138
5.2. SMALLTALK OBJECT HIERARCHYooiitiitieitieieeeeeeereecereesresaeesaecanessesarenssesesansonssessessssesasesansensens 141
5.3. COLLECTION BRANCH AND STREAM BRANCH.......cccouiiitieieeiteiereeeneereentseneseneensteseentesssessesssssnsesases 142
54. WINDOWBUILDER PRO/V BRANCH....... OO PO OTTOTORS 144
54.1 GraphicObBJECt BEANCH.................cccciciiieiiieieieiiieses ettt ne e sens 145
5.5. ToGEN SYSTEM ...cuviiiiiiiceie et stee e e iteette s iaeeeeeae et e e neeersesanessnesaeesaesasestesaresnsesnstersssneesansesasesansans .146
5.5.1 T-gen system redefinition profile....................cc.cc........ ettt et e serb e e e ae e rr e aesaneenes 148
5.5.2.. T-gen: TreNode branch redefinition profile.................ccooovuvomoeoeororecroeeeerereeeeeeeeeeeeeesesen. 149
5.5.3. T-gen: AbstractScanner branch redefinition profile.................. ettt et e e e et nee e e e 151
5.6. CUMULATIVE MEASURE FOR THE COLLECTION, STREAM, OBJECT | R
AND GRAPHICOBJECT BRANCHES.........c.cocveereerieennenenes SO T O 153
5.7.) EFFECTS OF THE T-GEN SYSTEM ON THE SMALLTALK HIERARCHYfcovueriemisesiesieesesesesesenen 156
5.8. EFFECTS OF THE T-GEN SYSTEM ON THE COLLECTION BRANCH REDEFINITION PROFILE.................. 157
5.9. METRIC RESULTS VISUALISATION AND INTERPRETATION ...ccouiiiiiiiiiiiiiiii e e e 159
5910 Surface bar CRAFLSc.ccccocviiieiieiiieceee e et 160 .
5.9.20 SUIFACE CRAVLS ...ttt ettt ettt s et anenen 161
5.9.3. AN BAF CAAFLS..........c..ccooiooiiieiiieiee ettt s et aes 162
3.9:4. RAAAE CRAAFIS ...ttt ettt bttt nsanes 162
3.9.5. Acolour coded range Bar CHAFESc.ccceouiveereoeiiisisinessee s anen 163
5.9.6. ViISUGLISATION USES ...ttt re ettt e ts et b sansessens 164
5.10. THE CONCEPT OF “ALARMERS”ccccocrmmvenrecrieieneneuimenentntineeenessesesessaesssmeasasassssesesmassesssssesssasssnen 165
5.11. DATA INTERPRETATION SYSTEMcooviiuieriiinreiieeetreereesneensesereesseesssssseasssssesssensssssesssessnssesssssessnees 168
5.12. CONCLUSION OF THE EXPERIMENTSc.ccciviruiinterinrecreennreenseeeseeseeseesssossesseesssesssesssessssssesnsssnsssses 168
6. DISCUSSION AND CONCLUSION 172
REFERENCES 187
A. APPENDIX 200
A.l. HEURISTICS’ CLASSIFICATION........ccciticteeireiiriesieesiresseesraasserasseeseenseeneessesnsessessessssonssersssnssesssesssanes 200
A.2. DETAILED DESIGN OF THE MAIN COMPONENTS OF THE METRIC PROTOTYPE TOOL.........c.coceveeuvernnnnne 201
A.2.1. Basic MELriCS FEPOSITOTYccooceiuiriiiaiirieeiecietett ettt ettt sttt ettt e sae et nens 201
A.2.2. Dictionary SIrUCIUFES fOF MEIFICS.............cocevieie ettt ettt eb e e st 202
A.2.3. A persiStent rePOSItOFY SIFUCHUFEcocccvveeeveeeiurieseeereeereeseeeseaeeseareeeseestessssesaesereenrasssans 204
A.2.4. The profile MANAZETc.cccoovviivciiieiieiiei ettt ettt sttt st s s 206
A.2.5. TREMEIFIC @RGINE ...ttt bbbttt b s b esn 208
A.2.6. The hierarchy browser and profile manager designscc.cccococivenieirireneieiveieeieeeinn, 208
A.2.7. The method Profiles DFOWSEFc.ccccoouiiiiiiiiriiiiie ettt 213
A.3. REMARKS ON THE CONSEQUENCES OF THE ENCAPSULATION MECHANISM..........cccoverueerurenreerennnen. 214

List of figures

List of figures

Figure 1.1: Objectives of the reSearch WOFKc.c.cccoviciiiiiiiiniomeniiioeeeeeeeee e 22
Figure 1.2: Measure of level of redefinition in the Smalltalk Object hierarchy...............c.cccceveveeevennnnn.. 23
Figure 2.1: Subclassing (1), subtyping (2) and specialisation (3) hierarchiesc.ccccoveveecreenenn. 30
Figure 2.2: Class PrOPErtis.............ccccuunniooeicriseseisieesse e st s et en sttt enn s s 35
Figure 2.3: Transfer of property ownership in an inheritance hierarchycccccoooeeeveeeeeeeeveeeeeeenenns, 36
Figure 2.4: Example of transfer of property OWREFSRIDcccccoeeveiiericioeeeeeeieeseee e 36
Figure 2.5: Property modifiers in OO programming languages.....................cccocveeeevereeereeeeeereeeeeeeaeerananns 37
Figure 2.6: Stream hierarchy with multiple inheritancec.cccooevievceeeeeneinnn., s 40
Figure 2.7: Traversal paths for single and multiple inheritneeccooeevcviceiveiviicnireeereinane e 41
Figure 2.8: Coupling with instance variable......................ccc.ocovovviiciioiieeiieieieeeieeie st eese s 44
Figure 2.9: Coupling With MEINOAc.ccooiiimivieiiiiiii ettt ettt nss et es e neens 44
Figure 2.10: Coupling with method SINATUFEcc.cccccoiiioineiinrienereee ettt eb et senes 44
Figure 2.11: Coupling With iNREFIIANCE....................c.ccveeeiiieieieireieieesvee et es st v st et s s as s eanene e 45
Figure 2.12: ENGINE CIASScocccooviiiieveiiesee oot een e s e es et 45
Fi igure 2.13: ENGINE RUCIAFCRYcoovvivvivinceeeeeeeeeeeeeee e 45
F igﬁre 2: 1 4: Expected descendant heritage extent...............c..c.cccoeee.n.... et 51
Figure 2.15: Part of the Smalltalk COIECHON Branch....................ccocooomeeeeieciiciiieeeeeeeeeeeeeeeeeeeeeeeeeee, 52
Figure 2.16: Different types of methods redefinitioncccocvevvieeieiiviicieiieireeeesieniesesie i 53
Figure 2.17: Three possible designs for the class PErSON......................cccccocooviiiiiiiicciicc s 60
Figure 2.18: Mapping and mOdelling Gap................c..cccoovveeeiicieiiiereiesi et ce et vt 61
Figure 2.19: A company iRfOrMQAtiON SYSEEML.............cccccoeceiieieiiiieieeiese ettt eae e 62
Figure 2.20: The GOM/MEDEA MOc...ccooiieiiviiiiciceesieieteteeeeeeees ettt aan 66
Figure 3.1: Object-oriented design asseSSmMent MOdel.................c.ccooocvevvevioioueeeiiesieeieeeeeeeeeee e 77
Figure 3.2: Smalltalk hierarchy redefinition profile.............ccccoecoivveeeeeeieeieiiiieiecieeeesieievee et 80
Figure 3.3: Life history of the includes: redefined method in the Smalltalk Collection branch.................... 81
Figure 3.4: MDR and code duplication in the Stream class hierarchy..............c..ccooveeeeceeceicccnieceeeeinnn. 82
Figure 3.5: Stream hierarchy using mixins Classesocococoeeeeeeeveereeeeeseesieeeeeeess e 83
Figure 3.6: Descendant heritage extent with MDR anomaly.c.cccocoevooioiniiceiinisieeeeeeeee e 84
Figure 3.7: Complexity metrics at hierarchy level...................cccoccvvevcniniinininiins it seeisesaeasane s 87
Figure 3.8: Meta-model of Main OO CONCEPLS.............ccouvecivieiereiiierieeeeteietieteeteste e saeetesaeesabeeseesesse s aasareas 91
Figure 3.9: Tree PArsing SIPALEZYccccuiuieueiiiienereieiiieeeieieseete et eie e saeetastesteteste st sbeste st ebensateebesbeseasseteasens 95
Figure 3.10: Name space collisions with multiple iNReritanCecooeeeeieeiviinineeeseeeieeeiecreeresanen 96
Figure 3.11: Class WEGDDEFc.cccccooiviviiiiiiieisieeieiss ettt sttt st st ettt et stestesaesaeeseasabesbessessansesesse s 97
Figure 3.12: HIerarchy WEADDEFccocoooi ettt ettt ettt e e e s e et ar e eeee 98
Figure 3.13: State-chart diagram for method redefinition..................c..ccocoovoeemiceiiciniieieeieeiet e 100
Figure 3.14: Expected method iNVOCALION.....................ccccoomiiiiiiiiiece ettt 102
Figure 3.15: Examples of unexpected method iVOCALIONSccocvieveeecieciiinciriiiiscresieeeneeeeeesanes 103
Figure 3.16: Distant MDR SCERAFIOScccoirviueieiiieieiiitieite ittt st e tseve s e sess s s vses 104
Figure 3.17: Method life hiStory FePreSERIALIONccccoocvivveirireeirinisiessinei st eanas 105

-10-

List of figures

Figure 3.18: Method life history for the Collection BFanch....................cocoooeeeeeoeeeieieeiieeieeee e, 106
Figure 3.20: Analysis, interpretation Qnd iRteFACHONSc....cccooveevemeeeeieereeeeeeeeeeeseeeseeessae s eeeenens 113
Figure 3.21: Data FEPFESERIQLION..................c.covoveviiveeiiiieeeeeeees e eee et ese ettt s et e e eaenn et eeeas et es s 114
Figure 3.22: Profile analysis...............cccoociiiiiioiie ettt es ettt 116
Figure 3.23: INterpretalion fACIOFSccvviivieirieieiieieeiteeteetee ettt ettt et et e et 118
Figure 4.1: Levels Gf deriVation................ccoooeeioiiciiicioieiiieieiieeeee ettt tene s 123
Figure 4.2: Parsing strategies in class RIerarchies.................c...cooouovveonioniioieeoiiseierieee e 124
Figure 4.3: Metric collector 100l QreRiteCturecccocveeviieiieieiiieieieeieseeeeee e 125
Figure 4.4: Roadmap for user interfaces preSentation..................ccocooeeeevcecirciirnsinsussieneeseneeessesesesesessssssenns 126
Figure 4.5: Prototype metric 100l MAIN WINAOWcc.ooueeueieeeeeeeeeeeeeeees e 127
Figure 4.6: Redefinition metric at System level..................cccocuieiiierieieeeieieeeeeee e 128
Figure 4.7: Method profile list MANAZEFcccccccceiviiiiiiieiiiiesieieeeeeeeeeee et 129
Figure 4.8: Redefined methods BrOWSEF...............c.ccccoioieviiiiiiiiiieeiet e eres et 130
Figure 4.9: Features of the MethOds BFOWSEFc.cccoevuveveeeeiiisiteretesie oo sses e b sse s se b 131
Figure 4.10: MethOd SERARESc.c.cccooivuvivirniieioieeeese ettt b st et b e 132
Figure 4.11: Method imPIEmERIOFSc.cccovmeueiriieieieieie ettt 133
Figure 4.12: AlGrmer Fanges defifitionccccoooivevvveeiiociceeeeosesese oo 134
Figure 4.13: System Metric Browser with alarmer AISPlAY ...t s 135
Figure 5.1: PRM for the Smalltalk Object hierarchy e e 139
Figure 5.2 (a) an:d (b): PRM for the WindowBuilder Pro/V and T-gen systems e 139
" Figure 5.3 (a) and (b): PRM for the Collection and Stream branchescc.cccccovvvinviiinroreeanannn, 139
Figure 5.4: PRM for the GraphicObject branch................... —— e R 139
Figure 5.5 (a) and (b): PRM for the TreNode and AbstractScanner T T 140
Figure 5.6 (a) and (b): PRM for the Object and Collection hierarchies with the T-gen system installed . 140
Figure 5.7: PCRM and PEM for the OBJECE HI@rarChyc.cocoooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e, 141
Figure 5.8 (a) and (b): PCRM and PEM for the Collection and Stream hierarchies 142
Figure 5.9 (a) and (b): Collection branch at DIT = 3 and FileStream at DIT=4c.cccovvvveceeun... 143
Figure 5.10: CONeCHON methOd profile..................cococoovoiviueeiiieiieieeeeeeeiee e 144
Figure 5.11: PCRM and PEM for the WindowBUIlder Pro/Vccoicioiiveioiiiieeeeeeeeenn. 144
Figure 5.12: PCRM and PEM for GraphicODJeCt Branch...................ccccceeveeceeiieeeeieeeeneeeeeeeevennns 145
Figure 5.13: GraphicObject method profile.................cccocoovooeeiieeiieeeeeeeeeeeeeeeeeee e 146
Figure 5.14: T-gen: ItemSet class redefinition profilec..cccoovvviviivinivinsinreiereieiceeeerecee e 148
Figure 5.15: PCRM and PEM for the T-QEN SYSIEM.............c..coc.oceeeeeieeeeeeeeeeeeeeeeeee e 149
Figure 5.16: T-gen: PCRM and PEM for the TreNOdE branch................ccccoeeeevveoeeiscnieieesrenesaane 149
Figure 5.17: TreNOAE method Profile.................ccovvivieiniioiiiiniiessiesisiesieieessieiseiestarees st sesesnsesenes 151
Figure 5.18: T-gen: PCRM and PEM for the AbstractScanner branch...............c.ccoevineoeennnrn. 152
Figure 5.19: AbStractScanner method profile.................coooveeeeeeveeoiiiinieieieieiiesesieieeeeeese s 152
Figure 5.20: Cumulative PRM for the CONECHON branchccccccovioeienicniieiieeeiecceseeeee s 153
Figure 5.21: Number of classes per DIT levelcccoovviiiiiiiiiiiiintceeeeeccisieee et 153
Figure 5.22: Number of methods per DIT levelc..ocooovviviiieeiiiiiiiiieiiiisieeeeeteeeeee et 154
Figure 5.23: Cumulative PRM for the ODJECE Branch..................cccceevvvievioeeeeeieieiieeeeeaeeeeese s 154
Figure 5.24:Cumulative PRM Jor the GraphicODbJECt branch..................ccooveeeveeiiirecieiiciiieeeeieeieeenan 154
Figure 5.25: Subset of GraphicObject subclasses branch at DIT=3...........cccoooveveveiveeeeieeeeeeeeecernn 155

List of figures

Figure 5.26: Smalitalk Object hierarchy with the T-gen system installed.........................c.ccooocvvvcvveecnn. 156
Figure 5.27 (a) and (b): PCRM and PEM for the Collection hierarchy with the T-gen system installed..158
Figure 5.28 (a) and (b): Surface bar profiles for the Object and GraphicObject branches 160
Figure 5.29 (a) and (b): Surface profiles for the Object and GraphicObject branches 161
Figure 5.30 (a) and (b): Addition bar charts profiles for the Object and GraphicObject branches 162
Figure 5.31 (a) and (b): Radar charts profiles for Object and GraphicObject branches.......................... 162
Figure 5.32 (a) and (b): Colour coded bar for the Object and GraphicObject branches 163
Figure 5.33: Data interpretalion SYSIEMcoocieeoenieeieiareeseeeeeieeesaeese ettt eas s essa st sss et ansn 168
Figure 6.1: Modelling and assessment tasks...............c.cccccouiiiomiinmieiiieiieee e 181
Figure 6.2: Incremental Design and ASSESSMENL PROCESS...............c..cccuvveveireiiaiasinsee e ieeeeeeenen s 184
Figure 6.3: Integrated model for design and asSeSSMENL...................c..cccoveveveeeeeeieesieiieeeeeeeereeee e 184
Figure A.1: Dictionary of redefined methods Per CLASS...............ccccccovviiviouiieeeecesiieesoeereeeee e 202
Figure A.2: Dictionary for the total number of methods per Class.............cccccecieiviveivciicieniiicieeeerennns 203
F fgure A.3: Dictionary for replaced and extended methodscccooueeeeieiviiceiiieecieceieseeeee e 204
Figure A.4: Persistent repoSitory MOGELc.c.oovvevioueereeeeee et 205
Figure A.5: Profile manager Modelcccccoocoiiiimiiiiiiiiies sttt 206
F igure A.6: The hierarchy browser and profile manager de&igns e et ettt b et eae e enea s 208
" Figure A.7: Metric ENgine MOdelcc.cccoccciiivniiiciiiiicoc e e SR R 209

Figure A.8: The method profiles browser AESIGN ..ottt e R 213

List of tables

List of tables

Table 2.1: Identification of objects from textual SPECIfiCAtIONS.................c...cocoveieveeeieeeeiieeeeeeeeeeee oo 61
Table 2.2: GOM IEVEScoouiiiiiiiiieieee ettt ettt en et ee e 65
Table 3.1: Class deSiGR fEAIUIESccccouiomoiiireeiieee e ettt at e 93
Table 3.2: Attribute deSign fEQUPESccccoiioiuiomiieeieeieee ettt 93
Table 3.3: Method desigrn fEQUuresc.ccccooiimmeiecircieieste et es v 94
Table 3.4: Inheritance paths table...........................cccocooueeeiiieiiiiiieeeee ettt 95
Table 3.5: State transition table for method redefinition.....................c.ccccovoeeceeeeceeiieeeieieeeeeeee, 101
Table 3.6: Smalltalk Express Object branch redefinition profile.............ccooeueeeeeeeeieeeeeeeeieceeeea, 115
Table 5.1: List of assessed hierarchies.................. et h et h b n et en b s e st b et e e s te bt ens 138
Table 5.2: Example of equally distributed FANGES...............cccccccoviereiunieiiieescreeiesee et 163
Table 5.3: Summary of ViSUGLISALION (YPES...........c...ccoovieeieieicieeeeieese ettt 165
Table A.1: Smalltalk metaclass infOrmation........................ccccccooiriiicicriciiiiiir e 201
Table A.2: Allowed property modifiers for a redefined method inJava...................c.ccccoooecevveccevccrinnnnn.. 214

-13-

Conference papers

Conference papers

[Ltt&al97a]
P. Li-Thiao-T¢, J. Kennedy and J. Owens, “Mechanisms for Data Interpretation of Metrics
for OO Systems”, TOOLS Asia '97 Conference proceedings, Beijing, China , Sept. 1997.
[Ltt&al97b]

P. Li-Thiao-T¢, J. Kennedy and J. Owens, “Assessing Inheritance for the Multiple
Descendant Redefinition Problem in OO Systems”, OOIS '97 Conference proceedings,
Brisbane, Australia, Nov. 1997.

-14-

Glossary of terms, abbreviations, notations and trademarks

Glossary of terms, abbreviations, notations and trademarks
i
\

Object-oriented technology introduced many concepts which have been interpreted differently
with the research community. This section describes the meaning given to the technical terms used
in the thesis so as to avoid confusion. For convenience, the "Smalltalk notation" will be adopted in

most cases unless differently stated.

Terms

e Originally, properties or attributes were used to describe characteristics of entities e.g. Entity-
relationship model [Chen76]. In the OO paradigm, it is commonly understood that they

represent both the instance variables and behaviour of the class.
* A behaviour or service for a class corresponds to a:
- method in Smalltalk and Java,
- member function iﬁ C++,
- feature in Eiffel.

e An instance variable in Smalltalk is the same as a local variable in C++ within a class

definition.

e A class variable in Smalltalk is the equivalent of a static variable in C++ within a class

definition.

e The declaration of the method name and arguments list is referred to as the signature of the

method. For typed systems, it also encompasses the return type of the method.

e Method redefinition is also known as method overriding. Name overloading is different than
redefinition in that it refers to the different signatures for the same method which are bound at

run-time.
e A pure virtual function in C++ is known as deferred function in Eiffel.

» A settor or gettor designates a method which, respectively, sets the value of an attribute or gets

the value of the attribute.

e Methodology: An organised, documented set of procedures and guidelines for one or more
phases of the software life cycle e.g. analysis or design. Many methodologies include a
diagramming notation for documenting the results of the procedure; a step-by-step “cookbook”
approach for carrying out the procedure; and an objective (ideally quantified) set of criteria for

determining whether the results of the procedure are of acceptable quality.

o The term process is understood as a defined set of activities to undertake to realise an objective.

-15-

Glossary of terms, abbreviations, notations and trademarks

e The Smalltalk image refers to the Smalltalk class library and some applications. When
Smalltalk is started, the Smalltalk executable system uploads the image in memory. An image
mainly consists of two files: the sources.sml file that contains all the source code and the
change.log that holds all recent user changes to the image. For any code changes, the system
re-compiles the source code into byte code that can be executed by the Smalitalk virtual

machine [GolRob85].

Abbreviations

e API: Application Programming Interface

e CASE: Computer-Aided Software Engineering

e DIT: Depth of Inheritance Tree

o ER: Entity-Relationship

o IDE: Integrated Development Environment

e OMT: Object Modelling Technique method created by Rumbaugh [Rum91].
¢ OO: object-oriented

e OOQOD: object-oriented design

e OOM: object-oriented modelling

Notations
e Level in inheritance

By convention, the depth of inheritance is numbered from the root class to its leaves starting from
0.

e Class property description

A description of a class, at depth of inheritance | can be defined as the description of its properties

i.e. Cj={variables, methods} where variables = |instq, insty, ..., insth] and methods =

<mth4(), mtha(), ..., mthp()>

-16-

Glossary of terms, abbreviations, notations and trademarks

Example:

The notation Co={jinstA, instB|, <mthA(), mthB()>} means that a class C is situated at level 2 in

the hierarchy, holds 2 instance variablesinstA, instB, and two instance methods mthA (), mthB()-

The parameter list will be given when necessary.

e Class property description with inherited features

There will be cases where some or all inherited properties have to be shown for a class. The
purpose of inserting inherited features in the notation will be mainly used to describe methods
which are redefined in a subclass. Thus, a class holding inherited methods i.e. methods defined at

least once in one of its parents will be noted

C = {[inheritedVariables], variables, [inheritedMethods], methods}

where

inheritedVariables= |linstq, insty, ..., insty||, inheritedMethods = <<mth4(), mthy(), ...,

mthp()>>

and inheritedVariables M variables = <, inheritedMethods ™ methods = <. The " 1"
denotes the fact that the properties are optionally mentioned when using the notation. When a

notation contains inherited methods i.e. <<__>>, the listed methods physically exist in the subclass
which means that those methods are the ones redefined and therefore inherited. Redefined methods
constitute part of the additional properties of a class.

* Properties access adornment

The Rational Rose 98' case tool defines access adornments to specify the type of access allowed
between classes, as well as on attributes, operations and roles. There are four types of access
adornments: public, private, protected, or implementation and are represented with the graphical

symbol appearing in front of the properties as follows:

Access Adornm ent Keys

ublic
rivate

rotected
implemented

Public: Public access means that the members of a class are accessible to all clients.

! Rational Rose 98, Rational Enterprise Edition, Copyright © 1991-1998, Rational Software Corporation, All Rights Reserved, Portions
©, 1992-1998, Summit Software Company, http://www.rational.com

Glossary of terms, abbreviations, notations and trademarks

Protected: Protected access means that the members of a class are accessible only to subclasses,

friends, or to the class itself.

Private: Private access means that the members of a class are accessible only to the class itself or

to its friends.

Implementation: Implementation access means that the members of a class in a package P are

accessible only by classes that import the package P.

e Inheritance relationship

If a class B is a subclass of A, the inheritance relationship is denoted B < A; therefore the depth of

inheritance of A < depth of inheritance of B.

Trademarks

¢ Sun Microsystems, Java and Java Development Kit are trademarks or registered trademarks of

Sun Microsystems, Inc. in the United States and other countries. http://www.sun.com.
e IBM® is a registered trademark of IBM in the United States. http://www.ibm.com.

e Microsoft, PowerBuilder, Microsoft Foundation Class (MFC), Windows, PowerPoint, Excel,
the Wizard function and Object Linking and Embedding are trademarks or registered

trademarks of Microsoft. http://www.microsoft.com.
e ENVY is a registered trademark of Object Technology International Inc. (OTI).

e Rational and Rational Rose are registered trademarks of Rational Software Corporation in the

United States and in other countries.
e Eiffel and Design by Contract™ are trademarks of Interactive Software Engineering.
e Borland® C++ is a registered trademark of Inprise Corporation
e ITASCA is a registered trademark of IBEX Computing SA

e Franz and Allegro CLOS language are registered trademark of Franz®, Inc.

http://www.franz.com

]

1. Introduction

1. Introduction

“Teaching kids to count is fine, but teaching them what counts is best” — Bob Talbert

The design of software applications using object-oriented (OO) concepts and techniques is a
challenging process where creativity, risk, uncertainty, experience, judgement and good sense
predominate. Many factors determine the success of application development. Current OO design
methods provide the designers with a logical and progressive set of tasks and techniques
permitting the discovery of many candidate design solutions to a problem. However, there are still
no reliable ways or “no teachable step-by-step rules” [Mey97] for producing good design. In the
final decision making process, the designers’ experiences and knowledge determine the choice of
the design solution. This choice reflects the degree of satisfaction of the requirements and criteria
of the problem, thus the notion of design trade-off. The design choices directly affect the future of

a project.

Object technology provides designers with invaluable concepts and techhiques that improve the
software development process. Examples of benefits include a better capture and rriodelling of the
business _requirements. Similarly, the software applications ‘produced gain benefits from their
degree of‘reusability, maintainability and adaptability to-new: reqﬁirements. Overall, such benefits
reduce the cost ofkthe development. To date, the cﬁrrent push for objeét technology on fhe market
is signiﬁcént. In many areas of computing such as object-relatiénal databases, knowledge
management or Internet based applications, the adoption of OO design methods and OO
programming languages have proven useful in building successful software applications. Héw
reproducible those experiences are in a different context is unknown. Software engineers have also
learned from unsuccessful experiences. Although object-oriented software development has
existed for decades, several fundamental aspects of object computing are, however, still the subject
of debate and are actively researched [AskBer92, Sho&al93, Web95]. Essentially, the issues relate

to the appropriateness of the OO concepts to tackle complex requirements of business applications.

Architectural issues are one of the major aspects of software design. For software to be modular,
one possible approach is to decompose complex problems into simpler sub-problems. In such a
way, the identification of modules is made easier and the important OO aspect of separation of
concerns is realised. The fundamental unit of construction in OO design methods is the notion of
object. It combines data and behaviour into a coherent entity. Each object represents a unique
concept in the real world. When objects are assembled together, coherent abstractions of real-
world problems are formed and the co-operation between objects permits the realisation of the
features of the application. The abstractions of an OO model are discovered during the

generalisation process. Overall, abstraction in an object model contributes to the desired

extensibility and reusability aspects of the components.

1. Introduction

Inheritance is the OO concept that permits the abstraction of objects. From a conceptual point of
view, inheritance is the mechanism by which a class referred to as asubclass conforms to another
class, its superclass, thereby forming a class hierarchy. Conceptually, the subclass can be seen as a
specialisation of its parent class. Pragmatically, from a software engineering perspective, authors
have also expressed inheritance as a mechanism for code sharing and code reuse. In a class
hierarchy, the parent classes provide properties that are inherited by their subclasses. Although it is
generally recognised that inheritance is one of the major aspects of OO modelling, it is also one of
the most difficult to master. In particular, the mechanism of method redefinition is problematic and

raises many conceptual design issues in the context of the class hierarchies.

The various proposed models of the concept of inheritance [Tai96] have undoubtedly affected its
essence. It is the obscure uses of inheritance that raise alarms concerning its interpretation and
validity. To date, the various interpretations are still subject of debate and the characterisation of
good uses of inheritance is problematic. Clearly, the design process requires the application of
skills and experience from the designers. When OO models present unconventional or suspect uses
of inheritance, the reuse, the extensibility and the maintainability of such models are compromised.
It should be noted that the advent of OO programming. languages has also contributed to the
 disagreement on the correct use of inheritance. One possible approach to tackle such a problem is

to reduce the risks for such suspect uses. To do so, guidelines also referred to as recommendations

or heuristics [Fir95, Rie96, R'l_Jm.96] have been proposed in order to identify and to expresé,. the -

“good uses” of inheritance. In general, heuristics appear as short textual description of the
appropriate usage of the OO concepts. Although a heuristic may be conceptually understandable,
the verification that an OO model satisfies it is difficult. Technically, depending on the nature of
the heuristics, suitable verification methods do not always exist. The area of measurement
techniques addresses such problems and is still actively researched. Ideally, OO design methods
aim at providing techniques or principles for the evaluation of “goodness” or “badness” of an

object model.

Assessing a design is difficult. Measurement science has suffered from criticisms concerning its
usefulness [Bas&al95, Bou89, HarNit96, HitMon95a, Kow93)]. Nevertheless, it is generally
recognised that measurement techniques are beneficial for tackling issues during the software
development life cycle. Assessment methods can be used for quantifying a particular design
aspect. Most of the founded criticisms in the literature concern the correctness of the metrics
themselves [Fen91]. The difficulty of acceptance of assessment techniques’ from the developers’
community is due to the additional burden involved in putting a measurement programme in place.
Also, unclear or non-meaningful feedback from the analysis of metrics results does not encourage

the use of such techniques. However, it has been generally recognised that traditional metrics

2 Assessment and measurement techniques will be interchangeably used but the latter term will imply the use of metrics as the

underlying technique.

1. Introduction

[Fen91] are not appropriate to the assessment of many aspects of object technology due to the
fundamental differences. Recent experiments with novel set of metrics [Bri&al94, Hen96, Kem96]
have therefore demonstrated the usefulness of the metrics in an OO context and emphasised the
need for further research. Again, it should be noted that the fast moving industry of object
technology has not favoured the adoption of measurement techniques during the design process.
Often, designers still rely on experience and “feel” for the evaluation of the quality of the design. It
is believed that the provision of adequate measurement tools will embody the designers’
experience and knowledge and thereby, will enable a smooth integration of measurement
techniques as part of the crucial design process. To do so, the quantification of the level of
goodness of an OO model necessitates a clear understanding of the recommended uses of the
object concepts as well as the identification of the context in which unusual uses of the concepts
may arise. Such issues can be addressed by heuristics and the derivation of appropriate metrics on

the object model is expected to shed light on potential unseen complexities of the design. -

Another important aspect of measurement techniques relates to the final phase of a measurement
programme: the analysis and interpretation phase [Bou89, BriCuc98, Ebe92, Hen96, RosHya96].
In the current literéturc, this area has seldom been addressed although fundamental to the overall
process. Usually, the derivation of metrics produces large data sets which require relevant -analysis
methbds without which meaningful conclusions cannot be extracted. Often, graphical
representations of the raw data sets facilitate the analysis process as unusual curves or charts may
indicate potential problems. However, it is believed that such a process can be further enhanced in

two ways:

e The use of various types of graphical representations. Often, metrics results are represented as
bar charts or curves but many other types of representations may also be appropriate. The
identification of characteristics of each may guide the process of interpretation to the desired

conclusions on the design.

e The use of various functions for narrowing down large data sets facilitates the analysis
process. Typically, when the conditions on which a problem appears have been identified, it is

interesting to isolate only the metrics results concerned.

In order to tackle the problem of evaluation of quality of an object model, this research work

envisages measurement techniques as the main instrument for design evaluation.

1. Introduction

Q{Object—Oriented design Measurement techniques

Heuristics/Guidelines

A

Integrated Object-Oriented Design and Assessment Process

Figure 1.1: Objectives of the research work

Figure 1.1 depicts the objectives of the work. To date, object oriented design methods, design

heuristics and measurement techniques form three separate areas of research. This thesis aims at

reviewing the main design aspects and factors relevant to the problematic evaluation of internal

quality factors of an object model. In particular, the case of inheritance is investigated. The

definition of an appropriate measurement plan is presented and it is demonstrated how the use of

metrics on sample object-oriented models sheds light on the complexities involved in the design of

class hierarchies. This work identifies the fundamental conceptual and technical issues for the

creation of such structures. In parallel, the experiments with measurement techniques contribute to

the definition of a possible integration of these techniques within the design process.

The motivation of this work originates from the following facts:

1.

The use of inheritance is desirable in software applications. OO methods have largely
illustrated their benefits in a learning context [Boo91, Bo094, Emb92, Fir95, Gra%4,
HenEdw94, Mey88, Mey97, Rum91, Wil96]. Nevertheless, its various uses, sometimes

contradictory, still generate debate amongst research and industry.

From a technical point of view, the control of the property inheritance scheme in class
hierarchies is complex and difficult [AdaMol95, Bou89, Mey97, Sei96, Ste&al96, Tai96,
Web95]. To date, the concept of inheritance seems to have lost its original meaning to comply

with the requirement needs.

Emerging experiments [Bri9%6, BriCuc98, ChiKem94, Dumé&al95, HarNit96, Kem96] and
popularity for measurement techniques seem to indicate that they represent strong candidates
for contributing to the design process [Avo94, BarSwi93, Bas&al94, Bas&al95, Bri&al9s,
Bri&al94, CheLu93, ChiKem91, Hen95, Hen96, Hit95, HitMon95b, LewSim98, Lew95a,
LiHen93, LorKid94, RosHya96, Whi97]. In particular, there is a need for further investigation

of assessment techniques for the inheritance concept.

Language designers have produced powerful and expressive features that manipulate
inheritance in ways which are sometimes questionable. The modelling gap between
fundamental design concepts and the features of programming languages still raises alarms on
the conceptual validity of a design solution [ArmMit94, Bou89, McKMon93, PapLeJ97,
Rie96, Sho&al93, Whif%6a]. Designers expect a design to be reusable and maintainable;

however, there are no methods that guarantee such criteria.

2.

1. Introduction

To illustrate the benefits of the use of measurement techniques, Figure 1.2 shows an example of
typical expected metrics results. This result has been extracted from chapter 5 and the detailed

analysis can be found there.

The use of measurement techniques for the assessment of an object-oriented design enables the
discovery of unseen behaviour or unclear design situations. The derivation of appropriate metrics
for the design ought to guide the designers to satisfactory indications or directions for
improvement of the characteristics assessed. Thus, measurement techniques give opportunities to

determine the level of goodness or badness of the design.

Figure 1.2: Measure of level of redefinition in the Smalltalk Object hierarchy

In Figure 1.2, the two bar charts represent the redefinition activity within the Smalltalk Object
class hierarchy. The measures taken are for two types of method redefinition: extended methods
(PEM) and replaced methods (PCRM). Clearly, the evolution of the redefinition activity down the
levels of hierarchy can be seen. In particular, the amount of PCRM is much higher than the
amount of PEM. Such a situation is unexpected and suggests further analysis of the peaks of the
PCRM The technique for metrics results analysis is detailed in section 3.4.

t

The thesis is organised into six chapters, plus “Glossary”, “Terminology”, “References” and
“Appendix” sections. Chapter two provides a background literature review describing the relevant
aspects of the concept of inheritance, the method redefinition mechanism, the area of heuristics
and the measurement process. The definition of inheritance is reviewed and it is shown how its
various interpretations affect the underlying property scheme. The identification of factors that can
potentially produce inheritance misuses is sought. The description of the method redefinition
mechanism clarifies the various ways of using the technique. Then, the investigation of heuristics
and guidelines for object-oriented design sheds light on the correct ways of using OO concepts.
Finally, to demonstrate the benefits of measurement techniques, the roles and the key practical

aspects for building and using a measurement programme are highlighted.

Chapter 3 outlines the motivation for assessing the property inheritance scheme. Given the
multiple interpretations and misuses of inheritance and the redefinition technique, a conceptual

design problem referred to as the multiple descendant redefinition problem is identified. In order to

- 2%-

1. Introduction

assess the inheritance characteristics of an object model, a methodological approach for class
hierarchy assessment is described. Then, based on the GQM/MEDEA software quality model, a
new set of metrics is proposed to measure redefinition in OO systems. Finally, a metrics
interpretation framework is presented to tackle the lack of current assessment techniques
concerning the extraction of meaningful feedback from metrics. In particular, an analysis and
interpretation technique details the benefits of using various graphical representations to represent
metrics results. It is shown how the discovery of unseen phenomena is facilitated and contributes

to the extraction of satisfactory conclusions.

Chapter 4 presents a prototype of a metric collector tool that embodies the features for the
derivation of the redefinition metrics. A brief analysis, design and architecture of the tool are given
together with other implementation issues. This prototype tool enables the automatic derivation of
the metric on class hierarchies, thus demonstrating the usability and applicability properties of the
metrics. The user interfaces are described and implementation issues for the Smalltalk language

are discussed.

Chapter 5 gives details of the experiments using the redefinition metrics. In particular, it is shown

how the analysis of the results permits the detection of unexpected redefinition problems. Various

graphical representations are investigated and the characteristics of each are outlined. In addition, a

simple example of a detection fec_hnique is presented.

Finally, chépter 6 discusses and concludes the thesis. An integration model of the design process
and assessment techniques is proposed and the potential benefits are presented. Further work
envisions a promising future for the science of measurement within an object-oriented design

process.

2. Background

2. Background

“The future has a way of arriving unannounced” — George F. Will

“Experience is the name so many people give to their mistakes” — Oscar Wilde

Advances in object technology have helped many aspects of the design process in software
development methodologies. Object-oriented methods aim at capturing and formalising the
knowledge for designing good quality software. Although object concepts seem well understood
and have proved beneficial, obtaining an acceptable and good object model is non-trivial.
Designing software remains hard. For years, a considerable amount of research literature has
discussed the concepts of object technology [Boo91, Boo94, Emb92, Fir95, Gra94, HenEdw94,
Mey88, Mey97, Rum91, Wil96]. Using object-oriented technology for design reflects the natural
desire of the industry and research community to manipulate concepts which seem appropriate for
solving real-world problems. However, the impedance mismatch or modelling gap between the
object concepts and the features of OO programming languages has recently changed the view of
éome authors of design methodology [Eli95, Liu96, Whi97]. “Is C++ a high-level or low-level
language? It depends how you use it!” stated Coplien [C.op92]. Implementation considerations
| .should be made in the design phase and not left to the 'programfner’s own decision. This modelling

gap has affected the design process in two ways:

¢ Considering both object concepts and the various implementations of the concepts in languages

leads to many alternative choices for the object model, thereby making design decisions
difficult.

e To keep the flexibility and “informality” of design activities for building various candidate
object models to a single problem, assessment techniques have been studied and have shown to
be promising as a design assessment aid towards the choice of the best suitable object model

i.e. the most appropriate trade-off.

Software design is an art therefore it can be assimilated as a creative process. Meyer stated that in
advanced software design there is no substitute for fresh thinking and creative insights [Boo94,
Cha&al92, Col&al94, Gamé&al95, Gra94, HenEdw94, Lew95b, Mey97, Rie96, Rum91]. Software
methodology provides us with good advice from past experiences. Rather than a strict guide to
design, methodologies propose flexible and general guidelines for software design. When good
quality software is obtained, implicitly, this pre-supposes that the “goodness” of a design can be
recognised from its “badness”. From a designer’s viewpoint, badness seems to appear easier to
recognise because of the currently known pitfalls [Web95] or obstacles [AskBer92] occurring

during software development.

-25-

2. Background

The following list describes the generally accepted characteristics for “good” software

applications:
e Usability: features of the software should meet the requirements and be usable.

* Maintainability: developed features should be as easy as possible to maintain with a minimum

of disturbance.

¢ Evolution: related to maintainability and reusability, the software should be open and flexible

enough to evolve with new requirements.

¢ Reusability: in a general sense, designers ought to reuse existing abstractions with minimum of

effort.

e Reliability or robustness: software applications should work in various circumstances i.e.
expected and unexpected situations should be tackled and the behaviour of the system should
work in a deterministic manner. In the case of unpredictable events, recovery mechanisms

should be provided.

Although most of the above criteria are desired when building applications, past experiences have
- shown that during design, there has to be a trade-off. The first reason for this comes from the fact
- that not all the criteria may be satisfied at the same time. The second reason is that the choice of
the criteria to be satisfied mainly affects the overall cost of the development. Software engineering,
which has existed for nearly four decades endeavours to bring solutions to this software dilemma.
It is noticeable that problems that were qualified as complex in the past generally become more

understood or solved with time.

In order to tackle the problem of assessment of an OO design, this background literature covers

two main topics as follows:

1. Inheritance and method redefinition: section 2.1 presents the notion of inheritance and
illustrates the problem of designing and identifying a correct class hierarchy. It is shown how
inheritance shifts from its formal definition and can be interpreted differently in OO
programming languages. As one of the main aspects of inheritance in a class hierarchy is the
behavioural aspect, a detailed description of the important mechanism of method redefinition

is given in section 2.2.

2. Heuristics and assessment techniques: section 2.3 explains how and why the problem of
assessment of object models can be tackled by the technique of heuristics during the design
process. Section 2.4 describes the area of assessment techniques and highlights its potential
benefits for the improvement of the quality of OO designs. A software quality model presents

the various aspects to be considered if a measurement plan is desired.

-26-

2. Background

2.1. Inheritance and associated problems
2.1.1. Use of inheritance

"Systems are not born into an empty world" — Bertrand Meyer [Mey88]

The inheritance mechanism is one of the key features for the extensibility and reusability aspects
of object-oriented systems [Boo94, CapLee93, Fus94, Gam&al95, HenEdw94, Mey88, Mey92,
OOP93, Rum91, Sha92]. The concept of inheritance was introduced nearly 30 years ago in the
Simula language [DahNyg66]. It has since become the core concept of the OO paradigm and one

of the most controversial topics of research for the last decade.

Many researchers have shown that the use of inheritance in OO systems is still very low
[HarNit96, Kem96]. It is suggested that the main reasons for this current state might be "the
culture of the developer", the performance considerations, the complexity of its use and the
amount of effort needed for maintenance and control of such systems. Inheritance has not been
fully investigatéd. Class hierarchy design ﬁecessitates_ a great effort of creativity and the main
difficulties lievin the fact that future additions of classes should be taken into account [Kem96,
Rum96]. Whether fhose characteristics are predictable or not influence the shape and structure of ‘
the hierarchy [Fir95]. ‘ '

Recenﬂy, a variety of models of inheritance have been well described by Taivalsaari [Tai96].
Although they offer a vast extent of expressiveness, all of the different mechanisms aré still ‘subject'
to conceptual design inconsistencies [ArmMit94, CapLee93, Fir95, Sei96]. In order to reuse the
features of classes, designers face the problem of property (attribute and method) reuse [Dev96,
KosVih92, Rum96] and method redefinition. The latter is a powerful mechanism that permits
behavioural flexibility in a class hierarchy however, it can also introduce inconsistent design

situations if wrongly used [Dev96, KosVih92, Mey88, Rum96, Sei96, Tai96].

Different languages allow different control structures and mechanisms to support reusability and
extensibility. Conceptually, the idea of achieving reusability is not new. In any type of approach to
a problem, the rule of thumb is "not to re-invent the wheel". The term “reuse” has generated a lot
of discussions within the research community as well as in industry. The promise of object
technology lies, for a major part, in the reuse of the existing code. Code reuse takes its origin from
the fact that a portion of code could be isolated and reused in another context. Thus, from a
simplistic point of view, reusability is seen as code reuse. Programming is similar to any type of
engineering process whereby factorisation and generalisation are necessary steps in order to obtain
consistent and generic "modules". Lalonde and Pugh [LalPug91] claim that hierarchies are
different structures depending on the notion of subclassing, subtyping or the is_a relationship used
when designing. Hierarchy design is always guided by rules or recommendations that are
described in OO methods.

-27-

2. Background

The validity of a class hierarchy is one of the most difficult tasks to assess. One can argue that a
system is considered good when it is functionally correct. In such cases, the appropriate strategy to
ensure the validity of the system is a rigorous testing strategy. This area of testing is beyond the
scope of this thesis; however, testing and measurement techniques could act as complementary
techniques. Evaluating the quality of a class hierarchy also concerns the evaluation of its structural
and behavioural organisation. An approach to assess a class hierarchy for criteria such as
reusability, extensibility and conformance can be tackled by measurement techniques [Bas&al95,
Bri&al95, ChiKem94, Dumé&al95, Hen96, LorKid94]. Although there are common requirements
and expected features of class hierarchies [AdaMol95, Mey88, Tai96], the variety of inheritance
models lead to different class organisations due to an emphasis on particular criteria to be
achieved. Thus, the existence of different approaches to class hierarchy evaluation. Compilers
already encompass technology to detect design errors such as type checking in strongly typed
languages such as C++. The principle of substitutability or conformance i.e. the type of a subclass

should conform to the type of its parent(s), is then ensured.

.Given that the aims of this thesié are to assess a particular aspect of inheritance i.e. the method
redefinition principle, sections 2.1.5 and 2.1.6 cover the property inheritance mechanism. As a
class hierarchy is the main_ structural organisation -using the full potential of the inheritance
relatidnship, emphasis will be put on the issues involved in designing such an architecture as well
as the possible ways of evaluating its design quality factors. However, it is important to consider
different aspects of inheritance which are necessary for better assessment. In particular, attention
will be paid to the “inheritance scoping control”, as it is the core mechanism permitting the
expected benefits of OO technology. Similarly, it will be interesting to look at the recognised
design problems associated with the use of inheritance. If it is possible to clearly identify typical

problems, it will be easier to detect and correct them.

In the next section, the study is mainly based on current OO programming language constructions
although not losing sight of a more theoretical view of the inheritance concept. The reason for this
lies in the variety of possible constructions offered by languages. Although being design
considerations, current OO methods do not encompass a description of those constructions as they
are often language specific. For instance, in Eiffel, it is possible to specify invariants, assertions
and the list of client classes that are allowed to use the class properties. This creates the semantic

modelling gap between OO methods and OO programming languages.

2.1.2. Class hierarchy organisation

The construction of class hierarchies still remains a problem due to the constraints involved and
the required criteria. The inheritance relationship is used in order to strongly couple classes in a
parent-child scheme. Although property inheritance constitutes a powerful mechanism for

achieving reusability and flexibility, it can also introduce inconsistencies in design that infringe the

-28-

2. Background

essence of inheritance. When developing an OO application, it is common to use libraries of
classes which provide general functionalities to a specific domain. Usually, a class library,
organised as a tree hierarchy, becomes part of the system developed. The main function of class
hierarchies is to provide the developer with an organised set of reusable and extensible classes. For
instance, all programming languages encompass such libraries for managing widgets, networks,
collections, etc. In the Borland™ C++ integrated development environment, the hierarchy is known
as the Object Windows Library (OWL) and provides the developer with the windows management
API. Microsoft™ and Sun Microsystems, Inc. have equivalent libraries respectively called the

Microsoft Foundation Class (MFC) and the Java Foundation Class (JFC)/SWING [Sun99].

In a class hierarchy, the classes newly added to a hierarchy extend and inherit from the classes
present in the hierarchy. The Smalltalk class hierarchy provides a single-root class called Object
and does not support multiple inheritance. Single inheritance simplifies the architecture of a
system and makes the maintenance easier, whereas the use of multiple inheritance involves
additional problems such as name space conflicts. Although it is possible to find equivalent
solutions to single inheritance structures, the benefits of code reuse may be compromised.
Inheritance in OO systems provides a feature dispatching mechanism that allows the sharihg and

selection of the code.

In many occasions, real-world objects have common behaviours but are realised in different ways.
For example, consider the two classes Bag and OrderedCollection, which are both structures for
storing elements. A bag contains elements with no particular order as opposed to an ordered
collection of elements which is indexed on a key. Both classes have the same behavioural
semantics of adding elements in the structure but in the case of an ordered collection, a key must
be provided in order to record the position of the element in the structure. Therefore, the

implementations are different but the interfaces can be the same.

Unfortunately, class organisation is problematic as many viable design solutions may be
discovered depending on how the notion of inheritance is used. The following sections describe
three main categories of inheritance uses that raise the problem of correctness and appropriateness

of each.

2.1.3. Subclassing, subtyping or specialising

Different class hierarchy organisations can be designed depending on the model of inheritance
used. Taivalsaari [Tai96] showed that three completely different tree hierarchies can be drawn

depending on the relationship used for design.

-29.-

2. Background

| Object | | Object | | Object |

Collection

Collection Collection

[Bag] [Set] [IntegerSc;] E@

| PrivateHashArray |

Bag | IntegerSet |

1) @ 3)

IntegerSet

Figure 2.1: Subclassing (1), subtyping (2) and specialisation (3) hierarchies

In Figure 2.1, the three possible hierarchy organisations are shown. Each of them represents a

possible use of inheritance for modelling the different kind of Collection classes.

Subclassing refers to an impleme_ntation mechanism where the purposé is to share code. For
exarﬁple, the Smalltalk class hierarchy - has bée‘n criticised “for’ its non-conventional use of
inheritance i.e. implementation 'inheritdnce. When the addition of new classes in the hiérarchy (i.e.k
subclassing) is done because the parent class-holds the required services without consideration for
- other services which might not apply to the new class’ instances, the new class does not conform
to its parent class. Thus, as the new class inherits all unwanted services from its parent class,
incorrect calls can take place, and potential exceptions can be raised. In all weak-typed languages,
this kind of inheritance is possible to implement. Implementation inheritance as discussed by
Meyer (see inheritance taxonomy’ detailed in [Mey97]) can be referred to as a legitimate case of
use of inheritance. Meyer emphasised that implementation inheritance is conceptually valid as
long as the subclass still conforms to the parent class. Recall that one of the criticisms concerning
implementation inheritance relates to the fact that a subclass would conform to only some of the
parent’s properties, ignoring the remaining although inheriting them. In a better design situation,
the parent would have cancelled the unnecessary properties for its children. However, assuming
that a type equals a class, such non-conformance of classes in a hierarchy can be detected at

compile time.

Subtyping refers to a substitutability relationship between a subclass and its parent class. This
directly relates to the type of OO programming languages. Languages dictate the development
spirit as they belong to two main categories: weakly typed and strongly typed systems. Strongly

typed languages claim that the development of more reliable applications is possible while weakly

? Note that the described categories represent only a subset of Meyer’s inheritance taxonomy [Mey97], relevant to the analysis.

-30-

2. Background

typed languages have a high productivity rate with not much overhead. The type-check is done at
compile-time for the former while an exception would be raised at run-time for the latter. Until
now, the commercial market has been mainly interested in strong-typed languages such as C++
and Ada. However, interpreted languages such as Smalltalk usually offer a rapid development
environment where software applications can be quickly prototyped and tested. One noticeable
difference between the two categories of languages relates to the inheritance hierarchy structure.
Although two hierarchies may be different, they may satisfy the same requirements. This
emphasises the fact that the goodness of a class model (e.g. class hierarchy) is difficult to define as

well as difficult to realise.

Specialisation inheritance respects the conformance rule. A child classis_a particular type of the
parent class, therefore a specialisation of the parent. Another way to describe this mechanism is to
consider a subclass as a subset of its parent classes whereby all features of the parent apply to all
its heirs. Conceptually, specialisation inheritance permits a clear categorisation of objects

regarding their intrinsic properties; therefore it encourages the use of abstraction.

Note that the root class, in a single-rooted inheritance tree must be the most abstracted class in the
hierarchy. Smalltalk’s root- class* encompasses all the generic behaviour inherited by all the
subclasses. A single-rooted approach for a class hierarchy incurs some problems for the
management of the classes. For example, when developing an application with Smalltalk, the
library classes and the application classes are built within the same class hierarchy. This non-

separation of provided or newly built classes makes the release of an application difficult.

These different categories of class hierarchies may impose severe restrictions on some aspects of
the future development of the hierarchy. More research is necessary in this area in order to clearly
identify all possible effects and problems incurred by the use of a particular category. It is,
however, possible to evaluate the “goodness” of a class hierarchy regarding two crucial aspects:

usability and extensibility. This is described in the next section.

2.1.4. Usability and extensibility

Two main quality factors are the usability and extensibility of class hierarchies. The notion of
extensibility refers to the capability of adding new features to a class or new classes to an existing
class library. New classes are seen as specialised versions of their parent classes. An inheritance
relationship indicates a strong form of coupling between the classes where common behaviours are

shared. This kind of use relates to a functional-orientated approach whereby the use of a class is

* Many recent discussions from the X3J20 committee for Smalltalk [X3J96] standardisation has raised the question of having a class
hierarchy inherit from nil instead of the Object class. This would enable the creation of many class hierarchies rather than a single-
rooted hierarchy.

.31 -

2. Background

accepted when the required functionality exists regardless of the conceptual correctness of the

classes.

The major difficulty when using a class hierarchy depends on the level of depth of the tree. The
deeper the level, the more difficult the understanding and use of the classes. This is where the
concept of inheritance is paradoxical in the sense that, in theory a class hierarchy should be deeper
because it increases the general level of abstraction, but in practice it rapidly becomes difficult for
humans to master deeper levels in the hierarchy. Therefore, there is a large burden for the user if
attention is not paid to building hierarchies where child classes conform to parent class(es).
Although the level of difficulty can be defined differently among designers, current commercial
class hierarchies are not straightforward to approach and this raises the need for further research in
making efficient use of complex hierarchies. For instance, suppose that it is requiréd to extend a
particular branch of a hierarchy which is already deep (Riel [Rie96] considers a level deep when it
reaches the magic number seven), it becomes difficult to understand behaviour of each class in the

branch.

With the concept of a class contract [Mey88, Ste&al96], emphasis is put on the specification of
the interfaces of the class. If each class encompaéses a high number of publicly available methods
which are inherited down the brénch, the final concrete class from which extension is planned
becomes difficult to understand. Indeed, the first step to extend the hierarchy is to localise the
correct class from which it is relevant to subclass the new class to be added. A quick look at the
class names in a particular branch should already pinpoint interesting classes to reuse. A simple
approach is to “look-up” classes higher in the hierarchy in a bottom-up fashion. Briefly, starting
from the closest parent from which a derivation is desired, it is possible to scrutinise the class in
order to find desired abstractions. Thereafter, the same approach for higher classes in the hierarchy
can be taken. In the case of multiple inheritance, a multiple descendant path has to be studied with
attention to possible conflicts such as the name space conflicts from repeated inheritance [Mey88].
Whenever a new class is introduced in a hierarchy, it should conform to all ancestor classes.
Without tool aids such as class hierarchy browsers in IDEs, it is difficult to understand classes
from an existing hierarchy. If CASE tools are used, the designers' task becomes easier because of

the graphical representation of an object model.

Other problems of class reuse and extensibility relate to a psychological issue. One of the
heuristics provided by Riel [Rie96] states that the design of a branch of a hierarchy should be
given to a single architect designer. This comes from the fact that developers tend to implement
their own versions of programming code as soon as there is a suspicion of possible unreliability of
existing code. In many cases, it appears that re-implementing code is much faster than trying to
understand and modify what has previously been done. Indeed, this is not recommended, but it

happens for many reasons:

-32-

o

2. Background

* Programming practices of each developer: everyone has his own style of programming e.g.

syntactical language construction or presentation, algorithmic preferences, etc.
e No available documentation explaining previous class behaviour and semantics.

e Complex dependencies between classes: if classes are strongly coupled, it is very difficult to
understand the general behaviour of one single reference to an interface. Also, this refers to the

problem of undesired side-effects generated by method dependencies.

Class addition is one way of extending class hierarchies. Another possibility of extension can be
done within an existing class itself. Typically, the extension of a class interface broadens the
behaviour of the class. The higher a class is in the hierarchy the more abstract it is, which means
that the behaviour must also be abstract enough so that it will be relevant to all subclasses,
otherwise the conformance rule is broken. For this reason, deletion or modification of the
behaviour of an existing class is highly critical as other client classes might rely on the deleted
behaviour or expect a different behaviour. These class and hierarchy management issues are
studied in the schema evolution research area for databases. Further details can be found in

[BanKim87, Bar&al93, Ber91, Cas93, CheLee96a, Dic95, Gib90].

The support for reusability and extensibility through inheritance is different across object-oriented
programming languages. It relies on the type of inheritance scheme used (see section 2.1.3).

Consider a class A in the Smalltalk hierarchy:
Object subclass: #A .
instanceVariableNames: "
classVariableNames: "
poolDictionaries: " |

Class A is declared as a subclass of the root class Object, therefore A inherits all variables and
methods that the Object class holds. There is code reuse as soon as the subclass A uses inherited
behaviour. In Smalltalk, there is no declarative construction which forbids a subclass to inherit
from a parent's property. With the various constructions allowed in programming languages, it is
possible to introduce conceptual inconsistencies particularly when using inherited redefined
methods. The incorrect use of redefinition leads towards incorrect classification and furthermore to

an incorrect behavioural inheritance [ArmMit94, Hen96, Mey97, Rum96].

Given the possible uses of inheritance in class hierarchies described above, the next section
presents a formal definition of inheritance and highlights the implicit property inheritance scheme

suggested by the definition. It is precisely the way the property inheritance scheme is used that

enable the designers to produce conceptually orthogonal class hierarchies.

2. Background

2.1.5. Property inheritance scheme definition

Inheritance is the main mechanism which supports the realisation of criteria such as reusability and
flexibility [Hen94, New&al96]. An addition of a class to an existing class hierarchy specialises a
branch of the tree, thereby extending it. By inheriting features from ancestor classes, reusability is
also achieved. However, there exist many models of inheritance and the correct application of any
model is debatable [LiHen93, Sei96]. The formal definition of inheritance is characterised as
follows [BraCo0090, Tai96]:

I | Cc=P®AC

where a new class C is shown as a combination (®) of a set of properties inherited from an
existing class P and the new properties (A) which make C a specialised version of P. In this
equation, the relation superclass/subclass is assumed to be transitive, therefore P includes all
cumulated properties from its own parents. However, the inheritance scheme of properties from
parent class to child class is open to many interpretations. Taivalsaari [Tai96] explained thatP
represents the properties inherited from an existing object or class where, in fact, C is able to |
inherit from many classes either in the same descendant branch or multiple branches if in a
- multiple-inheritance situation. It is generally accepted that the deeper a class is in a hierarchy, the
more difficult the control of inheritance becomes. Therefore, leaf classes are more subject to bad
design than their parents are. |

To illustrate how the properties are inherited in equation (1) according to the definition of

‘inheritance, the set of properties of a subclass SubCls of a class Cls becomes:

2) SubCls = Properties (Cls) ® Properties (SubCls)

where
SubCls < Cls i.e. SubCls is_a subclass of Cls,
Properties (class) = { inst | inst € <Attributes>, mth | mth € <Methods>}

Properties (class) is the set of attributes and methods of a class i.e. <Attributes> and
<Methods> respectively refers to the set of possible instance variables and the list of methods in

the class.

Introducing the origin of properties in (2) gives:

3) SubCls = Properties;yheriteq (SUbCIs) @ Properties (SubCls)

where Properties;nherited (SUbCIs) = { x | x € Properties (Cls), x is publicly available to

SubCls},

From (2) and (3), a subclass SubCls is a combination of its inherited properties and its currently
defined ones. (3) introduces properties overlapping in the definition when reuse of properties is

achieved.

-34-

2. Background

Properties gyaiineg (SUbCIS) < Properties,nesiteg (SubCls)

Properties ggsfineg (SubCls)
= {x | x € PropertieSuneriteg (SUbCls),
x is replaced, extended or realised }

Figure 2.2: Class properties

Properties eqefined(SUbCIs) are the (inherited) redefined properties as opposed to
Properties;nneriteq (SUbCIs) which is a superset including the ones accessible and used without

modification. Because of the variety of possible modifications to a property such as complete
redefinition, extension or realisation, there is a possible source of incompatibility between a class
and its subclass. As stated by Taivalsaari, inheritance use does not guarantee a conceptual
specialisation intention. The mechanism of redefinition has been criticised [ArmMit94, Fir95,
KosVih92, Mey88, Rum96, Tai96] for not bearing any kind of semantic relationship with its initial
implementation, especially when the method is completely overridden. Unfortunately, the
inheritance “scoping” controf facility does not prevent this conceptually inconsistent situation.
Indeed, a non-strict is_a policy is more likely to introduce unsubstitutable classes and is used

either for convenience reasons or because it uses_a parent class property.

This section reviewed the formal definition of inheritance and showed the implications of the
definition with tegard to. the property inheritance scheme. It becomes- clear that property
inheritance is a key aspect to the assessment of class hierarchies. The next section describes the

property ownership transfer and the consequences on the design.

2.1.6. Property ownership transfer

As seen in the previous section, the property inheritance scheme states that properties of a parent
class should be inherited by all its heirs whatever the level in the hierarchy. In a child class,
visibility and accessibility of a property is defined in the parent class. This means the child class
is then able to change the property values i.e. public inheritance of properties implies a property
ownership transfer from the parent class to the child class (Figure 2.3). Due to application
requirements, e.g. business rules, restrictions have been added to this notion of inheritance. Not
all properties of a parent class can be inherited by its subclasses. The representation of a real-
world entity by an object often necessitates hiding some of its properties from other interacting
objects i.e. encapsulation. This facility permits an object to manage internal properties for its own
purpose. In OO programming languages, attributes declared as private can only be accessed

within the class where it has been defined. Private attributes are not inherited by heir classes. The

* The process of declaring appropriate modifiers to a class, an attribute or a method will be referred to as the inheritance scoping control

facility.

235

2. Background

main variants of property inheritance features of four OO programming languages are described
below. It is important to note that all possible features allowed by programming languages are
subject to design problems when not used correctly.

/ concrete classes

concrete classes
with their accumulated

properties

Figure 2.3: Transfer of property ownership in an inheritance hierarchy

In OO programming languages, the transfer of property ownership (Figure 2.3) is realised
by the application of property modifiers to the property. The next section presents various
encapsulation schemes offered by programming languages and illustrates their fundamental
differences.

2.1.7. Encapsulation: visibility and accessibility of properties

Figure 2.4: Example of transfer of property ownership

In OO languages such as C++, Eiffel or Java, there are syntactic control declarations which allow
the control of the scope of the inheritance of the properties from a parent class (Figure 2.3, Figure
2.4). Various control schemes are available depending on the language. Property modifiers can be
applied at class, variable and method level. Although there are exceptions, in most languages the
inheritance of properties is done in a top-to-bottom direction. It is the parent(s) class(es) which
define the properties to be inherited by its heir classes (Figure 2.4). The main three basic property
modifiers are public, protected and private [Str90]. In the previous paragraph, public and private
were presented. When the protected modifier is applied to a property of a parent class, only its
subclasses are able to access the property. This mechanism restricts the visibility and accessibility

of a property to descendant classes in a particular branch of the hierarchy.

2. Background

Other types of modifiers exist depending on the language. For example, in Eiffel, a parent class is
able to define a subset of its subclasses which is going to inherit a particular property as opposed to
all of them. Stopping the inheritance of properties as described in section 2.1.8 is conceptually
questionable as it breaks the transitivity mechanism of inheritance. Although valid reasons exist
for the presence of such modifiers e.g. optimisation, standardisation and security, the mechanism

appears as a language feature issue which conceptually affects the quality of the design.

Java
P - friendly

- public
- public P

- protected
- protected - private

- private - final

- static \ 3 Class) / . s'?atic
Smalitaik /v variables \

- instance | |

methods Eiffel
- class < / - exports

Figure 2.5: Property modifiers in OO programming languages’

One of the aims of the authors when developing the Java programming language was to provide a
language for which developers would feel familiar with. For this reason, Java syntax [Tea&al96] is
close to the well-established C language (Figure 2.5). Most of the complexity of the C++ was
removed although retaining the main features. Java claims to improve the flexibility and
maintainability of programs. Note that other modifiers may exist for the illustrated languages,
however, they are not relevant for the purpose of this document.

The following description covers the main arguable modifiers in Java. In addition to these
modifiers, it is possible to define packages, which are viewed as self-contained modules.

Syntactically, a Java class declaration is of the form:

modifiers class newClass
Modifiers does not actually affect the class itself but determine how the class will be handled in
case of addition of new classes or features to classes. Modifiers, in Java, are of different types:
friendly, public, private, protected, final and abstract In C++, when the friendly or public
modifiers are applied to a class, other client classes have a full access to the properties of the
server class. The only difference is that friendly provides access to classes in the same package i.e.

group of classes.

The semantics of some modifiers are controversial because of the consequences of their use. It
becomes difficult to control the whole list of properties together with restrictions imposed by the
modifiers at each level of the hierarchy. In addition, side-effects are easily introduced when classes

are complex. For example, encapsulation can be violated when attributes of a class are declared as

® The figure only shows the relevant property modifiers of four OO programming langages.

<37=

2. Background

public, giving direct access to subclasses. The correct choice of property modifiers is an important
task when an inheritance relationship is used but also remains one of the arduous design issues.
Some errors can be statically checked by the compiler, or dynamically in the case of an interpreter.
Unfortunately, this has long been seen as an implementation issue. It is arguable that such
problems are directly dependent on the architecture and design adopted, therefore language
features influence and affect the design. Only recently, such considerations have been described as

part of the analysis and design methodology [Col&al94, Mey97, Whi97].

The next sections will show how the concept of inheritance shifts from its definition and why the
design of class hierarchies becomes even harder with the constraints imposed by new types of

information systems.

2.1.8. Consequences of encapsulation on the inheritance scoping control

Controlling the property inheritance scheme

In current software development methodology, little has been described about ways of controlling
the property inheritance scheme. In practice, ina éommercial class library, the amount of inherited
‘ p'roperties in the leaf classes is usually high. In consequence, tracking back the different uses and
definition applied to properties in ancestor classes is not straigﬁtforward. O’ften, it is assumed that
propertiesrand behavioﬁrs have consisteﬁt semantics. The khowledge of fhe history of inherited
properties is crucial when considering the addition of new classes to an existing class hierarchy.
Possible design errors concerning the conformity of a class to the parent(s) class(es) are then
reduced. It is noticeable how inheritance is still not generally used or accepted in industry.
Cartwright [Car98] stated that only “experts”, i.e. persons who know how to control and maintain

complex inheritance structures, were doing so.

When considering the essence of inheritance and its uses [Tai96], designers are facing the dilemma
of using powerful features of languages without being able to completely control the effect of their
use [ArmMit94] e.g. Java language. It can be argued that the control over property inheritance only
adds an additional workload for the designer, as there is no recognised common standard set of
modifiers (Figure 2.5). Instead, each programming language has its own syntactic constructions.
For example, in Smalltalk Express’ there is no equivalent method modifier for the private®
keyword in C++ or Java. Any method in a class can access any other method declared in another
class. Therefore, at method level, Smalltalk provides the designer with fewer features to ensure
information hiding. Instead, programmers need to keep in the “spirit of OO” and not infringe the

rules, although this is possible. Often, theoretical and conceptual issues are ignored in favour of

’In this thesis, Smalltalk Express™ designates the version based on Smalltalk/V® Winl6 and WindowBuilder® Pro/V provided by

ObjectShare®, a Division of ParcPlace, http://www.objectshare.com

¥ In Smalltalk, all instances variables are defined as private whereas instance methods are publicly inherited.

-38-

2. Background

pragmatic solutions [Tai96]. This situation has been generally recognised as an arguable use of
inheritance as prediction and extension of an existing class hierarchy becomes difficult and un-

maintainable. Clearly, there is a need for additional control of the property inheritance scheme.

Abstracting for controlling inheritance

Conceptually, classification techniques imply the existence of a category of classes with
similarities from a structural and behavioural viewpoint. Therefore, it is sensible to have such a
property inheritance scheme in order to cover a wide range of real-world problems. If a class holds
methods which are to be inherited by some branches and not others, it might suggest a classic
design problem where the parent class represents more than one concept, therefore containing
methods which might not apply to all of its subclasses. On the contrary, it is recommended to use
abstract methods (also called deferred in the Eiffel terminology) in a class where only the interface
of the methods is provided and all subclasses are forced to give their own implementation. This
type of inheritance is called reification inheritance. In such cases, methods in subclasses of the
same -class usually have different implementations i.e. polymorphic methods. In Smalltalk,
declaring a method as abstract is not done via a modifier. Instead, the body of the abstract method

‘contains the implementedBySubclass message which has the same effect (see example below).

: Object subclass: #Test
 instanceVariableNames: "
classVariableNames: "
poolDictionaries: "

Test instance methods

realisedMethod
Aself implementedBySubclass
For leaf classes, the immediate advantage is to reuse and extend the inherited properties. Often
seen incorrectly as a simple code reuse mechanism, abstraction is a conceptual technique
permitting the extraction of similarities from objects to form new coherent abstractions. Where a
class contains one or more abstract methods, the class is referred to as an abstract class. By
consequence, instantiation of an abstract class is prohibited. Introduction of abstract classes in a
hierarchy is recommended. However, deep class hierarchies are still difficult to manipulate due to
the many levels of depth. Often, this results in cases of ignored inheritance, especially when
considering incremental development of classes. Nevertheless, it is generally recognised that the

support for adequate documentation and tools reduces the risk of unusual inheritance situations.

-39-

2. Background

Case of multiple Inheritance

In OO languages that support multiple inheritance such as Eiffel, the publicly declared properties
of all the parent classes are inherited by the subclass. Although the concept is sufficiently
expressive to represent some categories of problem, the use of multiple inheritance generates
obscure design problems concerning the property inheritance scheme. One of the most studied
problems concerns the name spacing issue. When a subclass inherits from two parents (or more),
all inherited properties should be accessible by the child class. If the parent classes contain
properties with the same name, a conflict has to be resolved and the subclass has to decide which
of the properties to inherit. In some development environments, the compiler statically checks for
such problems and a default inheritance scheme may be provided when potential conflicts arise.
Consider two base classes LIST and ARRAY which both define two features: print and show.

With Eiffel, it is necessary to use the renaming mechanism to prevent name clashes.

class FIXED_LIST [T] export ...
inherit
LIST [T] rename print as printList, show as showList;
ARRAY [T] rename print as printArray, show as showPrint
feature

... specific features of linked-size lists ...
end --class FIXED_LIST

Figure 2.6 illustrates another classic example of use of multiple inheritance. In a class library, the
Stream branch provides a framework for managing data structures, input and output
functionalities, sequential and random accesses. Intuitively, a ReadWriteStream class would
make use of multiple inheritance and inherit from both the ReadStream and WriteStream
classes. Then, a FileStream inherits from the ReadWriteStream, thereby all its parent's
properties.

Stream
e

f ReadStream an‘teStream

\\//

A
‘ FiIeSt-ream |

Figure 2.6: Stream hierarchy with multiple inheritance

Graphically represented in Figure 2.7, a new added subclass cumulates all properties of all its

ancestor classes along the different branches.

2. Background

New added subclass New added subclass
Single inheritance path Muitiple-inheritance paths

Figure 2.7: Traversal paths for single and multiple inheritance

Therefore, name space conflicts arise not only from the direct parent classes to the child class but

from all ancestor classes.

In general, the levels of depth in class hierarchies affect the control of inheritance. Paradoxically,
the abstraction technique promotes such a situation, thereby making the design of class hierarchies
problematic. The next section illustrates the most common inheritance design mistakes. This is
intended to present the underlying design issues and the recognition of good design practices.

2.1.9. Common inheritance design mistakes

Over the past decade, many authors have presented cases of misuse of inheritance. Most of them
argue the conceptual validity of non-conventional ways of implementing the inheritance
relationship [AdaMol95, ArmMit94, Fir95, KosVih92, LalPug91, PapLeJ97, Web95, Wil96]. The
main reasons given are that they affected one of the criteria such as maintainability, reusability or
flexibility of the design. In most cases, the conclusion was that the arguable inheritance case
presented impacts the overall cost of the development in terms of future evolution of the design.
Rather than an exhaustive list of inheritance design mistakes, this section describes the main
example problems and highlights the design attributes which are of interest in an assessment
perspective. Also, it helps at recognising the classic design pitfalls for the identification of

problems during a measurement programme.

One of the major problems in software development is, for any designer, to keep in mind all
possible dependencies between components in the architecture. Meyer stated that modules should
be understandable by themselves. If a component requires the knowledge of other information in
other modules, it clearly shows that they are dependent on each other. Therefore, the change of one
component might also require the change of the other i.e. they are dependent on each other.
Although not recommended, as modules or objects rely on each other for communicating
information, dependency or coupling exists. The issue is to control it. To help the designer, tool

support is clearly desired [Bri96].

-41-

2. Background

Another example of design issues concerns the paradox between what could be understood as an
optimisation task and design tricks or tips. When a class relies on information given by another
class, messages are sent back and forth according to the classic client-server model. An alternative
design choice would be to make the information available in the original class, so that no messages
are exchanged between objects. The reason suggested for such a choice is the possible gain in
performance and context switching. This is a wrong design choice as the eventual benefit depends
only on the internal architecture and algorithm of the compiler or interpreter. In addition, the
original class might no longer constitute a single abstraction and possible duplication of
information is likely to happen. Clearly, the design results in code of obscure quality. Often,
common design inheritance mistakes are mainly due to the side-effects produced during
incremental refinement and development of the classes. Examples of common design mistakes,

identified in many OO methodologies [HenEdw94, Mey88, Rum91, Web95], are illustrated below.

e Breaking encapsulation: when a child class inherits from a parent class, the child class has
direct access to all inherited properties including instance variables of its parent. Amongst other
use of inherited properties, an instance of the child class is able to directly manipulate the value
of an inherited attribute. As recommended by any OO method, access to a private instance

variable should alwayg be. done by accessor, gettor and settor functions.
¢ Concept and implel;nentation: tree hierarchies have been widely used to mainly represent four
abstraction principles:’
* Generalisation/Specialisation.
* Aggregation/Decomposition.
* Classification/Instantiation.
* Grouping/Ungrouping.

The inheritance relationship definition validates the first case only. Often theis_a relationship
has been mistakenly used instead of the has a relationship (aggregate components) or
is_implemented_using relationship (behavioural reuse facility). Although the representation as
a tree hierarchy is conceptually valid, the relationship between the classes is fundamentally

different. Consider the example below where a STACK class is declared as a subclass of the
LIST class.

Object subclass: #LIST
instanceVariableNames: 'listOfElement’
classVariableNames: "
poolDictionaries: "

STACK subclass: #LIST
instanceVariableNames: 'top bottom currentPointer '

_42.

2. Background

classVariableNames: "
poolDictionaries: "
A better design alternative defines the LIST class as an aggregate of the STACK class:

Object subclass: #STACK
instanceVariableNames: 'top bottom currentPointer listOfElement'
classVariableNames: "
poolDictionaries: " !

STACK instance methods

initialise

listOfElement := LIST new.

In his taxonomy of inheritance, Meyer [Mey97] refers to the first example as facility

inheritance. He argued that this solution is perfectly viable and conceptually acceptable if all
the behaviour provided by the LIST class can be applied to the instances of the STACK class.
Meyer identified two forms of facility inheritance:

* Constant inheritance: in which the parent yields constant attributes and shared objects.
% Operation inheritance: in which it yields behaviour.

e Class coupling generates dependencies: any type of coupling ’between classes implies class
dependencies. Lakos [Lak96] méntioned that for compiled languages, "a compo,rient y debends
‘on a component x if x is needed to compile or link 'y"'. Many forms of coupling exist
[HitMon95b] and sometimes, they generate hidden side-effects problems. For example, in the
Lisp-based ITASCA™ Distributed Object Database Management System [Ibe94], the

declaration of a class and its attributes has the following syntax’:

(def-class DEPARTMENT

:document ‘Department class” ;; comment about the class
:superclasses (ROOT) ;; parent class
:abstract NIL)

(change-attribute ‘DEPARTMENT ‘Group :classp NIL
:document “Instance variable Group”

:inherit-from NIL

:composite T

:dependent T

:domain ‘(set-of COMPUTING-GROUP)
linit NIL)

® ITASCA™ API is based on the Allegro CLOS language, Franz®, Inc.

-43-

2. Background

In the above example, an instance variable named Group, of the DEPARTMENT class is of
type COMPUTING-GROUP. The COMPUTING-GROUP class is declared as dependent
aggregate (:composite keyword) of the DEPARTMENT class. In other words, all component

aggregates (instances of COMPUTING-GROUP class) depend on their container part

(instances of DEPARTMENT class). By consequence, a deletion of an instance of the

container implicitly deletes the aggregate objects as well. This dependency mechanism is

indeed dangerous if the contained objects should exist independently of the container objects.

Coupling can be categorised in three groups [HitMon95a]:

* instance variable relationship: in a client-server model:

Server

\

Client |

ServervarA;

\

v \

S

Figure 2.8: Coupling with instance variable

In Figure 2.8, the simplest form of coupling is done in declaring an instance variable: Server

varA; in the Client class i.e. aggregation.

* behavioural relationship:

Figure 2.9: Coupling with method

Client

In Figure 2.9, methods declare local variables of a particular class type. Although the scope of

the local variables lasts only during the execution of the method, a coupling is nevertheless

established.

A variant of the behavioural relationship is realised through the method signature:

Figure 2.10: Coupling with method signature

m2(Server varA)

1

2. Background

In Figure 2.10, the coupling is realised in the declaration of the passing parameters. In order for
the method to understand the argument types, the types are also declared within the method's
signature.

* inheritance :

Client

e
Figure 2.11: Coupling with inheritance

In Figure 2.11, when a class inherits from a parent class, it also inherits all the publicly declared
properties. This type of coupling is qualified as strong coupling as opposed to weak coupling.

e Classification or objectification: the problem of finding the best classes is still one of the
major problems of OOD. Many methods propose an object-centred view to start off the design
and apply abstraction wherever needed in order to extract potential classes. Alternative choices
are always possible and the decision depends on the context and the specifications of the
problem. For instance, there is sometimes hesitation in choosing between different constructs

such as the use of an attribute or a class. Consider an ENGINE class modelled as follows:;

Engine
make : string
model : string
year : integer

engineSize : integer
engineType : {“Car”, “Plane”, “Amphibian”}

Figure 2.12: ENGINE class

Alternatively, it is possible to create as many classes as types of engines and declared each of

them as subclasses of a more abstracted ENGINE class:

Engine

make : string
model : string
year : integer
engineSize : integer

P g

Car Plane | | Amphibian

Figure 2.13: ENGINE hierarchy

-45-

2. Background

The design choices arise when the classification can be made depending on many factors.
Meyer stated that a common mistake is referred to as the faxomania mistake. A simple boolean
or enumerated attribute such as a car’s colour, is used as an inheritance criterion even though

no significant feature variants depend on it.

Data-centered or functional-centered: traditionally, designers were concerned with the data
structures of entities, particularly for database schema design [Chen81]. With the introduction
of object technology, the consequence was that resulting classes were used merely as a facility
for encapsulating data structures with little behaviour attached, therefore giving no additional
benefits from the traditional view. On the contrary, when the emphasis was functional-centred,
the resulting classes were more used as a grouping unit facility and did not reflect a real-world

object. Abstractions were not captured and objects were seen as a set of procedures.

Class size and class abstraction: the size of a class should not be relevant when building a
model. However, it can be used as a good indicator of excessive or non-effective class design.
For example, if a class size, in terms of number of methods, is .hi’gher than the average number
of methods, for the whole set of classes in the system, this might indicate a potential wrong
decomposition of the class considered. In such cases, the class might do too much. On the
contrary, when a class includes a small number of methods, it might indicate a strong
dependency with other classes. Often, such classes require to be redesigned as they may capture
many abstractions or none at all. Such problems relate to the notion of class cohesion. In the
case of base classes, the application of generalisation is done in a bottom-up fashion and
common properties should reside in classes situated in the top part of a hierarchy. If a class
holds many abstractions or is not refined enough, it probably contains a subset of properties
which would not be applicable to all its subclasses. A consequence of such a situation is that
the cancelling of property inheritance, also called disinheritance is likely to happen in lower

classes.

Inheritance or delegation: inheritance is one possible mechanism to share information
between objects. The delegation mechanism is another possible way to achieve the same
although the underlying semantics is based on a client-server model as opposed to the
inheritance model. Due to the similarity of the resulting consequence of both mechanisms, a
common mistake is to use inheritance when delegation was appropriate and vice-versa. For a

caller object, the delegation mechanism consists of requiring other object capabilities to realise

a wanted task which will return the result back to the caller once completed.

2. Background

¢ Inherit or disinherit: Firesmith [Fir95] recommends that no cancellation of inheritance of
properties should be done in a class, also referred to as uneffecting properties in the Eiffel
terminology. This feature is contraditory to the notion of inheritance. On one hand, inheritance
proposes the heritage of properties and, on the other hand, it is possible to not inherit as well.
Dealing with disinheritance constitutes an entire part of the design process and contradicts the
natural mechanism of class hierarchy extension. During implementation, the detection of

cancelled properties is not straightforward without any tool support.

Although arguable, the notion of inheritance, in object technology, has been considered as one of
the major novelties introduced to software development. The notion of redefinition of properties
has contributed to its inherent complexity and difficulty to control the property inheritance scheme.
Instead of purely and simply inheriting existing behaviour from a parent class, the child class has
the possibility of mutating the behaviour’s internals in order to adapt it to its own purpose. The
- next section gives a presentation of redefinition where the main categories are highlighted and will

serve as basis of study for the remaining part of the thesis.

2.2. On the notion of redefinition

“Children have more needs of models than of critics” —~ Carolyn Coats

Why redefine if inherited?

Redefinition is the fundamental mechanism that provides the mutability and adaptability aspects of
methods in class hierarchies. When the inheritance relationship is used between classes, the
subclasses of a parent class can use, extend, replace or ignore the set of behavioural properties
defined in all its parent classes. In the case of replacement of the behaviour, this is referred to as
the method redefinition mechanism. Redefinition can generate many behavioural and conceptual
inconsistencies in a class library. The mechanism is still controversial [Mey88, Rum96, Tai96] and

there is a lack of understanding on the full effect of the mechanism on the overall class hierarchy.

Use of redefinition

In the literature, method redefinition is generally described as a syntactic language feature [Boo94,
Gra%94, HenEdw94, Liu96, Mey88, Rum96, PapLeJ97] rather than a design concept. To date, the
implications of use of method redefinition are unclear. This thesis addresses such problems in
focusing on a conceptual description of redefinition and in providing the methodology and tools to

analyse the behavioural aspect of class hierarchies.

In current OO methodologies, designers rely on lists of guidelines to validate the use of

redefinition. In theory, designers should ensure that the semantics of a method remain the same if

-47-

2. Background

changes are made to its implementation. Often, the examples of method redefinition relate to an

illustration of the concept of polymorphism [Mey88].

An example list of Rumbaugh [Rum91]’s recommendations on redefinition is as follows:
e Query operations should not be redefined.

* A redefined operation should not restrict the semantics of the inherited operation.

¢ Redefining operations should never change the protocol or the underlying semantics of the

inherited operation.
e Separation of interface from implementation should help in detecting useful redefinition.
e If all inherited methods are redefined, the subclass is wrongly subclassed.
e If no redefinition is used, it suggests that polymorphism is non existent.

To date, designers can only rely on such guidelines, similar to the above-mentioned, for using the
redefinition feature. Although a detailed description of the mechanism can be found in case study
examples, there is a lack of methods for the validation of its use in class hierarchies when many
levels of depti’g are present. Firesmith described a set of inheritance guidelines which gives
practicél adviée Concérning a class hierarchy design [Fir95,].'However, in praétice there are no
guarantees that a given case of method redeﬁnifion is correct. A system can actuélly work‘ without
satisfying the guidelinés or essence of inheritance. besign rules exist, but there are still various
problems for which only designer’s experiences and intuition help. In those cases, it is argued that
assessment techniques come into the scene and are able to provide useful help in identifying and

understanding the problem and suggesting design improvement directions.

This section analyses the different redefinition categories in the view of identifying the essential
quality attributes to be considered within the measurement plan. Emphasis is given to the
identification of possible uses of redefinition and the reasons why the mechanism may generate
conceptual design problems. Also, it is essential to understand the consequences of use of

redefinition in order to recognise potential caveats in complex structures such as class hierarchies.

2.2.1. The redefinition principle

"Redefinition is an important semantic mechanism for providing the object-oriented brand of

polymorphism" — Bertrand Meyer [Mey88]

The basic principle of method redefinition is simple. In a class hierarchy, any class which has one
or many parent classes inherits the properties of its nearest parent and, by transitivity of
inheritance, the ones from further ancestors. In a multiple inheritance case, the parents are situated

in different branches (see section 2.1.8). Method redefinition is a syntactic programming language

-48 -

2. Background

facility that preserves the original method name when the body changes. Conceptually, one of the
main reasons for using redefinition is to provide the flexibility of defining a different
implementation if needed, thus the ability for an original method to hold many forms in many
subclasses of the same parent class. Such methods are called polymorphic. At run-time, the correct

behaviour will then be dynamically bound to the object which receives the message (the receiver).

The principle of redefinition is also referred as name overloading or overriding as it exists in Algol
68 or Ada. Notice that the renaming mechanism provided by the Eiffel language is different from
redefinition. The idea is simply to provide aliases to the same inherited feature. It is a syntactic

mechanism which prevents name conflicts in a multiple inheritance situation.

The change of the semantics of the behaviour when using method redefinition is the fundamental
issue. Meyer claimed that this situation is contrary to the spirit of redefinition and provides the
concept of assertions to tackle the semantic problem. Constructions such as preconditions and
post-conditions are effective ways to realise the specified contract and ensure that any subclasses

inherit the correct behaviour.

The next section gives the necessary conditions that enable method redefinition to take place.

2.2.2. Conditions for realising method redefinition

In order to realise method redefinition, there must be an inheritance relationship defined between

two or more classes. Suppose that a superclass AParent is defined as
AParent = {|9|, <mthInParent>},
then a subclass would be defined as
AChild = {|9|, <<mthInParent>>, <mthInChild>}
where mthinParent is inherited and mthinChild an additional feature of AChild.

From the formal definition of inheritance and the property ownership transfer given in sections

2.1.5 and 2.1.6, a method can be redefined only if it is first inherited.
Thus, for a class C = {|@|, <<m>>, <@>}, m is inherited if and only if:
* miis defined in, at least one of its superclass(es).

e m is publicly accessible by the methods in C.

If a method m in a class C is redefined, it can be considered as a new property of the class as it
physically extends or replaces the original method. In the case of methods originally declared as
abstract, the subclass must provide the body of such methods, thus a completely new property for

the subclass.

-49.

2. Background

A method m of class C is redefined if and only if:
e m is an inherited method (1),
¢ m(C) signature is the same as in its original definition (2)°,

e m(C) implementation is either, replaced, extended, or provided (3).

If mthinParent is redefined in the class AChild, then the class becomes:
AChild = {|@|, <mthInParent, mthinChild>}

The parameter list'' and body of the methods may have changed. Therefore, the mthinParent
method is considered as a new method for the class with the particularity of inheriting a portion or
none of its parent’s definition. Usually, redefined methods add specialisation to a class, thus

enhance its behavioural aspect.

In a class hierarchy, it is expected that methods would be mostly reused or extended. By
consequence, the leaf classes are potentially inheriting a large number of methods. This is

graphically illustrated in the next section.

2.2.3. Descendants’ heritage extent.(hierarchy‘ collapse)

Suppose that a branch of a hierarchy collapses. Instead of Having many classes in the branch, an
equivalent behavioural construction would be to regroup all the methods from all classes in the
branch into a single larger class. This process is known as flattening [Hen96]. In the flat class, all
methods are unique and for the ones redefined within the branch, only the latest version appears. In
the Eiffel development environment [Mey&al95], there exists one such functionality that helps the
designer to browse and understand the class’s internals: the flat form view. Amongst other
features, a class, in its flat form representation, displays the list of inherited properties from all its
ancestor’s classes within the same level. Therefore, a list of accessible features and their origin is
made available in the flat form view, facilitating the search for suitable class properties. It should
be noted that the flat form only displays the latest version of its properties, redefined or not.
Therefore, all intermediate implementations are not shown. This method is sometimes convenient

for assessing behavioural characteristics of the hierarchy.

In Figure 2.14 the extent of the expected descendant heritage is modelled for the Child class.
When a class inherits properties from its parents, all of them are virtually present in the class plus
the delta parts: x and y. In an is_a relationship, part of the inherited properties is reused without

modification and another part is redefined.

1 In C++, name overloading permits a redefinition of the parameter list only.

'! Note that, in Smallitalk, as the name also defines the parameter list, only the body is allowed to change in the case of a method

redefinition.

-50-

2. Background

h I <+—Grand-parent

Total cumulated properties

Figure 2.14: Expected descendant heritage extent

Example of code for inheritance reuse and extension

class C1 {
public:
int add5(int n) { return (n += 5); }

class C2 extends C1 {

public:
int exponentM(int n, int m) { return ((super add5(n))*m); }
int square(int n) { return ((add5(n))2); }
int cube(int n) { return ((add5(n))3); }

int add5(int n) {

if (n < 0) n=0;

return (super add5(n));
}

}
The add5ci() method is publicly inherited in the class C2, therefore reusable. The measure of
amount of reuse in OO systems strictly depends on the definition attributed to the term “reuse”.
Code reuse can be interpreted in different ways. One possible measure of reuse is to simply count
the number of times an inherited method is referenced within each of the subclasses. In the above
example, the add5c1() method is called twice in the class C2. The method calls are detected by
the keyword super which means that the parent's method is called. However, the counting
strategy does not specify whether indirect calls should be included or not. Indirect calls are made
through intermediate methods such as the ones in the square() and cube() methods. Counting
such calls would raise the number of calls to the inherited add5() method to four. Such situations
demonstrate, for the reuse criterion, how ambiguous an empirical evaluation could be when its
definition and semantics do not cover a particular case. Another important case is the fact that

add5c2() redefines (in this case, extends) the inherited implementation. Therefore, it is arguable

~51-

2. Background

that such a redefined method can be considered as a new method to the class C2, in which the first

counting method remains valid.

The above code example and Figure 2.14 illustrated the use of redefinition in the case of
extension; however, there exist other redefinition categories. This is detailed in the following
sections. As the aim of this thesis is to assess the different uses of inheritance and its correctness,
emphasis will be given to the redefinition categories that present potential problems from a design

perspective.

2.2.4. The main redefinition variants

Despite its very important role in a class hierarchy design process, the term redefinition is actually
used in a confused way. Sometimes, it is referred to in the sense of method extension and other
times in the sense of method replacement. Although, in both cases, the method is effectively
redefined, their aims diverge completely. Method extension permits the reuse of the inherited
property whereas method replacement stops the heritage of a parent property by not using it and
replacing completely the inherited implementation with a new one. Method replacement seems
intuitively unnatural unless as used in the case of a polymorphic method. For example, consider
the following Smalltalk Collection branch:

Figure 2.15: Part of the Smalltalk Collection branch

The add: method of the class Collection is declared as abstract, therefore it is necessary for the

subclasses to provide the implementation of the class. In such a case, redefinition is correctly used.

In order to assess the "goodness" of a class hierarchy in terms of criteria such as coupling,
cohesion, reuse or inheritance, it is important to understand and define what characteristics are to
be measured. The hypothesis is that a high level of redefinition or its variants suggests a possible
conceptual design problem in the hierarchy e.g. a class which was wrongly subclassed. The
redefinition of a method will be assessed regarding its main variants [Lew95b] described in Figure
2.16.

50

2. Background

(__SUPERCLASS \

A

[SUBCLASS)

ﬁ.'ma{tbg'd‘A_ .
> <new body

Redefinition variants

» complete redefinition
» extension
» realisation

Figure 2.16: Different types of methods redefinition

The SUPERCLASS's methods are assumed to be publicly inherited. In SUBCLASS, the first
case of the redefinition variants depicts an arguable case of inheritance where a complete
redefinition of a method is done. Whereas the last two cases, extension and realisation, represent
the recommended use of property inheritance. Cancellation of methods is an example of complete
redefinition that restricts or stops the inheritance scheme. An extension to the implementation of
methodB permits the reuse of inherited code and the addition of extra code which makes the
subclass a specialised version. It should be noted that all cases of inheritance fall under one of the
different types of method redefinition mentioned.

2.2.5. Remark on super method calls

This section highlights the fact that the type of calls to inherited methods may greatly affect the
control of the behavioural inheritance.

When defining an is_a relationship between two classes and providing that the parent class does
not restrict the scope of inheritance, the subclass is offered the possibility to accept or refuse the
parent's properties. In Smalltalk, a reference to the superclass properties is done by addition of the
pseudo-variable [GolRob85] super in front of the property referenced. The default inherited
feature called is always the one which was lastly defined or redefined in one of the superclasses.
Thus, if many versions of the same feature exist in the descendants, the latest implementation is
used. This will be referred to as the direct inherited property as opposed to other versions defined
higher in the hierarchy. Note that the expressions direct or immediate classes will be used as
opposed to further or distant classes. It is the method-lookup mechanism [GolRob90, Riv96] which

allows the execution of the correct version at run-time.

In the C++ language, is it possible to call any publicly declared property of a superclass using the
scope operator e.g. classTest::methodA(). Thus, if a method has been redefined many times in
subclasses, any of the implementations can be recalled from the leaf class in specifying the above-

83

2. Background

mentioned scope operator which is, in fact, the class name followed by the property name,
separated by two semi-colon characters. These types of calls that clearly deviate from the expected
inheritance scheme adds complexity to the understanding of the overall class hierarchy, thereby
compromising its reusability or maintainability. The previous situation also illustrates a case where
the complexity of the coupling between the parent and child classes is increased. This has been
recognised as one of the major problems of inheritance hierarchies [Bri&al95, ChiKem91,
ChiKem94, HarNit96, Hen96, Hit95, LorKid94, Mey88, Whi97]. The less coupling between
classes, components or modules, the better. Further research is needed in this area and is outwith

the scope of this thesis.

The next section describes one of the most debatable cases of inheritance which is referred to as
disinheritance. This study is crucial for the understanding of the design characteristics that are

involved in a measurement programme.

2.2.6. Disinheritance and inheritance refusal

Two problematic cases of property inheritance arise when a parent class disinherits its child classes
- or when the child classes refuse the inherited properties from its parent classes. A conceptual
approach is taken in this section in order to shed light on the reasoning behind such situations. It is
argued that such cases of inheritance use are one of the main causes for complex inheritance

hierarchies and are often related to fundamental design problems.

Inheritance aims at propagating ancestors’ properties. If the properties are required to be known
only by the class or by a subset of its heir classes, the access and visibility of the properties are
controlled by the encapsulation mechanism. However, such inheritance situations can be disturbed

by explicit or non-explicit restrictions as described below:

e Parent classes impose restrictions for future child classes: the Eiffel language provides a
particular construct which allows, in a class, explicitly naming the heirs for which a set of its

properties will be made available.

class EMPLOYEE
export {(MANAGER, DESIGNER} salaryGradeA end

end
In the above example, the salaryGradeA method will be accessible to only the MANAGER
and DESIGNER subclasses of EMPLOYEE. The main benefits of such constructs bring rigour
to the specification of a class. The property inheritance scheme is explicitly stated within the
class. However, it also adds additional complexity for the management and control of
behaviour in a class hierarchy. Exporting properties to only a subset of classes simply means
that the concerned properties are not relevant or even not applicable to the other remaining

subset, thus suggesting a design subclassing problem. One classification might satisfy one

-54-

2. Background

criterion while violating another criterion, most of the times because of particularities which
prevent obtaining a satisfying design. For example, the case of an ostrich being a bird or not
(i.e. OSTRICH is_a BIRD?) has been studied by many authors. The peculiarity of an ostrich
not being able to fly but still being categorised as a bird in animal taxonomy raised the
problem. Meyer proposed a solution using an inheritance construct whereby pre-conditions are
applied to properties. To simplify, an ostrich would not satisfy the pre-conditions required for
the fly method, thus the method would not be accessible to ostriches. By consequence, the
evaluation of the goodness of inheritance use should also take into account those particularities
when interpreting the values obtained from metrics. The assessment of redefinition is part of

the design trade-off.

Child classes refuse a visible and accessible property of its parent class: this can be

achieved in two ways:

+ Ignoring inherited features: in this case, the features are simply not used i.e. not referenced

in the class. Usually, in a class hierarchy, the leaf classes are the classes which encompasses
all the knowledge given by the ancestor’s classes. In this perspective, intermediate classes
are just passing inherited properties to future subclasses and finally to the. leaf classes.
- However, if an inherited property does not conform to an intermediate class e.g. a method
which does not apply tb instances of the class, the inheritan‘cev relationship might be
questionable. Such situations do exist in current class libraries. This clearly illustrates the
dilemma between the intrinsic génericity aspect of class libraries and the specificity aspect

required to produce a solution to a design problem (see section 2.1.3).

* Redefining the property: this category of redefinition is of particular interest for this work. If

many cases of complete method redefinition exist in a subclass, it suggests a potential
design problem whereby the subclass might not hold a correct inheritance relationship with
the parent class, therefore a case of a class wrongly subclassed. Incremental development
sometimes leads to inheritance complications and difficulties in controlling the extent of
multiple changes of a method’s implementation down a branch of the hierarchy. For
example, it is common to add new methods at higher levels of the hierarchy, so that all the
subclasses can benefit from the new method introduced. Assuming that the semantics of the
method remain the same for all its descendant classes, different implementations might still
be needed. In fact, the property redefinition happens because the parent class does not
provide the desired behaviour, thereby requiring the replacement of the inherited
implementation. It is precisely the difference of semantics between the parent and the
replaced method’s implementation that poses the fundamental design issue. The “Design by

contract” methodology [Mey97, Ste&al96] aims at tackling such problems.

-55.

2. Background

Clearly, there exist design solutions which fit the requirements but contradict inheritance.
Therefore, this strongly suggests that inheritance is not always the most appropriate concept for

solving certain business requirements.

While the above described redefinition models provide a flexible way to address particular design
problems, they may also introduce inconsistencies in the design. The remaining part of this thesis
investigates possible approaches to evaluate the correctness of a design regarding design
inconsistencies that are introduced by unclear uses of the method redefinition mechanism. Given
that a design solution may satisfy some of the design criteria while compromising others, it is fair
to search for the best compromise, and admit that a design may not satisfy 100% of the criteria

required during the assessment of the design.

This section introduced the main redefinition variants and their respective properties. They
constitute strong candidate subjects for the assessment of the behavioural aspect in class hierarchy.
Rating the presence of each category gives indications of the type of redefinition used as opposed

to what is theoretically expected or recommended.

It can be argued that obscure uses of inheritance ought to be detected at design phases; however,
this is not straightforward due to the inherent complex hierarchical structures that inheritance

" produces.

In the previous sections, the inheritance mechanism has been presented. In order to build a
measurement plan to as&ses‘s the correctness of inheritance uses, it is essential to recognise what
constitute good, bad, expected or unexpected uses. Heuristics address such issues in
recommending appropriate uses of object concepts and in helping the design decisions for trade-
offs. Heuristics are investigated as a means to identify correct and incorrect uses of method
redefinition and are aimed at providing suggestions where design improvement is possible. In
section 3.4, it is also shown how the interpretation of metrics can be based on existing guidelines

to address identified design problems.

2.3. Heuristics or guidelines for object-oriented design

A consequence of the major hurdles [AksBer92] encountered during the design phase concerns the
capture of the rules of OO design called heuristics or guidelines i.e. recommendations on the
correct use of an aspect of object concept or mechanism. In general, heuristics describe the what
without telling the 7ow or why. Heuristics are orthogonal to a methodology in the sense that they
exist as a repository of good advice to be used as a checklist. This repository usually comes from
the extraction of all rules and constraints recommended in a methodology to form a summary

synthesis.

Given the multiple inheritance models (section 2.1.3), an assessment of inheritance requires further

precisions on the intention of the designer e.g. the inheritance model, the problem tackled and the

-56-

2. Background

expectations. These expectations may originate either from the OO methodology or announced by
the designers. In our case, if it were to assess the method redefinition mechanism, one would state
not only the goals of the assessment but also what is considered as good or bad. To do so, the
heuristics constitute a possible approach for the designer to state the hypothesises, assumptions or
general recommendations regarding the subject assessed. Reference to such heuristics is valuable
as a design aid tool; however, it requires to be supported by a quantitative process that permits the

validation or invalidation on the correctness of the design.

This section gives a general overview of heuristics. It is shown how the technique can be used as a
design technique, thereby providing an opportunity for defining the intended uses of inheritance.

The benefits, applicability and restrictions of heuristics are outlined.

2.3.1. Definition and purpose

Guidelines for OO design are, by definition, aimed at guiding the process of design. Sometimes,
they are referred to as principles although this term implies strict respect for the topic described. A
basic definition of heuristic is as follows: ‘

“Heuristic [Fol97]:

. A rule of thumb, simplification or educated guess that reduces or limits the search for
solutions in domains that are difficult and poorly understood. Unlike algorithms,
heuristics do not guarantee optimal, or even feasible, solutions and are often used

with no theoretical guarantee.

From a software engineering viewpoint, it is surprising why the interest for guidelines has
increased from the birth of the OO paradigm. One could question if there is a need for those design
guidelines as all details should be already explained and examined in the OO methods. A first
answer can be found in observations made from past experiences. As many factors may influence
the profile of an OO model, it is the designer's responsibility to ensure the best possible
compromise for a good OO model. Each design solution corresponds to a particular design
problem space. This is the reason why designers ought to capture the commonalities between each
design context, so it can be reproducible. Such difficulties are reflected in the design decision
making process. Thus, heuristics originate from the intention of designers to describe good uses of
the OO concepts. For instance, the use of abstraction or generalisation varies according to the
designer. When many approaches exist to solve a design problem, designers can rely on heuristics
to guide their decisions. Riel [Rie96] described his work as an attempt to capture this subconscious
list of heuristics which guru designers use to “validate” their design. If the heuristics pass, then the
design feels right, and vice-versa. Note that in any cases, humans’ mistakes still represent one of
main sources of errors. Heuristics may also state the conditions under which the application of a
technique or a mechanism will exhibit good quality factors. In general, heuristics are considered as

part of OO design methods although they may not be specifically referred to as heuristics.

-57-

2. Background

The development of large software systems provided experience in producing lists of guidelines
for good design. Even though they remain textual explanations, their application whilst building
models help increase the level of quality of applications with respect to reusability and
maintainability [Fir95]. Heuristics for OO design are categorised according to the various aspects
found in OO, and often address unclear or imprecise design features i.e. use of the inheritance
relationship for subclassing or subtyping. Recently, Riel [Rie96] proposed more than sixty
heuristics which cover most aspects of OO design from objects, classes, the different kind of
relationship to a complete OO model. The author even mentioned that the heuristics provided are
to be only considered as rules of thumb and not as rules which must be followed. Those heuristics
exist for the sole purpose of warning when the design does not satisfy a given one. However, the

decision will always be up to the designer for further actions if judged necessary. .
The main characteristics of design heuristics are outlined below:

¢ Non-formal.

e Language dependent or independent.

e Rely on observations from past experiences.

¢ Outline the main idea of a.concept.

¢ Give an interbretation on the proper use of a technique or mechanism.

° Non-compuléory.

In general, heuristics are recognised as good indicators of anomalies or infringement of design
principles. For example, a class hierarchy that is extended in width rather than in depth illustrates
that the inheritance mechanism is used in only one particular aspect and that redundancy of
services might appear in the subclasses. Ultimately, design guidelines provide directions to tackle

design problems.
Examples of heuristics’ classification from different authors can be found in the Appendix.

Heuristics may be used in a wide range of topics from conceptual design to programming language
constructs. However, one particular limiting aspect of heuristics is that they may be subject to
various interpretations. In such a situation, their application may also be compromised. The next

section relates such issues.

2.3.2. Interpretation

On one hand, heuristics’ informal description underlines the fact that they should be manipulated
as good design advice rather than strict rules. On the other hand, the definition also specifies that
they may be open to many interpretations. In general, heuristics recognise the good or bad

practices in design but do not suggest approaches to reach that aim. Heuristics that encompass a

.58 -

2. Background

subjective characteristic are particularly questionable. For example, Firesmith's [Fir95] guideline
G-30 states: "Avoid inheritance structures that are too shallow or too deep". It argues that
inheritance hierarchies are considered shallow when they are less than three levels deep and deep
when they more than seven levels deep. Those assumptions are indeed debatable and highly
dependent on the domain and the designer's experience. On the contrary, Kennedy [Ken92]
promoted a deep hierarchy approach based on abstract data types. By following his guidelines, a
designer would not face the important problem of providing too much or too little information
within a class. A deep hierarchy is effectively breaking up the problem into many classes. Another
variation of the same principle for inheritance is given by Riel [Rie96]: “5.4. In theory, inheritance
hierarchies should be deep” and “5.5: In practice, inheritance hierarchies should be no deeper
than an average person can keep in his or her short-term memory”. The application of heuristics

still remains difficult because of their open interpretation.

Although valid, heuristics may not be relevant in all design situations as it depends on many
factors such as the requirements and criteria of the application. For instance, consider the

following contradictory guidelines:

e Class coupling is not recommended because it creates a dependency link between the classes.

. Commonality in data, behaviour and/or interface should be factored out to the higher levels of =

the hierarchy.

The second guideline encourages the creation of abstract classes in higher levels of the hierarchy,
therefore is in favour of decomposing and organising the behaviour in appropriate abstract classes.
Creating many levels of abstraction implies an increase in the number of classes in the system. So,
when instances of a class are created, they rely on other information from other classes, therefore a

possible increase of class coupling as well, which is contradictory with the first guideline.

Another difficulty in using heuristics is that exhaustive lists of recommendations seem to be
adopted sparingly in companies and therefore, are under the influence of the practices in that
environment. Frequently, recommendations are made for OO programming languages in order to
generate some sort of uniform programming culture which makes easy communication between

developers.

Riel [Rie96] argues that the designer does not get a prioritised ordering of the heuristics. Instead,
the sense of priority comes from a combination of the application domain and the user’s needs.
Therefore, this suggests that the representation of heuristics should be either problem-based or
characteristics-based, thus encouraging classification. The application of heuristics or guidelines is

mainly requirements and constraints driven.

It is clear that heuristics may not be as beneficial as expected for the reasons that there are no

supporting techniques or tools to verify if the heuristics are realised. To avoid the above-

mentioned problem of heuristics’ interpretation in this thesis, attention will be given to heuristics

2. Background

that address specific design issues rather than general ones. In such a case, it is believed that
heuristics will permit a fairly accurate description of the problems of inheritance, thereby
facilitating the use of quantitative measures on the design attributes. However, the use of
quantitative measures will not remove the subjectivity aspect of the heuristics, but rather only

provides the basis for development of non-subjective assessment.

The next section illustrates an example use of heuristics.

2.3.3. Example of heuristic's application
Class correctness

Different design solutions exist for the same problem. For example, Rumbaugh proposed that a
single class with appropriate attributes e.g. instance variable of basic type or of aggregate type
should be considered when the potential subclasses do not hold different forms [Rum93].

(Person \

Lname : string
dateOfBirth : string
A

(a) (b)
(Person x a Citizenship w
name : string — nationality : {British, French, ...}
dateOfBirth : string L origin : {White, Asian, ...}

(c)

Figure 2.17: Three possible designs for the class Person

Figure 2.17 shows three different models representing the same information about a person.
Applying Rumbaugh's above-mentioned guideline, the design (a) is preferred because the creation
of two subclasses BritishPerson and FrenchPerson do not add further information to the design
as in design (b). In addition, the same problem occurs for representing the origin of a person. In
fact, a much more flexible design is shown in (c) where the information about any kind of
citizenship is modelled as a Citizenship class and any person holds a link to this information.
Suppose that depending on the nationality of a person, there exists a different set of regulations. A
possible solution to keep track of the regulations would be to store them as behaviour in the class
Citizenship (design (c)). The following guidelines are satisfied as well: "keep related data and
behaviour in one place" and "descriptive attributes should be modelled as properties" [Rie96]. The
appropriateness of the Citizenship class (as opposed to an attribute) was justified by the presence
of behaviour for the different nationalities represented. Citizenship class can therefore be used

independently in other contexts, resulting in a de-coupling of information among classes.

2. Background

Note that, with the help of the heuristics, a model can be successively refined in order to solve the
same problem in improved ways. The first important step before applying heuristics to a design is
to select the relevant ones for the project. Then, a priority order can be attributed to each identified

heuristic within each of the categories.

Modelling gap: translation from textual analysis to design to implementation

It has been generally recognised that in the early phases of the software development life cycle the
transition from the user requirements to the specification phases raises the problem of capture and
comprehension of the users concepts. This has been referred to as the mapping and the modelling

gap problems (Figure 2.18).

; ; Business
§—— mappin

‘_ Real world
- mappin
‘: 9 Computing world

; i ; modelling | OO language
Abstractions |4 mapping P{Objects/Classes gap

Figure 2.18: Mapping and modelling gap

This example illustrates a well-known application of heuristics or guidelines in order to find
relevant objects from a textual analysis task. The early work on the identification of objects in a
system is due to Abbott in 1983 [Abb83]. His idea was to extract the objects and methods from the
textual specification of the problem based on simple rules or guidelines. With a direct mapping of
the grammatical type of words to OO concepts it is possible to obtain a first object model.

Part of speech Model component Example

Proper noun Instance John

Improper noun Class company

Doing verb Operation lead

Being verb Classification isa

Having verb Composition has a

Stative verb Invariance-condition have bonus

Modal verb Data semantics, precondition, post- retires at 65
condition, or invariance-condition

Adjective Attribute value or class

Adjectival phrase Association, operation
Transitive verb Operation
Intransitive verb Exception or event is able to

Table 2.1: Identification of objects from textual specifications

Example: Suppose that we want to model a company which employs a certain number of
employees. A manager is able to lead many employees but an employee is responsible to a single

manager. An employee receives a bonus on his work anniversary. In this company, an employee

has the following status: junior, senior, project leader, manager and retires at 65.

2. Background

In the above textual specification, the possible objects are shown in Italic while the relationships
are underlined. A possible resulting object model would then be:

n
[Company } employs n| l:t::zioyee |
n
Date_for_bonus
1

manages

[Work Anniversary]

Figure 2.19: A company information system'’

This section showed that heuristics constitute a useful informal technique to tackle design
problems. Intuitively, it can be claimed that the human s common sense is the first form of
heuristics. Heuristics give indications on the correctness of a design and can be used as a
complementary technique to the design process. Therefore, it is a good candidate technique to
investigate potential misuses of the redefinition mechanism. However, it has been previously
stated (section 2.3.1) that heuristics do not guarantee solutions. The next chapter describes how the
recent subject of OO design assessment can shed light on many design areas where suspected
problems occur. It is believed that measurement techniques can support heuristics in the sense that
it provides quantitative elements to identify the realisation of a heuristic. Thus, assessment

techniques are envisaged as an approach to the validation or invalidation of the heuristics.

The following section focuses on measurement techniques in a general manner and describes the
current state of research for the assessment of object oriented concepts. In particular, the process of
measurement is detailed with the aim of identifying the different aspects for applying metrics to an
object model. In this thesis, the use of metrics is considered in order to detect design defects using
inheritance and suggest solutions to identified problems.

'2 Note that some assumptions were made before drawing the object model in Figure 2.19:

e A manager is an employee. The factorisation of features encourages genericity. Note that, if the manager attributes are to be
represented e.g. salary, benefit and responsibility, an appropriate class would be required.
e The different status can be modelled using an attribute.

e Further generalisation of the model is not required but possible i.e. an abstract Person class could be introduced as the
Employee s superclass.

6

2. Background

2.4. Assessment techniques
“We must know what we are measuring” — Norman E. Fenton [Fen91]

“You cannot control what you cannot measure” - Tom de Marco [DeM86]

Generally, assessment techniques are understood as the evaluation of the quality of a
characteristic/attribute of an entity. Measurement techniques constitute the act of applying metrics
to obtain measures (numerical value). Past experiences from the engineering discipline suggest
that the science of measurement plays an important role in software engineering. However,
software metrics have suffered from a lack of rigour which did not encourage its development and

use until recently. A definition of measurement is as follows [Fen91]:

Definition: Measurement is the process by which numbers or symbols are assigned to
attributes of entities in the real world in such a way as to describe them according to

clearly defined rules.

An intuitive and informal design assessment technique relies on the designer’s experiences and
knowledge. Naturally, designers test and validate their designs against the requirements. However,
as a design rapidly grows in size in terms of the amount of features such as class, attributes,
methods, rules, constraints, etc, measurement techniques permit a deeper evaluation of an existing

‘OO0 model. -

The increased interest in metrics for OO has been significant for the last five years following the
pioneering work of Chidamder and Kemerer [ChiKem91] with their OO metrics suite. Whitty's
analysis of OO metrics literature [Whi96] not only showed that publications in this area have
increased by a factor of nearly 10 from 1990 to 1995 but also that 45% of them concern product
metrics applied to designs or code. Since OO programming languages encompass ready-made
class hierarchies in their packages, there are opportunities for assessing both external and internal
quality factors of class hierarchies, therefore a better understanding of the meaning and usage of

the inheritance mechanism.

Assessment techniques help managers and designers to evaluate the quality of their projects
[RosHya96] providing that the goals for measurement have been identified and described.
Evaluation can occur at all stages of the development; however, for prediction, measures should be
taken as early as possible in the process. Assessment can also be applied on an implemented
application, therefore falls under the case of a re-engineering or refinement strategy of a current
existing product. In such a case, it is interesting to know what areas need to be re-visited, taking
into account any new requirements. Assessment techniques are divided into three categories of

measures:

¢ Processes: software related activities which normally have a time factor such as specification,

analysis and design,

e Products: deliverables such as documents, applications or other artefacts,

-63 -

2. Background

¢ Resources: any inputs to software production such as personnel, materials, tools and methods.

Although a measurement programme should bring benefits to the matter investigated, it does affect
cost and schedule of the project. Cost issues are outwith the scope of this thesis; however, attention
will be given to planning a metrics programme to be run within a project. As the design phase aims
at producing deliverables in particular an object/class model, most of the rest of this document will
put the emphasis on the product metrics category. Relevant metrics are the ones affecting the

design phase.

In this thesis, the use of measurement techniques is envisaged as a means to assess the goodness of
a class hierarchy with respect to the design criteria and design heuristics. This section explains the
purpose of a measurement process, the expectations and benefits from the use of metrics and how

a measurement plan is created.

2.4.1. Roles of technical measurement

Fenton [Fen91] claimed that measurement has the two roles of prediction and assessment. The area
of prediction relates to project management and comparisons are often made to previous project
experiences. Fenton considered that prediction should remain the ultimate goal of measurement.

‘Whitmire [Whi97] added another three roles to measurement and described the following:

1. Estimation: in many software projects, is it essential to identify previous experiences (from
historical and environmental data of existing products) which can help in resolving the current
requirements of the current project. The aim of estimation is to evaluate the resource

requirements for future products.

2. Prediction: as opposed to estimation, prediction looks at values of product measures in
considering values from existing products. Prediction is not so much based on historical and

environmental data.

3. Assessment: from an evaluation perspective, the assessment process aims to compare values
obtained from a product to previously defined values arbitrarily or not chosen as standards,

benchmarks, projects goals, targets or customer requirements.

4. Comparison: the main purpose of comparison is to help in making design decisions i.e. trade-
offs. Although assessment ought to compare values as well, comparison only takes into account

measures taken from the product and not from predetermined values.

5. Investigation: in order to support or dismiss a hypothesis, measurement techniques can be used

as a way of investigating unknown attributes or behaviour.

The assessment of software applications is expected to shed light on various quality criteria of a
system. If the prediction of costs is possible, the budget planning process becomes easier and

realistic [VerCor95]. Often, the assessment of the quality factors relies on measures taken from

-64 -

2. Background

internal factors. For example, assessing the overall reusability of code of a system, the reusability
aspect must be assessed for all sub-levels in the architecture. Further details can be found in

[DeM96, Fen91, HenEdw94, VerCor95], however this topic is outside the scope of the thesis.

The work in this thesis mainly concerns the assessment, comparison and investigation categories.
A presentation of a software quality model is given in the next section to explain the essential

process of creating a measurement plan.

2.4.2. Software quality model

The success of a development and implementation of a metrics programme is based upon the
underlying software quality model used to define the metrics themselves. In the same manner as
for the software development phases, assessment methodologies exist and propose a step approach
model from definition to implementation of a metrics programme. The well-established

Goal/Question/Metric (GQM) [Bas&al94] model is such a model (Table 2.2).

Level Assessment level Description

Conceptual | Goal ‘ Objects of measurement

Operational | Question | Characterisation of the way the assessment/achievement of
a specific goal ’ _

_Quantitative | Metric Evaluation of the object to be assessed

Table 2.2: GQM levels -

The GQM model describes a framework for developing a metrics programme. It provides a means
of identifying and defining a concise plan detailing all necessary actions to identify, define and
apply metrics, analyse and interpret the results and finally, return feedback to the designer.Figure
2.20 shows the GQM/MEDEA (MEtric DEfinition Approach) [Bri&al94] which is based on the
GQM model. In this model, the steps are detailed and take into account possible external

interactions or events which might affect the metrics programme.

-65 -

Envirionmental Corporate
characteristics objectives

Expert .
Enviionmental gpinion Existing
characteristics concepts
Product
information

’

Goal(s)

Step 2
State assumptions

Relevant concepts

‘ Assimlptions
Relevant product aspects

i
Build

measurement

models

Abstraﬁtions

Goal(s)

Validated Metrics

\/

Figure 2.20: The GQM/MEDEA model

In many past experiments using metrics, the pragmatic approach raises the problem of validity of
the results obtained by metrics derivation. A consequence of invalidated results is that wrong
interpretation follows and finally unexpected conclusions arise. Validity of metrics is the first
important concern addressed in a software quality model. Thus the danger of metrics is that they
may not produce expected results on the characteristics measured i.e. wrong metrics. A possible
definition of validity of measure is given:

Definition [Bak&al90]:

Validation of a software measure is the process of ensuring that the measure is a

proper numerical characterisation of the claimed attribute

For a metric to be valid, it is generally accepted that the metric should embody a certain number of

properties. The next section concentrates on properties that relate to the OO concepts.

2. Background

2.4.3. Properties of software measures

Software metrics has suffered from criticisms concerning their real added value in managing and
controlling software development. Nonetheless, when Basili [Bas&al94] proposed the GQM

approach, he stated that metrics, in order to be effective, must be:
¢ Focused on specific goals.
e Applied to all life-cycle products, processes and resources.

e Interpreted based on characterisation and understanding of the organisational context,

environment and goals.

It is interesting to note how well these three points summarise the expected properties of metrics.
In the literature where criticisms have been made on the relevance of metrics for software
development, one or more of these points are either omitted or unclear thereby casting doubt on
the validity of metrics. For example, Hitz and Montazeri [HitMon95] categorised metrics
depending on their causal effect on the design process. They argued that attributes can be divided
into three kinds: “fundamental”, “auxiliary” and “useless”. In short, they stated that attribute
selection often does not consider the first point of Basili’s metrics effectiveness criteria. Therefore,
a metric measuring a wrong attribute does not nvalidate the correctness of the metric-itself. The
SIZE1 and SIZE2 metrics prdposed by Li and Henri [Li&al95] were challenged for their effective
evaluation of costs per class as expected. If the metrics were to be minimised, the classes would be
smaller. Providing that requirements remain the same, the number of classes would rise to fulfil
them, therefore, generating an increase in the overall system complexity which in turn may
increase overall maintenance costs. A metric is causal when a change applied to the attribute
considered generates a different metric result. Therefore, it is expected for a metric to have the

causality property.

In general, it is highly desirable for metrics to be:

e Intuitive (reasonable): when considering the assessment of an aspect A of an object model,
finding related attributes or other aspects which are directly or indirectly related to aspectA

should be intuitive.
e Applicable or derivable: the metric used must be applicable otherwise it is useless.

o Related to the characteristic measured: a measure of both the structure of the data and

process must be included.

¢ Independent of language: a metric should capture a particular aspect of a concept or a concept

itself, therefore should not depend on its underlying implementation.

e Contained: once defined a metric should be valid in the defined context but not dependent on

conditions for its existence.

-67-

2. Background

e Basic or composite nature: a metric is either basic or composed with other dependent

metric(s).

e Measures must be consistent: if r is the result of metric m on an entity e, then if e changes, r

should also have changed.

¢ Represented at least on an ordinal scale of weak order: the metric should be represented on

a quantitative scale and not based on a subjective scale.

¢ Additive i.e. for two independent structures, the total complexity metrics should be the sum of

complexity of the two individual ones.

e Automatically collected by tools: data collection is a time-consuming and expensive activity,
therefore it is unrealistic to attempt any measurement programme if no tools are available to

facilitate the process.

OO design methods do not include assessment techniques as part of the methodology. Instead,
assessment methods are considered as additional techniques. The assessment for “goodness” of a
design should be done under different perspectives in order to obtain valuable information for
trade-offs. Thus, a possible definition of a good design is "providing a set of design requirement-
criteria and associated priorities, a good design should mainly satisfy the few important ones
without discarding the others". Uﬁfortunately, current methodologies give a recipe for software
design but there will always be a number of unpredictable error cases. In consequence, there is a
need for a systematic design review process during or after the building of a model. Current design
review methods include testing techniques and assessment techniques. Both these techniques help
in detecting suspect designs once the problems are identified. Open interpretation of a concept
leads to many design choices. To date, it is essentially a great effort of careful programming which

avoids future maintenance costs.

The next section highlights the intrinsic internal quality factors of an OO design.

2.4.4. Internal quality factors of OO design
“Quality is relative to the intended use of the system” — [Bar&al97]

Whilst researchers have focused on various software quality model that enable the construction of
a measurement plan, it is equally important to review the aspects of an OO design that can be
assessed. Given the software quality model described in section 2.4.2, recognising a good design
necessitates first giving a definition of the qualifier: good. In a first attempt to assess a design, the
designer’s intuition plays an important role. Often, knowing that a design ‘feels’ good or bad
might be easy; however, giving an explanation of the grounds the conclusion was based on is

rather difficult. Typical expressions include:
e “Itis good because the classes are reusable? ”

-68 -

2. Background

e “It is good because polymorphism is used and common properties have been abstracted?”’

>

o “It could be better because classes are too large.’
e “Should this information be represented as an attribute or a separate class?”

In all cases, the conclusions remain vague and open to different interpretations. Often, this
situation is due to an uncertainty of the attributes to be measured. According to Fenton, the clear
distinction between a) product/process/resource attributes and measures, and b) internal and
external attributes and measures is crucial before the identification of any possible candidate
metric. For example, stating that classes are reusable requires further information on the kind of the
reusability referred to. Is a class reusable because it has subclasses? This is not necessarily true in
the case of implementation inheritance. In order to evaluate characteristics of an OO design, a
detailed study of the object model and its context is necessary. Current assessment methods are
based on measurement techniques applied to intrinsic characteristics of OO concepts. Assessing
design characteristics requires the knowledge of the characteristics themselves with regard to the
criteria to achieve. One possible approach is to use existing classifications of OO concepts in order

to address a particular aspect of the system e.g. the quality factors.

Goodness of internal quality factors relates to the aspects being assessed. First, the OO aspects
envisaged concern the stated criteria in the requirements. A life-critical application would be
asséssed for potential failure of the system. Second, concepts such as coupling, cohesion, reuse,
depth of inheritance, hierarchy structure [ChiKem94, Bri&al94, LorKid94, Teg&al95] can be
assessed to detect potential misuses. From a user viewpoint, software is considered good if it
satisfies all the requirements. Internal quality factors concern the architectural, structural and
behavioural design of the software. From a designer viewpoint, an example for which software is
considered well designed is that the introduction of new parts in the system does not disturb the
existing parts. Few papers have described concepts that have been wrongly used and for which
metrics permitted assessment techniques to take place [BarSwi93, Bri&al95, LiHen93]. In general,
obscure uses of OO mechanisms relate to either the structural or behavioural organisation of the
classes in the model. Indeed, the architectural issues affect the overall quality criteria of the design.
Thus, the motivation behind the assessment of OO models at various levels of complexity

including system, class hierarchy or class levels.

In addition, metrics have also been defined for the internals of a class i.e. the instance variables and
methods. Often, in a measurement programme a set of metrics is utilised for various reasons. When
the metrics address related aspects of the design e.g. cohesion and message passing flow, complex
dependencies between the classes may be explained. Tegarden et al [Teg&al95] proposed that the
characteristics of a good OO design are identified by means of coupling and cohesion. They state
that metrics can be categorised into two types of coupling: interaction and inheritance and three

types of cohesion (service, class, and generalisation-specialisation). However, they identified four

-69 -

2. Background

possible levels of complexity which are the variables, the methods, the objects and the overall

system.

While the “goodness” of an OO design can be measured by assessing its internal quality factors, a
major component depends on the understanding and application of concepts provided in the OO
paradigm. Determining a good set of metrics is strongly dependent on the interpretation of the
concept measured. Fenton [Fen91] mentioned that measuring is not enough, one important aspect
in an assessment process is also to state clearly the objectives, goals or specific motivations for
establishing such a measurement programme. If software reuse is to be achieved it is essential that
the structure and behaviour of the class are well designed. One way to tell about the “goodness" of

a design is in recognising its "badness".

So far, the reasons and the process of building a measurement programme have been described.
However, other considerations should be taken into account for the deployment of the programme.
In particular, the next section highlights the dilemma between the desire of measuring at early
stages of the design and the data availability issue. The practical issues in the application of

metrics are explained.

2.4.5. Data availability and metrics collection

Once the measurement programme has been identified and defined for the project, the application
of the programme will start with the data collection phase. Data collection is recognised to be one
of the main problems which can affect the success of the programme. If a metric ought to assess a
particular aspect of the design, then the identification of the necessary attributes/properties related
to the assessed subject should be available. Metrics claim to be implementation-independent (see
section 2.4.3), therefore it implies that the code is not necessary for calculating the metrics. Indeed,
an early assessment of the design, meaning that the information is available, favours early
detection of potential problems. This is not always possible. Due to the incremental development
process, any attributes are expected to evolve during design; thus assessing an unstable element is

not good practice.

Without an automatic metric collection tool, it is unrealistic to perform a measurement
programme. Deriving measures on an object model is purely a counting process. Classes,
properties, data structures, meta-information and so on are parsed and required metric information
is collected, then computed if necessary, and finally stored for later analysis. Not only is an
appropriate measurement methodology necessary, but also tools [Bri96, BriCuc98, Fen9l,

LewSim98] are vital for a successful completion of a measurement activity.

To date, most metrication tools rely on source code for extracting measures. It has been criticised

that taking measures when the implementation is done appears too late in the software

development process. This is a valid criticism. Nevertheless, collecting metrics on source code still

2. Background

gives much insight into both the design and most importantly, the language features used to
implement a design solution. Often, there are no other choices. Therefore, an assessment of source
code for design features should be considered as a valuable process for detection, investigation or

evaluation purposes.

Current research has focused on the provision of generic tools which would be able to define,
apply and analyse a range of measures in combination. This is still an active research area where
more empirical studies are required in order to classify the different possible measures i.e.
taxonomy of measures. So far, dedicated tools exist for a set of measures, often corresponding to
an author’s suite of metrics. Another area of research concerns the application of the metrics across
languages. Languages have different constructs to implement the same concept, therefore different
metrics are needed to cope with the equivalent syntaxes. Sometimes, such mappings are not
straightforward or even possible. For example, metrics assessing multiple inheritance cannot be

applied to single-inheritance languages such as the Smalltalk language.

The integration of assessment tools within CASE tools seems to be the natural solution to provide
designers with complementary functionalities to assess a design while being built. To date, only
few research projects have built specialised metrics tools for assessing internal quality factors of a
design [BriCuc98, LewSim9i‘3].v Besides the metrics tool availability problem, the assessment
methodology is still subject to dcbate. Measurement techniques are, without doubt, beneficial to

designers and implementors but more empirical experiments are required to validate and quantify

the quality of the measurement experiments themselves. In [Bri96], the main goals. of automatic

data collection tools are identified as:
Simplification of data collection.
Minimising the impact on the development schedule.
Maintaining confidentiality of data.
Providing value to target audience.

In this research work, the development of a metric collector tool is envisaged to support and
demonstrate the use of metrics derived from an object model. The automation of the metrics

collection process is crucial to the success of the programme.

In as much as the definition of the metrics is important, the analysis and interpretation of the
metrics results is equally important for the extraction of meaningful feedback and possible actions

for improvement. The issue of metrics interpretation is covered in the next section.

2.4.6. Metrics interpretation

The application of metrics to an OO design aims at providing explanations or directions to the

problem assessed. For instance, the discovery of unseen design problems may confirm the stated

-71-

2. Background

hypotheses. The analysis and interpretation of metric results is problematic and sometimes

unclear. Depending on the subject assessed and the purpose of measurement, the metrics results

may not always guide the designers to the satisfactory conclusions. It is believed that such

situations are due to various factors which can be decomposed into the following categories:

Metrics’ definition: the metric definition itself can be the cause of difficulty of interpretation,
particularly when it does not measure the desired characteristic [Fen90, Hen96]. For instance,
the LOC (Line Of Code) metric has been a subject of debate for its use in OO programming
languages [Fen90, Hen96]. However, it has been generally recognised that the metric was not

appropriate to the object model.

Identification of the purpose of the metrics: although a metric may be completely valid, it
may not be very useful. Collecting measures is part of the goals of a measurement programme,
suggesting directions and solutions are the main outcome researched. For instance, there have
been many attempts to provide measures on a particular aspect for the resultant software
system. Often, those aspects are high level quality factors such as in the equation
below[Hen96]: '

Quality = reliability + availability + maintainability + usability
Where maintainability = understandability + modifiability + testability

It is argued that, metrics assessing an entire system are mostly beneficial if finer-grained
metrics are jointly used in order to suggest more precise indications on wher_e design goodness
or badness occurs. In [Ban97], the proposed hierarchical object-oriented design "quality
framework relies on the decomposition and relations between high-level quality attributes and

details of the structural and functional design properties.

The goals’ definition is the first step of the measurement process [Bri&al94]). Assumptions
about the characteristic measured are also defined. However, if incorrect assumptions are
made, the interpretation of the metric results is also affected. Usually, assumptions relate to the

interpretation of OO concepts, and therefore depend on the designer’s experience.

Metrics’ derivation: often, because of an unclear description of the metric and its use, the
interpretation of each can be wrong [ChuShe95, HitMon96]. In such a case, the user of the
metric may elaborate many incorrect assumptions when ambiguity arises, thereby affecting the

analysis of the results.

Metrics’ results interpretation: often relying on statistical methods, this does not seem
entirely satisfactory [HarNit96] as the conclusions relate more to a mathematical model than to
a design characteristic. On the other hand, averages or thresholds appear to be useful although
based on an arbitrary choice for the value. The problem of interpretation is that without a
reference or comparison value, the designer is left with an intuitive interpretation. For example,

Henderson-Sellers [Hen96] stated that a first and simple approach is to infer relationship order

-72-

2. Background

between the values e.g. a system containing 1000 classes is bigger than a system with only 20
classes. Then, the standard deviation of a particular measure from a mean value gives an
indication on how different the measure is compared to an even distribution within a system.
However, it is argued that such an interpretation is not appropriate in some cases. For example,
the fact that a system has 20 methods on average per class would suggest that all classes
should encompass around the same number of methods, otherwise it is considered as suspect.
Note that this example assumes that the classes assessed belong to the same categories. In
general, the inclusion of classes from different categories such as Ul classes, facility classes,
control classes, etc in the metric calculation raises the issue of interpretation of the results due

to the fundamental nature of each.

To date, proposed software quality models only cover the first two points above described.
However, it is the interpretation of the metrics results phase that provides the final conclusions,

therefore it is vital for the success of the measurement programme.

Computing an average or a threshold constitutes another research problem for the metric
interpretation. Generally, it involves the derivation of the metric on the entire system in a particular
domain. Metrics for OO design have suffered from many types of criticism, from lacking a
- theoretical basis, missing the measurement goals, misleading use when deriving the metric, to
simply a metric derivation collection which is too fastidious [ChiKem94]. The results obtained -
from metrics derived on both C++ and Smalltalk applications [ChiKem94, LorKid94] showed that
interpretation of data are usually consistent across the same language. It is suggested that metric
results exhibit “typical” syntactic language construct profiles dependent on the language used. This
observed fact constitutes one of the main motivations behind the desire of generating a redefinition
profile for inheritance hierarchies. Also, such comparison methods could be categorised in the
benchmarking technique whereby a chosen set of measures is arbitrarily the reference and where

measures obtained from others systems are compared against one or many references.

Lorenz and Kidd [LorKid94] preferred the use of thresholds for their proposed metrics. Thresholds
are also arbitrarily chosen numbers for which a measure is believed to be fair. The usual form of a
threshold is an average, a minimum or a maximum. Still, in this case, the decision on the validity
of a design relies on the comparison of a value obtained against such threshold. Thus, it is arguable
why a metric applied in one context should be the reference for the same metric applied in a
different context. For example, it is irrelevant that all classes in a model should have the same
number of methods as the average case. Such comparisons might only hold in the case of two or

more similar classes representing a slight variation of an abstraction.

One possible approach to tackle the problem of interpretation is in the understanding of the
dependencies between object concepts. As the metrics are applied on the internal features of an
object model, it is interesting to investigate how dependent the metrics are. The next section

investigates such approach and gives insights on the possible interactions between related metrics.

-73-

2. Background

2.46.1. Remark on the dependencies between metrics

Unsurprisingly, in object technology as in many other technologies, concepts are directly or
indirectly related to each other. The notion of relationship relates to the dependency criteria. Here,

the notion of dependency can be defined as follows:

Dependency between metrics

A metric m1 is dependent on a metric m2 if and only if there exists a characteristic

¢ which affects the values of m1 and also affects the values of m2.

In general, objects that exchange messages are dependent on each other. In the literature, only a
few experiments with metrics for object-oriented systems emphasise this dependency aspect
between the concepts measured [Ban97, HitMon95a]. It is argued that a dependency between
metrics also exists if the respective attributes measured are dependent on each other. Therefore, it
would be possible to exploit such a property to support and facilitate the use and interpretation of
metric results. Based on the knbwledge of the dependency factor be;tween metrics, one possible
investigation techniqile would be to simulate a set of results for one metric and infer the results for :

others. Thus, inference of the corresponding design may be predicted. -

In a measurement programme, it is common to use a set of metrics rather than a single one. The
reason lies in the interpfetation of the results and feedback for the designers. Usually, the results of
a single metric are not beneficial if considered alone. Adopting a comparative approach permits
drawing conclusions relative to a known entity. Thus, knowing the dependencies between metrics
would facilitate the interpretation of the results. Indeed, it is not predictable how a metric behaves
when derived over a set of applications or even on different versions of the same application.
However, the rules for interpretation of metric results should remain consistent with the original
assumptions and hypothesis described during the metrics definition phase. For instance, in
[Hen96], for the Reuse ratio U and the Specialisation ratio S metrics (see section 5.6), the

following interpretation values were given:

Deep hierarchy | Wide hierarchy

U 1- 0

S 1+ 00

The Reuse ratio indicates how inheritance of classes is used. The value obtained is less than 1 but
if it is near 0, it indicates a shallow, broad hierarchy. The Specialisation ratio gives indication
about the width of the hierarchy. For a broad structure, S >> 1, and for lots of multiple

inheritance, S << 1.

Thus, the prediction of evolution of a desired characteristic may benefit from the knowledge of the

dependency factors between metrics. Although finding dependencies between metrics constitutes

-74-

2. Background

another topic of research and out with the scope of this thesis, it is discussed as further work in

chapter 6.

Chapter 3 explains how the use of inheritance in class hierarchies can generate complex design
situations which affect the future of the hierarchy. In particular, the detailed study of the method
redefinition mechanism unveils previously unknown design situations that raise issues on the
overall quality of the design solution. The reasons why such situations are considered as bad
design practices are given, thereby permitting the description of a new heuristic for the identified
problem. In order to assess the behavioural inheritance aspect of a design, the design factors that
influence the design process are reviewed together with the possible forms of method redefinition.
Then, a novel set of metrics is proposed to tackle the identified problem. Finally, a data

interpretation technique is presented and addresses the issue of analysis of metrics results.

=75 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

3. Assessing the Properties Inheritance Scheme for the Multiple

Descendant Redefinition Problem in Object-Oriented Systems

"The purpose of abstraction is to separate behaviour from implementation”
— Barbara Liskov [LisGut86]
Object-oriented design and assessment model: a refocus on the designer

To date, the area of measurement for OO systems has mainly focused on internal characteristics of
the design such as the number of classes, the number of messages sent and received by a class or
the depth of inheritance. Although these characteristics enable the definition of metrics, this
section emphasises the fact that a refocus on the goals definition phase is needed. An assessment
process should be design-driven and design-centered rather than being metric-centered as is often
the case. If an assessment of an object model is desired, the detection of the pertinent internal
characteristics does not suffice. The definition of the goals of measurement is highly dependent on
the context of the measurement. In Figure 3.1, an OO design assessment model describes the main
actors participating and influencing the result of an assessment programme. This is often omitted
in the literature. It is believed that this is one of the main reasoné why metrics are potentially

misleadiﬁg.

- To assess software applications, there are three main aspects to consider which are materialised as

a three-layer model shown in Figure 3.1:

1. The object-oriented fundamentals.

2. The human factors.

3. The software development processes and products.

The representation of the three layer object-oriented design assessment (OODA) model in Figure
3.1 principally shows the relationships involved between the major actors of a design process and
the processes themselves. The presence of human factors in the middle layer of the model
emphasises the fact that the role of the designer is the central key to the development. Indeed many
automated tools such as diagramming tools and code generators are helpful tool aids in the design
process, but these remain limited to a set of functionalities where the interaction with the designer
is still required. Similarly, for the interpretation process, the decision-making and the conclusions
are, in general, drawn by the designers. Otherwise, if defined and precise interpretation rules

exists, tools may be able to handle them and infer the corresponding conclusions.

-76-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

Object-oriented design assessment model

Object-Oriented fundamentals
dependency
function
OOQuality | _ rojates to 00 Concepts|— recommendations | Guidefines
factors Heuristics
A /'
\ /
\ /
0@% understanding ;
interpretation)
Human factors has
é‘“ﬁ production QQ,'Q)’
/
Ll
metrics
derivation
design
feedback
Software development

Figure 3.1: Object-oriented design assessment model

Figure 3.1 shows the interactions of the different components involved in the software
development process. The first layer is concerned with the fundamental object-oriented concepts.
In this layer, the Guidelines/Heuristics component remains one of the most intuitive and practical
techniques for understanding and using object concepts (see section 2.3). During an assessment
programme, the main goal is to quantify the level of “goodness” or “badness” of the characteristic
measured. In relation to these defined criteria, a set of reference values i.e. threshold values
delimiting the “good” from the “bad”, are usually needed when the purpose of the assessment is to
compare results of the same metrics on several parts of the design. The dependency function
relationship on the OO concepts component notifies the fact that an implicit dependency factor ties
concepts together. When the designer is able to capture and understand such dependency factors,
the interpretation of metric results is facilitated.

The middle layer relates to the human factor issues in the process of designing and assessing.
Although all design problems imply different design solutions, there are approaches to recognise
“reusable design chunks” i.e. design patterns [Gamé&al95] because of the similar nature of the
problems. The designers judgements and choices are dependent on their own experience and
perception of the concepts. The experience of the designer is shown as a list of features including
the knowledge, the interpretation, the understanding, the level of subjectivity and the habits. All of
these features play an important role in the success and correctness of interpretation of metric
results. If it was intended for a design to have a particular structural and behavioural organisation,
the assessment of the design will indeed reflect this desire in terms of quality criteria. Overall,

o

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

conclusions are satisfactory when solutions for design improvement can be obtained from the

assessment of a particular characteristic of design.

The third layer concerns the software design process. In Figure 3.1, the application requirements
and the measurement programme components are included as part of the software development
layer. The OO design component outlines the fact that the OO model produced is subject to a
measurement programme providing that the necessary design information for the derivation of
metrics is available and valid at this time. In chapter6, a proposed model for the integration of the

measurement programme within the design process is discussed.

The OODA model emphasises the important role of the designer both in the design and assessment
processes. Moreover, it shows the various tools available to aid the designers when considering the
evaluation of an OO design. In order to obtain accurate and useful conclusions from an assessment
programme, it is necessary to reduce the number of factors which cannot be quantified, especially

when related to the designer’s perception.

Motivation

Given the OODA model, it is clear that the production of an object model depends on the
designer’s interpretation and underétanding of the object concepts. A pdssible approach to evaluate
the goodness of an object model is to validate it against suitable design guidelines. This chapter
concerns the study of the inheritance mechanism and the effects expected and produced in a
hierarchy of classes for objectforiented information systems. The reasons why complete method
redefinition infringes the essence of inheritance are discussed. To do so, the design methodology
issues concerning behavioural inheritance are examined. A redefinition metrics set is proposed and
practical experiments demonstrate that the results obtained permit the detection of inheritance

design problems. Appropriate design decisions are suggested.

This work aims at a comprehensive analysis of the extent of the redefinition mechanism using
metrics for object-oriented systems in order to identify a simple methodological approach to the
problem of measurement. It is also aimed at providing guidance as to the appropriate use of
redefinition for improvement of behavioural and conceptual properties of the model. The

information gathered from the metrics is then used in a design-evaluation cycle.
The key contributions are:
> An identification of design methodology considerations related to inheritance assessment.

» An identification of design inconsistencies resulting from the multiple method redefinition

problem in a class hierarchy.

» The proposition of a method redefinition metrics set for assessing inheritance from a

behavioural viewpoint.

-78-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

> Empirical validation of the metrics set and results obtained from the Smalltalk class library are

presented.

The next section explains how and why, in some situations, method redefinitions can severely
compromise the reusability and maintainability of the model. In section3.2, a redefinition metrics
set is proposed and aims at measuring redefinition activity in class hierarchies. Section 3.3
provides a methodological approach where further design issues are examined regarding the
assessment of method redefinition in class hierarchies. Finally, in section3.4, a data interpretation
method is proposed for addressing the problem extraction of feedback from the analysis of the

metrics results.

3.1. Method redefinition: uses and abuses

Current use of inheritance has illustrated that the introduction of conceptual inconsistencies is
possible in a class hierarchy. Based on the analysis of current existing class hierarchies, potential
design problems may arise in an object model due to an unclear use of the method redefinition
techniques. Languages are fundamentally different as each provides different ways of
implementing OO principles such as encapsulation or method redefinition; thus this
implementation has close equivalents in other lahguages. As the focus is given to Smalltalk’s
implementation of the redefinition concept, it is important to note that such implementation has its
equivalent in other languages; therefore the analysis presented here also applies to other lahgﬁages.
The context of the problem is outlined and a heuristic is created to capture its essence. It is
explained why such redefinition uses pose major issues for the future maintenance of the
hierarchy. Thereby, the problem’s definition sets the scene for the remaining part of the thesis and

serves as the basis for the evaluation of goodness of inheritance hierarchies.
3.1.1. Method redefinition in class hierarchies

A major criticism of redefinition lies in the essence of inheritance itself. The two notions of
property redefinition and property heritage are paradoxical. Surprisingly enough, method
redefinition, including correct and incorrect use, happens more often than expected in a class
hierarchy. For example, the redefinition metric results for the Smalltalk class library (Figure3.2)
show that the amount of redefinition reaches 57.07% at DIT=4 in the hierarchy. On the first three
levels of the hierarchy, the results obtained more than double from one level to another, denoting
high "redefinition activity". One possible reason for such a redefinition profile is the incremental
development of software. A closer look at the implementation of the same method redefined many
times along a branch of the hierarchy revealed that common code had not been factorised. This
phenomenon seems typical of the case of many developers working on the same part of a system
without modifying the others' code (class dependency problem). Chidamber and Kemerer’s
coupling between objects (CBO) metric [ChiKem94] permits the detection of weak and strong

coupling. The CBO is recommended to be as low as possible. However, with new design

-79-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

techniques such as design patterns [Gamé&al95], the dependency between classes present in a
pattern is high as they are strongly dependent (the purpose of a pattern).

77

Figure 3.2: Smalltalk hierarchy redefinition profile

Smalltalk has been criticised for its implementation inheritance [Rum91, Tai96). For instance,
cancellation, which is a variant of implementation inheritance, is common in the class hierarchy.
Similarly, Bracha and Cook [BraCoo090] stated that inheritance in Smalltalk is a mechanism for
incremental programming whereby instances of a class may not bear a necessary relationship with
the instances of its subclasses. Again, inheritance is used for convenience reasons and behavioural
compatibility may be ignored. Nonetheless, Taivalsaari [Tai96] acknowledged that the Smalltalk
class hierarchy has its advantages. It is generally recognised that the hierarchy would be more
complex and memory consuming if it was designed in a more conceptual approach. Cook [C0092]
described some major problems in the Smalltalk hierarchy as follows:

e Inherited methods that violate the subclass invariant.

e Methods that have the same name but completely unrelated behaviours and for which a
generalised specification cannot be found.

e Methods that have the same (or related) behaviour but different names.

All the above-mentioned problems contribute to the introduction of potential design
inconsistencies such as the MDR problem in the class hierarchy. The next section formalises the

unusual case of method redefinition and explains why it is conceptually wrong.

3.1.2. Multiple descendant redefinition (MDR) problem

The principle of inheritance involves an ownership transfer of features from the parent class to its
subclasses. When a class inherits a method which has been publicly defined, the subclass has the
right to change the property inheritance scheme for itself and future heirs.

-80-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

Figure 3.3: Life history of the includes: redefined method in the Smalltalk Collection branch

In Figure 3.3, the includes: method is used to test if an element is present in a collection. At first
sight, a representation of the life history of the completely redefined includes: method casts doubt
on the correctness of the design. Although all IndexedCollections are Collections, they do not
test the inclusion of elements in the same manner, as IndexedCollection introduces a key for
access. The solution is thus to redefine the includes: method to cancel the inherited
implementation from the class Collection. Similarly, for OrderedCollection, the same method is
completely redefined again. Clearly, the property inheritance scheme is broken and nothing is
inherited from the parent class. Furthermore, the includes: method has not been originally
declared as deferred and all its subclasses hold completely different forms, an incorrect case of
polymorphism by definition. This situation will be referred to as the multiple descendant
redefinition (MDR) problem. It should be noted that such classification, although conceptually
incorrect can be implemented in any programming language. Further complex method redefinition

situations may also arise when a combination of many super calls exists in the same method.

A definition of MDR is as follows:

In a class hierarchy, consider a class parentC = { <mthA()> } and mthA() declared as public.

« { VsubclassD, VsubclassE | subclassD < parentC, subclassE <, subclassD }
MDR 3iff | ° subclassD = { <<mthA()>> }, mthA() is replaced
* subclassE = { <<mthA()>> }, mthA() is replaced

* MthA()supciassp # MENA)sypciasse # mthA()parentC

where the relation classB <ot ClassA denotes the fact that classB is a direct subclass of classA
and mth()qassa is read as the method mth() of classA

To illustrate how MDR problems can be tackled in class hierarchies, an example of an alternative

design solution is given in the next section.

3.1.3. Example inheritance hierarchy that avoids the MDR problem
Although the study of solutions to the MDR problems is outwith the scope of this thesis,
suggestions for improvement of a class hierarchy are presented in this section.
Inheritance hierarchies that encompass MDR problems require a re-design of the hierarchies which
usually implies code re-engineering. Many viable solutions are possible to tackle the MDR

- 81-

3, Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

problem; however it is important to emphasise that they are not straightforward as other related
design aspects have to be considered. For instance, if an alternative solution consists in moving a
method M from a class Ato a class B, the consequences of such relocation have to be examined.
As the original property inheritance scheme is affected, subclasses of A may still expect the
inheritance of method M. In general, the presence of MDR problems in a hierarchy indicates a
more broader design problem. Note that potential solutions to the MDR problem also depend on
the language features. To address the problems of the Smalltalk hierarchy mentioned in section
3.1.1, Cook proposed an alternative Collection class hierarchy based on the conceptual
relationships of the classes [C0092]. He demonstrated the use of interface hierarchies and
specification techniques in producing an improved class library structure. Bracha and Cook
[BraCo090] proposed the concept of mixin-based inheritance as a new inheritance model. The
model relies on composition of mixins or abstract subclasses. Separate mixin classes are created to
hold parts of classes that may not be related but sharing a set of common behaviours. In that
respect, mixin classes seem a good candidate for solving the MDR problem. Both techniques of
interface hierarchies and mixin-based inheritance constitute potential candidates to avoid MDR
problems. The latter is used in the example below.

As Smalltalk supports single inheritance, one of the main problems of its class hierarchy is that
code may be duplicated across different classes and by side effect this situation often generates
MDR problems.

contents

Agelf implementedBySubclas
setToEnd
self position: self readLimit. |

RS

contents
Acollection copyFrom:1 to: readLimit |

setLimits

position := 0.

readLimit := collection size.

Aself copyFrom:1 to: self position. | |
setToEnd
self position: self writeLimit.

contents

Aself copyFrom:1 to: self readLimit
setToEnd

self position: self readLimit.
setLimits

position := 0.

readLimit := writeLimit := collection size. |

Figure 3.4: MDR and code duplication in the Stream class hierarchy

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

Figure 3.4 shows the Smalltalk Stream hierarchy which includes two main problems as follows:

e Code duplication due to Smalltalk's single inheritance. The ReadWriteStream class only
inherits from the WriteStream class but as behaviours of the ReadStream class are needed,

duplication of the setLimits method is done.

e Presence of MDR due to the non-full compatibility between ReadWriteStream and
WriteStream. Strangely enough, the setToEnd method is originally declared in the Stream
class although the definition of its body appears to be for the ReadStream class.

WriteStream completely redefines the method and so does ReadWriteStream, giving rise to
the presence of MDR. Note that the body of the setToEnd method in ReadWriteStream is
the same as the one originally defined in the Stream class. This situation illustrates a case of

use of inheritance for convenience reasons. Originally declared as abstract in Stream, the

contents method in ReadWriteStream is also suspect as its body is very similar to the one in

ReadStream.

In this particular example, note that multiple inheritance as described in section 2.1.8 represents a

possible solution to the code duplication and MDR problems. However, in the alternative design

solution below, the use of mixins is presented”. It is believed that mixins represent a better

solution to tackle MDR problems in a wider context.

contents
super contents: readLimit.
setLimits
super setLimits: callection.
setToEnd
sSup

contents
setToEnd

super contents: self position.
setToEnd

1 setLimits: aCollection
. position := 0.

| readLimit := aCollection size. §

Aself implementedBySubclass
Aself implementedBySubclass

SIS RSSO SIS

super setToEnd:writeLimit.

- r----
b contents: endPosition ;

. Acollection copyFrom:1 to: endPosition. F
1 setToEnd: endPosition

contents
super contents: readLimit.
setLimits
super setlimits: collection.
writeLimit := readLimit.
setToEnd

Figure 3.5: Stream hierarchy using mixins classes

Figure 3.5 shows an alternative Stream hierarchy which introduces two mixins classes:

StreamMixin and ReadStreamMixin. Design solutions using native Smalltalk capabilities may

be found for simulating mixins, however the model would probably be simpler with the use of real

mixins. In this example, it is assumed that Smalltalk has been extended to include mixins

capabilities as described in [BraCoo090] or [Sch98]. The introduction of mixin classes captures

'3 See [BraC0090] for the details of mixins' implementation.

-85 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

common behaviours in the hierarchy; however existing classes also need to be altered so that
methods are still accessible. To do so, the Stream class is combined with the StreamMixin class,
ReadStream and ReadWriteStream class with ReadStreamMixin. In the Stream class, the
contents and setToEnd methods are declared as abstract methods, thus encouraging the use of
polymorphism. ReadWriteStream is now treated as another type of Stream for the reasons that it
still inherits the common behaviours from the Stream class but can also be combined with the
mixin classes so that specific behaviours to the ReadStream and WriteStream classes are
available. All subclasses of Stream make use of inheritance for extension and both code

duplication and MDR problems are avoided.

Mixin classes appear to be a good candidate for tackling implementation inheritance; however the
cost of a re-engineering process should not be underestimated. Although the alternative design is

conceptually sound, the increase in complexity and amount of code is noticeable.

The next section illustrates the consequences of a MDR problem regarding the property

inheritance scheme.

3.1.4. Descendants heritage extent for the MDR problem

In an extreme situation, suppose that the Parent class completely redefines all the Grand-
parent's methods, and the Child class redefines all the Parent’s methods: all versions of the
methods defined in the Parent and Grand-parent classes are lost (Figure 3.6). In the Child class,

no features come from its ancestors although being a subclass.

An MDR heuristic can be formulated as follows:

Providing the hypothesis that the multiple descendant redefinition problem breaks the
properties inheritance scheme in a class hierarchy, a method m from a class C should
not be consecutively and completely redefined more than twice down a given branch. If

such a situation occurs, all versions of method m defined in previous ancestors classes

are lost, thus violating the essence of inheritance.

Properties inherited recovered

Figure 3.6: Descendant heritage extent with MDR anomaly.

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

3.2. Measuring redefinition in object-oriented systems

The method redefinition mechanism can be applied in obscure manner in class hierarchies and is
not always justified [Mey88, Rum91]. In a parent-child relationship between two classes, the
shared methods are the ones defined in the parent class as inheritance is unidirectional. In3.1.1, it
was shown that a high rate of method redefinition occurs in the current Smalltalk class hierarchy
and that such a situation may point to potential design inconsistencies as methods are generally
expected to be extended rather that being redefined. A high rate of completely redefined methods
strongly suggests some behavioural inheritance design problems e.g. MDR problem. This might
indicate that either the parent class has poorly abstracted the methods concerned or the subclasses
are wrongly situated in the hierarchy which obliges the class to ignore inherited properties. On
many occasions, a deep analysis of the class hierafchy source code depicted that suspect methods
can simply lack code factorisation and thereby fall under the case of a complete redefinition
instead of an expected extension. It was suggested that, due to the class dependency problem and

the incremental software development, developers would prefer to re-write their own version.

Given the MDR heuristic (section 3.1.2) and the design considerations for inheritance assessment
(section 3.2), it is now possible to elaborate a measurement plan that specifically tackle the MDR
problem. The following sections describe the application of the GQM/MEDEA model for building

a redefinition metrics set.

3.2.1. The method redefinition assessment

Current criticisms of OO metrics are that they only provide hints or clues to the “goodness” of the
design. We argue that a precise identification of suspected problems with valid metrics for its
assessment suggests obvious directions or solutions for design improvement. With the help of the

behavioural analysis technique (section 3.3.5), metrics can be prescriptive.

The approach taken to define the product metrics was based on GQM/MEDEA (Goal Question
Metric/MEtric DEfinition Approach [Bas92, Bri&al94]) which provides practical guidelines for
building metric sets. Nonetheless, this stage remains a difficult process for determining the validity
of the metric. Whilst Ebert stated that “a metric is a criterion to determine the difference or
distance between two entities” [Ebe92], the definition of the criterion itself is subject to
difficulties. Many metrics design models have refined the process by which less uncertainty is
allowed regarding the definition of objectives for a metric. Thus, the very first step in defining a

metric is the “Experimental goal(s) definition” stage, defined as the set of the following topics
[Bri&al94].

-85-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

The steps involved in applying the method are:

Step 1: Experimental goal(s)
Object of study: method redefinition mechanism in a class hierarchy
Purpose. detection of MDR anomaly
Quality focus: conceptual design consistency for property heritage
Viewpoint: designer

Step 2: Assumptions
Assumption 1: the deeper a class is in a tree hierarchy, the more complex it is

Assumption 2: the deeper a class is in a tree hierarchy, the more likely the MDR problem

arises
Assumption 3. see the MDR guideline formulated in section 3.1.2.

Step 3 and 4: Relevant measurement concept and product abstractions. The rationale behind the
redefinition metrics set is fairly straightforward and has been emphasised in the
fundamental steps 1, 5 and 6. The abstract properties of the redefinition metrics are

discussed in section 5.10.
Step S: Define the candidate metrics (see section 3.2.2)
Step 6: Experimental validation of the metrics (see chapter 5)

A precise definition of the goals reduces the chances for the future metric to be incorrect. Brito et
al. [Bri&al94] established that this stage is fundamental to the whole metric definition process. A
possible means for identification of goals can be tackled in looking at design recommendations or
guidelines. However, in practice, the application of guidelines or heuristics, often in a textual form

[Fir95, Mey88, Rie96, Rum91], is not very easy to accomplish (see section 2.3.3).

Again, the quality of the OO model is completely dependent on the designer’s experience,
understanding and interpretation of the concepts used. At least, guidelines provide a method for

recognising good OO design standards.
The following redefinition metrics are proposed and explained in the next section:

e PRM: the percentage of redefined methods includes 1) the methods completely
redefined, 2) extended and 3) realised (see section 2.2.4).

e PRMH: the percentage of redefined methods per level within a hierarchy and its
variants (PCRM and PEM)

e PCRM: the percentage of completely redefined methods. This metric is intended to

assess the first and third cases above mentioned.

e PEM: the percentage of extended methods. This is the second case of redefinition.

-86-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

3.2.2. Percentage of redefined methods per level within a hierarchy (PRMH)

Current metrics assessing inheritance examine single classes or a system whereas the PRMH
metric evaluates the amount of redefinition level by level. Providing that a class hierarchy is
ideally designed, abstract classes should appear closer to the root of the hierarchy and specialised
(or concrete) classes should be situated nearer to the bottom. The redefinition metrics are aimed at
depicting such a profile. For instance, PRMH metric (Figure 3.7 branch A at level 1) measures
the shaded classes. The PRMH metric can also be applied at the system level as classes are not
necessarily organised in a class hierarchy. For simplicity, we will keep the numbering level
absolute in comparison with the root (class Object) level 0. The notation Cm, » gives the location of
a class C, at rank n, for a given level m in the branch, e.g. class B at level 2 of branch A, is named
B2,1. The rank is arbitrarily numbered from O to n, n is an integer, from left to right at the
considered level. Note that the rank is used only for a logical identification of the classes at a

specific level in the formulas below, but does not imply a notion of ordering in the class hierarchy.

Figure 3.7: Complexity metrics at hierarchy level

The redefinition metric for a class and for a given level m are defined as:

NC

NRM o Y PRMC,,,
NPIM PRMH _r=1

R ;
PRMC=— My 100 | PRMC=
NIM

NC (a)

where NRM is the number of redefined methods, NIM is the number of instance methods, NIM >
0", NC is the number of classes for a given level m, NC > 0, PRMC, is the percentage of
redefined methods for all classes Cmn In the current calculation of PRMC (first approach), the
equation is a function of the NIM defined locally. However, any class C inherits methods from all
its parents, making them potentially available for use (via the method lookup mechanism). For this
reason, the cumulative redefinition approach to the same calculation is given by the PRMC'
equation (second approach) where NPIM is the number of potential instance methods, NPIM > 0.
Indeed, NPIM is expected to increase from top to bottom of a hierarchy, thus, PRMH decreases
when DIT increases. This metric relates to the fact that “off-the-shelf” class hierarchies are

' Note that classes without methods (e.g. classes that defines constants only) may exist but are not relevant in this thesis.

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

abstracted enough to contain a fairly high depth of inheritance and a high number of methods per
class. Consequently, the deeper the class is in the hierarchy, the more it is likely to inherit a high
number of methods. Thus, designers face the problem of finding the wanted information amongst a
high proportion of non-relevant ones. The PRMH in (a) is general. A refined version includes the

redefinition variants:

NCRM NEM Ne
PCRM= «100 | PEM=——%100 Y (PCRM + PEM)
NIM NIM PRMH, . =221

NC (b)
where NIM > 0, NC > 0, NCRM is the number of completely redefined methods and NEM is the

number of extended methods.

In general, the interpretation of the redefinition metrics needs to be done in connexion with other
related metrics. For example, consider a class that does not hold redefined methods. The
interpretation is likely to be different depending on the total number of methods in the class.

Due to the inclusion of the DIT metric within the redefinition metric set, the depiction of

redefinition profiles of hierarchies is possible.

In order to detect and thus assess potential design problems such as the MDR problem in a class
hierarchy, it is necessary to identify the main design aspects that should be considered in a
- measurement programme. The conceptual and technical issues involved in such an assessment are
expléined in the next sections. In parﬁcular, it is shown how a state transition diagram describing
the method redefinition states permits the identification of the suspect state transitions e.g. the
MDR problem. A behavioural inheritance analysis is proposed to tackle the problem of localisation

of defective classes in class hierarchies.

3.3. Design considerations for inheritance assessment

“Designing is weighing alternatives, including discovering them in the first place and

eventually rejecting all but one” — Chamond Liu [Liu96]

The MDR problem and the redefinition metrics have been described in the previous section, and
contribute towards the goals of a measurement plan. This section is concerned with the description
of the technical issues involved in the assessment of inheritance hierarchies and thereby the
assessment of the redefinition mechanism. Note that the following mainly constitutes a design
exercise which is directly relevant to the essential aspects of assessment. In order to identify a
methodological approach in a design assessment activity, four categories of design information are

considered:
e The key mechanics for extracting design information from an inheritance hierarchy.

e The definition of the possible method redefinition statuses. This addresses the different type of

methods to assess, and thus a possible direction for finding appropriate metrics.

-88-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems .

* An essential behavioural inheritance analysis model which enables the designer to focus on a
particular branch of a hierarchy. An overview of a branch restricted to the desired methods
permits a rapid localisation of suspect classes. This is aimed at supporting the interpretation of

the metric results.

¢ Specific remarks on the consequences of use of method redefinition to be taken into account

during analysis of the metric results.

3.3.1. Methodological approach for class hierarchy assessment

From a software engineering point of view, satisfying all the requirements for the system is a
requirement but achieving a maintainable, flexible and open architecture is as important if it is to
achieve reusability with reduction of costs for future development. To date, mechanisms in the
object model do not permit full control of the property inheritance scheme [Sei96, Tai96}. In an
inheritance hierarchy, the number of features of a class and the number of levels of depth are
difficult to manage. In class hierarchies such as the OWL, it is not surprising to have a large
number of methods in leaf classes. Note that this may have been what was originally intended.
However, when extension or reuse is wanted, such situations rapidly become a burden for the
designer because of the exhaustive search process for the existence and orig}n of desired method’s
interfaces and implementation. The techniques proposed in the following sections contribute to the
detection of possible design problems appearing in class hierarchies. For example, the problem of
MDR is effectively seen as a side effect of the use of inheritance. In order to tackle the variety and
combination of property inheritance schemes in an object model, it is necessary to be able to assess
methods of a class, at any level of the hierarchy. As a complementary tool for the designer, the
techniques address the reuse or extension of a class hierarchy from a behavioural point of view. To
help designers in pinpointing design defects, the following design methodology approaches are

considered:

¢ Behavioural inheritance analysis: in class hierarchies, the transfer of ownership (see section
2.1.6) and the redefinition mechanism (see section 2.2.1) constantly change the state and
definition of the original method. In order to have an overview of the history of a particular
method in a class hierarchy, the creation of a method’s life history record enables the discovery

of the origin and successive definitions of the method.

e The definition of a metric set: the use of a set of redefinition metrics applied to a branch of the
hierarchy or the whole hierarchy would permit the representation of the notion of redefinition
profiles. One possible way to assess the amount of methods redefined is to isolate branches
within the hierarchy. Particularly, in single-rooted object-oriented systems, the abstractions are
derived from the same root class, therefore the only possible way to isolate them is to consider

the start of a branch at a defined node. Then, on a graphical representation, a depiction of the

-89-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

redefinition profile would help in the understanding of the general evolution of the property

redefined.

¢ Interpretation: the identification of potential defect classes can be done using a cross-
reference method between the interpretation metric results and the method’s life history
technique. Although a redefinition profile may already indicate potential design problems in a
class hierarchy, the precise localisation of a design defect requires the support of additional
method analysis tools described in the section 3.2. Possible useful processing tasks may involve

filtering, graphical representations and data mining.

The next section explores the technical aspects that allow the extraction of information from an

inheritance structure.

3.3.2. A design information repository with metaclass facilities

“To perform measurements on a program or design, we need to be able to describe the

structure of a program or design in language-independent terms.” — Anton Eliéns [EIli95]

This section explains how the extraction of design features is possible using metaclass facilities.
Due to the incremental design process, classes and their properties are likely to change during the
course of design. The main problem of early measurement relates, not only to the availability of the
design information but also to the degree of correctness of the information (see section2.4.5). Even
in the case of use of supporting tools such as diagrammatic or CASE tools, the derivation of
metrics implies that metrication functionalities are already implemented within the design tool in
order to share the meta-information generated by the design tool [LewSim98]. Measurement
techniques may be applied at any time in the development process providing that the required

design information is available and consistent.

The following four sub-sections describe the core set of design information that is used within the
metric’s calculation algorithm. The purpose of a design information repository is to identify all

design characteristics relevant to a measurement process.

-90-

3. Assessing the Properties inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

Meta-model

Consider the following meta-model which is used to represent the main OO concepts:

sed_by.
0.* o
Class -
Properly 0.* - Inheritancebink
R o - has +name: String
name: Siring y | *abstract: boolean
Ay 0.*
0.r 0.
of_type ’ uses

1.7

Modifier

+ype: set-of { keywords }
+keywords: enum = { ABSTRACT, FINAL, FRIENDLY, PRIVATE, PROTECTED, PUBLIC, STATIC, SYNCHRONIZED }

]

Attribute o Method
+containment; enum = {by_reference, by_value} uses | +abstract: boolean
0.x +signature: String

+body: String

Figure 3.8: Meta-model of main OO concepts

In Figure 3.8, classes and properties i.e. attributes or methods,‘are modelled as classes. Instances of
the class Class have instances of the class Property. In a class, the relationships with other classes
are defined by constructing new instances of the other class. For this reason, relationships can be
modelled as instances of the class Property and act as aggregates of instances of the class Class.

The type of a Property object is defined by a possible combination of Modifier objects. The

Attribute class and the Method class both inherit from the Property class. Relationships between

classes can simply be categorised in two groups: the inheritance relationship and all other types of
relationships. Indeed, the latter category can be subdivided in many more groups to differentiate
from a simple association, aggregation, dependency, etc. The containment attribute in class
Attribute notifies the fact that an instance attribute can be attached either as a nested
component/composite objects or as a pointer to a composite object. Another possible way to
describe a relationship between two classes can be done within the body of a method. Local

variables to the method can be temporarily declared of a particular class type (section 2.1.7).

In the meta-model presented above, the interesting design features are the class properties. Clearly,
each of them is a potential metric. For example, for a class, “the number of methods per class” can
be calculated in counting the number of the Method class’s instances. Thus, the meta-level design
information provides a description of all design features which can be used by the metrics’

algorithms.

Note that Modifier objects that are incorrect Java modifiers can be defined according to the meta-
model. For instance, the value of the variable type may be: {ABSTRACT ABSTRACT} which is
an incorrect Java modifier. A semantic analyser or improved meta-model can detect such error

cases. The purpose of the meta-model is to show how the capture of meta-information can be done.

-91-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

Remarks on the encapsulation aspect

In Figure 3.8, the attribute scopeModifier of the Property class gives the indication of the
property’s visibility for the heir classes i.e. encapsulation. The C++’s PUBLIC, PRIVATE and
PROTECTED scope modifiers are the ones described in section 2.1.7. The FINAL property
modifier gives visibility of the property to heir classes but prohibits its redefinition. It is equivalent
to a removal of the property. A peculiarity of the inheritance relationship is that it has been
separately modelled with a self-link, via the InheritancelLink class, on the class Class. The reason
lies in the semantics of inheritance. An inheritance relationship implies a transitive transfer of the
properties from the parent to the child class. It purely deals with the behavioural aspect of two
classes: one is able to use and modify properties from the other one. As opposed to other
relationships, the inheritance relationship acts as a channel for ancestor’s property visibility where
the other relationships are mainly resulting from the declaration of variables in a class. It is
basically the use of the two groups of relationships which combines classes together and
communicates via message-passing that provides the expressiveness of the QO concepts. It is the
combination of different property scopes in a class hierarchy which is essentially responsible for
the complexity of the inheritance scoping control. By consequence, the validity and correctness of

the design is also affected by the property scope modifiers.

Figure 3.8 illustrated some of the desired design features that can be used for the computation of
metrics. As these metrics would constitute the basic metrics, it is, therefore interesting to build a
repository of such metrics based on the collected design information. Indeed, such a repository is
convenient for building more complex metrics. This approach will be considered for building a

metric collector tool.

Detecting a method’s original definition

Another aspect of the retrieval of design information concerns the identification of the class’s
context such as its references to internal or inherited properties. In particular, to assess behavioural
inheritance, for each class, methods are analysed regarding whether it is a new method for the class
or if it is inherited. In some class browsers such as RationalRose98®, a class can optionally display
the list of inherited methods as well as the new methods. However, if a method is redefined, its
method name, signature and body appear in the class description as if it is an added method. To
find out if such a method is extended, cancelled or replaced, a finer analysis of the body of the
method is required. For example, if the method reuses inherited methods, calls to the ancestor’s
method will be tagged with the keyword super. Note that, unless there is detailed design
documentation, the only way to find such information is unfortunately to wait for the source code
availability. Thus, analysing the references made to other methods, within a particular one, will

enable a finer assessment of the inheritance model used and potential suspect classes and methods.

_92-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

Meta design information

A possible categorisation of useful design information concerning the behavioural assessment of
inheritance is given in the following Table 3.1, Table 3.2 and Table 3.3. The main interest of such
information gathering will serve both the computation of metrics and the suggestion and
localisation of design defects. The designer will rely on the availability of front-end tools to
manipulate the information. Examples of front-end tools include a metrics collector, methods

profiler or persistent storage tools.

Types of meta | Characteristics
information for a class
General o Name
s Abstract
Heritage link ¢ direct parent class(es)

¢ list of ancestor’s classes
o list of direct sub-classes

Class internals o list of attributes and related information such as name, type,
scope

o list of internal, inherited methods and related information
such as name, returned object type, signature

Table 3.1: Class design features

. In Table 3.1, description of aftribufes and methods of a classi- are included in the list. Note that
inherited methods are also ‘listed. Some languages provide method look-up mechanisms to infer the
list of all inherited characteristics from ancestors. Either in a designer or from ‘an assessment
perspective, it is important to know what a class is i.e. its structure but also what it is'capable of i.e.
its behaviour, inherited or not. Heritage links are the relationships which attach a (many) parent(s)

class(es) to its child classes.

Types of meta information | Characteristics
for an attribute
General ¢ name
s scope
» defined in class
Category » instance attribute
¢ class attribute
users of o list of internal methods referring to the attribute

Table 3.2: Attribute design features

In Table 3.2 the characteristics for attributes are shown. However, as the focus of this chapter is on

behavioural inheritance, only the fact that a method uses one or other attribute is of interest.

Types of meta information | Characteristics
for a method

General s name

e abstract

s scope

s defined in class

-93-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

Category ¢ instance method
e class method
Calls from ¢ list of internal methods calling or using the current method
Calls to o list of internal methods calls including super calls i.e.
inherited methods
Use of « list of internal or inherited instance attributes used
o list of class attributes used

Table 3.3: Method design features

In Table 3.3, the method’s interactions are described. Basically, there are two forms of interaction:

e calls_from: interaction between methods are based on a sender-receiver model. The receiver is

able to identify the list of senders.

e calls_to: similarly to calls_from, a method uses other methods as receivers. In this case,
messages can also be sent to inherited methods. The method binding mechanism makes sure

that the correct method receives the message.

Given the above-described list of meta 'design information, the calculation of metrics becomes

fairly straightforward. The next section describes parsing considerations within a class hierarchy.

3.3.3. Class analysers

Inheritance path isolation

The technical issues involved in the extraction of the design features are covered in this section. To
assess behavioural inheritance in a class hierarchy, parsing of a tree is necessary. In addition to the
design information described in section 3.3.2, a more detailed analysis of the methods in each class
permits the investigation of the method life cycle or life history down the branches of the tree. The
designer will rely on the presence of supporting tools to extract such information. To understand
the overall effect of the application of scope modifiers to methods in the hierarchy, an isolation of
all possible paths is undertaken. Recall that from a designer’s perspective, when (re-)using or
extending the class hierarchy, the main problem is to discover and understand the successive
versions of the same method, especially for bottom classes. It has been generally recognised that
class libraries often encompass more functionalities that an application would really need. Note
that this is a desired characteristic for class libraries. However, Hitchens and Firmage [HitFir97]
stated that the use of a class library is haphazard. With the absence of browsing, query tools or
other mechanisms, the designer must proceed through all the classes with no guarantee of finding
the desired class. If addition of new classes is needed in large hierarchies, one of the consequences
of the situation described above is that classes tend to ignore all un-wanted methods, therefore,
risking non-conformance. Whenever used for pragmatic reasons such as possible savings in code

development or optimisation purposes, inheritance becomes questionable.

-94 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

Figure 3.9: Tree parsing strategy

In general, a designer is interested in knowing which are the ancestor’s inherited properties. To do
so, an isolation of inheritance paths is a possible solution to reveal the desired design information.
Figure 3.9 represents an example class hierarchy. Adopting a depth and top-bottom tree parsing

strategy, the list of possible paths include:

Level 0

Path 1
Path 2
Path 3
Path 4
Path 5

" Path6
Path 7

>>»>>>>>
20 28 2 20 20 28 7
r—f—wwu‘:mm—x
V20 20 28 2\ 2R 27
zxo‘o‘ooow
N2 2R R A2
—Iﬁmow

v
4

Table 3.4: Inheritance paths table

The depth and top-bottom (DTB) parsing strategy allows a chronological construction and
gathering of design information in the table. Different parsing strategies will be used to examine
the behavioural aspects of each of the classes. Note that the parsing strategies mainly concern the
issues involved in developing the metric’s calculation algorithm; however, it also depends on the
encapsulation mechanism in place. Designing and assessing a class hierarchy should really be
based on the examination of inheritance paths as a whole. Often, designers only concentrate on
direct (or immediate) parent classes to extend the hierarchy instead of inspecting all previous
ancestors. The knowledge of chronological changes happening to inherited methods is essential to
minimise obscure inheritance uses. Recall that, aithough not being good practise in a team
development, software engineers tend to leave unclear existing pieces of code as they are and
redevelop their own version for safety reasons, not encouraging reuse. Often, the fear of modifying
someone else’s code is not so much due to the code being unclear but due to possible dependencies

on other portions of code.

Notice that in the case of multiple inheritance, the detection of the path with a DTB strategy raises
the issue of name collisions (see section 2.1.8). Consider the following example (Figure 3.13)

where the method m1() in class A is publicly inherited in all heir classes B, C, D and E.

-95.

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

Figure 3.10: Name space collisions with multiple inheritance

Using the DTB strategy, the isolated paths are:

A>B->C->D

A>E->D
If a name clashes problem exists i.e. m1() is redefined in C, B or E, D inherits only one version of
m1(): either the method explicitly refers to the desired definition i.e. originator parent class, or a
default scheme is provided by the support language. Thus, one of the two paths has to be dismissed
for the study of m1(). When the call to m1() is explicit, the reference to the originator class is
given (see section 2.1.8). When the call to m1() relies on the default scheme provided by the
programming language, the default path is then the chosen one.

While detecting the various inheritance paths is straightforward, assessing if the methods in D are
redefined necessitates an investigation of the code of methods in D to detect which versions are
explicitly referred to. Otherwise, if the designer relied on the default inheritance scheme to obtain
the desired functionality and to remove the ambiguity, a metric's collector will have to implement
the corresponding algorithm. Technically, a possible solution to discover multiple paths relies on
the parsing of the concerned classes for extracting the associated parent and child classes.
However, in languages that provide reflective capabilities such as Smalltalk [GolRob90], parsing
is not necessary as appropriate functionalities permit the discovery of inheritance relationships

between classes.

Class wrapper

This section explains a technique based on wrappers to filter out desired information from an OO
design. A class wrapper would aim at analysing class internals and intercepting its interactions
with other classes. In general, wrappers are used between two applications for intercepting the set
of transiting messages. For example, the fcp_wrappers [CheBel94] are a set of API functions that
shadow the real functions based on tCp communications e.g. telnet, ping, finger, etc. When a client

program initiates one of the cited functions, a corresponding fcp_wrappers’” function takes

'3 Note that the concept of proxies for web servers provide similar functionalities.

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

control, filters out the wanted information and launches the real invoked function. In such a way,
the execution of the wrapper function is completely transparent, does not interfere with the
execution of the real function and dynamically extracts the wanted information. A class wrapper
acts in the same way for static information. The wrapper encapsulates a class in order to extract
meta information such as the class definition and the details of interactions between classes such as
method sender, message sent and method receiver. Note that meta class information such as
messages sent or received, number of parent and child classes or number of methods are possible
candidate metrics themselves [LorKid94].

In Figure 3.11, the design of a possible class wrapper is shown. It includes two parts acting as the
filters for the desired information. Indeed, the filters are configurable in the sense that only the
wanted information would be filtered out and addition or removal of other filters is possible.
ClassC is scrutinised for extracting information such as the list of instance or class variables and
methods, the list of ancestors classes, the list of external methods internally referenced and the list
of external methods which reference internal methods. :

Figure 3.11: Class wrapper

A class wrapper may exist under the form of a set of API functions, therefore they could be closely
integrated with a metrics collection tool. Collaboration for information exchange can take place
between the client metrics tool and the wrapper functions.

Hierarchy wrapper

In Figure 3.12, the technique of class wrappers is extended to a branch of a class hierarchy.
Particularly for the assessment of behavioural inheritance, it is interesting to isolate a branch of the
hierarchy for a detailed study. A hierarchy wrapper would mainly rely on information provided by

the class wrapper at a lower level; however, the filters would provide information on all classes of

3, Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

the branch instead of a single one at a time. In such a way, comparison and use of the design

information are made easier either for design analysis or for deriving metrics on the hierarchy.

Figure 3.12: Hierarchy wrapper

It may be useful to build a design repository which would be persistent. Such a repository would
include all characteristics for each class of the branch together with their relationships with other
classes. This implies that the hierarchy wrapper can be invoked independently of a client program.
Alternatively, like for the class wrapper, the hierarchy wrapper would be closely integrated with
the collection tool for dynamically extracting information “on the fly”. The benefits of having
hierarchy level information as opposed to class level information is that the analysis of inheritance
paths is possible, therefore the history of method changes down a branch can be followed. Also,
due to the consequences of property modifiers, the detection of cancellation of methods permits
the suggestion of potential wrong subclasses.

To date, the concept of wrappers has not been applied in the context of a measurement programme.
For the purpose of assessing class hierarchies, the technique is convenient and permits an
encapsulation of the two levels: class or (branch of) hierarchy.

The next section concentrates on the different method states when being redefined. A state

transition diagram is used to illustrate the relevant transitions.

- 08~

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

3.3.4. State transition diagram for the method redefinition mechanism

The assessment of the mechanism of redefinition requires a deeper analysis of the methods present
in the hierarchy. The tracking of the evolution of method status becomes essential from an
assessment perspective. This section introduces a state transition diagram that captures the possible
states of a method when being redefined down the hierarchy. A set of expected and unexpected

transitions is explained.

In most OO methods literature, the mechanism of inheritance is illustrated in examples involving a
parent and a child class. Although the case of multiple inheritance involves many parents, the
coupling effect is still shown for the pair of parent-child classes. Managing many levels of depth
requires an overview of the whole hierarchy or at least a separate view of the branches. Due to the
transitivity of the inheritance relationship, for each of the inheritance paths, publicly declared
properties are passed from one level to the next level of depth down to the leaf class. For this
reason, correctly extending an existing hierarchy requires a good knowledge of the design of
ancestor classes. This adds an additional burden for the designer in the case of off-the-shelf class
hierarchies. Three main factors affect the designer’s choices when looking for appropriate

abstractions in existing hierarchies:

¢ Class complexity vs. depth: the behaviour of classes increases in complexity when many levels
of depth are involved. In the case of commercial class hierarchies, the decision for extending
the hierarchy is often based on a limited number of factors due to the size of the hierarchy and
the number of possible dependencies. The consequence is that the chance for wrongly extending

inheritance is higher.

e Accumulated inherited properties: the size of accumulated inherited properties may become
un-manageable by designers if the classes encompass a large number of methods. This directly
affects the decision for the solution design and often induces ignored inheritance in the

hierarchy.

e Class and behaviour documentation: the availability of a comprehensive description of the
classes and behaviour is always desirable but not present in many cases, thereby making the
reuse of the classes difficult. The existence of examples is a crucial factor to the understanding
of the existing classes and associated methods. The Javadoc™ software tool from Sun
Microsystems™ directly addresses this point. Given that pre-defined tags have been inserted in
the Java source code, Javadoc formats the public API into a set of HTML documents, thereby

providing the detailed description of classes and methods in a standardised way.

For a class, for each attribute and method, the scope modifiers define the encapsulation of the
class, thus future heir class visibility. Inherited properties mean that they have been declared as
either public or protected in the parent class. In such cases, various changes can be done to the
implementation of an inherited method. In order to visualise the effect of change of state of
methods from a parent class to a child class, a state chart diagram is used in Figure 3.13 (see

-99.

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

section 2.2.4 for a description of redefinition variants). From an assessment perspective, the change
of state of methods from one level to the next level permits accurately following their evolution in
the branches of the hierarchy. The method's state refers to the changes happening to an existing

method between its version in a parent class to the version in one of its child classes.

‘Deferre A

Figure 3.13: State-chart diagram for method redefinition'®

In Figure 3.13 all possible state transitions of a method are represented. Six different states are
listed:

e Deferred: when a method is in a deferred state, the only next possible state is being defined.
Eiffel refers to the action of providing the first method definition i.e. body, as effecting the
method. This is also known as realising the method.

¢ Defined: it is the first time definition for the method.

e Reused: the method is reused without modification.

e Extended: the inherited implementation of the method is reused with addition of new code.
¢ Replaced: the method is completely replaced, the signature remains the same.

e Cancelled: the method is removed from the child class

¢ Final: the method is declared as non-modifiable although accessible.

'® Note that the two states “Cancelled” and “Final” are treated as a single state as they both are questionable states.

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

i Defined Reused Extended | Replaced | Cancelled
Parent to Child /Final

Deferred effecting
Defined .
Reused

Extended
Replaced

Table 3.5: State transition table for method redefinition

Key
I Not applicable. From the deferred state, method can only become defined.
~ These transitions represent the recommended use of inheritance '".
Questionable transitions mainly occur when the final state is either replaced or
cancelled.
MDR problem. See section 3.1.2 for a detailed description of the multiple
- descendant redefinition problem.

The main purpose of the state transition diagram is to detect suspect or unexpected method changes
down the branch of the hierarchy. During the extension of a class hierarchy, different design
constraints may appear whether an existing class library is provided and reused as it is. If so, the
process of investigation of the wanted abstractions (i.e. (set of) classes) constitutes an important
task in the design process. Pragmatically, designers or implementers rely on a localisation of an
appropriate branch of the hierarchy in order to reduce the search range. In current class hierarchies,
abstractions are fairly well-decomposed and organised as branches of the hierarchy. For example,
current graphical interface abstractions also referred to as frameworks are well established and

solve most of the needs of information systems requirements.

In this document, the focus is given to transitions (Table 3.5) which might suggest design
problems. Mainly, it concerns methods whose state is either replaced or cancelled. Although Meyer
[Mey97] promotes method overriding under the condition that the semantics remain the same, the
checking of consistency of the semantics is difficult. In detecting the change of state of methods
down the hierarchy, there are opportunities to suggest potential inconsistencies in the use of the

redefinition mechanism.

Clearly, the detection of suspect state transitions is desired; however, it should be noted that further
complex method redefinitions that are not captured by the state transition diagram presented above

could take place. Such complex redefinition cases, often obscure, are presented in the next section.

17 Eiffel provides a construct which fixes and disallows future changes to a method. Such a method is referred to asfrozen and is

equivalent to a final method in Java. Note that for the transition: Reused to Reused, a frozen or final method can be reused.

-101 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

3.34.1. Remark: method redefinition and unexpected message sends

The state transitions for methods described above aim at suggesting potential wrong use of method
redefinition; however, further complications may occur. From an assessment perspective, it is
essential to be aware of such situations that cannot be easily detected automatically. Although a
redefined method may seem conceptually valid, developers are offered many opportunities to
deviate from the inheritance scheme when implementing the method. Sometimes the context may
require a portion of code qualified as a hack to provide a simple solution to a problem e.g. in the
case of inheritance of somebody else's code. However, a dangerous situation may happen in the
case of careless programming. A redefined method may appear correct from the point of view of
its interface but not from the point of view of its semantics, therefore incurring consequences on

previously made assumptions on the design.

The possible combination of message-passing, the delegation mechanism and the effect of
encapsulation are the main causes of the problem of unexpected messages in the method's
implementation. Message-passing generates dependencies between objects but also affects the
validity of inheritance because of method invocations in non-conventional ways. Such method
invocations results from the hazardous use of directed resends i.e. ability for an overriding method
to invoke the overridden version (Smalltalk-80 has super, CLOS has call-next-method, C++ has
qualified messages using the :: operator [Cha97, Ste90, Str90]). In Figure 3.14, four classes a, b, ¢
and d with d < ¢, c< b and b < a are represented.

origin a i
Dsuper call
Esupercall
replacement .d /n‘tremallextemal call

Figure 3.14: Expected method invocation

Consider class a = {<m()>}, with m defined as public. Method mp() and mc() are extended
methods, therefore an invocation of the ancestor implementation is made via the super call.
Method m is replaced in class d therefore its implementation is completely different from its parent
one and it is expected that the semantics would remain the same. Note that method mg() is entitled
to send messages to other remote methods i.e. internal or external calls. In a redefined method,
three types of invocation are possible: reference to the closest inherited parent's implementation,

explicit reference to an inherited parent's implementation'® and other internal or external references

'® Note that the difference between a classic super call and an explicit super call is that, in the latter case, the ancestors identifier is
specified in the call, allowing the caller to refer to a specific parent's implementation of the inherited method.

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

to the class. The combination of those possible references gives opportunities to deviate from the

correctness of the inheritance.

In Figure 3.15, four examples of such cases are given.

ancestora O ancestora 0 _ m' Legend
€ -,
i \‘ \\ a D
\ \ H
replacement b | replacement b O A 5
/] 1 H
/ / D <gistart @
I’ /’
e o -=7
G =il c i
y Y C <girect D
d S eyt 2
a) directed super call b) directed super call and disinheritance
ongin a o < origin a 0O
N b 4
Y ’I
\\ 1”
replacement b o o] replacement b o -
P b 4
N s o
Ko i
1’4’ I/
- -
e replacement ¢ 07
\‘ “
/’ "
do -~ d o
¢) multiple super call d) MDR

Figure 3.15: Examples of unexpected method invocations

Examples in Figure 3.15 show various uses of method replacement. In case a), mg() and mg()
extend their definitions whereas mp() replaces the method. m¢() issues an explicit super call, not
to the latest inherited implementation (from class b) but to one of its previous ancestor (class Q).
Effectively, a previous implementation of method m is wanted for the class c. Thus, ma()'s
implementation is not available for reuse unless referenced within an explicit super call. Note that

either or both class b or ¢ are considered as suspect classes i.e. abnormal case of inheritance.

The case b) is a variant of case a). mc() issues an explicit super call to a method different than the
(inherited and redefined) method m,() i.e. super call to m's() and m's() publicly defined in the
superclass a. m¢() completely changed its original semantics and in addition, it refers to a different
method in one of its superclasses which suggests that ma() and m's() may be variants of each other.

This clearly suggests a design problem as the semantics are different than the original.

In case c), an example of multiple super calls is given. mp() replaces the inherited implementation
therefore no super call appears. In order to extend the inherited implementation, m¢() issues two

super calls: one as normal and one to the previous ancestor's implementation for code reuse. As
P p

mc() reuses Ma() and mp() implementation, this seems to be a possible way to simulate multiple

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

inheritance although not a satisfying design. Class C re-establishes the expected inheritance

scheme. Class b is a suspect class.

In case d), an example of MDR is shown. The multiple method replacement implies that ma(),
mp() and m¢() are different versions of the same inherited method. Further subclasses to ¢ must use
the directed super call mechanism to reactivate “lost” implementation resulting from previous
method replacement. Given the definition of the MDR in section 3.1.2, the referred parent-child
relationship between b and ¢ (Figure 3.15 b)) is a direct relationship. However, other unexpected
situations related to the MDR problem may appear and are described below.

Consider Figure 3.16 where two scenarios, referred to as distant MDR, are shown.

origin a © Legend
P -

. H P a U

replacement b Eil"

origin a 0

7’

replacement b CI 2

reused b1 lﬁ reused b1 ﬂ D < distant @ ©
reused b2 D 4 extended b2 ﬂ A
replacement ¢ é’i-\ replacement ¢ C;l’i\.
))
g =t d o--"
a) distant MDR b) distant MDR

Figure 3.16: Distant MDR scenarios

Rather than a direct inheritance relationship between the classes b and c, they may be separated by
other classes b1 and b2. Whereas b1 and b2 are only reusing mp() (Figure 3.16 a)) or reusing and
extending mp() (Figure 3.16 b)), a subsequent replacement i.e. mc(), raises further design issues.
Intuitively, such complex sequence of calls does not suggest any recognised appropriate use of
inheritance and is not well understood. Such situations may be attributed to optimisation reasons in

class hierarchies i.e. only the behaviour in the leaf classes is completely re-implemented for
performance. Often, these classes are also defined as finalised (see 2.1.7).

The examples of unexpected calls described above demonstrate that designing classes using only
method interfaces does not ensure a correct design. This contradicts the claim of current
methodologies for completely decoupling design issues from implementation. The use of
inheritance and the design of method interfaces rely on assumptions on the inheritance scheme,
which may not hold at implementation phase. More importantly, such situations affect the
maintenance of the application but also distorts metric results as they may be categorised as correct
measures. To prevent hidden method redefinition abnormalities, code inspection is desired. The
state transition diagram described in 3.3.4 cannot detect such anomalies either. Currently, only an
analysis of the source code permits the detection of such problems. Alternatively, in a dynamic
event model (see OMT methodology [Rum91]), as the message flow is defined, it reduces the

S 104 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

chance for the problem of unexpected calls. Nevertheless, the design of a class hierarchy with the
intention of code sharing and code reuse is not only an application-solving problem but also a

software engineering activity.

The next section provides a synthesis of the behavioural inheritance analysis technique which is
aimed at providing a visual representation of the method s life history in class hierarchies.

3.3.5. Behavioural inheritance analysis

Providing that an object model is stable i.e. towards the end of the design phase, it is essential to
gather an overview of the architecture and design issues involved for the entire application. This
may be seen as a design validation phase or a final design review phase preceding the
implementation phase. One important aspect for the design of class hierarchies is to make sure that
the semantics of the behaviour are correct for optimising reuse regarding the inheritance use and
the set of requirements for the application. Behavioural inheritance analysis addresses the problem
from the interface point of view. Three techniques have been described in sections 3.3.2, 3.3.3 and
334

e Obtaining design information useful for metrics.
e Class analysers and inheritance path isolation.
e State transition diagram for method redefinition.

Using the output of each of the above techniques, the aim is to build a snapshot of the life history
of methods in a particular branch of the hierarchy. For each of the classes of each path of a
hierarchy, the method is analysed to record the evolution of its state. A possible representation is to
reproduce an image of the concerned hierarchy with addition of method s state to provide an

overview of the method's life history.

Figure 3.17: Method life history representation

In Figure 3.17, an exact reproduction of the concemned branch of hierarchy is used to show
additional information about the methods. Thus, the top class is the main parent class for all
isolated paths found. Recall that the idea for studying a branch is interesting because it captures a
set of related concepts such as the Collection branch, the Stream branch or the WindowManager

- 105 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

branch. For each method defined in the main parent class, all the paths are scrutinised to show how
the method evolves further down the hierarchy. For a particular branch of the hierarchy, the

method states are recorded in each class in the following form:

method name >> state
with state = {deferred, defined, replaced, extended, cancelled} (see section 3.3.4)

A behavioural analysis may only concern a subset of methods which have to be evaluated,
therefore, not all existing methods in the class may be displayed. Recall that methods simply
reused in a class except for the case of super calls are not shown as it requires a detailed parsing of
the code for detecting such cases. Therefore if a class does not show a method, it does not mean
that it is not used. Various possible ways of use or reuse include aggregation, inheritance, message
passing or arguments of methods that cannot be detected by previously described techniques. Thus
showing a limitation of the behavioural analysis technique.

An example of use the technique is illustrated in the next section.

3.3.5.1. Experiments on the Collection class

In Figure 3.18, the example given in section 3.1.2 is revisited. Only the relevant methods from the
Collection class are shown. To obtain the hierarchy below, the designer will rely on a tool and
therefore additional filtering mechanisms to organise the information e.g. one method at a time,
only replaced methods or a specific isolated path, are possible.

Figure 3.18: Method life history for the Collection branch

The representation of the class hierarchy together with the method s status permits an overall view
of the life history of the method. This representation clearly pinpoints the problem of MDR in the
includes:coliection and add: collection methods. Although originally declared as abstract methods, in

- 106 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

most paths the methods are completely redefined. The few exceptions concern the add: method in
the classes MethodDictionary, SystemDictionary and SymbolSet. Particularly, the path
Collection, SetDictionary, ldentityDictionary and MethodDictionary raises attention. All
versions of the add: method have been replaced except that in the leaf class where the method is
extended. Having a case of MDR and an extended method in the leaf class suggests that
inheritance is used for sharing of other methods not shown here. Although all classes in the same
path seem to be structurally similar, the semantics seem to be different according the evolution of
the add: method.

Another interesting case concerns the grow: and do: methods. The grow: method is firstly defined
in the IndexedCollection class. Then, subsequently replaced in OrderedCollection and finally
extended in SortedCollection. Besides the fact that the method has been replaced once, not
enough arguments allow us to conclude that it might be a problem. On the contrary, the fact that
the method is extended in the leaf class gives it credit. The case of the do: method is the opposite.
After being replaced, then extended, it is again replaced. Thi; raises a “design alarm” for potential
incorrect interface design. Notice that if a method is declared as deferred in a parent class, the first
replacement is a correct use of the redeﬁniti;)n mechanism (see section 3.3.4, Table 3.5 for the

recommended transitions).

Design decisions are not possible -at this stage, as other methods in the classes should be
considered. This is the reason why measurement techniques will complement such analysis. For
‘example, given a ratio of replaced methods compared to the number of extended methods gives an

indication on how the redefinition facility is used in the model.

Following the description of all design considerations relevant to the assessment of inheritance in
the above sections, the interpretation and understanding of use of the inheritance relationship and
the method redefinition were clarified. This reduces the chances for ambiguities, and thus enables

the delivery of an appropriate measurement programme.

In a measurement process, not only the definition and derivation of the metrics are important. In
the literature on measurement, the topic of interpretation process is little described. Paradoxically,
it is generally agreed that without a good design feedback from the analysis of the metrics results,
a measurement programme may fail. The next section proposes a novel data interpretation
framework for the assessment of OO models. Emphasis is given to the necessity for generating
sensible feedback to the designers. In addition, the data interpretation framework aimed at being

integrated as the final process within the GQM model.

-107 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

3.4. Mechanisms for data interpretation of metrics for object-oriented systems

“There are as many scientific methods as there are individual scientists”

- Percy W. Bridgman, On “Scientific Method”

3.4.1. Introduction

Measurement techniques are valuable and troublesome design tools at the same time [Avo94,
Bo089, BinSch96, Bri96, ChiKem91, KosVih92, McKMon93]. The analysis and interpretation
method used is an important component in the measurement process. More than a simple data
retrieval and representation mechanism, the analysis and interpretation technique should be
designed to illustrate a few particular aspects of the feature assessed [Ebe92]. Because of the
relative immaturity of the OO metrics research field, little research has been done on the
interpretation and analysis of metric results, making meaningful design decisions difficult. For
example, in the depth of inheritance (DIT) metric, Chidamber and Kemerer interpreted the
possible results as, “top heavy” (too many classes near the root) or “bottom heavy” (many classes
near the bottom of the hierarchy) designs. However, whether a class hierarchy falls under one or

the other case seems arbitrary, and thus subjective.

Measures are only significant if théy are objective and repeatable. Metrics that require subjective
assessment where a range of complexity values are arbitrarily affected have been recognised to
have no scientific validity [Hen96]. Complexity values may be used for attributing weightings to
the metrics. Instead, it is preferable not to take into account subjectivity that makes the data
interpretation difficult. Stating that a design is good is only valid with respect to particular criteria.
One such criterion might be the non-dependency of classes to other classes, which exhibits a low
level of class coupling. In addition, the qualifier “low-level” must be related to a hypothetical
average or threshold for the particular metric under consideration. Interpretation of data relates to
the goals and assumptions stated for the concerned metric. For example, an assumption concerning
the DIT metric is that the deeper a class is in the hierarchy, the greater the number of methods it is
likely to inherit, therefore the more complex it is likely to be. So, a typical DIT curve would
decrease rapidly on a number of classes per DIT graph. Currently, the metric results analysis is
carried out in a pragmatic way. Outstanding patterns or phenomena drive the process. Often, a

graphical display provides assistance for quick and easy feedback over a table of numbers.

Although the area of representation and visualisation constitute separate topics of research, they
strongly relate to the interpretation techniques used in a measurement programme. To date,
emphasis has been given to the early stages of the measurement programme. A consequence of
this is that metrics have been criticised for collecting large amounts of data without any suitable

methods for analysing the data afterwards, making them useless [Fen90].

-108 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

Currently, the interpretation of metric results rely on one possible understanding of the OO
concepts, which is the reason why the emphasis is put on the early goal definition stage for a
candidate metric. In general, most authors use statistical methods in addition to empirical analysis
methods but others have emphasised the need for more appropriate techniques [Abb&al94,
Bak&al90, Bar&al93, Bas&al94, Bou89, Bri96, BriCuc98, Hen96, RosHya96]. Clearly, the
difficulty of interpreting metric results asks for complementary analysis techniques. This section
argues that, depending on the characteristic assessed, the combination of a dedicated analysis and
interpretation technique and the use of appropriate graphical representations procure additional and
better quality information feedback from the metric results. In addition, other supporting tools for
pre-processing and data analysis may be required. For example, trigger rules that characterise a
particular phenomenon on a given curve can be defined and automatically detected. As the
“goodness” in a design is subject to disagreement because it depends on the interpretation of each,
appropriate analysis and interpretation techniques must take into account the variety of
characteristics assessed, the environment and the purposes of measurement. Thus, the efficiency
and relévénce of metrics relates to the amount of feedback produced about the design and the

suggested ways for improvement.
The methodological issues involved in the interpretation process are defined as follows:

> A description of examples of convenient data visualisations for a collection of metric

results. The benefits and drawbacks of each are highlighted.

> An exploration of possible utilisations of pattern profiles with regard to the intrinsic

properties of the data visualisation type.

> A novel interpretation framework is proposed. The detection of particular design problems

is realised using an “alarmer” technique and triggered conditions.

The following sections propose a data interpretation method based on pertinent visualisation of a
data set obtained from the method redefinition metrics for object-oriented systems. The data
interpretation method aims at facilitating the metric results interpretation, the design problem
identification and constitutes a means of deducing design decisions. It is discussed how this
method constitutes a solution to re-injecting design information in an object-oriented model. This
work aimed at the generalisation and integration of the data interpretation method within a design

evaluation cycle framework.

3.4.2. Motivation and approach for interpretation

In the current literature on assessment methods for OO systems, the importance of extracting
design information feedback from metric results [Hen96, LorKid94, Whi97] has been highlighted.
However, to date, emphasis is still given to the correct definition of metrics and the goals for

which they are defined. Then, the data obtained from derivation of metrics are empirically studied.

-109 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

The data visualisation method presented in this section is based on the idea of metric profiles. Any

deviation from this “norm” will suggest potential inconsistencies which correspond to specific

design problems. However, the deduction of conclusions from raw data obtained from metrics is

not straightforward. One way to tackle such problem is to provide a complementary method or

technique for designers to facilitate the measurement process.

Three main aspects are considered in our analysis and interpretation method as follows:

1.

In general, raw data are pre-processed before being analysed. The nature of the processing
function is chosen depending on the type of results expected. For instance, only a range of the
values may be relevant at a time, or the values may be more suitable for reading on a
logarithmic scale. Any transformation of the raw data contributes to the overall method for

analysis.

The use of graphical representations directly depends on the type of values returned by the
metrics and the purpose of measurement. Based on the assumption that different visual
representations are able to express different aspects of a measure, considerations have -been
given to the investigation of a set of representations applied to the same set of results. Such

experiments enable the interpretation of the metric results from different angles.

o
%

The need for additional interpretation aid tools such as searching or querying facilities also

- contributes to the interpretation process. When the graphical representation includes a large

data set, details are not necessarily obvious the human eye. To un-clutter the{;graphic with
unwanted data, several techniques can be used e.g. zooms, filters, triggers, data trgnsformation.
Identified and recognisable patterns for a profile can then be detected autorigxatically e.g.
increase of rate by a factor of x. However, from an investigation point of view, the designer
may not know in advance what to expect concerning the characteristics of the metric profile.
In such a case, it is likely that the needs for appropriate tools are only identified during the
interpretation process. Such methods, similar to a “data mining” activity, are usually dedicated

to a specific purpose contributing to the interpretation of the behaviour observed.

Interpretation techniques are highly dependent on the properties of the attributes assessed. The

interpretation stage is only part of the measurement process, it is nevertheless, crucial for the

delivery of the expected benefits. Recall that the outcome of a measurement program can be either:

Expected. In such a case, it means that the result obtained is expected to match the predicted
result. Providing that the notion of “goodness” or “badness” is defined, the difference between
the values gives indications on the quality level of the attribute. Expected results permit the

confirmation of general hypothesis such as:

“due to the abstraction level of classes situated near the top of a class hierarchy, the

deeper a class is, the higher the level of redefinition”

-110 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

“for a DIT level, a high level of redefinition may suggest a potentially design problem in
the current level and parent levels affecting the understanding, maintainability and

extendibility of the class hierarchy”
or more specific ones such as:

“a redefinition level higher than 50% indicates a potential MDR problem arising at the
considered DIT in the hierarchy”

“the ratio of extended methods compared to the total redefined methods gives evidence

of a class reusability”
“a method redefinition rate increase > 30% suggests the presence of the MDR problem”
Note that the above mentioned thresholds may be based on existing benchmarks.

e Unexpected. In such a case, the interpretation is open to suggestions arising from the
observation of the metric results obtained. An empirical study the profile obtained ought to

discover particular patterns for further investigations.

Whether the metric results are expected or not, the desired feedback provides explanations or

suggestions for improvement concerning the observed profile.

In section 3.4.3, a novel interpretation framework is presented and used for the evaluation of
different types of graphical representation. The framework addresses the lack of the GQM

approach for the analysis of the metrics results.

3.4.3. Metrics interpretation framework

“The capability to qualify a process or product with measurement data is limited by the

abilities of the analysts.” — Henderson-Sellers

Goodness and badness are two possible quality design attributes. Inevitably, a design always
shows weaknesses regarding some particular OO aspects while presenting strengths in other
aspects. The area of measurement contributes to the design decision process and helps in the
identification of recognisable design anomalies. Often, comparison is adopted as the technique for
interpreting metrics results. However, as stated in [Ban97}, the designer should make sure that the
metrics values are comparable at first. To compare an aspect to another, they must be related to
each other i.e. variants or serving the same purpose. In addition, they must be in related context
e.g. similar conditions for comparison. In this thesis, the aim is to assess the various uses of the
redefinition techniques. So, the measures are compared to each other within the same branch of the
hierarchy. When two different branches belong to two different categories (see interpretation given

to systems in sections 5.4 and 5.5), comparison is only made from a general perspective of use of

-111-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

redefinition and conclusions can be drawn regarding the different type of profiles obtained. The
metrics interpretation framework proposed in this section ought to minimise the risk of
incomparable data in guiding the designer for the choice of the correct representations and

interpretation mechanisms.

The proposed metrics interpretation framework is aimed at being integrated in a traditional
measurement process such as the GQM model. In consequence, the given description assumes that
the interpretation phase naturally takes place after the metrics collection phase. In the light of
explaining the crucial stage of data interpretation, it is necessary to re-visit the design and
measurement process to demonstrate the strong dependency relationship involved between the
early stages of design and the final stage of a measurement programme. In a software development
process, the designer’s perception is the core element to the success of the realisation of

applications.

In the following sections, the importance of the designer’s perception is highlighted. It is shown
how the interpretation framework can be decomposed in the three following aspects: raw data
representation, profile analysis and design feedback. Details of interactions between different

components of the framework are explained.

- 3.43.1. Designers’ perceptions and decisions

An interpretation process is a reasoning activity. As the decision making process. is done by the
designer, many factors influence the final decision. The designer’s experience is one such factor
(Figure 3.19). If an empirical analysis approach is adopted, the interpretation starts with an
observation phase where an overview of the data is analysed. Then, a more detailed study is
necessary. It is noticeable how the designer’s perception or understanding of the underlying OO
concepts affects the conclusions of an interpretation process. For this reason, the knowledge of the
intention of the designer when the candidate design was built is crucial to the interpretation phase.
External subjective factors may also compromise the interpretation as well validating it. For
instance, experiments illustrated in [Abb&al94, Ban97] proposed to choose evaluators i.e.
designers based on similar experiences to rate a set of aspects of design. The results of the
experiments showed a general consensus on the quality attributed to each design. However, it can
be argued that in such a situation, there exists a degree of subjectivity related to the quantification
of the level and similarity of experience of the designers. The number of years may be one possible
approach to quantify such level. In consequence, in an interpretation process, the less subjective it

is, the better the quality of the conclusion is.

An interpretation process is also based on the understanding of the OO concepts used. It is
therefore important to relate the designer’s perception of a concept with the interpretation of a
measure. This is particularly important in the case of use of an OO principle that exhibits different

interpretations itself.

-112 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

OO0 fundamentals

: Design feedback Raw data
i (suggestions) representation

) analysis
O e N e

Figure 3.19: Analysis, interpretation and interactions

The interpretation process can be decomposed into three aspects (Figure 3.19):

The representation of the raw data set implies that the metric results are not processed before

The analysis of the profile represents the process by which extraction of the design feedback is

Design feedback. Often, this involves a comparison of the metric values obtained against the
assumptions made on the OO characteristic assessed.

After a presentation of the benefits of graphical data representations, a detailed description of the
profile analysis task is given in the following sections. In particular, the interpretation techniques

focus on the discovery of unknown design features.

3432. Raw data representation

To date, most research work on metrics has concentrated on the metrics themselves and does not

exploit the results from different perspectives. The derivation of metrics tends to generate a large

data set as a result. Therefore, a graphical representation of raw data is the first natural step.

Instead of a table of plain numbers which might be suitable in some cases, the main benefits of a

visualisation is that it is easy to pinpoint disparities. The evaluation of different representations is

desired in order to identify the appropriateness of these with regard to the metric chosen and the

design characteristics expected to be interpreted. The suitability of the visualisation type chosen

determines the correctness of the interpretation.

The data representation phase is illustrated by the three components shown in Figure 3.20.

-113-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

Raw data
representation

e

visual aspect data processing detectors
! tools :

graphic representations filters trigger functions
symbolisms converters trigger conditions
alerters

Figure 3.20: Data representation

Visual aspect

An advantage of use of graphical representations is that they are not limited to well-defined ones
such as bar charts, surface charts, etc. Several types of diagram may be appropriate for the same
data sets offering the choice of many perspectives. For example, symbolic diagrams [Ebe92] can
reduce information content while increasing readability and clarity. The symbols are arbitrarily
chosen according to the values.

The motivations behind the use of graphical representations for the method redefinition profile are

manifold:

e Ease of analysis, comparison and interpretation: a visual representation is, in most cases, more
convenient than raw data sets, especially large, in a table. The type of representation or
symbolism used determines the expressiveness of the visual aspects. For instance, in the case

of a ratio values type in a data set, the pie chart is one possible representation.

e The comparison of the redefinition activity for different branches is made easier. A
redefinition profile can act as an element of reference in a comparison. The investigation of
differences between two shapes indicates similarities or dissimilarities of the design from the

point of view of behavioural inheritance.

Data processing tools:

Sometimes it is convenient to transform raw data (Table 3.6) before it is visualised. Examples of
use of data processing tools can be the extraction of a reduced set of data, the data transformation
into a different scale unit or the conversion of the data into ranges for enabling different
perspectives. A pre-transformation of data is seen as a re-processing stage where the results from
the transformation are expected to exhibit some desired features or peculiarities. The possibility of
hiding or showing a subset of the raw data set is crucial for the analysis and interpretation of the
metric's results. The focus on certain aspects of large data sets permits the discovery of details

-114-

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

which are otherwise unnoticeable. Although rare, data sets may also contain redundant values that
can be removed by a filtering function. As applications evolve in time, it is also possible to see the
effect of changes made between two versions of the same class, branch or system in comparing
different versions of the redefinition profiles. Such comparisons are made easier with the presence

of graphical representations.

Redefinition profile (%)
6.48
19.39
42.15
56.03
45.54
52
60

Table 3.6: Smalltalk Express Object branch redefinition profile

\IO)UIACA)N—‘S

The choice of the transformer function is outside the scope of this thesis; however,

transformations in the metrics domain are considered.

Detectors

In general, abnormal or unusual values indicate abnormal or unusual ‘gieksign features. The
discovery of such unusual values may be straightforward if visual. As the redefinition rﬁ_etrics are
mainly utilised to assess branches of hierarchies, depending on the size of the branch, a fine
detection of potential suspect classes can be done due to the derivation level by level. The
technique of detectors is complementary to data processing tools as the latter can be used as a
filtering system to reduce the amount of data processed. A data interpretation model using

alarmers is presented in section 5.11.

Providing that suitable visualisation of the metric results exists, one possible way to identify
design inconsistencies, for a given characteristic, is to assess the disparities on the graphical
representations. This leads to the notion of pattern profiles. An example of detectors used in the
experiments is the technique of alarmers (section 5.10) which are aimed at specifying and
recognising such disparities. More generally, the identification of conditions under which a

disparity occurs is essential for design problem detection.

Ideally, it is sought to recognise typical pattern profiles which would be classified for a particular
metric and thereby, the corresponding design problems. Suggestions for design improvement
would then be facilitated. A profile should exhibit some expected characteristics or properties
related to the metric considered. An alternative choice is to look at the range of possible chart
types available for evaluating their appropriateness against the concerned metric. Not all graphic
representations are suitable for a given metric, the choice depends on its type, on its properties, on

the characteristics to be measured and on the type of results expected. For example, the

-115-

T*————W

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

redefinition metric set measures the amount of redefined methods in a class hierarchy. The
measure is taken level by level in the hierarchy and a percentage is returned for each level.
Therefore, the type of results is discrete which prohibits the use of smooth curves. Instead, visual
representations such as bar charts or scatter plots are the most suitable. Novel visual
representations and symbolism are encouraged for the representation of results, especially if the
properties of a particular phenomenon are known i.e. conditions under which a phenomenon is
likely to appear. Although the drawback of such an approach entails the overall cost of
development of the measurement programme, the main benefits lie in the focus of the dedicated
representation to discover a particular feature of the design which can be detected by the derivation
of metrics.

The next section presents the core and final part of the interpretation process whereby the profile
analysis process is explained. Naturally, it is expected that the outcome of the analysis is the
suggestion of potential solutions to the design problems tackled.

3.4.3.3. Profile analysis and design feedback

The analysis of the results is mainly a synthesis activity. In gathering and referring back to the
information found during the entire course of the measurement, the analysis of observations made
from the graphical representation leads towards explanations of the phenomena observed. The
profile analysis and the extraction of design feedback are closely related tasks. Simply, the former
aims at discovering and explaining the profiles obtained while the latter describes the necessary
design actions to be done to improve the design. Figure 3.21 represents the final phases of the

measurement cycle.
Assumptions ;
Referential Metrics collection
Design feedback Hypotheses

Proﬁle analysis

design decisions — /\

and transformations observed proceesing tools
rules
single/range thresholds
", - alarms
~-.,_\- A side effects

patterns dependent metrics

rates

shapes

colours

Figure 3.21: Profile analysis

- 116 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

John McGregor [McG95] identified three techniques to interpret metric values. The observations

can be based on:

¢ The rate of changes of the value over iteration.

e The direction of changes of a set of values.

e The standard deviation from the mean of a set of values.

McGregor’s techniques are mainly based on the observation of changes occurring to a raw data set.
However, the phenomena observed on a curve can be of different nature. When a design problem
is identified, it may be possible to define the conditions in which the problem occurs. In such a
case, the data set may be processed before display in order to explicitly show the identified
phenomenon on a curve. Therefore, the interpretation process is based on the following two factors
(Figure 3.21):

e The presence of phenomena i.e. noticeable features, which can be either:

* Native: without transformations, the data values exhibit particular visual characteristics
e.g. peak, exponential rate of increase or decrease, minimum, maximum. Note that
outstanding characteristics may be not be visually explicit e.g. not necessarily a peak on a
graph. Notice that the absence of a phenomenon may be the sign of an unusual

characteristic and would required further attention.

* - Generated: under some conditions, particular visual characteristics can be generated when
the data is processed beforehand. For example, to obtain a macroscopic view of the data, it
may be useful to show ranges of values instead of all values in a data set. This permits a
reduction of the size of the data set to be displayed on a graphic, therefore facilitating its

reading.

e The notion of interpretation rules is one possible approach to generate design feedback and
suggest actions for improvement. For instance, suppose that in the context of the method
redefinition profile, a threshold value 0f40% is arbitrarily chosen as cut-off point. Then, if the
PCRM measures show two values that are higher than the threshold on two consecutive levels
of DIT, it could indicate the presence of the MDR problem. Therefore, such a situation
requires the analysis of the source code to discover further information on the causes of the
problem. Note that, in general, threshold values are determined by measurements done in the
past in a similar context and domain. In that respect, benchmarks are commonly adopted
instruments for the interpretation of metrics and determination of “goodness thresholds”.
Unfortunately, benchmarks are rare due to the additional cost involved in the measurement

process and the relatively unpopularity and non-maturity of metrics for OO systems.

- 117 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

A possible definition of an interpretation rule is given as follows:

Interpretation rule:
In a given context of measurement, for a quantifiable aspect of a design attribute, an

interpretation rule permits the logical deduction of the causes of the phenomena
observed on a chosen representation. An interpretation rule indicates or suggests
explanations on the observations of particular phenomenon for a given

representation.

Therefore, interpretation rules constitute a mean for inferring design feedback and suggest
required design actions to the designers. In Figure 3.21, the referential values are values such as
threshold values, averages, minimum or maximum. They are pre-calculated or arbitrarily chosen
for reference. Sometimes, subjective choices based on experience are chosen as referential values.
This area is still argued amongst the research community. However, when the referential values
are well identified e.g. benchmarks, they can be used within detector tools as element of
comparison. In addition, to support the search for a particular phenomenon during the profile
analysis, various investigation tools providing facilities for pattern searching, querying, filtering,

simulation and history of profiles may be considered. Some of the tools are discussed in chapter 5.

An important characteristic of the analysis process is the influence of factors such as the
assumptions, the referential values and the hypotheses defined earlier in the measurement process.
The interpretation rules tackle such factors in reducing the introduction of uncontrolled factors
during the interpretation. This provides aibetter degree of accuracy in the conclusions generated.

34.34. Factors affecting the interpretation process

Design feedback
Actions

Figure 3.22: Interpretation factors

Figure 3.22 shows the factors affecting the interpretation process. Often ignored in the literature,
these factors are rarely emphasised for the interpretation process. As expected, the output from an
interpretation process is the generated feedback for design improvement. Interpretation rules

- 118 -

3. Assessing the Properties Inheritance Scheme for the Multiple Descendant Redefinition Problem in Object-Oriented Systems

directly correlate causes to effects by identifying the list of factors from the different phases of the
measurement (see Figure 3.22). To experimentally demonstrate the validity of the metrics, the

technique of interpretation rules helps in confirming or refuting the stated hypotheses.

The side-effect factor relates to the interpretation and uses of an OO concept to solve a problem. In
the case of inheritance, it has been demonstrated that various possible uses of the method
redefinition mechanism affect the solution design. Often, it is the programming language features
that generate unexpected designs referred to as the side-effect factor. The investigation of potential
side effects is beneficial to the interpretation process as it provides explanations on the origins of
the problems. Sometimes, the designers produce “non-conventional” designs on purpose to tackle
a specific problem. For instance, the quality of the design may degrade when code optimisation is
required and hacks may be utilised. If a side effect is known, then the causes of the problem may

be easily understood.

The investigation of dependency relationships between attributes assessed is one possible approach
for discovering the effect of one attribute on the other. When a dependency relationship exists
between two attributes, the corresponding metrics are therefore dependent (see section 2.4.6.1).
Interpretation techniques can then fully benefit from this observation. For example, it would be
- possible to discover fhe logical chain of events between related metric results sets to understand
how the changes to an attribute affects the result of the other. Another example relates to the

redefinition and the encapsulation mechanisms. If the properties of a class are declared as private,

they are not visible and accessible from other classes, theréfore, no redefinition is possible for the

subclasses of the class. This implicit dependency relationship between metrics opens various ways
of improving the assessment process. In some cases, it can be efficiently used in a predictive
manner. Suppose that two metrics m1 and m2 are directly related, the knowledge of evolution of

m1 allows the prediction of evolution of m2 and vice-versa.

3.5. Conclusion

This chapter examined the MDR problem in inheritance hierarchies and proposed a set of novel
metrics for the measurement of redefinition. Details of the technical issues involved in the
measurement programme were given and can be used in a more generic context. The behavioural
inheritance analysis technique is a possible approach for discovering methods life histories
regarding their redefinition status. Finally, a description of a metrics interpretation framework was

given for tackling the problem of metrics results interpretation.

To demonstrate the benefits of the redefinition metrics, the next chapter presents a metric
prototype collector tool that enables automated collection of the metrics. Details of the
requirements, design and architecture are described together with some sample screen shots.

Further details concerning the design of the prototype tool can be found in the Appendix.

4. Mefric tool collector and implementation issues

4. Metric tool collector and implementation issues

“Not everything countable counts and not everything that counts is countable”

—Norman E. Fenton

4.1. Introduction

The availability of automated tools within a measurement programme is a necessity for the data
collection phase. If metrics were to be applied manually, the task would be very exhaustive and
prone to errors. As the metric collector tool examines the design information, this must be in a
format recognisable by the tool. In general, the design information is available in one of the

following main forms:

1. As a textual document on paper.

2. Within a CASE tool.

3. -As textual files used by either a development environment or directly by a compiler.

In case 1, the use of an automated tool is not possible. Case 2 requires the knowledge of the
format in which the design is stored under the CASE tool. In such cases, a possible solution is to
generate the corresponding implementation in a particular language which in turn, could be
processed in the same manner as in case 3. The programming code still remains a common basis
from which the extraction of design information is possible. If the CASE tools do not support
code generation features, a costly approach would involve the development of an integrated
metrics tool within the CASE tool architecture. In case 3, additional implementation of parsing
tools is required for the derivation of the metrics. For development environments providing
metaclass capabilities, the design information may be directly accessible without the need for
further tool development. Although features like metrics definition, metrics collection and results
visualisation are desired [Bri96], the diversity of environments necessitates dedicated metric tools.
In order to limit the experiments to the demonstration of the applicability and usefulness of the
redefinition metric set, the following aspects guided the design and implementation of the

prototype metric collector:

e A simple metric collection may be limited in functionality and use existing software

applications as much as possible.
e The use of a prototyping language enables rapid development of applications.
e The identification and extraction of design information should be possible at minimum cost.

e The algorithms for the computation of the redefinition metric set should be replicable in

different environment.

4. Metric tool collector and implementation issues

e Class libraries are required as subject of study.

This chapter introduces a prototype metric collector tool which:

> Automates the data collection for the redefinition metrics at class, hierarchy and system levels.
> Demonstrates possible novel representations.

> Features a method profiler for the analysis of the method’s life history.

» Provides an example use of the technique of the alarmers.

The next section details the requirements for the prototype metric tool.

4.2. Requirements
4.2.1. Features

The purpose of the metric collector tool is to provide the user with a minimal set of features
facilitating the derivation of the metric redefinition set described in section3.2. The derivation
process mainly consists of the automation of the data collection for further procéssing and
analysis. The developmAent' of a metrics collector tool emphasises the fact that particular attention
should be given to the feasibility and cost of such development within the measurement
programme. To date, few generic metrics tools are extensible and flexible enough to permit an

easy implementation of new metrics [SimLew98]. However, these are still under development.
For the purpose of this thesis, the following features of the prototype tool are considered:

e A browser which permits the display of the design to be assessed: in particular, the

representation of a class hierarchy is required in order to choose sub-hierarchies for assessment.
¢ Implementation of the redefinition metrics algorithms.
¢ A method profile analysis tool that permits source code analysis for MDR problem discovery.

e Persistent storage for the metrics results. As the design process is incremental, many stable
versions of the model may constitute viable solutions, therefore, it is interesting to assess these
versions comparatively. Thus, a persistent facility is needed for storing previous measures.
Essentially, it is desirable to be able to store metric results and other possible attributes related
to the measure of the particular design subject being assessed. Therefore, persistent storage
should provide a mechanism for dynamically creating objects with their associated attributes
and then provide functions for retrieval of existing objects. Its underlying model is not of main

importance.

e A data representation tool: the existence of powerful graphic packages on the market will

suffice to satisfy the purpose of the experiments. However, the possibility of dynamic linking

-121 -

4. Metric tool collector and implementation issues

between the prototype metric tool and the graphic package is envisaged as well as

functionalities for creating novel representations.
e An implementation of an example of detection technique.

In addition, functionalities such as printing, exporting, importing and metrics management
capabilities are also desired. Using the Smalltalk language, a rapid prototype development is
possible. Furthermore, the IDE also provides support for dynamic manipulation of class

hierarchies and user applications. The development is done within a PC-based environment.

4.3. Analysis and design of the metric collector tool

This section highlights the design issues for building the metric collector tool. The redefinition
metrics set assesses the mechanism of method redefinition in a single class, in class hierarchies or
in a system. For the derivation of the PRM, PRMH, PCRM and PEM metrics (see section 3.2),
the internal structure of classes and existing inheritance relationship information are gathered.

Before the derivation of metrics, two main questions need to be answered:
e How can one detect if a method is a newly defined method for a class?
e If a method is inherited, how can one recognise that the method is extended or redefined?

Other states for a method have been described in section3.3.4 but not relevant to the calculation of
the redefinition metrics. An immediate answer to the first question is to check if the method exists
in at least one of its ancestor classes. If it exists, then the method can only be redefined, extended,
reused or cancelled in the subclasses. The fact that an inherited method exists in a class i.e.
presence of its signature, implies that the method is redefined, however two cases may arise: the
method is replaced i.e. completely redefined, or the method is extended i.e. reuse of the inherited
implementation. Note that cases of particular super calls such as directed super calls and
dishineritance (see Figure 3.15 b), section 3.3.4.1) are not considered as a valid extension of a

method from a conceptual point of view.

The next section presents the problem of hierarchy parsing with regard to the derivation of the

redefinition metrics at different levels.

4.3.1. Class lineage and parsing strategies

Several parsing strategies can be envisaged for the search of redefined or extended methods
[Mey97, Riv96, Ste90]. In single inheritance class hierarchies, the lineage of a class can be
examined in localising the direct parent in a bottom-up fashion and by repeating the process for the
parent class until reaching the Root class, the whole list of ancestors can be obtained. In the case
of inheriting from multiple classes, the correct path is found in analysing the calls to the inherited

method in the current class (see section 3.3.3).

-122 -

4. Metric tool collector and implementation issues

Whether support is given by the development environment or not, the prototype metric tool is
dedicated to the language studied in the sense that specific language syntax is taken into account.
One of the other tasks is then to detect if a method falls under the case of extension. Consequently,
it is possible to conclude that all other redefined methods are either declared as polymorphic or
completely redefined.

Metrics derivation for the different levels

Methods state ?

Figure 4.1: Levels of derivation

Figure 4.1 shows the classes of a system. The different shaded areas represent the three different ‘
levels for which the redefinition metrics can be applied. For each level, the list of classes to be |

included in the calculation is also shown. The different levels are:
e Class level only the single class is concerned.

e Hierarchy level the user enters the sub-root class name of the hierarchy. Then all subclasses

of the sub-root are included in the computation list.
e System level the user enters the list of classes in the system.

Note that at system level, the computation of the metrics does not differentiate whether classes
situated at a particular level inherit from the same branch of the hierarchy or not. For example, all
classes at level 1 in Figure 4.1 would be included in the calculation of the metrics although not

inheriting from the same root class (further issues were described in section 5.5).

To realise the different types of searches required by the metric tool, two main parsing strategies
are shown in Figure 4.2.

=198

4. Metric too! collector and implementation issues

Parsing directions Selection of
X current class
s A P
Selection of % | .,
classes per g TR

level :1 [:] [:]

Figure 4.2: Parsing strategies in class hierarchies

The calculation of the hierarchy redefinition metrics requires the examination of classes level by
level. To do so, the metric tool selects all classes situated at the same depth in the branch assessed
and then, for each class at this level, examines its ancestors, its children or both depending on the
information researched. The process of parsing is the main activity during the course of the
derivation. The appropriate use of upward or downward parsing direction avoids unnecessary
processing time. For example, in the case of the calculation of the redefinition metric for a class,

downward parsing is not necessary.

For each class to be included in the calculation, an extraction of the relevant design information
(section 3.3.2) from the class is done. Further details on the utilisation of the Smalltalk language

for the realisation of this process can be found in the Appendix.

4.4. Architecture

The design of applications with object concepts naturally separates concemns into different
abstractions. Based on a Model-View-Controller (MVC) architecture, the metric collector tool
encompasses three main components shown in Figure 4.3 and is entirely part of the Smalltalk
environment. The Smalltalk class library'’ therefore provides the main development features of the

language.

'* The Smalltalk Express version 2.0.4 was used for the metric tool development and the creation of the user interface was done using
the WindowBuilder Pro/V GUI builder [ObjSha93].

4. Metric tool collector and implementation issues

Metric collector tool
Controller

Profile manager

Smalitalk class library

Smalltalk repositories

Figure 4.3: Metric collector tool architecture

The main three elements of the metric collector tool are detailed below:

e The profile manager and the metric engine act as the controllers. The profile manager ensures
that the persistent repository is configured for the storage of method profile objects. The metric

engine processes metric derivation requests.

e The persistent repository structure represents the data model for the method profiles. The

underlying persistency mechanism relies on the Smalltalk environment and its images.
e The user interfaces include the hierarchy browser and the metric result panel.

The benefits of such an architecture for a metric collector tool lies in its simplicity and adaptability
for extension of new features. Three core classes represent the three elements in the architecture.
At the centre of the architecture is the profile manager object. It co-ordinates the despatching of
tasks, ensures that the method profiles are created and returns the results to the display panel
object. Following the object design philosophy, one important aspect of the metric tool's
architecture is that the components are abstract enough to carry out their tasks independently.
Smalltalk applications are "embedded" within the Smalltalk environment. The persistent repository
(PR) is an adapted version of the persistence system used in [Owe95]. Represented as an additional
layer on the top of the Smalltalk class library (Figure 4.3), the PR consists of a set of classes which
provides capabilities for managing persistent objects within the Smalltalk image.

e The analysis and design of the components of the architecture can be found in the Appendix.
However, two of the features of the metric prototype tool: the concept of alarmers and the data
interpretation system, will be illustrated in chapter 5. Both features have been integrated
within the hierarchy and profile browsers.

=125~

4. Metric tool collector and implementation issues

4.5. User interfaces

In this section, the user interfaces illustrates the main features of the prototype tool. Decomposed
in four sections: derivation, profile metric manager, method profiles and alarmers, the description

of the tool covers the aspects shown in Figure 4.4.

System Metric Browser
Derivation Profile Metric Manager Alarmers
Class Import L> Range Definition
Hierarchy Delete
System Export
Update
Print
View
Method Profiles
Flat view
Hierarchical view
Senders
Implementors

Figure 4.4: Roadmap for user interfaces presentation

In Figure 4.4, for each main feature, the available functionalities are presented as a tree. The
following sections describe the metric prototype tool from a user point of view. Explanations about

the derivation process and the supporting tools for analysis are given.

4.5.1. The System Metric Browser

Figure 4.5 shows the main user interface for the metric prototype tool. It includes a hierarchy
browser on the left-hand side panel and a tabular display of metric results on the right hand side of
the window.

- 126 -

4, Metric tool collector and implementation issues

System Metric Browser

System metric Toggles alarmer On/Off

Methods profiler

\ Clear results §ave results
i -
i

Hierarchy metric ...
e,

o 9] bl | ,.
ierarchy : Object Methods Redefinition in Hierarchy Collection
- T - Results of the
Class metric Lollection e redefinition
JBZQ dCollecti DIT ANM (U5 PRM PCRM PEM [~ metrics for the
. ... JnggxedLollection (3] [¥3) 26} Collection
Hierarchy browser - FixedSizeCollection branch
Arrsy 1 5.0 147058 14.7058 0.0
CompiledMethod
Stack 2 7.666661 50.3607 50.3607 0.0
ByteArray
FileHandle 3 8.6 68.2857 54.0336 = 2.87114
Interval: .
String:: 1 6.33333: 361908 243125 0.74276
DoubleBytéString R . SIS I ‘
. ‘DoubleBytet 367927 225945 5.0
. i ’ = ‘\
E P
g
1
Y
g
-
4
i
-t
Status bar
Calculation options ~ /

~] i

Current options Levels inthe Average Total Percentage of Percentage of
hierarchy percentage of percentage completely completely
. methods in of redefined redefined redefined
class per level methods ‘methods methods "

Figure 4.5: Prototype metric tool main window

The request for a class, a hierarchy or a system metric is activated either by the Metric menu or by
the first three buttons on the tool bar. The calculation mode is set in the left-bottom panel and the
chosen option is automatically reflected in the status bar. The result panel display, including the
titles and metric results, are only shown after the completion of a derivation request. A function
permits clearing this panel if needed. Note that this functionality only deletes the values in the

browser window but not the corresponding method profile object either in memory or in the image.

For each derivation request, the date of derivation is shown above the status bar and this date is

updated if a new derivation request is made on the same classes.

4.5.2. Metrics derivation

In the case of a system metric request, an instance of the SelectSystemClasses class is created
and the user is asked for the selection of classes to include in the system (Figure 4.6). The list of all

classes in the Smalltalk environment is presented as a flat alphabetical list on the left-hand side of

the dialog box in Figure 4.6.

-127 -

4. Metric tool collector and implementation issues

Redefinition metric for a system

Metric resuits for the T-Gen
system loaded by the profile
- manager

Wmscr

—A

. o
rBuRes B8

List of all classes
_.- currently in the Smalitalk
< environment

L Name of the system

List of classes in the
system to be assessed

Move the selected
T class inthe system

Move all classes
3 in the system

Remove the selected
" class from the system

Remove all classes
from the system

Calculate the Update the Viewthe Loadthelistof Cancel
metric forthe selected list metric results classes for the operations on
system of classes in for the system name of the system

the system system entered

Figure 4.6: Redefinition metric at system level

A set of functions is also provided for the management of classes in the system. The metric results
for a system are also stored as persistent method profile objects, thus the presence of a Load
function for the reloading of classes of a system that have been previously stored. Often, it is also
convenient to add or remove classes from the system as it evolves. The Update function permits a
quick modification of the list of classes of the system without having to reselect all classes. The
Derive function requires the computation of the metrics for the selected classes and the View
function returns the stored results without re-computation of the metrics.

In the case of derivation at class or hierarchy level, the input of, respectively, a class name or a top

node class name suffices for the execution of the calculation of the metrics.

4.5.3. The method profiles manager

" To retrieve existing metric results from the persistent repository, it is necessary to load in memory
the corresponding method profile object. A list of these can be browsed using the method profile
list manager in Figure 4.7. The left-hand side panel shows this list and the entry field on the right-
hand side permits the manual input of the profile object name.

- 128 -

4. Metric tool collector and implementation issues

Method Profiles Manager

Profile name
iy

List of profile jgm z
objects 5 - e
currently .
stored

7/ Profile features

Figure 4.7: Method profile list manager

The list of features associated with the profiles is accessible via the buttons. The deletion of a
profile is a physical deletion of the object from the repository. Similarly, on a request of the
Update profile function, an automatic deletion of the object is done before the re-computation of
the metrics. The View/New Profile option calls the method profile browser (see Figure 4.8). Note
that, although the method profiles are used to store and to reload measures on a class a hierarchy or
a system, the activation of methods browsers is only available for measures on hierarchies. The
Export profile functionality is an alternative possibility for saving a method profile. It relies on
Smalltalk's object dump facility that writes a compressed description of an object along with its
referenced structure on disk. An example benefit of the use of such a mechanism is that it allows
saving of different versions of the same method profile objects, therefore enabling a comparative
assessment of the measures. The saved files may also serve as back-ups files as well as being
uploaded in another Smalltalk Express environment providing that the metric tool is available. To
do so, the Import profile facility reads such binary files and permits an easy reloading of the
method profiles into the repository.

Rather than directly print a method profile as the name of the Print functionality would suggest, it
saves the method profiles information in textual files that can be directly reused by other
applications or printed for documentation. This is particularly interesting for the processing of the
results by third party applications in particular graphical applications.

- 129 -

4. Metric tool collector and implementation issues

453.1. The method profiles browser

Figure 4.8 shows the method profiles for the Collection branch. Divided in two separate panels:
the upper and lower panels respectively give details about replaced and extended methods. In each
panel, three windows permit the discovery of the methods life history. The left window shows the
whole list of parent classes that exist in the requested branch of the hierarchy. Then, on selection
of any of the classes in this window, the set of redefined or extended methods of the selected class
is displayed in the middle window. For example, in the upper panel, the list of redefined methods
for the Collection class is shown. And finally, on selection of any method in the middle window,
the list of subclasses of the current parent class where the method is redefined or extended in the
hierarchy is shown in the right window. Thus, the method profile browser shows the details of
methods life history as described in section 3.3.5, thereby permitting the confirmation of the
existence of the MDR problem in suspect classes. For example, in Figure 4.8, it can be seen that
the includes: method is replaced in the branch OrderedCollection < IndexedCollection <
Collection.

Method profiles for the Collection branch

Number of Number of
methods classes
List of
List of classes : ! i subclasses of
replaced ey class in which
methods the current
method is
List of being replaced
completely
redefined T
methods for the
current class
List of
subclasses of
List of classes riEtCi J { the current
that mdudef class in which
extended “~... : ParentGisss. Exiesded Mcthads: - Subclasses: ~ 2~ § the current
methods B method is
being extended
List of
extended
methods for the
current class

Figure 4.8: Redefined methods browser

Note that any methods that have been originally defined as polymorphic are notified by their name
being followed by a "*' character.

In both panels, it is possible to access four additional features on activation of the right mouse

button on any selected method (see Figure 4.9):

- 130 -

4. Metric tool collector and implementation issues

e showlist
e showlnheritance
e Dependents

e |mplementors

When a detailed search of the use of methods is needed, the first two functions may facilitate the
process of interpretation. For ease of reading, the list of subclasses in the right window can be

shown as a flat list or a hierarchical list e.g. in Figure 4.9, a hierarchical view of the subclasses for
all add: replaced methods of the Collection class is displayed.

Method profiles

Pradile erarchy, Collection
Showinheritance v :

requests for the-.
Smeciac Mt e Subclasses
|-~ represented as
hierarchical list

Subclasses
represented as
plain list

Figure 4.9: Features of the methods browser

During the course of interpretation, it is interesting to know the list of methods that refer to the
method being studied. In such a case, it is possible to search for the list of classes and associated
methods that refers to a method name”’. For instance, in Figure 4.10, the dependent classes of the
includes: method are displayed in the Method dependencies window.

20 Note that in the Smalltalk terminology, methods are referred as senders for the reason that the method names act as the messages

between two objects i.e. message-passing mechanism.

-131-

4. Metric tool collector and implementation issues

Method profiles

Dependents List of classes
requests for the . _ and methods
selected method .. that are
dependents on

the current

4 method
/]
£,

v

A * character at the end of the method's

Figure 4.10: Method senders

The list of dependencies for a particular method mainly indicates how the method is being reused
in other classes. In the Method dependencies window, a class>>method format is used to
represent a method of a class that refers to the selected redefined method in the method browser.
Indeed, the list of dependent classes may contain classes not in the branch of the hierarchy being
assessed. The search of such dependencies for all redefined methods down the branch of the
hierarchy sheds light on the various uses of the method, therefore on the reasons why it is being
redefined. Also, it gives useful information if an eventual modification of the redefined methods is
envisaged. Recall that in a class hierarchy, the change of an existing class or method is a difficult
task, as the semantics should remain consistent with its class lineage. The complexity of change
varies depending on how the class or method is referred to in other classes. For example, the total

references of the includes: method equal 187 (Figure 4.10).

Similarly, classes that re-implement a method are referred to as Implementors. In fact, this
functionality gives similar information to the right-hand side window in the method browser,

however an indication of the DIT is also given by the Implementors class list in the form

DIT = Implementor
The Senders and Implementors functions can be called from both redefined and extended panels

on selection of a method in the middle window.

-132-

4. Metric tool collector and implementation issues

Method profiles

Profile of the hierarchy: Collection

Implsmerfnor;‘ Frarent Clans? Hedefined Methods?
requests for the *~~ : e *
selected method . i

List of classes

E "
auOrderedColiection that implements
the current

/’ method
W

b ais e

A ™ character at the end of the method’s na

TS

Figure 4.11: Method implementors

From an interpretation perspective, it is interesting to detect the list of method implementors
within the branch of hierarchy assessed but also in other branches of the entire class library. In
such a case, if the same method exists in different branches, many other issues have to be tackled
such as the similarity or dissimilarity of the semantics of the method particularly if the method is
being redefined in all branches. This problem constitutes other design issues that are not covered in
this thesis although the discovery of such problems is possible.

4.5.4. The definition of ranges for the alarmer

To set-up the ranges used by the alarmer, the getAlarmRange: method creates an instance of the
AlarmerRange window that allows the user to manually input the values of the seven ranges
(Figure 4.12). Recall that the entered values define seven ranges of percentages and each of the

ranges corresponds to a different colour range bar.

4. Metric tool collector and implementation issues

Alarmer range definition

i Definition of range
,,,,, values for the
alarmer display

G
IndexedCaliection
FixedBizetollection

Ranges definition for the alarme

Aavay From To *
gw g Range 1: @41 |E3.33
Range 2: [t4 fzz.98
Range 3 [28 |ar0n
Hange 4 42 k3 3
Range 5: [B6 [ss.98
Hange §: [0 Ess

Hange 7. [B4 o

Figure 4.12: Alarmer ranges definition

Figure 4.13 shows an example of results obtained from the Collection branch. The different colour
range bars are displayed directly underneath each metric value providing that the alarmer function
has been tagged on (Figure 4.5). Note that the colour range bars themselves are previously defined
and associated with the different ranges defined. In the current version of the tool, the range bars
are bitmaps that can be redefined for different colours or shapes. However, the association is

presently hard-coded for the purpose of the visualisation experiment.

S 134-

4. Metric tool collector and implementation issues

System Metric Browser with alarmer display

Alarmer colour

|~ range bars

hy : Object Methods Redefinition in Hierarchy Collection

Bag DIT ANMPG PaM
indexedColleciion 26
FoeedSizeCollection

CompiledMethod
Stack 2 666661 w
FileHandie 3 783333 [osias
interval :
String £ 482307 278316
DoubleByteString W
DeubleByteSymbet 5 375 iafens
Symbol .
OrderedCollection ‘
G‘ 4] L | S o] [1
raph 3

DirectedGraph

Figure 4.13: System Metric Browser with alarmer display

4.6. Concluding remarks

The metric prototype tool benefits from an integrated interface where the class hierarchy
component is visualised together the metrics results. Therefore, is it possible to immediately relate
the analysis of the results to the relevant classes in the hierarchy. If further analysis of the
hierarchy is required, the Smalltalk class hierarchy browser provides additional features. Recently,
the development of such metric collector tools or code analysis tools for programming languages
such as C++ or Java appears popular in industry”'. As software applications are increasing rapidly
in size due to the complexity of the business requirements, it seems natural that such metrics

analyser tools are being developed as well.

One of the main requirements for the metric prototype tool is the importance of support provided
by the development environment for both the accessibility to meta-information but also for a rapid
implementation of the tool. Only the class library integrated within the Smalltalk Express

2! JavaDocGen is a Java static source analysis, JavaSQA is an Object-Oriented program quality assurance tool and JavaStructure is
a structure analysis and diagramming tool for Java source code. These tools are developed by International Software Automation, Inc.,
http://www.softwareautomation.com, 1999. PC-Metric for C++ (PC version) and UX-Metric for C++ (SunOS version) are source code
analysis tools for C++ and are developed by SET Laboratories, Inc.P.O. Box 868 Mulino, OR 97042.

-135-

4, Metric too! collector and implementation issues

environment and the WindowBuilder Pro/V class library were required. Although portability was
not an issue, the specific part of the metric tool lies in its interfaces, therefore they depend on the
supporting GUI class libraries. The core classes in the remaining part of the metric tool
architecture use fairly standardised functionalities that are supported in many Smalltalk flavours,

therefore facilitating the portability of the tool.

An important feature of the tool without which the collection process would become rapidly
cumbersome relates to the persistence of objects. This is realised with native features of the
Smalltalk environment and saved within its image, all objects in the system including the method
profile objects are only physically updated if an explicit Save command is requested or when
exiting the environment. The Save command acts like a 'commit' command in a database in the
sense that all existing objects in memory are saved in the image. Although this behaviour remains
consistent with the Smalltalk procedures, it may also be constraining in some cases. For instance,
if unwanted changes occur in the class library and new method profiles are expected to be saved,
the changes must be undone before requesting objects to be saved. In most cases, the existing

procedure is sufficient for tackling the main issues with the metrics.

Concerning the graphical representation functionalities for the metrics results; the Microsoft
Excel™ 97 package was used with the exception of the implementation of the colour-coded
representation within the prototype tool. By consequence, the creation of the graphical
representations requires the metrics results to be transferred within the Excel worksheet. This
process was manually done in the existing version of the prototype tool. Indeed, an-automatic
transfer would remove all the necessary manipulation. This is possible with the use of the
Microsoft Object Linking and Embedding™ (OLE) technology and is envisaged as further

development.

Overall, the metric prototype tool demonstrates that the redefinition metrics set is derivable.
Automatic metric collection is possible at class, hierarchy and system level as expected. In
addition, the implementation of a possible method profile browser gives insights on the problem of
MDR, therefore generating feedback on the subject assessed. The experiments with the
redefinition metrics are described in the following chapter and illustrate the applicability and

benefits obtained from the analysis of the metric results.

-136 -

5. Experiments

5. Experiments

The aim of this experiment is to demonstrate that the redefinition metrics are derivable and
produces results that may suggest potential design problems. Given the description of the
metaclasses’ facilities for design information extraction in section 3.3.2, the experiments were
carried out on the Smalltalk Express class library [GolRob85] and a third-party application called
T-gen. The reasons behind such choices originate from the following factors: the size of the
software applications or class libraries, the presence of inheritance and the availability of the
source code. As the measures were taken on existing applications or class hierarchies, the design
details are not known apart from a high conceptual level understanding of the subjects assessed. As
a class hierarchy may cover many distinct abstractions in different branches e.g. Collection and
Stream branches, it is desired to assess these different branches in isolation. By consequence, the

same above-mentioned factors affected the choice of the relevant branches for assessment.

The experimentation is conducted as a five-stage process:

1. Collection of the metrics for the different branches

2. Analysis of the general PRM? metric for the different branches.

3. Analysis of the PCRM and PEM metrics for each of the branches or system.

4. Investigation of various graphical representations for the metric results.

5. Implementation of a simple example of a detection technique called the alarmer""k‘t:echnique.

This chapter demonstrates how a high level of method redefinition suggests the existénce of design
problems such as the MDR problem. In the first part of the experiment, only the general PRM

metric is considered. The metric gives an overview of the redefinition profile for the class
hierarchy. As the redefinition metrics set is a novel set of metrics, no previous results, benchmarks,
thresholds or profiles exist, therefore the interpretation of the results can only be supported by the
detailed analysis of the class hierarchy and the available code. Ideally, the access to design
documents would shed light on the interpretation of the profiles. The shape of the curves obtained
is the main guideline for interpretation. It is aimed at recognising pattern profiles that illustrates a

2% &

specific aspect of the design e.g. “normal curve”, “curve suggesting an MDR problem”.

In the second and last part of the experiment, the previous results are further discussed with the
derivation of the PCRM and PEM metrics for the same branches. The finer-grained results i.e.

ratios between the amount of replaced and extended methods, give opportunities for a better

2n this thesis, Smalltalk Express™ designates the version based on Smalltalk/V® Winl6 and WindowBuilder® Pro/V provided by
ObjectShare®, a Division of ParcPlace, http://www.objectshare.com

2 The percentage of redefined methods (PRM) metric is obtained in calculating thePRMH for every level in the class hierarchy with

linearisation of the inheritance graph i.e. no duplicates in the ancestors’ list for a class.

-137 -

5. Experiments

interpretation of the design assessed. In general, when an unusual phenomenon in the profiles
suggests further clarification, the designers ought to refer to the design considerations for
inheritance assessment® described in section 3.2. Ultimately, references to the source code are

needed in order to pinpoint precisely any potential defects.

Also, a simple detection technique called the “alarmer ” technique is used for the identification of
suspected design problems occurring under certain conditions. It is shown how the evaluation of
different possible visualisations for a set of metric results not only suggested potential design

problems but, depending on the type of visualisation, the same data set can reveal different

characteristics.

The list of hierarchies assessed in the experiment is shown in Table 5.1. As previously stated, one
of the main criteria for the choice of the hierarchies presented in the experiment relates to the

number of classes in the branches or in the systems.

Type of subject assessed No. of | Description
Classes ‘

Object hierarchy 427 Root of the Smalltalk class library and other

‘ third-party classes
WindowBuilder Pro/V system 144 GUI builder for Smalltalk Express
T-gen system 116 | Lexical parser. '
Collection branch - 25 | Set of container classes 7
‘Stream branch 5 Set of Input/Output stream classes
GraphicObiject branch 40 Set of classes for window management
TreNode branch 38 . | Subset of classes of the T-gen system.
AbstractScanner branch 10 Subset of classes of the T-gen system
Object hierarchy with the T- 549 Smalltalk and T-gen classes
gen system installed
Collection hierarchy with the T- 34 Collection and T-gen classes
gen system installed

Table 5.1: List of assessed hierarchies

Graphical representations of the raw metrics results are generated by the Microsoft Excel97©
package. On the below figures, the PRM metric is represented on the x-axis and the DIT level on
the y-axis. Note that the maximum DIT shown on the graphics is 7 as no hierarchies include

further levels.

5.1. Overview of the method redefinition profiles using the PRM metric

This first part of the experiment outlines an overview of the metric results for the selection of
hierarchies described in the previous section. The initial analysis of the method profiles obtained

suggests potential recognisable patterns on the use of redefinition for the assessed hierarchies. It is

¥ The method profiler in the prototype metric collector tool is an adapted version of the behavioural inheritance analysis method
(section 3.3.5).

~138 -

5. Experiments

also aimed at discovering unusual characteristics in the method profiles that would suggest good or
bad use of method redefinition. Overall, the grouped presentation of the results gives a ‘feel’ of the

use of the redefinition mechanism in the hierarchy.

litalk Object hierarchy (%)

Figure 5.4: PRM for the GraphicObject branch

- 139 -

5. Experiments

1rgen: Abstractsoannerbranch (%)

Figure 5.5 (a) and (b): PRM for the TreNode and AbstractScanner branches

Object/T-gen hierarchy (%) ; Collection/T-gen hierarchy (%)

Figure 5.6 (a) and (b): PRM for the Object and Collection hierarchies with the T-gen system
installed

Figure 5.1 and Figure 5.2 (a) and (b) represents the method redefinition profiles for three of the
largest (> 100 classes) hierarchies assessed. Although these hierarchies are isolated for the
measurement process, they constitute different systems. The other branches assessed are part of the

systems.

Figure 5.3 (a) and (b) show the Collection and Stream classes redefinition metric profiles. They
are generally recognised to be at the origin of similar framework of classes in other programming
languages. Figure 5.4 (a), Figure 5.5 (a) and (b) show three hierarchies of smaller size (< 100
classes). The TreNode and AbstractScanner are subset of the T-gen system. In Figure 5.6 (a)
and (b), the method profiles for the Object and Collection hierarchy show the metric results

calculated with the presence of the T-gen system in the Smalltalk environment.

A common pattern that appears in the profiles is that the amount of method redefinition rapidly
increases in the first three levels of the hierarchy, then remains stable for two or three levels and
finally decreases or increases in the bottom levels. As the highest values occur in the middle or
bottom levels of the hierarchy, it indicates that the core redefinition activity is located at these
levels. In the first levels of smaller size hierarchies, it is noticeable that the redefinition activity is
low or even non-existent. Generally speaking, it seems normal that the redefinition activity would
increase as the subclasses are specialised i.e. use of abstraction. This can be explained by the fact
that deeper levels of the hierarchy should include a higher number of classes and as the number of

inherited methods are accumulated at each level, they are also likely to be either used or redefined.

Naturally, the first overview of the redefinition activity calls for further investigation of the low

and peak values. The following sections give a deeper analysis of the metric results. For each of

-140-

5. Experiments

the above hierarchies or systems, it is shown how the examination of the high values guides the
analysis of the results to the discovery of unclear design situations. The presence of MDR is
highlighted in most cases. To do so, the PCRM and PEM metrics is derived on the same
hierarchies and illustrations of a pragmatic approach to the problem of localisation of defect

classes in the design are given.

5.2. Smalltalk Object hierarchy

The Object branch represents the whole class hierarchy (single-rooted hierarchy) which comprises
425 classes. The two curves for the PCRM and PEM metric*’ enable a clear separation between
two types of method redefinitions: extension and replacement. Surprisingly, most of the methods

are replaced instead of being extended.

Smalltalk Object hierarchy (%)

Figure 5.7: PCRM and PEM for the Object hierarchy

In Figure 5.1, the PRM rate of increase of the Object branch is fairly smooth. The first surprising
feature (Figure 5.7) is the relatively high number of completely redefined methods (PCRM) in the
whole Smalltalk hierarchy. In this initial measure of the Smalltalk redefinition profile, from
DIT=1 to DIT=3, starting with a value of 6.34% for the PCRM, the value more than doubles in
the subsequent levels denoting a strong redefinition activity. From DIT=3, PCRM=38.03%, the
next values seem to stabilise until DIT=6 although there is an unusual peak at DIT= 4 with
47.48%. Clearly, the midlevels of the Smalltalk hierarchy yield most of the redefined methods. It
is argued that deeper hierarchies may generate a redefinition activity as high as the one presented
in the experiment. In general, large branches such as the Object branch tend to lessen the
discovery of potential problems. This is due to a leverage phenomenon when a large number of

classes are involved in a measure.

5 Note that the profile for the Smalltalk Object hierarchy in section 5.6 (a) slightly varies from the profile shown in section3.1.1,

Figure 3.2. The differences of measures obtained are mainly due to the evolution of the prototype metric collector between the two sets
of experiments. Indeed, the prototype also lives in the Smalltalk environment, thus influencing the results. The correctness of the
metrics results remains consistent as long as the same version of the prototype is included when assessing various aspects of the

hierarchy.

T

5. Experiments

Although recommended (see section 2.1.1), more levels implies more abstracted classes spread
over more complex branches of the hierarchy making it difficult to control inheritance. This is also
true for the use of the extension mechanism. If a hierarchy already encompasses many levels of
inheritance, finding what the abstract classes and methods are, before the addition of new features,
is a necessary and cumbersome task. The need for design aid tools to alleviate some of the
designer’s task is then a requirement in the modelling process. In Figure 5.7, note that the low
level of PEM (13.75%) at DIT=6 is also its maximum. The interesting characteristic of the PEM
values is that it has a fairly constant increase which indicates a good sign of the use of inheritance.
However, at DIT=7, 60% of the methods are replaced while 0% is extended. This contradicts the
essence of inheritance. Redefinition, which is recommended to be used with care, occurs
frequently at all levels in the hierarchy, and extension, which is recommended, is rarely used. This

raises the question of the correctness of the behavioural inheritance design.

In order to further understand the phenomena observed on the curve, it is necessary to consult the
classes present in the hierarchy and the state of their associated methods (see section3.3.5). Note
that the Smalltalk class hierarchy comprises of many branches dealing with different aspects of a
generic class library, therefore the results obtained in Figure 5.7 includes classes that may not be
related to each other although part of the hierarchy. The overview of the method redefinition for
the Smalltalk hierarchy sheds light on the way redefinition is done down the hierarchy. However,
to identify the possible reasons for such profile, it is more appropriate to derive the metrics on a
smaller portion of the class hierarchy. In such a way, the measures are done on classes that
participate in the same abstraction. Therefore, the results are not disturbed by the effect of other

classes that not related to the subject assessed.

The following experiments present the isolated branches of the Smalltalk hierarchies.

5.3. Collection branch and Stream branch

Smalltalk Stream Branch (%)

Figure 5.8 (a) and (b): PCRM and PEM for the Collection and Stream hierarchies

The Collection classes in Smalltalk have been well studied by many researchers [C0092,
GolRob85, Lew95a] and are particularly known for the conceptual design problems occurring in
leaf classes (see section 3.1.1). A major problem concerns the amount of cancellation of property
inheritance in leaf classes. Smalltalk’s inheritance scoping control permits a class to stop the
visibility and accessibility of a method to its subclasses in redefining the method with a body

2142 »

5. Experiments

containing the code self shouldNotimplement. This situation is often recognised as a source of
bad design. The derivation of the redefinition metric would include the case of cancellation of
properties of a class. Indeed, the precise localisation of the faulty class requires code inspection.

In Figure 5.8 (a) and (b), at DIT=2, no methods are extended. A simple explanation is that all
classes at level 2 have realised the abstract methods, which is normal. The metric profiles illustrate
a case where a peak in a curve permits the discovery of classes highly suspect as they present an
unusual level of redefinition. For example, supposing that a threshold of 40% of method
redefinition should raise an alarm to potential design defects, it would be necessary to take a closer
look at the peaks happening at DIT=3 in Figure 5.8 (a) and DIT=4 in Figure 5.8 (b). A simple way
would be to derive the PCRM metric for each class of the concerned level. In Figure 5.9, it can be
seen that the FixedSizeCollection class holds 100% of methods completely redefined. Such a
result is unusual as none of the parent classes is declared as abstract. Although the percentage of
deferred methods is not shown in the figure, the above-mentioned class seems to be wrongly
subclassed. With the help of the method profiler tool, it is possible to study the hierarchy further.
For instance, Figure 5.10 shows the method profile for the Collection branch. The add: method of
the Collection class is being replaced in many subclasses (right hand side panel) situated at
different levels of the hierarchy, thus illustrating a case of MDR problem. In the bottom panels, it
is also shown that the add: method is only extended in three of the Collection subclasses.

Figure 5.9 (a) and (b): Collection branch at DIT = 3 and FileStream at DIT=4

-143 -

5. Experiments

Profile of the hierarchy: Collection.

Parent Class: Redefined Methods: 17 Subclasses: 7
Bag
FixedSizeCollection
OrderedCollection
SortedCollection
Set
Dictionary
IdentityDictionary

Collection
asOrderedCollection
collect:

deepCopy

do: *

includes:

indexOf:

isEmpty
occurrencesOf;

FixedSizeCollection
IdentityDictionary
IndexedCollection
OrderedCollection
Set

String

Parent Class:
Collection
Dictionary*
IdentityDictionary
IndexedCollection
MethodDictionary
OrderedCollection

__Subclasses:
{MethodDictionary

SystemDictionary

SymbolSet

Figure 5.10: Collection method profile

The PCRM for the Stream branch (Figure 5.8(b) and Figure 5.9 (b)) is high with 40.62% at -

DIT=4, which represents a factor increase of 60% from the previous level. This confirms the
Smalltalk Stream branch’s generally recognised design defect. Due to ‘the single inheritance
scheme, the ReadWriteStream class inherits only from the WriteStream class. There is a
duplication and redefinition of methods from the ReadStream to WriteStream. Note that the use

of the method profiler for this branch is not shown but it also reveals several cases of MDR.

5.4. WindowBuilder Pro/V branch

WindowBuilder Pro/V is a GUI builder for Smalltalk/V [ObjSha93]. The tool permits the creation
of the user interface including all of the powerful and standard UI elements. In addition to being
entirely visual, the tool generates the necessary Smalltalk code once the design is done. A full
installation of WindowBuilder Pro/V includes 144 classes. As the prototype metric collector tool
was built with it, the measures taken for the Object branch included the WindowBuilder Pro/V

classes as well as the prototype collector classes.

Figure 5.11: PCRM and PEM for the WindowBuilder Pro/V

- 144 -

5. Experiments

GUI builders are now well established with many proprietary products such as The BISS AWT
Framework [Bis97], XForms [ZhaOve97], PowerBuilder ® [Pow98]. All of them are based on
basic interface elements such as windows, scroll bars, text boxes, list boxes, radio buttons. Due to
the advent of graphical development environments, it is generally recognised that GUI builders
cover the essential needs of a large range of information systems. Therefore, the design of the GUI
builder itself ought to be abstracted enough to achieve such requirements, thereby showing a fairly
high redefinition activity as in Figure 5.11. It is noticeable that the highest measures of redefinition
occur at mid-levels of the hierarchy (DIT=3 and DIT=4) rather than in top levels as previously
seen for the Collection branch (Figure 5.8 (a)). Although the PCRM decreases on deeper levels of
the hierarchy (DIT=5 and DIT=6), it remains fairly high with 37.88% and 42.73% respectively.
On the contrary, the PEM ratio is steadily increasing down the hierarchy which suggests that
inheritance is correctly used for specialising the hierarchy by addition of new features. However,
recall that the measures shown on Figure 5.11 are general to the WindowBuilder Pro/V system.
Complete redefinition or extension may be found only on some branches of the system and not
others. A behavioural inheritance analysis for each isolated path would permit the discovery of

further details of the design.

The next section describes the measures taken for the GraphicObject branch which is part of the
WindowBuilder Pro/V application.

5.4.1. GraphicObject branch

The GraphicObject branch is one of the largest branches of the WindowBuilder Pro/V
application. It includes 40 control interface classes which permit the definition of radio buttons,

check boxes, list boxes, entry fields.

 GraphicObject Branch (%)

60 80 100

0 20 40

Figure 5.12: PCRM and PEM for GraphicObject branch

Figure 5.12 shows that the first two levels of the branch contains a low amount of PCRM and
PEM. GraphicObject is the only class situated at DIT=1, so is the InterfaceObject class at
DIT=2. Such a profile indicates that the two classes provide all the necessary behaviour for future
subclasses, thus the low level of redefinition. The PCRM increases by a factor of 21.6 from DIT=
2 to DIT=3. This shows that method redefinition occurred at the top of the hierarchy, and
questions whether the methods were initially well abstracted. For DIT=3 and DIT=4, the PCRM

- 145 -

5. Experiments

are respectively equal to 74.28% and 71.68%. Considering that this branch provides all the
necessary basic user interfaces elements for windows management, it is expected that most of the
methods in the top classes would be redefined. In addition, each of the interface elements would be
very specialised, therefore including a large amount of methods for reuse by a new application. A
detailed analysis of the classes at DIT=3 is given in section 5.6. A suspect feature is depicted at
DIT=5 in Figure 5.12 with PCRM=100 and PEM=0. Considering this level in the hierarchy, it is
surprising that no methods were reused nor extended and that no addition of new methods were
made. The study of the GraphicObject branch method profile (Figure 5.13) reveals that this
phenomenon seems to happen relatively often and concerns a few leaf classes i.e. a single class in
this case. Also, it is possible to detect that many methods present a case of MDR such as the

drawFrameWith:at: method which is defined in the FrameObject® class

drawfFrameWith:at:

PComposutePane
PCPStaticGraphic .
PDrawnButton £ |realClass:

PEnhancedEntryFleld%gg

A = character at the-end of the method® 's:name denotes a polymorphnc method

Figure 5.13: GraphicObject method profile

Note that the bottom panels of Figure 5.13 shows the list of methods of the InterfaceObject class
that are being extended in its subclasses producing a PEM=8.96% at DIT=3 and PEM=10.14%
at DIT=4.

5.5. T-gen system

“T-gen is a general-purpose object-oriented tool for the automatic generation of string-to-object
translators. It is written in Smalltalk and lives in the Smalltalk programming environment. T-gen

supports the generation of both top-down (LL) and bottom-up (LR) parsers, which will

 The FrameObject class is situated at DIT=3.

- 146 -

5. Experiments

automatically generate derivation trees, abstract syntax trees, or arbitrary Smalltalk objects. The
simple specification syntax and graphical user interface enhance the learning, comprehension,
and usefulness of T-gen.” -- Justin O. Graver [Gra92]. T-gen is made of 116 classes with a
maximum depth of six for the TreNode branch. As the system is a lexical and syntactical parser,
most of the processing does not involve user interaction apart from defining a grammar as input.
As for any other Smalltalk applications, the installation of T-gen classes, in a general sense,
extends the Smalltalk class hierarchy. Similarly, the redefinition metrics prototype tool (See
chapter 0) application classes are also part of the Smalltalk image. With the Smalltalk
environment, many applications can live in the same image and not interfere with each other.
However, assessing the redefinition mechanism of a system raises some issues concerning the

choice of classes to be included in the derivation of the metrics:

e Isolated classes: the assessment of inheritance is relevant when, by definition, an inheritance
relationship is defined between two targeted classes. If an assessment of application classes that
inherit from the Smalltalk environment is desired, the question is to know whether the latter
classes should be included in the derivation of the metrics. Recall that a branch of a hierarchy
can be identified by locating the top node of the branch, thereby the assessment of such a
branch will examine all possible inheritance path§ from the top node class. As the redefinition
metrics assess inheritance level by: level, a first approach will only consider the application
classes in the calculation. In such a way, the results obtained from the derivation of the metrics
would only concern the targeted application. A second approach for deriving the metrics is to
consider the whole Smalltalk hierarchy with the application classes installed, so a comparison

would be possible with the original Smalltalk environment.

Isolated classes in an application raise the problem of their inclusion on the calculation of the
redefinition profile for the whole system. For instance, in T-gen, the class Graph inherits from
the OrderedCollection class, the class Stack inherits from the Array class, the class ItemSet
inherits from the class Set, etc. OrderedCollection, Array and Set are part of the Smalltalk
library. In most cases, isolated classes are leaf classes, therefore a measure of redefinition for a
class is one possible solution. In Figure 5.14, the ltemSet class has PCRM=100% and
PEM=0%. Although this result may suggest a design problem at first sight, the detailed study
of its methods reveals that the only three methods in the class: =, hash and isltemSet are
originally defined in the Object class and are not previously redefined in its intermediate parent

classes Collection and Set classes. Thus, the ItemSet class should not be considered as

suspect.

5. Experiments

T-gen: kemSet class (%)

Figure 5.14: T-gen: ltemSet class redefinition profile

e Foreign classes i.e. classes which belong to the existing library. In general, application classes
extend many existing branches of a hierarchy. Suppose that the application classes derive from
an existing class which has itself many superclasses in the same branch. Many ancestor classes
may act as top node of a branch for hierarchy assessment. For the derivation of the metrics, the
issue is to decide whether to include the parent classes or not. In such cases, there are two
possibilities; including the direct parent only or previous parent classes. In both cases a mixture
of classes from the existing library and the application classes are included in the calculation.
This remains consistent in the sense that an assessment of inheritancé is desired, 'thus the
inclusion of all classes which act as a superclass in a particular branch. Note that inherited
methods in a class are not necessarily originally defined in the direci pareﬂt class.but~ih
ancestor classes of more abstracted levels as well. The case of the Object élz;lss is special as it
represents the root class (see section 2.1.3). Indeed, when the metrics are applied on the whole
Smalltalk class library, the Object class is the top node of the branch. The disadvantage of
including foreign classes in the calculation is that it may affect the values of the results when
the proportion of foreign classes is much higher than the application classes. In a cumulative
approach, this may invalidate the results in making negligible the effect of the application

classes and their properties (see section 5.6) on the metric results.

5.5.1. T-gen system redefinition profile

The classes in the T-gen system are spread over many different branches of the Smalltalk
hierarchy. The T-gen system is made of distinct small size hierarchies with the Object class as a
parent class and isolated classes inheriting from the Smalltalk class library. The derivation of the
redefinition metrics is done in the same way as for the derivation on a single branch of the
hierarchy. In fact, in the calculation of the metrics, classes are processed according to their
superclasses, subclasses and the DIT level they belong to. Isolated classes of a system are included
in the calculation of the metrics as any other classes in the system. In Figure 5.15 a redefinition
profile is represented. In this experiment, the calculation is done on the application classes only i.e.

no inclusion of foreign classes.

-148 -

5. Experiments

Figure 5.15: PCRM and PEM for the T-gen system

Figure 5.15 reveals that, at DIT=6, 33.33% of the methods are extended but none are replaced.
Concerning the PEM curve, the values remain quite low except the presence of the peak atDIT=6.
Contrary to previous experiments, at DIT=2 the PEM reaches 6.87% after being nil at DIT=1. As
many Smalltalk branches are involved in the T-gen system, no satisfactory conclusions can be
drawn at this point. Again, the measures of the redefinition on a whole system raise the problem of
interpretation. Further investigation for more detailed measures and knowledge about methods

profile are necessary before suggesting any recommendations for improvement. However, it is still

possiblé to notice that the level of completely redefined methods is high which suggests possible

presence of the MDR problem in the system.

| As for the Smalltalk class hierarchy, in the next sections, relevant branches of the T-gen system’
have been profiled and presented for further understanding on the use of the redefinition
mechanism. Indeed, selected branches ought to have many levels of inheritance in order to be able

to analyse the behavioural aspect of the branches.

5.5.2. T-gen: TreNode branch redefinition profile

The TreNode branch is the deepest branch in the T-gen system with a maximum DIT=6.

Figure 5.16: T-gen: PCRM and PEM for the TreNode branch

In Figure 5.16, no metrics values were found for DIT=1 and DIT=2. Simply, it means that no
redefinition has been found for classes situated at the two first levels. At the first level, an
explanation of such a situation is that the TreNode class is the top node of the branch and has the
Object class as its superclass. Therefore, as the TreNode class itself should provide generic

methods for its subclasses, it acts as a supplier class. In addition, there was no need to redefine

5. Experiments

inherited methods from the Object class, thus the nil values. At DIT=2, only a single class exists,
the ParseTreeNode class with four methods defined as non-applicable to instances of the class

i.e. the body of the methods contains:

self shouldNotimplement
The above body declaration does not impose any conditions on the subclasses of the class but only
on instances of the class. No invocations of the declared methods are allowed by instances of the
class. If such a situation happens, the system redirects a doesNotUnderstand: walkback error to
the sender of the message meaning that an object received a message that it cannot resolve. As no
implementations are provided for the methods, the ParseTreeNode class acts as an abstract class,
however, in such a case, the methods should have been declared abstract as well, with a body

containing:

self subclassResponsibility

self implementedBySubclass

As expected, subclasses of the ParseTreeNode class do provide the implementation for the four
methods. Despite the fact that the original author’s intention of prohibiting the creation of
instances of an abstract class is correct, abstract methods are seen as a preferred design technique

to ensure the coherence of inheritance.

Although at DIT=3, the PCRM is low 11.84% (Figure 5.16), an investigation of the classes

situated at this level reveals that three classes exists: GrammarParseTreeNode,
TokenSpecParseNode and RegularExpressionNode. Looking at the comment for the first two
classes, the author considered them as abstract classes, however, no methods were declared in
those classes. This situation is typically the case where inheritance is used as a mechanism for
separation of concerns more than for the intended mechanism. This does not invalidate the use of
inheritance in this case; on the contrary, its use was probably intended for future development of
the hierarchy. At DIT=4 and DIT=5, the PCRM is quite high with 42.47% and 43.14%
respectively. Again, when reaching the bottom classes two phenomena can be expected in a
hierarchy: either the high level of PCRM or PEM. Again, the method profile for the TreNode
branch (Figure 5.17) permitted the localisation of suspect classes containing MDR problems e.g.
the ParseTreeNode class at DIT=2.

5. Experiments

11" Class methods profiler m,.;

Profile of the hierarchy: TTe¢Node

Parent Class: Redefined Methods: 4 Subclasses: 11
CharacterNode addChildrenFirst: DerivationTreeNoddZE
addChildrenlinitial: . GrammarNode

addChildrenLast: ProductionNode

ProductionNode setAttribute: RightHandSideNod |
RegularExpressionNodg BinaryRegExprNod;
RightHandSideNode CharRangeNode

TreNode EnnaryRegExprNot

UnaryRegExprNode AlternationRangeN
UnaryRegExprNodd:|
TokenSpecNode E

Parent Class: Extended Methods: 2 Subclasses: |
‘characters | ComplementedAlternatid

ComplementedAlternatid printOn:

Figure 5.17: TreNode method profile

- None of the methods were extended in the first five levels of the branch, then PEM-is equal to
66.66% at DIT=6. As is often the case, only few leaf classes exist at deeper levels in the
hierarchy. In turn, this raises the level of PCRM or PEM. ‘Here, only a single class realises the
amount of PEM (bottom panels of Figure 5.17). This example illustrates the difficulty of
designing classes that extend the system behavioural capabilities rather than using the redefinition
technique for realising the necessary functionalities. It has been generally recognised that,
designing a well-abstracted hierarchy with use of redefinition for extension requires extra effort
from the designers. Such a task is difficult to realise for the reasons that forward planning of future
enhancement is necessary; however, this is, unfortunately, unknown in most cases. By nature,

requirements are likely to evolve with respect of the business needs. This may be not predictable.

5.5.3. T-gen: AbstractScanner branch redefinition profile

The AbstractScanner branch is another example where no redefinition occurs at DIT=1. This
branch is composed of ten classes on four levels of depth. A peculiarity in Figure 5.18 is that the
redefinition level is constantly decreasing down the hierarchy. In order to better analyse and
interpret such results, a detailed analysis of the behavioural inheritance is required. A high level of
redefinition should always raise suspicions about the design but does not necessarily imply an
incorrect use of the mechanism for all the sub-branches of a branch. Recall that the decision that a
design is bad or good depends on the elements of comparison. For example, consider the three
measures for the branches AbstractScanner (Figure 5.18), TreNode (Figure 5.17) and for the
overall system (Figure 5.15). The AbstractScanner and TreNode branches are the largest

- 151 -

5. Experiments

branches in the system. At DIT=2, as no redefinition activity is taking place in Figure 5.17 and

PCRM=27.3% in Figure 5.15, it seems that the AbstractScanner branch is responsible for
nearly all the redefinition activity with PCRM=27.08%.

Figure 5.18: T-gen: PCRM and PEM for the AbstractScanner branch

Further investigations done with the method profile for the AbstractScanner branch confirms the

presence of the MDR problem (Figure 5.19) e.g. scanToken method in the AbstractScanner
class.

bslratSc
SAB St

Parent Class:
AbstractScanner

___Subclasses: 3
jFSABasedScanner

FSABasedScanner OptimizedScanner
FSABasedScannerWith HandCodedScanner
HandCodedScanner

OptimizedScanner

A ™ character at:'the end-of the\methoﬂ'éhame denotes a polymorphic method

Figure 5.19: AbstractScanner method profile

Another reason to carry out such investigations is that attention should be given to the derivation
of the metrics level by level and the leverage effect of classes situated at the same level. For
example, an analysis of the resuit PCRM=20% at DIT=4 (Figure 5.18) may suggest an acceptable

level of redefinition. However, when examining closely the design at this level, two classes

OptimizedScannerWithOneTokenLookAhead and
OptimizedScannerWithTwoTokenLookAhead exist. In the latter, the class is empty i.e. no

properties are defined, which suggests that the author planned its development for the future. Thus,

-152-

5. Experiments

it is possible to conclude that the former class has, in fact, a PCRM=40%, which makes the class

more suspect.

In this example of use of metrics, it is shown that the analysis and interpretation of the metrics
results still require the support of additional design or contextual information e.g. source code, to

reach a viable explanation and potential solution to a design problem.

The next experiment investigates the use of the cumulative PRM for three branches of the

Smalltalk hierarchy.

5.6. Cumulative measure for the Collection, Stream, Object and GraphicObject
branches

The second approach for the calculation of the PRMC’ metric i.e. cumulative metric (section
3.2.2) relates to the number of potential methods available to a class. If all inherited methods as
well as the new ones defined in a class were to be considered, the accumulation of methods is
likely to increase for classes situated near the bottom of the hierarchy. An experiment done on the

Collection hierarchy is shown in Figure 5.20..

Cumulative PRM for Collection Branch (%)

Figure 5.20: Cumulative PRM for the Collection branch

As expected, the values for the PRM metric remain low and even decrease. The Collection class is
situated at DIT=1 and inherits the 155 methods of its parent Object class, giving a PRM=2.64%.
From DIT=3, the PRM decreases. This is due to the fact that most of the classes in the hierarchy
are situated within the first three levels. Figure 5.21 represents the number of classes per DIT
level. Recall that the single root Object class is at DIT=0. The total number of classes in the
hierarchy is 427. Clearly, more than half of the total classes are located nearer the top of the
hierarchy. Therefore, this suggests that, per DIT level, the number of methods may be higher near
the top than the bottom.

Number of classes per DIT lewel
' e]

20 40 60 80 100 120

Figure 5.21: Number of classes per DIT level

-153 -

5. Experiments

From DIT=3 to DIT=7, the rate of decrease of number of classes is quite high (nearly or over
50%) from one level to the next. Indeed, the above measures only give an idea of the profile for
the whole hierarchy; however, it shows that the hierarchy tends to have a “shallow shape” rather

than a recommended “deep shape” [Fir95].

Number of methods per DIT level

0 500 1000 1500 2000 2500

Figure 5.22: Number of methods per DIT level

Figure 5.22 shows an overview of methods per DIT level. As previously expected, the majority of
methods are situated in classes near the top of the hierarchy. The root Object class (DIT=0)
contains 155 methods. It is noticeable that for DIT=1, the number of methods is 1956 while at
DIT=2, it is only 1885 although the former level contains 67% less classes than the latter level.
This confirms that, in general, top classes usually contain more methods than bottom classes. It
also reflects the fact that more abstracted methods may exist in the first level of the hierarchy.
Thus, for each inheritance path, a portion of this high number of methods in top classes is inherited
in subclasses giving a low level of redefinition when considering the accumulation of potentially

available methods in the calculation (Figure 5.20).

Cumulative PRM for Object branch (%)

Figure 5.23: Cumulative PRM for the Object branch

Cumulative PRM for the
GraphlcObject branch (%)

3@.§§|2

005115225335445

Figure 5.24:Cumulative PRM for the GraphicObject branch

Figure 5.23 and Figure 5.24 respectively represent the cumulative PRM for the whole Smalltalk
Object hierarchy and the GraphicObject branches. The GraphicObject branch contains classes

-154 -

5. Experiments

related to GUI definition. Similarly, the values of the metric remain low. However, a similarity in
the profiles seems reproduced in the different measures. All the cumulative measures have a
maximum value occurring near the DIT=3 level which suggests that classes located at such level
are critical classes as the redefinition activity increases to its maximum value. For the half bottom
part of the hierarchy, the redefinition activity decreases due to the amount of inherited methods in

bottom classes.

As a general guideline, a high redefinition activity at one level in comparison to other levels
indicates that many leaf classes may exist at the concerned level, requiring the redefinition of
inherited methods. Therefore, there are potential design problems. A refined measure of

redefinition would then indicate the ratio between replaced, cancelled or extended methods.
The cumulative measure of redefinition is useful when considered, at a level |, with:
¢ The number of methods per classes.
e The number of classes.
If applied on an isolated branch of the hierarchy, a'peak in the redefinition profile suggests either:
* A high number of absfract methods in top classes.
e Wrong usé of inheritance at the level where the peak océﬁrs.

For instance, in Figure 5.24 for the GraphicObject branch, it is clear that at DIT=3, the high level |
of redefinition activity is remarkable and asks for further investigation. As the measure was done
following a cumulative approach, consideration should be given to the number of potentially

available methods per class (Figure 5.22) when interpreting the results.

GraphicObject classes at DIT=3 (%) K
ey

PButtom
PComboBox
PDrawnButton
PGenericSubPane
PGraphPane
PGroupBox
PStaticBox
PStaticGraphic
PStaticText
PToggle

100 100 100 100

_ e "o Q0T o

Figure 5.25: Subset of GraphicObject subclasses branch at DIT=3

In order to understand why the redefinition activity rises at DIT=3 for the GraphicObject branch,
an investigation of classes situated at this level is done (Figure 5.25). The redefinition metrics is
then applied on a selected subset of classes (10 out of 21) which are relevant to the demonstration.
The list of class names is given in the above legend. All the represented classes contain a level of
PCRM above 73% and a PEM below 12.5%. Four of the classes redefine all their methods giving
a PCRM=100% and PEM=0%. A detailed method life history would then pinpoint problems

such as the MDR. In this particular branch, none of the methods have been initially defined as

-155-

5. Experiments

polymorphic. This should raise the suspicion alarm for the designers about the correctness of the

classes and properties.

The following three experiments describe other interesting measures that shed light on the use of
the method redefinition mechanism. In particular, focus is given to the discovery of suspect classes

and the influence of method redefinition in systems that are “embedded” in a class hierarchy.

5.7. Effects of the T-gen system on the Smalitalk hierarchy

A Smalltalk application is tightly coupled to the Smalltalk class hierarchy in the sense that the
applications classes derive from the existing class library, thereby becoming part of the hierarchy.
It is then interesting to investigate the effects produced by the presence of a system in the
Smalltalk environment from an inheritance assessment perspective. After installation of theT-gen
application, the new redefinition profile for the Smalltalk Object hierarchy is as follows (to be

compared with results in Figure 5.7):

Figure 5.26: Smalltalk Object hierarchy with the T-gen system installed

The T-gen system does not seem to have much effect on the Smalltalk redefinition profile. A
slight increase of the values is noticeable for the first three levels. Then for the deeper levels, the
values of the PCRM decrease due to the leverage effect of less completely redefined methods in
the T-gen classes for the levels concerned. Similarly, the values of the PEM still increase and are
slightly higher for the first six levels and remain at zero at the seventh. Note that, at DIT=6
PEM=17.01% which represent an increase of 23% compared to its initial value. This seems

directly related to the amount of PEM in Figure 5.16 for the TreNode branch.

Overall, for development environments similar to the Smalltalk environment, knowledge of the

redefinition profile is interesting as it is affected by the following reasons:

¢ Flexibility for development: direct modification of the code of the native class library is
possible. For instance, extension of existing classes and methods from the Smalltalk hierarchy
is common practice. Indeed, this assumes that the code is available for modification. The
specialisation of code to suit a developed application is a natural and valid process from a
software engineering point of view. The drawback for the Smalltalk hierarchy is that it becomes

more specialised, which may generate problems when more than one independent application

-156 -

5. Experiments

requires to live in the same Smalltalk image. In such cases, careful precautions must be taken in
order to avoid the overriding of methods used by both applications. Usually, the delivery of
Smalltalk applications is done per image, thus avoiding the problem. In languages such as C++,
the native class hierarchies are provided as is. Only extension by new class addition is possible

and only the interface functions are described without code availability.

¢ A stand alone image: reuse and specialisation. Whether the ratio of newly introduced classes
of an application to the native classes of the library is none, low or high, the effects of the
application classes on the redefinition profile completely depends on the design. Predictions of
the profile depending on the shape of the hierarchy are difficult. However, if the application
class ratio is high e.g. over 50%, the chances of increased dependency level is higher, thus
affecting the overall class hierarchy redefinition profile. In the case of the T-gen system, the
ratio is:

number of classes of the system
number of classes of the native class hierarchy

application class ratio =

T - genclassratio = 16 _ 26.85%
: 432 .
In comparison, the reuse ratio U [Hen96] and specialisation ratio S (see chapter 2, section
2.4.6.1 for the interpretation of these metrids_) are equal to: |

_ number of superclasses
total number of classes

) _153 _ 0
U for T -gen 549 27.86%

_ _humber of subclasses . _ 548 _
number of superclasses S for T-gen 153 3.58

While 26.85% of the classes are T-gen classes, the reuse ratio is 27.86% which indicates a
shallow depth and a large number of leaf classes. The specialisation ratio is 3.58. According to
Henderson-Sellers [Hen96], ratio values of U and S near 1 suggest a poor design which is not
the case of the above values. Although, T-gen has slightly increased the level of PCRM, it has
also contributed towards a “better” extension profile and a leverage effect on the whole

hierarchy.

5.8. Effects of the T-gen system on the Collection branch redefinition profile

In general, the Collection branch is one of the branches mostly used by applications as it provides
all the facilities for container management. It is then interesting to repeat the previous experiment
on this branch to detect any eventual effects of the T-gen classes on the redefinition profile. The

initial measures of the PCRM and PEM are shown in Figure 5.8.

~ 157 -

5. Experiments

Figure 5.27 (a) and (b): PCRM and PEM for the Collection hierarchy with the T-gen system

installed

Figure 5.27 shows the new profile for the Collection hierarchy. Compared to the profile without
the T-gen system installed (Figure 5.8), no remarkable differences can be observed. With the T-
gen system installed, the values for the redefinition metrics seem to slightly decrease apart from
DIT=3. Nonetheless, each value of the extension profile decreased as opposed to what had been
previously seen for the whole Smalltalk hierarchy. From the profile, the effects of the T-gen

M

appear negligible.

Conclusions 6n the first three stages of the experiments

In any assessment technique, it is important to consider the characteristic’s context.i.e.-any factors
directly or indirectly related to the characteristic, in addition to the characteristic itself and its
eventual influence on other characteristics. Often, to analyse results from a metric, it is necessary
to refer to other metric results to infer any conclusions, design anomalies or directions for solutions
to a problem (see chapter 2, section 2.4.6.1). As mentioned in section 5.5, some design choices
may involve a modification of the class library from which the application derives. Depending on
the modifications, the assessment of the redefinition mechanism and inheritance in general raises
other issues concerning the derivation algorithm. Design modifications concerning the behavioural

aspect of inheritance may be categorised as follows:

o Insertion of a new class as an intermediate parent class. In rare cases, an identification of a new
abstraction may require the addition of a new class in the middle of an already existing branch

rather than adding the new class as a leaf class.

e Modification of code in the existing methods of the class library. This is not generally
recommended unless there is detailed knowledge of the implications of the changes for the

hierarchy.

e Addition or update of new classes or methods to the classes library. This is one of the most
common tasks occurring during design. Depending on how abstract the method is, its addition

may take place at any level of the hierarchy.

e Deletion of classes and methods from the class library is not recommended although possible.

-158 -

5. Experiments

The first two points involve a high level of risk of compromising the conformance of classes to
their ancestor classes. Addition, deletion or update of classes or methods may have consequences
on all subsequent subclasses in the branch. In all cases, the designer must verify that the

implications of the modifications do not jeopardise the coherence of the inheritance hierarchy.

The issues concerning the assessment of new classes added to the class hierarchy has already been
discussed in the introduction of section 5.5. In the same manner, changes to the class hierarchy i.e.
existing classes or methods, can be assessed in comparing the redefinition profile for a single class
obtained before and after modifications. Then, to capture an overview of the effects of changes, it

is recommended to generate a redefinition profile for an isolated path or branch of the hierarchy.

In the previous experiments, the metrics results were either displayed in a tabular form or as bar
charts. The graphical representation gave many insights on the redefinition mechanism and
discovery of the MDR problem was possible. The bar chart graphical representation was
expressive enough to suggest potential suspect defects and to reach satisfactory conclusions.
However, ‘in an interpretation process (section 3.4.3), other types of representations may be
suitable depending on the subject assessed, the metrics used and the type of data obtained. The
next section investigates several graphifcal representations for the metrics results. Then, a novel
type of representation and its benefits are introduced in section 5.9.5. Then, section 5.10 shows

how alarmers can be beneficial for the interpretation of specific phenomena on a metric profile.

5.9. Metric results visualisation and interpretation

Large data sets are generally difficult to interpret. In the previous experiments, the use of the bar
charts has contributed to the interpretation process. It is believed that the use of appropriate
graphical representations facilitates the processing of the metrics results as well as the discovery
of suspect features. Graphical representations permit a rapid depiction of phenomena occurring in
the data set and depending on the data manipulated, a large variety (but not limited to) of standard
graphic types is available and have various benefits. In addition, the combination of pre-
processing functions on a data set prior to being visualised enables the detection of specific
occurrences. For example, when only a portion of the data is desired, filtering functions can be
used. In that respect, the purpose of this experiment is to evaluate a range of visualisations for
supporting the interpretation process. In order to experiment with a variety of classical chart types,
Microsoft® Excel97 was chosen as the graphical package application. The same data set i.e. the
redefinition metric results obtained in previous sections, is used in order to keep elements of
comparison consistent. In this experiment, the Smalltalk branches evaluated are the Object and
the GraphicObject branches. These were chosen because they show completely different
redefinition profiles and because potential design problems exist in the latter (see section5.4.1). It
is hypothesised that graphically displaying a data set using different representations may provide

additional information for supporting the interpretation process. Therefore, the aim of this

-159 -

5. Experiments

experiment was to use different representations for the same data set in order to identify any

interesting characteristics of each.

Note that explanations for the Object and GraphicObject bar charts were presented in section 5.6
and 5.4.1 respectively.

The key contributions of this section are:

e An investigation of various standard chart types in addition to a newly created one for the
visualisation of the redefinition metrics results. The characteristics and benefits of each are

explored.

e The concept of alarmers is presented and illustrates an example of application of pre-

processing function on a data set.

e A data interpretation system is proposed for supporting the interpretation process.

5.9.1. Surface bar charts

Figure 5.28 (a) and (b): Surface bar profiles for the Object and GraphicObject branches

Bar charts illustrate comparisons among measures in a data set, while surface bar charts combine
the measures on the same percentage scale in such a way as to find optimum combinations
between two sets of data, thereby highlighting any unbalanced distributions. The detection of such
distributions is interesting for metrics such as the PCRM and PEM metrics (both variants of
method redefinition). In Figure 5.28 (b), the general high proportion of PCRM compared to the
PEM raises design questions regarding the use of the redefinition mechanism. For the
GraphicObject branch, the extension of methods is poor. This visualisation is convenient for
depicting trade-offs between metrics in a design where the design characteristics are anticipated.
Notice that the join lines at the PCRM and the PEM boundary are drawn for ease of reading but
do not define a smooth curve (the metrics results are discrete value sets). Further experiments on
several other branches confirmed that the profiles shown occur on many occasions. An early

analysis suggests two corresponding design problems:

e Methods in top classes are poorly abstracted. A 100% of PCRM for the Object branch at
DIT=7 and for the GraphicObject branch at DIT=5 suggests a low level of polymorphic

-160 -

5. Experiments

methods in the top classes. Comparing Figure 5.28 (a) and (b) the visual effect of imbalance is

immediate.

e Leaf classes are wrongly subclassed as they are not reusing inherited properties.

In Figure 5.28 (a), at DIT=6, the apportionment of PCRM vs. PEM is 73.56 to 26.44% whereas
at DIT=7, the apportion comes to respectively 100 to 0%. This suggests that leaf classes are more
subject to complete redefinition than extension, however to discover the causes of such a situation,
the analysis of the methods appearing at the concerned DIT is necessary. If further analysis of the
measures depicted in the graphical representations is required, the behavioural inheritance analysis

technique described in section 3.3.5 and used in chapter 5 is recommended.

5.9.2. Surface charts

Figure 5.29 (a) and (b): Surface profiles for the Object and GraphicObject branches

The surface charts are used for the same purpose as the surface bar charts, however this
representation is convenient for measures returning non-discrete values. On a scale of 0 to 100%,
the representations of each proportion for each metric illustrate the disparities amongst the result
set. In particular, it is possible to assess the magnitude of change of the measures over the DIT.
This is intended only as an example® as the redefinition metrics return discrete values and is
therefore unsuitable. Similarly to the surface bar charts, the surface charts quickly outline the

balance between two or more correlated metrics.

?7 Notice that the x and y-axis have been interchanged for ease of reading.

- 161 -

5. Experiments

5.9.3. Addition bar charts

Figure 5.30 (a) and (b): Addition bar charts profiles for the Object and GraphicObject branches

The addition bar charts are a variant of the standard bar chart however, many measures can be
“stacked” together on the same bar, thereby showing the relationship of individual measures to the
whole. The contribution of each measure to the total is depicted. The addition bar charts are also
suitable for complementary or related metrics. As completely redefined and extended methods are
both considered as redefined methods, the sum of PCRM and PEM gives the PRM (Figure 5.30
(a) and (b)). In Figure 5.30 (a) and (b), PRM is shown by the total extent of the bar. The addition
bar chart is considered an enhanced version of the simple bar chart as it makes clear the values for

each of the shown metrics.

5.9.4. Radar charts

Figure 5.31 (a) and (b): Radar charts profiles for Object and GraphicObject branches

The radar charts allow the display of results across many dimensions. Each dimension has its own
value axis radiating from the center point. The lines connect all measures in a particular data set.
The radar charts permit rapid pinpointing of differences in the shape of the profile. In particular, it
is convenient to use this representation when previous experiments have defined, for example,
averages or thresholds for what is considered good or bad. Any disparity can then be depicted
quickly. Again, the join lines are shown for ease of reading but it is possible to take them into
consideration for identification of pattern profiles. When a smooth increasing curve is expected,
the shape of the profile is a spiral. Attention should be taken when interpreting this type of chart as
it can hold large amounts of data of different types e.g. different metrics across different DIT
levels, that can clutter the graphic, and therefore the interpretation. For the GraphicObject branch,

both curves obtained are rather intriguing as the redefinition activity seems to take place only in

-162 -

5. Experiments

deeper levels of the hierarchy. Intuitively, this is confirmed by the assumption that a class situated
deeper in a hierarchy inherits all methods from its ancestor classes. It is therefore potentially able
to call a high number of possibly unrelated methods, thus explaining the high level of redefinition.
In Figure 5.31 (b), it is clearly seen that dimensions one and two are negligible compared to those
remaining. Given that those dimensions represent the DIT level, it seems fair to conclude that a
redefinition activity is more likely to happen in the bottom of the hierarchy and is due to the
abstraction property of classes at the top. However, the rate of increase of the metrics cannot be
easily pictured in those charts.

5.9.5. A colour coded range bar charts

Hierarchy Branch : Object
DIT PRM PCRM PEM
(%) (%) (%)

1 e-ie 1 ‘ q 14 1 Hierarchy Branch: GraphicObject
19.39 18.16 1.23
42.15 38.03 4.12

3 41—

56.03 47.48
4 CEENNC) GEENC)
45.54 7.68
s it —
62 38.26 13.75
6 (1| m—
60 60 0.0
7) ——)

Figure 5.32 (a) and (b): Colour coded bar for the Objectand GraphicObject branches

Range | Apportion (%) Colour coded bar
0
0.01-14

 PESATRE
Wzl
14.01-28 mr—
FEEET 1

28.01-42
42.01 -56
56.01-70

FEEEET 1
70.01-84 FEEEEE
84.01-100 I |

NOoO s WN-=O0

Table 5.2: Example of equally distributed ranges

In this thesis, the colour coded range bar charts have been created to address the issue of rapid
threshold detection for metrics. These are adapted representations of the simple bar charts. In some
cases, the display of ranges of values may be more relevant than the exact values for a particular
data set. For example, metrics results can be compared to a range of thresholds rather than a single
threshold value e.g. the 20% to 25% range. Instead of displaying the exact measures, the aim is to
represent the ranges in which measures occur. To do so, the measures are pre-processed by a filter
function. In addtion, the use of colour for the different ranges gives extra information at first
glance. The coloured bars shown in Figure 5.32 (a) and (b) have been obtained by checking the
pre-defined ranges in which each metric value is situated. The coloured range bars are defined in
Table 5.2. The apportionment has been arbitrarily chosen to be equal but this is not necessary. It is
the responsibility of the designer to define the ranges and thereby the filter function, relative to

o

5. Experiments

predefined threshold values. It is important to underline that this filtering method is not meant to
be compared to a subjective assessment metric although it is based on the same principle as
scaling. Table 5.2 shows an apportionment of a percentage scale into seven ranges, roughly equal
to 100/7. When the proportions are equal, the smaller the proportion is, the closer this
visualisation will be to the equivalent in a bar chart representation. In the example, colour shaded
rectangles have been used to give a gradual effect. It might also be interesting to consider non-
equal apportionment of the ranges. In such cases, attention should be given to the grounds on
which the proportions are attributed to prevent subjective interpretation [Hen96]. For example,
adopting a non-equal range strategy for a metric m and, providing that previous statistical
experiments deducted a threshold of 60%, only three ranges are necessary. The first range is for O,
the second from O to 0.6 and the third 0.61 to 1. The same principle of colour coded rectangles

can be used to quickly locate defects, thus only three colours would be used in this example.

In the GraphicObject branch, from DIT=2 to DIT=3, the peak (already pinpointed with the bar
chart) appears even more suspect as the PRM increases by a factor of 21.6 suggesting potential
design flaws at DIT=2. Although this visualisation seems similar to the bar charts, but less
accurate, the main idea for such a visualisation is to use it in conjunction with a triggering funétion

~ or alarmer.

5.9.6. Visualisation uses ‘

The different types of visualisation described in the previous sections support the metrics
interpretation activity. It is believed that there is a need for integrating those visualisation
techniques in a measurement programme. Further work is needed for identifying and extending the

current recognised representations.

From the observations made on the experiments with the different visualisations, a summary table
is given below in order to categorise and facilitate the choice of one or another. Each of the
graphical representations is usually suited for a particular task i.e. pinpointing a particular
characteristic of the data; therefore it is possible to categorise them depending on the purpose of the

measurement and the task to be achieved. In the following table, for a particular task, the list of

suitable visualisations and associated explanations is given.

5. Experiments

Task

Visualisation

Explanation

Data

evolution

e Bar chart

Surface bar chart

Surface chart

For the detection of peaks and general evolution of the data
set. Also, identification of the localisation of the problems

has been possible in the case study.

Correlation

Surface bar chart

Radar chart

For the detection of disparate uses of an OO mechanism
and trade off. It also permits the localisation of design
problems with respect to related metrics. Often, the
emphasis on the realisation of one of the criteria disfavours
other criteria. This phenomenon is measurable and can be

localised by defining the adequate metrics set.

Pattern

profiles

Any charts with
restrictions in the

case of the alarmer

For the detection of possible repetitive pattern profiles
corresponding to particular design problems in an OO
system, the classification of typical profiles for later
reference can be envisaged. This is currently being
investigated in further work. A catalogue of typical good
and bad profiles for a metric will be considered. Profiles
from different,_br.an.ches are more likely to convefge
towards the same pattern as they employ the same object
concept. Chidamber and Kemerer, in their empirical data
collection, showed that the distribution of the results of
their metrics converges even when the sites were different
in terms of domain and OO programming language used
[ChiKem94].

Alarmer

Colour coded range

bar chart

For finding subset of data or single value within a given
data set. The triggering mechanism of the alarm is defined

by exact conditions.

5.10.

Table 5.3:

Summary of visualisation types

The concept of “alarmers”

The concept of an alarmer is simple. Suppose we want to detect any factor increase > 2 between

two consecutive levels in the hierarchy. Any values satisfying the condition is expected to be

pinpointed automatically. This is exactly what the alarmer technique is intended for. If an alarmer

is set on for the GraphicObject branch in Figure 5.32 (b), only the values of PRM and PCRM at

DIT=3 would be found. If it was decided to use the colour coded bar charts for visualisation, only
the two bars at DIT=3 for PRM and PCRM are shown. Indeed, the visual effect of the colour

- 165 -

5. Experiments

coded bar representation is immediate and asks for further analysis. The alarmer has accomplished

its task in pinpointing the disparate results.

The alarmer mechanism

The first desired functionality of an alarmer is that it should provide a means for defining the
behaviour to be detected. A simple form of an alarmer would be to detect a particular expected
value within a set. In such a case, a simple condition function would be sufficient to filter the
initial results set. For instance, this would be useful for comparing metrics results to the traditional
averages or threshold numbers. Suppose that after some statistical analysis of the redefinition
metrics results for a project, a threshold of 40% of redefinition is arbitrarily defined above which

the design is to be re-considered. Therefore the triggering condition is simply:
metricValue >= AVERAGE _THRESHOLD

The algorithm of such behaviour can be specified (example 1).

Example 1:
AVERAGE_THRESHOLD :=0.4.

SuspectedValues := Collection new.
(redefinitionAlarmer isOn)
ifTrue: {
metricResults do: [:metricValue |
(metricValue >= AVERAGE _THRESHOLD)
ifTrue: [

suspectedValues add: metricValue.
RaiseAlarm(metricValue).

]

In the algorithm of example 1, the AVERAGE _THRESHOLD constant can easily be defined at

run-time in an application. The suspectedValues collection contains the set of defect values. For

this type of alarmer, a simple condition is sufficient to detect the desired characteristic i.e.
(metricValue >= AVERAGE_THRESHOLD). The metricResults is a collection of results
values obtained from the derivation of a metric on a system. metricValue is a local instance
variable equal to an item of the metricResults collection. The raiseAlarm() function can be a
function which manages the presentation process of the alarm under a chosen form e.g. visual
aspect or sound.

However, in the case of an alarmer triggered when the “weighted methods per class (WMC)”

metric [Chidamber94] is greater or equal to 5, the triggering condition becomes a function:

wmec(class) >= AVERAGE _THRESHOLD

- 166 -

5. Experiments

Then, the algorithm of such behaviour can be specified (example 2).

Example 2:
AVERAGE_THRESHOLD ;= 5.

SuspectedValues := Collection new.

(redefinitionAlarmer isOn)
ifTrue: [
systemToCheck do: [:class |
(wmc(class) >= AVERAGE _THRESHOLD)
ifTrue: [
suspectedValues add: class.
RaiseAlarm(class).

]

The difference in this example is that the triggering condition is now a function and not a single

value. This condition is also tested for each of the classes contained in the systemToCheck

collection of classes.

From the two examples cited, we can see that the core element of an alarmer. resides in its -

triggering condition. In the case of large data sets, complex conditions can be applied. In a general

case, an alarmer makes use of the following main components (Figure 5.33):

e A filter function: when not all metric values are of interest in the whole metric result set, a

filter function can be used to reduce the amount of data processed.

¢ A transformer function: if the data has to be transformed before application of the triggering

condition, a transformer function e.g. statistical functions can pre-process the metric results set.

e A triggering condition: defines the condition under which the set of values to check are

satisfied.

5. Experiments

5.11. Data interpretation system

(Data Transformer)

statistical

[Alarmer engine]
Specification of conditionsJ

visualiser

Figure 5.33: Data interpretation system

A data interpretation system has been built based on the components shown in Figure 5.33. The
raw data in the model can be directly displayed or pre-processed before being displayed. The
visualiser permits the display of the possible representations. A data transformer contains a list of
functions permitting pre-processing of the data set. Typical transformer functions are filtering and
statistical functions. When the designer has recognised some design problems in the hierarchy, the
alarmer engine allows one to define and set up the alarm. In some cases, it is necessary to pre-
process the data set before setting up an alarm for the new metrics set. Thus, the alarmer engine
can co-operate with the data transformer.

The next section concludes the chapter on the experiments.

5.12. Conclusion of the experiments

Currently, one of the main problems that inhibits the development and adoption of OO metrics is a
lack of tools for supporting their development and use in a general sense. Using the prototype
developed, the experiments demonstrated that the redefinition metrics set is applicable to an
object-oriented design, including designs not necessarily organised as a hierarchy. The metrics
proved successful in the detection of suspect classes and thereby enabling the discovery of design
problems such as the MDR problem. In addition, the graphical representations of the metrics
results for various branches of the Smalltalk class hierarchy gave us insights into the behavioural
aspect i.e. the method redefinition mechanism. The separation of the measures for the PCRM and
PEM gave finer-grained indications on the ratios of redefinition at each level of the hierarchy.

In the context where the metrics generate large data sets, it is necessary to have some mechanisms
to quickly filter or re-process the data set in order to facilitate their interpretation. The alarmer
technique provides an easy way to detect problems that appears under certain conditions. If the

triggering conditions are satisfied, the suspect values can be automatically pinpointed. The two

- 168 -

. Experiments

aspects of filtering and alarmer functions have been successfully demonstrated and the data
interpretation system integrated within the prototype tool permitted the investigation of the colour
coded range bar chart representation.
Due to the high-level of redefinition activity in some parts of the Smalltalk class hierarchy, it is
possible to conclude that the inheritance mechanism is violated in many respects. To a major
extent, the possible reasons behind such situations can be attributed to the weak type characteristic
of the language. Also, in some cases, the lack of multiple inheritance clearly produces suspect
design situations. Inheritance in current OO systems is still hazardous. A conceptual gap exists
between OO modelling constructs and their mapping onto a language. The implementation of an
inheritance relationship between classes using any OO programming language is actually a real
source of design problems.
Chidamber and Kemerer’s [ChiKem91, ChiKem94] early work on OO metrics proposed a suite of
six metrics for assessing the complexity of an OO model. Their metrics were applied on C++ and
Smalltalk. For each of their metrics, only simple histograms and summary statistics in a table form
were produced. The interpretation of data relied on comparisons made between the histograms
obtained for both sites. All charts represented the range of metric values (x-axis) obtained against
the number of classes involved (y-axis) for each of the values. No dependency relationships
“between the metrics were presented. The authors only suggestv_tvhat a class hierarchy can be "top”
or "bottom-heavy" i.e. the DIT and the "number of children (NOC)" metrics are corfelated. A high
peak in the NOC histogram showed that most of the classes have no child classes. It was suggested
that design practices dictated the use of shallow inheritance hierarchies, and that performance was
the reason given in some cases. A use of surface bar charts might be a good candidate to exhibit
previous observations. In such cases, it would be interesting to measure the number of classes per
DIT level against their average number of children. Conceptually, it is expected the results would
lead to the same conclusions.
In Lorenz and Kidd's [LorKid94] project experience database, only histogram charts were used. In
some cases, this type does not seem appropriate due to the existence of large numbers in the results
set. For instance, they considered the number of message sends metric and represented the
values obtained against the number of methods. They correctly suggested that a rapid drop in
numbers is the typical pattern found. This confirms the assumption that coupling between objects
should be low in order to avoid inter-class dependencies. However, from a bad practice detection
viewpoint, it would be more interesting to find out the methods which are strongly coupled. This
could not be easily shown on the histogram provided as only a few methods are expected to send a
large number of messages. Considering the colour coded range bar chart, an appropriate definition
of ranges would immediately locate such peculiar results for further analysis.
An important area of measurement theory is the interpretation and analysis of metrics results. In
our experiments, the analysis and interpretation process has been strongly supported by the method

profiler feature of the prototype metric tool. In many cases, the precise location of suspect classes

- 169 -

5. Experiments

containing methods with the MDR problem has been possible. At this point, it is possible to
suggest that the MDR problem happens for at least three reasons:

» A class is wrongly subclassing its parent class i.e. the class does not satisfy the is a

relationship.
> An incorrect design of interfaces of parent classes.
> A lack of abstraction of the top classes in the class hierarchy.

A possible solution for the first reason is to move the suspected class higher in the hierarchy so the
class would inherit from the early implementation of the method, thereby minimising the chance
for the MDR problem. In return, the class concerned will have to resolve all super calls to the
original parent. This can be handled by the introduction of the original parent class as an aggregate
which is instantiated in a constructor method. The great benefit of this solution is that it can be

executed automatically. Otherwise, a manual intervention of the designer is probably required.

Characteristics of the redefinition metrics

The experimental validation of the metrics confirmed that the metrics measured the desired
characteristics. However, concerning some abstract 'propertiés of good metrics' mentioned by .
Kolewe [Kow93], alternative approaches are considered for the development of the necessary
validation of the metrics. We shall briefly comment on these characteristics for the redefinition

metric set:

v’ noncoarseness: we considered many different programs and were able to find different metrics

results.

v' nonuniqueness: if we consider two classes A and B derived from the same parent class where
the same modifications on inherited methods are done and no added operations are made, we

could find the PRMC is the same for both classes.

v’ importance of implementation: we assess a class’s internal complexity by looking at its

methods’ redefinition. The metric depends on the implementation.

% monotonicity: not applicable for the redefinition metrics as their purpose is not to have a
general value for the whole system. However, we could compute for two classes A and B their
respective PRMC. Assuming that a class C contains all the methods from A and B with no
name space conflicts, PRMH® = PRMH* + PRMH®. For this characteristic, the redefinition
metrics can be extended in order to calculate a mean value of redefined methods for a whole

system.

x nonequivalence of interaction: same comment as previous characteristic.

-170 -

5. Experiments

v’ interaction increases complexity: as inheritance is a strong form of coupling and interaction is
implemented via methods in a class, inheriting or adding new methods to a class increases its

complexity, therefore the PRMH vary accordingly. Further verification requires to be done.
% nonequivalence of permutation: not applicable.

As the redefinition metrics are ratios that do not introduce arbitrary weightings or subjective
values, the risk for wrong metrics’ definitions is reduced. More importantly, the measures taken at
each level of the hierarchy with the possibility of deriving the metrics on isolated branches
permitted us to assess cross sections of an entire class hierarchy. This enabled a better

understanding of the relevant abstractions in the hierarchy.

The next chapter concludes the research work and proposes a framework in which measurement

techniques are “smoothly” integrated within an OO design process.

=171 -

6. Discussion and conclusion

6. Discussion and conclusion

"Things should be made as simple as possible, but not any simpler.” — Albert Einstein

"In general, no programming language or language mechanism should be used as a
substitute for creative thinking, or as an excuse for avoiding software design and

architecture.” — Antero Taivalsaari

The work presented in this thesis is concerned with the modelling issues of inheritance. It
investigates the use of measurement techniques for the evaluation of goodness in an OO model.
Ideally, the integration of metrics within the design activity is sought. Various aspects of
inheritance in class hierarchies have been presented with a particular emphasis on the effects of the
method redefinition mechanism. Based on the GQM process model, a measurement plan which
lead to the creation of a novel redefinition metrics set (section 3.2) permitted the assessment of
inheritance hierarchies. Analysis of the metrics results illustrated that the MDR problem (section
3.1.2) exists in class hierarchies. During the course of the measurement process, it was felt that the
input of design considerations (section 3.2) was essentﬂia‘]‘ to the completion of the process.
Experiments with the redefinition metrics were possible with the creation of a prototype metric
collection tool for the Smalltalk class hierarchy. While the collection of the metric results have

been possible, an appropriate analysis ahd interpretation of them proved difficult.

The main contributions of the work can be summarised as follows:

e In section, 3.1.2, the description of the multiple descendant redefinition problem in inheritance
hierarchies. Different uses of the method redefinition mechanism showed that a model might
violate the definition of inheritance although it may also satisfy the requirements. This re-

iterates the debate concerning the fundamental semantics given to the inheritance concept.

¢ In section 3.3, a description of design methodology considerations and techniques necessary
for the assessment of inheritance, in particular the method redefinition mechanism. The design
considerations describe an approach for identifying and gathering the information that is later

utilised within the measurement process.

e In section 3.2, the definition of a set of candidate redefinition metrics for the assessment of use

of method redefinition in class hierarchies.

e In section 3.4, a proposed metrics interpretation framework based on design methodology

considerations and the method's life history analysis.

-172 -

6. Discussion and conclusion

From a software engineering perspective, the designers benefit from the above contributions in

many ways:

Understanding of the causes and effects due to the presence of the MDR problem in class
hierarchies. The use of the redefinition principle is still unclear. Papurt and LeJack [PapLeJ97]
described the conditions under which method overriding should be used for three aspects:
final, abstract and polymorphic. However, no consideration was given to the different types of
redefinition. They consider method overriding as a replaced method, according to the
classification given in section 2.2.4. Also, the authors mainly focused on the inheritance
relationship between a parent and a child class but did not consider the life history of a
particular method down a class hierarchy. The detection of MDR anomalies strongly suggests

potential design problems that may compromise the future evolution of the design.

The use of metrics gives insights into the improvement of the software architecture which is

generally recognised as one of the key points of the design. Therefore, it also contributes

“towards the realisation of the requirements. In theory, an object model ought to be free from

programming language considerations. In reality, as object-oriented languages offer a rich set
of features, it would be unrealistic to completely ignore the implementation issues (see
descriptipn of experiments in chépter 5). In consequence, these iss'ue's‘may, directly affect the
final design solution. As metrics are gene_rally‘avpplied to the 'sou,rcfe code, all design issues can
therefore ber"assessed. With the advent of modelling techniques using the concepts of

components [Eng97], improvement of software architecture is made possible.

One of the interesting aspects of measurement techniques (see section 2.4) is that they can be
used as an instrument for problem discovery. The awareness and understanding of design
problems enlightens the designers on the use of the fundamental object concepts.

Recommended guidelines may be used during the whole design and assessment process.

The use of measurement techniques not only improves the design solution but also contributes
to the development of the design and measurement process. Further experiments are needed in

this area in order to refine the technique and procedures involved in a measurement plan.

It is believed that the redefinition metrics and its variants are strong and simple candidates for

detecting complex design problems occurring within a class hierarchy.

Metrics, method redefinition and implications

Technically, the implementation of the redefinition mechanism is simple. Based on polymorphic

selection or method body selection [PapLeJ97], different behaviour can be attached to the same

method name and dynamic selection takes place at run-time depending on the object receiving the
message, namely the execution of a method call. This mechanism gives code flexibility to the

programmers. However, rather than a simple implementation exercise, the work presented in

-173 -

6. Discussion and conclusion

chapter 2.4.6.1 emphasised the fact that the redefinition principle should also be regarded as a
conceptual design tool. In our experience, most of the problems discovered concerning the use of
method redefinition were design issues. To some extent, incremental design development and the
mechanism of encapsulation are the two main reasons which increase the risk of incorrect
redefinition use. For instance, if a designer is not the original author of an existing class hierarchy,
careful attention should be given to the type of inheritance relationships used and the type of
property modifiers for methods in classes. The behavioural inheritance scheme is not

straightforward to understand especially if the hierarchy includes deep levels.

Only recently, CASE tools such as the RationalRose98® design tool support an automated
visualisation of the inherited methods in class hierarchies. In addition to the methods defined by a
class, it is also possible to visualise the list of methods inherited from the ancestor classes.
Although this list does not include detailed information such as the origin of the method and the
state of the method i.e. overridden or not, it is a valuable feature for the designers. Alternatively, in
the recent Java documentation®® format, a detailed textual description of the above is given. This
partly fulfils the need for search mechanisms in class library documentation. It is clear that further
modelling tools are needed to support the design tasks, in particular for class libraries. In the case
of the method redefinition techniciue, a possible approach to verify the semantics of the inheritance
- relationships is to break down the tasks in two levels of abstraction. For each class, a systematic

check is required for:

e Immediate parent classes and subclasses: in general, class hierarchies tend to be shallow
rather than deep as recommended. Various types of inheritance contradict the conformance of
classes in hierarchies. By consequence, classes tend to reuse behaviour from its closest parent
classes rather than further classes. Thus, verifying that a class conforms to its nearest parent
classes and repeating the process at all levels of the hierarchy guarantees that the inheritance

relationship remains consistent.

e Further parent classes and subclasses: the previous level of abstraction permits a “localised”
verification of the semantics of an inheritance relationship. In addition to this, an overview of
the class hierarchy is also necessary because classes do not necessarily inherit their properties
from their immediate superclasses. In the case of well abstracted hierarchies, it is common to
encounter abstract methods in the root classes which are reused further down the hierarchy.

Therefore, an overview of the resulting effect of encapsulation for a considered class is crucial.

The use of measurement techniques allows the detection of suspected design problems. When a
problem has been identified, there are chances that an appropriate detection method can be found.
In most cases, it is possible to find a pattern of code that corresponds to the design problem.

Therefore, the identification of such patterns permits the discovery of the respective design

% Java development kit v1.2, Sun Microsystems, Inc. Copyright 1993-1999.

-174 -

6. Discussion and conclusion

problems. For instance, “abnormal” super calls (section 3.3.4.1) may be detected with an
appropriate lexical parser tool. Another example of inconsistencies is the MDR problem. Indeed,
the method profiles obtained from the derivation of the redefinition metrics guided the search for
the MDR anomaly. Also, the analysis of the method’s life history for multiple redefinition permits
a localisation of potential suspect classes and methods. In many respects, measurement techniques

represent an additional and valuable asset in the range of available design tools.

Taivalsaari [Tai98] stated that languages should not be a substitute for creative thinking. Therefore
it is legitimate to consider their fundamental concepts and principles in the perspective of design
assessment. Unfortunately, this situation does not encourage the important issue of separation of
concerns between the design and the implementation phases. Similarly, it becomes tempting to tie
design architecture issues to the supporting environment. This is not generally considered

satisfactory.

Chidamber and Kemerer [ChiKem91, ChiKem94] proposed a suite of six metrics for assessing the

complexity of an OO model. The DIT?® metric is based on the following assumptions:

e A class situated deep in a hierarchy is more likely to inherit a great number of methods, hence

increasing its complexity.

e A deep tree involves greater overall design complexity since the number of classes and

methods are important.

e A class which is located deep in a hierarchy benefits from the potential reuse of inherited

methods.

The redefinition metrics set adopts these assumptions; however, rather than using the DIT metric
as a stand alone metric, it was incorporated it into the PRMH metric to give a more meaningful
metric. The WMC metric is the weighted method per class which takes into account the static
complexity of methods in a class. If the complexity is equal to one, WMC becomes simply the
number of methods metric. Churcher and Shepperd [ChuShe95] showed that the metric was open
to many interpretations when considering its use with constructors and destructors in C++. In
addition, unlike the PRMH metric it makes no observations as to which methods are inherited and

of those inherited, which are redefined and which are not.

Lorenz and Kidd [LorKid94] included in their metrics set the number of methods overridden by a
subclass and produced an average extracted from tests on project results. However, unlike the
redefinition metrics, it was done at class level only, no metrics were proposed at hierarchy level
and system level. In addition, their metrics are not represented as percentages which clouds

interpretation. For example, if number of overridden methods = 5, the class complexity is not

 The theoretical basis for the DIT metric came from Bunge's [Wan88] notion of the scope of properties.

-175 -

6. Discussion and conclusion

the same if the class contains a total of 10 methods (50%) or if the class contains a total of 100
(5%).

The MOOD (Metrics for Object-Oriented Design) set [Bri&al95] addresses the evaluation of the
main keypoints of mechanisms of the OO paradigm. The six metrics are: the method hiding factor
(MHF), the attribute hiding factor (AHF), the method inheritance factor (MIF), the attribute
inheritance factor (AlF), the polymorphism factor (PF) and the coupling factor (CF). MHF and
AHF refer to encapsulation as they detect the amount of hidden attributes and methods. Again, no
differentiation is made in the nature of the methods when deriving their metrics for inheritance.
Thus, because of the possible existence of completely redefined methods within a class hierarchy,

their measure of MIF and PF are affected and do not assess inheritance in such cases.

Lewis [Lew95a] proposed a set of fine-grained metrics for assessing overloading, overriding and
polymorphism issues. Related metrics are the overridden method references (ORMR), the degree
of method overriding (DMOR), the degree of polymorphism (DP) and the degree of obscured
polymorphism (DOP). ORMR is applied at method or class level and is taken in the general sense
of overriding. ORMR s aimed to be used with DMOR which counts the number of existing forms
of a method in the whole application. DP relates to the justified use of method overriding but DOP
seems to be language-dependent as it is directed at measuring unspecified polymorphic methods.

" None of their proposed metrics are considered as ratios and no case studies were presented.

Current research on OO metrics has not yet addressed the multiple descendant redefinition
problem. The proposed metrics set was aimed at the assessment of a class hierarchy from a
behavioural viewpoint and the detection of abuses of the method redefinition mechanism. The
results shown in the experiments revealed that such abuses exist in the current Smalltalk Express
hierarchy, but they are theoretically possible in any language. As suggested earlier this may be
simply due to the inherent incremental development of a class hierarchy, especially when different
people are involved in the development. It should be emphasised that a system can be in a perfect
working state even when containing MDR anomalies. The MDR problem increases the code re-
engineering difficulty and affects the natural extension of the inheritance tree which degenerates in

the presence of MDR (see section 3.1.3).

To support the interpretation of results obtained from the redefinition metrics, additional tools
were required to precisely pinpoint defects in methods. The method profiler realised that task by
providing a life history for each redefined method of each class along a particular branch of the
hierarchy. The analysis of suspect classes was facilitated. A possible approach to further refine the
redefinition metric set is to detect complex redefinition cases described in section 3.3.4.1.
Although this would provide detailed information about the behavioural aspect, it pre-supposes
that the metric would become language dependent. Again, it can be argued that such complex
redefinition cases can be considered as design or implementation issues. Further work is needed in

this area.

-176 -

6. Discussion and conclusion

Metrics collector tools

Despite the fact that the simple functionalities of the metric tool were enough to demonstrate the
applicability of the redefinition metrics, it is possible to identify a number of future development

areas as follows:

e The tool requires an appropriate versioning system for storing measures on the same subject at
different points in time. This would be particularly beneficial for enabling comparisons on
designs that continuously evolve with time. The current solution adopted is to save the method
profiles as textual files, delete the profile from the persistent repository and finally to re-
calculate the metrics when necessary. Indeed, the textual files contain the metric results and

therefore are available for further processing tasks.

¢ In its current state, the metric collector tool lacks automatic transfer of metric results to a
graphical tool such as Microsoft Excel®. In the experiments, manual copies of the result
values were necessary in order to be processed. A possible solution is to use the Object
Linking and Embedding mechanism provided by the Microsoft Windows™: environment.

.- However, as a possible future development, it is desirable to exténd the éurrent functionalities
for the management and analysis of -tvhev metrics results. For instance, the graphical .
representations could be done within the same package and further re-pfoceSsing a]gorithms of

the metrics results can be developed.

o The development of a metrics’ definitions repository is crucial for the extension of the
prototype tool. As proposed in [SimLew98], the work constitutes an entire topic of research on
itself. Similarly, further investigations for a common architecture towards a flexible structure

for metrics repositories are desired.

In conclusion, the metric prototype tool successfully demonstrated that the redefinition metrics is
applicable and that automatic collection of measures is possible. A simple tabular display of the
metric results gave insights on the method redefinition profile of the Smalltalk class hierarchy.
Given the simplicity of the architecture, it was shown that the development of such a tool is
facilitated by the presence of functionalities to extract meta-information. The last of the points
mentioned above showed the need for an improved version of the architecture of the persistent
repository. This confirms the fact that the use of a metric tool collector alone is not enough and
requires support from other tools. It should be emphasised that the discovery of unexpected use of
inheritance was possible when collecting the measures on branches of the Smalltalk hierarchies.
Further investigations and development were needed for the interpretation of the metric results. In
its current state, the metric tool satisfied the original requirements but could be extended for

further functionalities.

-177 -

6. Discussion and conclusion

GQM lacks the pre-assessment and the interpretation phases

Although it seems natural to know what to measure before measuring, the identification of the
appropriate attributes in relation to the purpose of measurement is difficult to establish. Similarly,
past experiments with metrics [Fen90, Fug&al98, HarNit96, Hen96] clearly illustrate the
problematic issues in interpreting metric results. There is always the risk that correct metric results
may suggest incorrect conclusions or unwanted actions. The problem of interpretation concerns the
techniques or approaches taken for deducing conclusions. For example, the use of arbitrary
thresholds essentially infers three categories of conclusion: the results may be greater, lower or
equal to the threshold. This technique assumes that the comparison with such a value is possible.
However, the interpretation task requires the knowledge of the context of measurement. Values
under a threshold on a curve may not necessarily indicate normality. In the experiments with the
hierarchy redefinition metrics, for a particular level in the hierarchy, an "abnormal"PCRM value
for a class may be leveraged, therefore hidden, by the low PCRM values in other classes. Thus, a
thorough analysis of metrics results obtained together with input from the design task enable the

designers to confirm or refute their initial hypothesises, and thereby take appropriate action.

In.[Fug&al98], the authors describe their experiences in applying the GQM approach in industry.
In addition to the identification of drawbacks in tﬁe use of GQM, interesting recommendations and
suggéstions were given coriceming thé* épécialisation of the 'approa